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ABSTRACT

FUNDAMENTAL TRADEOFFS IN ESTIMATION OF FINITE-STATE

HIDDEN MARKOV MODELS

by

Justin Le

Pushkin Kachroo, Examination Committee Chair
Professor of Electrical and Computer Engineering

University of Nevada, Las Vegas

Hidden Markov models (HMMs) constitute a broad and flexible class of statistical models

that are widely used in studying processes that evolve over time and are only observable

through the collection of noisy data. Two problems are essential to the use of HMMs: state

estimation and parameter estimation. In state estimation, an algorithm estimates the sequence

of states of the process that most likely generated a certain sequence of observations in the data.

In parameter estimation, an algorithm computes the probability distributions that govern the

time-evolution of states and the sampling of data. Although algorithms for the two problems

are widely researched, relatively little study has been devoted to understanding the tradeoffs

between key design variables of these algorithms from a mathematically rigorous viewpoint.

In this thesis, we provide such a study by establishing theorems regarding these tradeoffs.

Furthermore, we illustrate the implications of these theorems in practice, highlighting the

scope of their applicability and generality. We then suggest directions for future research in
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this area by bringing attention to the critical assumptions and tools used in the proofs of our

theorems.
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CHAPTER 1

INTRODUCTION

In the design of systems for control, signal processing, communications, and many other

purposes, a ubiquitous problem arises in which time-evolving processes must be estimated

using large amounts of sensor data. In this work, we consider the hidden Markov model

(HMM) as a framework for this problem. The HMM consists of two time-evolving states: the

hidden state and observable state. The hidden state, which we herein refer to as simply the

state, represents the underlying real-world process to be estimated. The observable state,

which we herein refer to as the emission, represents the output of a sensor measuring the

underlying process. The state evolves at each moment in time according to a transition

probability, while the emission is generated by the state at each moment in time according to

an emission probability.

The probability distributions governing transitions and emissions must be computed by

an algorithm, and the process of computing these distributions is referred to as learning. The

outputs of the learning algorithm are collectively referred to as the HMM parameters, and we

can thus interchangeably refer to learning as parameter estimation. After learning, another

algorithm applies the learned parameters to a sequence of emissions in order to estimate

the sequence of states that most likely generated this emission-sequence, a process referred

to as decoding. It is the decoding algorithm that produces an estimate of the real-world

process’s states, and we can thus interchangeably refer to decoding as state estimation. Hence,
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when modeling with the HMM, practitioners face two algorithmic problems of estimation:

parameter estimation and state estimation.

The accuracy of decoding inevitably relies on the effectiveness of the learning algorithm in

producing parameters that are representative of the true probability distributions governing

the behavior of the real-world process and its sensors. Realistic examples of temporal

sequences of states and emissions must be provided to the learning algorithm in order to

compute distribution parameters that accurately reflect real-world behaviors. Furthermore,

the learning algorithm benefits from having a well-designed objective, one which encourages

desirable traits of the parameters to be learned.

The study and application of algorithms for both learning and decoding have seen

enormous progress over the past half-century (see, for instance, [4] for an overview), but

there is no algorithm which is “best” in any general sense for either task. Rather, a tradeoff

is always present between key design variables, and algorithms must be chosen that favor

some variables over others. For instance, in the design of algorithms for decoding, one always

faces a tradeoff between design variables that include, but are not limited to, (1) a tolerance

for error, (2) the number of possible states captured by the model, (3) the amount of data

with which to perform decoding, and (4) the level of noise caused by sensors. On the other

hand, in the design of algorithms for learning, one faces a tradeoff between variables that

include (1) a tolerance for error of parameter estimates with respect to the optimum of some

objective, (2) the number of computational steps required to produce an estimate within

that tolerance, and (3) the properties of the objective itself. Relatively little study has been

devoted to understanding the tradeoffs between such design variables and what they imply

in practice. In this work, we attempt to derive and study such tradeoffs.
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Overview

The remainder of this work is organized as follows. In Chapter 2, we give rigorous

mathematical meaning to the notions presented in this chapter. In Chapters 3 and 4, we

state, discuss, and prove a theorem regarding tradeoffs in decoding. In Chapters 5 and 6, we

do the same for a theorem regarding tradeoffs in learning. In Chapter 7, we revisit the issues

that arose throughout our analysis to suggest future directions for research.

Notation

The Euclidean sphere in Rn is denoted by Sn−1. The Frobenius norm and `2-norm

are denoted by ‖ · ‖F and ‖ · ‖2, respectively. The trace of a matrix is denoted by Tr(·).

The smallest and largest eigenvalues of a matrix M are denoted by λmin(M) and λmax(M),

respectively. We denote the sets {r ∈ Rm | r ≥ 0}, {r ∈ R | r > 0}, and {n ∈ N | n > 0} by

the symbols R+, R++, and N+, respectively. The abbreviation a.s. denotes almost surely.

Expectation is denoted by E. When the measure space is understood, probability is denoted

generically by P. If a random variable X has Gaussian distribution with mean µ and variance

σ2, we write X∼̃N(µ,σ2). The identity matrix is denoted by I. A standard multivariate

Gaussian variable has mean 0 and variance I. The cardinality of a set is denoted by | · |.
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CHAPTER 2

PROBLEM FORMULATION

In this chapter, we formulate the problem of quantifying tradeoffs in each of the two

tasks of estimation introduced in the previous chapter. To do so, we first define an HMM

via the notion of a probability kernel. The kernel-centric view provides a framework for

constructing an information-theoretic representation of the emissions process, thereby enabling

the proof of the main theorem in Chapter 3, where we study tradeoffs in the decoding problem.

Furthermore, probability kernels provide a common language for formalizing the definitions

of learning and the error rate of a decoder. To study tradeoffs in the learning problem,

we further provide here a construction of the HMM in which the transition and emission

probabilities are represented by a parameter vector to be learned via optimization of a

regularized log-likelihood objective.

Hidden Markov models and probability kernels

Definition 1 (Finite-state Markov chain). Let K(t) be a stochastic process with time-

parameter t ∈ N, and suppose that K(t) takes values in a set K for all t. Then K(t) is called

a Markov chain if it satisfies
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P[K(t) = kt | K(t− 1) = kt−1, K(t− 2) = kt−2, . . . , K(0) = k0]

= P[K(t) = kt | K(t− 1) = kt−1]

a.s. for all t and for all kt, kt−1, . . . , k0 ∈ K. If K is finite, then K(t) is referred to as a

finite-state Markov chain. K is referred to as the state-space.

In the above definition, the a.s. requirement ensures that the conditional probability is

unique for all t. To see this, note that (for example) the equation

P[K(t) = kt, K(t− 1) = kt−1] = P[K(t) = kt | K(t− 1) = kt−1]P[K(t− 1) = kt−1]

would not have a unique solution for the conditional probability if it should happen that

P[K(t− 1) = kt−1] = 0. Such an incident can be prevented by excluding sets of measure zero

from K.

For a Markov chain K(t), we define the probability transition matrix (or simply transition

matrix ) by TK ≡ T = [Tij] for 1 ≤ i, j ≤ |K|, where

Tij ≡ P[K(t) = j|K(t− 1) = i].

The concept of a transition matrix can be generalized to an uncountable state-space via

the notion of a probability kernel, as follows.

Definition 2 (Probability kernel). Let (A,σA) and (B,σB) be measurable spaces. The map

κ : A× σB → [0, 1] is a probability kernel if it satisfies the following.

• For each a ∈ A, the map B 7→ κ(a,B) is a probability measure on (B,σB).
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• For each B ∈ σB, the map a 7→ κ(a,B) is σA-measurable.

To gain some intuition on this definition, let us consider the case of A = B = Ξ and refer

to Ξ as the state-space. The first property in Def. 2 suggests a sort of “transition probability”

from each state a to a subset of the state-space Ξ. That is, for each a, the kernel assigns

a probability to each subset of Ξ. By assigning these probabilities to subsets rather than

points, we account for the situation in which Ξ is uncountable.

In fact, we only consider Markov chains with finite state-spaces in this work. However,

we will require the notion of a probability kernel, not for the consideration of continuous

state-spaces, but rather to consider continuous emission spaces in a structure referred to as a

hidden Markov model (HMM), as we now define.

Definition 3 (Hidden Markov model). Consider a pair (K(t),E(t)), where K(t) is a Markov

chain with state-space K, and E(t) is a stochastic process that takes values in a set E and

satisfies the following:

P[E(t) ∈ Et, E(t− 1) ∈ Et−1, . . . , E(0) ∈ E0

| K(t) = kt, K(t− 1) = kt−1, . . . , K(0) = k0]

=
t∏

τ=0

P[E(τ) ∈ Eτ | K(τ) = kτ ],

a.s. for all t, for all Et, Et−1, . . . , E0 ⊆ E, and for all kt, kt−1, . . . , k0 ∈ K. Let (π, T , E) be a

triplet, where π is a probability mass function, and T and E are probability kernels, such that

• π : K → [0, 1] defines P[K(0) = k0],

• T : K × σK → [0, 1] defines P[K(t) = kt | K(t− 1) = kt−1] for all t, and
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• E : K × σE → [0, 1] defines P[E(t) ∈ Et | K(t) = kt] for all t.

Then (πL, TL, EL) is referred to as the hidden Markov model of the pair (K(t),E(t)).

This definition is adapted from a lemma of [22]. The reader is referred to [22] for a

more general measure-theoretic treatment of the HMM. Again, the a.s. requirement ensures

uniqueness of conditional probabilities for all t. In the next section, we consider emissions

E(t) that take values in an uncountable space and therefore require the notion of a probability

kernel in order to be well-defined. We refer to this kernel as the emission kernel of an HMM.

For consistency of terminology, we also refer to the transition matrix as a transition “kernel”.

We assume, throughout this work, that the transition and emission kernels do not depend on

t, i.e., that the associated Markov chains are homogeneous [22].

Importantly, observe that any measurable function f : A → B induces a probability kernel

κf (B|a) = 1(f(a) ∈ B), (2.1)

where B ∈ σB. We will use this observation to formalize some important notions in both the

decoding and learning problems.

By the a.s. requirement in Def. 3, the transition and emission probabilities are unique for

all t, and thus, they give rise to the following objects, which we refer to as parameter vectors

for both finite and continuous emission-spaces.

Definition 4 (HMM parameter vector). For an HMM with finite state-space K and finite

emission-space E , the transition and emission kernels generate the following variables, referred
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to as the HMM parameters, for all k, k′ ∈ K and all e ∈ E:

πk ≡ P[K(0) = k],

akk′ ≡ P[K(t+ 1) = k′ | K(t) = k],

bke ≡ P[E(t) = e | K(t) = k].

The HMM parameters satisfy the constraints

∑
k∈K

πk = 1,

∑
k′∈K

akk′ = 1 for all k ∈ K,

∑
e∈E

bke = 1 for all k ∈ K,

πk, akk′ , bke ∈ [0, 1] for all k, k′ ∈ K, e ∈ E .

(2.2)

The vector θ with coordinates given by

θ = [πk, akk′ , bke]
T , k, k′ ∈ K, e ∈ E ,

is referred to as the parameter vector.

Definition 5 (HMM parameter vector; white Gaussian emissions). For an HMM with finite

state-space K, emission space Rn, and an emission kernel induced by the multivariate Gaussian

distribution N (µ,σ2I), the transition and emission kernels generate the following variables,
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referred to as the HMM parameters, for all k, k′ ∈ K:

πk ≡ P[K(0) = k],

akk′ ≡ P[K(t+ 1) = k′ | K(t) = k],

µ, as given above,

σ2, as given above. (2.3)

The HMM parameters satisfy the constraints

∑
k∈K

πk = 1,

∑
k′∈K

akk′ = 1 for all k ∈ K,

πk, akk′ ∈ [0, 1] for all k, k′ ∈ K,

σ2 > 0.

(2.4)

The vector θ with coordinates given by

θ = [πk, akk′ , µ, σ2]T , k, k′ ∈ K

is referred to as the parameter vector.

Our analysis of the learning problem in Chapter 5 will be applicable to both of the above

definitions of the parameter vector. Note that, due to the summation constraints in these

definitions, the space Θ of all possible values of θ is not a vector space. However, we refer

to θ as a vector to emphasize that our analysis in Chapters 5 and 6 will require norms and
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metrics defined on a vector space to which Θ is a subset. We refer to this vector space as the

enveloping vector space of Θ. Hence, when taking the norm of θ, we clarify here that the

norm is applied to the vector θ in the enveloping vector space of Θ rather than the element

θ ∈ Θ. A similar perspective holds for the enveloping metric space.

State-space and probability structure

We now particularize the definitions of the previous section to facilitate the information-

theoretic approach taken in subsequent chapters.

Let K = {1, . . . , |K|}. The hidden state K(t) at any t is a random variable on K with an

associated measure space (K, 2K, pK). The observed state E(t) ≡ Y m(t) at any t is a random

vector on Rm, for which a probability density function (p.d.f.) exists.

Now, define a vector Kt with coordinates given by

Kt ≡ [K(t), K(t− 1), . . . , K(t− `+ 1)]T . (2.5)

Note that Kt takes values at random in a set of cardinality |K|` according to some p.m.f. pKt

induced by pK . We index this set by a variable W (t). That is, at any t, the index W (t) is

a random variable taking values in W ≡ {1, . . . , |K|`} according to pKt . For simplicity, we

herein denote the p.m.f. of W (t) as pW ≡ pKt .

With the above notions, we may now give an assumption that will enable the analysis

given in Chapters 3 and 4.

Assumption 6. Assume that Y m(t) is Gaussian with variance σ2I = I and mean µ that
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satisfies

µ = fm(K(t))

for some injection fm : K → Rm.

Define an injection f :W → R`m such that, for all t and all W (t) ∈ W, the coordinates

of f(W (t)) are the concatenation of the coordinates of vectors in the sequence

{fm(K(t)), fm(K(t− 1)), . . . , fm(K(t− `+ 1))}. (2.6)

Define a random vector Y (t) on R`m whose coordinates are the concatenation of the coordinates

of vectors in the sequence

{Y m(t), Y m(t− 1), . . . , Y m(t− `+ 1)}.

Then, by Assumption 6, we may write

Y (t) = f(W (t)) + Z,

where Z is a standard Gaussian vector on R`m. This construction is crucial to the information-

theoretic study of tradeoffs in the decoding problem in Chapter 4.

Because f is injective with finite domain, there exists P ∈ R++ such that

‖f(W (t))‖2
2 ≤ `mP .
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We may interpret P as a (maximal) signal-to-noise ratio by defining an `m-length “signal” as

X(t) = f(W (t)) and observing that, at each time t, the expression

‖X(t)‖2
2

`m

can be viewed as the average-energy-per-bit of the signal, and the expression

E[ZTZ]

`m

can be viewed as the average-energy-per-bit of the noise. Note that the noise energy is equal

to 1 here (by Assumption 6), but this choice was made without loss of generality to facilitate

our analysis in subsequent chapters. (Equivalently, we may fix the signal energy and assume

a bound on noise energy instead, but we do not explore this option in our analysis.) As

mentioned previously regarding the norm of a parameter vector θ, the quantity ‖f(W (t))‖2

makes use of the `2-norm defined on the enveloping vector space of the codomain of f . Such a

norm would be meaningless in the codomain of f because f is injective with a finite domain.

Assumption 6 only applies to our study of the decoding problem, in which the emission-

space is continuous. Our study of the learning problem will be applicable to both continuous

and discrete emission-spaces, as it will only require that the parameter vectors of Defs. 4

and 5 be well-defined.
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State estimation

In this section, we construct a decoder as a probability kernel that maps an observed

state-sequence to a member of K. The decoder further depends on the transition and emission

probabilities computed by the learning algorithm, but the effect of this dependence lies

beyond the scope of our construction, and we defer its discussion to the end of Chapter 3.

Still, we give here the rigorous notions that will guide that discussion.

Consider an uncountable set L in which each element is an HMM as defined previously. We

denote each HMM in L as a triplet L = (πL, TL, EL), where πL is the probability distribution

of hidden states at t = 0, TL is the transition kernel, and EL is the emission kernel.

Let T ∈ T denote a training set, where T is the set of all possible training sets (which

we intentionally leave ambiguous in definition). Each element of T is an `-length sequence

referred to as a training example taking the form

{(K(t′),Y m(t′)), (K(t′ − 1),Y m(t′ − 1)), . . . , (K(t′ − `+ 1),Y m(t′ − `+ 1))}

for some t′ ≤ tf , tf being a time beyond which no training examples are available.

A learning algorithm (or simply learner) is a probability kernel l : T × σL → [0, 1].

Intuitively, this definition implies that, given a training set T ∈ T, the learner assigns a

probability to each subset of L. Recall from the previous section that any measurable function

induces a probability kernel. Thus, even if a learner is deterministic, if we may represent it

as a measurable function, then we may equivalently represent it with the above kernel-based

definition. The kernel-based definition then captures the class of learners that are both

deterministic and stochastic.
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For convenience, we will often abuse notation to denote a learner as the measurable

function that induces its kernel (see Eq. 2.1):

l : T→ L.

Intuitively, in this notation, l maps a set of training data to a triplet L with some probability.

Given a learned model in L and a new `-length sequence of observed states of the form

{Y m(t), Y m(t− 1), . . . , Y m(t− `+ 1)} (2.7)

for some t > T + `− 1, the decoder of an HMM computes an `-length sequence of hidden

states that best “explains” this newly observed sequence (e.g., in the sense of Problem 2 in

[19]). The output of the decoder is thus a sequence of the form of Eq. 2.5.

The decoder can be viewed as a probability kernel g : R`m× 2{1,...,|K|`} → [0, 1]. Intuitively,

for each realization of Y (t), the decoder assigns a probability to each subset of {1, . . . , |K|`}.

Thus, it can be interpreted as a probability “transition” from a sequence of observed states to

an element of the hidden state-space. With this interpretation, we will herein abuse notation

and denote the decoder by the measurable function that induces its kernel (again, see Eq. 2.1)

g : R`m → {1, . . . , |K|`}. (2.8)

Naturally, the learner l must influence the probabilities assigned by the decoder, but the scope

of this influence remains to be studied, and we return to this issue in subsequent chapters.
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Define the average probability of error (in decoding) as

εavg =
1

|K|`
∑
w∈W

(1− PY |X(g−1(w)|f(w))), (2.9)

where the dependence of W , X, and Y on t is understood implicitly. Note that the averaging

is done over the hidden state-space K, and that we are using the notation g in the sense of

the map in Eq. 2.8. Eq. 2.9 can be modified to account for the distribution of W by weighting

each term in the summation by a factor proportional to the probability mass of each w ∈ W .

The impact of this modification on our analysis remains to be studied.

The goal of Chapters 3 and 4 is to study an inequality that exhibits the tradeoff between

εavg, |K|, n, and P , i.e., the variables of interest in the design of a decoder.

Parameter estimation

The kernel-centric view of learning in the previous section will be useful in the discussion

of how the learner influences the decoder, but it will not be useful in our analysis of tradeoffs

in the learning problem. Rather, in the analysis of Chapters 5 and 6, we only consider

deterministic learners that map a set of training data to an HMM parameter vector. Both

Def. 4 and Def. 5 will be suitable when referring to HMM parameter vectors in this context.

Note that the learner of the previous section, which maps training data to a triplet L, is

equivalent to the learner we consider here, which maps to a parameter vector θ, because both

L and θ encompass information about the transition and emission probabilities. In this sense,

L and θ are merely two representations of the same information, one in a measure space and

the other in a metric space, respectively.

15



Within the class of deterministic learners, we further restrict the scope of our analysis

to iterative learners, which compute the parameter vector θ of either Def. 4 or Def. 5 by

iteratively computing estimates θ(i) at iteration i according to some optimization objective

to be designed by the practitioner.

In the current work, we consider the design of the objective to entail a choice of a

regularization matrix R, whose role will be made precise in Chapter 5. Here, it suffices to

mention that R is diagonal, and each of its non-zero elements represents a weight given to a

coordinate of θ that encourages the coordinate to tend toward zero. Thus, R enables the

practitioner to enforce some prior knowledge regarding θ, motivated by domain knowledge

regarding the probability distributions governing the real-world process.

If we denote the optimum of the objective as θ∗, then the performance of the learner can

be quantified as the distance of its estimate from θ∗ under the `2 metric. Namely, its error at

iteration i is expressed as ‖θ(i) − θ∗‖2.

The goal of Chapters 5 and 6 is to study an inequality that exhibits the tradeoff between

‖θ(i) − θ∗‖2, i, and R, i.e., the variables of interest in the design of a learner.

A note on modeling

To make practical sense of the formulation above, we consider here one possible interpre-

tation. For simplicity, at any t, let f(W (t)) = Kt (defined in Eq. 2.5). Then the emission

Y m(t) at any t may be viewed as m repeated noisy measurements of the underlying state

K(t). This situation arises in systems that provide m redundant sensor values of its state at

each t, the purpose of redundancy being to counteract the uncertainty caused by noise from
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the sensor. Concatenation of these m-repeated measurements over an `-length time interval

then generates Y (t).
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CHAPTER 3

TRADEOFFS IN STATE ESTIMATION

In this chapter, we state the tradeoffs between the following design parameters:

• the cardinality |K| of the hidden state-space,

• the tolerance ε on the average error probability of a decoder,

• the length ` of the emission sequence,

• the dimensionality m of each emission,

• the signal-to-noise ratio P of emissions.

We then discuss its implications in practice and provide plots that aid in interpreting the

associated inequalities from a quantitative standpoint. The proof is given in the next chapter.

The converse theorem

The intuition behind the main result of this chapter is that, given sufficiently large data

and an error tolerance ε, if a decoder achieves εavg ≤ ε, then it must necesssarily satisfy a

certain inequality involving the design parameters given in the previous section. In particular,

the following theorem holds.

Theorem 7. Let εavg denote the average probability of error of a decoder for an HMM with

hidden state-space K, learned with `-length training examples in Rm. For every ε ∈ (0, 1] and
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P ∈ [0,∞), there exists N(P , ε) ∈ N such that, for all n > N(P , ε), the following holds. If a

decoder achieves εavg ≤ ε given an `-length sequence of emissions in Rm, then

log |K| ≤ n

2
log(P + 1) +

1

2
log n− nV (P )Q−1(ε) + gc(P , ε) (3.1)

where

n = `m,

V (P ) =
P

2

P + 2

(P + 1)2
log2(e),

and gc is a continuous function of both P and ε.

We refer to Thm. 7 as the converse theorem, by convention of the name used in the

information-theoretic work from which we draw the proof in the next chapter. Indeed, we

will find in the next chapter that the proof of Thm. 7 is identical to that of the converse

theorem of finite-blocklength channel coding.

To draw an analogy with the previously established converse theorems of channel coding,

Thm. 7 can be interpeted as follows. Note that any decoder g must be constructed with

respect to design parameters D = {|K|, n, P}, and we denote such a decoder as gD. Assume

that n > N(P , ε). If D violates the bound 3.1, then there does not exist any decoder gD that

achieves εavg ≤ ε. Hence, Thm. 7 can be interpreted as an impossibility result, analogous

to the converse theorems studied in communication theory. We argue that it is a first step

toward a result that essentially states, “For sufficiently large n, if D violates a certain bound,

then there does not exist any learner-decoder pair designed for D that can achieve εavg ≤ ε.”
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We return to this topic in the concluding remarks of this chapter.

In the next section, we elaborate on the above interpretation of Thm 7 and then plot the

bound 3.1 to highlight some of its characteristics.

Impossibility and the state-space cardinality bounds

Consider a scenario in which the practitioner is tasked with modeling a real-world process

in order to estimate its state-sequence for a given observation sequence. The practioner first

specifies a desired set K of states to be captured in the model and a desired tolerance ε

of decoding error. An HMM is then learned with `-length training examples that involve

elements from K and corresponding observations that exhibit a known signal-to-noise ratio

of P . It is determined empirically that a particular decoder g achieves εavg ≤ ε for a given

number m of measurements-per-timestep. Suppose that the resulting n = `m is greater than

the number N(P , ε) of Thm. 7, i.e., the amount of data n (for decoding with g) is sufficiently

large so that the bound 3.1 holds. (Such a number N(P , ε) must exist, according to Thm. 7.)

Now, suppose that the practioner aims to modify K in order to capture more states of

the underlying process. Toward this end, the HMM is re-learned with an increased |K| but

with the same choices of `, P , and m previously considered. (Assume that the modified K

does not affect P so that n > N(P , ε) still holds.) The decoder g is likewise redesigned to

accommodate the new choice of K. However, if |K| is increased sufficiently that it now violates

the bound 3.1, then g no longer achieves εavg ≤ ε. In fact, violation of the bound 3.1 ensures

that there does not exist any decoder designed for this choice of K, n, and P that can achieve

εavg ≤ ε. Thus, Thm 7 gives a quantitative statement of the intuition that if the hidden
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state-space is sufficiently “diverse”, then there does not exist any decoder that will achieve the

desired error tolerance. In this sense, Thm 7 can be interpreted as an “impossibility” result,

analogous to the converse theorems of channel coding.

In the converse theorems of channel coding, when the transmission rate violates the

channel capacity constraint of a given channel, then there does not exist an encoder-decoder

pair of that rate that achieves vanishing probability of error (asymptotically in blocklength).

Similarly, in the finite-blocklength converse theorem [16] [17], assuming a sufficiently large

blocklength n, when the transmission rate violates a bound similar to 3.1, there does not

exist an encoder-decoder pair of that rate that achieves probability of error below a desired

ε. In the context of channel coding, the transmission rate is defined as the ratio (log |K|)/n

(using our notation), and the study of information-theoretic limits in this context is centered

around this ratio. In the current work, we will thus deviate from this well-studied perspective

in order to highlight other aspects of the bound 3.1 that have not been discussed in previous

works.

Rather, we consider perspectives relevant to the scenario presented above, in which |K|

is upper bounded by a function of ε, n, and P . Fig. 3.1b shows the bound 3.1 with respect

to ε, where ε ∈ [0, 0.5]. A more subtle feature of this bound, however, can be observed

when ε is restricted to the interval [0, 0.1] as in Fig. 3.1a, which can be interpreted as the

“high-accuracy” regime of decoding that may be relevant to those engineering applications

which are especially sensitive to the performance of the state estimation procedure. In this

regime, the upper bound on permissible values of |K| scales almost linearly with ε. Here, we

find that P = 1 is a reasonable constant for illustration because increasing P merely increases

the magnitude of the bounds in Fig. 3.1 without notably affecting its curvature. The same
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(a) ε ≤ 0.1 (b) ε ≤ 0.5

Figure 3.1: Bound 3.1 plotted as the upper bound on |K| with respect to ε, setting P = 1
and n = 10.

will be true for the remainder of the plots presented here, and a similar reasoning applies to

the choices of n = 10 and ε = 0.01 whenever n and ε are fixed.

Fig. 3.2 shows, from left to right, that the upper bound on K increases sharply in magnitude

with respect to n. Indeed, the figure shows that each increase of 10 in n roughly causes

an order-of-magnitude increase in i|K|. This scaling behavior would seem drastic in some

applications, and for these applications, numerical results are needed to more comprehensively

evaluate the realism of our formulation and results. In fact, in many contexts, the increase of

|K| with n may even be counterintuitive, and it is in these settings that a numerical study

of our approach will be especially relevant. The ranges of n in the four successive plots of

Fig. 3.2 are chosen to illustrate four relevant regimes of |K| and n in practice. The appropriate

scale of |K| in practice depends on the underlying process which the HMM is intended to

model. Likewise, the appropriate range of n = `m depends on how many time-steps ` are

considered in each training example and the number m of measurements to be collected at

each time-step (by the interpretation of Chapter 2).
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(a) n ≤ 30 (b) n ≤ 40 (c) n ≤ 50

Figure 3.2: Detail of Bound 3.1 with respect to n = `m, across three different orders-of-
magnitude of K relevant in practice (setting P = 1 and ε = 0.01).

(a) P ≤ 2 (b) P ≤ 4 (c) P ≤ 8

Figure 3.3: Detail of Bound 3.1 with respect to P , across three different orders-of-magnitude
of K relevant in practice (setting n = 10 and ε = 0.01).

We take a similar approach when illustrating the bound with respect to P in Fig. 3.3, but

here, the low-SNR regime in Fig. 3.3a shows that the bound “breaks down” as it approaches

P = 0. That is, the bound likely does not predict anything useful for low values of P , as it

suggests that a more diverse state-space can be supported by the decoder as P decreases

from roughly 0.1 to 0. If any useful bounds can be derived in the low-SNR setting, they

demand a different approach that lies beyond the scope of the current work.
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Learner-decoder pairs and the role of the transition kernel

In Chapter 4, we provide the proof of Thm. 7. Our approach is to exploit Assumption 6

to make the problem amenable to the proof strategy of [16] and [17]. However, there are

apparent shortcomings to our approach, which we now discuss. We argue that the main

contribution of this chapter is the speculation that follows by observing these shortcomings

in Thm. 7.

Our adaptation of the proof strategy in [16] and [17] deliberately neglects the Markov

property of the process K(t). Indeed, the introduction of W (t) in our formulation allows

us to treat the problem of state-sequence estimation as a problem of decoding individual

symbols from a finite alphabet W. Such a formulation does not consider the role of the

transition kernel in generating the state sequence. It is crucial to note that the design of an

HMM decoder almost invariably uses some knowledge of the transition kernel provided by

the learner. An important example is the Viterbi algorithm (e.g., see [19]) and its variants.

In contrast, the notion of a transition kernel is entirely unnecessary when decoding individual

symbols rather than sequences of them.

A more appropriate formulation than that of Chapter 2 would first entail restriction of

the transition behavior to a particular distribution or model (e.g., through the assumption

that K(t) is a sum of Rademacher variables). We would then define a modified probability of

error ε∗ that accounts for the decoding of both K(t) and K(t−1). That is, we would consider

only the particular case of ` = 2 before attempting to generalize any further. With this new

formulation, we speculate that Thm. 7 can be extended to encompass the distribution of

the transition kernel, just as it currently encompasses the distribution of the emission kernel
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(through P ).

As it stands, the theorem merely shows a tradeoff involving

• the probability of error for decoding W (t) (through the definition of εavg), and

• the variance of emissions (through the definition of P ).

By the modified formulation above, we argue that a more appropriate result can be obtained

which would exhibit a tradeoff involving

• the probability of error ε∗ for decoding K(t) and K(t− 1) for a given transition kernel

(through the definition of ε∗),

• the variance of transitions, and

• the variance of emissions.

If we could obtain such a result, we would then pursue its generalization for ` > 2. The

ultimate goal would be to arrive at a more complete understanding of state-sequence estimation

for HMMs that accounts for the decoder’s knowledge about transitions between hidden states.

We further speculate that such a result can be extended to account for the performance

of a given learner. To see this, recall the construction of a learner as a probability kernel,

as given in Chapter 2. As it stands, Thm. 7 does not consider the fact that g relies on

the kernel l : T × σL → [0, 1] to compute its estimate of W . Indeed, µ and σ2 should be

estimated by the learner and subsequently employed by g, and in this sense, it should be

possible to relate the decoder’s design variables to the design variables of the learner that

will be studied in Chapters 5 and 6. We speculate that the results arising from such a study

could be more fittingly referred to as the fundamental limits of decoding in HMMs, as they
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would account for learner-decoder pairs rather than decoders alone, just as the fundamental

limits of communication systems account for encoder-decoder pairs.
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CHAPTER 4

PROOF OF THE CONVERSE THEOREM

We now prove the converse theorem of the previous chapter. First, we collect some facts

regarding the beta function often considered in the theory of hypothesis testing, as well as

the Berry-Esseen theorem that gives the rate at which an i.i.d. sample mean converges to

normality. We then prove a general bound on the beta function that we will refer to as the

meta-converse bound, by convention of [16] from which we take the strategy of the proof in

this chapter. Finally, we apply the Neyman-Pearson lemma and Berry-Esseen theorem in

succession to arrive at the result.

The beta function; the Neyman-Pearson lemma; the Berry-Esseen theorem

In this section, we gather the tools that will be needed in the proof of Theorem 7.

Let U be a discrete random variable on U that can have one of two distributions P and

Q. Define a random variable T such that the event T = 1 is associated with distribution

P and the event T = 0 is associated with Q. We call T a hypothesis test between these

distributions, and we see that

∑
u∈U

PT |U(1|u)QU(u)
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is the test’s probability of error under hypothesis Q and

∑
u∈U

PT |U(1|u)PU(u)

is its probability of success under hypothesis P . Then we may define the following so-called

“beta function” as the infimal error probability under Q given at least α success probability

under P :

βα(PU ,QU) = inf
PT |U

∑
u∈U

PT |U(1|u)QU(u),

where the infimum is taken over all PT |U that satisfy

∑
u∈U

PT |U(1|u)PU(u) ≥ α.

We will require the following lemma to establish the meta-converse bound of the next

subsection.

Lemma 8 (Polyanskiy). [16] If βα(PY |X=x,QY |X=x) is independent of x ∈ F, then for any

PX supported on F,

βα(PXPY |X ,QXQY |X) = βα(PY |X=x,QY |X=x). (4.1)

Proof. Please refer to [16].

The following is a variant of the Neyman-Pearson lemma as stated in [18] and [17].
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Lemma 9 (Neyman-Pearson). Let P and Q be probability measures over a space for which a

random variable θ is defined. For all α ∈ [0, 1], there exist real constants γ > 0 and τ ∈ [0, 1)

such that

βα(P ,Q) = Q[T ∗α = 1] ≤ Q[T = 1], (4.2)

and the optimal test T ∗α is defined by

T ∗α(θ) = 1

(
dP
dQ

> γ

)
+ Tτ1

(
dP
dQ

= γ

)
, (4.3)

where T is any test that satisfies P [T = 1] ≥ α, Tτ ∈ {0, 1} is 1 with probability τ independent

of θ, and the two constants γ > 0 and τ ∈ [0, 1) are such that

P [T ∗α = 1] = α. (4.4)

If P is not absolutely continuous with respect to Q, then extend the quantity dP/dQ to

equal +∞ over the singular set.

Theorem 10 (Berry-Esseen). [3] For independent random variables {Xi}ni=1 with µi = E[Xi],

σ2
i = E[|Xi − µi|2], and si = E[|Xi − µi|3], it holds true that

∣∣∣∣∣P
[∑n

i=1(Xi − µi)√∑n
i=1 σ

2
i

≤ c1

]
−Q(−c1)

∣∣∣∣∣ ≤ 6
∑n

i=1 si

(
∑n

i=1 σi)
3/2

. (4.5)

Proof of the meta-converse

In this section, we define a hypothesis test on channels and obtain a bound on the

associated beta function via the Neyman-Pearson Lemma 9. In the next section, this bound
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will then be expanded via the Berry-Esseen theorem 10 to arrive at the main result, Theorem 7.

Throughout the proof, we omit the dependence of variables on t, as it is understood that the

arguments hold for any value of t.

Define the random variables

X = bf(W ),

Y = X + Z,

T = 1(g(Y ) = W ),

where 1(·) is the indicator map, and the only notations newly introduced here are those of X

and T . We will construct a hypothesis test in which the test variable is T and the “observation”

variable is (X,Y ), so that the two hypotheses under consideration are the distributions PXY

and QXY , associated with T = 1 and T = 0, respectively. (This so-called “observation” is

unrelated to any notions of observation previously discussed in our framework.) To show that

T is indeed such a test, we show that its distribution conditioned on (X,Y ) is equivalent

under both hypotheses, i.e., that PT |XY = QT |XY .

First, note that Y is independent of W when conditioned on X, and g(Y ) is independent

of both W and X when conditioned on Y . Then g(Y ) is independent of W when conditioned

on X and Y , and the four variables form a Markov chain W → X → Y → g(Y ). Then

we also see that W is independent of Y when conditioned on X. Using these independence

properties, under either hypothesis,

P[g(Y ) = W |X,Y ]
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=

|K|`∑
w=1

P[{g(Y ) = w} ∩ {W = w}|X,Y ]

=

|K|`∑
w=1

P[g(Y ) = w|X,Y ]P[W = w|X,Y ],

=

|K|`∑
w=1

P[g(Y ) = w|X]P[W = w|Y ]. (4.6)

In the summation of the last line, neither of the factors in each term rely on the choice of

joint distribution between X and Y , as a consequence of the above Markov structure. Thus,

P[g(Y ) = W |X,Y ] = P[T = 1|X,Y ] is invariant under the choice of hypothesis, and T is

therefore a valid test with the unique conditional distribution PT |XY = QT |XY .

Let ε1 denote the average probability that g(Y ) yields an incorrect estimate of W under

PXY . Define ε2 similarly under QXY . Then, we have that

1− ε1 =
∑

x∈Bn(nP )

∑
y∈Rn

PT |XY (1|x, y)PXY (x, y), (4.7)

1− ε2 =
∑

x∈Bn(nP )

∑
y∈Rn

PT |XY (1|x, y)QXY (x, y). (4.8)

We can verify these expressions formally by observing that

ε1 =
1

|K|`
∑
w∈W

(1− PY |X(g−1(w)|f(w)))

=
∑
w∈W

PW (w)(1− PY |X(g−1(w)|f(w)))

=
∑
w∈W

P(W = w)P(g(Y ) 6= w|W = w)

= P(T = 0)
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= 1− P(T = 1)

= 1−
∑

x∈Bn(nP )

∑
y∈Rn

PT |XY (1|x, y)PXY (x, y).

Now, for some α ∈ [0, 1], define

βα(PXY ,QXY )

= inf
PT |XY

∑
x∈Bn(nP )

∑
y∈Rn

PT |XY (1|x, y)QXY (x, y), (4.9)

where the infimum is taken over all PT |XY that satisfy

∑
x∈Bn(nP )

∑
y∈Rn

PT |XY (1|x, y)PXY (x, y) ≥ α. (4.10)

To clarify, the infimum is taken over tests that achieve at least α probability of a correct

decision under hypothesis PXY . There exists a unique optimal test for which this infimum

is achieved, as guaranteed by the Neyman-Pearson lemma (given later), but note that this

optimal test is not necessarily the test T constructed above. From this definition, we have

βε1(PXY ,QXY ) ≤ 1− ε2. (4.11)

We wish for PXY to represent the true joint distribution in Eq. 2.7, while QXY remains

an alternate hypothesis which we are free to construct within reason. Then, to ensure that

the previous bound holds for all possible PXY , we loosen the bound over PXY . In contrast,
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we also tighten the bound over the QXY that we choose. As a result, we have

inf
PX

sup
QY

βε1(PXPY |X ,PX ×QY ) ≤ 1− ε2. (4.12)

The optimization above does not include the distribution PY |X , which is already determined

by the relation between X and Y in their definitions.

We now restrict x to the sphere Sn−1(nP ), although it can be shown that the result can

be generalized to the ball Bn(nP ) as in [16]. With this restriction, βα(PY |X=x,QY |X=x) is

independent of x by the radial symmetry of Sn−1(nP ), and we may thus apply Lemma 8 for

F = Sn−1(nP ). Due to the same symmetry, PY |X=x is also independent of x, so by Lemma 8,

Eq. 4.12 becomes

sup
QY |X=x

βα(QY |X=x) ≤ 1− ε2, (4.13)

where we have dropped the first argument from βα(·, ·) to emphasize that the bound now

only depends on the second argument. Note, however, that the implicit first argument is

PY |X=x, the true Gaussian measure of mean x and variance In×n induced by Z in Eq. 2.7.

Here, we will allow QY |X=x = QY , and we choose QY to be the Gaussian distribution

N (0, (1 + P )In×n) (We refer the reader to chapter 4 of [16] for a thorough justification.)

Since QY has been chosen to be independent of the value of X, the probability 1 − ε2

becomes the probability that g(·) = W when g(·) chooses with uniform randomness from K.

(Here, we denote the output of the decoder under hypothesis Q as g(·), in order to avoid
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confusion with the output g(Y ) under hypothesis P .) Thus, for any p.m.f. pW , we have

1− ε2 = P(g(·) = W )

=
∑
w∈W

P(g(·) = w|W = w)pW (w)

=
∑
w∈W

1

|K|`
pW (w)

=
1

|K|`
. (4.14)

Therefore, substituting into Eq. 4.13 our choice of QY |X=x = QY , along with Eq. 4.14, we

obtain the meta-converse bound as

sup
QY

βα(QY ) ≤ 1− ε2. (4.15)

Computing the Berry-Esseen bound

Temporarily, we now consider βα(·, ·) with arbitrary probability measures in order to

obtain a general bound via the Neyman-Pearson Lemma that will particularize desirably when

we substitute the specific probability distributions in Eq. 4.15. The particularized bound

will be desirable in the sense that it will be amenable to an application of the Berry-Esseen

bound, which gives rise to the variables of interest in our main theorem. Finally, we will

combine the Berry-Esseen result with the meta-converse of the previous subsection, thus

completing the proof of our main theorem.

Define the event

E =

{
dP
dQ

< γ

}
.
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Then the Radon-Nikodym theorem gives

P [E] =

∫
E

dP
dQ

dQ < γ

∫
E

dQ = γQ[E]. (4.16)

This "change-of-measure" argument is standard in information theory [15]. Note that the

above steps still hold under intersections of E with arbitrary events, a fact which we use in

the following argument.

Fix T to be the test defined previously for the hypotheses PXY and QXY . Whatever value

Q[T = 1] that βα(P ,Q) achieves under this test cannot be any less than the value it achieves

under the unique optimum T ∗α of Lemma 9. Therefore, letting P = PY |X=x and Q = QY (as

derived using Lemma 8), we have

βα(P ,Q) = Q[T = 1]

≥ Q[T ∗α = 1]

≥ Q [{T ∗α = 1} ∩ E]

≥ 1

γ
P [{T ∗α = 1} ∩ E] (4.17)

≥ 1

γ
(P [T ∗α = 1]− P [Ec]) (4.18)

=
1

γ
(α− P [Ec]) . (4.19)

Eq. 4.17 follows from the Radon-Nikodym theorem as demonstrated above. Eq. 4.18 follows

from the fact that, for any events E1 and E2,

P[E1] + P[E2]− P[E1 ∩ E2] ≤ 1,
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P[E1 ∩ E2] ≥ P[E1]− P[Ec2]. (4.20)

Eq. 4.19 follows from Lemma 9. The Radon-Nikodym derivative in Eq. 4.19 can be computed

by simple application of the chain rule with respect to Lebesgue measure µ, as follows. Simply

observe that PY |X=x is a Gaussian measure of mean x and variance In×n induced by Z in

Eq. 2.7, and observe that QY is a Gaussian measure of mean 0 and variance σ2
Y , as chosen

previously. Then, without loss of generality, let x = [
√
P
√
P . . .

√
P ]T , and we have

dPY |X=x

dQY

(y) =
dPY |X=x

dµ
(y)

dµ

dQY

(y)

= σnY exp

[
−
(

1

2
‖y − x‖2

2 −
1

2σ2
Y

‖y‖2
2

)]
= σnY exp

[
1

2

n∑
i=1

(
y2
i

σ2
Y

− (yi −
√
P )2

)]
.

= σnY exp

[
1

2σ2
Y

n∑
i=1

(
(ζi −

√
P )2 − σ2

Y ζ
2
i

)]
,

where we have introduced the zero-mean i.i.d. variable ζi = yi−
√
P to facilitate later analysis.

In fact, it will soon be convenient to instead use the quantity

− log
dPY |X=x

dQY

(y)

= −n log σY −
log e

2σ2
Y

[
n∑
i=1

(
P − 2ζi

√
P − Pζ2

i

)]
, (4.21)

where we have substituted σ2
Y = 1+P (as chosen previously) inside the summation to simplify

terms, but we retain the σ2
Y outside the summation to promote clarity in the upcoming

calculations.
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We now define the quantity γ′ in such a way that

γ = exp
(
−γ′ + n

2
log(σ2

Y )
)

, (4.22)

so that the inequality of Ec in Eq. 4.19 becomes

dPY |X=x

dQY

≥ exp
(
−γ′ + n

2
log(σ2

Y )
)

.

Solving for γ′ and applying Eq. 4.21, we obtain

γ′ ≥ n

2
log(σ2

Y )− log
dPY |X=x

dQY

,

= − log e

2σ2
Y

[
n∑
i=1

(
P − 2ζi

√
P − Pζ2

i

)]

=
n log e

2σ2
Y

(
Pζ2

i + 2ζi
√
P − P

)
,

=
n∑
i=1

hi,

where we define

hi =
log e

2σ2
Y

(
Pζ2

i + 2ζi
√
P − P

)
.

Thus, we arrive at

P [Ec] = P

[
n∑
i=1

hi ≤ γ′

]
,
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to which we may then apply the Berry-Esseen theorem, in order to express Eq. 4.19 in terms

of the key variables n and P .

In Thm. 10, let Xi = hi, and note that µi = 0 for all i by definition of hi. Also note that

σ2
i are equivalent for all i, and the same is true for si, since the hi are identically distributed.

Now, define

αn = α− 12si√
n(σ2

i )
3
> 0,

so that we have

n > N(P ,α) ≡
(

12si
α(σ2

i )
3/2

)2

.

By the definition of hi, both σ2
i and si are functions of P , which we may control according to

the problem formulation of the previous section. Hence, in the following analysis, we may

control αn and therefore N as desired. Let these quantities be such that

γ′ = −
√
nσ2

iQ
−1(αn), (4.23)

and in Thm. 10, let c1 = −Q−1(αn). Then the theorem gives

∣∣∣∣∣P
[

n∑
i=1

hi ≤ c1

√
nσ2

i

]
−Q(−c1)

∣∣∣∣∣ ≤ 6nsi

(nσi)
3/2

.

Proceeding from this result, we have

P

[
n∑
i=1

hi ≤ γ′

]
≤ αn +

6si√
n(σ2

i )
3

≤ α− 6si√
n(σ2

i )
3
,
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where the last line follows from the definition of αn. Upon substitution into Eq. 4.19,

βα(P ,Q) ≡ βα(QY ) ≥ 6si

γ
√
n(σ2

i )
3
.

≥ 6si√
n(σ2

i )
3

exp
(
γ′ − n

2
log(σ2

Y )
)

.

The first equivalence is obvious by the choices of measure that were used in computing the

inequality. The last step follows by substituting Eq. 4.22 for γ. Combining this result with

Ineq. 4.15, taking the logarithm, and rearranging terms,

log

(
1

K`

)
≥ log

(
6si
σ3
i

)
+ γ′ − 1

2
log(n)− n log(σY ). (4.24)

The first term in the right-hand side is arranged as such because we soon intend to absorb it

into the gc term in the statement of our theorem.

We now evaluate a lower bound on γ′ in terms of Q−1(α), to which we will then substitute

α = 1− ε to conclude the proof. Again, recall the dependence of si and σ2
i on P . Then by

our control of P , let
[
α− 12si√

n(σ2
i )3

, α

]
⊂ (0, 1) for all n > N(P ,α), and let a be any point in

this interval. Taking the Taylor expansion of Eq. 4.23 over this interval about the point α,

we have

γ′ = −
√
nσ2

iQ
−1(α)− (a− α)

√
nσ2

i

dQ−1

da
(α)

≥ −
√
nσ2

iQ
−1(α) +

(
α− 12si√

n(σ2
i )

3
− α

)√
nσ2

i

dQ−1

da
(α)

= −
√
nσ2

iQ
−1(α) +

12si
σ2
i

dQ−1

da
(α). (4.25)
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Note that the second term in the expansion has only one negative factor, (a− α), and hence

the inequality holds by definition of a. Let us bound the derivative in this result by a function

continuous in both P and α in order to absorb terms into the gc term of our main theorem.

Toward this end, define

α1 = α− 12si√
N(P ,α)(σ2

i )
3
, (4.26)

so that the interval [α1, α] encloses the interval over which the Taylor expansion was taken

(for all n > N(P ,α)). Since the derivative of Q−1 is continuous on this interval, there exists

g1 = min
a1∈[α1, α]

dQ−1

da
(a1), (4.27)

which is continuous in both P and α. Substituting g1 into Eq. 4.25 and combining the result

with the γ′ of Eq. 4.24, we have

log

(
1

K`

)
≥ −

√
nσ2

iQ
−1(α)− 1

2
log(n)− n log(σY )− gc(P ,α),

where

gc(P ,α) = − log

(
6si
σ3
i

)
− 12si

σ2
i

g1

is continuous in both P and α. Recall again that the dependence of gc on P arises from si

and σi, while its dependence on α arises from g1.
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By the definition of α in Eq. 4.9, we allow

Q−1(α) = Q−1(1− ε) = −Q−1(ε), (4.28)

and the previous bound becomes

Q−1(ε) ≤
− logK` + n log σY + 1

2
log n+ gc(P , ε)√

nσ2
i

. (4.29)

Substituting σ2
Y = 1 + P and computing σ2

i = E[|hi|2], we obtain the statement of the main

theorem.
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CHAPTER 5

TRADEOFFS IN PARAMETER ESTIMATION

In this chapter, we consider the task introduced in Chapter 2 of computing the parameter

vector θ of an HMM using training data, a process herein referred to as learning. We denote

the dimension of the parameter vector as p. To particularize the notions of Chapter 2, we

state here the variables whose tradeoffs we intend to study:

• the error ‖θ(i) − θ∗‖ of the learner’s parameter estimate at iteration i,

• the number i of iterations,

• properties of a regularization matrix R, namely Tr(R) and a number δ that restricts its

eigenvalues.

In the sections to follow, the specific class of iterative learners to be considered will defined.

Furthermore, the matrix R will be defined and the notion of regularization made precise.

Learning via projected gradient methods

Standard learning techniques for HMMs include the Baum-Welch algorithm and gradient-

based methods [19]. Here, we only consider the gradient descent algorithm (or simply gradient

descent), a method that lends itself well to an analysis of convergence within the setting

we consider. Gradient descent computes the HMM parameters by iteratively optimizing an
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objective function that is typically taken to be the log-likelihood of training data with respect

to the HMM parameters. Specifically, defining the objective function to be the negative

log-likelihood (NLL)

L(θ) = − logP[O|θ],

gradient descent attempts to solve the problem

min
θ∈Θ

L(θ) (5.1)

by performing the following update at each iteration i:

θ(i+1) = ProjΘ
(
θ(i) − µ∇θL(θ)

∣∣∣
θ(i)

)
,

ProjΘ(θ) = arg min
θ̄∈Θ

‖θ − θ̄‖2
`2

,

(5.2)

where µ denotes the learning rate, and the set Θ with the projection operator ProjΘ acco-

modates the constraints in Def. 4 or Def. 5 as appropriate. We refer the reader to [10] for a

sampling of alternative methods for enforcing the constraints. In our work, only the projected

gradient method of Alg. 5.2 is suitable for our analysis.

Note that our analysis in this chapter will not depend on any knowledge regarding the

behavior of L(θ) with respect to θ except for its differentiability. This observation suggests

that the main theorem of this chapter holds in great generality and is hence relevant to

the diverse selection of learning objectives that have been considered in previous literature

(see, for instance, [1], [12], [20], [21]). However, we will find that the proof of this theorem
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will require regularization of the objective in 5.1 and thus leaves opportunity for further

generalization, as discussed in the next section.

Regularization and the contribution of the log-likelihood gradient

Importantly, we must note that our analysis of the performance of the projected gradient

method relies on a regularized form of the objective function considered previously. In

particular, we require that the problem 5.1 must be regularized in the following sense:

min
θ∈Θ

[
L(θ) +

1

2
θTRθ

]
, (5.3)

where R ∈ Rp×p is diagonal. Each non-zero component rjj of R (for j ∈ {1, 2, . . . , p}) acts

as a tuning parameter to either encourage or discourage Alg. 5.2 to produce estimates of

parameter θj that tend toward zero. Large values of rjj for some j will cause the algorithm

to regularize the parameter θj heavily relative to another parameter, such as θj′ for which

rj′j′ is smaller than rjj. The requirement of diagonality somewhat hinders the flexibility

of R in practice, but it is chosen here for the convenience of our analysis in Chapter 6.

Generalizations to non-diagonal R are not difficult, but because they contribute little to the

narrative of the current study, we defer them to a future work.

Although this form of regularization can be useful in many contexts, it is not standard, and

therefore, we are unable to argue that the main results of this chapter are fundamental to the

problem 5.1 in any sense. Indeed, beyond the information-theoretic context of Chapters 2, 3,

and 4, it is not clear what the term “fundamental” encompasses in the context of iterative

learning. We argue here that a fundamental tradeoff in iterative learning is one that generalizes
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to all log-likelihood objectives considered in the learning of HMMs, but the sampling of

literature cited in the previous section suggests that the great diversity of learning objectives

for HMMs would make this task challenging and far beyond the scope of our current work.

Besides variations on the log-likelihood expression, past work has also considered variations

on the regularization term (see, for instance, [6] and [13]), but only a regularizer of the form

in 5.3 is suitable for our analysis, and it remains to be seen in future work whether our

approach can be adapted for other regularization methods.

We now introduce a modification to Alg. 5.2 which will facilitate our analysis. We motivate

this decision by mentioning that, as the ∇θL term in Alg. 5.2 fluctuates on each iteration, so

too does the bound in our main theorem, as will be seen. To remove this iteration-dependence

of the norm, we take only the direction of this term on each step:

θ(i+1) = ProjΘ
(
θ(i) − µ

(
Rθ(i) + ξ(i)

))
,

ξ(i) = η
∇θL

‖∇θL‖2

∣∣∣
θ(i)

,

ProjΘ(θ) = arg min
θ̄∈Θ

‖θ − θ̄‖2
`2

,

(5.4)

choosing some η ∈ [0,∞). In a sense, η serves as a parameter for tuning the “contribution” of

this term to the update. By setting η to be the norm in the denominator, we recover the

original update step of Alg. 5.2. As we will see, η can also be used to tune the bound in the

main theorem. A similar normalization factor to Alg. 5.4 has been considered in [8].

In the next section, we state the main result of this chapter and discuss its implications.
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The convergence theorem

We now state the main theorem of this chapter.

Theorem 11 (Convergence). Let θ∗ ∈ Rp denote the optimal solution to Problem 5.3. Let

R ∈ Rp×p have λmin(R) ≥ δ − 1 and λmax(R) ≤ δ + 1 for some δ ∈ (4,∞). Using µ = 1/δ,

Algorithm 5.4 obeys

‖θ(i) − θ∗‖2 ≤
(

4

δ

)i
‖θ(0) − θ∗‖2 +

4

δ

(√
(δ + 1) Tr(R)‖θ∗‖2 + η

)
, (5.5)

for any number of iterations i ∈ N+ and initialized at any point θ(0) ∈ Rp.

Thm. 11 gives an explicit upper bound on the `2-error of projected gradient descent

for the learning problem 5.3 in terms of the computational cost (i.e., iterations i) and the

properties of the regularization matrix R. It also provides the learning rate µ, which depends

on the range of eigenvalues of R, for which projected gradient descent converges linearly to

the residual (the second term in the right-hand side). Note that, if we particularize Alg. 5.4

to be the original projected gradient descent (Alg. ??), then the bound in Thm. 11 would

have η = ‖∇θL‖2.

A corollary on the time-complexity of the projected gradient method

Thm. 11 shows that, in the limit of iterations i, the estimates converge linearly to a

residual of radius µ
(

1
1− 2

δ

)(√
(δ + 1) Tr(R)‖θ∗‖2 + η

)
. This radius would fluctuate with ξ(i)

in the absence of the proposed modification in Alg. 5.4. The practitioner may be tempted

to reduce η in this modified update step in order to reduce the residual in Thm. 11, but

we caution that sufficiently low values of η can cause gradient descent to diverge from the
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minimum. Intuitively, setting η to 0, for example, effectively removes the coupling between

the objective and the constraint set Θ in Problem 5.3, and the estimate produced by gradient

descent for the resulting unconstrained problem may drastically differ from the optimal

solution to the constrained problem. Determining a schedule for η remains a problem for

future study.

The following corollary provides the minimum number of iterations required for the

estimates produced by Alg. 5.4 to converge to the residual within a neighborhood of size ε.

Corollary 12. Given an error bound ε > 0, gradient descent yields an estimate θ(i) such

that, after a number of iterations i > ln(ε)/ ln(2/δ),

‖θ(i) − θ∗‖2 − 4µ
(√

(δ + 1) Tr(R)‖θ∗‖2 + η
)
≤ ε.

Proof. First observe that

x1/ ln(x) = e. (5.6)

To see this, let y be a real number such that

x1/ ln(x) = y.

(5.7)

Taking ln(·), we see that y must be e. Letting x = 2/δ and raising both sides of Eq. 5.6 to

the power of ln(ε), we have

(
4

δ

)ln(ε)/ ln(x)

= ε.

47



From the statement of the corollary, assume i > ln(ε)/ ln(2/δ). Then, noting that 4/δ < 1,

we have

(
4

δ

)i
< ε.

Applying this inequality to Thm. 11, we have the result.
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CHAPTER 6

PROOF OF THE CONVERGENCE THEOREM

The proof of the main theorem shows that, the error of parameter estimates produced

by projected gradient descent can be expressed as a sum of two terms, the leading and the

residual. The leading term is bounded with the aid of Lemma 15, and the residual is bounded

with Lemma 16, to be given in the next section. Both lemmas follow straightforwardly from

a notion that we refer to as (δ, γ)-restrictedness, which we introduce in Def. 13. Meanwhile,

Lemma 14 provides a sufficient condition for Def. 13 to be satisfied. Some additional lemmas

regarding the properties of Euclidean projections are also needed for handling the optimization

constraints of the learning problem. We present all of these tools here before embarking on

the main proof.

(δ, γ)-restrictedness of matrices and useful properties of Euclidean projections

Definition 13 ((δ, γ)-restrictedness). A matrix M ∈ Rp1×p2 is said to be (δ, γ)-restricted

over V ⊆ Rp2 if there exists γ ∈ R+ such that

∣∣∣‖Mv‖2
2 − δ‖v‖2

2

∣∣∣ ≤ γ,

for some δ ∈ R++ dependent only on M and for all v ∈ V .

As δ is only dependent on M , the above definition allows the possibility of restricting M
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w.r.t. the same δ for different choices of V . We employ this observation in a later result.

The following lemma gives a sufficient condition for a matrix to be (δ, γ)-restricted.

Lemma 14. Suppose p1 = p2 ≡ p in Def. 13. If the eigenvalues of MTM are bounded above

and below by δ + 1 and δ − 1, respectively, then M is (δ, γ)-restricted over Rp.

Proof. The result follows from the variational characterization of eigenvalues for Hermitian

matrices [7]. Since MTM is Hermitian, letting γ = ‖v‖2
2 in Def. 13 gives

vTMTMv ≤ λmax(M
TM)vTv = (δ + 1)γ,

for all v ∈ Rp, which gives rise to one inequality in Def. 13. The other inequality follows from

a similar argument using λmin(MTM).

Although Lemma 14 does not require M to be Hermitian, we note that if MTM is

diagonal, then M would indeed be Hermitian (and diagonal), a fact which will later be used.

The next lemma is a convenient restatement of Def. 13 which will be crucial to the main

proof. Along with Def. 13, it plays a role in this article similar to the role played by Gordon’s

Escape Through the Mesh lemma [5] in a proof that appears in [14], from which we take

inspiration for the main strategy in this article.

Lemma 15. Define V− = {v− = v1 − v2 | v1, v2 ∈ Sp−1} and V+ = {v+ = v1 + v2 | v1, v2 ∈

Sp−1}. If M ∈ Rp×p is (δ, γ−)-restricted over V−, then for all v−,

1

δ
‖Mv−‖2

2 ≤ ‖v−‖2
2 +

γ−
δ

.
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Furthermore, if M is (δ, γ+)-restricted over V+, then for all v+,

1

δ
‖Mv+‖2

2 ≥ max
{

0, ‖v+‖2
2 −

γ+

δ

}
.

Proof. The first statement follows directly from Def. 13. The second also follows directly by

noting that the left-hand side can only be positive and is hence the max between 0 and a

potentially negative number.

It was not necessary to introduce the sets V− and V+ in the previous lemma, but it will

greatly facilitate later analysis.

The next lemma will allow us to determine the neighborhood in which the estimation

error will lie after sufficiently many iterations. As mentioned, we refer to this neighborhood

as the residual of the error.

Lemma 16. If M ∈ Rp×p is diagonal, positive semidefinite, and (δ, γ)-restricted over V ⊆ Rp,

then

‖M2v‖2 ≤
√

(δ + 1) Tr(M2)‖v‖2,

for all v ∈ V.

Proof.

‖M2v‖2 ≤
√
‖M‖2

F‖Mv‖2
2

=
√

Tr(M2)‖Mv‖2.
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Applying the definition of (δ, γ)-restrictedness to the last expression gives the result.

The following lemmas will be useful in working with projection operators.

Lemma 17 (Oymak, et al.). [14] Let Θ ⊂ Rp be a closed and non-empty set that contains

0. Let C be a closed and non-empty cone such that Θ ⊂ C. Then for all v ∈ Rp,

‖ProjΘ(v)‖`2 ≤ 2‖ProjC(v)‖`2 (6.1)

Proof. Please refer to [14].

Lemma 18 (Oymak, et al.). [14] Suppose Θ ⊂ Rp is a closed set. For all x ∈ Rp, the

projection operator of 5.2 obeys

ProjΘ(x+ v) = ProjΘ−{x}(v) (6.2)

Proof. Please refer to [14].

Proof of Theorem 11

‖θ(i+1) − θ∗‖2

= ‖ProjΘ
(
θ(i) − µ(Rθ(i) + ξ(i))

)
− θ∗‖2 (6.3)

= ‖ProjΘ−{θ∗}
(
θ(i) − µ(Rθ(i) + ξ(i))− θ∗

)
‖2 (6.4)

≤ 2‖ProjC
(
θ(i) − µ(Rθ(i) + ξ(i))− θ∗

)
‖2 (6.5)
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= 2‖ProjC
(
(I − µR)(θ(i) − θ∗)− µ(Rθ∗ + ξ(i))

)
‖2

= 2

(
sup

v1∈Sp−1∩C
vT1 (I − µR)(θ(i) − θ∗) + µ (‖Rθ∗‖2 + η)

)
, (6.6)

where Eq. 6.3 follows by definition of the update step, Eq. 6.4 follows from Lemma 18, Eq. 6.5

follows from Lemma 17, and Eq. 6.6 follows from the definition of ξ(i) in 5.4. Again, the two

terms of Eq. 6.6 are referred to as the leading and the residual.

We now proceed to bound the leading term. First, we observe that it can be expressed as

a product involving two unit vectors by normalizing the error:

vT1 (I − µR)(θ(i) − θ∗)

=

(
vT1 (I − µR)

θ(i) − θ∗

‖θ(i) − θ∗‖2

)
‖θ(i) − θ∗‖2.

To simplify the presentation, define

v2 =
θ(i) − θ∗

‖θ(i) − θ∗‖2

.

Then, note that

vT1 (I − µR)v2 =
1

4
[(v1 + v2)T (I − µR)(v1 + v2)

− (v1 − v2)T (I − µR)(v1 − v2)]

=
1

4

[
‖v1 + v2‖2

2 − µ‖R1/2(v1 + v2)‖2
2

]
− 1

4

[
‖v1 − v2‖2

2 − µ‖R1/2(v1 − v2)‖2
2

]
. (6.7)
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We may now apply Lemma 15 using M = R1/2, γ− = ‖v−‖2
2, and γ+ = ‖v+‖2

2. These values

of γ are valid as we assume the eigenvalues of R to be bounded in the sense of Lemma 14.

With the chosen value of γ+, and with δ > 2 as in the statement of the theorem, we observe

that

γ+ −
γ+

δ
> 0. (6.8)

Thus, the second bound in Lemma 15 becomes

1

δ
‖Mv+‖2

2 ≥ ‖v+‖2
2 −

γ+

δ
.

By setting µ = 1/δ in Eq. 6.7 and applying Lemma 15,

vT1 (I − µR)v2 =
1

4

[
γ+ −

1

δ
‖R1/2v+‖2

2

]
− 1

4

[
γ− −

1

δ
‖R1/2v−‖2

2

]
≤ 1

4

[
γ+ −

1

δ
‖R1/2v+‖2

2

]
− 1

4

[
−γ−
δ

]
≤ 1

4

(
γ+ + γ−

δ

)
≤ 2

δ
, (6.9)

where the last step follows by observing that

sup
v−∈V−∩C

γ− = sup
v+∈V+∩C

γ+ = 4. (6.10)

Next, by applying Ineq. 6.9 to Eq. 6.6 and applying Lemma 16 to the residual term, we
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obtain a bound for the error at iteration i+ 1 given the previous iteration i:

‖θ(i+1) − θ∗‖2 ≤ 2

[(
2

δ

)
‖θ(i) − θ∗‖2 + µ

(√
(δ + 1) Tr(R)‖θ∗‖2 + η

)]
≤
(

4

δ

)
‖θ(i) − θ∗‖2 + 2µ

(√
(δ + 1) Tr(R)‖θ∗‖2 + η

)
≡ %1‖θ(i) − θ∗‖2 + µ%2,

where we have introduced the notation in the last step in order to simplify the following

recursive argument.

‖θ(i+1) − θ∗‖2 ≤ %1

(
%1‖θ(i−1) − θ∗‖2 + µ%2

)
+ µ%2

= %2
1‖θ(i−1) − θ∗‖2 + µ (%1 + 1) %2. (6.11)

After applying the recursion sufficiently many times to produce θ(0), the first term of Eq. 6.11

becomes

%i1‖θ(0) − θ∗‖2,

and the second term of Eq. 6.11 becomes

µ%2

i−1∑
j=1

%j1.

Note that, for all i, the previous expression can be bounded as

µ%2

i−1∑
j=1

%j1 ≤ 2µ%2,
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because %1 < 1 by the restriction on δ given in the statement of Thm. 11. With the appropriate

substitutions for %1 and %2, this concludes the proof of Thm. 11.
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CHAPTER 7

CONCLUSION

We have studied tradeoffs between key design variables in the problems of decoding and

learning for HMMs.

In particular, in the decoding problem, we saw that, with sufficiently large amounts of

data, the achievement of a certain level of error implied that a certain inequality involving the

design variables would necessarily be satisfied. We illustrated this bound in multiple regimes

and with respect to several combinations of design variables. Furthermore, we showed in the

proof of this result that our formulation of the problem played an essential role in enabling

the use of contemporary results in information theory. However, we mention here that an

important discussion was given in the concluding section of Chapter 3 about this formulation.

In that section, we argued that the formulation neglected crucial aspects of the HMM that

should be considered in a comprehensive theory of tradeoffs in decoding, namely the aspects

of the transition kernel and the learning algorithm that are expected to influence the decoder

in practice. It remains in open problem to account for these aspects in future research on

this topic.

In the learning problem, we saw that, with a specific choice of a learning rate that depended

on the restrictedness of the regularization matrix, it can be shown that the estimates produced

by projected gradient descent would converge to a certain region which also depended on

properties of the regularization matrix. Here, we emphasize that the proof of our result
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depended heavily on the presence of a specific regularization term in the objective optimized

by gradient descent. It remains an open problem to study tradeoffs in learning in even

greater generality by considering a broader class of objectives. Furthermore, we argue that it

would be of interest to consider other learning procedures than gradient descent, such as the

Baum-Welch method which sees arguably more frequent use in practice.

The results presented in this work were a first attempt toward truly fundamental tradeoffs.

As discussed, the term “fundamental” here suggests the generality of results across all

algorithms in decoding (given a class of noise) and across all objectives in learning (given a

class of algorithms). Clearly, the meaning was not entirely realized for a number of potential

reasons, due (for instance) to the neglect of the role of learning in the decoding problem

and the introduction of regularization in the learning problem. Future research will aim to

address these shortcomings, using the ideas presented in this work one possible foundation.
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