Balance Confidence and Fear of Falling Avoidance Behavior Are Most Predictive of Falling in Older Adults: A Prospective Analysis

Sarrie Oscar
University of Nevada, Las Vegas, RUBINS2@UNLV.NEVADA.EDU

Jessica Sasaoka
University of Nevada, Las Vegas, SASAOKAJ@UNLV.NEVADA.EDU

Kyle Vaughn
University of Nevada, Las Vegas, VAUGHNK2@UNLV.NEVADA.EDU

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations
Part of the [Physical Therapy Commons](https://digitalscholarship.unlv.edu/physicaltherapycollections)

Repository Citation
Oscar, Sarrie; Sasaoka, Jessica; and Vaughn, Kyle, "Balance Confidence and Fear of Falling Avoidance Behavior Are Most Predictive of Falling in Older Adults: A Prospective Analysis" (2016). *UNLV Theses, Dissertations, Professional Papers, and Capstones*. 3545.
https://digitalscholarship.unlv.edu/thesesdissertations/3545
BALANCE CONFIDENCE AND FEAR OF FALLING AVOIDANCE BEHAVIOR
ARE MOST PREDICTIVE OF FALLING IN OLDER ADULTS:
A PROSPECTIVE ANALYSIS

By

Sarrie Oscar
Jessica Sasaoka
Kyle Vaughn

A doctoral project submitted in partial fulfillment
of the requirements for the

Doctor of Physical Therapy

Department of Physical Therapy
School of Allied Health Sciences
Division of Health Sciences
The Graduate College

University of Nevada, Las Vegas
May 2016
This doctoral project prepared by

Sarrie Oscar

Jessica Sasaoka

Kyle Vaughn

entitled

Balance Confidence and Fear of Falling Avoidance Behavior Are Most Predictive of Falling in Older Adults: A Prospective Analysis

is approved in partial fulfillment of the requirements for the degree of

Doctor of Physical Therapy
Department of Physical Therapy

Kai-Yu Ho, Ph.D.
Research Project Coordinator

Merrill Landers, Ph.D.
Research Project Advisor

Merrill Landers, Ph.D.
Chair, Department of Physical Therapy

Kathryn Hausbeck Korgan, Ph.D.
Graduate College Interim Dean
ABSTRACT

Background: Evidence suggests that there are several fall predictors in the elderly population, including previous fall history and balance impairment. To date, however, the role of psychological factors has not yet been thoroughly vetted in conjunction with physical factors as predictors of future falls.

Objective: The purpose of this study was to determine which measures, physical and psychological, are most predictive of falling in older adults.

Design: This was a prospective cohort study.

Methods: Sixty-four participants (mean age=72.2 years, SD=7.2; 40 women, 24 men) with and without pathology (25 healthy, 17 with Parkinson disease, 11 with cerebrovascular accident, 6 with diabetes, and 5 with a cardiovascular diagnosis) participated. Participants reported fall history and completed physical-based measures (ie, Berg Balance Scale, Dynamic Gait Index, self-selected gait speed, Timed “Up & Go” Test, Sensory Organization Test) and psychological-based measures (ie, Fear of Falling Avoidance Behavior Questionnaire, Falls Efficacy Scale, Activities-specific Balance Confidence Scale). Contact was made 1 year later to determine falls during the subsequent year (8 participants lost at follow-up).

Results: Using multiple regression, fall history, pathology, and all measures were entered as predictor candidates. Three variables were included in the final model, explaining 49.2% of the variance: Activities-specific Balance Confidence Scale (38.7% of the variance), Fear of Falling Avoidance Behavior Questionnaire (5.6% additional variance), and Timed “Up & Go” Test (4.9% additional variance).

Limitations: Falls were based on participant recall rather than a diary.

Conclusions: Balance confidence was the best predictor of falling, followed by fear of falling avoidance behavior, and the Timed “Up & Go” Test. Fall history, presence of pathology, and
physical tests did not predict falling. These findings suggest that participants may have had a better sense of their fall risk than with a test that provides a snapshot of their balance.
ACKNOWLEDGEMENTS

We would like to acknowledge the community-based private physical therapy balance clinics, local senior centers, and support groups for individuals with Parkinson disease and stroke in Las Vegas, Nevada for their help and cooperation with our subject recruitment, as well as Cortney Durand, Shalom Powell, and Andrea Kuiken for their help with data collection.
TABLE OF CONTENTS

- ABSTRACT .. iii
- ACKNOWLEDGEMENTS .. v
- LIST OF TABLES ... vii
- LIST OF FIGURES .. viii
- INTRODUCTION .. 1
- METHODS .. 4
- RESULTS .. 10
- DISCUSSION ... 12
- CONCLUSION ... 18
- APPENDIX A – TABLES ... 19
- APPENDIX B – FIGURES .. 25
- REFERENCES .. 29
- CURRICULUM VITAE ... 34
LIST OF TABLES

Table 1. Description of the physical-based and psychological-based measures used in this study...19

Table 2. Fall categories and respective health conditions for initial 64 participants....................21

Table 3. Areas under the curve for each of the predictor variables for faller and frequent faller status at one year..22

Table 4. Multiple regression table for predicting falls within the next year.............................23

Table 5. Multiple regression model summary for prediction of falls in the next year..............24
LIST OF FIGURES

Figure 1. ROC curve for fall history one year after assessment for each of the following predictor variables: Fear of Falling Avoidance Beliefs Questionnaire (FFABQ), Falls Efficacy Scale (FES), and Timed Up and Go Test (TUGT)...25

Figure 2. ROC curve for fall history status one year after assessment for each of the following predictor variables: fall history (number of falls in the year before assessment), Activities-Specific Balance Confidence Scale (ABC), Berg Balance Scale (BBS), Dynamic Gait Index (DGI), Self-Selected Gait Velocity (SSGV), and Sensory Organization Test (SOT)...26

Figure 3. ROC curve for frequent faller status one year after assessment for each of the following predictor variables: Fear of Falling Avoidance Beliefs Questionnaire (FFABQ), Falls Efficacy Scale (FES), and Timed Up and Go Test (TUGT)..27

Figure 4. ROC curve for frequent faller status one year after assessment for each of the following predictor variables: fall history (number of falls in the year before assessment), Activities-Specific Balance Confidence Scale (ABC), Berg Balance Scale (BBS), Dynamic Gait Index (DGI), Self-Selected Gait Velocity (SSGV), and Sensory Organization Test (SOT)...28
INTRODUCTION

Falls are a serious problem facing older adults in the community. Approximately one-third of individuals 65 years or older will experience a fall within a year's time,\(^1\)\(^4\) with roughly half of these individuals experiencing multiple falls.\(^2\) Fall-related injuries occur in 20-60\% of fall events\(^1\)\(^3\) and can range from minor injuries such as bruises to major injuries including fractures and severe head injuries.\(^2\)\(^4\)\(^7\)\(^8\) The effects of these injuries can lead to chronic pain, decreased mobility, loss of independence, and death in the elderly.\(^4\)\(^7\)\(^9\)\(^10\) High medical costs can also burden patients and their families, with a mean cost of hospitalization after a fall-related injury being $17,483 (U.S. dollars) and a stay of 7.6 days in the hospital.\(^11\)

In older adults, falling can be the result of a number of physical insufficiencies, impairments, and/or debilitating diseases.\(^12\)\(^-\)\(^16\) The most frequently reported reason for falling is “accidental,” which has been linked to older individuals’ inability to safely and functionally navigate around an environment and avoid a fall after an unexpected slip or obstructed step.\(^12\) Gait and balance disorders have been cited as the second most frequent reason for falling.\(^12\) Independent factors related to gait and balance that increase fall risk in older adults include difficulty or inability to perform a tandem walk,\(^13\) slower than average gait speed,\(^13\) and narrow stance width.\(^14\) High amplitudes of balance deviation in a medial-lateral direction have also been shown to predict prevalence of multiple falls in individuals with associated risk factors.\(^14\) Other physical factors that have been linked to an increase in fall risk include reduced visual acuity,\(^13\) urinary incontinence,\(^15\) and vitamin D deficiency.\(^16\) Furthermore, specific personal history factors have been found to accurately predict fall prevalence including previous fall history\(^14\)\(^15\) and knee osteoarthritis.\(^16\) Moreover, physically debilitating conditions that have been linked to an
increase in fall risk include stroke, Parkinson’s disease, cerebellar disorders, and orthostatic hypotension.16

In addition to physical components, there are psychological factors that are related to balance impairment and falling, including balance confidence and fear of falling (FOF), which leads to subsequent avoidance behaviors. Individuals who have experienced falls have significantly lower balance confidence than those who are non-fallers and are more impacted by FOF.17 The occurrence of FOF in the elderly population can be as high as 29-92\%, and this anxiety becomes more prevalent in those individuals who have already experienced at least one fall.18 The rate of avoidance of activity due to FOF is approximately 15-55\%,18 and this behavior can lead to functional decline,19 restriction of social participation,18 increased risk of falling,20 and institutionalization.19 Additionally, the combination of fall frequency and FOF has been shown to have substantial adverse effects on the physical and mental component scores of the health-related quality of life scale.21 Another study by Ribeiro and Santos demonstrated that an individual’s level of perceived control can impact their balance performance.22 Individuals with a FOF displayed lower perceived control over falling, decreased balance, and lower falls self-efficacy, while those individuals with no FOF and a greater perceived control over falling displayed a greater balance performance.22 Thus, balance confidence and FOF are two essential psychological factors to consider when developing fall intervention strategies for the elderly population in order to enhance their ability to remain active at home and within the community, as well as avoid additional health care due to injurious falls.

Although considerable research has been conducted regarding the correlation between physical
and psychological risk factors and falling, few studies have used a prospective design to
determine which of these variables is most predictive of future falling. Prospective studies that
have been published report inconsistent results in regards to which constructs are most
prognostic of falls. Muir et al concluded that the Berg Balance Scale score can predict an
increased risk of any fall, multiple falls, and injurious falls as an individual's overall score
decreases.23 Additionally, Shumway-Cook et al reported that the TUGT can be utilized as an
indicator for falls24 and in a second study, found the Berg Balance Scale score, the Dynamic Gait
Index score, the Balance Self-Perceptions Test score, and history of imbalance were all
predictors of falling in the elderly population.25 As such, this prospective study was aimed to
determine which elements, including falling history, presence of pathology, and physical and
psychological constructs, are most predictive of falling in older adults. In this exploratory
prospective trial, we hypothesized that a combination of physical and psychological constructs
would be most predictive of a future fall event.
METHODS

Study Design

A prospective research design was used to determine the physical and psychological factors (Table 1) that were most predictive of the number of falls incurred over one year (dependent variable). During the initial assessment at the University of Nevada, Las Vegas Gait and Balance Laboratory, participants completed a record of fall history within the previous year; falls were defined to participants as an unexpected fall to the ground or another lower level during upright standing or a transitional movement during a daily task, other than as a result of an external force or medical condition. Physical and psychological measures were also completed at this time. Participants were contacted by phone one year after the initial assessment and asked to recall the number of falls and any resulting injuries over the course of the year. A systematic review on fall monitoring in older adults has shown that a 12-month recall has high specificity (91-95%) and sensitivity (80-89%); additionally, 12-month recall has been shown in a few studies to be equally or more reliable than recall over a 3-month or 6-month time frames. The definition of a fall was reiterated at this time.

Participants

The minimum a priori sample size estimate, calculated using PASS 10.0 (NCSS, LLC. Kaysville, Utah, USA), for the proposed multiple regression was 54 participants and was based on the following: anticipated effect size ($f^2 = R^2/1-R^2$) where $R^2 = 0.26$ (estimated based on unpublished data) and $f^2 = 0.35$, power = 0.80, number of predictors = 9, and probability level = 0.05. Ultimately, 64 participants (age 72.2 ± 7.2 years; 40 women, 24 men) with and without
pathology (25 healthy, 17 with Parkinson’s disease (PD), 11 with cerebrovascular accident, 6 with diabetes, and 5 with a cardiovascular diagnosis) participated in this trial from July 2009 to December 2012 under University of Nevada, Las Vegas Institutional Review Board approval. Eight participants were lost at the one year follow-up (unable to make contact = 7 cases; death = 1). These eight dropouts were not statistically different (ps>.353, all chi-square except age which was analyzed using a t-test) from the participants who were not lost at follow-up (age 70.9 ± 6.6 years; 6 female, 2 men; 3 with a fall history; 2 healthy, 3 with PD, 1 with cerebrovascular accident, 1 with diabetes, 1 with a cardiovascular diagnosis).

Participants were recruited as a convenience sample through snowball sampling at community-based private physical therapy balance clinics, local senior centers, and various support groups (eg, PD support group, stroke support group) in Las Vegas, Nevada. Posted print media was used at the clinics and research assistants handed out print media at support groups. Interested participants were asked to contact the primary investigator who then verbally consented them prior to formal consenting at the Gait and Balance Laboratory. Recruitment specifically targeted a population of individuals with a wide range of balance capability, especially those who were at higher risk for falls (e.g., Parkinson’s disease, cerebrovascular accidents, diabetes). This strategy would also logically improve the generalizability of the results. Participants were included if they were community-dwelling and older than 60 years of age. Exclusion criteria included the following: unable to read or speak English, non-compliance, cognitive impairment (Mini-Mental State Exam score < 21), or comorbidities (e.g., recent surgeries, non-stable medical conditions, painful osteoarthritis with weight bearing, orthostatic hypotension, vestibulopathy) that prevented participation in balance testing.
Fall histories provided by participants were used to determine each participant’s classification as a faller, frequent faller, recent faller, and/or injured faller (Table 2). A faller was defined as an individual who had at least one unexplained fall in the previous year. A frequent faller was defined as an individual experiencing two or more of these incidents in the previous year. A recent faller was defined as an individual who had this incident within the previous month. An injured faller was defined as an individual who sustained an injury requiring medical assistance in the previous year. Participants may have been placed in more than one category, as classifications were not mutually exclusive. Twenty-five participants were classified as fallers. Of these participants, twelve were classified as frequent fallers, eleven as recent fallers, and eleven as injured fallers.

Physical-Based Measures

Balance was measured using the Berg Balance Scale (BBS) and Sensory Organization Test (SOT) (Table 1). The BBS was developed as a clinical measure of functional balance in older individuals and includes transfers, standing, and mobility tasks. The SOT, which is performed using computerized dynamic posturography, measures postural sway and challenges balance stability in six different sensory conditions to differentiate fallers from nonfallers based on balance impairment.
Functional gait and transitional mobility were assessed using the Dynamic Gait Index (DGI), Self-Selected Gait Velocity (SSGV), and Timed Up and Go Test (TUGT) (Table 1). The DGI is used to test an individual’s mobility and gait in varying conditions.25 The SSGV is a practical test where participants walk at their self-selected pace or at their normal pace to replicate their usual ambulation in the community.29 The TUGT is a timed balance test used to measure functional mobility in older adults in which participants stand up from a chair, walk three meters, turn around, walk back, and sit down, and is used as an indicator for fall risk in community-dwelling older adults.24,30

Psychological-Based Measures

The Falls Efficacy Scale (FES) measures confidence in performing a range of daily activities without falling.31 The Activities-specific Balance Confidence Scale (ABC) is a commonly used 16-item scale that assesses confidence while performing daily activities.32 In comparison to the FES, the ABC contains a wider continuum of activity difficulty including activities outside the home and more specific descriptions of the activities.32 Low scores have been associated with balance impairment and falls. The Fear of Falling Avoidance Belief Questionnaire (FFABQ) is a self-reported assessment that quantifies an individual's avoidance of specific activities due to FOF.28 See Table 1 for more detail on these measures.

Data Analysis
All data was analyzed using SPSS version 22.0 (SPSS Inc, Chicago, Illinois). The level of significance for all of the analyses was set as $\alpha = 0.05$. All participants lost to follow up were excluded from the analyses. Of those remaining, there were no cases of missing data.

To compare the overall diagnostic ability of each measure, receiver operating characteristic (ROC) curves were constructed by plotting the true positive rate (sensitivity) against the false positive rate (1 - specificity) for each scale level of the predictor variables for two dichotomous outcomes (faller status at one year and frequent faller status at one year). Using the ROC, area under the curve (AUC) values were calculated for each predictor variable.

Multiple linear regression was used to compare the relative effectiveness of these predictors against each other. The following were entered into the analyses as predictor candidates for the number of falls within the next year: fall history, presence of pathology (yes or no), physical-based measures (BBS, DGI, SSGV, and TUGT), and psychological-based measures (ABC, FES, FFABQ). The stepwise method (entry factors: $p \leq 0.05$, removal factors: $p \geq 0.10$) was used to select the best predictor variable, followed by the next predictor variable that had the largest semi-partial correlation. This method was chosen because this study was exploratory and was for the purpose of determining which variables, in order, were the most important for predicting future falls. Dependent variable outliers, defined as those with standardized residual values above 3.3 or below -3.3, were screened for removal from the analyses. Subsequently, no outliers were identified. Normality, collinearity diagnostics, and bivariate correlations were also conducted.
There were no major deviations from normality. Due to multicollinearity, the FES was removed from the regression.
RESULTS

After one year, 18 of the 56 participants who were contacted reported at least one fall with an overall mean fall average of 2.94 falls per year (SD=2.65; range = 1 to 10). Of the 18 that fell in the following year, 9 fell two or more times and were classified as frequent fallers (Table 2). There were negligible to moderate correlations between the number of falls in the year before testing and the number of falls in the next year after testing (Pearson’s r=0.387, p=.003), faller classification before and after (Phi=-0.125, p=.350), and frequent faller classification before and after (Phi=-0.273, p=.041). Chi-square analysis suggested there were no differences in the proportion of fallers at baseline and one year later ($\chi^2=0.874$, p=.350) and frequent fallers at baseline and one year later using a Yates’ continuity correction ($\chi^2=2.516$, p=.113).

ROC curves and accompanying AUCs for the dichotomous outcome of faller (yes or no) at one year after assessment were statistically significant for all of the predictor variables except SOT and fall history (Figures 1 and 2, Table 3). The most predictive, listed from highest to lowest AUC, were the following (Table 3): FFABQ, DGI, ABC, FES, SSGV, TUGT, and BBS. The ROC curves and AUCs for frequent faller (yes or no) at one year after assessment were statistically significant for all predictor variables except SOT and fall history. The most predictive were the following, in order of highest to lowest (Figure 3 and 4, and Table 3): ABC, FES, FFABQ, DGI, BBS, SSGV, and TUGT.

The final multiple regression model with all three predictors produced an $R^2 = 0.492$ (adjusted $R^2 = 0.462$), $F(3,51)=16.439$, p<.001. The three variables included in the final model entered in the
following order (Table 4): ABC (38.7% of the variance; 37.5% adjusted), FFABQ (5.6% additional variance; 4.7% adjusted) and TUGT (4.9% additional variance; 4.0% adjusted). Together, these variables explained 49.2% (46.2% adjusted) of the variance for falls in the subsequent year (Table 5; Figure 1). When the ABC was removed from the model, the FFABQ (33.2% of the variance; 32.0% adjusted) was the only variable remaining (Figure 2), $R^2=.332$ (adjusted $R^2 = 0.320$), $F(1,53)=26.380, p<.001$ ($B=.098$, Standard error=.019; Beta=.576, zero-order $r=.576$).

Neither history of falling, presence of pathology, nor the remaining physical balance tests (ie, BBS, DGI, SSGV, SOT, TUGT) were included in the final model.
DISCUSSION

While most of the variables in our study offered reasonable predictive value as independent predictors of future falls using AUC of ROC curves, when compared against each other using multiple regression, our results suggest that psychological factors may offer more value as predictors of future falls. Specifically, balance confidence (ABC) and fear of falls avoidance behavior (FFABQ) were the best at predicting future falls, independently and when compared against other variables. While each of the physical and psychological measures may have individually predicted future falls, when compared against each other there was undoubtedly some overlap and shared correlation due to the similarities in the constructs of the measures. In the regression model we used, those shared correlations were controlled and only those variables that made the best unique contribution were included in the model. Only three measures emerged in the final model which suggests that those three variables best explained the variance of future falls. While the variables not included in the final model may have individually predicted future falls, they did not offer any more predictive value over and above the final three variables.

Since history of falls, presence of pathology, and physical balance tests were less predictive of falls, assessing patients with psychological measures would be advantageous to health care professionals. These results indicate that the beliefs individuals possess about their capabilities, rather than their actual physical performance, may be most important in identifying an individual who is at risk for falling. Namely, patients may have a better understanding of their capabilities than what physical tests demonstrate.
This study utilized multiple psychological measures to determine their relationship to falling. Little research has gone into concluding which psychological constructs may predict future falls for elderly adults with and without pathology. One study conducted by Lajoie and Gallagher17 shows that the ABC is a significant predictor of falls. Our results confirm their findings that psychological constructs play a large role in predicting fall risk. An explanation for the importance of psychological factors in predicting future falls may lie within the realm of social cognitive theory. As explained by Bandura,33 self-efficacy, or the belief an individual holds about their capability to control their life and function, is a very influential component in determining that person's decision-making, the effort that they put into a task, their stress when presented with a challenge, and their thought processes, whether self-aiding or self-destructive. This idea of self-efficacy is related to balance confidence, which, as we determined, may be the most predictive factor for future falls. When an individual possesses decreased balance confidence as well as decreased self-efficacy, this person is more likely to alter their behavior in order to avoid activities and situations that may cause falls because they may believe that if they do not, falls will be unavoidable. Filiatrault et al34 discuss the importance of addressing FOF in physical and occupational therapy. FOF can lead to self-imposed restriction of activities and participation in typical daily routines, which may cause a decline in physical capacity and an increased risk of falling.34 In light of our findings, future research should focus on developing intervention strategies to prevent future falls that are resultant of underlying psychological factors like balance self-efficacy and fear of falling. From a clinical perspective, addressing balance self-efficacy and fear of falling should be an important interventional target.
It is interesting to note that after removing the ABC from the regression and reanalyzing the data, the only variable entering into the model was the FFABQ. Avoidance behavior due to a fear of falling, which is a separate but related construct to fear of falling, shares considerable prediction with balance confidence (ABC). In the first model with the ABC, the FFABQ explained only 5.6% (4.7% adjusted) of the variance of future falls but when the ABC was removed, it explained 33.2% (32.0% adjusted) of the variance. Thus, while the ABC and the FFABQ share variance in fall prediction, the FFABQ offers a unique albeit smaller contribution to fall prediction when used together. This finding suggests that while these psychological measures are indeed related constructs, avoidance behavior due to a fear of falling is a subtly different construct from balance confidence. Furthermore, the TUGT was included in the model with the ABC, yet when the ABC was removed, it did not remain as a significant predictor, leaving the FFABQ as the lone significant predictor. Presumably, removing the ABC may have uncovered latent FFABQ and TUGT correlations which, ultimately, more strongly favored the FFABQ and caused the TUGT to be dropped. While both the FFABQ and the TUGT were individually predictive of future falls, the FFABQ explained more variance, and the TUGT simply did not have a unique and significant contribution over and above the FFABQ once the ABC was removed. Considering the two regression models together, the strongest predictor of falls was the ABC followed by the FFABQ.

Another noteworthy finding of this study is that physical factors were not as strong of predictors of a future fall as psychological measures. A review of previous literature has found inconsistent evidence in regards to which physical measurements are most predictive of falls. Shumway-Cook et al25 reported that the BBS and a self-reported history of imbalance can be used in a predictive
model to determine fall risk in community-dwelling older adults. In another study, Shumway-Cook et al. found that the TUGT could also be a sensitive and specific measure used to identify individuals prone to falls. Lajoie and Gallagher and Muir et al. concluded that the BBS was a significant predictor of future falls. In contrast, in a one-year prospective design, Boulgarides et al. determined that the Modified Clinical Tests of Sensory Interaction for Balance, the 100% Limits of Stability Test, BBS, TUGT, and DGI were not predictive of fall risk in a community-dwelling older population. Our results indicate that the only physical measure predictive of falls in the regression model was the TUGT. Despite the fact that the TUGT was not as predictive as the SSGV, BBS, and DGI using the AUC of the ROC curves, it was the only physical measure that explained a unique portion of the variance that was over and above the ABC and FFABQ. Interestingly, the DGI was the best physical measure at predicting falls using the AUC of the ROC curves; however, its relationship to falling was presumably shared with the ABC, FFABQ, and TUGT; thus, it did not offer any additional predictive value.

The presence of the TUGT in the regression model could be due to the fact that this measure includes more dynamic and transitional movements that occur frequently during normal daily activities (standing from a chair, walking, turning, and sitting down) compared to the other physical tests included in this study. For instance, the SOT tests standing static balance only, while the SSGV focuses only on normal gait speed on even surfaces. One weakness of previous research in this area has been the overwhelming focus on physical factors in determining fall risk; this emphasis may have made physical factors seem more essential in predicting falls than is actually the case, as our study shows that psychological components may carry more weight.
These results are clinically meaningful for healthcare providers who screen for fall risk. By utilizing the ABC, FFABQ, and TUGT, clinicians can identify the individuals that are most at risk of falling and provide restorative or preventative care. Employing proper intervention strategies may lead to a reduction of falls and subsequent injuries in an older population, as well as help to reduce overall medical costs and number of hospital visits. A focus of these intervention strategies should be increasing balance confidence and self-efficacy, which has been shown to be related to lower levels of FOF and better functional outcomes. A systematic review focusing on fall prevention has found that interventions in this area have been effective in reducing both the risk of falling and the monthly rate of falling. The most effective intervention for decreasing fall risk was a multifactorial falls risk assessment and management program. The ABC, FFABQ, and TUGT could be included in this assessment protocol to help clinicians determine in which areas intervention is necessary. For instance, patients that display FOF and resulting avoidance behavior may require treatment to improve confidence and activity levels.

Collaboration with other healthcare providers, such as mental health professionals or social workers, may also be beneficial to maximize the improvement of patients with an increased fall risk. Zijlstra et al completed a randomized controlled trial analyzing the effect of cognitive behavioral intervention in improving FOF and activity avoidance in community-dwelling older adults. Treatment focused on cognitive restructuring in order to view fall risk and FOF as controllable, setting goals for safely increasing activity, modifying the home to decrease risk of falls, and using physical exercise to improve balance and strength. Behavioral change was also emphasized after the cognitive restructuring. After completion of the intervention, participants receiving this multicomponent cognitive behavioral therapy displayed decreased
FOF and avoidance behavior at two months and at eight months following intervention. By incorporating both cognitive behavioral therapy and physical therapy in treatment for the elderly with FOF, clinicians can use an interdisciplinary approach to mitigate fall risk from multiple angles and improve quality of life.

There are limitations to this study. First, fall history was dependent on each participant’s ability to recall falls in the past year; therefore, this study may have been subject to recall bias. While this method has been shown to have good specificity, we recommend that future designs for studies like this incorporate a more structured surveillance method with shorter weekly to monthly intervals. Second, this study did not include additional related factors that may be predictive of falls, including depression, effect of medications, cognitive impairments, and leg extension and grip strength. Third, this study grouped together both healthy individuals and individuals with a variety of pathologies; therefore, our findings may not be appropriate for a specific pathological subset (e.g., Parkinson’s disease, cerebrovascular accident). Furthermore, the percentage of older adults with pathology in our participant population is higher than normal; therefore, our results may not be entirely representative of the total population aged 65 years or older.
CONCLUSION

This study provided meaningful data regarding which constructs are most clinically applicable to the prediction of falls in an elderly population. Namely, psychological measures including the ABC and FFABQ are more predictive of fall risk in older adults than physical measures, history of falls, or presence of pathology. These findings reveal potential areas of future research that will help to develop a better understanding of risk factors for falling. Subsequent studies may consider examining other factors that contribute to fall occurrence, frequency, and resulting injuries. These data may also be used as a framework to help develop better fall prevention strategies for at-risk individuals, a field of research that continues to be relevant to an increasingly aging and vulnerable population.
APPENDIX A – TABLES

Table 1. Description of the physical-based and psychological-based measures used in this study.

<table>
<thead>
<tr>
<th>Standardized scale</th>
<th>Construct</th>
<th>Test Details</th>
<th>Evidence for reliability</th>
<th>Evidence for validity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical-based measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berg Balance Scale (BBS)</td>
<td>Clinician rated assessment of balance and functional mobility</td>
<td>Number of tasks: 14 Scores: 0 (greatest fall risk) to 56 (least fall risk)</td>
<td>ICC=.97<sup>42</sup></td>
<td>Shown to have a high specificity (96%) for predicting non-fallers and a low sensitivity (53%) in predicting falls in an elderly population<sup>48</sup></td>
</tr>
<tr>
<td>Sensory Organization Test (SOT)</td>
<td>Computerized dynamic posturography places individual in six different sensory conditions challenging visual, somatosensory, and vestibular systems</td>
<td>Number of conditions: 6 Scores: Sway during 6 conditions determines composite score from 0 to 100 based on age and height adjusted norms</td>
<td>ICC=.66<sup>43</sup></td>
<td>A composite score of <38 is associated with individuals with have reported a previous fall<sup>4</sup></td>
</tr>
<tr>
<td>Dynamic Gait Index (DGI)</td>
<td>Clinician rated assessment of ability to modify gait under various conditions</td>
<td>Number of tasks: 8 Scores: 0 (greatest fall risk) to 24 (least fall risk)</td>
<td>ICC = 0.96-1.0<sup>45</sup></td>
<td>Correlated with BBS, timed walking test, TUGT and ABC in chronic stroke (range .68-.83)<sup>46</sup> and to predict fall risk</td>
</tr>
<tr>
<td>Self Selected Gait Velocity (SSGV)</td>
<td>Timed comfortable walking pace over 10 meters</td>
<td>N/A</td>
<td>ICC= .90-.96<sup>28</sup></td>
<td>Slow gait velocity associated with FOF<sup>47</sup></td>
</tr>
<tr>
<td>Timed Up and Go Test (TUGT)<sup>30</sup></td>
<td>A timed test of functional mobility</td>
<td>Number of components: 5 (stand up from chair, walk 3 meters, turn around, return to chair, sit down) Score: $>$30 sec to complete indicated dependence in mobility</td>
<td>ICC = 0.99 for community-dwelling elderly people with a variety of medical conditions<sup>40</sup></td>
<td>Shown to predict fall risk with a sensitivity of 56% and specificity of 60% in elderly adults<sup>48</sup></td>
</tr>
<tr>
<td>Psychological-based measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Falls Efficacy Scale (FES)<sup>48</sup></td>
<td>Self-administered assessment of self-efficacy in completing ADLs without falling</td>
<td>Number of items: 10 Scores: 10 (very confident) to 100 (not confident)</td>
<td>r=.71<sup>49</sup></td>
<td>Correlated with age, balance score, gait scores, mobility scores and falls in the previous year<sup>49</sup></td>
</tr>
<tr>
<td>Psychological-based measures</td>
<td>Activities-Specific Balance Confidence Scale (ABC)</td>
<td>Fear of Falling Avoidance Behavior Questionnaire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self-administered assessment of confidence with balance during various ADLs</td>
<td>Self-reported assessment that quantifies an individual’s avoidance of specific activities due to FOF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of items: 16</td>
<td>Number of items: 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scores: 0 (not confident) to 100% (very confident)</td>
<td>Scores: 0 to 56, higher scores indicating a greater level of activity limitations and participation restrictions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>r = 0.92</td>
<td>r = 0.812</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Correlated with age, balance score, gait scores, mobility scores and falls in the previous year</td>
<td>Validated for different populations, including healthy older adults and older adults with PD and CVA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Fall categories and respective health conditions for initial 64 participants.

<table>
<thead>
<tr>
<th>Fall Category</th>
<th>Measurement point</th>
<th>Number of Participants</th>
<th>Healthy</th>
<th>Parkinson’s Disease</th>
<th>Cerebrovascular Accident</th>
<th>Diabetes</th>
<th>Cardiovascular Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faller</td>
<td>Baseline</td>
<td>25 (39.1%)</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>One year</td>
<td>18 (32.1%)</td>
<td>5</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Frequent faller</td>
<td>Baseline</td>
<td>12 (18.8%)</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>One year</td>
<td>9 (16.1%)</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Recent faller</td>
<td>Baseline</td>
<td>11 (17.2%)</td>
<td>2</td>
<td>NA</td>
<td>5</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>One year</td>
<td>Not available (NA)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Injured faller</td>
<td>Baseline</td>
<td>11 (17.2%)</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>One year</td>
<td>7 (12.5%)</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 3. Areas under the curve for each of the predictor variables for faller and frequent faller status at one year.

<table>
<thead>
<tr>
<th>Dichotomous outcome</th>
<th>Predictor variables</th>
<th>AUC (rank ordered)</th>
<th>Standard Error</th>
<th>Asymptotic Significance</th>
<th>Asymptotic 95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faller at one year after assessment</td>
<td>FFABQ</td>
<td>.763</td>
<td>.073</td>
<td>.002</td>
<td>.619</td>
</tr>
<tr>
<td></td>
<td>DGI</td>
<td>.727</td>
<td>.073</td>
<td>.007</td>
<td>.583</td>
</tr>
<tr>
<td></td>
<td>ABC</td>
<td>.715</td>
<td>.073</td>
<td>.010</td>
<td>.571</td>
</tr>
<tr>
<td></td>
<td>FES</td>
<td>.702</td>
<td>.073</td>
<td>.016</td>
<td>.559</td>
</tr>
<tr>
<td></td>
<td>SSGV</td>
<td>.701</td>
<td>.069</td>
<td>.016</td>
<td>.565</td>
</tr>
<tr>
<td></td>
<td>TUGT</td>
<td>.683</td>
<td>.073</td>
<td>.029</td>
<td>.541</td>
</tr>
<tr>
<td></td>
<td>BBS</td>
<td>.683</td>
<td>.077</td>
<td>.028</td>
<td>.532</td>
</tr>
<tr>
<td></td>
<td>SOT</td>
<td>.637</td>
<td>.084</td>
<td>.099</td>
<td>.472</td>
</tr>
<tr>
<td></td>
<td>Fall history</td>
<td>.566</td>
<td>.083</td>
<td>.430</td>
<td>.403</td>
</tr>
<tr>
<td>Frequent faller at one year after assessment</td>
<td>ABC</td>
<td>.897</td>
<td>.055</td>
<td>.000</td>
<td>.790</td>
</tr>
<tr>
<td></td>
<td>FES</td>
<td>.847</td>
<td>.060</td>
<td>.001</td>
<td>.730</td>
</tr>
<tr>
<td></td>
<td>FFABQ</td>
<td>.824</td>
<td>.066</td>
<td>.002</td>
<td>.695</td>
</tr>
<tr>
<td></td>
<td>DGI</td>
<td>.770</td>
<td>.061</td>
<td>.011</td>
<td>.651</td>
</tr>
<tr>
<td></td>
<td>BBS</td>
<td>.767</td>
<td>.062</td>
<td>.012</td>
<td>.646</td>
</tr>
<tr>
<td></td>
<td>SSGV</td>
<td>.749</td>
<td>.068</td>
<td>.019</td>
<td>.616</td>
</tr>
<tr>
<td></td>
<td>TUGT</td>
<td>.729</td>
<td>.079</td>
<td>.031</td>
<td>.574</td>
</tr>
<tr>
<td></td>
<td>Fall history</td>
<td>.652</td>
<td>.100</td>
<td>.150</td>
<td>.456</td>
</tr>
<tr>
<td></td>
<td>SOT</td>
<td>.583</td>
<td>.109</td>
<td>.435</td>
<td>.369</td>
</tr>
</tbody>
</table>
Table 4. Multiple regression table for predicting falls within the next year.

<table>
<thead>
<tr>
<th>Model</th>
<th>B</th>
<th>Std. Error</th>
<th>Beta</th>
<th>t</th>
<th>P value</th>
<th>Zero-order r</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>-.061</td>
<td>.011</td>
<td>-.622</td>
<td>-5.785</td>
<td>.000</td>
<td>-.622</td>
</tr>
<tr>
<td>ABC</td>
<td>-.042</td>
<td>.013</td>
<td>-.429</td>
<td>-3.215</td>
<td>.002</td>
<td>-.622</td>
</tr>
<tr>
<td>FFABQ</td>
<td>.052</td>
<td>.023</td>
<td>.305</td>
<td>2.287</td>
<td>.026</td>
<td>.576</td>
</tr>
<tr>
<td>ABC</td>
<td>-.050</td>
<td>.013</td>
<td>-.510</td>
<td>-3.808</td>
<td>.000</td>
<td>-.622</td>
</tr>
<tr>
<td>FFABQ</td>
<td>.061</td>
<td>.022</td>
<td>.355</td>
<td>2.715</td>
<td>.009</td>
<td>.576</td>
</tr>
<tr>
<td>TUGT</td>
<td>-.064</td>
<td>.029</td>
<td>-.250</td>
<td>-2.207</td>
<td>.032</td>
<td>.121</td>
</tr>
</tbody>
</table>
Table 5. Multiple regression model summary for prediction of falls in the next year.

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
<th>Change Statistics</th>
<th>R Square Change</th>
<th>F Change</th>
<th>df1</th>
<th>df2</th>
<th>Sig. F Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.622<sup>a</sup></td>
<td>.387</td>
<td>.375</td>
<td>1.609</td>
<td>.387</td>
<td>33.468</td>
<td>1</td>
<td>53</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>.666<sup>b</sup></td>
<td>.443</td>
<td>.422</td>
<td>1.549</td>
<td>.056</td>
<td>5.228</td>
<td>1</td>
<td>52</td>
<td>.026</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.701<sup>c</sup></td>
<td>.492</td>
<td>.462</td>
<td>1.494</td>
<td>.049</td>
<td>4.872</td>
<td>1</td>
<td>51</td>
<td>.032</td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: ABC
b. Predictors: ABC, FFABQ
c. Predictors: ABC, FFABQ, TUGT
d. Dependent Variable: Number of falls in the next year
Figure 1. ROC curve for fall history one year after assessment for each of the following predictor variables: Fear of Falling Avoidance Beliefs Questionnaire (FFABQ), Falls Efficacy Scale (FES), and Timed Up and Go Test (TUGT).
Figure 2. ROC curve for fall history status one year after assessment for each of the following predictor variables: fall history (number of falls in the year before assessment), Activities-Specific Balance Confidence Scale (ABC), Berg Balance Scale (BBS), Dynamic Gait Index (DGI), Self-Selected Gait Velocity (SSGV), and Sensory Organization Test (SOT).
Figure 3. ROC curve for frequent faller status one year after assessment for each of the following predictor variables: Fear of Falling Avoidance Beliefs Questionnaire (FFABQ), Falls Efficacy Scale (FES), and Timed Up and Go Test (TUGT).
Figure 4. ROC curve for frequent faller status one year after assessment for each of the following predictor variables: fall history (number of falls in the year before assessment), Activities-Specific Balance Confidence Scale (ABC), Berg Balance Scale (BBS), Dynamic Gait Index (DGI), Self-Selected Gait Velocity (SSGV), and Sensory Organization Test (SOT).
REFERENCES

CURRICULUM VITAE

Sarrie Oscar, SPT, BA

Education

- University of Nevada, Las Vegas: Las Vegas, Nevada
 - Doctor of Physical Therapy, Degree Expected: May 2016
- University of North Carolina, Chapel Hill: Chapel Hill, North Carolina
 - Bachelor of Arts in Biology, May 2008

Clinical Experience

 - Outpatient pediatric physical therapy
- HealthSouth Rehabilitation Hospital of Henderson: Henderson, Nevada. October – December 2015
 - Inpatient rehabilitation
- Spring Valley Hospital Medical Center: Las Vegas, Nevada. July – September 2015
 - Acute care physical therapy
 - Outpatient physical therapy

Peer-Reviewed Publications

Professional Presentations

Continuing/Supplemental Education

- Therapeutic Neuroscience Education: Dr. Adriaan Louw. April 2015.

- APTA Combined Sections Meeting: Anaheim, California. February 2015.

- Biomechanical risk factors related to ACL injury: Implications for rehabilitation and return to sport decisions post ACL reconstruction: Dr. Christopher Powers. April 2014.

- Therapeutic Neuroscience Education: Dr. Adriaan Louw. April 2014.

• UNLVPT Distinguished Lecture Series: Dr. Gail Jensen. June 2013.

Professional Association Membership

• Member of American Physical Therapy Association (2013 – present)
• American Heart Association Healthcare Provider CPR and AED Certification (2014 – present)
Jessica Sasaoka, SPT, BS

Education

- University of Nevada, Las Vegas: Las Vegas, Nevada.
- University of Nevada, Las Vegas: Las Vegas, Nevada.
 - Bachelor of Science in Biological Sciences. May 2012.

Clinical Experience

 - Outpatient orthopedic physical therapy
 - Acute rehabilitation, skilled nursing facility, hospice care
 - Inpatient rehabilitation
 - Outpatient vestibular, balance, and orthopedic physical therapy

Peer-Reviewed Publications

- Landers MR, Oscar S, Sasaoka J, Vaughn K. Balance Confidence and Fear of Falling Avoidance Behavior Are Most Predictive of Falling in Older Adults: Prospective Analysis.
Professional Presentations

Continuing/Supplemental Education

- Early Mobility: How To Get Your Patients Up and Moving Faster: Dr. Margaret Arnold. November 2015.

- APTA National Student Conclave: Omaha, Nebraska. October 2015.

- Topics in Women’s Health: Dr. Tina Baum. May 2015.

- Therapeutic Neuroscience Education: Dr. Adriaan Louw. April 2015.

- DBS Therapy for Parkinson’s Disease: Dr. Eric S. Farbman. March 2015.

- Treatment Options in Multiple Sclerosis: Dr. Le Hua. November 2014.

- Biomechanical risk factors related to ACL injury: Implications for rehabilitation and return to sport decisions post ACL reconstruction: Dr. Christopher Powers. April 2014.

- Therapeutic Neuroscience Education: Dr. Adriaan Louw. April 2014.
• HIPAA Training. March 2014.

• APTA Combined Sections Meeting: Las Vegas, Nevada. February 2014.

• UNLVPT Distinguished Lecture Series: Dr. Gail Jensen. June 2013.

Professional Association Membership

• Member of American Physical Therapy Association (2013 – present)
 o Research Section
 o Neurology Section

• American Heart Association Healthcare Provider CPR and AED Certification (2014 – present)
Kyle Vaughn, SPT, BS

Education

- University of Nevada, Las Vegas: Las Vegas, Nevada
 - Doctor of Physical Therapy, Degree Expected: May 2016
- University of Nevada, Las Vegas: Las Vegas, Nevada
 - Bachelor of Science in Kinesiology: December 2011

Clinical Experience

- St. Rose Dominican Hospital, San Martin Campus: Las Vegas, Nevada. January – April 2016
 - Inpatient acute physical therapy
- Summerlin Hospital: Las Vegas, Nevada. October – December 2015
 - Inpatient rehabilitation
- Spring Valley Hospital Medical Center: Las Vegas, Nevada. July – September 2015
 - Inpatient pediatric/NICU physical therapy
 - Outpatient physical therapy

Peer-Reviewed Publications

Professional Presentations

Continuing/Supplemental Education

- Therapeutic Neuroscience Education: Dr. Adriaan Louw. April 2015.

- APTA Combined Sections Meeting: Anaheim, California. February 2015.

- Biomechanical risk factors related to ACL injury: Implications for rehabilitation and return to sport decisions post ACL reconstruction: Dr. Christopher Powers. April 2014.

- Therapeutic Neuroscience Education: Dr. Adriaan Louw. April 2014.

Professional Association Membership

- Member of American Physical Therapy Association (2013 – present)
- American Heart Association Healthcare Provider CPR and AED Certification (2014 – present)