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Abstract 
 

Despite the long-held assumption that transposons are normally only expressed in the germ-

line, recently we discovered that full length or partial transcripts of LINE1 are frequently found 

in the somatic cells. However, the extent of variation in LINE1 levels across different tissues and 

different individuals, and the genes and pathways that are co-expressed with LINE1 are 

unknown. Co-expressed genes may be candidate genes that are functioning in transposon 

silencing. Here, we report the extent of variation in L1HS expression levels across cancer tissues 

and healthy tissues collected for The Cancer Genome Atlas (TCGA). L1HS is overexpressed in 

most of the cancer types we have studied. Our results confirm earlier reports of higher L1HS 

expression in the esophagus and stomach tissues. We also show that mitochondrial genes are 

enriched among the genes whose expression is negatively correlated with L1HS expression and 

that PHD fingers, bromodomains and KRAB-zinc fingers (KRAB-ZFPs) are enriched among the 

genes positively co-expressed with L1HS. Additionally, we studied the association of L1HS 

transcript level with miRNA expression, and we found several candidate miRNAs that are 

significantly correlated with L1HS expression.  
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Chapter 1: Introduction 

Transposable elements, discovered by Barbara McClintock in the 1940s, are genetic elements 

that can multiply themselves in a genome (Cordaux & Batzer, 2009; Fedoroff, 2012). 

Transposable elements can be classified into two categories: DNA transposon and 

retrotransposon. DNA transposons can cut themselves from the genome and paste themselves 

in other regions of the genome. On the other hand, retrotransposons multiply themselves by 

copy-paste mechanism through RNA-intermediates that are reverse-transcribed and inserted at 

new genomic locations. Retrotransposons can be divided into two main categories: LTR (long 

terminal repeats) and non-LTR. 

 

LTR retrotransposons have a direct repeat of a few hundred base pairs long at each end. LTR 

retrotransposons are 5-7 kb long. LTR retrotransposons encode two open reading frames 

(ORFs): one ORF is equivalent to viral structural proteins named gag and the other, named as 

pol, is a protein consist of an aspartic protease (AP), a reverse transcriptase (RT), an RNase H 

and an integrase (INT) (Cordaux & Batzer, 2009). 

 

Non-long terminal repeat retrotransposons (non-LTR) exist in most eukaryotic genomes and 

they are the most abundant genome sequences in the human genome (Cordaux & Batzer, 

2009). Non-LTRs do not carry LTR at the ends of their genome; instead, they act like integrated 

mRNA. Non-LTRs can be divided into long interspersed elements (LINEs) and short interspersed 

elements (SINEs). Among the non-LTRs, L1, Alu, and SVA are the only transposable elements are 
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shown to be currently active in replicating in the human genome (Hancks & Kazazian, 2012; 

Mills, Bennett, Iskow, & Devine, 2007). Non-LTRs have two open reading frames, one encoding 

an RNA binding protein and the other encoding a nuclease, a reverse transcriptase and in some 

cases an RNase H domain (Mathias, Scott, Kazazian, Boeke, & Gabriel, 1991). 

 

Retrotransposons affect the human genome by inserting mutations, causing genomic instability 

and variations in gene expression (Cordaux & Batzer, 2009). Although retrotransposons exist in 

a vast region of the human genome, they are inactive, mostly controlled by epigenetic 

regulations such as DNA methylation and RNAi mechanisms that restrict expression (Slotkin & 

Martienssen, 2007). But, when human DNA is hampered by some types of genomic instability 

such as cancer, retrotransposons become active in the human genome, partly due to ineffective 

regulation by host genome. LINEs, particularly the L1 family, have been reported to be activated 

in numerous cancer types such as colorectal carcinoma, breast carcinoma, liver hepatocellular 

carcinoma, etc (Beck, Garcia-Perez, Badge, & Moran, 2011; Callinan & Batzer, 2006; Hancks & 

Kazazian, 2012). SINEs, especially the alu family, have been reported to cause genomic 

instability in various types of cancers as many studies investigated genome-wide tracking of alu 

repeats in cancer and normal cell lines. 

 

LINE-1 (L1) transposable elements (TEs) comprise more than 17% of the human genome 

(Cordaux & Batzer, 2009). In addition to generating insertion mutagenesis, it also causes 

damage to the cell through the aberrant expression of its sequence (Belgnaoui, Gosden, 

Semmes, & Haoudi, 2006). The L1 expression can cause insertion mutations, genomic 
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instability, alterations in gene expression and genetic innovation (Belgnaoui et al., 2006; 

Cordaux & Batzer, 2009). Insertional mutagenesis by L1 and other retroelements can cause 

numerous types of human disease; for instances, L1, Alu, and SVA insertions have been 

detected in haemophilia, cystic fibrosis, Apert syndrome, neurofibromatosis, β-thalassemia, 

hypercholesterolemia, breast and colon cancer (Beck, Garcia-Perez, Badge, & Moran, 2011; 

Callinan & Batzer, 2006). Expression of one of the L1 proteins, ORF2, in human cancer cells can 

cause DNA double-strand breaks (Gasior, Wakeman, Xu, & Deininger, 2006). Furthermore, the 

L1 expression has been reported to induce cell cycle arrest and apoptosis (Belgnaoui et al., 

2006). 

 

LINE-1 has long been thought to be expressed only in the germline cells (Kano et al., 2009), but 

both full-length and partial transcripts of LINE-1 are frequently found in the somatic cells  with 

large variation in expression levels across tissue types(Belancio, Roy-Engel, Pochampally, & 

Deininger, 2010). The level of L1 expression is especially pronounced in cancer cells (Belgnaoui 

et al., 2006; Bratthauer, Cardiff, & Fanning, 1994; Rodić et al., 2014; Xiao-Jie, Hui-Ying, Qi, Jiang, 

& Shi-Jie, 2016). One of the earliest reports of detection of L1 expression outside the germline 

cells was in teratocarcinoma (Skowronski, Fanning, & Singer, 1988). Since then, overexpression 

of L1s have been identified in numerous types of cancer (Bratthauer et al., 1994; Rodić et al., 

2014), and some even consider L1 expression as one of the hallmarks of cancer (Rodić et al., 

2014) or L1 activity as a driver of tumorigenesis (Rodić et al., 2014).   
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Although there are many reports of L1 expression in cancer, how the L1 expression is repressed 

in human somatic cells and de-repressed in cancer cells is still largely unknown. Based on what 

we know from model organisms, Drosophila melanogaster, and Mus musculus, the L1 

expression is regulated through several silencing mechanisms including DNA methylation, Eset-

mediated histone modification, endo-siRNAs, miRNAs, and posttranslational modification 

(Ghildiyal et al., 2008; Martin & Branciforte, 1993; Reichmann et al., 2012).  

 

To study L1 activity, M. musculus is used as a model because it contains L1s that are found in 

mammals. Although L1s are relatively inactive, a synthetic L1 element can be used to track 

retrotransposon activity. Human and M. musculus L1s can transpose between each organism, 

which makes for a comparative model (An et al., 2006). 

 

M. musculus embryonic stem cells are standard model to analyze L1 expression because they 

can be monitored through different methods including microarray technology through 

analyzing repeat elements. A histone deacetylase, Hdac1, is a regulator for L1 expression in 

embryonic stem cells (Reichmann et al., 2012). Computational approaches identified other 

mechanisms that silence retrotransposon expression including DNA methylation, ESET-

mediated histone modification, and Ring1B/Eed-containing polycomb repressive complexes 

(Reichmann et al., 2012). Analysis of these varying mechanisms shows that different 

transposons are regulated by different mechanisms and they are utilized simultaneously to 

regulate the transposable element expression within M. musculus. 

 SiRNA found in D. melanogaster can be generated exogenously or endogenously, but endo-
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siRNAs are believed to regulate L1 expressions, not only in D. melanogaster but also humans 

(Ghildiyal et al., 2008). SiRNA interacts with RNAi to regulate gene expression. SiRNA is 

comparable to miRNA because both silence gene expression (Ghildiyal et al., 2008). Another 

mechanism by which L1 activity is repressed is by RNA-induced Silencing Complex (RISC) and 

Piwi-interacting RNA (piRNA) pathway. Small interfering RNA (siRNA) (Ghildiyal et al., 2008) and 

miRNA are known to repress the movement of retrotransposons (“Transposable elements and 

miRNA: Regulation of genomic stability and plasticity: Mobile Genetic Elements: Vol 6, No 3,” 

n.d.). One of the miRNAs that are cited by several literatures to repress L1 retrotransposition is 

mir-128 (Hamdorf et al., 2015; M. Li et al., 2013).  

 

Recent studies have found that L1 activity is restricted by several mechanisms including DNA 

methylation (Nagamori et al., 2015; Zamudio et al., 2015) and post-transcriptional regulation. 

APOBEC proteins participate in post-transcriptional regulation by inhibiting L1 

retrotransposition (Chen et al., 2006; Wissing, Montano, Garcia-Perez, Moran, & Greene, 2011). 

Another protein named MOV10, an RNA helicase, also inhibits L1 retro-activity by conjugating 

with RNPs (Arjan-Odedra, Swanson, Sherer, Wolinsky, & Malim, 2012; Goodier, Cheung, & 

Kazazian, 2012, p. 10; X. Li et al., 2013). In many cases, some transcription factors can promote 

L1 retrotransposition. Some of these transcription factors are RUNX3, SOX2, SP1, and YY1, etc. 

Methylation of retrotransposon promoter transcriptionally represess retrotransposition to 

control expression in the human somatic cell.  
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In order to understand how L1 expression is regulated in human somatic cells, we utilized the 

large variation found in L1 expression levels in cancer cells across cancer types and across 

individual patients. We tested for co-expression between individual genes/miRNAs and L1s.  

 

TCGA data 

The Cancer Genome Atlas (TCGA) is a comprehensive and coordinated effort to accelerate the 

understanding of the molecular basis of cancer through the application of genome analysis 

technologies, including large-scale genome sequencing. TCGA has collected genomic data for 

more than 11,000 patients for 33 types of cancer.  

TCGA has following data available in TCGA data portal: 

● Clinical information about participants in the program 

● Metadata about the samples (e.g. the weight of a sample portion, etc.) 

● Histopathology slide images from sample portions 

● Molecular information derived from the samples (e.g. mRNA/miRNA expression, protein 

expression, copy number, etc.) 

In addition to collecting high-quality tumor samples, TCGA also collects high-quality non-tumor 

samples. The purpose is to compare the abnormalities associated with cancer compared to 

healthy tissues.  

● For most disease studies, TCGA collect and analyze normal blood samples for the 

majority of participants with that specific diseases 

● In case of missing normal blood sample, TCGA collects normal tissue sample from that 

specific patient to use for germline control in DNA assays 
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● But, a normal blood sample cannot be used for RNA assay as RNA profile differs in 

different tissues. To address this issue, TCGA collects normal tissue sample for that 

specific organ. Ultimately, this procedure is useful for gene expression analysis in cancer 

versus normal tissues.  

 

TCGA has the data available for de-identified clinical and demographic data, gene expression 

data, copy number alterations in regions of the genome, epigenetic data, anonymized single 

amplicon DNA sequence data, primary sequence data (BAM and FASTQ files), SNP6 array level 1 

and level 2 data, exon array level 1 and level 2 data and VCFs.  

 

TCGA pipeline: 

First, TCGA samples are collected by Tissues Source Sites (TSS) and then sent to Biospecimen 

Core Resources (BCRs). Second, The BCRs submit clinical data and metadata to the Data 

Coordinating Center (DCC) and analytes to the Genome Characterization Centers (GCCs) and 

Sequencing Centers (GSCs), where mutation calls are generated and then submitted to the DCC. 

Third, GSCs submit trace files, sequences and alignment mappings to the Cancer Genomics Hub 

(CGHub) as well. Data submitted to the DCC and CGHub are made available to the research 

community and Genome Data Analysis Centers (GDACs). Finally, Analysis pipelines and data 

results produced by GDACs are served to the research community via the DCC. 
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Genomic Data Commons (GDC):  

GDC is a research program for the National Cancer Institute. It stores the genomic datasets 

from TCGA. It has access to standardized bio specimen, clinical and molecular data. GDC also 

generates high-level data based on Human reference genome build GRCh38 which includes 

germline mutations, somatic mutations, RNA sequence and quantifications, miRNA sequences 

and qualifications, and SNP based copy number variations.  

 

Figure 1: RNA seq workflow implemented by TCGA 
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Chapter 2: Differential expression of TEs  

2.1 Methods 

2.1.1 Data 
We downloaded RNA-seq data for 634 cancer patients from TCGA (The Cancer Genome Atlas) 

consisting of both cancer tissues and corresponding normal tissues. TCGA has both raw 

sequencing data (fastq format) and data mapped to the human reference genome (bam 

format). Though TCGA has more RNA-Seq data for more than 33 different types of cancer, We 

analyzed only 17 different cancer types for gene expression study because TCGA did not have 

enough RNA-Seq data for corresponding normal tissues for other cancer types (Table 1). The 17 

cancer types included were Bladder Urothelial Carcinoma (BLCA), Breast Invasive Carcinoma 

(BRCA), Cholangiocarcinoma (CHOL), Esophageal Carcinoma (ESCA), Head and Neck Squamous 

Cell carcinoma (HNSC), Kidney chromophore (KICH), Kidney Renal Clear Cell Carcinoma (KIRC), 

Kidney renal papillary cell carcinoma (KIRP), Liver hepatocellular carcinoma (LIHC), Lung 

Adenocarcinoma (LUAD), Lung Squamous Cell carcinoma (LUSC), Pancreatic adenocarcinoma 

(PAAD), Pheochromocytoma and Paraganglioma (PCPG), Prostate Adenocarcinoma (PRAD), 

Stomach Adenocarcinoma (STAD), Thyroid Carcinoma (THCA), and Uveal Melanoma (UCEC). We 

downloaded bam files and ran TEtranscripts software (version 1.5.0) for counting raw reads 

mapped to annotated human genome file (gtf format). We downloaded the separate annotated 

file for genes and retrotransposons, both of which were downloaded from TEtranscripts 

repository hub. Once raw count reads mapped to reference genome (hg19) generated, we ran 

Deseq2 for both normalization and expression of genes and retrotransposons. We analyzed 
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each cancer type for differential expression of genes and retrotransposons where we took 

cancer tissue as experimental variable and normal tissue as control variable. 
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Table 1: Number of patients in different type of cancers with corresponding healthy tissue 

Cancer type Number of Patients 

BLCA 19 

BRCA 98 

CHOL 9 

COAD 48 

ESCA 13 

HNSC 43 

KICH 25 

KIRC 63 

KIRP 32 

LIHC 50 

LUSC 49 

LUAD 53 

PRAD 36 

READ 9 

UCEC 23 

STAD 8 
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2.1.2. RNA Seq: 
RNA sequencing is rapidly becoming popular for gene expression study. In RNA seq, mRNA 

(poly-A) is converted to cDNA and then sequenced. Once it is sequenced, then it is mapped to 

reference genome. After mapping to reference genome, it is analyzed for differential 

expression study.  RNA Seq has several advantages over other traditional technology (Wang, 

Gerstein, & Snyder, 2009). First, it is not limited to detecting transcript levels just based on the 

reference genome. This offers an advantage for non-model organisms whose reference genome 

is yet to be discovered. Second, RNA Seq is highly accurate in quantifying gene expression level 

in contrast to DNA microarray study which is not sensitive in terms of very high or low gene 

expressions. Third, it is a very cost effective method.  

 

 

Figure 2: RNA Seq method. In RNA seq, mRNA (poly-A) is converted to cDNA and then sequenced. Once it is sequenced, then it is 
mapped to reference genome. After mapping to reference genome, it is analyzed for differential expression study. 
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2.1.3 TEtranscripts 
We ran TEtranscripts to quantify raw reads count mapped to reference genome hg19 (Jin, Tam, 

Paniagua, & Hammell, 2015). It quantifies both gene and transposon. The input files for 

TEtranscripts are alignment files such as BAM or SAM files, annotated gene and TE files which 

are in Gene Transfer Format (GTF) files. To enrich multi-mapped reads we ran two additional 

commands during mapping to the human reference genome using STAR. Those additional 

commands are : --outFilterMultimapNmax 100 and --winAnchorMultimapNmax 200. One of the 

key steps in TEtranscripts involves distributing the mapped reads among annotated genes and 

TEs that overlap those genomic regions. Unique reads which are applicable to most of the 

genes are relatively easier to distribute. However, multiple reads which are mapped to multiple 

genomic locations are not easy to handle. Because many TEs has similar sequences, it becomes 

more complicated to assign the multiple reads those arises from TEs. However, to handle this 

complexity, TEtranscripts takes account of the sequence similarities at the different level of 

hierarchy in TEs to distribute reads amongst closest related TE families. Once the reads are 

assigned, TEtranscripts performs EM (expectation maximization) algorithms to determine the 

maximum likelihood probability of multi-reads assignment of all of TE transcript levels. First, EM 

algorithm computes the fractional distribution of each mapped reads of each TEs, which is E-

step. Next, it estimates the relative abundances of every TE transcripts (M-step) till the 

estimated relative abundances converge.  
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2.1.4 Normalization  
Normalization is pivotal for quantifying accurate gene expression levels in the sample. 

Currently, there are numerous methods for quantifying normalization. Most of the 

normalization methods take account of a couple of main factors: sequencing depth, gene 

length, and RNA composition. When it is necessary to compare gene expression between 

different samples, sequencing depth is important. Because if the library size for one of the 

samples is higher than other, gene expression level for it might be higher than other. But, it 

might be false positive results because of the larger library size. That is why it is important to 

normalize for library size.  

Second, gene length is important when gene expression levels within the same sample are 

compared. If one of the genes is longer than others, it might have more reads than others. 

Ultimately it might have more expression. Another important factor is RNA composition. While 

comparing gene expression between the sample, RNA composition might be a factor that might 

skew the result.  

Normalization methods that exist: CPM (counts per million), TPM (Transcripts per kilobase 

million), FPKM (Fragments per kilo base per million). CPM only takes account of sequencing 

depth for normalization. Both TPM and FPKM take account of sequencing depth and gene 

length for normalization. However, FPKM is not recommended for differential expression 

between samples. DESEQ2 utilizes a median ratio method which accounts for both sequencing 

depth and RNA composition. As the purpose of differential expression is to compare gene 

expression level between samples, not within the sample, DESEQ2 is optimal (Love, Huber, & 
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Anders, 2014). One of the key assumptions made by a median of ratios method applied by 

Deseq2 is that not all of the genes are differentially expressed.   
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2.1.5 DESeq2 
DESeq2 is an R/Bioconductor package for normalization and detection of differentially 

expressed genes in different conditions (Love, Huber, & Anders, 2014). The input for DESeq2 is 

raw count data mapped to reference genome generated from different counting tools such as 

HTSeq or TEtranscripts. For each gene, DESeq2 fits a generalized linear model (GLM). It follows 

negative binomial distribution to model the count reads. The mean of the distribution is 

considered to be proportional to the cDNA concentration from the sample. To account for 

sequencing depth between samples, it calculates size factors applying the median of ratios 

method.  
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2.1.6 edgeR 
For gene expression analysis we also ran edgeR: a Bioconductor package for differential 

expression analysis of digital gene expression data (Robinson, McCarthy, & Smyth, 2010). edgeR 

models count data--generated from different tools --applying an overdispersed Poisson model. 

Additionally, it utilizes empirical Bayes model to moderate the overdispersion across genes. 

edgeR expects data to be summarized into count table where rows are genes and columns are 

different samples in different conditions. It models the data as negative binomial distribution.  

EdgeR separates biological variations from technical variations.  

edgeR calculates the genewise dispersions by conditional maximum likelihood. It applies an 

empirical Bayes procedure to shrink the dispersions towards a consensus value taking 

information between genes. Then, it calculates differential expression of genes using an exact 

test similar to Fisher exact test adapted for over-dispersed data.   
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2.2 Results 
 

2.2.1. Retrotransposon expression varies across different tissue types and 
individuals 
We found that retrotransposon expression is not uniform across different tissue types. We 

measured the normalized (reads per million) reads that are mapped to L1HS gene in human 

reference genome with the help of DESeq2 for different types of tissues and compared them to 

each other. There are large variations of L1HS across different normal tissues -- with stomach 

and esophagus have the highest counts (FIGURE 3 ). Overall, esophagus tissue had the most 

counts for L1HS. 

 

Figure 3: L1HS expression in different normal tissues. Raw count reads mapped to hg19 are generated by TEtranscripts and 
normalized by DESeq2.  In Y axis, L1HS expression is shown in log2RPM of normalized counts for both normal and  cancer tissue. 
X axis represents different type of cancer and their corresponding healthy tissues.  

 

 

Additionally, we measured the L1HS expression (log2 fold change of cancer vs normal tissue) 

across 634 individual patients. We found that there is also a large variation of L1HS expression 
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across individual levels (FIGURE 4). Despite many of the patients have a less L1HS expression 

(log2 fold change < 0) in cancer compared to the corresponding normal tissues, most of the 

patients have a more L1HS expression (log2 fold change > 0).  

 

Figure 4: Frequency of L1HS expression over different individuals. L1HS expression is shown as log2 fold change of cancer over 
normal tissue. The number of individuals is 634. 
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2.2.2 L1HS consistently over-expressed in multiple cancer types 
We analyzed TCGA (The Cancer Genome Atlas) cancer datasets for differential expression 

analysis of retrotransposons. We analyzed RNA-seq data from 634 patients for different types 

of cancer. We used mapped RNA-seq data that are available in TCGA repository and ran 

TEtranscripts software to produce raw read counts mapping to the genes and retrotransposons 

sequences. After generating raw read counts, we applied default DESeq2 normalization process 

to normalize the read counts.   

 

Figure 5: L1HS expression in different types of cancer. Data are shown as log2 fold change for cancer over normal tissues. For 
most of them FDR < 0.05 except ESCA, STAD, and THCA. Raw count reads mapped to hg19 are generated by TEtranscripts and 
gene expression level is measured by DESeq2. Normal tissues for corresponding cancers have been used for control. ‘*’ indicates 
FDR < 0.05.  
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We have observed that numerous types of LINE-1 families and alu families are significantly (FDR 

< 0.05) overexpressed in different cancer tissue such as colorectal carcinoma, liver 

hepatocellular carcinoma, kidney renal adenocarcinoma, kidney papillary carcinoma, breast 

carcinoma, esophageal carcinoma, head and neck carcinoma, prostate carcinoma, etc., 

compared to corresponding normal tissues (FIGURE 5, 6.1, 6.2). The most significant finding in 

our study is that L1HS, one LINE-1 sub-family, is overexpressed across most of the cancer types 

of our study (FIGURE 5, 6.1, 6.2). Log2 fold changes of L1HS in different types of cancer are 

shown in figure 3. We also found that log2 fold change was significantly higher for both lung 

squamous cell cancer and lung adenocarcinoma compared to other cancer types. FDR (false 

discovery rate) > 0.05 is applied for significance. 
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Figure 6.1: Expression of retrotransposons in different cancer tissues. Expression measured as log2 ratio of normalized count of 
cancer over normal for each gene. X axis represents different cancer type and Y axis represents different repeat families.  L1HS is 
highlighted yellow. 



 
 

24 
 

 



 
 

25 
 

Figure 6.2:  Expression of retrotransposons in different cancer tissues. Expression measured as log2 ratio of normalized count of 
cancer over normal for each gene. X axis represents different cancer type and Y axis represents different repeat families.  L1HS is 
highlighted yellow. 
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Figure 7: Expression of retrotransposons in different type of cancer tissues. Expression is shown as log2 fold change of 
normalized counts of cancer over normal for each gene.  Only significantly (FDR < 0.05) upregulated or downregulated 
transposons are shown in these figures.  
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2.2.3. HTSeq comparison  
Similar to TEtranscripts, HTSeq counts the raw reads mapped to reference genome (Anders, Pyl, 

& Huber, 2015). Unlike TEtranscripts, it is not suitable for multi-mapped reads as it ignores the 

reads that map to multiple locations. However, as most of the genes have only unique reads, 

we compared the counts for genes between HTSeq and TEtranscripts. Hypothetically, we do not 

expect to see any difference in terms of gene counts between both tools. Expectedly, we did 

not notice any difference in terms of gene counts between the two tools. But, we observed the 

difference in terms of TE counts. (FIGURES 8 AND 9). 
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Figure 8: Comparison between HTSeq and TEtranscripts for raw counts of TEs.  The Pearson correlation coefficient between 
HTSeq and TEtranscripts for TEs is 0.9727572. 
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Figure 9: Comparison of HTSeq and TEtranscripts for raw count reads of Genes. The Pearson correlation coefficient between 
HTSeq and TEtranscripts for the gene is 0.9921285. 
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2.2.4. TCGA vs STAR  
The RNA-Seq files, which were in bam format, analyzed for our study were mapped by TCGA. 

Additionally, we downloaded fastq files for those RNA Seq files and mapped to hg19 genome 

with STAR tools. To enrich multi-mapped reads we ran two additional commands during 

mapping to the human reference genome using STAR. Those additional commands are : --

outFilterMultimapNmax 100 and --winAnchorMultimapNmax 200. Next, we followed the 

conventional pipeline to generate raw count reads data in TEtranscripts. For this comparison, 

we analyzed two patients. Once raw data are generated, we calculated Pearson correlation. The 

correlations for both of the patients were 0.9738137 and 0.9743876 respectively (FIGURE 10-

13). As the raw count reads from mapped RNA seq files from TCGA were identical to STAR, we 

opted for the bam files from TCGA to be run directly without downloading fastq files to save 

time.  
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Figure 10: Comparison of gene counts between STAR pipeline and TCGA pipeline for a patient with id AOCE. The correlation is 
0.997518.  
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Figure 11: Comparison of gene counts between STAR pipeline and TCGA pipeline for a patient with id AOD9. The correlation is 
0.9982605. 
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Figure 12: Comparison of TE counts between STAR pipeline and TCGA pipeline for a patient with id A0CE. The correlation is 
0.9738137.  

 

.  
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Figure 13: Comparison of TE counts between STAR pipeline and TCGA pipeline for a patient with id AOD9. The correlation is 
0.9743876. 
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2.2.5. DESeq2 vs edgeR 
 

 

Figure 14:  L1HS expression in different types of tissues ( edgeR Results). RNA Seq is downloaded from TCGA. Then, TEtranscripts 
has been utilized for raw count data reads mapped to reference genome hg19. edgeR has been used for normalization and 
differential expression. 

 

 

After running edgeR for the same number of samples run by DESeq2, we looked for 

transposable elements those were differentially expressed in cancer tissues compared to 

respective normal tissues. We found that L1HS, which was overexpressed in DESeq2 results, 

also significantly are overexpressed in edgeR results (FIGURE 14). Additionally, L1HS was not 

overexpressed in STAD (stomach adenocarcinoma) and THCA (Thymus Carcinoma) as well as 

DESeq2.  
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2.2.6. Conclusion 

We observed large variations of L1HS across different normal tissues -- with stomach and 

esophagus have the highest counts (FIGURE 3). Overall, esophagus tissue had the most counts 

for L1HS. We observed that numerous types of LINE-1 families and alu families are significantly 

(FDR < 0.05) overexpressed in different cancer tissue such as colorectal carcinoma, liver 

hepatocellular carcinoma, kidney renal adenocarcinoma, kidney papillary carcinoma, breast 

carcinoma, esophageal carcinoma, head and neck carcinoma, prostate carcinoma, etc., 

compared to corresponding normal tissues (FIGURE 5, 6.1, 6.2). L1HS, one LINE-1 sub-family, is 

overexpressed across most of the cancer types of our study (FIGURE 5, 6.1, 6.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

45 
 

Chapter 3: Gene and L1HS coexpression 

3.1 Introduction  
We sought to find the relative expression level of genes that are known to control L1HS 

expression. There are numerous genes that are known to control L1HS expression. Some genes 

are known to restrict L1HS expression; on the other hand, some genes are known to promote 

L1HS expression. Transcription factors that are known in L1HS regulation include RUNX3, SOX2, 

YY1, and SP1. Mutations to the binding site of these transcription factors regulation L1HS 

expression (“A YY1-binding site is required for accurate human LINE-1 transcription initiation,” 

n.d.; Becker, Swergold, Ozato, & Thayer, 1993, p. 1; Minakami et al., 1992; Yang, Zhang, Zhang, 

& Kazazian Jr, 2003). HNRNPC prevents alu mediated excessive exonization in the cell (Zarnack 

et al., 2013).  One notable retrotransposon restriction factor is APOBEC3 (Apolipoprotein B 

mRNA editing enzyme, catalytic polypeptide-like) (Chen et al., 2006; Chiu & Greene, 2008; 

Holmes, Malim, & Bishop, 2007; Kinomoto et al., 2007; Niewiadomska et al., 2007; Willems & 

Gillet, 2015; Wissing et al., 2011). Humans possess seven APOBEC3s: A3A, A3B, A3C, A3D, A3F, 

A3G and A3H. All of the APOBEC3 family are reported to have anti-retrotransposon activity; 

some of them are also involved in inhibiting retroviral activity. Despite all of the APOBEC3s have 

anti-retrotransposon activity, A3A and A3B are reported to be most efficient to prevent 

retrotransposition. Another unit-retrotransposition factor is SAMHD1 (SAM domain and HD 

domain 1). SAMHD1 is reported to decrease retrotransposition as well as retroviral activity by 

decreasing available dNTPs for the cell (Clifford et al., 2014; Hu et al., 2015; Kretschmer et al., 
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2015). In retroviruses, SAMHD1 also inhibits viral replication by having ribonuclease activity, a 

function not yet reported for retrotransposon.  

Another way retrotransposons are restricted post-transcriptional silencing by small interfering 

RNA (siRNA). SiRNAs are known to mediate retrotransposon regulation by RNA degradation or 

epigenetic regulation (Ghildiyal et al., 2008; Obbard, Gordon, Buck, & Jiggins, 2009; Zhai et al., 

2015). Numerous genes are involved in this process. The microprocessor, which is formed when 

DGCR8 binds to DROSHA,  splits primary miRNAs, which are then processed in the cytoplasm to 

mature miRNAs by DICER and further processed by AGO containing RISCs. MOV10 is a member 

of ATP dependant helicases which precludes all kind of non-LTR retrotransposition in human 

cell culture. Additionally, MOV10 reduces L1 RNA levels in the post-transcriptional stage. 

MOV10L1, a MOV10 paralog, is also reported to have anti-retrotransposition activity (Goodier 

et al., 2012; X. Li et al., 2013, p. 10). RNase L (Ribonuclease L) is an endonuclease single-

stranded region of RNAs, which ultimately restricts L1 retrotransposition in human cell culture 

(Silverman, 2007). TREX1, another factor, reduces the accumulation of reverse transcribed 

cDNA and has been shown to reduce L1 activity in the cell line (Hasan & Yan, 2014; Stetson, Ko, 

Heidmann, & Medzhitov, 2008; Yan, Regalado-Magdos, Stiggelbout, Lee-Kirsch, & Lieberman, 

2010).  
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3.2 Methods 

3.2.1 Linear Regression  
We are interested in finding genes that are correlated with L1HS expression levels. Linear 

regressions were implemented on L1HS expression levels (RPM) and gene counts per million 

data for individual cancers. We took the log2 value of all our data to create a normalized 

distribution where all zeros were replaced by the minimum non-zero value in our data set.  The 

relationships were derived from a correlation between individual gene counts per million data 

and the L1HS expression levels. We analyzed patients per cancer type to make our correlations 

because of varying normal expression in tissues. 

 

We applied linear correlations for each cancer type. Furthermore, we calculated fold change, 

which is the proportion of dysregulation in expression of L1HS and genes compared to their 

normal tissue expression. The independent variable was the log2 fold change of gene, and the 

dependent variable was the log2 fold change of L1HS. We only considered patient gene that 

had all non-zero values in our regressions. 
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3.2.2. REC score  
REC scores are cross-cancer association recurrence scores. They are a measure of a regulatory 

relationship in different types of cancer (Jacobsen et al., 2013).  We applied p-values generated 

from the linear regression fold change of L1HS and gene counts per cancer. Then a rank was 

assigned to the smallest p-values. Each rank was divided by the total number of ranks in each 

cancer. The same procedure was done for the inverted. The H0 score, where H0 is the null 

hypothesis, was conducted on both tails. The two-tailed H0 scores were placed in chi-square 

distribution with two times the number of cancers, creating the degree of freedom for that 

gene. The REC score combines both tails measuring a log10 calculation on the lowest valued 

chi-square result. 
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3.3 Results 

3.3.1 Positively correlated expression of Genes with the L1HS expression 
Table 2: DAVID enrichment score 

annotation score count genes 

Bromodomain 
(IPR001487,SM00297,IPR0
18359) 

11.22 16 ASH1L, ATAD2B, BAZ2A, BAZ2B, BPTF, BRWD1, BRWD3, CREBBP, EP300, KIAA2026, PBRM1, 
PHIP, SMARCA2, TAF1, TRIM33, TRIM66 

Zinc finger C2H2 type 
(GO:0006355,IPR007087,IP
R015880,GO:0003676,IPR0
13087,SM00355,GO:00056
22,IPR001909,GO:0046872
,SM00349,GO:0003700) 

8.14 229 ADNP, ARGLU1, ARHGAP5, ARID1A, ARID1B, ARID2, ARID4B, ASCC3, ASH1L, ATP11B, 
ATP13A4, ATP7A, ATR, ATRX, BACH1, BAZ2A, BAZ2B, BCLAF1, BPTF, BRAF, BTAF1, CBFA2T2, 
CCAR1, CDC42BPA, CDH1, CELF1, CHD2, CHD6, CHD7, CHD8, CHD9, CNOT6, CPSF6, CREBBP, 
CTNND1, CTR9, DGKH, DMTF1, DSC2, DST, EP300, EP400, ERBB3, ERCC6, ERI2, EXPH5, EYA3, 
FAM120B, FAM126B, FGD6, GATAD2B, GCC2, GOLGA1, GOLGB1, GPATCH8, HECTD1, HELZ, 
HERC2, HIPK1, HIST4H4, HMBOX1, HUWE1, IKBKAP, IKZF2, INO80D, INTS2, JMJD1C, KDM2A, 
KDM3B, KDM4C, KDM5A, KDM5B, KDM6A, KLF8, LATS1, LCOR, LIN54, LMLN, LNX2, MACF1, 
MAP3K4, MAP4K5, MAPK1, MARCH6, MASP2, MAST4, MBNL3, MBTD1, MDM4, MED1, 
MED23, MGA, MLLT10, MTF1, MTMR3, MTR, MYCBP2, MYSM1, NCOA3, NCOR1, NFAT5, 
NOTCH2, NSD1, PAN3, PBRM1, PCLO, PHC3, PHF3, PHF8, PIAS1, PIKFYVE, PLAGL2, PLEKHM3, 
PLXNB1, PNN, POGK, POGZ, PPP2R3A, PRDM10, PRDM2, PRKDC, PTPN14, RAB10, RAB27B, 
RAB5B, RAD54L2, RALGAPA1, RALGPS1, RALGPS2, RANBP2, RAPGEF2, RBAK, RBBP6, RBM25, 
RBM26, RBM33, RCAN3, RFWD3, RGPD3, RGPD4, RNF169, RNPC3, RREB1, RSC1A1, RUFY2, 
SETD2, SIK3, SMARCA2, SMG1, SON, SP1, SPEN, TAB3, TAF1, TCF20, TET2, TET3, TNKS, 
TOP2B, TOPBP1, TP53BP1, TRIM33, TRIM66, TRIP11, TRRAP, TSSK4, UBR1, UBR4, UBR5, 
UNC13B, USP34, VPS13A, VPS13D, WASL, WDFY2, WDFY3, WRN, WSB1, YLPM1, YTHDC2, 
ZBTB40, ZBTB43, ZCCHC11, ZCCHC14, ZCCHC6, ZFC3H1, ZFHX3, ZMAT1, ZMYM1, ZMYM2, 
ZMYM6, ZNF10, ZNF121, ZNF154, ZNF221, ZNF234, ZNF236, ZNF264, ZNF326, ZNF33A, 
ZNF397, ZNF417, ZNF426, ZNF462, ZNF493, ZNF518A, ZNF562, ZNF587, ZNF594, ZNF608, 
ZNF611, ZNF621, ZNF638, ZNF654, ZNF655, ZNF662, ZNF664, ZNF713, ZNF770, ZNF780B, 
ZNF793, ZNF800, ZNF808, ZNF83, ZNF84, ZNF841, ZNF860, ZNF91, ZSCAN29 

Zinc finger, 
RING/FYVE/PHD-type 
(IPR011011,IPR001965,IPR
013083,IPR019787,SM002
49,IPR019786) 

5.89 34 ASH1L, ATRX, BAZ2A, BAZ2B, BPTF, CREBBP, EXPH5, FGD6, KDM2A, KDM4C, KDM5A, 
KDM5B, LNX2, MARCH6, MDM4, MLLT10, MTMR3, MYCBP2, NSD1, PCLO, PHF3, PHF8, 
PIKFYVE, RBBP6, RFWD3, RNF169, RUFY2, TCF20, TRIM33, TRIM66, UBE4A, UBR1, WDFY2, 
WDFY3 

Helicase 
(IPR000330,IPR001650,IPR
014001,IPR006576,SM005
92,GO:0016569,SM00490,
SM00487,GO:0004386,IPR
027417,IPR016197,IPR023
780,IPR000953,GO:000809
4,GO:0016817,SM00298) 

4.18 68 ABCA5, AQR, ARHGAP5, ARID1A, ARID1B, ARID2, ARID4B, ASCC3, ATAD2B, ATAD5, ATP11B, 
ATP13A4, ATP7A, ATRX, BPTF, BTAF1, CHD2, CHD6, CHD7, CHD8, CHD9, CNOT6, DLG1, DLG5, 
DNAH1, EP400, ERCC6, ERI2, EYA3, HELZ, KIF20B, KIF21A, LMLN, MAGI3, MASP2, MBTD1, 
MDN1, MGEA5, MPP7, MTMR3, MYO6, MYSM1, N4BP2, NCOR1, OTUD4, PBRM1, PEX1, 
PTPN13, PTPN14, RAB10, RAB27B, RAB5B, RAD54L2, SENP1, SENP6, SETX, SMARCA2, SMC2, 
SMC5, SPEF2, TANC2, USP24, USP34, USP46, USP48, WRN, YLPM1, YTHDC2 

Armadillo-like helical, 
HEAT repeat (IPR011989) 

4.08 26 AP1G1, ARFGEF1, ARID1A, ARID1B, ATR, BTAF1, CAND1, CLASP1, CTNND1, HEATR5B, 
HECTD1, KIAA0368, KIAA1468, MON2, MTOR, NIPBL, PDS5A, PRKDC, PUM2, RICTOR, RIF1, 
SCYL2, SF3B1, SMG1, TRRAP, WDFY3 

Bromodomain  3.14 7 BRWD1, BRWD3, HERC1, PBRM1, PHIP, STXBP5, TAF1 
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Figure 15: Genes positively correlated with L1HS expression in multiple cancer types 
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Figure 16: Genes negatively correlated with L1HS expression in multiple cancer types 
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To study the genes that are co-expressed with L1HS, we relied on the RNA-seq gene level 

quantification provided by TCGA estimated with the RSEM algorithm. For each gene within each 

tissue, we tested several linear models with L1HS level as the dependent variable and the 

individual gene expression level as the independent variable, taking into account the batch 

effect and the total transcript count as covariates. The coefficients, p-value, and q-value for 

each gene were estimated based on the best model with the smallest AICc.    

We found 2618 genes that showed positive correlation in expression with L1HS (q-value < 10e-

4) in at least one tissue. There were 515 genes that were positively correlated with L1HS in 

more than one tissue. We did a gene set enrichment analysis in DAVID for the 515 genes that 

are positively correlated with L1HS in more than one tissue. After excluding the very general 

category of “transcription regulation” that consisted of 266 genes, the top three most enriched 

clusters were the bromodomains, the PHD fingers, and the C2H2 zinc fingers including the 

Kruppel-associated box zinc-finger proteins (KRAB-ZFPs) (TABLE 2 ).   

 

DAVID enrichment score: minus log transformation on the geometric mean of all the 

enrichment P-values (from Fisher's exact test) for each annotation term associated with the 

gene members in the group. Enrichment score of 1.3 is equivalent to a non-log scale average p-

value of 0.05.   

 

Bromodomains are acetyllysine binding domains and PHD domains are methyl-lysine binding 

domains. They are both chromatin readers that recognize modified chromatin and function in 

the epigenetic control of gene transcription. PHD and bromodomains are found in tandem in 
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the C-terminal of several chromatin-associated proteins (Meroni & Diez-Roux, 2005; Tallant et 

al., 2015), including the transcriptional intermediary factor 1 (TIF1) family. Two members of the 

TIF1 family, TRIM33 (TIF1γ) and TRIM66 (TIF1δ) showed a positive correlation with L1HS in 

multiple tissues in our analysis. TRIM33, which is known to bind to histone (H3) and repress 

TFG-β signaling pathways, was significantly associated with L1HS in four different tissues, breast 

(BRCA), squamous cells in the head and neck (HNSC), lung (LUAD) and the thyroid gland (THCA). 

TRIM66, which is known to be testis-specific and to interact with HP1γ (Khetchoumian et al., 

2004) was strongly associated with L1HS levels in breast and kidney (KIRC). 

The second enriched category of genes are the C2H2 zinc fingers including the KRAB-ZFPs, many 

of which directly interact with PHD-bromodomain proteins. The function of most KZFPs are 

unknown, but a few have been demonstrated to repress transposable elements in embryonic 

stem (ES) cells (Castro-Diaz et al., 2014; Wolf & Goff, 2009). The best-known example of the 

interaction between KRAB-ZFPs and PHD-bromodomain proteins is the co-repressor KAP1 

(TRIM28) that binds to multiple KRAB C2H2 zinc-finger family of proteins and recruits 

associated mediators of histone and DNA methylation (Rowe 2010). KAP1 did not show a 

positive correlation with L1HS in our data, as it actually showed marginal negative correlation 

with a q-value < 0.001 in breast and q-value < 0.05 in the thyroid gland. There are five KRAB-

ZFPs that have been shown to bind to L1HS sequence in earlier Chip-Seq studies, ZNF425, 

ZNF382, ZNF84, ZNF141 and ZNF649 (Imbeault, Helleboid, & Trono, 2017; Najafabadi et al., 

2015). Although binding doesn’t necessarily correspond with expression, we looked at whether 

any of these showed association with L1HS in the expression level. Of these five, ZNF84 showed 

positively correlated expression with L1HS in the breast and lung tissues, and ZNF141 showed a 
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positive correlation with L1HS in the breast tissue. Among the KRAB-ZFPs, ZNF37B, which is 

known as a pseudogene, and ZNF587, that hasn’t been studied very much, were the two genes 

that showed positive correlation in the broadest tissue types. ZNF37B showed significant 

correlation with L1HS in breast, kidney, lung, and thyroid gland and ZNF587 showed significant 

correlation with L1HS in breast, kidney, and lung. ZNF587 have been tested for binding to L1HS 

in the 293T cell line and showed no evidence of binding (Imbeault et al., 2017). Considering the 

repressing function of KRAB domains, we also looked at whether expression of any of the KRAB-

ZFPs was negatively correlated with L1HS expression, but we only found four KZFPs that 

showed significant negative correlation with L1HS in more than one tissue: ZNF32, ZNF358, 

ZNF511, and ZNF576. Thus, KRAB-ZFPs were not over-represented among the genes negatively 

correlated with L1HS in expression. 

 

Since TEtranscripts software provided us with quantification for genes as well as repeat 

elements, we could duplicate the gene-L1HS co-expression analysis taking the quantification 

obtained through TEtranscripts instead of the quantification provided by TCGA. Although there 

were minor differences in the correlation ranks of individual genes between the two 

quantifications, the highest enrichment of PhD fingers, bromodomains and KRAB-ZFPs were 

found in both results. 

Since the linear regressions were done for each tissue separately and the significance depends 

on the number of samples for each tissue type, we found that the correlation in the tissues, 

breast, kidney, thyroid, and lung, which have the largest number of samples, were over-

represented in our significant results. So, we decided to use a complementary approach called 
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REC score that utilizes the ranks of correlations instead of the absolute p-values to find 

recurrent correlation across tissues. This rank-based approach ensures that individual cancer 

types are weighted equally, and limits bias from cancer data sets with large sample sizes or 

from strong associations measured in only a single cancer type. A strong negative REC score 

reflects that the miRNA-mRNA pair generally show anti-correlation across the studied cancer 

types, and this is evidence of a functional miRNA target relationship (Jacobsen et al., 2013). 

Based on the REC score, there were 116 genes that showed significant positive correlation with 

L1HS (REC score < -6.2), including long noncoding RNA genes, and a gene involved in chromatin 

remodeling. Table 3 lists the top 10 genes with the most recurrent positive correlation with 

L1HS across multiple tissues. The figure shows the correlation with L1HS in the tissues that 

were found significant. 

 
Table 3: Top genes predicted by REC score 

rank gene REC 
1 LOC100190986 -13.26616995 
2 NKTR -12.472002 
3 UBN2 -11.45355791 
4 ARHGAP32 -11.18303168 
5 ZNF587 -11.05819585 
6 ZNF37B -10.43415864 
7 FLJ45340 -10.43328428 
8 WDR52 -10.40008123 
9 BAT2L2 -10.35514121 
10 THOC2 -10.0873781 
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3.3.2 Correlation with other TE families  
 
Since TEtranscripts quantifies the reads mapped to different transposon families, we were also 

able to study the coexpression of different transposons with L1HS. Based on the estimates of 

TEtranscripts, we found multiple LINE1 subfamilies showing up with the strongest correlation in 

expression levels with L1HS at the top of the list (TABLE 4). In fact, the correlations between 

L1HS and many repeat families were much stronger than the relationship between L1HS and 

any of the genes. Based on the REC score that summarizes the ranks of recurrent correlations in 

multiple tissues, we found that the top 129 transcripts that are in recurrent correlations with 

L1HS are all repeat elements with various L1PAs occupying the top of the ranks. It is only by the 

130th rank in REC score that we observed the first non-transposon gene in correlation with 

L1HS, which is NKTR, the Natural Killer Cell Triggering Receptor protein. (Although NKTR is the 

second-ranking gene in the analysis based on TCGA-quantification, it is the first ranking gene in 

the analysis based on the TEtranscripts-quantification). The correlation between L1 subfamilies 

is expected because reads from transposons that are indistinguishable between subfamilies are 

assigned to multiple subfamilies with proportional weight by TEtranscripts applying an 

Expectation-Maximization algorithm. What was not expected, was that we also found several 

Endogenous retroviruses (ERVs) that are highly and recurrently correlated with L1HS expression 

in multiple tissues (Table 5). Since there is no sequence similarity between the ERVs and the 

LINEs, we conclude that it is due to a common regulatory mechanism that is de-repressing or 

up-regulating these ERVs and L1HS at the same time. There have been reports of co-expression 

of ERVs and LINE-1s in cancerous tissues (Desai et al. JCI Insight. 2017), possibly through 

concordant hypomethylation (Menendez et al., Molecular Cancer 2004). This is the first report 
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of co-expression of L1HS and specific families of ERVs in multiple normal tissues. In colon cancer 

cells studied by Desai et al, HERV-K elements were coexpressed with LINE-1, but HERV-H 

elements were not. HERV-K elements are human-specific and are the most active LTRs in the 

human genome (Konstantin Khodosevich Comp Funct Genomics 2002). But, in the normal cells 

we examined, HERV-K elements were not as highly correlated with an L1HS expression as some 

ERV-L or ERV1 elements. The ERV-K element with the highest REC score was HERVK11 ranked at 

242th with a REC score of -7.214. 

 

Table 4: REC score of L1HS with another repeat family 

REC score rank LINE1 family REC REC score rank ERV family REC 
1 L1HS:L1:LINE -Inf 17 ERVL-B4-int:ERVL:LTR -12.571 
2 L1M2:L1:LINE -Inf 19 MLT1E1A:ERVL-MaLR:LTR -12.414 

3 
L1MA4A:L1:LIN
E -Inf 25 HERVH48-int:ERV1:LTR -11.875 

4 L1P1:L1:LINE -Inf 26 
Tigger1:TcMar-
Tigger:DNA -11.767 

5 L1PA10:L1:LINE -Inf 29 MLT1A:ERVL-MaLR:LTR -11.707 
6 L1PA13:L1:LINE -Inf 30 ERVL-E-int:ERVL:LTR -11.564 
7 L1PA2:L1:LINE -Inf 31 LTR9B:ERV1:LTR -11.538 
8 L1PA3:L1:LINE -Inf 35 MER21C:ERVL:LTR -11.373 
9 L1PA4:L1:LINE -Inf 36 MSTB1:ERVL-MaLR:LTR -11.305 

10 L1PA5:L1:LINE -Inf 38 LTR40a:ERVL:LTR -11.116 
11 L1PA7:L1:LINE -Inf 41 MER5A:hAT-Charlie:DNA -10.987 
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3.3.3 Mitochondrial genes are enriched in negatively correlated genes with L1HS  
Compared to the genes in positive correlation with L1HS, there was overall less number of 

genes in negative correlation with L1HS in expression. We found 1891 genes that showed a 

negative correlation in expression with L1HS (q-value < 10e-4) in at least one tissue. There were 

454 genes that were negatively correlated with L1HS in more than one tissue. We did a gene set 

enrichment analysis in DAVID for the 454 genes that were negatively correlated with L1HS in 

more than one tissue. The top three most enriched clusters were mitochondrial transit peptide, 

mitochondrial inner membrane, ribosome and ribonucleoprotein, and oxidative 

phosphorylation (TABLE 5). 
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Table 5:  Mitochondrial genes negatively correlated with L1HS 

annotation Score  Count  Genes  

mitochondrial 
transit peptide, 
mitochondrial inner 
membrane 
(GO:0005743) 

22.32 82 ACADS, ARL2, ATP5D, ATP5G2, ATP5G3, ATP5J, 
AURKAIP1, BAD, BLOC1S1, C19ORF12, C19ORF70, 
C21ORF33, CHCHD1, CHCHD2, CISD3, CLPP, 
COX6A1, ECSIT, FIS1, GADD45GIP1, GPX4, HAGH, 
HAX1, HIGD2A, HMGCL, HSD17B10, HTRA2, MPG, 
MRPL11, MRPL12, MRPL16, MRPL17, MRPL18, 
MRPL20, MRPL24, MRPL27, MRPL34, MRPL38, 
MRPL41, MRPL43, MRPL52, MRPL53, MRPL54, 
MRPS11, MRPS12, MRPS15, MRPS23, MRPS24, 
MRPS34, MSRB2, NDUFA11, NDUFA13, NDUFA2, 
NDUFA8, NDUFAF3, NDUFB10, NDUFB2, NDUFB6, 
NDUFB7, NDUFB8, NDUFC2, NDUFS6, NDUFS8, 
NFU1, NUDT1, PACS2, PARK7, PEMT, PHB, PRDX3, 
PRELID1, ROMO1, RSAD1, SLC25A6, TIMM17B, 
TIMM50, TIMM8B, TMEM126A, TRIAP1, TSPO, 
UQCR11, UQCRQ 

mitochondrial 
ribosomal protein, 
ribonucleoprotein 
(GO:0070125,GO:0
070126,GO:000373
5,GO:0005762,GO:0
005840,GO:000641
2,hsa03010,GO:000
5761) 

14.83 45 AURKAIP1, CHCHD1, FAU, GADD45GIP1, IMP3, 
LSM1, LSM10, LSM2, LSM4, MRPL11, MRPL12, 
MRPL16, MRPL17, MRPL18, MRPL20, MRPL24, 
MRPL27, MRPL34, MRPL38, MRPL41, MRPL43, 
MRPL52, MRPL53, MRPL54, MRPS11, MRPS12, 
MRPS15, MRPS23, MRPS24, MRPS34, NHP2, 
RPL13, RPL3, RPL35, RPS12, RPS19, RPS19BP1, 
RPS9, SLBP, SLC25A6, SNRPB, SNRPC, SNRPD2, 
SNRPN, SRP14 

oxidative 
phosphorylation 
(hsa05016,hsa0501
2,GO:0005747,GO:0
032981,hsa00190,h
sa05010,GO:00061
20,GO:0008137,hsa
04932,GO:0070469,
hsa01100) 
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ACADS, ADSL, AK1, AP2M1, APH1A, APRT, ATP5D, 
ATP5G2, ATP5G3, ATP5J, ATP6V1E1, BAD, 
C19ORF70, CLTA, COX6A1, CRYL1, DCTN2, 
DCTPP1, DPM3, DTYMK, ECSIT, GUK1, HIGD2A, 
HMGCL, HSD17B10, HTRA2, NDUFA11, NDUFA13, 
NDUFA2, NDUFA8, NDUFAF3, NDUFB10, NDUFB2, 
NDUFB6, NDUFB7, NDUFB8, NDUFC2, NDUFS6, 
NDUFS8, NME2, PARK7, PEMT, PGAM1, PGLS, 
PHB, POLE4, POLR2C, POLR2F, POLR2G, POLR2L, 
ROMO1, RPN1, SAT2, SLC25A6, ST6GALNAC4, 
THTPA, TIMM17B, TIMM50, TIMM8B, 
TMEM126A, TPI1, UQCR11, UQCRQ, UROD, UROS 
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3.3.4 Conclusion 

Overall, we discovered numerous genes that are both positively and negatively correlated with 

L1HS expression. Through REC score study, we predicted top genes that might be associated 

with L1HS expression. Additionally, we detected top LINE1 families and other repeat families 

that are highly correlated with L1HS expression. We predicted functions enriched in positively 

and negatively correlated genes by DAVID enrichment study. Mitochondrial functions are 

enriched in negatively correlated genes. On the other hand, bromodomains and zinc finger 

families are enriched in positively correlated genes.  
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Chapter 4: miRNA and L1HS coexpression 

4.1 Introduction 
MicroRNAs (miRNAs) are short RNA sequences known to play an integral role in gene 

expression and cell differentiation (MacFarlane & Murphy, 2010). L1HS is a LINE-1 

retrotransposon still active in the human genome. L1HS is known to be responsible for several 

diseases in humans. Our goal was to further understand miRNA dysregulation of the L1HS 

transposon. We compared L1HS to miRNA expression levels to find significant correlations. 

From the correlations, computational methods predicted miRNA targets in L1HS’s coding 

regions and 3’ UTR. 

4.2 Methods 

4.2.1 Data 
We collected 1046 miRNA patient files from The Cancer Genome Atlas (TCGA) for 530 patients. 

The 18 cancer types included were Bladder Urothelial Carcinoma (BLCA), Breast Invasive 

Carcinoma (BRCA), Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma 

(CESC), Cholangiocarcinoma (CHOL), Esophageal Carcinoma (ESCA), Head and Neck Squamous 

Cell carcinoma (HNSC), Kidney chromophore (KICH), Kidney Renal Clear Cell Carcinoma (KIRC), 

Kidney renal papillary cell carcinoma (KIRP), Liver hepatocellular carcinoma (LIHC), Lung 

Adenocarcinoma (LUAD), Lung Squamous Cell carcinoma (LUSC), Pancreatic adenocarcinoma 

(PAAD), Pheochromocytoma and Paraganglioma (PCPG), Prostate Adenocarcinoma (PRAD), 

Stomach Adenocarcinoma (STAD), Thyroid Carcinoma (THCA), and Uveal Melanoma (UCEC). 



 
 

62 
 

 

We computed gene expression levels in DESeq1 & DESeq2 (Love et al., 2014) for the 630 

patients for all genes and TEs.   We sometimes took just L1HS cancer read counts per million 

(RPM) values, but for fold change, we took L1HS normal RPM for the experiments also which 

being a proper subset of the former reduces the data patients to 530. We omitted 160 miRNAs 

with zero values across all patients. As with L1HS, we considered just cancer RPM except with 

experiments with fold-change. 

 

For a set of fold change data including linear regressions and REC scores, we analyzed with 

matched patient cancer tissue samples of miRNA, L1HS’s expression levels, normal tissue 

sample miRNA, and L1HS expression level counts. 

To identify possible target sites, we collected miRNA transcript sequences from MirBase. We 

downloaded a consensus L1HS cDNA sequence from RepBase. Furthermore, to consider 

conservation of LINE1 elements, we gathered other mammalian L1 sequences for Homo 

sapiens, Callithrix jacchus, Sus scrofa, Bos taurus, Microcebus murinus, Rattus norvegicus, Felis 

catus, Canis lupus familiaris, Mus musculus, Pan troglodytes, and Tarsius syrichta from RepBase. 
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4.2.2. Linear Regression 
We are interested in finding miRNAs that are correlated with L1HS expression levels. Linear 

regressions were used on L1HS expression levels (RPM) and miRNA counts per million data for 

individual cancers. We took the log2 value of all our data to create a normalized distribution 

where all zeros were replaced by the minimum non-zero value in our data set.  The 

relationships were derived from a correlation between individual miRNA counts per million 

data and the L1HS expression levels. We used patients per cancer type to make our correlations 

because of varying normal expression in tissues. 

 

Several studies show that an miRNA could be responsible for dysregulation of expression in one 

tissue type but not necessarily others (Ahluwalia et al., 2008; Filipowicz, Bhattacharyya, & 

Sonenberg, 2008; MacFarlane & Murphy, 2010). Therefore, we used linear correlations for each 

cancer type. Furthermore, we used fold change, which is the proportion of dysregulation in 

expression of L1HS and miRNAs compared to their normal tissue expression. The independent 

variable was the log2 fold change of miRNA, and the dependent variable was the log2 fold 

change of L1HS. We only considered patient miRNA that had all non-zero values in our 

regressions. 
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4.2.3. Linear Mixed Model 
We considered the possibility that miRNA and L1HS expression levels could vastly differ across 

different types of cancer tissues. Therefore we fitted a linear mixed model (Bates et al., 2014; 

Bolker et al., 2009) where we consider every cancer type to be a category. Using Python’s 

StatsModel library we fitted a mixed linear model per miRNA. Our dependent variable is the 

natural log of miRNA cancer counts per million. Our independent variable is the natural log of 

L1HS cancer RPM level. 

We considered four possible linear models. We performed Likelihood Ratio Test (LRT) across 

nested models and compared Akaike Information Criterion (AIC) otherwise. Across our miRNA 

data Model, 0 best predicted our data. We took separate intercepts per cancer type as our 

random effect. For every miRNA, we fit a mixed linear model computing a p-value, log-

likelihood score, slope coefficient, global intercept, and individual intercepts per cancer type, 

and graph. 

 

Table 6: Mixed model 

Model Name Model Description Degrees of 
Freedom 

Nesting 

Model 0 Random intercepts model 4 Nested in Model 3 
and Model 2 

Model 1 Random slopes model 4 Nested in Model 3 
and Model 2 

Model 2 Random intercepts and slopes 

assuming correlation = 0 

5 None 

Model 3 Random intercepts and slopes 6 Nested in Model 2 
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4.2.4. REC Scores 
REC scores are cross-cancer association recurrence scores. They are a measure of a regulatory 

relationship in different types of cancer (Jacobsen et al., 2013).  We used p-values generated 

from the linear regression fold change of L1HS and miRNA counts per cancer. Then a rank was 

assigned to the smallest p-values. Each rank was divided by the total number of ranks in each 

cancer. The same procedure was done for the inverted. The H0 score, where H0 is the null 

hypothesis, was conducted on both tails. The two-tailed H0 scores were placed in chi-square 

distribution with two times the number of cancers, creating the degree of freedom for that 

miRNA. The REC score combines both tails taking a log10 calculation on the lowest valued chi-

square result. 

4.2.5. TargetScan 
TargetScan finds miRNA targets sites of miRNA at the 3’ UTR of mature mRNA sequences using 

context++ scores (D. Betel, Wilson, Gabow, Marks, & Sander, 2007; Doron Betel, Koppal, Agius, 

Sander, & Leslie, 2010; Didiano & Hobert, 2006). Context scores take into account 17 features 

including sequence conservation, seed pairing stability, site type e.g. 8-mer, 7-mer, 6-mer.  We 

ran TargetScan 7.0 to calculate context scores and find 8-mer target sites. We downloaded 

sequences from Repbase which we aligned with Seaview Muscle. The miRNA mature taxon 

sequence data was from MirBase and miRNA family input files were made from TargetScan's 

miRNA family file. Open reading frames (ORFs) were found with an NCBI gene annotation file 

for L1HS. We found L1PT’s ORF sequence using OrfFinder, the sequence was analogous to the 

ORFs found in L1HS. Each part of the sequence had an affected isoform ratio (AIR) of 100.  AIRs 



 
 

66 
 

are important because the scores current scores can be increased five-fold considering this 

variable. 

TargetScan relies on an input of an ORF sequence per gene.  L1HS has two ORFs (McMillan & 

Singer, 1993) which were tested separately. TargetScan takes into account the length of the 

ORF sequence, which explains difference in context scores between our short-ORF and long-

ORF. 
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4.2.6. MiRanda 
We are interested in finding MiRNA target sites for L1HS regulation. The software MiRanda 

takes a MiRNA transcript and the cDNA sequence of L1HS and predicts possible target sites. 

Based on the results of the mixed model we chose MiRNAs that had a significant correlation. 

For each MiRNA, we tested all known transcripts against the L1HS cDNA sequence. MiRanda 

predicted multiple possible MiRNA target sites in the 3’ UTR and CDS of L1HS. These results 

match the predictions of TargetScan.  
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4.3 Results 

4.3.1. Several miRNAs are correlated with L1HS 
The linear regression by miRNA including all cancers did not yield significant results. We found 

the correlation scores were below |.4 |, this did not meet our threshold.  This is attributed to 

each cancer has its own expression relation a miRNA and differential gene expression based on 

each tissue. The data from the linear regression by miRNA shows that various miRNAs are 

active in different tissue samples. We evaluated data points in one linear regression, which did 

not look at these underlying patterns and skewed results. 

For our linear regressions per cancer type results, we found several high correlation 

coefficients, however, most cancer types have few data points, and therefore we cannot 

confidently conclude much from these results. 

 

Table 7: Linear Regression Results. Per miRNA, we performed a linear regression on all cancers without fold change. This figure 
shows our top results based on r-value. 

MiRNA P-value R-value Q-value 

hsa-mir-203 4.26E-22 0.402 2.69E-19 

hsa-mir-944 7.28E-22 0 1.70E-13 

hsa-mir-194-1 1.79E-16 -0.347 1.49E-14 

hsa-mir-200c 1.29E-21 0.398 2.69E-19 

 

 

 



 
 

69 
 

Table 8: Linear Regression Results. Per miRNA we performed a linear regression on fold change of all cancers. This figure shows 
our top results based on r-value. 

MiRNA P-value R-value Q-value 

hsa-mir-30a 4.15E-08 -0.235 6.05E-07 

hsa-mir-145 0.702 0.016 0.788 

hsa-mir-210 2.58E-19 0.377 1.81E-16 

hsa-let-7f-1 0.043 0 0.0962 
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Table 9: Linear Regression Results. Per miRNA we performed a linear regression on each cancer type. This table shows our top 
results based on r-value. 

MiRNA Cancer 
type 

R-value P-value Q-Val Number of 
Patients 

hsa-mir-204 PRAD -0.654 x < 1.0e-
4 
 

0.0389148615 36 
 

hsa-mir-375 PRAD 0.647 x < 1.0e-
4 

0.0389148615 36 
 

hsa-mir-
374a 

KICH -0.615 0.001 
 

0.1172555 25 
 

hsa-mir-503 KICH -0.614 0.001 
 

0.1172555 25 
 

hsa-mir-505 KICH -0.610 0.001 
 

0.1172555 25 
 

hsa-mir-
1468 

UCEC 0.604 0.004 
 

0.2381106363939393
7 

21 
 

hsa-mir-382 UCEC 0.600 0.004 
 

0.2381106363939393
7 

21 
 

hsa-mir-9-1 KIRP 0.516 0.003 0.7401719 32 

hsa-mir-9-2 KIRP 0.511 0.003 0.7401719 32 

hsa-mir-
200c 

HNSC 0.506 6.27E-4 0.1725512 42 

 

 

 

 



 
 

71 
 

4.3.2. Mixed Linear Model predicts 38 potential miRNAs               
We compute 731 mixed linear model, one for each miRNA and a graph of the fitted model. We 

compiled a list of 38 MiRNAs with significant q-values based on the fitting of the linear mixed 

models. 

    

 

Figure 17: Linear mixed model fit miRNA hsa-mir-29b-2. Sample graph for linear mixed model results for hsa-mir-29b-1 
comparing log MiRna Counts / Million versus log L1HS RPM Values. We compute the global regression line, as well as individual 
cancer type regressions. 
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We compile a list of MiRNAs, fitted slope coefficient, and p-value. We compute q-values from 

our compiled list and consider only miRNAs with significant q-values of alpha < 0.05. We end up 

with a list of 38 significant MiRNAs (TABLE 10). 
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Table 10: List of Significant MiRNAs. MiRNAs with significant correlation based on linear mixed model results. 

Mirna Slope P-Value Q-Value 

hsa-mir-29b-2 -0.219 0 0 

hsa-mir-29b-1 -0.216 0 0 

hsa-mir-29a -0.2 0 0 

hsa-mir-138-2 -0.128 0 0 

hsa-mir-142 -0.122 0 0 

hsa-mir-3614 -0.117 0 0 

hsa-mir-155 -0.112 0 0 

hsa-mir-150 -0.099 0 0 

hsa-mir-1269 0.046 0 0 

hsa-mir-767 0.085 0 0 

hsa-mir-105-2 0.092 0 0 

hsa-mir-200c 0.098 0 0 

hsa-mir-105-1 0.101 0 0 

hsa-mir-1266 0.106 0 0 

hsa-mir-3677 0.12 0 0 

hsa-mir-452 0.126 0 0 

hsa-mir-1180 0.129 0 0 

hsa-mir-1911 0.137 0 0 

hsa-mir-940 0.137 0 0 

hsa-mir-320a 0.16 0 0 

hsa-mir-27b 0.22 0 0 

hsa-mir-423 0.237 0 0 

hsa-mir-622 -0.421 0.001 0.0233 

hsa-mir-3065 0.08 0.001 0.0233 

hsa-mir-653 0.084 0.001 0.0233 

hsa-mir-518b 0.102 0.001 0.0233 
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4.3.3. REC Scores did not predict significant miRNAs  
Python and R were run to calculate the REC scores. A successful REC score is considered to be 

less than -6.2 (Jacobsen et al., 2013). 

 

Table 11: REC Scores Results in Python. This list contains miRNA with the highest REC scores. 

miRNA REC Scores Number of Cancers 

hsa-mir-219-2 -2.874 11 

hsa-mir-561 -2.368 15 

hsa-mir-7-2 -2.164 17 

hsa-mir-518e -1.862 7 

hsa-mir-3676 -1.809 20 

hsa-mir-548q -1.802 14 

hsa-mir-582 -1.612 20 
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4.3.4. TargetScan predicts binding site of L1HS in several miRNAs  
Likely miRNA target sites have near perfect miRNA sequence matching on base pairs 2-8, known 

as the seed sequence,  and a low context score (Doron Betel et al., 2010). We found several 

miRNA that meets this criterion. 
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Table 12: List of miRNA transcripts from the short CDS. Using TargetScan we computed likely miRNA target sites. This list miRNA 
transcripts 8-mers and 7-mers with good context scores with short CDS. 

miRNA Transcript N-mer Length Context Score 

hsa-miRNA-138-5p 8mer-1a -0.149 

hsa-miRNA-150-5p 8mer-1a -0.164 

hsa-miRNA-2116-3p 7mer-1a -0.133 

hsa-miRNA-3127-3p 8mer-1a -0.347 

hsa-miRNA-6756-3p 8mer-1a -0.347 

hsa-miRNA-331-5p 8mer-1a -0.237 

hsa-miRNA-3657 7mer-1a -0.102 

hsa-miRNA-3667-3p 7mer-m8 -0.155 

hsa-miRNA-455-5p 7mer-m8 -0.138 

hsa-miRNA-4667-3p 7mer-1a -0.137 

hsa-miRNA-4669 7mer-1a -0.194 

hsa-miRNA-4713-5p 7mer-m8 -0.195 

hsa-miRNA-5684 7mer-1a -0.138 

hsa-miRNA-657 8mer-1a -0.225 

hsa-miRNA-675-5p 7mer-1a -0.146 

hsa-miRNA-6826-3p 7mer-1a -0.155 

hsa-miRNA-6840-5p 7mer-1a -0.261 

hsa-miRNA-6841-5p 8mer-1a -0.404 

hsa-miRNA-6887-3p 7mer-m8 -0.149 
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Table 13: List of miRNA transcripts from the long CDS. Using TargetScan we computed likely miRNA target sites. This list 
contains likely miRNA transcripts 8-mers and 7-mers with good context scores using the long CDS. 

miRNA Transcript N-mer Length Context Score 

hsa-miRNA-3127-3p 8mer-1a -0.225 

hsa-miRNA-6756-3p 8mer-1a -0.225 

hsa-miRNA-331-5p 8mer-1a -0.115 

hsa-miRNA-4669 7mer-1a -0.156 

hsa-miRNA-4713-5p 7mer-m8 -0.135 

hsa-miRNA-657 8mer-1a -0.103 

hsa-miRNA-675-5p 7mer-1a -0.108 

hsa-miRNA-6826-3p 7mer-1a -0.117 

hsa-miRNA-6840-5p 7mer-1a -0.223 

hsa-miRNA-6841-5p 8mer-1a -0.282 
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Table 14: List of miRNA transcript 8-mer for short CDS. This list all the miRNAs that Targetscan found with the 8-mer matching of 
the seed sequence for the short CDS. 

miRNA Transcript Context Score 

hsa-miRNA-138-5p -0.149 

hsa-miRNA-150-5p -0.164 

hsa-miRNA-3127-3p -0.347 

hsa-miRNA-6756-3p -0.347 

hsa-miRNA-331-5p -0.237 

hsa-miRNA-5580-3p -0.091 

hsa-miRNA-657 -0.225 

hsa-miRNA-6841-5p -0.404 

 

 

Table 15: List of miRNA transcript 8-mer for long CDS. This list all the miRNAs that Targetscan found with the 8-mer matching of 
the seed sequence for the long CDS. 

MiRNA Transcript Context Score 

hsa-miRNA-138-5p -0.03 

hsa-miRNA-150-5p -0.042 

hsa-miRNA-3127-3p -0.225 

hsa-miRNA-6756-3p -0.225 

hsa-miRNA-331-5p -0.115 

hsa-miRNA-5580-3p -0.03 

hsa-miRNA-657 -0.103 

hsa-miRNA-6841-5p -0.282 
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4.3.5. Miranda predicts binding site of L1HS in several miRNAs 
We identified miRNA target sites matching though L1HS 3’ UTR region and CDS. The following 

miRNAs were predicted by the mixed model results, MiRanda, and TargetScan: hsa-mir-138-2-

5p, hsa-mir-150-5p, hsa-mir-331-5p, hsa-mir-3127-3p. Several other miRNAs were predicted by 

MiRanda in the CDS of L1HS. As TargetScan only checks the 3’ UTR these were not found by 

TargetScan: hsa-mir-29a, hsa-mir29b-1, hsa-mir29b-2. 

 

 

 

Figure 18: Target Site for hsa-mir-138-2-5p. miRNA Transcript target site located at 5930 to 5952 in our L1HS 3’ 

UTR region. 
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Table 16: microRNA predicted by the mixed model, Targetscan, Rec score and MiRanda 

MiRNA Mixed 
Model 

Targetscan Context 
Score 

REC 
Score 

MiRanda 

hsa-mir-150 -.099 -0.042 -0.4843 148.00  -19.28 
(5p) Q:2 to 19  R:5886 to 5906 

hsa-mir-138-1 -.077 -0.03 -0.7914 (3p) nothing 
(5p) 153 -18.02 

hsa-mir-138-2 -.128 -0.03 0.02512 156.00  -14.33 
(3p) Q:2 to 17  R:5379 to 5400 
(3p) Q:2 to 9  R:3018 to 3039 
153 -18.02 
(5p) Q:2 to 18  R:5930 to 5952 
(5p) Q:2 to 19  R:1956 to 1978 
(5p) Q:2 to 17  R:974 to 994 

hsa-mir-622 -.421 N/A 0 153 -23.98 

hsa-mir-3614 -.117 N/A -0.2231 154 -17.93 
(3p) Q:2 to 19  R:1025 to 1047 
(3p) Q:3 to 21  R:2770 to 2792 
141 -26.77 
(5p) Q:2 to 22  R:674 to 696 

hsa-mir-3127 .128 -0.225 0.50323 145 -23.37 
(3p) Q:2 to 19  R:5824 to 5846 
(3p) Q:2 to 21  R:422 to 443 
(3p) Q:2 to 18  R:5867 to 5888 
145.00  -21.23 
(5p) Q:2 to 20  R:3337 to 3358 

hsa-mir-29a -.2 N/A 0.37903 162.00  -17.08 
(3p) Q:2 to 20  R:4774 to 4797 
160 -12.3 
(5p) Q:2 to 20  R:2998 to 3019 

hsa-mir-29b-1 -.216 N/A 0.57599 Score:166 Energy: -17.99 
(3p) Q:2 to 22  R:4774 to 4797 
150 -27.44 
(5p) Q:2 to 23  R:3503 to 3526 
(5p) Q:2 to 22  R:2668 to 2694 
(5p) Q:3 to 23  R:4519 to 4541 

hsa-mir-29b-2 -.219 N/A 0.20491 166.00  -17.99 
(3p) Q:2 to 22  R:4774 to 4797 
160 -12.3 
(5p) Q:2 to 21  R:2796 to 2817 
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We looked at miRNAs that had strong results through multiple methods of testing. After using 

regressions to find targets we tried to find binding sites that could be responsible for L1Hs 

dysregulation. We found the mixed model to best predict L1HS and miRNA correlation. Mixed 

models do not have the underlying assumption of linear regression that doesn’t allow 

secondary categorization 

REC scores are a measure of recurring miRNA relationships in the pan-cancer network.  This 

method is able to find miRNAs that correspond to findings in Targetscan and MiRanda.The REC 

scores we found don’t support our targets. 

We found several top-scoring candidate miRNA target sites from TargetScan. Unfortunately, we 

could not cross check these miRNAs against other methods as no data was available from them 

in TCGA. 

We found a hsa‐miR-29b relationship with NREP had a REC score of ‐19.62.    

 

Conclusion 

miRNA 150, 138, and 3127 do well in three measures Mixed model, Targetscan, MiRanda.  

miRNA 150, 138, and 3127 might be strong candidates for regulation of L1HS. Although the REC 

scores for these miRNAs are considered insignificant, they are among the lowest values closest 

to -6.2 that were received from the REC score analysis. 
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4.4. Conclusion 
Overall, we measured the expression level of retrotransposon in different cancer tissues as well 

as healthy tissues. L1HS, one of the members of the LINE-1 family, was overexpressed 

significantly in 15 different cancer tissues compared to corresponding healthy tissues. L1HS 

expression level was not higher in STAD and THCA compared to corresponding healthy tissue. 

Also, we compared the L1HS expression level among different healthy tissues. We observed 

large number variation in terms of L1HS expression in different healthy tissues. STAD and ESCA 

had a much higher expression of L1HS compared to others. L1HS expression also varied across 

different individuals.  

Next, we sought to find the association of L1HS expression with different factors including 

genes and miRNA. We predicted different genes and miRNA that might be associated with L1HS 

expression by different methods including linear regression, linear mixed model, REC score, 

TargetScan, and MiRanda.  
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