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ABSTRACT

In this thesis, the following topics will be discussed.

In chapter 2, a variational principle due to I.Ekeland 
(EVP) will be considered which deals with minimization of 

functions on a complete metric space.
In chapter 3, the notion of completeness of a metric 

space will be characterized by means of various approaches. 
Several different statements will be given and shown to be 

all equivalent. One of these will be considered separately 
in chapter 4.

In chapter 4, a direct approach to finding a fixed 

point of a self-mapping T on a complete metric space will be 

discussed. A transfinite induction argument will be used.
Chapter 5 deals with an application. We will present a 

new proof of a Minimum/Maximum Principle at Infinity using 
Ekeland's Variational Principle.

Finally, in chapter 6 , we will give an informal 
explanation (through an iteration process) of how 
transfinite induction works in finding fixed points of T. 

Several illustrative examples will be presented.

iii
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CHAPTER 1 

INTRODUCTION

In this thesis, we are going to focus on a complete 

metric space M and properties of real valued functions on M 
which are bounded from below as well as fixed points of a 

mapping from M to M

In Chapter 1, we will mainly prove Ekeland's 
Variational Principle (EVP) which will be used to prove 

other results and will play an important role in showing 

completeness of a metric space.
Roughly speaking, given a lower semi-continuous 

function f on a complete metric space M, which is bounded 
from below (say, by 0) , and given u in M such that f (u) is 

smaller than a given e > 0 , we can always find an element v 

in an arbitrary small neighborhood of u such that f(v) is 

less that f(u). In other words, we can obtain a better 
approximation than f (u) . Moreover, if f is a differentiable 

function, we can arrange that |f' (v)| be also small. The
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main reason for (EVP) to hold true is the fact that M is 
complete.

In Chapter 3, we will characterize completeness through 

various statements, namely: Let (M,d) be a metric space. 

Then, the following statements are all equivalent.

(1) M is complete.

(2) For any non-increasing sequence of nonempty

closed subsets of M, i.e., 3 3 3  - -, such

that lim (diam S„) = 0 , one has 0  3 ^ =  {x} .
n =  1

(3) For every function F: M —> R U {+°o} , F ^ +<», which is 

continuous and bounded from below, and for every

e > 0 , there exists v e M such that

(a) F(v) < inf F + eM

(b) F(w) + ed(v, w) > F(v) for all w # v in M.

(4) For every function (p: M R , <p > 0 , which is l.s.c.

and for every mapping T: M —> M satisfying

d(u. Tu) < tp(u) - (p(Tu) for all u e M , then T has a 

fixed point.

Statement (3) is a weak version of (EVP) (Ekeland [1], 

Sullivan [1]), while (4) is a useful fixed point theorem due 
to Caristi (Caristi [1] , Mawhin and Willem [1] ) .
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In Chapter 4, a direct approach to finding a fixed 

point of T: M M in (4) will be discussed (Caristi [1] ) . 

One should notice that in (4) T is not assumed to be a 

contraction and nor even a continuous mapping. The main 

role is played by the lower semi-continuous real valued 

"entropy function" [see page 55] (p in (4) , which is non

increasing along the orbits {t "u } of elements u in M. A

transfinite induction argument will be the formal 
mathematical tool in obtaining a fixed point of T.

In Chapter 5, we will discuss an application. 

Specifically, we will present a new proof of the 
Minimum/Maximum Principle at Infinity (Chen and Xin [1] ) 

using Ekeland's Variational Principle. It concerns 

functions f e Ĉ {R) which are bounded from below, without 

loss of generality (WLOG) say f(x) > 0 for all x e R . 

Suppose an arbitrary e > 0 is given. Let u e R be such 
that f(u) < e . Then, we can always find v e R satisfying

(i) f(v) < e

(ii) |f(v)|<e

(iii) f" (v) > 0 .
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Notice that indeed the above conclusions are reminiscent of 

EVP.

Finally, in Chapter 6 , we will give an informal 
explanation (through an iteration process)of how transfinite 

induction works in finding fixed points of T. The main idea 

is as follows :

Pick any point u in M, and define Uq = u . Apply

successively the mapping T to obtain the orbit of Ug :

U, = TUg , Uj = TU, = T̂ Ug ,

U3 = TUj = T^Ug, ••• , u„ = T"ug, ••• . In view of the

hypothesis relating T and (p in (4), it can be shown that

{uj,} is a Cauchy sequence in M and {(p(Ug )} is a non

increasing sequence of (positive) real numbers.
If after a finite number of iterations the sequence of

entropies (p(ug) stabilizes (i.e., (p(u-) = cp(u-̂ J = ••• for some 

k), then Uĵ is a fixed point of T. Otherwise, letting 

fg = limu„, we obtain cp(ug) > (p(u,) > ••• > cp(u„) > ••• > (p(̂g) .
n —>0®

Next, we repeat the iteration process with starting 

point ĝ, that is we consider the orbit t^, T^^g, ••• ,

T"£g, ••• . And so on. "Eventually", the entropy stabilizes 

at a minimum value and we obtain a corresponding fixed point
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V of the mapping T. Several illustrative examples will be 

given in Chapter 7.
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CHAPTER 2 

A VARIATIONAL PRINCIPLE

In this chapter, a variational principle due to 
I.Ekeland will be considered which deals with minimization 

of functions on a coiiplete metric space. This principle is 

also known as Ekeland's Variational Principal (EVP).

Its main idea is to consider a lower semi-continuous 

function cp: M -> R which is bounded from below, say by 0. 

When an arbitrary e > 0 is given and u in M is such that 

(p(u) < e , we can always find a point v in the neighborhood

(d(v ) — (p(w)of u such that (p(v) < e and the "Newton quotient" —--------d(v, w)

is also small for every w ^ v with (p(w) < cp(v) . In 

particular, if M is a Banach space and 9: M —> R is 

differentiable, we can find v e M such that (p(v) < e and 

|(p' (v)| < ^/ë .
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We will prove Ekeland's Variational Principle (EVP) 

which will be used to prove other results. Moreover, EVP 

will play an inportant role in showing completeness of a 

metric space.
First of all, we need some tools to prove the 

Variational Principle, so let us consider the following 

lemmas below.

Lemma 1. Let (M,d) be a metric space and M —> R u  {+<»},

^ +00 be a given function. For any elements 

V, w e M define w < v if and only if 0(v) , 0(w) e R 

and $(w) 4- d(v, w) < 0(v) . Then < is a partial order 

on M.

Proof : First, it is clear that the reflexive property v < v

holds true. Next, we check the antisymmetric property, i.e.,

if w < V  and v < w , then w = v . Indeed, assume that

0 (w) + d(v, w) S <I>(v) and $(v) + d(w, v) < 4>(w) .

By adding these two inequalities, we obtain

0 (w) + 2d(w, v) + $(v) < $(v) + 0 (w) .

Since each value of O above is a finite number, 
cancellation gives 2d(w, v) < 0 , i.e., d(w, v) <0. It 

follows that d(w, v) = 0. Therefore, v = w.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



g
Finally, let us check the transitive property. Suppose 

u < V and v < w . Then, $(u) + d(v, u) < $(v) and

0(v) + d(w, v) < $(w) . By adding,

$(u) + d(v, u) + d(w, v) + 0 (v) < 0 (v) + 0 (w) .

By cancellation, 0(u) + d(v, u) + d(w, v) < 4>(w) . And the

triangular inequality gives

$(u) + d(w, u) < $(u) + d(v, u) + d(w, v) < 0 (w) .

Thus, u < w. The proof of Lemma 1 is complete.

Lemma 2. Let (M,d) be a metric space and M —> R u {+«>} ,

C* # +00 be given. Let < be the partial order in 

Lemma 1. Given u e M with 0(u) e R, define 

S = {w e M I w u} . If $ is lower semi-continuous 

(l.s.c.), then S is closed.

Proof : Let {w„} be a sequence in S such that w„ converges 

to w in M. We need to show that w e S . Since w„ e S , we 

have that w„ < u for all n e N , and Lemma 1 gives

(2 .1) 0(w„) + d(u, w„) < 0(u) Vn € N .

By convergence of {w„} , for any given e > 0 , there exists

N = N(e) such that whenever n is greater than N, we have

d(w„, w) < e . On the other hand, by lower semi-continuity
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of the function 0  and, increasing N(e) if necessary, it 

follows that

(2 .2 ) -e < 0 (wj - 0 (w)

for all n > N(e) . Inequalities (2.1) and (2.2) give us

-e + d(u, w„ ) < 0 (u) - 0 (w) ,

hence,

0 (w) + d(u, Wg ) < 0 (u) + 8 .

Finally, the triangle inequality gives 

0 (w) + d(u, w) < 0 (w) + d(u, w„) + d(w„, w) < 0 (u) + 8 + d(w„, w) < 0 (u) + 2e 

hence

0 (w) + d(u, v) < 0 (u) + 28 .

Since 8 > 0 was given arbitrarily, we conclude that

0(w) + d(u, w) < 0(u) . By Lemma 1, w < u , that is , w e S .

Therefore, S is closed.

The next lemma is used to prove EVP in this chapter. 

Furthermore, it will lead us to a more surprising result 

shown in Chapter 3.

Lemma 3: Let (M,d) be a conqplete metric space. If

is a nonincreasing sequence of nonempty closed 

subsets of M, i.e., Ŝ  3 Ŝ  3 Ŝ  3  •••, such that

lim (diam S„) = 0 , then Q  Ŝ  = {x} for some x e M
n =  l
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(see e,g. Klambauer [1]).

Note ; Details of this proof will be given in Theorem 3.

Now, we have obtained some basic facts in order to 

prove Ekeland's Variational Principle (I. Ekeland [1], [2]).

As we have seen in the abstract, EVP always gives a better 
approximation than the value at given point. The following 

is an exact statement of EVP.

Theorem 1: Let (M,d) be a corrplete metric space and let
0: M —> R u {+00} , 0 # -H» , be a l.s.c. function 

which is bounded from below. Let e > 0 be given 

and u e M be such that 0(u) < inf 0 + e . Then,M

there exists v e M such that

(i) 0 (v) < 0 (u)

(ii) d(u, v) < 1

(iii) 0 (w) > 0 (v) - ed(v, w)

for each w 9̂ v in M.

Proof : We first remark that, by Lemma 1, with d replaced by

ed , < is a partial ordering on M. Now, let be the

non-increasing sequence of non-empty closed subsets of M, 

defined as follows:
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Using the given u e M, we shall construct inductively

a sequence {û } starting with Ug = u . Suppose Ug, ••• , u„ are

known and the sets S g , , Ŝ  are given by

Sg = (W e M I W < Ug }
Si = {w e M I w < Ui}

Sg = {w e M I w < Ug} .

Then, we pick Ug+i e Sg such that 0(Ug+,) < inf 0 + — -—  andS n n + 1

define Sg+, = {w e M | w < Ug+,} .

Claim 1 ; {Sg} is a non-deer easing sequence that is

Sg+, c Sg for n = 1,2,3,"'.

Proof: By definition, Ug+, e Sg, i.e., Ug+; < Ug . Therefore,

if X e Sg+, , i.e., x <  Ug+, , we obtain x <  Ug . It follows

that x e Sg . Thus, Sg+, c Sg .

Claim 2 : lim (diam Sg) = 0.

Proof : Recall that Ug+, e S„ was picked such that

0(Ug+,) < inf 0 + — 7 . If w e Sĝ , , then w < Ug+, < Ug . ̂n n + 1

By Lemma 1, 0(w) + d(Ug +,, w) < 0(Ug+,) . Hence,

d(Ug+|, w) < 0 (Ug+|) - 0 (w)
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< inf 0  + —  ---- 0 (w)Sn n + 1

< inf 0  + —   inf 0s. n + 1 s.

n + 1

Thus, d(Uĝ .,,w) < — -—  for an arbitrary element w e Sg+, .n + 1

The triangle inequality d(w, z) < d(w, Ug+J + d(z, Ug+J applied

to arbitrary elements w, z € Sg+, shows that the diameter of

2 2Sg+i is at most -----  , i.e., diam Sg < — . Hence,n + 1 n

lim (diam S ) = 0 .

Now, by Lemma 2, each Sg is closed in view of the 

lower semi-continuity of the function 0 . In addition, by 

Claim 2, we have that lim (diam Sg) = 0 . Since

Sg+; c Sg for n = 1, 2, ••• and M is complete, we conclude by 

Lemma 3 that P] Sg = {v} for some v e M .
n = 0

Next, let us show that 0(v) < 0(u) and d(u, v) < 1 . We 

know that Q  Sg = {v} . In particular, v e Sg , i.e..
n = 0

V < Ug = u . By Lemma 1 (with d replaced by ed), 

0(v) + ed(u, v) < 0(u) . Therefore,

(2 .3 ) 0 (v) < 0 (u) - ed(u, v) < 0 (u) ,
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which shows (i).

Now, let us rewrite (3) as

(2.4) ed(u, v) < 0(u) - 0(v)

By our assunption, we have

(2.5) 0(u) < inf 0 + e .M

Clearly, 0(v) > inf 0  . Hence,
M

(2 .6 ) -0 (v) < - inf 0  .M

By substituting (2.5) and (2.6) into (2.4), we obtain

ed(u, v) < 0 (u) - 0 (v)

< [ inf 0  + e] - inf 0
M M

= e

Consequently, ed(u, v) < e , i.e., d(u, v) < 1 which concludes 

the proof of part (ii).
Finally, we must show that (iii) is true, i.e.,

0(w) > 0(v) — ed(v, w) for every element w # v in M.

Recalling the definition of the partial order < , this is 
equivalent to showing the implication w < v => w = v .

So, assume w ^ v . Since v e Sg for all n e N , we get 

w < V < Ug for all n e N . Hence, w < Ug for all n e N ,

i.e., w e PI Sg = {v} , i.e., w = v .
n =1

The proof of Theorem 1 is now complete,
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Remark 1: Replacing the distance d by A,d with A. > 0 , we 

obtain d(u, v) < ^  for (ii) and

0(w) > 0(v) - eXd(v, w) for (iii) . By choosing

X = , we get the following interesting

result (Theorem 2) which guarantees an 

e-approximation of the infinimum of a 

differentiable function on a Banach 

space together with an -bound for the 

derivative.

Theorem 2: Let X be a Banach space, Ç: X R be a function 

bounded from below, and differentiable on X.

Then, for each e > 0 and for each u e X such 

that
<p(u) < inf 9 + e ,

there exists v e X such that

(i) 9(v) < 9(u)

(ii) ||u - v|| < el/:

(iii) ||9' HI < e''' .

Proof of (i) and (ii) : They immediately follow from Theorem 

1 by taking M = X, 0 = 9 and, for e > 0 given, by choosing

X = like in Remark 1. If u satisfies 9(u) < inf 9 + e ,
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then there exists v e X such that (i) and (ii) hold. 

Moreover, for all w # v in X, (p(w) > (p(v) - ||v - w|| .

Before proving part (iii) , let us recall the definition 

of differentiability for a function (p: X -» R .

Definition: (p is differentiable at v if there exists a

linear functional : X —> R [necessarily unique

and denoted by (p' (v) ] such that

(p(v + w) = (p(v) + (9 ' (v), w) + o(||w||) .

By using this definition, if w = th with t > 0 and ||h|| = 1, 

then 9(v + th) = 9(v) + (9 ' (v), th) + o(||th||) . Since ||h|| = 1 and 

9 ' (v) is linear, we get 9(v + th) - 9(v) = t(9 ‘ (v) , h) + o(|t|) ,

, dividing by t * 0 , = (<p. (v) . h) +or t t

As t goes to zero, —  also goes to zero. Consequently,

we obtain

lim = (9 . (V), h)
t-»Q t

Proof of (iii): Let us take w = v + th, where t > 0 and 

h e X is such that ||h|| = 1. By the proof of (ii) , we have
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(p(w) > (p(v) - ê ^̂ llv - w|| . Hence,

(p(v + th) > (p(v) - ê '̂ ||v - (v + th)|| . So,

cp{v + th) - <p(v) > -ê ^̂ ||th||. But, ||h|| = 1 and t > 0 yield

(p(v + th) - (p(v) > -ê '̂ t . Dividing by t > 0, it follows that

(p(V + th) - <P(V) ^ _gi/2 
t

Now, the function (p is differentiable at v so that

9 ' (v) exists, i.e., we obtain

i r  IV), h) = lim + Ch) - (PIV) ^
t-»0 t

Thus, (9 ‘ (v) , h) > .

Notice that this is true for any h with ||h|| = 1. Thus, we

can replace h by -h to get (9 ' (v) ,-h) > . It follows

that -(9 '(v) , h) > , i.e., (9 '(v) , h) ^ . Hence,

< (9 ' (v) , h) < .

Therefore, ||9 ' (v)|p = sup |(9 ‘ (v), h)| < Ve . Consequently, we
|h| =1

conclude

|9'(v)| < Vë~.
Now, that we have proved Ekeland's Variational 

Principle and one of its important consequences, we will 

conclude chapter 2 .
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CHAPTERS 

CHARACTERIZATION OF A COMPLETE METRIC SPACE

In this chapter, the notion of completeness for a 

metric space will be characterized. As already seen in the 

abstract, there are four different statements. Our main 
goal is to conclude that all the statements are equivalent.

In the mean time, a theorem due to James Caristi will 

be introduced, and Ekeland's Variational Principle will be 

discussed again. Eventually, one will discover that both 

theorems (Caristi's and EVP) are equivalent.
Finally, we will summarize this chapter in Theorem 6 .

17
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The main reason for Ekeland's Variational Principle 

(EVP) to hold true is the fact that M is complete. In this 

chapter, we will characterize completeness through various 

statements.

Corollary 1: Let (M,d) be a corrplete metric space. Given a 

function F : M —> R W  {-H»}, F # -H» , which is 

continuous and bounded from below, and given 

e > 0 , there exists v e M such that

(a) F(v) ^ inf F + eM

(b) F(w) + ed(v, w) > F(v) for all w # v in M.

Proof : The proof is an immediate consequence of Theorem 1.

Next, we will take a look at an expanded version of 

Lemma 3 [see Chapter 2]. We notice that the following 
theorem is one characterization of a complete metric space.

Theorem 3: Let (M,d) be a metric space. Then M is complete
if and only for any non-increasing sequence

nonempty closed subsets of M, i.e..

Si 3 S, 3 S3 Z) , such that lim (diam Ŝ ) = 0 ,

one has Q  S„ = {x}
n = 1
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Proof : As usual, let us prove the forward statement first,

then prove the converse statement. Assume M is complete and

let be a non-increasing sequence of nonempty closed

subsets of M such that lim (diam Ŝ ) = 0 . Given n e N , let
n —

Xj, e Sn . If m > n , then d(Xg, x^ ) < diam . Since 

diam S„ -> 0 as n —> <», we get d(x„, x„ ) -» 0 as m, n -> «»,

hence {x„} is a Cauchy sequence. We are assuming that M is

a complete metric space, so that every Cauchy sequence 
converges to some point in M. So, let us say lim x̂  = x

for some x in M.

Now, for any arbitrary k e N , we obtain x̂  e

whenever j > k . Therefore, as each Ŝ  is closed, it

follows that X e S% . Since we took an arbitrary k e N , we

get X 6 f| S„ .
n =1

Finally, let us show uniqueness. If we assume that 

y e Pi S„ , then d(x, y) < diam for all n e N . However,
n =1

the diameter of S„ tends to zero as n tends to infinity, 

hence d(x,y)=0. Consequently, we obtain P| Ŝ  = {x}.
n =1
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Next, let us prove the converse. Suppose M has the 

non-decreasing closed set property. Let {x̂ } be a Cauchy 

sequence in M. For each n e N , let

Sn = {xj m > n} = cl{x„ | m > n } .

Then, is a non-decreasing sequence of closed set.

And, the fact that {x̂ } is a Cauchy sequence implies that

(3.1) lim (diam S„) = 0

by our definition of S„ .

Let P i S„ = {x}. If e > 0 is given, then there exists
n =1

Ug e N such that diam Ŝ  < e by (3.1) above. On the other

hand, x e S^ = (x„ j m > n.g}. Thus, if n > n̂  , then 

d(x„, x) < e, which shows that {x„} converges to x. We

conclude that M is complete.

Q.E.D.

Now, before we prove Theorem 4, let us consider the 

following lemma. It is used in the proof of that theorem.

Lemma 4: Let (M,d) be a metric space. Given a Cauchy

sequence {ŷ } in M, the limit limd(y„,x) exists

for any x e M , so that the mapping F: M R ,
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F(x) = lim d(Yg, x) , is well-defined.
n —♦“»

Proof : Given x e M, we notice that |d(y„,x)} is a real

valued Cauchy sequence in view of the triangle inequality:

H vm ' x) - d(y„, x)| < d(y„, y„) 

and the fact that {y }̂ is a Cauchy sequence. Since R is

complete, it follows that the sequence {d(yg, x)j converges.

Q.E.D.

Theorem 4 characterizes a complete metric space M in 
terms of a weaker version of EVP (cf. Sullivan [1]) .

Theorem 4: Let (M,d) be a metric space. Then M is complete 
if and only if for every function

F: M —> R U {-H»} , F ^ -H» , which is continuous and

bounded from below, and for every e > 0 , there 

exists V e M such that

(a) F(v) ^ inf F + £M

(b) F(w) + ed(v, w) > F(v) for all vr ^ v in M.

Proof : Notice that the direct statement of showing part (a) 
and (b) is exactly the contents of Corollary 1. Hence, it 

suffices to prove the converse statement.
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Let (M,d) be an arbitrary metric space for which (a) 

and (b) above hold true. Let {y^} be a Cauchy sequence in

M. Recalling Lemma 4, consider the function F: M —> R given 

by
F(x) = limd(yg,x) .

Claim: F is (uniformly) continuous and inf F = 0 .
M

Proof : The continuity (in fact, uniform continuity) of F 

follows from the triangle inequality:

|d(y„, x) - d(y„, y)| < d(x, y),

for which (passing the limit as n —> <» ) we obtain

|f(x) - F(y)| < d(x, y) .

On the other hand, F^yJ = lim d̂ ŷ , yj < e for all j > .

Since e > 0 is arbitrary, we conclude that inf F = 0 .M

Now, to show the completeness of M, we will find a 

V e M such that d(yg, v) 0, i.e., F(v) = 0. Let

0 < e < 1. Then, there exists a v e M such that

(3.2) F(v) < inf F + £ and
M

(3.3) F(w) + £d(v, w) > F(v) for all w v in M .

Since inf F = 0, (3.2) can be written as F(v) < £ . PickM

w = yp where p is large enough so that F(yp) < r| ( T| > 0
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given) . As before, we can do it based on the definition of 

F and the fact that {y„} is a Cauchy sequence.

Consequently, for any T| > 0, we obtain

d(w, v) < lim d(w, y„ ) + lim d(v, y„ )
n n

= F(w) + F(v)
< T1 + e

Hence, d(w, v) < T| + e .

Let us recall that for all w # v in M, F(w) + ed(v, w) > F(v) . 

Also recall that, F(w) < T|. Therefore, we have

F(v) < F(w) + ed(v, w)

< F(w) + e(Ti + e)

= F(w) + eri +

< r| + erj + .

Since r) > 0 is arbitrarily, we obtain

F(v) < e \

By repeating this argument, we get

F(v) < e" for all n > 1 .

Since 0 < e < 1, we conclude that F (v) = 0 by letting 
n -» oo . Thus, inf F = 0 is attained at v e M . We haveM

proved the completeness of M.

Q.E.D.
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According to Bemach Fixed Point Theorem (BFPT) , when 
one has a contraction mapping T on M, then T has a unique 

fixed point. However, one can obtain a fixed point for T 

without having a contraction mapping, if T satisfies certain 
conditions. In the proof of the forward part of the 

following theorem, we use EVP to show existence of a fixed 

point under suitable conditions on T (of. Mawhin-Willem 

[1]). The original (different) proof is due to James 

Caristi [1] . A variant of the proof of the converse 
statement can be found in de Figueiredo [1] .

Theorem 5 : Let (M,d) be a metric space. Then M is complete 
if and only if for every function (p: M R ,

<p > 0 which is l.s.c. and for every mapping 

T: M —> M satisfying d(u. Tu) ^ cp(u) - (p(Tu) for all

u 6 M, then T has a fixed point.

Proof ; First, let us show that T has a fixed point.

Clearly, (p is bounded from below, since (p > 0 . WLOG

inf (p = 0 . Hence, we have conditions of applying CorollaryM
1, i.e., if e > 0 is given, then there exists v s M such 

that

(3.4) (p(v) < inf (p + e = e

(3.5) <p(w) + ed(v, w) > (p(v) , for all w in M.

Now, we show that T has v as a fixed point, i.e..
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Tv = V . By our assunption, the mapping T has the property 

that d(v. Tv) < (p(v) - 9(Tv) .

Hence,

(3.6) (p(v) > d(v. Tv) + cp(Tv) .

On the other hand, letting w = Tv in (3.4), we obtain

(3.7) qXTv) + ed(v. Tv) > (p(v) .

Inequalities (3.6) and (3.7) give us

<p(Tv) + ed(v. Tv) > d(v. Tv) + (p(Tv) , i.e.,

(3.8) ed(v. Tv) ^ d(v. Tv) .

1 1By taking e = — in (3.8), we get — d(v. Tv) > d(v. Tv) .
2 2

Therefore, d(v,Tv) = 0, so that Tv = v , i.e., T has a fixed

point.
Now, let us prove the converse statement. Suppose 

that, for any T: M -4 M and (p: M —> R satisfying the

conditions stated in Theorem 5, T has a fixed point in M,
i.e.. Tv = V for some v in M. We want to show that M is

complete. Suppose it is not so. Then, by Theorem 4, we can

find e > 0 such that, for any given u e M, there exists

w 5* u such that (p(u) > (p(w) + ed(u, w) .

Define F(u) = {w s M | w ^ u , (p(u) > (p(w) + ed(u, w)} .

Applying The Axiom of Choice, if we have a map 

F: M -4 2“ , i.e., F(u) is a subset of M for each u, then
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there exists a map f: M —> M , u i-> f(u) such that f(u) e. F(u) 

for each u. Thus, we can find a map T: M -4 M (namely,

T = f) such that
(3.9) Tu u for all u in M.

On the other hand, by construction we have 

<p(u) > (p(Tu) + ed(u. Tu) , so that T has a fixed point in M. 

Hence, Tv = v for some v in M, so that we have just reached 
a contradiction with (3.9). Therefore, M is complete.

Q.E.D.

Since we have been discussing Caristi's Theorem, let us 

take a look at another related result. In particular, the 

next proposition will be brought up, when we discuss an 

iteration process in Chapter 6 .

Proposition 1 : Let (M,d) be a complete metric space.
Suppose T: M -» M is a contraction mapping, 

i.e., d(Tx, Ty) < ad(x, y) for all x, y e M 

and some 0 < a < 1 . Let cp: M —> R be the 

continuous function defined by

(p(x) = — -—  d(x, Tx) . Then, (p satisfies the 
1 -  a

assumption in Caristi's Theorem.
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Proof : Since T is a contraction mapping, we have 

d(Tx, T̂ x) < ad(x, Tx), hence

(3.10) -d(Tx, T̂ x) > -ad(x, Tx) .

On the other hand, by definition of <p, we have

(3.11) (p(x) = — -— d(x, Tx)
1 -  a

(3.12) cp(Tx) =----— d(Tx, T̂ x) .
1 - a

(3.11)-(3.12) imply (p(x) - <p(Tx) = - ■ ̂ —  [d(x, Tx) - d(Tx, T̂ x)j .

Using (3.10), we obtain (p(x) - (p(Tx) > — -—  [d(x, Tx) - ad(x, Tx)]
1 — oc 

1 — cx>  d(x, Tx) .
1 -  a

Therefore, d(x, Tx) < tp(x) — (p(Tx) for all x in M, as we wanted 

to show. Consequently, by Caristi's Theorem, there exists 

some V e M such that Tv = v. The fact that T is a 

contraction implies that the fixed point v is unique.

Indeed, if Tw = w, then d(w, v) = d(Tw, Tv) < ad(w, v) and, 

since 0 < a < 1 , we obtain d(w, v) = 0 , i.e., w = v.

Q.E.D.

We shall now give an independent proof of the converse 

statement of Theorem 5 without using EVP directly.
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Proposition 2: Let (M,d) be a metric space. Suppose that,

for every function <p: M -> R , (p > 0 which is 

l.s.c. and for every mapping T: M -> M 

satisfying d(u. Tu) < (p(u) - (p(Tu) for all 

u e M, it follows that T has a fixed point. 

Then M is a conQ>lete metric space.

Proof ; Let us point out that is suffices to show that (M, Sd) 

is complete for some 5 > 0 , since d and Sd are equivalent 

distances on M. Therefore, we may substitute d by Sd in 

above, and in fact, we will choose 0 < S < 1 .

Let {y }̂ be a Cauchy sequence in M. Define (p: M —> R

by (p(x) = limd(x, y„) .
n — >«»

If there exists Xg e M such that (p(xg) = 0, then the 

proof is finished, since cp(xg) = lim d(xg, ŷ ) = 0 .

Assume by contradiction that (p(x) > 0 for all x e M . 

Define a set A% by A% = {y e M| (p(y) < (p(x) - Sd(x, y)} .

Case 1: Suppose there exists Xg 6 M such that Â  ̂ = {xg}, 

i.e., if y is different from Xg, then 

(p(y) > (p(xg) - Sd(xg, y) .
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In view of Theorem 4, 9 is (uniformly) continuous, and 

since {y^} is a Cauchy sequence, it follows that inf 9 = 0 .

Moreover, for any T| > 0, there exists N = N(t|) such that

whenever n > N , we have 0 < 9(y„ ) < T| .

By hypothesis, 9(y„) > 9(xg) - 6d(xg, y^). Hence,

9(y„) + 5d(xg,yJ > 9(xg), so that n + 5d(X(,y„) > 9(x„) for all 

n > N . Passing to the limit as n —> «>, we obtain 

Tj + 59(xg) > 9(xq) . Since r| > 0 is arbitrary, we get

59(xg) > 9(xg ), hence S > 1 (Since we are assuming 9(xg) > 0) .

But this contradicts our choice of 0 < 5 < 1. Therefore, 

Case 1 does not occur.

Case 2 : For every x € M , A% o {x}, i.e., given x e M ,

there exists y e such that y # x .

Consider the mapping 3: M —> 2“ defined by 

3(x) = Ajj \ {x} . By The Axiom of Choice, there exists a map

T; M —> M such that Tx e 3(x) = A% \ {x} for all x in M. So,

(3.13) Tx # X for all x e M.

Now, the fact that Tx e A^ for every x in M means that

5d(Tx, x) < 9(x) - 9(Tx) for every x in M. Therefore, by our 

hypothesis, there must exist v e M such that TV = v.
However, this is in contradiction with (3.13).
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Therefore, our asstonption that q>(x) > 0 for all x in M

can not hold and we conclude that (p(xg) = 0 for some Xg e M .

In other words, given an arbitrary Cauchy sequence {y^} in

M, there exists Xg e M such that limd(x^,y„) = 0. The

metric space (M,d) is necessarily complete.
Q.E.D.

Our next result gives an independent proof of the 
direct statement of theorem 5, without using EVP directly, 
in the case that M is compact.

Proposition 3: Suppose M is a compact metric space. Let

(p:M R, 9 > 0, be l.s.c. and T: M M

be such that d(u. Tu) < 9(u) — 9 (Tu) for all

u 6 M. Then, T has a fixed point.

Proof : Since M is coitpact and 9 is l.s.c., we have that

there exists v 6 M such that 9(v) = inf 9 = a (Royden [1] ) .

By assumption, 9(Tv) < 9(v) since d(v. Tv) > 0 . But then,

9(Tv) = 9(v) since 9(v) is the minimum of 9 . Therefore,

d(v. Tv) < 9(v) - 9 (Tv) = 0 , 

i.e., d(v. Tv) = 0 ,

so that V is a fixed point of T.
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Note that the above argument shows that each w in 

9 ~̂ (a) = { u e M I (p(u) = a } is a fixed point of T.

Q.E.D.

Before we conclude this chapter, let us consider the

following theorem. It gives us a summary of Chapter 3 .

Theorem 6: Let (M,d) be a metric space. Then, the following 

statements are equivalent:

(a) M is complete.

(b) For any non-increasing sequence of

nonempty closed subsets of M, i.e..

Si 3 83 3 S3 3 ••• , such that

lim ( diam S„) = 0 , one has Pi S„ = {x} for
n = l

some X in M.

(c) For every function F: M —> R u {-H»} , which is 

continuous and bounded from below, and for 

every e > 0 , there exists v e M such that

(i) F(v) < inf F + e
M

(ii) F(w) + ed(v, w) > F(v) for all w v in M.

(d) For every function <p: M -> R , 9 > 0 which is 

l.s.c. and for every mapping T: M —> M
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satisfying d(u. Tu) < (p(u) - cp(Tu) for all 

u e M, then T has a fixed point.

Proof ; By Theorem 3, (a) is true if and only if (b) is true.

Moreover, by Theorem 5, (a) is true if and only if (d) is

true.

We should notice that (c) and (d) are equivalent. They 

indicate that a weak form of EVP and Caristi's Theorem are 

equivalent. In fact, if we assume (c), then Corollary 1 

gives (d) . Conversely, the proof that (d) implies (c) can 

be shown by assuming (d) and not(c). It gives a 
contradiction, as we have seen the proof in Theorem 5.
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CHAPTER 4 

FINDING A FIXED POINT BY TRANSFINTTE INDUCTION

In this chapter, an alternative method of finding a 

fixed point will be discussed. As we know, whenever one has 
a contraction mapping T on a complete metric space, then T 

has a fixed point.
On the other hand, when an arbitrary T is given, one 

needs some additional condition to find a fixed point. In 

fact, under the conditions in Theorem 6 (d), transfinite 

induction (Caristi [1]) will be used to find a fixed point. 

Furthermore, we should keep in mind that a fixed point 

obtained under those conditions may not be unique.

33
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In a paper titled "Fixed Point Theorem For Mappings 
Satisfying Inwardness Conditions" written by James Caristi, 

there is a theorem which gives the idea of how to prove

Theorem 8 in this chapter. So let us quote the theorem in 

that paper.

Theorem 7: Let (M,d) be a complete metric space, K a closed 

subset of M. Suppose T: K -» K is an arbitrary 

function and F: K —> M is continuous. If there 

exists a real number r < 0 such that 

d(Tu, F 0 Tu) < d(u, Fu) + rd(u. Tu) for all u e K ,

then T has a fixed point.

We shall prove Theorem 8 below by letting r = -1, 

replacing d(u, Fu) with (p(u) and making minor modifications 

in the proof of the above result.

Theorem 8: Let (M,d) be a complete metric space. Given a 

mapping T: M —> M . If there exists a lower 

semi-continuous function (p: M —> R where 

d(u. Tu) < cp(u) — (p(Tu) for all u e M , then T has a 

fixed point.
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Proof : Let F be the collection of ordinals less than the 

first uncountable ordinal O , and let r̂  be the first

element of F . Let Xg e M and set  ̂ = Xg.

For fixed a e F , suppose that for all r e F with 

r < a , we have defined x̂  e M in such a way that

(i) If r = r' + 1, then x̂  = T^x^, j , and

(ii) If r„ -> r , then x̂  -> x^ .

To complete the induction, we must define x„ . Suppose 

that a = a‘ +l, i.e., a is the successor of . Since a 

can not be successor of any other ordinal besides a' , we 

define x„ = t(x ,̂ ) .

Suppose -> a . To define x„ , we must show that if 

Pjj —> a , then there is x e M such that x„ —> x and 

Xp —> X . By Well-Ordering of F , we can define a sequence

{r„} consisting the elements of {«„} V {P„} and which is non

decreasing.

Claim 1: If %g <  ̂< a, then cp(xj < - X^(^r'^r+i)-

Proof : We will use transfinite induction on  ̂.

Suppose q = %g + 1 . Then, by (i) above, we have
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(4.1) = '

< <p(x̂ J - d(xç̂ ,T(xçJJ [By hypothesis]

= q)(x̂ J - d(x^, x̂ ) . [By (4.1)]

Now, let us assume that the claim is true for Ç = Tj 

and the summation term is finite, i.e.,

(a) ^  d(x^, < -h>o

(b) (p(xj < cp(xçj - 2 d(x,,x,+,) .
§0 <n

Then, if  ̂= T| + 1, (i) gives

(4.2) x̂  = t(x J,

hence, (p(x̂ ) = (p(t(x „))

< ç(x^) - d(x„,T{xj) [By hypothesis]

= [By (4.2)]

[by (b)]
J

= < p K J -  2  Xr+i).
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Finally, let -4  ̂ and assume the claim is true for 

 ̂ we know that the summation term corresponding to

each is finite, i.e.,

(c) %  d(x,, < +CO and

(d) (p(xçj < (p(xçj - all n e N.
0̂ <5a

Now, let S„ = ^  d(x,, x̂ ,̂) and S = ^  d(x̂ , x̂ +,) . By
SoSr<%

the induction hypothesis, we have 

0 < cp(xçj < (p(x̂ ) - Zd(x,,x_,)= (p(x̂ ) -Sn , so that
<Ç„

0 < Sn < <p(xçj for all n e N . Hence, {Sn} is bounded. 

Clearly,

(e) {Sn} is non-decreasing and

(f) Sn = %  d(x,, x,̂ ,) < 2  d(x,, x̂ +,) = S , i.e.,
0̂ So3r<S

Sn ^ S for all n e N .

Therefore, we obtain
(4.3) lim Sn < S .n-4«

Let {5i} be an enumeration of { r | % g < r < ^ } .  Then,

1=1
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Now, given any n e N , pick large m so that

> max{5,, Sj, ••• , 5„} . Since the partial sum S„ is non-
n .

decreasing, we get s„ > dfxg , Xg j . Hence,
i »l ‘ "

S S sup{s^} = lim < s. Consequently, we obtain

(4.4) lim Sn = S ,

where S is a finite value.
Recall, recalling (b) and using the fact that cp is 

l.s.c., we obtain

<pK ) s <p(xjJ -  £d(x,,x„,)

after passing to the limit, which concludes the proof of 

claim 1.

Claim 2 : Let < (X for n = 0, 1, 2, ••• , and {%n} be

non-decreasing. Define = (p̂ x. J - (p̂ x̂  j . Then

2  En < -Me .

Proof : By Claim 1, we have

(4.5) (p(x̂ J < <p(x̂  J - 2 d K , x , + J  ,
S.-1 Sr <5*

hence

S.-I
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so that e„ = (p(x̂__ ) - (p(x̂ J > 4^r, x,+,) > 0 .

Henœ, (p(x̂_ j - <p(xç_) 2 0 , i.e., ^x^^ J  > <p(x̂ _) > 0 .

Thus, the sequence |<p(x̂  )| is non-increasing. Therefore,

(4.6) lim <p(x. ] = L for some L > 0 .

Now, let us add the E^'s :
n

2  Gi = e. + ̂ 2 +••• + Eni=l

= h K )  - <pK)] + [fk ) - I’h.)] + " + hk.-,) - '!>(='?.)]

= <p(x̂ J - cp(x̂  j [By telescoping cancellation] .

n

Hence, 2  = lini Y
TTi

= <PK) - ii? v K )  ' [By (4.6) ] .

Claim 2 is finally proved.

Claim_l: d(x^,x, J ^ 24^r'3c,^,) .
r„  S r  < r .n ♦!

Again, we will use transfinite induction on r̂ .̂, to 

prove the claim.

For rn+, = r„ + 1, we get d(x, , x, J = d(x, , x, +,) .

Assume the claim is true for r̂+j = T|, so that
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(4.7) d(x,_^,x„)< %d(x^, x̂ +,) .
r„  S r  < n

Then, for r̂ ,̂ = T| + 1, we have

< d(x,_,X,) + d(x,,X,_ J

< %  d(x,, x,+J + d(x„, x,̂  J [By (4.7)]
r„  S r  < n

= 24x,,x,+j .
r .  S r < r „ „ ,

Now, assume that

(4.8) = r„̂ , ,1 —>»

and that the claim is true for r̂ +i = / i = 1,2,-- , i.e.,

(4.9) d(x,__,Xç ) < 2  d(x,, x̂ +,) .

In view of (4.4), given any e > 0, there exists N = N(e) so 

that if i > N , then

(4.10) d(x̂  ,x,_̂  _) < E .

Hence, d(x,_,x,_ J < d(x,^, x^J + d(x̂ ,̂ x , ̂ J

< %  + e
*' r  .  S r  <^M

[By (4.9) and (4.10)] .

Since e > 0 is arbitrary, we conclude the proof of Claim 3 .

Now, by Claim 3, we obtain the following:
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(4.11) J < %  4̂ :r, Xr+l) •
fn S r  < r  n . l

By Claim 1, (p(x̂  ̂J ^ J  “ ^  d(x̂ , x̂ +,) , so that
r„  S r < r , . t

2  d(x„ X,,,) <  <p (x,J -  ( p ( X r _ J  •
r .  S r < r „ . i

By letting = q)(x̂  ̂ ) - (p̂ x̂  ̂J , we obtain

(4.12) Z  d(x,, x,+i) < En .
%n ^ r < r  n

On the other hand, (4.11) and (4,12) yield

%d(x,,X,+i) < En .
r„  S r  < r „ . i

In view of (4.5) in Claim 2, jx̂ ĵ is a Cauchy

sequence. Since M is complete, there exists x e M such 

that x  ̂̂ -> X , hence x„__ —> x and Xĝ  —> x .

By transfinite induction, we have defined a subset 

K, C M  as K, = { Xr I r € r } .

Let m = inf{ cp(x) | x e K,}. Choose a sequence

I x̂  I C K, such that {r̂ } is increasing and (p(x̂  )

Notice : (g) jr̂ } is countable.

(h) O is the first uncountable ordinal.
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By (g) and (h), {r̂ } can not converge to A , otherwise A 

would be a countable ordinal. Since [r̂ j is increasing, it 

must converge to its upper bound, say r < A . Hence,

lim9(x,J = 9(xJ 

= m

= inf{ (p(x) I X e K, } .

If r + 1 e r , then

(p(xr+i) = (p(t(x )̂) [By definition]

< tp(x,) - d(x,, t(x J) .

If d(x̂ ,T(x̂ )) > 0, then (p(x̂ +,) < (p(x̂ ) . Since

(p(x̂ ) = m = inf{ (p(x) | x e K, } , this can not happen by

minimality of (p(x̂ ) . Therefore,

d(x,,T(xJ) = 0,

i.e.,

t(x J = X, .

We have finally obtained a fixed point of the mapping T. 

Q.E.D.
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CHAPTERS

APPLICATION TO A MINIMUM/MAXIMUM PRINCIPLE AT INFINITY

In this chapter, an application to real valued 

functions will be discussed.

We will be focusing on a special case of the Minimum 
Principle at Infinity (Chen and Xin [1] ) .

Let us consider a twice differentiable function 

f: R -> R, bounded from below. Without loss of generality, 

assume f(x) > 0 for all x e R and inf f = 0 . We will show

that, given an arbitrary e > 0 , we can find a point v in R
satisfying

(a) f(v) < e

(b) |f(v)| < e

(c) f" (v) > -2VË .

Unfortunately, one can not obtain a two-sided bound for

f" as in the case of f' in (b).

43
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We should observe that if inf f = 0 is attained at some
R

V e R , then necessarily

(i) f(v) = 0

(ii) f ' (v) = 0

(iii) f"(v) > 0 .

On the other hand, even in the case that inf f is not
R

attained, one can say that there exists a "minimum at 

infinity." More precisely, we will show that (i) , (ii),

(iii) hold for arbitrary e > 0 , from which one has the 

following theorem.

Theorem 9 (Minimum Principle at Infinity) (Chen and Xin [1] )

If f e C'(R), inf f = 0, and f(x) > 0 for all

there is a sequence {v̂ ]• c R such that

(5.1) lim f(vj = 0

(5.2) lim f (v„) = 0

(5.3) lim inf f "
n — K )  a 0

(5.4) |vj +00 .

The proof of Theorem 9 follows from the following 

result.
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Theorem 10: Let f e C^(R), inf f = 0, and f(x) > 0 for all

X e R . Given 0 < e < 1, there exists v e R 

such that

(a) 0 < f(v) S 2e

(b) |f ' (v)| < e

(c) f" (v) > -2VË .

Proof : First of all, let us find v e R such that both f(v) 

and |f' (v)| are small. Indeed, by our assumption and 

applying EVP, we can obtain v such that

(5.5) 0 < f(v) < —4

(5.6) I f  (v)| < — .
' 2

Therefore, the function g: R —> R defined by 

g(u) = f(u) + |f ' (u)| is continuous and satisfies

g(v) = f(v) + |f ' (v)|

+ 1  .4 2

< e .

In particular, inf g = 0 as e > 0 was arbitrary. Moreover,
R

f(u) > 0 for all u e R implies g(u) > 0 for all u e R .
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Now, let us apply EVP to g. Given e > 0 and v e R as 

above, there exists v e R such that

(d) g(v) < g(v) < e

(e) |v - v| < /̂Ë

i f ) g(w) > g(v) - Vë|w - vj for all w e R .

Let us analyze the following possible cases.

Case 1 : f’ (v) > 0 .

By continuity of f ', we have f ' (u)>0 in some neighborhood 

W = (v — 5.V + S) of V and

( g ) g(w) = f (w) + |f ' (w)|

= f(w) + f’(w) for all we W .

Writing w = v + t, 0<|t|<5, and using (f) and (g) , we get

f(v + t) + f’ (v + t) > f (v) + f’ (v) - 1 t|Ve , 

i.e., f(v + t) — f(v) + f’ (v + t) - f (v) > HtjVË .

If t > 0, wa obtain «v + t) - f(v) ̂  f (v^ t)_-f _(y)^
t t

If t < 0 , we obtain f ' Y + A ' W  <
t t

Letting t 0 in these two inequalities gives us

-Vê<f'(v) + f"(v)<Vë.

Since f ' (v) < e by (d) , we obtain

—2-̂ 6 ̂  —VÊ — G
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< -Vê - f ' (v)

<f'(v)

< Vë - f  (v)

^ ^̂ £, 5 2Vë •

Thus,

(5.7) |f”(v)|<2Vê.

Case 2 : f’ (v) < 0 .

Similarly to Case 1. we obtain

(5.8) |f"(v)|<2Vê.

Case 3 : f'(v) = 0.
In this case, we will have that either
(5.9a) f ' (y) does not change sign in some neighborhood 

(v - r, V + r) of V

or
(5.9b) f'(y) changes sign in every neighborhood 

(v - r, V + r) of V.

Subcase (5.9a):

Since we have either f’(y)>0 [or f'(y)<0] for all 

y € (y — r, y + r) , and f ' (v) = 0 by assumption, we

immediately obtain f"(v) = 0 .

SuhraRe (5.9b):
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By continuity of f and f', there exists 5>0 such that 

whenever |u — v| < 6 , we get

(5.10) |f(u) - f(v)| < e

and (5.11) |f' (u) - f■ (v)| < e .

(5.10) gives us

0 < f(u)

< e + f (v)

< e + e = 2e .

On the other hand, (5.11) and the fact that f'(v) = 0 yield

|f ' (u)| < e .

Let r > 0 be such that 0<r<S. Since f' changes sign 

in every neighborhood (v - r, v + r) of v, there exist

VpVj e (v-r, v + r) so that f’(vi) f’(v2) < 0 .

WLOG, assume v̂  < v̂  . Note that v, and Vj depend on r > 0.

If f ' (v;) > 0 > f ' (vJ , then we are finished in view of 

the Mean Value Theorem (MVT) applied to f' on the interval 

[vj,V2]. Indeed by MVT, there exists w e (v,, V2) such that

f"(w) = — ^ ^  . Since f’ (v2) > f’ (vj) and V2 > v,, weV2 - Vj

obtain f"(w) > 0 .

Moreover, in case v̂  < V2 < v , we choose v  ̂ with

f ' (v.) < 0 and we follow the same argument above for the two
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points and v. And if v < v, < , then we pick with

f  (̂ j) ^ 0 and again use the same argument for the two 

points V and . In either case, it follows that

f" (w) > for some w e (v^,v) or w e v̂, ) respectively.

And since w is S-close to v, we also obtain that f(w) and

I f ' (w) I are small, namely 0 < f(w) < 2e and |f‘(w)| < e (see

(5.10), (5.11)).

The only remaining possibility is that v, < v < v̂

with f ' (vj) < 0 < f ' (vJ .

Now, if there exists f ' (c) > 0 for some c e (v, v + r], 

then we are finished in view of the previous MVT argument, 

recalling that f'(v) = 0 .

So, assume f ' (y) < 0 for all y e (v, v + r] . Let A^ be

the set defined by A^ = {f'(x)|v4-r < x < z}. If z is

close to

V + r, then A^ c (-<»,0) by continuity of f ' . Clearly, if 

z, < Zj, then Â  ̂ c Â  ̂.

Let S3 = sup A3 = sup{ a e R | a e A3 }. Hence, if

y, < y;, we have Ŝ_ c  Ŝ  ̂.

If S3 = Sy+3 for all z > V + r, then 

f ' (z) = f ' (z + r) = -a < 0 for all z > v + r. Therefore, we
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have f(z) = f(v + r) — a[z — (v + r)] for z > v + r by the

Fundamental Theorem of Calculus, so that f(z) -oo as

z ^  oo . This can not happen since we are assuming f(x) > 0 

for all X e R .
Therefore, we must have 0 > > 8 +̂̂  for some

Zg > V + r , where = f ' (v + r) . However, this tells us

that there is some s e (v + r, Zg) such that

f  (s) = > Sy+r = f ' (v + r) . By the same MVT argument used

earlier, we conclude that there exists w e (v + r, s) such 

that f" (w) > 0 .

Moreover, 0 > f ' (w) > f ' (v + r) > -e . Since f ' (y) < 0 

for all y € (v + r, s), we have that f is decreasing on

(v + r, s), so that 0 < f(w) < 2e .

We have finished the proof of Theorem 8 . Q.E.D.

Proof of Theorem 9 : For each n = 2, 3, , take e = —  andn

v = v„ satisfying (a), (b) , (c) in Theorem 10. We obtain a

sequence {v^} satisfying

20 < f(v„) < J

|f ' (Vn)| ^ ^
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^ ' &
There must exist a subsequence of {v^} (still denoted {v„}) 

such that |vn| —> -H» . Otherwise we have boundedness of {v^}, 

and therefore there exists a subsequence converging to some 

V e R . Necessarily, f(v) = 0 , contrary to our assumption 

that f(x) > 0 for all x e R . Q.E.D.

Remark : We can have a Maximum Principle at Infinity by
replacing f by -f.
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CHAPTER 6 

FINDING A FIXED POINT BY ITERATION

In this chapter, we will again be discussing the 

question of finding fixed points. We will use an informal 

iteration process instead of the formal proof by transfinite 
induction.

Simply speaking, we pick an arbitrary point u e M .

Then, we construct a sequence {u„} in the following manner: 

Uq = u, u, = TUg, Uj = Tu, = T^Ug, ••• ,

u„ = Tû _, = T"ug, ••• , where T is a given self-map on M and 

(p:M -4 R is a l.s.c. with 9 > 0 .

Assuming that 9 and T are related as in Theorem 8 , so 

that the entropy function 9 decreases along orbits {t"u} of 

T, we will conclude that when 9 "stabilizes" (i.e., reaches 

a minimum at a certain v = v„ ) , then v is a fixed point of 

T.
Moreover, it will turn out that we can possibly get 

multiple fixed points for T, in contrast to the case of 

BFPT.

52
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The transfinite induction proof of Theorem 8 (Caristi

[1] ) is a formalization of possibly infinitely many infinite 

iterations of the mapping T, as a natural way of getting 
fixed points.

So, let us pick an arbitrary element u e M and 

consider the sequence

u'°’ = u

Û ° ̂ = TUg° ’

Uj° ̂ = Tu[° * = T̂ Ug° *

One can show that if T satisfies d(u. Tu) < (p(u) - cp(Tu) 

for all u in M, then the sequence constructed above is a 

Cauchy sequence. Indeed, we have the following lemma.

Lemma 5: Let (M,d) be a complete metric space. Consider a

mapping T: M M satisfying d(u. Tu) < (p(u) - (p(Tu) 

for all u e M, where Ç: M —> R is a l.s.c. and 
(p > 0 . Let V € M be an arbitrary point. Then,

the sequence {t"v} is a Cauchy sequence, hence 

convergent.
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Proof : Set Vg = v and = T"v , n = 1, 2, ••• . By 

assumption, we have d(vg, TVg) < (p(vg) - (p(TVg), hence 

(p(TVg) < cp(vo), since d(Tv, v) > 0, i.e., 0 < (p(vj < (p(vg) . In 

general, we have 0 < (p(v̂ +̂ ) = (p(TVn) < (p(v„) for all n e N .

Therefore, [<p(v„)} is a bounded monotone sequence. Let 

lim(p(v„) = L > 0. Then, (̂ (vn)} is a Cauchy sequence, so

that <p(vn) - (p(vn+p) 0 as n -> oo (uniformly for p > 1 ) .

Now, adding the inequalities

Vg+J < (p(vj -

Vg+J ̂  (P(vn+i) - 

4^n+p_l, Vg+p) < (pK + p-i) - <p(v„^p),

we obtain

Vg+J + ••• + d(Vg+p_l, Vg+p) ^ (̂Vg) " ^ ( V „ + p ) •

so that by the triangle inequality, we conclude that

Vg+p) < (p(vg) - (p(vg+p) Û as u oo (uniformly for

p > 1). Therefore, {vg} is a Cauchy sequence.

Finally, since M is complete, the sequence{vg} = {t"v } 

converges to some point v in M. Q.E.D.
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If one starts with a different initial point w e M , 

one obtains a perhaps different fixed point w [see examples 

later on] . Therefore, each u e M will give rise to a fixed 

point Û e M , so that multiple fixed points may be expected 

in general.
We recall that, when T is a contraction mapping, one 

can take as "entropy" the function

ffl(u) = — -— d(u. Tu) [cf. Proposition 1].
1 -  a

In this case, it turns out that (p stabilizes after the 

first (infinite) iteration Ug° ’ = u , u[° ’ = TUg° *,

= T̂ Ug° ', ••• , û *) = T"ug°̂ , •••

-> = lim Ug° ’ .

In other words, * .

Furthermore, the limit  ̂ at the end of first 
infinite iteration does not depend on the initial point u 
(We have uniqueness by BFPT).

Now, let u e M be given. We will consider sequences 
generated by various iterations. Namely, let

u|,° ’ = u , u'° ’ = Tu||°’, ••• , Ug° ’ = T"Ug° * , •••

Let Uq̂  * = /° ̂ and define
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••• , ••• 

Again, by Lemma 5, -» , and so on.

We obtain convergent sequences jug^j, jug^j, ••• ,

••• , where = lim Ug'̂"̂ ’, and which are such that (p

decreases along each one of them in order. In other words, 

{p(uS°’) >  (p(u^° )) > • • • >  <p(ui,°’) > • • • >  (p(^‘° ’),

= cpK^) > 9(u'^’) ^ ^  (pK ’)

= (p(ur) ^ ^ ^ <p(un ') ^ ^

In fact, the iteration process above only stops at a 

certain û e M for which the entropy 9 reaches a minimum

value. In general, û depends on the choice of initial
^  (0 ) point Ug = u .

Suppose that, in fact, 9 stabilizes at a certain

Û e M. We claim that û is a fixed point for T, i.e.,
TÛ = Û . Indeed, it is clear that

0 < d(u, TÛ) < 9(û) - 9(Tû) = 0 gives Tû = û .
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CHAPTER? 

SOME nXUSTRATIVE MODEL EXAMPLES

Figures 1 to 3 illustrate three model examples of how 

the iteration process works.

Consider the complete metric space M = [5,l], where

0 < 5 < 1 . Define the map Ç:M —» R by cp(u) = —  . We willu

consider self-maps T: M —> M such that d(u. Tu) < (p(u) - cp(Tu) 

for all u e M , i.e.,

1 1|u — Tu| < ------ .u Tu
A simple calculation shows that the graph of T must be in 

the upper left triangular region of [5, l] x [6, l] (see 

figures).

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



58

FIGURE 1

S

Tuo Tu, Tu, L
Il If If
U, U i U3

5 u

Infinitely many iterations are needed. T has a unique 

fixed point u = 1 (Note that T is a linear contraction)
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FIGURE 2

i

S

1S Y Tu,

A fixed point can be obtained by finitely many iterations 
(one or two in this case) . There are infinitely many fixed 

points.
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FIGURES

A fixed point can be obtained by finitely many applications 

(two, in this case) of infinitely many iterations.
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SUMMARY

Let us take a look at the main points once again.

In Chapter 2, we considered Ekeland's Variational 

Principle (EVP). In a sense, it gave us a better 

approximation than the point which we had picked as our 

initial approximation. Moreover, we saw that EVP played an 

important role in showing coirpleteness of a metric space 

throughout this thesis.

In Chapter 3, we studied the notion of completeness for 
a metric space by means of different approaches. In 

addition, we showed that EVP and Caristi's theorem are 
equivalent, while characterizing the notion of completeness.

In Chapter 4, the fixed point theorem considered in 

Chapter 3, due to Caristi, was discussed and a formal direct 

proof was presented. Probably, the most well-known fixed 

point theorem is Banach Fixed Point Theorem (BFPT) .
However, it requires that the mapping T on the complete

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



62

metric space M be a contraction. We discussed a different 

approach without the requirement of contraction, but instead 
considering a real valued mapping 9 closely related to T.

In that chapter, we reproduced Caristi's proof with minor 

modifications. The formal proof used transfinite induction 

arguments and, for the sake of clarity, we decided to 

reserve Chapter 6 for a more informal presentation of that 

result and its main idea.

In Chapter 5, we presented an application by using some 

of the results obtained so far, such as EVP. The topic 

considered was a version of the Minimum/ Maximum Principle 
at Infinity. Essentially, the (say) minimum principle at 
infinity says the following. Given a twice differentiable 

function f: R —> R which is bounded from below, if its 

infinimum a is not attained, then there must exist an

unbounded sequence {vj,} such that f(vn) approaches a, £'(v̂ ) 

goes to zero, while f"(v„) goes to a non-negative value.

In Chapter 6 , in order to better understand the main 

idea behind Theorem 8 and its proof, we presented that 

result through a series of iteration processes. We assumed 

that 9 and T are related as in Theorem 8, so that the

entropy function 9 decreases along orbits {t "u } of T.
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Then, we concluded that, whenever (p reaches a minimum value 

for some v = v„, then v is a fixed point of T. We should

remark that we can possibly obtain multiple fixed points 

depending on the choice of the initial point.
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INDEX OF SYMBOLS

N set of natural numbers

R set of real numbers
X e A X is an element of A

A c B A is a subset of B

{ X e X I P(x) } set of X in X with P(x)

{x} singleton

[a, b] closed interval

(a, b) open interval

finite sequence

infinite sequence

2* set of subsets of A

A n B intersection

A V B union

C(R) set of continuous functions on R

Ĉ (R) space of twice differentiable

functions 

A closure of A

T" = T o T 0 •••o T composition n times
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