
UNLV Theses, Dissertations, Professional Papers, and Capstones

May 2018

Concurrency in Blockchain Based Smartpool with Transactional Concurrency in Blockchain Based Smartpool with Transactional

Memory Memory

Laxmi Kadariya

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Kadariya, Laxmi, "Concurrency in Blockchain Based Smartpool with Transactional Memory" (2018). UNLV
Theses, Dissertations, Professional Papers, and Capstones. 3271.
http://dx.doi.org/10.34917/13568514

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.34917/13568514
mailto:digitalscholarship@unlv.edu

CONCURRENCY IN BLOCKCHAIN BASED SMARTPOOL

WITH TRANSACTIONAL MEMORY

by

Laxmi Kadariya

Bachelor's Degree in Computer Engineering

Tribhuvan University, Kathmandu, Nepal

2013

A thesis submitted in partial fulfillment of

the requirements for the

Master of Science in Computer Science

Department of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

May 2018

© Laxmi Kadariya, 2018

All Rights Reserved

ii

Thesis Approval

The Graduate College

The University of Nevada, Las Vegas

May 4, 2018

This thesis prepared by

Laxmi Kadariya

entitled

Concurrency in Blockchain Based Smartpool with Transactional Memory

is approved in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Department of Computer Science

Ajoy K. Datta, Ph.D. Kathryn Hausbeck Korgan, Ph.D.
Examination Committee Chair Graduate College Interim Dean

John Minor, Ph.D.
Examination Committee Member

Laxmi Gewali, Ph.D.
Examination Committee Member

Emma E. Regentova, Ph.D.
Graduate College Faculty Representative

Abstract

Blockchain is the buzzword in today's modern technological world. It is an undeniably ingenious

invention of the 21st century. Blockchain was first coined and used by a cryptocurrency named

Bitcoin. Since then bitcoin and blockchain are so popular that every single person is taking on

bitcoin these days and the price of bitcoin has leaped to a staggering price in the last year and so.

Today several other cryptocurrencies have adapted the blockchain technology.

Blockchain in cryptocurrencies is formed by chaining of blocks. These blocks are created by the

nodes called miners through the process called Proof of Work(PoW). Mining Pools are formed as

a collection of miners which collectively tries to solve a puzzle. However, most of the mining pools

are centralized.

P2Pool is the first decentralized mining pool in Bitcoin but is not that popular as the number

of messages exchanged among the miners is a scalar multiple of the number of shares. SmartPool

is a decentralized mining pool with the throughput equal to that of the traditional pool. However

the verification of blocks is done in a sequential manner.

We propose a non-blocking concurrency mechanism in a decentralized mining pool for the veri-

fication of blocks in a blockchain. Smart contract in SmartPool is concurrently executed using a

transactional memory approach without the use of locks. Since the SmartPool mining implemented

in ethereum can be applied to Bitcoin, this concurrency method proposed in ethereum smart con-

tracts can be applicable in Bitcoin as well.

iii

Acknowledgements

”I would like to express my sincerest gratitude to my thesis advisor, Dr. Ajoy K. Datta for his

tremendous guidance, encouragement, motivation and supervision throughout my work. I cannot

express enough thanks to him for his continued support and encouragement even in his difficult

period of his life.

I am also grateful to my thesis committee members Dr. Laxmi Gewali, Dr. John Minor and

Dr. Emma E. Regentova for reviewing my work and providing valuable comments. I would like

to take this opportunity to thank my parents, brothers and sisters. My completion of this thesis

could not have been accomplished without their support and love. Finally, I would like to thank

my friends, seniors and juniors who made life easier here in Vegas and those back home who always

had my back when I needed the motivation to go on. ”

Laxmi Kadariya

University of Nevada, Las Vegas

May 2018

iv

Table of Contents

Abstract iii

Acknowledgements iv

Contents v

List of Tables viii

List of Figures ix

List of Algorithms x

List of Acronyms xi

Chapter 1 Introduction 1

1.1 Centralized Vs Decentralized Systems . 1

1.1.1 Centralized System . 1

1.1.2 Decentralized System . 2

1.2 Concurrent Vs Parallel Computing . 3

1.2.1 Concurrency . 3

1.2.2 Parallel Computing . 4

1.2.3 Necessity of Concurrency . 5

1.2.4 Shared Memory And Concurrency . 6

1.2.4.1 Atomic Primitives for Shared Memory 6

Chapter 2 Background 9

2.1 Bitcoin. 9

2.1.1 History of Bitcoin. 10

v

2.1.2 Keys. 11

2.1.3 Address. 12

2.1.4 Wallet . 12

2.1.5 Transactions. 12

2.1.5.1 Transaction Inputs and Outputs. 13

2.1.5.2 Transaction Fee. 15

2.1.6 Blockchain. 15

2.1.6.1 Block. 16

2.1.6.2 Structure of Block . 17

2.1.6.3 Block Header . 17

2.1.6.4 Block Header Hash . 17

2.1.6.5 Genesis Block . 18

2.1.6.6 Chain of Blocks in Blockchain. 18

2.1.7 Merkle Tree. 19

2.1.8 Mining and Consensus . 20

2.1.8.1 Proof of Work (PoW) . 22

2.1.8.2 Target difficulty . 23

2.1.8.3 Nonce . 23

2.1.9 Decentralized Consensus. 23

2.1.9.1 Verification of each Transaction by FullNode. 24

2.1.9.2 Combining Transaction into Blocks. 24

2.1.9.3 Verification of Block and adding to a chain forming a Blockchain . 25

2.1.9.4 Resolving Forks . 25

2.2 Pool Mining . 26

2.2.1 How Mining Pool Works . 27

2.2.2 Distributed Mining Pool . 27

2.2.2.1 P2Pool . 27

2.3 Ethereum . 28

2.3.1 Origin of Ethereum . 28

2.3.2 Smart Contract . 29

2.4 SmartPool . 29

2.4.1 How SmartPool Works. 29

vi

2.4.1.1 Claim Submission . 30

2.4.1.2 Batching and Probabilistic Verification 30

2.5 Transactional Memory . 33

2.5.1 Types of Transactional Memory . 34

2.5.1.1 Non-Blocking Transactional Memory 34

Chapter 3 Literature Review 36

3.1 Bitcoin and Other Cryptocurrencies . 36

3.2 Pooled Mining . 37

3.3 Parallel Computing . 39

3.4 Transactional Memory . 39

3.5 Concurrency to Smart Contract . 40

Chapter 4 Proposed Solution 41

4.1 Concurrency in SmartPool . 41

4.2 Overview of Algorithm . 41

4.3 Tools and Techniques . 46

4.3.1 Atomicity in Counter with CAS . 47

4.3.2 Atomicity in Counter with LL/SC . 48

4.3.3 STM for Concurrency for Counter . 49

4.3.3.1 STM Algorithm with Ownership for Atomic Count 51

4.3.3.2 Overview of STM Algorithm with ownership for atomic count . . . 54

4.4 Correctness . 55

Chapter 5 Conclusion and Future work 58

Bibliography 59

Curriculum Vitae 62

vii

List of Tables

viii

List of Figures

1.1 Centralized System . 1

1.2 Decentralized System . 3

1.3 Concurrent Computing. 4

1.4 Parallel Computing. 5

2.1 Keys in Bitcoin[Nak09]. 11

2.2 Transaction with single input . 14

2.3 Transaction with multiple inputs . 14

2.4 Blockchain . 16

2.5 Structure of Block in Bitcoin. 17

2.6 Structure of Block in Bitcoin. 17

2.7 Chain of block in block chain. 19

2.8 Structure of Merkle Tree . 20

2.9 Augmented Tree for a list of Shares . 32

2.10 Error in Augmented Merkle Tree due to duplicate share 33

4.1 CAS flowchart . 48

4.2 LL/SC flowchart . 49

4.3 counter with STM . 50

ix

List of Algorithms

1 Compare and Swap(CAS) . 7

2 Load-Linked/Store-Conditional(LL/SC). 8

3 Proposed Algorithm for concurrency in SmartPool . 45

4 Update Counter using CAS . 47

5 Update Counter using LL/SC . 49

6 Start Transaction . 51

7 Transaction . 52

8 Ownership . 53

9 Memory Access . 54

x

List of Acronyms

CAS Compare and Swap

COMA Cache only memory Architecture

CPU Central Processing Unit

LL/SC Load-Linked/Store-Conditional

NUMA Non Memory Access

PoA Proof of Activity.

PoW Proof of Work.

ShareAugMT Share Augmented Merkle Tree

STM Software Transaction Memory.

TM Transaction Memory.

UMA Uniform Memory Access.

UTXO Unspent Transaction Output

xi

Chapter 1

Introduction

1.1 Centralized Vs Decentralized Systems

1.1.1 Centralized System

The Currencies that are used today are mostly fiat currency. Fiat currency are fiat money whose

value is backed by the government. Examples of fiat currency are US dollar, euro etc. The supply

of this currency is managed by the central bank. When two parties need to make any transaction,

there always exists a third party which will first verify the transaction and then the transaction

is made successful. Figure. 1.1 is an example of a centralized transaction system where any

Figure 1.1: Centralized System

1

transaction needs to pass through the centralized third party. This third party first verifies the

transaction whether it is valid or not. Depending upon the validity of the transaction, transactions

are either successful or rejected. PayPal, Amazon are some of the online transaction systems that

are using centralized transaction systems to verify the transactions. There are several advantages

and disadvantages of the centralized transaction system.

• Advantage:

– Security:

Centralized systems provides better security as all the transactions are passed through

the centralized party. This centralized party verifies the transactions so the security is

high in the centralized system

– Efficient and Easy to build:

Centralized systems are easy to create and verification of the transactions are more

efficient with the third party as a centralized system.

• Disadvantages:

– Overall Control

The centralized system has all the data and information stored in the centralized server

and this centralized party gets the sole power of controlling the system. When a single

party has the sole power of the system, there is a high risk that the centralized party

can abuse that power for its own advantages.

1.1.2 Decentralized System

Decentralization is the process of distributing the power away from the sole authority of a single

process. As the centralized system has overall control by the single party, this sole authority is

taken away by the decentralized system. In the decentralized system as shown in Figure. 1.2, the

centralized third party is not required, which eliminates the risk of sole control of power. Moreover,

instead of going through the middleman, each party communicates with each other and performs

the transaction as required. Elimination of the third party by this system also eliminates the

unnecessary fees required to be paid to the third party. With all these advantages explained, the

decentralized system is not that easy to build as similar to the centralized system. Several consensus

2

Figure 1.2: Decentralized System

rules and algorithms have to be developed so that there is no difference in operational output as

similar to the centralized system.

1.2 Concurrent Vs Parallel Computing

1.2.1 Concurrency

Concurrency is the execution of tasks in interleaved fashion on a single processor or on multiple

physical processors. It is the execution of several tasks in an overlapped time period instead of

sequential. In this system, one task can advance without waiting for other tasks to complete.

Concurrent computing is possible in a single processor, as computing consists of overlapping task

execution through time sharing. Only one process runs at a time and it is not necessary that it

completes during its time slice.Figure. 1.3 shows an example of how threads are executed in a single

CPU for concurrent computing. It is not necessary for the single thread to complete its task as a

whole at a single computation but can continue at multiple times with overlapping task execution.

3

Figure 1.3: Concurrent Computing.

1.2.2 Parallel Computing

Parallelism is the simultaneous execution of tasks on different processors. Execution of tasks

occur at a same physical instance in parallel fashion on separate processors of multicore processor

machines. Unlike concurrency, Parallel computing is not possible in a single processor machine. It

needs a multiple processor machine. A complex problem is subdivided into multiple smaller tasks

and then each task is computed in a different processor with an intention of increasing computation

power. All Parallel computing is concurrent computing and not vice versa. Figure. 1.4 shows the

execution of tasks in different processors at the same time.

4

Figure 1.4: Parallel Computing.

1.2.3 Necessity of Concurrency

Concurrency is a computation task that is carried out concurrently at the same time. With the

advent of technology and as everything is going online, large amounts of data is accumulated in a

small fraction of time. The simplest way of processing the data is through sequential computing.

However, the demerit of sequential processing is that it takes a significant amount of time for pro-

cessing even a small amount of data. If only more than one task can be computed in a concurrent

fashion on multiple processors, the time can be drastically reduced.

Moreover, with the advent of technology, computers are available with multicore processors, which

are capable of carrying out multiple tasks concurrently in it. Without concurrency, the multicore

processor is of no use as only a single core will be used each time and the overall computation

power is of no difference with the sequential execution. The main goal of multiple processors is to

speed up computation and these multiple processors can be utilized using concurrency to compute

the tasks in different processors in a concurrent fashion. So with the concurrent application, the

5

time of execution is lowered. However achieving concurrency requires advance communication and

consensus algorithms between the different tasks.

1.2.4 Shared Memory And Concurrency

Shared memory is a global memory which is accessed by multiple processes for a efficient means of

passing data between them. Shared memory systems occupy a major portion in the field of mul-

tiprocessor and parallel computing. Tasks running on different processors communicate through

reading from and writing to the global memory. Depending upon the access time of a memory,

shared memory can be classified as the following:

• Uniform Memory Access(UMA):

In UMA, access time to any memory location by all the processors is equal.

• Non Uniform Memory Access(NUMA):

In NUMA, access time to memory is non-uniform with respect to different processor.

• Cache only memory Architecture(COMA):

In COMA, local memories are used as cache. In order to access a remote data by a processor,

the processor first looks in its local cache memory .If not available then it migrates the

complete data to its cache and then reads from that local cache .

1.2.4.1 Atomic Primitives for Shared Memory

Execution of a sequential program in shared memory is really easy. The program executes one step

at a time without worrying much. However, many modern applications are concurrent, so there are

multiple threads executing in parallel. These multiple threads interact with shared memory with

reading and writing on it. Handling of these concurrent threads in a shared memory system requires

synchronization. Traditionally synchronization in multiple threads is obtained by means of locking.

Semaphores, Monitors, Mutex are some software constructs for locking. However, locking can lead

to deadlocks, live-locks, convoying and priority inversion. So some popular atomic primitives for

concurrency without using locking are mentioned below.

1. Compare And Swap(CAS).

CAS(A,E,D) verifies whether the value of address A has expected value E. If so, then the

6

value of A is set with the desired value D with returning true, otherwise the value of A remains

unchanged with returning false and the value of A is stored in E. This CAS operation ensures

that the address A is unchanged by the other threads since the last read by a particular

thread.

Algorithm 1: Compare and Swap(CAS)

Result: Boolean

Input : address,expected value,desired value

1 if address == expected value then

2 address← desired value

3 return True

4 end

5 else

6 expected value← address

7 return False

8 end

2. Load-Linked/Store-Conditional(LL/SC).

LL/SC is a stronger primitive for atomicity. LL copies the shared variables to local variables.

Subsequent SC variables store the local variables to shared variables if no other thread has

made any changes to the shared variable. LL(Loc) returns the current value of address

location Loc and with SC(Loc,V) , a thread Pi sets the value of Loc to V only in the condition

that no thread has changed the value of address location Loc since the execution of pi' s latest

LL on Loc.

7

Algorithm 2: Load-Linked/Store-Conditional(LL/SC).

1 Function load linkedi(Loc):

2 read location Loc

3 Marks location Loc as ”read by i”

4 return Loc

5

6 Function Store conditionali(Loc, V):

7 if Loc marked as ”read by i” then

8 write value V to Loc

9 return Success

10 end

11 else

12 return Failure

13 end

8

Chapter 2

Background

The easiest way to make a payment between two parties is through physical currencies. Such kind

of payment doesn't require the third-party as it makes payment between two parties in person.

With the advancement of technology, nowadays most of the transactions are done online through

the internet and such payment cannot be done without third party involvement.This third party

is centralized and must be trusted one as it has sole power of controlling the system. Moreover,

involvement of third party in transaction increases cost. So In 2009, Decentralized payment system

called Bitcoin was coined to make the payment over the internet without depending on trusted

third parties. This Bitcoin is the hot topic in the market these days and most of the companies are

accepting Bitcoin as the transaction medium and getting popular day by day.

2.1 Bitcoin.

Bitcoin[Nak09] is the decentralized, distributed, peer to peer virtual cryptocurrency which does

not depend on any centralized financial institution called third parties for managing the flow of

currency. It is the instant way of exchanging values with the promise of not needing a middleman.

Bitcoin is not physical coins. It is purely virtual currency. Since Bitcoin doesn't have any central-

ized server for controlling the flow of currency, it is created by the process called mining[2.1.8].

Every user in Bitcoin has sets of public and private keys[2.1.2]. These keys are used to prove the

ownership of Bitcoin in the network. When one user needs to transfer a certain amount to another

user, then the user creates the transaction and signs it with its own private key and spend it by

transferring to a new owner. Thus the only prerequisite to spend Bitcoin is that it needs to possess

the key to sign the transaction. Every transaction created must have reference to a previous trans-

9

action crediting the user. This possession of key puts the control entirely in each user. Bitcoin is

called cryptocurrency since encryption techniques are used to regulate the generation of currency

and verify transfer of funds without the need of central bank.

Mining[2.1.8] is the cryptographic competition to find the solution to a mathematical puzzle.

Built-in algorithms are used to control the mining function in the network. Any machine in the

Bitcoin network can act as a miner. This miner uses its processing power to solve the puzzle and

broadcast in the network. A new block of transactions is created by miners in the network in every

10 minutes on average. The difficulty of the mathematical puzzle is adjusted dynamically such that

average of 10 min is required to solve the puzzle irrespective of the numbers of miners active in

solving the puzzle. Thus, Bitcoin is the internet form of money that can be used as a replacement

of physical money for buying and selling of goods. It can be purchased, sold and even exchanged

for other physical currencies

2.1.1 History of Bitcoin.

Bitcoin was coined by a mystery person named Satoshi Nakamoto in 2008 by publishing of paper

entitled “Bitcoin: A Peer-to-Peer Electronic Cash System” [Nak09]. Before the invention of Bitcoin,

there were several digital cash systems like hash cash[Bac], b-money[Dai18]. These systems weren't

able to address the double spend problem[dou] properly which was one the most important weak-

ness. Then a new cryptocurrency called Bitcoin was emerged that used the computation system

called proof-of-work algorithm(PoW) to reach the consensus and election of a new block in every

10 minutes[Nak09]. This PoW elegantly solved the double spend problem existed in earlier digital

currencies. No one controls the power over the Bitcoin system. It is operated fully on transparent

mathematical principles, open source code and consensus among participants. Due to this features,

Bitcoin was soon popular and currently is the most expensive cryptocurrency in the market.

The Bitcoin network was started in 2009 with the release of Bitcoin client and Bitcoins by Satoshi

Nakamoto. Though Nakamoto published the paper and initially started a new technological leap in

digital currency, he didn't remain involved in the Bitcoin technology for long. He left the respon-

sibility of developing code and maintaining Bitcoin network to some volunteers and disappeared.

10

2.1.2 Keys.

Bitcoin is based on the branch of mathematics known as cryptography. Digital signature of cryp-

tography is used in Bitcoin to prove the ownership or authenticity of data. Digital Signature, digital

keys are used in Bitcoin to establish the ownership of Bitcoin. Digital keys are the private and

public keys extensively used in cryptography. These digital keys are stored in a simple database

called wallet[2.1.4]. These keys in a wallet are completely independent on Bitcoin protocol and

generated in the wallet and managed by wallet software.

The private key is used to create the digital signature and the public key is used to validate

the signature without knowing the private key. In Bitcoin system, when a user wants to spend

a Bitcoin, the owner signs the transaction with private keys and sends the public key along with

the transaction. With this public key and the digital signature in the transaction, everyone in the

network can verify that the transaction is properly spent by the rightful owner.

Figure 2.1: Keys in Bitcoin[Nak09].

11

2.1.3 Address.

Every user in Bitcoin network has address. Address is just like the account number in a banking.

system. Just like account number are used to transfer the amount from one person to another in a

banking system, the same way address are used to transfer Bitcoin in the Bitcoin network. Bitcoin

address is shared with anyone who wants to send you money.

e.g. of Bitcoin address:

1F7mDg5rbQyUHENY2x39WVWK7FsLpEoYZy

Let us suppose my bitcoin address is as mentioned above, Now when any other users want to send

some bitcoin to me, then they use my address as the receiving address and then send bitcoin to

me.

2.1.4 Wallet

Wallet is basically the equivalent form of user bank account.User's digital keys and address are

stored in the wallet. It is a user interface to receive Bitcoin, store them and send them to others.

It is used to manage user's money, key and addresses. It is also used in computing the balance,

creating a transaction and signing it.

Amount that can be spent by the user always comes form the output of previous transaction

that is credited to the user address. This spendable output is created by wallet as UTXO(Unspent

Transaction Output Set)[2.1.5.1] by aggregating all the output credited to that address. Whenever

a user needs to send Bitcoin to some other address, wallet creates the transaction from the UXTO,

digitally signs the transaction and send it to the Bitcoin network with receiver address in it. Wallet

displays overall amount that can be spent, however, it keeps the output separate and distinct

internally.

2.1.5 Transactions.

Transaction is the important part of Bitcoin system. Transaction is the transfer of Bitcoin value

between different addresses which is analogous to a transfer of physical money between bank ac-

counts. The Bitcoin value is transferred using transaction which is then broadcasted to network

and then collected to the blocks[2.1.6.1]. During the creation of new transaction, new transaction

12

input is the references to an output of previous transactions that is already verified in blockchain

network . Every transaction is public in Bitcoin's blockchain.

2.1.5.1 Transaction Inputs and Outputs.

Transaction input and output are the fundamental things of Bitcoin system. Every other thing are

designed in order to propagate these transactions through the network, validate and addition to

the ledger. Unspent transaction output(UTXO) are the Bitcoin values that are available and are

spendable. The collection of all UTXO is called UTXO set. The UTXO is kept tracked by the

full nodes in the Bitcoin network. When a wallet received Bitcoin, it means that UTXO has been

detected by wallet which can be spent with the digital keys it has. The Total balance in a wallet

is calculated by the sum of all the UTXO which can be spend by the user's wallet. This UTXO

may be scattered through thousands of transaction and blocks. Wallet scans all the blockchains

and transactions, then the value of Bitcoin for the particular wallets are aggregated to calculate

the total available Bitcoin amount for the wallet.

As we know earlier in Bitcoin wallet [section 2.1.4], wallet is used to create the input trans-

action. This input transaction is created by using UTXO. The wallet tracks the UTXO for the

particular address and gives the total spendable output for that particular address.This spendable

output is used to create future transactions by the wallet. Every new current transaction created

must be referenced to previous transactions through UTXO. This way Bitcoin value moves from

one owner to another owner in a chain of transaction consuming and creating UTXO. Satoshis is

the smallest unit in Bitcoin just like cents are in dollar. As dollars can be divided to cents as two

decimal values, similarly Bitcoins can be divided to 8 decimal values called Satoshis.

So in overall, When a user A wants to spend bitcoin to buy certain material, he first have to

look in to his wallet whether he has sufficient available UTXO or not. As UTXO refers to output

of previous transaction, this unspent output(UTXO) may be larger than the value that we are

willing to spend. In such case when input is greater than the required output, the changed must

be generated and returned to the same user. Suppose a user named Ram has UTXO of 1 Bitcoin

and if he requires just 0.2 Bitcoin to buy certain material. Then change of 0.8 Bitcoin is required

to be returned to the same user.In another case a single UTXO to create new transaction may be

smaller than the required output, then multiple UTXO must be aggregated to create the output

13

with larger value than required.

Figure 2.2: Transaction with single input

Figure 2.3: Transaction with multiple inputs

Figure 2.2 is about the single input where an input is greater than the required output. Here 1

BTC is broken into 0.2 required output and 0.8 returning output. Similarly, Figure 2.3 is multiple

inputs where single input may be insufficient to create required output. 2.2 BTC is required to buy

some product, thus multiple UTXO is aggregated to form 2.2 BTC. Since the accumulated multiple

inputs are greater than 2.2 thus second output 0.8BTC is the returning output to the owner who

created the transaction.

14

2.1.5.2 Transaction Fee.

As in Figure 2.2 and Figure 2.3, Output may not be always equal to the input. The difference in

the outputs and inputs is the Transaction fee. Most transactions include fee. This fee is used as an

incentive to the miner to mine the block and include the transaction in a block. This is important

to protect the Bitcoin system against abuse by the fraudulent user. This fee prevents an attacker

to flood the network with transactions. It is based on the size of the transaction in kilobyte. Any

transaction fee is calculated as the excess of inputs minus outputs as:

TransactionFees = sum(Inputs)−sum(Outputs)

Thus in overall, to create a new transaction, a user first has to have UTXO received from

the previous transaction addressed to their address. With this UTXO, the user then includes the

receiver address and the amount to be spent. The wallet then creates the full transaction with

input as the reference of previous transaction and outputs as how much Bitcoin it is sending to a

new address. The wallet will sign the transaction with its private key and also sends the public

key with it so that any nodes in the network can verify the signature for the ownership. Each

transaction can have one or more inputs and two or more outputs. The difference of inputs and

outputs is always the transaction fee which is collected by the miner[2.1.8] as an incentive for

mining a block.

2.1.6 Blockchain.

Blockchain[Nak09] is the undeniably ingenious invention of the 21st century. It was first imple-

mented by Bitcoin thus is the important innovation of Bitcoin. Originally implemented by Bitcoin

for the digital currency and now its potential is being researched to other fields as well. It is thus

regarded revolutionary technology having the potential to change the world with Bitcoin gaining

more and more popularity both technically and economically.

The Blockchain is a back-linked list of blocks. It is a distributed ledger technology which makes

Bitcoin as a decentralized system. It is a technology that makes the Bitcoin network independent

on a centralized third party.

15

Figure 2.4: Blockchain

Figure 2.7 is the blockchain which is linked to each other. The beauty of this blockchain is that

any changes in the content of the block in the network is identified

Blockchain is categorized in to two kinds:

1. Permissioned Blockchain.

2. Permissionless Blockchain.

The Blockchain is permissionless blockchain if any node or actor can join the network at any

time without taking permission from other nodes in the network. Bitcoin is an example of per-

missionless blockchain. Furthermore, any node should not prove their identity to be a part of a

network for extending the chain. Whereas permissioned blockchain has the requirement to prove

the identity before joining a network for extending the chain and building consensus. Mostly Fi-

nancial institution that requires private blockchain uses such kind of permissioned blockchain.

2.1.6.1 Block.

Blockchain consists of a chain of blocks linked to each other. Block is the building block of

blockchain. Blocks consist of transaction data in it. Every block have referenced to a previous

block thus they are linked in a chain called blockchain. Blocks can be considered as an individual

page of a book where each line in a page as a transaction. New transactions are processed to a

block by miners and then added to the chain. Once the block is added to the chain, then they are

permanent which cannot be removed or changed by the network. The first created block is called

Genesis block. After that, the miners create the valid block and then are continuously added on

top of the already created block. Figure 2.7 shows the blockchain of 5 blocks. The first block in

Bitcoin is called genesis block.

16

2.1.6.2 Structure of Block

Block is a data structure for holding the transaction to include in a blockchain. Block structure

consists of block header followed by transactions. The average number of transaction in a block is

more than 500 transactions. Figure 2.5 shows the metadata contained inside block.

Figure 2.5: Structure of Block in Bitcoin.

2.1.6.3 Block Header

Block header is an important metadata of block structure. Hash of the Block header is the block

identifier which is distinctive and different from each other. As we know that in the blockchain, the

blocks are linked to each other with each block referencing to the previous block and this referencing

is done through the block header. The Hash of the block header is used to link to the previous

block. Figure 2.6 shows the structure of block header included inside block structure.

Figure 2.6: Structure of Block in Bitcoin.

2.1.6.4 Block Header Hash

Cryptographic hash of the block header is the primary identifier of a block. Generally, it is called

block hash, though hash is of block header only. Block header hash is different for each block thus

is unique and different, which uniquely identifies the block. The first ever created block of Bitcoin

17

which is called genesis block has no previous hash field and all the blocks added after that has the

previous hash field which has the hash value of previous block header. This block header hash is

used to link the blocks into blockchain.

2.1.6.5 Genesis Block

The first block created in the Bitcoin is called Genesis block and was created in 2009. This block

is the parent of all the blocks in Bitcoin. The height of this block is 0 after then with each block

added on top of it increases the height of block with 1. If we trace back the block from any block,

finally it must reach to the genesis block. There is only a single path to reach to genesis block

from any block in Bitcoin blockchain. Genesis block is statically encoded in every node in Bitcoin

network.

2.1.6.6 Chain of Blocks in Blockchain.

Blocks are linked in a chain forming of blockchain.The chain of blocks is formed through the refer-

ence of the hash of previous block. Before building of blocks, previous block's hash is collected in a

block header and hash for that block is created. Thus the blocks are linked together to one another

through the hash of the previous block. Hash of any block is always unique and considered as the

identity of the block as well. Due to linked references of the blockchain, any changes of the data in

the parent block changes the header (identity) of the child which in turn changes its hash because

the child uses the hash of the parent. This changes in the hash(identity)in a child causes to change

the hash of a grandchild and so on. The changes in the hash (identity) of parent effects all the

following children to change its hash(identity) which requires a lot of computation to change all

the subsequent blocks. This linking of blocks through the hash of previous block makes blockchain

immutable. If any of this block is tried to be altered by the illegal miner, then the all the children

below its blocks need to be changed as its children are linked through it, which is impossible for

any miner to do so unless it has computation power of more than 51% [mom14].

Generally, a block is referenced to a single parent block. However, under certain situation, a

single parent can have multiple children. When two blocks are mined simultaneously and route

through a different route in a network, then there is a possibility of multiple children for a parent.

This situation is called fork. The fork is resolved by using longest chain principle and finally, there

is a single child for a single parent. Blocks in a shorter chain are invalid block. When the fork

18

is resolved, the blocks in shorter blockchain are invalid and the transactions in shorter blocks are

rewinded back to the unconfirmed pools[2.1.8] and will be included in later blocks.

Figure 2.7: Chain of block in block chain.

So Figure 2.7 shows how the blocks are linked together in a blockchain using a hash. Genesis

block hash is HASH0. This hash value is used by Block1 header and using this HASH0, hash value

of Block1 is created as HASH1. Now the hash value of Block1 which is HASH1 is used by Block2

and creates the hash for Block3. This using of previous block hash continuous. As a result, the

blocks are linked together forming immutable blockchain.

In Bitcoin blockchain, the Bitcoin full nodes keep the copy of the all the blocks starting from

the genesis block. The copy of the nodes gets updated whenever new blocks are identified. When-

ever a miner in the network finds a valid block, first it updates its blockchain. Then the new block

is relayed to other nodes in the network so that other nodes also update their copies. Other nodes

on receiving a new block , first they validates the block and then updates the blockchain.

2.1.7 Merkle Tree.

Merkle tree[Mer] is a binary tree data structure in which every non-leaf node is the hash of its

children. Merkle tree provides an efficient way of verifying whether the data is included in a binary

19

tree or not.

In Bitcoin, merkle tree of transactions is calculated and finally, root of the merkle tree is used

in the header instead of the whole transaction. Since the hash is of constant length, merkle root

is always of constant length thus hashing of the block header is easier and efficient. Merkle root

allows us to verify the data and supports to securely verify that the transaction has been accepted

by the network. The great advantage of merkle tree in Bitcoin is for lite nodes. They don't need

full block with every transaction instead can request just block header and merkle branch from

other nodes and recreate the required data.

Figure 2.8: Structure of Merkle Tree

2.1.8 Mining and Consensus

Blocks and blockchain are the important factors in Bitcoin. Transactions are aggregated to the

blocks and these blocks are added to the previous valid block forming a blockchain. This addition

of transactions in a block and linking a block to the previous block is done by the miner and this

process is called mining. Mining is a process of verifying transactions and creating a valid block for

forming blockchain. This creating of new blocks will create new Bitcoins thus mining is also called

20

as a process through which new Bitcoins are released by the miner nodes as does the central bank .

In the Bitcoin network, a network consists of several nodes. These nodes may be relay nodes,

clients and miners.Miners on receiving transactions from other nodes, stores in memory pool called

mem pool. These transactions in mem pool are known as unconfirmed transactions which are yet

to be included in blocks. During mining process, miners select some unconfirmed transactions from

the mem pool and they verify the transactions. Once the transactions are verified then they create

a valid block solving a mathematical puzzle called Proof of Work(PoW)[2.1.8.1]. This block is then

added to the blockchain of a local miner and then relayed to the neighboring miners in the network.

On receiving the block from another neighbor, they verify the metadata of the block thus verifying

the block. Once neighbor verifies the received block, they acknowledge that they lost the race of

finding the current height block and adds the newly received block in their blockchain. After that,

they again start competing in the race to find the new block of different height.

On average, a new block is identified in every 10 minutes, thus adding transactions to the block

and to a blockchain takes an average of 10 minutes. Transactions that are verified and added to

a block are considered as confirmed, which gives the permission to the new owner to spend that

amount they received through the transaction. The miner who mines the block gets rewards. There

are two kinds of rewards owned by the miner who mines the block. New Bitcoins are created with

each block creation. This new Bitcoins are obtained by miners as a reward and another reward is

transaction fee obtained from all the transactions included in the block. This incentive of getting

two rewards motivates the miners to continuously compete in the race of finding a valid block. The

valid block is found by the miner by solving a mathematical puzzle using a cryptographic hash.

This process is called Proof of Work(PoW).

Just like central bank issues money and money supply is made, similarly, Bitcoin manages the

supply of Bitcoin through the creation of new Bitcoin on solving the block by the miner. Whenever

a miner solves a block, a new Bitcoin is created which is then rewarded to the winner miner. As

earlier mentioned, a new block is created in an average of every 10 minutes and also known that

with each block created, new Bitcoin is created. This means that in every 10 minutes, new Bitcoin

is created. Currently, 12.5 Bitcoin is generated with each new block found. This creation of new

Bitcoin is not constant though, creation of new Bitcoin decrease by half in every four years (every

21

210000 blocks approx.). e.g. in 2009 when Bitcoin was created, the incentive for new block creation

was 50, which decreased to 25 in 2012 and then to 12.5 in 2016. Thus the current rate of creating

Bitcoin is 12.5 for each new block creation. Based on this formula of decreasing Bitcoin rate, in

2140 all the Bitcoin will be issued and the incentives will only be based on transaction fees.

Transaction fee[section 2.1.5.2] is the difference between input and output. This difference is

also added as the reward to the miner as keep the change. When the rewards from new Bitcoin

creation gradually decreases, the rewards from transaction fee will occupy the greater portion. And

after 2104, all the new Bitcoin creation will be zero and Bitcoin mining rewards will be cover only

by transaction fees. Experts in Bitcoin are concerned about this situation of rewards only through

the transaction fee. [CKN16] explains the instability without the block rewards.

2.1.8.1 Proof of Work (PoW)

Miners in Bitcoin are involved in mining for finding the valid block. Valid block finding in Bitcoin

involves solving a mathematical puzzle. This mathematical puzzle which needs to be solved by the

miners is Proof of Work(PoW). Mathematical Puzzle in block creation is a cryptographic hash.

All the miners continuously work for finding valid hash. Any miner which first find the valid hash

is the winner and takes all the reward. PoW is based in the cryptographic hash. Hash has the

important feature that result cannot be determined in advance and also there is no any pattern in

the hash value So there is no certainty that which miner will solve the hash. The network will set

the difficulty level of the hash known as hash difficulty[2.1.8.2] and all the miners try to solve this

hash puzzle satisfying the difficulty level. This PoW algorithm of finding the correct hash is the

backbone of the blockchain.

Let us take an example such that we are creating a 101st block. First, the block header is created

by a miner with nonce value[2.1.8.3] as 0 and target difficulty as first 5 bit of the hash as 0. with

the nonce value as 0, this becomes the candidate block. Hash for the candidate block is calculated

and compared against a target. The candidate block is updated with iterating the nonce value and

finding the hash until and unless the hash of the candidate block is less than or equal to target.

V aliditycondition = Hash(candidateblock)<=Targetdifficulty

.

22

2.1.8.2 Target difficulty

Target difficulty is the field involved in mining. It is set by increasing or decreasing the starting bit

of block hash to be 0. For e.g. network can set target difficulty as the first 5 bit of the block hash

must be 0. Miner continues its PoW algorithm such that the final hash of the block is less than or

equal to the target difficulty. The main aim of the miner is to mine a block such that its hash value

is less than target difficulty of the network. Target difficulty in the block header is dynamically set

by the network so that the blocks are created in every 10 minutes on average. If the earlier block

was created in less than 10 minutes, then the target difficulty is set to more difficult such that next

block is more difficult to find. Increasing the difficulty by 1 bit causes a doubling in the time to

find a solution so they will take more than 10 minutes to find the next block and in average will

be 10 minutes.

2.1.8.3 Nonce

Nonce is the field in the block header which involves in PoW. As earlier explained in PoW[2.1.8.1

hash is calculated by each miner, first setting the nonce field to 0. Whenever the target difficulty

is not satisfied by calculated hash, miner needs to again calculate the hash of the block. For this

calculation of hash, some value of the block header needs to be changed. This nonce is the value

which is changed repeatedly in order to calculate a new hash value of the block. Nonce is a counter

used in the header, which the miners manipulate to change the hash value of a block to meet the

hash criteria with difficulty satisfaction.Nonce value will start from 0 and continuously increased

to create a valid hash.

2.1.9 Decentralized Consensus.

Blockchain is the backbone of the Bitcoin where there is no any centralized authority as in tradi-

tional system. It is obvious to have the question on the mind “how can the consensus be reached

without trusting anyone”. In Bitcoin there is no central authority, but every node have the copy

of full blockchain that it can trust thus node doesn't need information from any centralized sys-

tem. All nodes in the network have the same blockchain achieved through consensus of all nodes

in the network. All the nodes in the network reached to the common conclusion and update the

blockchain by all the nodes so that the final blockchain is the same. Thus overall process involved

in consensus from start of transaction to blockchain formation are:

23

1. Verification of each transaction by a full node.

2. Combining the transactions in to block with proof of work computation.

3. Verification of block and adding to a chain forming a blockchain.

4. Resolving Forks

2.1.9.1 Verification of each Transaction by FullNode.

As we have discussed in wallet section[2.1.4], wallet is the one which creates the transaction with

input from the UTXO and assigns new owner of the transaction as the output. These transactions

are then relayed to other nodes. These nodes don't simply relay transaction but first, it verifies the

validity of transaction so that only the valid transactions are relayed and invalid are dropped. Every

node first verifies the validity of transaction against a long list of criteria. Once the transactions are

confirmed valid, then the transaction is placed in a mem pool as unconfirmed transaction before

relaying it.

2.1.9.2 Combining Transaction into Blocks.

Among several nodes in the network, some of the nodes are mining nodes which are supposed to

solve the computation puzzle to create a block aggregating the transactions. Step by step process

of creating a block by miner are mentioned under:

• Constructing Block Header

First every miner, on receiving transaction validates the transaction and place the transaction

to memory pool as an unconfirmed transaction. Later it also relays this transaction to other

nodes for propagation in the network. Every Miner then selects some unconfirmed transaction

and then create the block header by filling the six fields of block header[2.6] . Let us take

an example such that current block in the blockchain is 100. So now we are trying to find

101 block. In such case, header of 101th block will contain the hash of 100th block. The

next step is that the transactions are summarized in merkle tree and merkle root is placed

in merkle root field. Difficulty Target refers to Proof of Work to make the block valid. And

finally, Nonce is initialized to 0.

24

• Mining the Block with PoW Algorithm

Now the candidate block is created by miner and miner will run the PoW algorithm to make

the block valid. PoW algorithm is the hashing of the candidate block header repeatedly

until the hash value matches the difficulty target. Hashing is done continuously changing one

parameter of the block header which is nonce. Nonce value will start from 0 and continuously

increased to create a valid block. So the same process of PoW is carried by all the miners.

The one to find the valid block with less than difficulty target is the winner. This way a new

block is created.

2.1.9.3 Verification of Block and adding to a chain forming a Blockchain

Once a valid block is found by a miner. The winner first updates its own local blockchain, removes

the transactions from the unconfirmed transaction as they are confirmed now and then propagates

the block to other miners. The other miners on receiving the block acknowledge that another miner

has won the race of finding the current block. It then verifies the block. Verification of block is

easier as it needs an only single hash to verify whereas millions of hash are required to find the

one. If the block is valid, it will drop all its PoW for the current block with the information that

another miner is the winner. The transactions within the block are removed from an unconfirmed

transaction in other blocks as well. Now the receiving miner will add the new block in its blockchain

and starts mining the next block starting from creating new block header for the new block with

different height.

So in this way, new blocks are created and blocks are linked together to blockchain without

trusting any parties in the network. Once the blocks are verified and linked in a blockchain, the

blocks are permanent. They are immutable. The more depth the block is in, the more it is secure.

2.1.9.4 Resolving Forks

Normally each block should have a single child however, it is not the case always. When two miners

found a block in simultaneous similar time and blocks relayed through different path then at some

point, there may be a situation that a parent may have multiple children. such situation is called

forks. And even sometimes, valid blocks are found but parents are not found such cases is called

25

orphan block. Orphan blocks are formed when two blocks are mined in short interval of time and

child is received before the parent due to a different path of propagation.

2.2 Pool Mining

Basically, Miner is the special nodes which mine the blocks and create the blockchain. Miners

are the backbone of Bitcoin system continuously working on finding valid blocks and building

blockchain. Miner will continuously work on finding the mathematical puzzle called PoW to find

the valid block. The one which first finds the valid block is the winner and gets the reward. How-

ever, the major problem that occurs in mining is that some solo miner may never find the valid

block in its entire life as might have a less computational capacity machine. The finding of valid

hash is the main operation that occurs in finding a valid block. Since there is no any pattern in

finding a valid hash nor there is turn in being the winner of a block, so any node can become

winner depending upon their hashing capacity. So there can be a situation such that a solo miner

with low computational hash capacity may never become a winner. In such case, there is no any

reward for that particular node though it is continuously working on hashing. So to remove such

disadvantage in mining, a concept called mining pool was coined.Mining with mining pool is just

like a lottery. If a single person buys one ticket, in such case, the winner will take all the winning

amount but the individual has less chance of winning. Now if a group of people forms a committee,

and this committee buys 100's of tickets in bulk, in this case, the chance of winning the lottery

by the committee is higher, however the reward is distributed between the members of committee

depending upon shares.

Mining pool is the collection of a miner. It is the sharing of resources over the network to find

the valid block with splitting the total reward to the members of the pool based on the contribution

of work in finding the valid hash. Even when solving for slow solo miners can take years in finding

the valid block, the mining pool with numbers of miners will contribute in finding the valid block by

sharing their resources and the rewards obtained will be shared between the contributing members.

This way, smaller miner gets a fraction of Bitcoin on a regular basis without waiting for years to

generate Bitcoin on its own. In such a way of sharing resources and reward, the variance of miners

is lowered in compared to the solo miners.

26

2.2.1 How Mining Pool Works

Mining pool is the collection of miner in a committee. Mining pool has one leader called pool

operator. Only pool operator has the entire blockchain and rest don't have entire blockchain .

The pool operator first creates PoW with lower difficulty than the network and sends it to the

miners. Pool operator aggregate transactions, build the candidate block then sends block templates

to all the miners in the pool. The miner then uses this block template to mine the block with a

lower difficulty. This block with lower difficulty is then returned back to the pool operator. The

pool operator then keeps records of the shares submitted. While the miner submits the shares,

some shares will have chances of having target difficulty greater than the difficulty of the network.

Then the valid share for the network is found. The pool operator than submits the valid hash to

the network. The rewards obtained will be shared by all pool members depending upon the shares

submitted by the miners in the pool.

2.2.2 Distributed Mining Pool

Most mining pool has the owner called the pool operator. Since the pool operator chooses its

own transaction and candidate block with target difficulty. Such pool is the centralized pool.

Though the variance of rewards is low, miners need to trust on the pool operator. The miners

cannot choose their own transactions, they have to work on the transaction as selected by the pool

operator. Centralized pools have the possibility of cheating and have single point of failure. If the

pool operator is down, then the whole pool will not work. To remove the centralized pool mining

and its demerits, decentralized mining concept was introduced. The first ever known decentralized

pool mining is called P2Pool[p2p].

2.2.2.1 P2Pool

P2Pool is a decentralized pool mining without central pool operator. The disadvantages of central

pool mining are eliminated by a method of P2Pool. P2Pool implements a similar concept of Bitcoin

blockchain to decentralize the pool mining. As Bitcoin uses blockchain, similarly P2Pool mining

implements a parallel blockchain called share chain. Blocks with less difficulty are known as share

and these shares are chained together to form share chain. New blocks are added to a sharechain

in every 30 seconds. Every pool miner has the record of sharechain. Each block in the share chain

27

records the share of the miners who contributed the work and then also relayed to other miners.

When the share blocks achieve the target difficulty of the Bitcoin network, then is propagated and

included in the Bitcoin network, rewarding all the contributor the necessary shares. So the pool

miners can select their own transaction to create the candidate block without the centralization of

pool operator. Share chain uses decentralized consensus share chain mechanism just like Bitcoin's

blockchain mechanism.

Disadvantages of P2pool:

• Every mining pool should contain enough space for holding share chain.

• Number of message exchanged between miners in P2Pool in linearly dependent on number of

shares in the pool

2.3 Ethereum

Ethereum[But13] is the software platform based on blockchain technology which enables develop-

ers to build and deploy the decentralized application. As Stated by Sally Davies, FT Technology

Reporter, Bitcoin is to blockchain where email is to internet. Email is just a single application

in internet and several other application exists on the internet, Similarly, Bitcoin is just a single

blockchain application for peer to peer electronic cash application. This blockchain is not just

limited to Bitcoin, thus ethereum acts as a platform for the developers to build new blockchain

application. Miners in ethereum use ether unlike Bitcoins in Bitcoin network. Ether is used for

transaction fee and services in ethereum network. The average block creation in ethereum is 20

seconds unlike 10 minutes in Bitcoin. The most important feature of ethereum is the smart contract.

Thus Ethereum is a public, open-source, decentralized platform based on blockchain featuring

smart contract. Ethereum allows for building a decentralized application on top of a blockchain.

2.3.1 Origin of Ethereum

Ethereum was first proposed by Vitalik Buterin in 2013 with aim of building and deploying decen-

tralized applications. Buterin first proposed need for scripting language in Bitcoin for application

development, however, he couldn't gain agreement. Thus he suggested development of new platform

which is named as Ethereum. This project was crowdfunded online.

28

2.3.2 Smart Contract

Contract is an agreement between parties. This agreement written in code and placed in the

blockchain is the smart contract. Smart contract is the self-operating computer program(code)

that automatically executes when certain conditions are met. It resides in the blockchain and facil-

itates the exchange of property, money or any value after it is triggered by the transactions. It is the

contract or agreement between parties that is written as code into blockchain at a certain address.

Smart contract has its code, its storage and changes its state when triggered by the events. This

code executes automatically when triggering events hit the contract. In order to invoke a contract

at address @, the user sends a transaction to address @, then the code gets automatically executes

and changes its states according to the program of smart contract.

This smart contract can be created by the developers, however they are public. This flexibility

of ethereum allowing programmers to write the contract makes ethereum popular for building

application. Simple example of a contract is the vending machine where the machine is programmed

(contract) in it. Whenever a person inserts some coin in it, the program gets triggered and we can

get the item from the machine.

i f money r e c e i v e d == $2 .50 && the button pre s sed i s ” Diet Coke”

then r e l e a s e D i e t coke

2.4 SmartPool

SmartPool[LVJS] is the distributed pool mining which uses smart contract and runs on Ethereum

network. The drawbacks of P2Pool mining pool is eliminated by SmartPool

2.4.1 How SmartPool Works.

SmartPool is based on a smart contract which runs on the ethereum network. SmartPool contains

two lists in the contract state.

• ClaimList

It is the list of claims submitted by the miners.

29

• VerClaimList

It is the list of claims that is verified valid.

The miners submit the shares in the form of claim. Once the claim is received by the SmartPool, it

first places the claims in the ClaimList. Each claim has the definite structure, which has a number

of shares submitted by the miner and the root of the augmented merkle tree that helps in verifying

the claim. Once the shares are verified, they are then listed in a VerClaimList. For the efficiency

and security purpose, claims are submitted to the SmartPool in the form of batches and during

verification, all the shares are not verified but only some claims are verified. The verification of

only some shares is to enable efficiency. Since only a few submitted shares are verified, the main

challenge of verification is to prevent miners from over claiming the number of shares and invalid

shares. Once the valid network block is identified, the reward is distributed to all the miners based

on the VerClaim list since VerClaim list has the overall information of the claims submitted by the

miners.

2.4.1.1 Claim Submission

Instead of sending all the shares by the miners one by one, miners send the shares in the form of

batches of shares in a single claim. SmartPool defines a claim structure that contains only a few

data. Miners submit the total number of shares and a merkle root of the batch of shares in a field

called ShareAugMT[LVJS]. After miners submits shares in batches, SmartPool asks the miners to

submit proof to ensure that the share submitted by miners is valid in a structure called ShareProof.

Miners send the ShareProof to demonstrate that share has been included in the ShareAugMT.

2.4.1.2 Batching and Probabilistic Verification

Probabilistic verification approach is applied in SmartPool so as to increase efficiency and security.

As we know that in ethereum smart contract, smart contract uses some fee in the form of gas. If

all the shares are submitted and verified then a lot of amount is spent in the verification process,

and when the valid network block is identified, the reward obtained is distributed, however, the

expense on smart contract may be higher than the reward obtained. Thus among all the shares

submitted only a few shares are verified. This verification of just a few shares ensures efficiency as

only a few shares are to be validated which will be a lot faster than validating all the shares. Now

the question arises that with just few shares verified, how can the SmartPool ensures that all the

30

shares are valid? Miners submit shares in a definite structure to ensure probabilistic verification.

Moreover, smartpool [LVJS] explains that even cheating miners cannot be benefitted by claiming

invalid shares.

2.4.1.2.1 Batching of Shares.

As earlier explained in section[2.4.1], shares are collected, batched then send to the SmartPool.

The SmartPool then verify the shares with Probabilistic verification. The major problem with

probabilistic verification are

• How shares repeated in a claim verified.

• How duplicate of shares in two different claim verified.

So the solution of this two problems is addressed before the shares are batched. During searching

for shares by miners, each miner searches shares in an increasing monotonic order. Counter is used

with each share and goes on increasing with new shares found. So when the claim is received by

the SmartPool, SmartPool ensures that the duplicate counter value is not present in the claim.

Since the verification of claim is done with probabilistic verification, how the unique counter value

in the share are verified? To enable probabilistic verification with ensuring unique counter in share,

SmartPool uses a data structure called Augmented merkle tree.

2.4.1.2.2 Augmented Merkle Tree.

Merkle tree[Section 2.1.7] is a binary tree with each node is hash of its children. With the

merkle root, it is easy to ensure that the share exists in the tree. In SmartPool, we not only want

to ensure share exists in the batch but also there are no repeats and ordering of counter is correct.

Thus the addition of simple counter in merkle tree forms augmented merkle tree.

31

Figure 2.9: Augmented Tree for a list of Shares

A node in Augmented merkle tree has following fields for the node X:

• Minimum(X)

• Hash(leftnode,rightnode)

• Maximum(X)

Figure 2.9 gives an example of augmented merkle tree. The Minimum field of the tree must

be always less than Maximum field for all non leaves node. If there are any duplicate shares in the

batch, then the augmented merkle tree has a sorting error with min and max principle violated, thus

this sorting error helps to detect the duplicate of the shares in the claim. To address the second

problem, SmartPool has a latest counter value stored in it, thus when a new claim is received,

SmartPool ensures that the recent counter received must be greater than the SmartPool counter.

Since every counter is supposed to have a unique counter, this verification of last received claim is

smaller than the latest claim ensures that no duplicate claim is submitted in more than one claims.

2.4.1.2.3 Batch Submission with Augmented Merkle Trees.

So after collecting the shares in monotonic order with a counter, miner locally forms augmented

merkle tree for all the shares. Miner then submits the number of shares in a claim and the root

32

node of augmented merkel tree. After receiving claim by the SmartPool, it randomly samples the

claim and request ShareProof from the miner. This ShareProof helps in finding duplicate shares in

a claim with sorting error. Figure[2.10] shows the sorting error appeared due to duplicate shares.

The non-leaf node is not supposed to have same minimum and maximum field for the same share

and also the same level node should have an increasing order of the minimum, maximum field in

the order going from left node to right node. If there is a duplicate share , the non-leaf node will

have imbalance node. During the probabilistic verification, in case sorting error is detected then

the whole claim is dropped. So in this way, with the help of augmented merkel tree, duplicate of

shares in a claim is detected and verified.

Figure 2.10: Error in Augmented Merkle Tree due to duplicate share

2.5 Transactional Memory

With the increase in popularity of shared-memory model, it is necessary to have the application

more concurrent to take advantage of increased computational power provided by the hardware

and chip. For the shared memory architecture, traditionally locks are used for designing concur-

rent data structure. Coarse-grained locking is easy to program but has limited concurrency. On

the other hand, Fine-grained locking works better but hard to program. Unfortunately, locks of-

ten create a problem of race conditions, deadlocks, priority inversion. So currently projects that

are alternatives to locks are gaining momentum. Lock free data structure avoids several problems

associated with conventional locking. Transaction memory is undergoing extensive research as an

alternatives synchronization mechanism to locks.

33

Transaction memory is a concurrent method for translating the sequential object into non-

blocking. It simplifies the concurrent programming in an atomic way. It attempts to simplify writing

concurrent programs without using locks using transaction concept. Transaction Memory(TM) has

established itself as an alternative to traditional mutual exclusion primitives such as monitors

and locks, which scales poorly and do not compose cleanly. In TM, activities are organized as

transactions, analogous to database transaction which is executed atomically. A transaction may

commit, which makes transaction's effect appear to take place permanently or may abort, with its

effect appear not to have taken place at all. Transaction should follow the following properties:

1. Serializability

Transactions are said to be executed serially when one transaction never appears to interleaved

with the other.

2. Atomicity

Every transaction makes changes to the shared memory. After its completion transactions

may commit with its changes permanent and visible to others or may abort with its effect

appear not to have taken place at all.

2.5.1 Types of Transactional Memory

Transactional memory is basically categorized in to two types:

1. Software Transactional Memory(STM)

It is the transactional programming of synchronization operations in software. It provides

transaction memory in a programming language. This TM has software programs to support

transaction.

2. Hardware Transactional Memory(HTM)

It is the transactional programming of synchronization operations in Hardware. This TM

may have a modification in cache, bus or processors to support transaction.

Today even the hybrid transactional memory combining the STM and HTM are in research.

2.5.1.1 Non-Blocking Transactional Memory

Transactional memory can be blocking or non-blocking depending upon the use of locks. As the

main purpose of the TM is to avoid locks so the non-blocking TM is very useful. Non-blocking TM

34

should have following feature:

• Lock Free.

TM is lock free if, at least one of the threads makes progress while running sufficiently long.

• Wait Free.

TM is Wait free if each process completes an operation after taking finite number of steps.

Wait free guarantees that all non-halted processes makes progress.

• Obstruction Free.

TM is obstruction free if at any point, a single thread executed in isolation.

35

Chapter 3

Literature Review

3.1 Bitcoin and Other Cryptocurrencies

Bitcoin[Nak09] is a decentralized digital cryptocurrency. However, it is not the first cryptocurrency.

The first digital cryptocurrency was proposed by David Chaum in his paper[Cha83]in 1981. Bitcoin

is also not the first decentralized digital currency. Wei Dai proposed B-money[Dai18] earlier than

Bitcoin as a distributed cash system. Finally, in 2008 , Satoshi Nakamoto proposed Bitcoin with

blockchain technology for decentralized consensus protocol in his paper[Nak09] with an old idea

with new technology. The consensus in bitcoin is Proof Of Work(PoW).The original idea of Proof

of Work was proposed by Dwork et al in their paper[DN] and later Hashcash[Bac02a][Bac02b] by

Adam Back. Blockchain is the greatest innovation invented by Nakamoto through the digital cryp-

tocurrency Bitcoin. This blockchain technology used in Bitcoin made it the first digital currency

to solve the double spending[Cho17] problem without the need of a centralized server. Blockchain

is an ingenious invention, not because it does anything new or performs any new magic tricks but

it introduced a mechanism that guarantees to record the history of events in an untrusted network

without any source of central authority. Blockchain used the Hashcash algorithm for adding blocks

to the chain resulting in forming blockchain. This blockchain technology has been an inspiration

to several applications and is under extensive research to identify its uses in other applications

apart from cryptocurrencies. After Bitcoin was proposed by Nakamoto with blockchain technology

as the backbone of the system, numerous cryptocurrencies were created with different consensus

algorithms. There are more than 1543 cryptocurrencies till date and growing[cry18]. According

to market, Bitcoin is the largest blockchain network with the highest price per coin followed by

Ethereum, Ripple,Bitcoin Cash and Litecoin[cry18]. In 2015 a blockchain based software platform

36

named Ethereum was proposed by Vitalik Buterin. This project was crowdfunded online. Orig-

inally Buterin proposed the need for a scripting language in bitcoin for application development,

but he couldn't gain agreement[eth18]. Thus he came up with the new cryptocurrency platform

name Ethereum with smart contract[2.3.2] as the scripting language in it.

Bitcoin in 2008 was proposed with the PoW consensus algorithm, and most of the following

cryptocurrencies followed the PoW for solving computation puzzles. The major drawback of PoW

is that it takes a large amount of energy. As PoW requires an enormous amount of electricity for

solving the puzzle, several other alternatives for PoW was coined. In 2012, Sunny King and Scott

Nadal proposed the alternatives of PoW as Proof of Stake[kN]. The main aim of this proposal is to

eliminate the high consumption of energy by PoW. Proof of stake was proposed for energy efficiency

as this protocol is not dependent on energy consumption in the long run but is based on coin age.

Peercoin, blackcoin, Nxt were the cryptocurrencies implementing the proof of stake. Later in 2014,

Andrew Poelstra wrote a paper[Poe14], which clearly presented that distributed consensus from

proof of stake is impossible. In his paper, he demonstrated that proof of stake doesn't work as a

replacement of PoW. Bitcoin continues to gather success after its proposal as it is able to eliminate

attacks and reach consensus without a third party, but it is also never free from some criticism.

One of the concerns on PoW is that in the long run, new Bitcoin generation will stop and mining is

only incentivized by the transactional fees[CKN16]. This paper explains that mining rewards only

through transaction fees exacerbates instability in the future. So to sustain health in the mining

process, a cryptocurrency protocol called proof of activity(PoA) was proposed in the paper[BLM].

This protocol was also criticized the same as both proof of work and proof of stake that too much

energy is required and double signing cannot be validated.

Several other consensus protocols were proposed like Proof of Burn, Proof of capacity, proof of

elapsed time. The FruitChain consensus protocol was also proposed in [PS17] as a fair blockchain.However,

none of these protocols could replace PoW completely. So PoW is still in use in most of the cryp-

tocurrencies for mining process, and double spent is properly handled in bitcoin.

3.2 Pooled Mining

Security is one of the major problems seen in pool mining as it is governed by a single pool operator.

Security of pool mining has been analyzed in several previous works[Ros11][GoKC15]. Mining pool

37

can even hold the block to make it more profitable[CB14]. The threat of transaction censorship in

centralized pool mining and the getblock template protocol to overcome this censorship issue were

studied in [But] [get18]. Pooled mining[2.2] helps in reducing variance. However, pool mining de-

grades the concept of decentralization. Also, a centralized mining pool possesses the risk of a single

point of failure. So overall the concept of distributed environment is weakened by the mining pool.

Currently, 95% of Bitcoin power comes from only 10 mining pools, and 80% of the mining power in

ethereum comes from 6 pools[LVJS] . Moreover, when more than half of a network mining power

is controlled by a single pool operator, then 51% attack threatens the security of the Nakamoto

consensus protocol [Nak09]. Thus to overcome the drawbacks, The bitcoin community proposed

the concept of distributed mining named p2pool[p2p].

P2Pool is a decentralized pool mining without a central pool operator. The pool miners can

select their own transaction to create the candidate block without the centralization of a pool

operator. P2Pool is the first decentralized mining pool. However, it has not gained much more

popularity because p2pool is inefficient. The number of messages exchanged between miners is a

scalar multiple of the number of shares in the pool[LVJS]. When the share difficulty is low, the

number of shares found are high which will increase the message transmitting cost and resources.

To reduce the transmitting cost and resources, share difficulty can be increased. However this

makes the variance of miners high. Though P2Pool is a decentralized mining pool and reduces the

payout variance, its internal operational network remains open to infiltration by attackers[LVJS].

In order to remove the drawbacks of p2pool mining, Loi Luu et al. proposed a new decentralized

pool mining called SmartPool[LVJS]. SmartPool leverages the smart contracts [2.3.2]. Smart

contract is a self-executing script which is trackable and irreversible. It was proposed in 1994

by Nick Szabo in [sma94], and it came in to use with blockchain in ethereum. Ethereum is the

first cryptocurrency to use smart contract. Several applications are proposed on top of smart

contracts. Juels et al. in [JkS] studied the use of smart contract by criminals to support criminal

activities. Ramachandran et.al in [RK] explains using smart contracts for secure data provenance

management. Loi Luu et. al in [VJL][LCO] studied how smart pool makes bitcoin more venerable

and how to make smart contract smarter. [LVJS] proposed a new application on top of smart

contract by Luu et al. to enhance security and decentralized mining pools by giving the selection

of transactions back to miners. In this Thesis we propose concurrency on top of smartPool so that

38

verification of shares from the pool is verified quickly and efficiently.

3.3 Parallel Computing

At the time of a market dominated by sequential computing, in 2005 Intel produced history's

first parallel computer as the Intel Dual-core processor[dua05]. The Dual core processor has many

identical cores in a single processor. This shift to a multicore processor gave immediate rise to the

focus on multicore programming solutions[Har02] so as to properly utilize the multicore processor.

Experts were focused on programmability rather than performance at the beginning, but the writing

of parallel programs utilizing the multicore machines was not that easy. Primitives like locks,

semaphores and monitors synchronization mechanism provide a way to coordinate and synchronize

threads but they were cumbersome and error-prone.

3.4 Transactional Memory

In 1977, atomic operations in programming was proposed by Lomet[Lom77]with the idea of trans-

actions that exists in databases. Later Knight proposed a way to improve Lisp improving Lomet

work[Kni86]. However, it was in 1993 when Herlihy et al. first proposed and showed how to imple-

ment transactions in hardware as a means to handle concurrency[HM]. He practically showed how

transaction memory simplifies concurrency in multicore machines. TM not only simplifies parallel

programming but also solves the thread coordination and synchronization problems in an efficient

way. Shavit and Touitou proposed software only transaction memory in 1995 which raised interest

in transactional memory dramatically[ST]. Since then, several mechanisms for transactional mem-

ory have been proposed like polymorphic contention management[GHP05], lock based blocking

system[Enn06][DS06], and composable transactional memory[HMJH05]. Today computers with a

multicore parallel architecture are common, and parallel programmability in such computers is a

must to enhance efficiency. Transactional memory provides an easy to use parallel programming

solution. Transactional memory can be lock based or lockless. Robert Ennals made the first prac-

tical use of lock-based STM in 2005[Enn06]. Later Transactional Locker [DSS06][DS06][DS07] and

DracoSTM[GC07] systems were proposed. To date, research in open and closed nesting transac-

tional composition are primal in TM.

39

3.5 Concurrency to Smart Contract

The goal of this thesis is to propose concurrency in a Blockchain based SmartPool. Concurrency is

gaining momentum as the approach of choice for replacing sequential execution. With the increase

of data, the need of concurrency is growing as well. In today's world, the computation problem is

getting more and more complex and if the problem is executed in a serial manner, it is supposed to

take years to complete the task, so people are moving to concurrency which could help in completing

the same task in less time. In the field of cryptocurrency, Ethereum and Bitcoin are very much in

the news. Cryptocurrency is the buzzword in today's world with Bitcoin and Ethereum the most

popular cryptocurrencies. Ethereum particularly uses scripts called smart contracts, and several

applications are built on top of smart contract and Ethereum.This smart contract manages states,

checks credentials and more. These smart contracts throughput is limited if they are executed

by transactions in a serial fashion. In the case of Ethereum and smart contract, currently smart

contract is executed by miners serially. This drawback of throughput was addressed in a paper

[DGHK17] by Herlihy et al. This paper proposes executing the contract code concurrently using

Software Transaction Memory(STM). Maurice is the first person to propose an implementation of

transaction memory in the smart contract. Earlier several researches were carried out investigating

TM methodology for highly concurrent data objects. A transactional support mechanism for non-

blocking synchronization was originally proposed by Maurice Herlihy and Moss[HM] which proposed

to implement transactional memory by multiprocessor cache coherence protocols. This was based on

Hardware transactional memory. Stone et al [SS] proposed a similar concept. Herlihy also proposed

implementing concurrent data objects using CAS in [Her93], LL/SC in [IR] , and transactional

boosting in [HK]. Later Shavit and Touitou proposed the transactional memory implementation in

software in their paper named Software transactional memory [ST]. This paper explained that each

transaction should acquire ownership before it makes any change in the shares resources. Updates

are only made after a system wide declaration of an update. This process only worked if the shared

memory words are known in advance. Scott and Maratha proposed a STM for dynamic objects

in [MS04] which even works for dynamic objects without prior knowledge of the shared memory.

It can make decisions on the fly about the memory words to be accessed. Fatourou has explained

several blocking and non-blocking algorithms in Algorithm techniques in STM design[FIkK15].

40

Chapter 4

Proposed Solution

4.1 Concurrency in SmartPool

In the SmartPool, shares are created then submitted to the smart contract. The shares are then

sampled and verified. All this verification is done in a sequential manner, which degrades the

throughput of the SmartPool. This sequential manner of running verifications in SmartPool can be

replaced with concurrency using Transaction Memory(TM) for shared memory. Maurice Herlihy

in his paper[DGHK17] explains about the implementation of concurrency in smart contract using

TM and SmartPool is implemented in smart contract. Thus TM can be implemented in SmartPool

for concurrency.

In sequential claim verification , the SmartPool receives the claim in batches, then verifies in

a probabilistic verification. During probabilistic verification, some of the samples are taken and

verified in a sequential manner. In this proposed algorithm, to support the concurrency, a count

variable is added to the smart contract, which counts the number of valid samples. Finally, when

all the threads are completed, the total count is compared. The total count is supposed to be the

total number of threads spawned which signifies that all the samples are valid. Thus the claim can

be added to the verified list.

4.2 Overview of Algorithm

In this proposed algorithm, we have proposed concurrency in SmartPool. The proposed Algorithm

contains the following state:

41

• ClaimList.

Shares submitted by miners are first stored in a list which is the ClaimList. This list is not

the final verified list but is the temporary list of shares which are identified by miners. These

Shares are later verified.

• VerClaimList.

This is the list of shares that are verified by SmartPool. Once the share in ClaimList is

verified, the shares in ClaimList is then transferred to VerClaimList.

• MaxCounter.

This is the value to identify duplicate submission of the same share in different batches. As

we know from earlier augmented merkle trees, each share has a minimum and a maximum

field in it. Minimum and maximum field is related to the count. Each recently found share

has a greater value of the count than an searlier found share. Maxcounter in SmartPool will

store the last count value of shares received by SmartPool. Whenever the Pool receives new

shares, the new shares are supposed to have a greater count value, and this verification of the

recently received count value is checked through the MaxCounter variable. SmartPool will

drop the shares as invalid if the received share is less than MaxCounter.

• difficulty.

This is the target of shares for every miner. A share that is found by the miners must have

a hash value greater than or equal to the difficulty to prove itself as valid.

• Counter.

The counter value is used for updating the number of valid shares. This variable is added to

the proposed solution so that the threads can be used for concurrency, and this variable is

continuously updated by each thread.

The miners submit the shares in the form of a claim. Instead of sending all the shares by miners

one by one, miners send the shares in the form of batches in a single claim. Once the SmartPool

receives the batches of shares, shares are stored in ClaimList initially, then the shares from the

ClaimList are verified. The submission of claim and verification is done through probabilistic veri-

fication. Only some of the samples are verified to increase efficiency and security. The verification

of only a few shares increases efficiency. However, there is a risk of fraud such that the same shares

are submitted multiple times. In order to address this issue, an augmented merkle Tree structure is

42

used so that same share is not submitted multiple times with a sorting error identified if any miners

try to submit multiple shares. Furthermore, MaxCounter is tracked by the SmartPool so that the

current received batch should always have the counter value greater than the latest received batch.

Once the batches of shares are received, it is already ensured that the shares submitted have

no duplicate shares, otherwise, it could have been already dropped and that miners would never

get involved in mining again. So from the miner point of view, first the valid shares are identified,

shares are then batched into a bundle of shares, and an Augmented Merkle tree is created with the

appropriate data structure. Once the Merkle Tree shows no sorting error, shares are then submitted

to SmartPool as a ShareAugMT.

At the SmartPool end, only a few shares are picked and the SmartPool asks the miners to send

ShareProof to demonstrate that the share has been included in the ShareAugMT. The SmartPool

then verifies each claim. This verification of shares in SmartPool is done concurrently using Trans-

actional memory in a non-blocking way. The Count state is used to track that the total number

of verified shares is equal to the total number of random samples. If the count variable is equal to

the total number of random samples, it ensures that all the shares are valid and all the shares are

submitted to VerClaimList. Otherwise, the submitted claim is dropped and the miners won't get

any rewards.

In the implementation of TM, each random sample is executed in a thread and the counter is

updated by the thread. The counter variable is a shared memory and can be accessed by all the

threads. Allowing all the threads to access a shared memory is a complex task. All the threads

may read, modify, write to the memory at the same time, which causes the share memory to have

an unwanted value written in it. It is likely that different threads may access the memory at the

same time which could lead to the data inconsistency and race condition. Thus to update the count

variable atomically, TM is used.

So in the overall picture, every miner in the pool is continuously working to find the valid hash.

The difficulty of the hash is provided by the SmartPool to the miners, and with the information

of the difficulty, each miner works to get the share with a hash less than the difficulty as provided

by the SmartPool. Once the miners in the SmartPool find the valid hash, then they submit the

43

shares in batches with the augmented merkel root. Augmented Merkel Trees have Minimum and

Maximum filed in it to verify that the same shares won't be submitted in a single batch. Moreover,

SmartPool keeps track of the last submitted shares timestamp so that the newly submitted shares

must have a timestamp greater than the latest received share batches. This prevents the miners

from submitting the same duplicate share in the new batch. These shares with valid timestamps

are then submitted in batches to SmartPool. SmartPool stores these shares in ClaimList. These

shares in ClaimList are then verified probabilistically by taking some samples from it. This samples

are then verified using TM with the count share variable. This TM will update the counter variable

atomically and gives the correct output. Once all the threads complete the transaction, the counter

value is compared with the number of random samples. If the number of random sample is equal to

the counter value, this suggests that the submitted batch of shares is valid. After then the shares

are submitted to VerClaimList. SmartPool also checks whether the submitted random shares is

valid block of the network or not. There is a probability that the share can have a difficulty target

equal to the network target. In such a case, the share is submitted to the network and the reward

is distributed to all the miners as per the VerClaimList.

44

Algorithm 3: Proposed Algorithm for concurrency in SmartPool

Structure of Claim : Nsize,ShareAugMt

Structure of ShareProof: HeaderofShareSi, AugMkProof

1 Nsize←Number of shares in a claim

2 Nsample←Number of random samples

3 VerClaimList[X]←All verified claims submitted by miner X

4 ClaimList[X]← All unverified claim submitted by miner X

5 MaxCounter[X]← Max counter of the miner X

6 difficulty← minimum difficulty of the share

7 Counter=0/* initialize counter */

8

9 Function Algorithm for Executing in SmartPool::

/* Main execution in Smartpool with concurrency */

10 Accept a Claim

11 for eachclaim do

12 Verify Share counter>maxcounter[X]

13 Verify duplicate submission

14 Create thread with Nsample number

15 for i← 0 to Nsample do

16 Request ShareProof from Miner

17 Verify ShareProof

18 Verify Minimum Difficulty

19 Update Counter using TM

20 end

21 if Counter == Nsample/* verify that all samples are valid */

22 then

23 Update VerClaimList[X];

24 end

25 else

26 Reject Claim

27 end

28 if Valid Block then

29 Request Payment

30 end

31 end

45

32 Function Algorithm for Miners::

/* execution in Miners */

33 Construct Block Template;

34 Find Valid Shares;

35 Submit Claim;

36 Submit ShareProof;

4.3 Tools and Techniques

The concurrent verification of shares can be done with multiple threads. In order to verify that

all the shares are verified, a Count variable is added which is updated by each thread on verifying

shares. The problem with this count variable is that since it is a shared variable , it may be accessed

by more than 1 thread at the same time and the overall count value is incorrectly updated. Thus

to make sure that the count variable is updated by a single thread at a time, a lock can be used.

However, a lock is a blocking thread mechanism which imposes several problems. The non-blocking

way to update a shared variable is by means of TM.

In the implementation of TM, the shared variable which is a counter has a local copy of read set

and write set for each thread. There is a global copy of the shared data as well which is accessible

to all threads. First the global copy of the shared data is copied to the local read set. Then some

operation is performed locally and the value of the data is updated locally in the local write. Before

updating the local write to the shared variable by a thread , the local old read copy is compared

with the global data to ensure that any other threads haven't changed the content of shared data.

If the local and global data are the same for the particular thread, this ensures that no other

threads have updated the value, otherwise some other thread must have already changed the value.

If any other thread has already changed the shared data, then the global data is copied to the local

read, the thread is rolled back to an initial state and the procedure is repeated. The value of the

thread write is only committed to the global data if none of the other threads has made changes

before. This comparison of local copies with the shared variable and updating can be done through

atomic primitives CAS and LL/SC.Thus TM in the counter variable can be implemented by using

operations like Compare and Swap(CAS) and Load-Linked/Store-Conditional(LL/SC)[Her93].

46

4.3.1 Atomicity in Counter with CAS

The compare and swap(CAS) when called as CAS(A,old,new) returns true and updates the value

of address A with a new value if old is equal to address value A. Otherwise it returns False and the

address value A is copied to the old value. Section 1.2.4.1 gives more detail on CAS.

In our algorithm of concurrency, CAS can be used to update the counter atomically. Each

thread is supposed to update the counter value if the shares are valid. For this purpose of updating

the counter atomically, each thread will keep a copy of the shared variable counter locally. When

the shares are identified valid by a thread, it increases its local count value by 1 and checks if the

shared global count variable is already updated by some other threads or not. It checks its earlier

local shared count value with the value of the global count. If the earlier local copy of the share value

is the same to the global count, it implies none of the threads have updated the counter before it,

so it updates the counter. This way of updating the counter atomically can be implemented by CAS.

Algorithm 4: Update Counter using CAS

Data: Counter =0

1 for i← to Nthreads do

2 if Sample == V alid then

3 CAS(&Counter, Counter, Counter + 1);

47

Figure 4.1: CAS flowchart

4.3.2 Atomicity in Counter with LL/SC

Atomicity can also be implemented by using LL/SC. Section[1.2.4] gives more detail on LL/SC.

In our algorithm, LL/SC can address our atomicity in the counter. Since the counter needs to

be updated atomically without blocking any other threads, LL/SC is a non-blocking primitive for

atomicity. Each thread will load the count variable locally and once the share is identified as valid,

the local count variable is updated. This local count variable is updated in the global count only

if another variable hasn't updated the global count before it.

48

Algorithm 5: Update Counter using LL/SC

Data: Counter =0

1 for i← to Nthreads do

2 if Sample == V alid then

3 LL(&Counter);

4 SC(&Counter,Counter+1)

Figure 4.2: LL/SC flowchart

4.3.3 STM for Concurrency for Counter

Transaction memory is the buzzword for the concurrency in shared memory. Several STM tech-

niques have been purposed for concurrency apart from above. First the TM technique as proposed

by Herlihy and Moss[HM] can be used for the concurrency control here in smart contracts as well.

49

Herlihy's proposed TM is a simple extension to the multiprocessor cache coherence protocol. Like

the way consistency in cache and main memory is achieved, the same coherence protocol can be

implemented for achieving concurrency in smart contacts as well.

STM proposed by Shavit and Touitou requires the pre-knowledge of all the memory that the

transaction accesses. Since this thesis proposal has just the single count variable which is static, thus

Shavit and Touitou [ST] proposed STM can be implemented for concurrency in SmartPool. This

algorithm makes updates to the count variable only after a system wide declaration of its update

intention. Such a declaration makes other transactions aware that some other transaction is about

to make updates to the particular shared object. This algorithm uses the concept of ownership.

The transaction declares that it is taking ownership of the shared variable and declares itself as the

owner. The declaration of ownership is done through storing of references by transaction. After

taking ownership, the transaction makes updates to the object, then releases its ownership. This

process of acquiring and releasing of ownership is done atomically using CAS or LL/CS.

Figure 4.3: counter with STM

50

4.3.3.1 STM Algorithm with Ownership for Atomic Count

Algorithm 6: Start Transaction

Status: None,Success,Failure

1 Start Transaction(Dataset)::

2 Initialize(transi,Dataset);

3 Transaction(transi,transi.version,True);

4 Transi.executing = False;

5 Transi.version++;

6 if Transi.success == Success then

7 return Success;

8 else

9 return Failure;

51

Algorithm 7: Transaction

1 transaction(Trans,version,Isinitiator):

2 AcquireOwnership(trans,version);

3 status = LL(trans.status);

4 if status == None then

5 if version != trans.version then

6 return

7 SC(tran.status,(success,0));

8 status = LL(tran.status);

9 if status == Success then

10 RecordOldValues(tran,version);

11 newvalues = calcnewvalues(stat.oldvalues);

12 updatememory(stat,version,newvalues);

13 releaseownership(tran,version);

14 else

15 ReleaseOwnership(tran,version);

16 if Isinitiator then

17 ConflicitTrans = Ownership[ConflicitAddr];

18 if ConflicitTrans == Null then

19 return

20 else

21 ConflicitVersion = ConflicitTrans.version;

22 if ConflicitTrans.executing then

23 Transaction(Conflicittrans,ConflicitVersion,False);

52

Algorithm 8: Ownership

1 AcquireOwnership(trans,version):

2 location = trans.add[count];

3 status = LL(trans.status);

4 if status != None then

5 return

6 Owner = LL(Ownership[trans.add[count]]);

7 if trans.version != version then

8 return

9 if Owner == trans then

10 break

11 if Owner == null then

12 if SC(trans.status,(null,0)) then

13 if SC(Ownership[location],trans) then

14 break

15 else

16 if SC(trans.status,(Failure)) then

17 return

18 ReleaseOwnership(trans,version):

19 location = trans.add[count];

20 if LL(ownership[location]==trans then

21 if trans.version != version then

22 return

23 SC(ownership[location],null);

53

Algorithm 9: Memory Access

1 RecordOldV alue(trans,version):

2 location = trans.add[count];

3 oldvalue = LL(trans.oldvvalue[location]);

4 if trans.version != version then

5 return

6 SC(trans.oldvalue[location],memory[location]);

7 UpdateMemory(trans,version,newvalues):

8 location = trans.add[count];

9 ; oldvalue = LL(memory[location]);

10 if trans.version != newvalues[count] then

11 return

12 if oldvalue != newvalues[count] then

13 SC(memory[location,newvalues);

4.3.3.2 Overview of STM Algorithm with ownership for atomic count

The above STM Algorithm with ownership for the atomic count in section[4.3.3.1] is a modification

of Shavit and Touitou's paper[ST] with single shared memory “Count”. This algorithm requires all

shared memory locations to be known in advance. Knowledge of shared memory in advance allows

us to acquire ownership of the count shared variable. Once the transaction acquires ownership,

it can modify the shared memory, then it releases ownership for other threads. Each transaction

records the necessary data structure that is required to acquire the ownership and execute it. The

data structure of each transaction follows:

memory address

o ldva lue

s t a t u s

ve r s i on

bool execut ing

memory address holds the address of the memory locations accessed by the transaction. old

54

values records the content of the memory when the transaction acquired ownership. status,version

and executing are used to track the state of the transaction.The shared memory word “Count ”has

a corresponding ownership that tracks which transaction owns the shared memory location. After

acquiring ownership , the transaction tries to update the memory. However, before updating the

memory, the transaction first loads the status, checks the version and then only updates if the

version of the transaction is the same. The atomicity is ensured by the store-conditional operation.

LL(t rans . s t a t u s)

.

I f (v e r s i on != trans . v e r s i o n)

re turn

SC(t rans . s tatus , newval

The Start Transaction routine Algorithm [6]starts the transaction. The Dataset parameter has

the shared memory address that can be accessed by the transaction. The transactional object is

created and the Transaction routine[7] is called to acquire ownership and execute the transaction.

The routine AcquireOwnership and ReleaseOwnership Algorithm[8] is called by the Transaction

routine . The AcquireOwnership routine acquires ownership of the memory if the shared memory

location is not acquired by any other transaction. ReleaseOwnership releases the ownership of the

shared memory location.

The RecordOldValue routine Algorithm[9] records the value of the shared memory. It is only

invoked if the shared memory is acquired by the transaction.

4.4 Correctness

Lemma 4.4.1 Validation of random shares in SmartPool is Lock Free.

Random shares are validated using concurrency with multiple threads in it. Threads are coordinated

to update the count shared memory only if the shares are valid which is checked with a difficulty

verification and if shares are linked to earlier transactions or not. For the coordination of threads,

locks are not used but shares in each thread are validated as a transaction. The transaction updates

the count for sure or will start from the beginning if it fails, thus validation of random shares is

Lock free.

Lemma 4.4.2 Validation of random shares in SmartPool is Wait free.

55

All the threads in the verification process will complete their task of updating the count variable

in a finite time. If the share is valid then the particular thread running that process will update

the count value, or if the share is invalid, it will end the particular thread. In case the share is

valid but cannot update the count variable as it is currently being used by another, the current

transaction is dropped and again starts from the beginning. Any thread will never run for infinite

time , Thus validation of random shares in SmartPool in Wait free.

Lemma 4.4.3 Validation of random shares in SmartPool is Obstruction free

The validation of shares in SmartPool is obstruction free as all the threads executing shares are

executed in isolation. Any process can complete the assigned task even if all the other processes

are stopped. Each thread carrying the validation of shares as a task completes the assigned task in

finite time without obstruction in isolation. Threads in SmartPool which have partially completed

tasks are rolled back.

Lemma 4.4.4 Validation of random shares in SmartPool is Non-blocking.

A non-blocking algorithm must follow the properties of being lock free, wait free and obstruction

free. Since the random share validation follows all three properties of lock free, wait free and

obstruction free, thus validation of random shares is Non-Blocking.

Lemma 4.4.5 Validation of random shares in SmartPool is Serializable.

Transactions are said to be serializable when one transaction never appears interleaved with others.

In this proposed algorithm of SmartPool, each thread is lock free, obstruction free with executing

the task without obstructing the operation of another thread. All the threads execute in a manner

that is serializable. None of the threads in the verification of shares have to wait for other threads

to execute the task. Thus validation of random shares is serializable.

Lemma 4.4.6 Validation of random shares in SmartPool is Atomic.

A transaction is said to be atomic if the changes are likely to commit permanently and visible to

others or abort with its affect appearing not to have taken place at all. Here in implementation of

validation of shares, the count variable is modified by all the threads. However they never execute

at the same time. Whenever a thread had already made an update to the global count, the count

variable is rolled back and starts from the beginning. The update to the global count is only

56

possible if none of the threads have already made changes to the common global count variable.

Thus this ensures that the count variable is updated permanently with its effect visible to everyone

or it aborts the task to its original state and starts from the beginning.

Lemma 4.4.7 Validation of random shares in SmartPool is Transactional memory.

Since the validation of random shares in SmartPool is serializable and atomic, so it is transactional

memory.

57

Chapter 5

Conclusion and Future work

We have proposed concurrency in blockchain based SmartPool using Transactional memory. Ear-

lier proposed SmartPool is decentralized pool mining in which uses smart contract however the

throughput could be more enhanced using concurrency. Thus we proposed concurrency using

Transactional Memory. CAS,LL/SC and STM techniques can be used to increased throughput in

SmartPool. This SmartPool can be used in the bitcoin as well. Thus this technique of concurrency

is applicable in both ethereum and bitcoin.

We proposed algorithm for concurrency in SmartPool theoretically. Practically implementing

SmartPool and implementing CAS,LL/SC and STM and comparing this techniques for concurrency

can be interesting future work. It could be interesting to run the concurrency technique in different

cores machines and benchmarking the output

58

Bibliography

[Bac] Adam Back. A partial hash collision based postage

scheme,http://www.hashcash.org/papers/announce.txt.

[Bac02a] Adam Back. Hashcash - a denial of service counter-measure. 2002.

[Bac02b] Adam Back. Hashcash - amortizable publicly auditable cost-functions. 2002.

[BLM] Iddo Bentov, Charles Lee, and Alex Mizrahi. Proof of activity: Extending bitcoin’s

proof of work via proof of stake.

[But] Vitalik Buterin. The problem of censorship,https://blog.ethereum.org/2015/06/06/the-

problem-of-censorship/.

[But13] Vitalik Buterin. A next generation smart contract & decentralized application platform.

2013.

[CB14] Nicolas T. Courtois and Lear Bahack. On subversive miner strategies and block with-

holding attack in bitcoin digital currency. 2014.

[Cha83] David L. Chaum. Untraceable electronic mail, return addresses, and digital

pseudonyms. 1983.

[Cho17] Usman W. Chohan. The double-spending problem and cryptocurrencies. 2017.

[CKN16] Miles Carlsten, Harry Kalodner, and Arvind Narayanan. On the instability of bitcoin

without the block reward. 2016.

[cry18] Cryptocurrency market capitalizations,https://coinmarketcap.com/all/views/all/,

March 2018.

[Dai18] Wei Dai. B-money,http://www.weidai.com/bmoney.txt, 1918.

[DGHK17] Thomas Dickerson, Paul Gazzillo, Maurice Herlihy, and Eric Koskinen. Adding con-

currency to smart contracts. 2017.

[DN] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail.

[dou] Double spend in digital currency.

[DS06] David Dice and Nir Shavit. What really makes transactions faster? ACM SIGPLAN

Workshop on Transactional Computing, 2006.

59

[DS07] David Dice and Nir Shavit. Understanding tradeoffs in software transactional memory.

Technical report, 2007.

[DSS06] David Dice, Ori Shalev, and Nir Shavit. Transactional locking ii. Technical report,

2006.

[dua05] Dual core era begins, pc makers start selling intel-based pcs: Intel dual-core processor-

powered pc systems first to market. Technical report, Intel Corporation,, 2005.

[Enn06] Robert Ennals. Software transactional memory should not be obstruction-free. Tech-

nical report, Intel Research Tech Report, 2006.

[eth18] Ethereum,https://en.wikipedia.org/wiki/ethereum, 2018.

[FIkK15] Panagiota Fatourou, Mykhailo Iaremko, Eleni kanellou, and Eleftherios Kosmas. Algo-

rithmic techniques in stm design. 2015.

[GC07] Justin Gottschlich and Daniel A. Connors. Dracostm: A practical c++ approach to

software transactional memory. 2007.

[get18] Bitcoin wiki,https://en.bitcoin.it/wiki/getblocktemplate, 2018.

[GHP05] Guerraoui, Maurice Herlihy, and Pochan. Polymorphic contention management. DISC:

International Symposium on Distributed Computing, 2005.

[GoKC15] Arthur Gervais, Ghassan o. Karame, and Vedran Capkun. Sok: Research perspectives

and challenges for bitcoin and cryptocurrencies. 2015.

[Har02] Tim Harris. Concurrent programming for dummies (and smart people too). 2002.

[Her93] Maurice Herlihy. A methodology for implementing highly concurrent data structure.

pages 197–206, 1993.

[HK] Maurice Herlihy and Eric Koskinen. Transactional boosting: A methodology for highly

concurrent transactional objects.

[HM] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support

for lock-free data structure.

[HMJH05] Tim Harris, Simon Marlow, Simon L. Peyton Jones, and Maurice Herlihy. Composable

memory transactions. ACM, 2005.

[IR] Amos Israeli and Lihu Rappoport. Disjoint-access-parallel implementation of strong

shared memory.

[JkS] Ari Juels, Ahmed kosba, and Elaine Shi. The ring of gyges: Investigating the future of

criminal smart contracts.

[kN] Sunny king and Scott Nadal. Ppcoin:peer-to-peer crypto-currency with proof-of-stake.

60

[Kni86] Thomas F. Knight. An architecture for mostly functional languages. Proceedings of the

1986 ACM conference on LISP and functional programming, 1986.

[LCO] Loi Luu, Duc-Hiep Chu, and Hrishi Olickel. Making smart contracts smarter.

[Lom77] D.B. Lomet. Process structuring, synchronization, and recovery using atomic actions.

In Proceedings of an ACM conference on Language design for reliable software, pages

128–137, 1977.

[LVJS] Loi Luu, YAron Velner, JasonTeutsch, and Prateek Saxena. Smartpool:practical de-

centralized pooled mining.

[Mer] Ralph Merkle. Method of providing digital signatures. 1979.

[mom14] How a mining monopoly can attack bitcoin,http://hackingdistributed.com/2014/06/16/how-

a-mining-monopoly-can-attack-bitcoin/, 2014.

[MS04] Virendra J. Marathe and Michael L. Scott. A qualitative survey of modern software

transactional memory system. 2004.

[Nak09] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2009.

[p2p] P2pool:decentralized pool mining,http://p2pool.org/.

[Poe14] Andrew Poelstra. On stake and consensus. 2014.

[PS17] Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. 2017.

[RK] Aravind Ramachandran and Dr Murat Kantarcioglu. Using blockchain and smart con-

tracts for secure data provenance management.

[Ros11] Meni Rosenfeld. Analysis of bitcoin pooled mining reward systems. 2011.

[sma94] Smart contracts: Building blocks for digital markets, 1994.

[SS] J. M. Stone and H. S. Stone. Multiple reservations and the oklahoma update.

[ST] Nir Shavit and Dan Touitou. Software transaction memory.

[VJL] YAron Velner, JasonTeutsch, and Loi Luu. Smart contracts make bitcoin mining pools

vulnerable.

61

Curriculum Vitae

Graduate College

University of Nevada, Las Vegas

Laxmi Kadariya

Degrees:

Master of Science in Computer Science 2018

University of Nevada Las Vegas

Thesis Title: Concurrency in Blockchain Based SmartPool with Transaction Memory

Thesis Examination Committee:

Chairperson, Dr. Ajoy k. Datta, Ph.D.

Committee Member, Dr. Laxmi Gewali, Ph.D.

Committee Member, Dr. John Minor, Ph.D.

Graduate Faculty Representative, Dr. Emma E. Regentova, Ph.D.

62

	Concurrency in Blockchain Based Smartpool with Transactional Memory
	Repository Citation

	tmp.1546623374.pdf.XY0Ni

