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ABSTRACT

The Pareto distribution is widely used to describe the distribution of incomes. The 

distribution can be defined by a location parameter c and a shape parameters a. The 

maximum likelihood estimators (MLE) and the uniform minimum variance unbiased 

estimators (UMVUE) for parameters a and c are available in current literature. An 

improved estimator for parameter a will then be found using a frequentist decision 

theoretic technique. It is then shown that this improved estimator is the generalized 

bayes estimator for a certain choice of priors.

The Lorenz curve is a tool used to evaluate the share of income of sub-populations or to 

measure the inequality of individual income distributions. The Lorenz curve for the 

Pareto distribution will be discussed.

The Gini coefficient is a summary measure of the Lorenz curve. The Gini coefficient for 

the Pareto distribution will be shown to be a function of shape parameter a. The MLE of 

the Gini coefficient will be discussed. An alternative estimator for the Gini coefficient 

will then be constructed by using the generalized bayes approach.

tl!
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CHAPTER 1

INTRODUCTION TO THE PARETO DISTRIBUTION 

The ‘Law’ of Income Distribution

Vilfredo Pareto (1848-1923) is a well known leader in early economic theory. Many feel 

his law of income distribution is his most significant contribution to economic theory. 

The ‘law’ still draws attention from economists and econometricians today because they 

realize the important, early example Pareto set in econometric investigation. Pareto’s 

theory was originally based solely on the income descriptive statistics of Austria. He 

then expanded his ideas to the income statistics of several other western economies.

Bom in Paris on July 15, 1848, Vilfredo Pareto was a pioneer in the theory of economics 

as the western world matured to an advanced stage of industrialization. Pareto studied 

economic theory up until 1912, when he turned to sociological research. It was in his 

first major work, the two volume Cours d ’économie Politique published firom 1896 to 

1897, that Pareto introduced his ‘law’ of income distribution and became a major figure 

in early economic theory.

Pareto believed that above a determined level, the distribution of incomes was static and 

followed a defined pattern. This was significant in that it argued against the idea that 

income inequality could be reduced by simply changing the distribution. Pareto’s 

distribution hypothesized that only an increase in production with respect to the 

population size would decrease income inequality. He initially felt the distribution
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applied only to the populations that his empirical data were taken from, but he later 

generalized the distribution to all populations. Yet, however it is applied, the ‘law’ of 

income distribution remains a “unique pioneering work of econometric investigation’'.( 

Cirillo [4])

Definition

Pareto’s ‘Law’ of Income Distribution can be generalized by the equation;

/Vo ==,4UT« ( 1)

where X  is annual income. No is the number of persons obtaining that or a greater 

income, and A and a are parameters found through empirical statistics.

The standard form of Pareto’s density found in most statistical and econometric texts:

/(.r;a ,c ) = a c " . r c  < .r, 0 < a, 0 < c (2) 

where a is known as Pareto’s constant and as a shape parameter and c a scale or location 

parameter.

Equations ( 1 ) and (2) can be related in that Nq = M ■ P{X> Xq) where N is the 

population size.

M̂  = iV -P {X > x.)

= A/| f{x)dx  = Nac^^ x'^'^ dx

*

\-ClJ
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so that A = Nc" and X  = .r„.

The cumulative distribution function of X, i.e. ‘income', can be written:

X

F  (.r ) = I  f{t)dt  c>  0, a > 0; x > c

= ac‘' j  = uc“
\~ a ,

c>0, a>Q', x > c

=  1- 1-^x
o O ,  a>Q\ x > c  

which is known as the “Pareto distribution of the first kind'.(Johnson and Kotz [7])

Several graphs of the pareto distribution follow.

Pareto distribution (c*1)

2

1

0
52 43t

Figure I Graphs of Pareto Density Functions for c=l, a=l and c=l, a=2.
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Pareto distrlIniMon ( c ^

1 05

Figure 2 Graphs of Pareto Density Functions for c=2, a=l and c=2, a=2.

Partto dlslrfbution (c^.S)

i  2

52.5 451.5 2 40.5 1 3

Figure 3 Graphs of Pareto Density Functions for c=0.5, a=l and c=O.S, a=2.
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CHAPTER 2 

CLASSICAL ESTIMATION OF PARAMETERS 

Introduction

For the case of unknown shape parameter a and unknown location parameter c, it is 

shown by Malik [10] that a joint sufficient statistic for a and c is

(3)

", f  X  /  '\
It can also be shown that the statistics F = Y  In r  /V  and Z = are stochastically

independent. It will be shown that these sufficient statistics are in fact the maximum 

likelihood estimates of a and c. This can be foreseen as the MLE’s are simply functions 

of the sufficient statistics (3). Malik uses the sufficiency and independence of Y and Z to 

construct the distributions fy iy )  a n d T h i s  is equivalent to finding the distributions 

of the maximum likelihood estimates of a and c. The density fy iy )  will be essential to 

the development of an improved estimate for a in the following chapter.

The probability density function of the order statistic Z = is

/ ,( .- )  = n[l -  (1 -  (f)" c < Z
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I 0 otherwise

The probability density function of Y was found by Malik to be

-  exp(-'%) y > 0
/f ( y )  = r ( n - i ) y  

0 otherwise

The MLE and UMVUE of a and c

The Maximum Likelihood Estimators (MLE) of a and c are foimd using the likelihood 

function

Lia, ^) = r i
ac“

L  i .  \ r a i  

7=1

C <  X,

(=I

where L(a, c) is the joint probability density function (p.d.f.) of Z,, A T , , . What 

then are the values of a and c that would maximize the probability Z,(a, c) of getting the 

sample values x,, Xj,..., ? These values of a and c are the well known maximum

likelihood estimators of a and c. For parameter a, take the logarithms or alternatively the 

natural logarithms of both sides of (4). This step is consistent with the fact that L{a, c) 

and In L{a, c) are maximized for the same values of a and c. For the known likelihood 

function, we then have
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In L = In
f a",/"

U.r,X2 )

= /ïlna  + « a ln c - ( a  + l)In(.r,.r, 

Take the partial derivative of In L with respect to a, obtaining

c \nL  M ,
—-— = — + n In c -  ln(x,x, • • • x„ ). 

da a - (5)

Setting the result (5) equal to zero and solving for a, an association between parameters a 

and c is found to be

n
a =

1=1

Simply noting the sample space of a pareto distributed random variable to be 0 <c < x , 

the MLE of c can then be found by inspection to be the first order statistic c = x,,,.

The MLE's û and c of a and c are then

",WL =

It is shown by Lehman [9] that the improved Uniform Minimum Variance Unbiased 

Estimators (UMVUE) for parameters a and c are

1-
1
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CHAPTERS

INADMISSIBn.IT\ OF THE MLE AND UMVUE OF a 

Criteria for Choosing a Decision Rule

In this section, it will be shown that the MLE and UMVUE estimates for parameter a are 

inadmissible.

Firstly, a decision rule, denoted 5{x), is a function from our sample space into our action 

space. This action space is the set of all possible actions.

One criteria for choosing a decision rule d is minimizing the risk function R(^ô, 9) of a 

decision rule 0{x) where Rid, 9) is the expected loss with respect to our standard 

definition of an average over the random variable X

R iS ,9 )^  E-^[L{5iX), 9 )]= \L i5 ix ) ,9 )d F \x \9 ) .
Vx

Berger [3] defines a decision rule^ R-better than a decision r u l e i f  RiS^,9)< R{5,,9) 

for all ^ € 0 ,  with strict inequality for some 9 .

When using the squared error loss function X), 9) = (<?( X) -  9)~, the risk function is

defined as:

RiS,9)= E-^[LiSiX), 9 ) ] = E ^ '{ S iX ) -9 f  (6)

Squared error loss is popular for several reasons including its connection with classical 

least squares estimation and the relative ease of calculation when performing decision 

investigations.
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Decision Rule for Parameter a

Specifically, we are trying to minimize the risk of parameter a. Denote 5^{a) = où as the

decision rule for parameter a. Note that for â and , a=l and a=(n-2)/n, 

respectively. We are trying to find the value of a  such that for a decision rule of the 

form = Û5Ô, the risk is minimized.

From (6), the risk function for decision rule = oâ is clearly

/? (4 ,a )=  £(4  -  a)" = E {a à -c if  = \ { a â - a ) ' fy{y ) dy 

where the probability density function of â was previously given as

Let 4  = aâ = ayso that

RiS^,a) = E(ay -  aY  

= \{ccy-aY fr iy )d y

Expansion of {ay -  a then leads to

_ U a -y-  -2cuiy + a-)e '"’y 'V y
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10

(.na)rt-l

( n - 2 ) !
i f  1 , -na  -  f  -n a

a  J y'""'c ■ d y -2 a a \y - ’'*'e V v+ a-J y ‘"e ' Jy (7)

/7Û , na , - n a  , , , -  V .
Let w = —  .w mar v = — , du = — — c/v, and dv = —— c/z/. Equation (7) then becomes

y ' u y- ' ' na

{na)n~ \

{ n- 2) \
a^\y-"*^e-'‘i i ) d u  -  2aa\y'"*^ e '\i; )d u  + a 'J  y-"e-“( ̂  )du

{na)M-l

{ « - 2)!
—  I v'"^e-‘‘du -  —  ? v-''*^e"‘du + —  f y-"+-g-V% 
n a f  na i '  n a i

{na)n - i

(n -2 )!

2 ac * 2 *
—  f —  f {f)-''*^e-“du + —  f {^)-"*^e-“du
na i  na i  na i

{na)rt-i

( n - 2 ) !
a\na)-"*^ j  u'’~'e-“du-2aa{na)-"*^f u”-V'du-i-a-(na)-''*'f iF'V'du

{na)f l ~ l

(n -2 ) l
a-{na)-'’*^f û ’'-^^^e'‘du-2aa{naT''*"\ w‘"'’’’'e 'V u + a -(n a )" '" '|

Substitution of the Gamma Integral r(Ar) = yields

= - ^ ~ --\a\na)-''*^r{n -  3)-2aa(na)-"*^r{n -  2 )-i-a\na)'"*' F{n -1)1. (8)
(n-2)!'-

Since r(<) = ( f -1)1 for any positive integer /r > 1, (8) becomes

= -J j  -[a \na)- '’* \n  -  4)!- 2aa{na)"'*\n -  2)\+a\na)'''*\n -  2)l]
I” ZJ.

= — ^ ---- -fa '(n a)"" ' -  2aa{na)'"^\n -  3) + a \n a )- ”̂ \n  -  2){n -  3)]
{ n - 2 ) { n - 3 y

which leads to a quadratic polynomial in terms of a . Specifically
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II

^(5„,a) =  ------------------------ -  2fi{n-3)a + (n -  2)(n-  3)1.
( « - 3 ) ( r t - 2)*- J (9)

Now, minimize R{S^,a) by differentiating R{S^,a) with respect to a .

cfK5^,a)

/7 — j
setting the result equal to zero and solving for a . This process reveals a* =  as the

n

optimal choice for a  so as to minimize R{S^,a).

A question we can raise is the admissibility of estimators or decision rules. A decision 

rule Ô is inadmissible if there exists another decision rule S' such that S' improves S. 

From this it is clear that the ‘best’ estimator within the group of estimators czy is

n
( 10)

n — 2 n — 3
For further justification of this fact, substitution of a  = 1, a  =  and or* = ------

n n

separately into (9) reveals:

)

__2,0) =
^  ( n - 3 X n - 2 )

-  2„(„ _ 3 ) ^  + („ -  2)(^ -  3) 
n n

a'
n -  j

a
(n -3 ) ( n - 2 )  

It is then clear that for all a.

,  2„(„ -  3 ) f c : :3  ,  ,  2x„ -  3)
n~ n n — 2
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It has been determined that the 'best' estimator of the class of estimators aJ is

^ ^ • From ( II ) we have also shown that is a better'

estimate than usu- With respect to admissibility, (II)  also shows that and do/i/ are 

inadmissible. The admissibility or inadmissibility of the improved estimate given in ( 10) 

is unknown.

The corresponding risk functions were graphed versus a for sample sizes «=5, n=\0, 

77=15, and n=30.

Risk function versus a

200  -

180 -

160 -

-w —3lpna»i
-o-alpras(rv2Vn
-~~a*preg(fv31/n

100  •

60 -

40 -

Figure 4 Risk Functions Graphed Versus a for the MLE, UMVUE, and Improved Estimate with 

Sample Size n=S
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Risk function versus a

X -

Î
1
tK

0 3 5 74 6 a 9 10

-aipcasi
-atonas(fv3i/n
-aipna=(p-3)/n

Figure 5 Risk Functions Graphed Versus a for the MLE, UMVUE, and Improved Estimate with 

Sample Size =10

Ritic function versus a

12 -

-»-aipna= i 
-̂ alpfBs(rv2)M 
 alphas(fv3Vn

Figure 6 Risk Functions Graphed Versus a for the MLE, UMVUE, and Improved Estimate with 

Sample Size n=I5

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



14

Risk function  versus a

Figure 7 Risk Functions Graphed Versus a for the MLE, UMVUE, and Improved Estimate with 

Sample Size n=30

Now consider the percent risk improvement of the improved estimate ^  .(a) =

over the maximum likelihood estimate â\ji and uniform minimum variance unbiased

estimate dc-^nv ■ The percent risk improvement  —    —  x 100 is found for
R{d,a)

varied sample sizes n=5, /z=10, n=15, and n=30.
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TABLE I Percent Risk Improvement of the Improved Estimate Over the MLE and

UMVUE

Sample Size a (R{S,â)-R{ù'.a))
percent nsk improvement = ------------------------ < 100

R(d.a)

For â  = Sya. For Ô — j p

n = 5 1 81.81% 33.33%

5 81.81% 33.33%

10 81.81% 33.3.3%

15 81.81% 33.33%

n = 10 1 56.25% 12.5%

5 56.25% 12.5%

10 56.25% 12.5%

15 56.25% 12.5%

n = 15 1 42.85% 7.69%

5 42.85% 7.69%

10 42.85% 7.69%

15 42.85% 7.69%

n = 30 1 25% 3.57%

5 25% 3.57%

10 25% 3.57%

15 25% 3.57%
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Simulation Experiment

Simulations were conducted in which random data was taken from pareto distributions 

with parameters o=5 and a=10, c=l and c=2. For samples of size n=5, w=10, and at=1 5, 

the MLE, UMVUE, and improved estimates of a were found.

TABLE 2 Estimation Results for Random Data Taken From the Pareto Distribution

Parameter Values Random Data MLE of a UMVUE of a Improved a

a = 5 c=  1 1.25, 1.12, 1.36,1.18, 1.15 13.2 7.92 5.28

(3 = 5 c = 2 2.05, 2.26,2.25,2.30,2.90 7.60 4.56 3.04

a = 5 c = 1 1.36, 1.03, 1.02, 1.18, 1.16 

1.11, 1.21, 1.11,1.01,1.03

10.2 8.16 7.14

a = 5 c = 2 2.03,2.11,2.34,2.02,2.05 

2.04,2.15, 2.10,2.09,2.30

21.6 17.3 15.1

a = 5 c=  1 1.65, 1.04, 2.92, 1.08, 1.90 

1.19, 1.90, 1.61,1.15, 1.04 

1.12,1.01,2.96, 1.18, 1.13

2.93 2.54 2.34

a = 5 c = 2 2.31,2.03,2.03,2.07, 2.10

2.59.2.18, 2.59,2.47, 2.02

2.76.2.18, 2.91,2.56, 2.04

7.48 6.48 5.98

a = 10 c=  1 1.05, 1.07, 1.04, 1.15, 1.30 13.6 8.16 5.44
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4=10 C = 2 2.06, 2.05, 2.03, 2.39, 2.04 26.1 15.7 10.4

4=10 C  = 1 1.01, 1.06, 1.05, 1.09, 1.05 

1.19, 1.00, 1.05, 1.06, 1.07

16.7 13.4 11.7

4=10 4 = 2 2.23,2.47,2.08, 2.02, 2.10 

2.04, 2.67,2.02, 2.15, 2.04

13.8 11.0 9.66

4 = 10 C  = 1 1.04, 1.03, 1.03, 1.10, l.Ol 

1.01, 1.15,1.16, 1.05, 1.03 

1.25, 1.03, 1.00, 1.04, 1.08

15.5 13.4 12.4

4=10 4 = 2 2.10, 2.25,2.01,2.31,2.15 

2.16, 2.12, 2.34, 2.40, 2.27 

2.01,2.19,2.01,2.09,2.17

12.8 11.1 10.2
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CHAPTER4

A GENERALIZED BAYES ESTIMATE FOR PARAMETER a

Introduction

We will begin the discussion with an introduction of the relevant concepts and 

definitions. The generalized bayes estimate for a will then be found.

As in the previous case, assume that both the parameters a and c are unknown. Use of 

the marginal posterior distribution of a given x will be shown to be useful in the 

inference of the shape parameter a.

Bayesian analysis, named after the English philosopher Thomas Bayes who in 1763 

discovered the discrete result in probability theory, combines prior information and 

sample information into the construction of a posterior distribution. This posterior 

distribution is the tool from which we develop all inference, in this case a point estimate 

of the parameter a. The posterior distribution of 0 given x, commonly denoted as 

;r(^x), is known as the distribution of 0  given the sample observations 

X = (jr,, ^2, ...,jr„). Note that at times "0" will represent a vector of parameters, while 

other times it may represent a single parameter.

18
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Definitions

The conditional density of random variable X, given the continuous random variable 6

with value 9,  is defined as f{x\6') = . The joint density of B and X is given bv
J kB)

f{x,9) = f{9) f{x \e ) .  (12)

Denote the density f{9)d& ;z{9) so that f { x ,9 )  = 7r{9)fix\9). Here ;r(^) represents 

the 'prior’ distribution while /(xj^) is the likelihood function. A large value of /(x |^ ) 

for a value 9 is considered to be the basis in reasoning that the particular 9 is more 

likely’ than any other 0. For this reason f{x\9)  is naturally called the likelihood 

function. Consider the marginal density of X;

nix)  = j  /(x im ^F'(^) = I  fix\9)n{9)ci9
■td v e

in the continuous case. The construction of the posterior distribution, using our 

definitions previously developed, is then

= (13)nix)

This posterior then incorporates and combines the prior beliefs about 9 with the current 

information about 9 obtained from the sample x.

From ( 12) and (13) we can then state

= (14)nix) nix)
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All inference of 9 will be based on this posterior density n(6^x). It is noted that the 

posterior density n{6^x) can be shown, in certain cases or groups of priors, to be 

proportional to the numerator of ( 14).

Construction of a Posterior Density of a

Consider the joint prior 7r{a, c) as the product of independent priors 7r{a) and n{c}.

Let independent priors n{a) and 7i{c) for a and c be of the form

7t{a) = —  a >Q

and

7C{c) = C> 0
4

SO that the joint prior is of the form

n{a,c)  = n { a ) - = 4 > 0, 4> 0 .
a c

The posterior for this given prior can now be found using the known likelihood function 

and the concept of proportionality.

The posterior joint density n[a, cjx), as defined by (14), is proportional to the product of

the joint prior distribution of a and c and the likelihood function for the pareto 

distribution.

c\x)cc n{a,c)-f{x\u,c)  = n{a,c)-L(a,c)
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a c  I  "  

^  /=!n-'.
J+l

n{a, c|x ) QC 4"’*c'“ "" exp [-4^  In .r, ] 4  > 0,0 < c < .r,,,
1=1

The joint posterior can now be used to find the marginal posterior density for a.

Tt{a\x)= J;r(4, c|x)r/c

'̂1 n

;r(a|x ) oc j  4"'''c'""'' e x p [-4 ^  In x, ]c/c
n f=l

n  4 i)
;r(4|x) oc 4""* exp[-4^In% J- j c’̂ '^dc 

i=l 0

7z{a\x ) oc 4""* e x p [-4 ^  In .r̂  ] •
f=I n a - r  + \

4,,

Æ(4|x)oc a " ' ^  e x p [ - 4 ^ 1 n x j -
-V,( 1 )

1=1 n a - r +  \
4 >  0

Now, consider the case where r = I so that the marginal density of a is

n(a\x ) oc 4" * e x p [-4 ^  In jcJ • —
1=1 na

;r(4|x)K4'''*'‘ exp[-4( J ln .r , -wln;f(„)] (15)
1=1

Now consider the exact posterior density of a so that the posterior mean can be 

considered. It can be shown that the constant
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( J ^ l n .r ,  - Minx,;,)"'III.I, -  ri m .c,;,
1=1____________

V{ n- h)

can be applied to the proportional posterior density of a  ( 15), so that the density is 

proper. The posterior density of a is then

a"-'" ' e x p [ - a ( 2  In-t, -  n In .r,„ )]
;r(a|x) = -------------  — -----------------------  a>0.

T ( M - / i ) ( ^ l n x ,  -  Min.r,
1=1

Estimation of Parameter a

Given the posterior density Æ(^x) = 7t{a\x) , there are several approaches one may use in

problems of inference. Several involve the use o f classical estimation techniques, such 

as finding the M.L.E. of parameter a with respect to the posterior density. Other 

Bayesian point estimates include the posterior mean /X^{x) = £"'‘‘'*'[^]or posterior 

median. For both of the previous methods, it is common to include a measure of 

accuracy. A typical measure of accuracy is the posterior variance 

V'"{x) = of the estimate. Another approach is to construct a

"credible set” for 9. This credible set is the Bayesian equivalent of the ffequentist 

confidence set or confidence interval. Hypothesis testing is another option, fn order to 

maintain consistency with our previous analysis in presenting an improved estimate for 

parameter a given that c is known, we will use the Bayesian approach to decision theory.
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The Bayes risk of a decision rule <5, with respect to a prior distribution /T on 9, is 

defined as

r{0,n) = E‘̂ [R{S,$)\.

The Bayes ruie^'^ is then a rule which minimizes the Bayes risk r{S, tt) . It is also

known that a Bayes rule <5* is an action which,under certain conditions, minimizes the 

posterior expected loss. The posterior expected loss of an action a is

j  L(a,9)dF’̂ ^^^\9)

where L(a, 9) is the loss function and ;r(^x)is the posterior density of ^ . A posterior 

Bayes action, further denoted , is an action a which minimizes yO(a, ;r(6lx)). To 

be consistent with our earlier frequentist decision theoretic analysis, “squared error” (ie 

quadratic) loss L{a, 9) = { a -  9 f  will be used and the resulting posterior expected loss is

p{aM ë^x))= j(a -  9 fd F ' ^ ^ ' \ 9 ) .

It is a trivial result then to show that the value of a that minimizes the posterior expected 

loss, also known as the Bayes rule ^'^(x), is the mean of the posterior distribution of 9

given x,i5"(x)=£'^'^*>[^].

Since the posterior density of a is in the form of a Gamma distribution, the posterior 

mean is easily found.

n - h''r(aix)(X)=
( J ln . r ,  -MlnX(„)

(=1
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n - h
n

2 ](ln-r, -ln .r,„ )
1=1

n - h

n - h  n - h

y

where v = —— 7------ ^  . Note that setting h = Q and h = 2,  the generalized bayes

estimate for a is the MLE and UMVUE of a, respectively. Similarly, note that when 

A = 3, the generalized bayes estimate for a becomes the improved estimate for 4, 

n - 2
~ T > ’

It has been shown that use of the priors ;r(c) = -  and ;r(4) = -L  will lead to the
c a

n~3
generalized bayes estimator y . This is equivalent to the improved estimator of a

found in chapter 3. It may also be possible to use the above priors in establishing the 

admissibility of the improved estimator.
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CHAPTER 5 

THE LORENZ CURVE 

History and Definition

The Gini coefficient is known as the most notable summary statistic of the Lorenz Curve 

of the income distribution. The primary distribution of interest will be the Pareto 

distribution. The Lorenz Curve and the corresponding Gini coefficients will be found for 

the Pareto distribution.

The century began with an increased interest in the inequality, and for some, the eventual 

equality of income and the wealth of individuals. M. O. Lorenz is generally known to be 

the first to propose a method in which to evaluate one income distribution versus one or 

more other distributions. Lorenz [10] first introduced the “Lorenz Curve” in 1905. The 

Lorenz Curve is used to measure the income shares of groups in a population. It is useful 

in determining a time trend for a certain geographic location or comparing income 

distributions between different regions. The Lorenz Curve, further denoted as L(p), is 

found by first ordering the income units by magnitude, from the smallest to the largest. 

L(p) is then the fxmction that determines the proportion of total income that the lowest 

100p% members of the population obtain. It is then clear that 0 < p < 1 and 

0 < Z,(/7) < 1. In other words, the cumulative proportion of the population, as 

determined by the particular income distribution, is plotted against the cumulative 

proportion of total income obtained by the ordered income units. If all incomes were

25
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equal, the resulting Lorenz Curve would be the perfect 45 degree line running from zero 

to one. Actual Lorenz Curves typically are convex and lie under the above described 

Mine of perfect equality”, increasing in slope as the proportion of the total population 

increases. Lorenz states "With an unequal distribution, the curves always begin and end 

in the same points as with an equal distribution, but they will be bent in the middle; and 

the rule of interpretation will be, as the bow is bent, concentration increases.” Here, an 

equal distribution is obviously the equivalent of a uniform distribution. This makes sense 

in that after arranging the population in order of income from smallest to largest, the 

individuals earning the upper ended incomes will earn more of the total income than the 

individuals in the lower end of the ordering. Lorenz’s idea can be represented in the 

form of an inequality as stated by Marshall and Olkin [12]. “Letting .q ,..., .r„ represent 

the wealth of individuals for the distribution of total wealth T that leads to (the curve or 

line of perfect equality). Similarly let y ,,.., y„ lead to (a curve not equal to, under the 

line of perfect equality). Then ( .q ,..., .r„ ) represents a more even distribution of wealth 

than does (>>,, ...,y„)if andonly if

k
T(/j ^ 1, ..., AI 1

I I

where = T.
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AœA

a

Figure 8 Lorenz Curve

Note that income is traditionally lognormally distributed with the upper tail being pareto 

distributed. Determining the most accurate distribution of income is itself an important 

topic. A great deal of material has been written on the subject; reference Harrison [5] 

and Harrison [6]. As the primary purpose of this paper is not to argue the most accurate 

income\eamings distribution, the subject is left to the reader for further analysis.
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The Lorenz Curve for Pareto Populations

Given a specific distribution, the resulting Lorenz curve can be found. Mathematically. 

Lambert [8] defines the Lorenz curve L(p) by

p  = F{y)  => L{p) = 0 < p < \  (16)

Equation ( 16) is a result of the facts that for each p within the interval (0,1 ) there is a 

single level o f income y given a rank p. This satisfies p=F(y).

Let us look at the derivation of the Lorenz curve for the Pareto distribution. The density 

function of the Pareto distribution with location parameter c and shape parameter a 

(c > Oanda > 0) is given by

f 0 .r < c
x > c

with the minimum income level c. The resulting distribution function is given by

X  <c 
!-(% )" .r> c

•*u acwith mean p. =

f fO x < c

a - \

Using equation (16):

p= F{y)  = l - c “y '

and thus

(i - p T

Using equation (16), (17) and result ( 18):

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



29

ac c —(7+1

~ a * \

( 1 - p r

( a - l )

= l - ( l - / 7 )  " (19)

The Lorenz curve for the Pareto distribution is typically given in the form of result (19).
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CHAPTER 6 

THE GINI COEFFICIENT 

History and Definition

The Gini coefficient, first proposed by C. Gini in 1912, is an area measure of the 

magnitude in which a particular Lorenz curve deviates from the 45 degree “line of 

perfect equality”. Specifically, the Gini coefficient is the area between the Lorenz curve 

and the 45 degree line divided by the total area under the 45 degree line. This is 

equivalent to twice the area between the Lorenz curve and the 45 degree line.

G = —— -  = 2/1 = 2| — -  BI = 1 -  2B 
A + B \2  )

From this definition we know that G can run anywhere from zero to one-half, i.e. the total 

area under the 45 degree line. One important use of the Gini coefficient is the ability to 

rank different income distributions in order to describe their inequality.

The Gini Coefficient for Pareto Populations

Using result (19) and our knowledge of the Gini coefficient, the Gini coefficient for the 

pareto distribution can be found;

0  = 1 - 2 /  L{p)dp = 1 -  2/1 -  ( 1 -  /?)'"-' dp .

30
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Let u = \ -  p and du = -dp  so that

G  =  1 +  2/ 1  — 7/ “  d / w  =  1 +  2/ 1  -  w ' ”  "du

=  1 +  2
2-' ^

U - -
~> _

=  1 +  2 0 - 1-

a

1
la  -1

Estimation of the Gini Coefficient

It has been shown that the Gini coefficient G for the pareto distribution is G =
I

2d7-l

Given the earlier development of the maximum likelihood and improved estimators for 

parameter a, the MLE for G and the generalized bayes estimator for G will be found.

Maximum Likelihood Estimate of Gini Coefficient

From the development of the maximum likelihood estimates for parameters a and c.

n
Cl  \ f t  —\tL  -  n and the exact maximum likelihood estimate of the

Gini coefficient G can be found. Bain and Engelhardt [2] define the Invariance Property 

with respect to more than one unknown parameter:
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If 0  = 4  )denotes the MLE of 0  = ( 6 { , 9̂  ), then the MLE of

T = (r,(0 ),..., 7/0)) is t  = f,) = (r,(0),.... r,(0)) for 1 < r < A:.

For the case of the one-to-one transformation Gini coefficient G = — -— , vve can
2a - 1

construct the MLE of G simply by substituting the MLE of a for a in G;

G ^ , L i a )  =  G i à ^ i j .  )  =  — — -  

~ ^ K I L  1

The Generalized Bayes Estimator for the Gini Coefficient

In chapter 4, the improved estimator for a was found using the generalized bayes 

approach. The generalized bayes estimator for the Gini coefficient G will now be

constructed by use of priors densities ;r(c) = -  and n{a) = \ .  These priors will lead to 

the identical posterior ;r(u|x) found in chapter 4.

The posterior density of a was found, given the priors 7c{a ) = -L  and ;r(c) = -  , to be
a c

dï"’*'* exp[-d7(^ln.r, -  nln.r,,,)]
7t{a\\) = ------------ ;—  --------------------- a > 0 .

- « I n a:,,,
1=1

The posterior mean was then found to be the improved estimate when h i.

The posterior density of a would then become
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exp[-d/(^ In .r, -  n In .r,,, )]
;r(ajx) = -------------   —--------------------  a>0 .

r (« -3 )(£ ln .r ,-« ln .r .„ )-" '-’'
1=1

This is in the form of a gamma density where the first shape parameter is equal to n-3 

and the second shape parameter is equal to ( ̂  In -  n In x,,, . It should be noted that
/= !

we must limit the use of this posterior in inferences based on samples of size greater than 

or equal to 4.

The generalized bayes estimator for G will now be found by finding the posterior mean

of G E''"' **[G] with respect to the posterior density 7t{a\\). 7z{a\\ ) can be used

because the Gini coefficient for the pareto distribution is a function of a. We are then 

evaluating

This integral will be evaluated using a numerical technique in which twenty-five 

thousand random data values from a gamma distribution will be transformed using the

known relationship G = — —̂ . The mean of these transformed values will then bel a  -  1

found to be an estimate of £'^'"*’[G].

Using the pareto random data from table 2, the MLE and generalized bayes estimates of 

G were found and are presented in table 3.

Again note that the estimation of the Gini coefficient in this case is not true bayesian 

estimation. This is clear in that particular values of parameter a are given in order to find 

estimates of G. This is not consistent with the fact that we are basing our estimation on
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the posterior density of  parameter u. By definition this density is based on the random 

parameter a.

TABLE 3 Estimation Results for the Gini Coefficient for Random Data Taken From

the Pareto Distribution

Parameter Values Random Data MLE of G Bayes G Actual G

a = 5 c = 1 1.25, 1.12, 1.36, 1.18, 1.15 .039 .253 .111

a = 5 c = 2 2.05,2.26, 2.25, 2.30,2.90 .070 .691 .111

a = 5 c =  1 1.36, 1.03, 1.02, 1.18, 1.16 

1.11, 1.21, 1.11, 1.01, 1.03

.052 .091 111

a = 5 c = 2 2.03, 2.11,2.34, 2.02, 2.05

2.04, 2.15,2.10, 2.09,2.30

.024 .040 .111

a = 5 c = 1 1.65, 1.04, 2.92, 1.08, 1.90 

1.19, 1.90, 1.61, 1.15, 1.04 

1.12, 1.01,2.96, 1.18, 1.13

.205 .318 .111

a = 5 c = 2 2.31,2.03,2.03,2.07,2.10 

2.59, 2.18, 2.59, 2.47, 2.02 

2.76, 2.18, 2.91,2.56, 2.04

.072 .102 111

a = 10 c = I 1.05, 1.07, 1.04, 1.15, 1.30 .038 .303 .053
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a = 10 c = 2 2.06,2.05,2.03, 2.39, 2.04 .020 .082 .053

a = 10 c = 1 1.01, 1.06, 1.05, 1.09, 1.05 

1.19, 1.00, 1.05, 1.06, 1.07

.031 .053 .053

a = 10 c = 2 2.23,2.47, 2.08, 2.02, 2.10 

2.04, 2.67, 2.02, 2.15, 2.04

.038 .065 .053

a = 10 c = 1 1.04,1.03, 1.03, 1.10, 1.01 

1.01, 1.15, 1.16, 1.05, 1.03 

1.25, 1.03, 1.00, 1.04, 1.08

.033 .043 .053

a = 10 c = 2 2.10,2.25, 2.01,2.31,2.15 

2.16,2.12,2.34,2.40, 2.27 

2.01,2.19, 2.01,2.09, 2.17

.041 .056 .053
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