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ABSTRACT

NUMERICAL STUDY IN THE CONSERVATIVE ARBITRARY
LAGRANGIAN-EULERIAN (ALE) METHOD FOR AN UNSTEADY
STOKES/PARABOLIC INTERFACE PROBLEM WITH JUMP
COEFFICIENTS AND A MOVING INTERFACE

By
Michael J. Ramirez
Dr. Pengtao Sun, Examination Committee Chair

Professor of Mathematics
University of Nevada, Las Vegas, USA

Towards numerical analyses for fluid-structure interaction (FSI) problems in the fu-
ture, in this thesis the arbitrary Lagrangian-Eulerian (ALE) finite element method within
a conservative form is developed and analyzed for a linearized FSI problem - an unsteady
Stokes/parabolic interface problem with jump coefficients and moving interface, and the cor-
responding mixed finite element approximation is developed and analyzed for both semi- and
fully discrete schemes based upon the so-called conservative formulation. In terms of a novel
H'-projection technique, their stability and optimal convergence properties are obtained for

approximating the real solution equipped with lower regularity.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

This thesis provides a numerical study of a linearized fluid-structure interaction (FSI)
problem between the unsteady Stokes equations and a vector-valued parabolic equation
coupled over a moving interface with jump coefficients. The study of unstable interactions,
where a strain induced on a surface causes movement, has applications in both engineering
and biology (Richter, 2010). The study of FSI problems are often too complex to solve
analytically and are therefore done using numerical methods. In this thesis we complete
a numerical study for an unsteady Stokes/parabolic interface problem using a monolithic
arbitrary Lagrangian-Eulerian (ALE) approach where both Stokes variables (velocity and
pressure) and a vector-valued solution to the parabolic equation are solved simultaneously.

In particular, as a foundational model for complex FSI problems, the Stokes/parabolic
interface problem described in this thesis provides a type of linearized FSI problem where
the fluid is modeled by Stokes equations in terms of fluid velocity and pressure; the structure
is modeled by parabolic equation in terms of the structure velocity.

Body-fitted mesh methods have become the most reliable numerical approach for solv-
ing unsteady moving domain/interface problems including FSIs due to the high accuracy
that is derived. The challenge is of course developing a mesh that adapts to the moving

boundary/interface at all times, and which can be efficiently generated. The body-fitted



mesh approach that has been adopted for this paper is the arbitrary Lagrangian-Eulerian
(ALE) method due to its high practicality, where the mesh on the interface continuously
accommodates to the shared interface of both the fluid and structure, and therefore satisfies
the interface conditions of the FSI.

The goal of this paper is to apply a novel H!-projection technique developed in the
recently submitted paper by Lan and Sun (2019) to the conservative ALE finite element
analysis for an unsteady Stokes/parabolic FSI problem, and use it to obtain optimal error
estimates for both semi- and fully discrete ALE finite element schemes. In previous nu-
merical studies (Martin et al. (2009)), a classical H'-projection was adopted to carry out
ALE-finite element analyses for single Stokes equations on a moving domain and provided
limited sub-optimal convergence order due to the effect of extra approximation error from
the ALE mapping. The novel H'- projection adopted in this paper derives an optimal con-
vergence theorem for the developed ALE finite element approximation in both semi- and
full discretization since the projection includes the influence of the discrete ALE mapping
inside. Moreover, the newly developed H!-projections analysis technique for the ALE FEM

utilized in this paper can be extended to a realistic FSI problem in the future.

1.2 Outline

This thesis is divided into four sections. In Chapter 2, we provide useful preliminary
results and introduce notation used in the remainder of the thesis.
Chapter 3, specifically Section 3.1 , presents our model description of a linearized FSI

model problem, an unsteady Stokes/parabolic interface problem. Section 3.2 establishes



the ALE mapping and some standard definitions, followed by the ALE formulation of the
model problem. In Section 3.3 we make some comments on the Reynold’s Tranport Theorem
and its relation to the Geometric Conservation Law. We then finish this chapter with the
Conservative Weak form in Section 3.4.

Chapter 4, specifically Section 4.1, presents our H' -projection definition and error es-
timates derived from this projection, which are first utilized in the derivation of the semi-
discrete scheme followed by the analysis of the stability and error estimates in Sections 4.2
and 4.3 respectively.

Chapter 5 begins with the derivation of the fully-discrete scheme. We then spend the
rest of this chapter on the analysis of the error estimates in Section 5.1.

We end the thesis with a few concluding remarks in Chapter 6.



CHAPTER 2

PRELIMINARY NOTATION AND RESULTS

The standard functional spaces taken from Adams and Fournier (2003) are adopted for this
paper. We let  C R? be an open set where m € N, and 1 < p < oo, and let LP(€2) denote
the linear space of measurable p!* power integrable functions on € equipped with norm
|- |lr(). The functional space W™P(§2) contains functions f € LP(€2) with weak derivatives

D*f € LP(Q) up to m. For 1 < p < oo, the norm in W™P(Q)) is denoted by

s = { [ 32 Do s |
Q

la]<m
and for p = oo,

e —o e
al<m

We also use the classical norm and seminorm notations for these functional spaces. We
denote W™2(Q2) by H™() and omit the index p = 2 and Q to simplify notation when
possible, that is, ||u|lyme = ||ul|gm. We also denote W?(Q) by LP(€) and omit the index
m = 0. That is ||ul|wor = ||u|lr». We also use shortened notation ||u|» = |lullo and
|u||gm = ||u]|m during longer proofs.

We introduce the following notation for inner products to be used in this paper:

(@5, Vy)qf = fmq)i - U, dx, where i= 1,2
<(Dia Wi)l"t — th(I)Z‘ . \I/ZdS



Lemma 2.1 (Poincaré inequality). Let Q C R be a bounded open set and 1 < p < oo. Then

there exists a constant M > 0 that only depends on p and ) such that for all u € Wol’p(Q)
[ullzri) < M| Dullze ). (2.1)
Lemma 2.2 (Cauchy-Schwarz inequality).

|uv]|L2) < lJull L2 V] 22(0)- (2.2)

Lemma 2.3 (Young’s inequality with €). If a,b € R where a > 0 and b > 0 , then we have

CL2 2

€
b<e—+4+ — V 0.
a_62€+2, € >

Note that the special case where € = 1 is known as simply Young’s inequality and will be used

frequently throughout this thesis.

Theorem 2.1 (Reynold’s Transport Theorem (Leal, 2007), (Reynolds, 1903)). Let ¢(x,1)

be a smooth function defined on Q' x (0,T). we have that

d Op dp
— t)dx = — ) @) dx = — @ | d
o Qtcp(x,)x /Qt<8t+V<p &+ oV w) X /Qt(dt + pV w) X,

where & is domain velocity and

X

dy
dt

_ %

9t + & - V.

X

It’s worth noting that the above equality also holds on open subdomains of Q2F.



CHAPTER 3

THE UNSTEADY STOKES/PARABOLIC INTERFACE
PROBLEM

3.1 Model Description

Let Q C R? (d=2,3), and T' > 0. Two subdomains, Q! :=Q;(t) C Q (i=1,2) (0<t <
T), satisfying QL UQL = Q. Q1 NQL = @. These two subdomains are separated by an interface:
't = T(t) = 99 N 9N, which may move/deform along with ¢t € (0,7], which causes
QL (i = 1,2) to also change with ¢ € (0, 7] and are termed as the current (Eulerian) domains
with respect to x, in contrast to their initial (reference/Lagrangian) domains, QY (i = 1,2)
with respect to x, where, a flow map is defined from QY to Q! (i = 1,2), as: x; — x;(X;, 1)
such that x;(x;,t) = x; + X;(x;,1),Vt € (0,7], where X; is the displacement field in the
Lagrangian frame. The deformation gradient tensor, F; := Vg,x;, and J; = det(F;). An

example of this type of domain with an immersed case is illustrated in Figure 3.1.

o),

o

Figure 3.1. Schematic domain with the interface I'" between two subdomains €2; and Q,,
(Wang et al., 2018)



In what follows, we set 1) = ¢ (X, ) which equals ¥(x(%,t),t), and V = Vg, (i = 1,2).
We define the Stokes equations in ) and the parabolic equation in Qf with respect to

i; € HY(0,T; H* () U H2(25)%),i = 1,2 and p; € L= (0,T; H*(Q!)) as follows

( V- (Vi) +Vp = fi, in Q! x (0, 7]
Vi = 0, in Qf x (0,7]
i = ¢, on IQI\I'" x (0,7
ur(z,0) = @, in QU
02 N (1sVils) = fo in Q) x (0,7] (3.1)
iy = gz, on ON\T! x (0,7
Uy(7,0) = @, in QY
Uy = o, on I' x [0, 7]
( (=pi + 1 Viiy) 0y + peVagn, = 7, on I' x [0,7]

where 1 > 0 and pp > 0 are two jump coefficients, i.e., p1 # p2. And, ﬁ e L2(QH(i =1,2),

7e HY2(TY).

3.2 ALE Mapping

With the model problem in place, we now define the affine mapping that allows us to use
the ALE description of the model problem. Assume 3X! € H* (0,7, W2>(Q0)4) (i=1,2)

such that V¢ € (0, 7], the mapping:

X0 — Ot

is invertible such that (X!)~! € Wh(Q!)2 2; € QY is known as the reference coordinate

variable. The domain velocity is then defined as

OX? (1)

@ U x (0,T] = R?, Ji(x,t) = 5

s fori=1,2

With this domain velocity, we can now define a derivative which takes this velocity into

7



account. This is known as the ALE derivative and is defined as

85:\@ Q% (0,T] — R
(‘T>t) - ot ‘j(x7t) = E(l’?t) + (wi(xvt) ’ V) ui(l‘7t) (32)

Equipped with the domain velocity and ALE derivative, we can proceed to rewrite our
problem using the ALE description.

Substituting this into our model problem we obtain the ALE description as follows.

(Y| — V- (Vi) — (@ V)i +Vp = fi, in Qf x (0, 7]
Vi, = 0, in Q) x (0,7
= g, on OQN\I"x(0,T]
2_[1 (ZL‘, 0) = ﬁ?, in Q(l)
Wa| =V (1aViy) — (W V)i = fo, in Q4 x (0, 7] (3.3)
Uy = g3, on OQ\I"x(0,T]
iy(z,0) = b, in 9
W o= W, on I' x [0, 7]
U = U, on I' x [0, 7]
\ (—p1[ + ,U1V’ljl) 7’?1 + MQVﬁQﬁQ = 7?, on I't x [O, T]

3.3 Geometric Conservation Law

The Geometric Conservation Law (GCL) comes as a consequence of Theorem 2.1. Letting

o(x,t) = 1, we see that %—f = 0. Plugging this into Theorem 2.1, we have

:/ (V-(Ij’)dx:/ W - nds
Q oQ

Integrating both sides from t* to t"*1, we get

Lemma 3.1 (Geometric Conservation Law).

tn+1

= / / W - fidsdt
tn a0t

‘Q (") ‘ - ‘Q (t")




Counsider the P.D.E.

ou
- CF =
8t+v 0

where 4 is a transported quantity and F' is the flux. Choosing a test function ¥, integrating
over the entire domain, using integration by parts and applying Theorem 2.1 to take the

time derivative out of the integral we can obtain the Conservative Formulation:
— (U, V) — (V- (@-&"), ), — (F,V¥)g, =0.

We can see that letting & = 1 and ¥ = 1 we obtain Lemma 3.1. Hence the GCL is conserved.

This is the formulation we will be analyzing in this thesis.

3.4 Conservative Weak Form

To begin, we need to introduce the following functional Spaces.

= {(1, 1) € HY(Q)? x HY(Q%)?[yp1 = tppon T}
= {us € HY(Q) =i (X1 ™)Vei €H Q)7 1 = 1,2}
= {1, 4,) € Ulyi = gi on OONT? i =1,2}

= {(1,19) € Ulth; =0 on O\ 7 =1,2}

= L ()

b= {n € QY fo qudr =0},

With these spaces we can now define the ALE Weak form of model (3.3). Adding the

Q oq‘tnql S S

equations of model (3.3) together, multiplying by test functions (i1, 1,) € Uy and applying

integration by parts, we obtain the conservative weak form as follows: Find (u,us) €

(H'NL>®)(0,T;U,) and p; € L*(0,T;Q}) such that

2
d
Z [% (@, ¥i)ge + (1 Vi, Vibi) g — (Wi - V) i, ) g — ((V - &) 13, i) (3.4)
i=1

2
— (P, V- 1/11)Qt1 + (V- 171791)95 = Z <JE;, 1/%‘) + (T, 1) e, ¥ (Y1,02) € Up, @1 € Q1

Qt
i=1 v



CHAPTER 4

SEMI-DISCRETE FINITE ELEMENT APPROXIMATION

Denote the mesh size with h (0<h<1). For i=1,2, we construct the quasi-uniform trian-
gulation Ty, in the continuous domain Q. We assume also no triangle of T}); has two edges
on 9Q? and that no triangle crosses the interface I'°. We now consider the discrete ALE
mapping of X! by means of piecewise linear Lagrangian finite elements denoted by Xf”

4.1 Discretized ALE Mapping and the Semi-Discrete Formulation

We define the discrete ALE mapping X} ;:

X —
T — x(X,1)

where X} ; is smooth and invertible. Likewise, the discrete mesh velocity is defined as follows:

th,i : Qf X (O,T] — RQ, th,i(l’,t) = i ,

which leads to the discrete ALE time derivative:

Qi \h
Oui n _ Ou; . |
Y ’m = E(x,t) + (Dpi(z,t) - V) U(z,t).

(x,1)

We will denote the image of 7710@ under this discrete mapping as 77fl We now proceed to
the definition of our mixed finite element spaces using the classical P, elements for u; and
Py elements for ).

The discrete ALE finite element spaces are defined as follows:

10



Wi = {(Un1, ¥n2) € Uy|tni|, € Po(K), YK € Tf (i = 1,2)},

WY = {(¥n1,¥n2) € Up|tnil, € Po(K), VK € T} (i = 1,2)},
M} = {qn1 € Qu|gna|, € P(K),VK € T} }

]\f—[;? = {an1 € QV|gna K € Pi(K),VK €Ty}
Wi = {(Wn1,¥n2) € WE| (Ve ¥n1,an1)ar = 0,Vgn1 € M}},
where P, (K) is the set of polynomials on K of degree less than or equal to n.

Now, using (3.4) and the above definitions, the corresponding semi-discrete conservative

ALE finite element discretization is to find (i 1, @Wh2) € W, pp1 € M} such that

2

d . . . o -
Z [E (Ui wh,i)ﬂﬁ + (i Viip,;, v¢h,i)g2 — ((&; - V) tp, wh,i)gﬁ — (V- ;) U, 1/)11,1')95

i=1

2
— (ph, V- wh,1>gt1 + (V- tp g, Qh,1)9fi =

(f:‘a 1/)h,¢> o T (T, 1) e

i=1 i

V (Y1, Un2) € W;?, qn1 € M. (4.1)

The analysis of the convergence of the above scheme relies on a couple of assumptions

about the discrete ALE mapping Xf” We assume that the following error estimate is true:
16 = X ill oo oy + AV (XT = X5,) [l paoyor < CR2[Inh][| X [[we.e o)a-

Construction of such a mapping is discussed in Gastaldi (2001).
Assuming @y, ; € W2°(Q)4, then we also have the following error estimate on the domain

velocity:
15:(£) — @i ()| =ty + AUV (w()i — Gni(0)) |z (@tyoe < CRZ|InA & () [weeopya- (4-2)

Finally, we assume that our triangulation 77fl is non-degenerate with time. That is, we

assume that there exists a p > 0 such that
diamBy > ph diamK, VK € ﬁl

for all t € [0,7] and all h € (0, 1], where By, is the largest disk contained in K. We are now
in a position to analyze the stability of 4.1.

11



4.2 Stability Analysis
Theorem 4.1. The following stability result holds for the semi-discrete scheme (4.1) for any
te (0,77]:

2
Z ( |uhZHLoo OtL2(Qt) ) + ||ﬁh,i||L2(0,t;H1(Q§)d)>
=1

2
<C <Z (Hfz‘”Lz(o,t;LQ(Qg)d) + Hﬁ?HLQ(Qg)d) + ||F|’L2(0,T;L2(Ft)d)> . (43)

i=1
Proof. In equation (4.1), let ¢y, ; = Wi, qn1 = pn1 and use Theorem (2.1) to go back to time

derivative on discrete ALE frame:

2 N h
dip; | . ~ = o
Z ( d? ,Uh,i) + (1 Vi, VUh,i)Qg — ((Ghi - V) uh’i,um)ﬂg (4.4)
2
— Z <fi7ﬁh’i>ﬂt + <7?, ﬁh,l>1"t
=1 i

By using the following estimates

di; " 1/d, B L
( di 7uh,i> . = b <£Huhzllggg - (Wmv : Wh,i>uh7i)> )

X
(NiVﬁh,ivah,i)Qg = /%HvuthoQt >C||uhz||1va

we then have,

Using the boundedness of &y, ; due to the convergence assumption of the discrete do-
main velocity (4.2), Young’s inequality with € ,the Cauchy-Schwarz inequality and the trace

12



theorem we have the following:

((@ni = V) tn i, i) e < [ Gnilloo,0 [V nillo.0¢nillo. (4.5)
< elltin,llf o + Cllin,illo o

(Up;V - Wi, ﬁh,i)QE < CHUh,iHan, (4.6)
(ﬁ,iﬂh,i)(ﬁ < ||.f;m||09t Un,illo0r < C <||ﬁ”||(2mt + IIﬁmllﬁm) ; (4.7)
(T tin1)pe < Tl ezaen |l r2ey < CIF 2o lana o (4.8)

< OHF”%Q(W) + GHﬁh,l”iQ’i'

We choose a sufficiently small ¢, leading to

2 2
1d, " = - =
Z [5%"%2”395 + Ot %Q§:| = < (”fh,i”(z),szg + [|tin,i (2),Q§> + HTH%Q(W)) :
i=1

=1

Integrating over time from 0 to ¢, then
2 2 t
S il + 3 [ Vsl e (1.9)
i=1 i=1
2 t . t
<C Z (/o (Hfhz”gm + ||17m“39t) dt + Hﬁ?”%?(gg)) "‘/0 17017200yt ) -
i=1

Using Gronwall’s inequality, we have the desired stability result in Theorem (4.1). O

4.3 Semi-Discrete Error Analysis

We begin by looking at a novel H! -projection, it’s definition and resulting error estimates,

that will help us through the error-analysis.

Definition 4.1. Assume (iiy,0p) € W} and p; € M}, then the following H' -projection for
the solution to (3.1) is defined

13



3 (09 (i = 80), Vi) — (@i 9) 0= 80 V) + (7~ 59 )y

—((p1 —P1), V- ¢h,1)95 + (qna, V- (u; — ﬁi))gg =0,V (Yn1,Yn2) € W;(B, qh,1 € Mﬁ

where x = maX( i -4+ B+ My Moy B2 4 Ms) and |Gpilo,c0 < M;(i = 1,2).

’QN

The following lemmas for error estimates of the H!-projection defined as above are proved

in Lan and Sun (2019).

Lemma 4.1. There ezists a unique solution ((Qy,0z2),p1) € W} x M} such that:

V]

2
Z [t — illo,or +h D2 (|10 — w
i=1 i=1

< 12 (z 1 + ||p1||1,m) |
=1

Ei ¥

Lemma 4.2. With the same condition of Lemma 4.1, we have the following error estimate:

h h h
dpl

o,
bre

b

< ChlIu| ||(?717712)||2,Q§+H(% —' Mo + o1l e + 11422 ng),
5 ) h ) h xX X xX
Sl - a

X
<Ch <||171||2,Q§ T

dit
7i+|%,~

2,0

X

o T lpaller +

dp1
dt 3Ry :
b'e

Applying the H'-projection defined in Definition (4.1) to the ALE Weak Form (3.4), we get

the following ALE weak form with projection:

2

d
Z [dt (s, @/)hz)gt (i Vi, v¢h,i)g§ = (@ni - V) 05, P gr — (V- D) 1, @ﬁh,i)ﬂtl}

2
—(B1. VU)o + (@1, Vo la)g = {(f;, Vi) (i — ), m,,»)m] + (7 na )
i=1 i

Y (Y1, Un2) € Wi, qna € M. (4.10)

We can now proceed to the main theorem of the section, the error estimate of the semi-

14



discrete scheme.

Theorem 4.2. Suppose (iy, p1,iz) is the solution to (4.10) and (dp1,Ph 1, Unz2) is the solu-

tion to (4.1), then we have the following error estimate:

2
Z |:Huz uthLOO(OTLQ(Qt ) + Huz ﬁh,i”LQ(O,T;HI(QE)d)]

i=1
<Ch <||171HL°°(0,T,H2(9§)01) @l o m@na + 1Pl oo (0, 01 (4.11)
+ || C/Z: ||L2 OTHQ(Qt d) + || dliz ||L2(07T;H2(Q§)d) + || dp;l IHLQ OTHl(Qt)))

Proof. Subtracting (4.1) from (4.10), we get the error equation:

2

d
> [ g+ (5 ) Ty = (s 9) = )
— (V- Gpy) (U — tpy) whz) — (P1 —Pni, V- Uy 1)Qt (qn1, V- (uy — ﬁh,z’))ml]

2
Z [ @th) NV (Yna,Yne) € W;?, dna € M;tl (4.12)

i=1
Picking new variables §; = w; — @i, 0; = W3 — Upi, ¢ = P1 — Pr1, and using Theorem (2.1)
to go back to time derivative on discrete ALE frame, we can rewrite (4.12) as

> | (]

i=1

%,i) + 1i(Vos, Vl/)h,i)Qg] — (6, V- Yni)at + (qn1, V- o1)an
Ot

i

= Z [(ni - V)oi, ¥ni)ar + fi(5z'7¢h,i)gﬂ : (4.13)

Choosing ¢; = 0; , qn1 = ¢, the error equation (4.13) becomes

2 d(5 h o h
Z [(_Z - 70-2')9’? + ;uivo-h VUz’)m]
i=1 dt | X ' '
= (@i - V)oi, 00)qr + (i, 03)a] - (4.14)
i=1

Using Youngs inequality with e, the Cauchy-Schwarz inequality and applying the bound
of &, ; and Lemma 4.1 for the H'-projection error estimate, we get the following estimates

15



on the right hand side:
(@i - V) 0i,03) < €l|Vaill§ o + Clloll§ o (4.15)
- = 2
K (0i,03)gqr < C (h4 (11 lae + N2ll20e + [[P2llig:)” + ||Ui||(2),sz§) (4.16)

For the left hand side terms, we note that

ds; |

(_ + dO'Z‘
dt |,

dt

h
1d 1 do;
1), =yl =55 -donga -+ (]

Z) , (4.17)
o
1i (Voi, Voo = il Voillg g (4.18)

Applying the boundedness of &, ;, Lemma 4.2 for the ALE derivative of H'-projection
error estimate as well as Cauchy-Schwarz and Young’s inequality we get the following esti-

mates:

1 -
5 (Vi) 03, 03)0 < Cllaillg o,

4 du1
o0 | < Ch{ | a0 + H

dp
+HP1H1Q +H -

dU2
H2 ot +[|W2ll2,0r + H ng

ng) Haiumg),

<C (14 oil2e) -

do;
dt

(4.19)

Applying the estimates obtained above and choosing € small enough, we have

1d
Z il + 19012

< CZ [||ai||3@§ TR hﬂ (4.20)
=1

2
<O (il o0 + 1]
=1

Integrating in time from 0 to ¢, yields

2
Z{ ooy + [ 190:1Gnts]

=1

1 t
<3 [M1etloay + [ (Il +2) ]|

(4.21)
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Applying Gronwall’s Inequality, we're left with

2
) 2
Z [H‘”H ~(o,mz2n) T ‘|V0i||L2(°7T?L2(95)4)]

= (4.22)
2
<> [||a$||L2(Q?)2 +Ch?|.

=1

By adding ”5"”200(0,T;L2(Qt.)) and HV(S"“i?(o,T;L?(my) to left hand side, applying Lemmas

4.1 and 4.2 as well as the triangle inequality, and choose ﬁ’?” = uY, we have our result in

(4.11). O
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CHAPTER 5

FULLY-DISCRETE FINITE ELEMENT APPROXIMATION

With the semi-discrete scheme completed, we can now move on to the fully-discrete scheme.
Let At > 0 be the time step and t* = nAt for n = 0, ..., N such that ¢ < T and tV*! >
T. We'll be using the backward Euler scheme for temporal discretization. We introduce the

following notation:

Xn,n+1 — Xn+1 o (Xn)_l,

and change variables

xn—l—l — Xn+1 o (Xn)—l(x’n)

to deal with variables and test functions in different domains and on different time levels.

We also define:

n+l n+l n ,n+l n,n+1
5 ntd (i, hyi )Qy“ — (o7, h.i oX )Q?
a i = )
At
n+1 n+1 n n+1 n,n+1
bt ntd (Sph,i » Yhi )Q?“ - ((ph,i?wh,i oX )9?
Phi~ = :

At

We let J! (i=1,2) denote the Jacobian matrix of the ALE mapping with its determinant

given by:

t A
J! = det(F}) = det <8)g}§x)> :

The fully discrete scheme can now be obtained as follows:

18



Find (172?1,22?“;1) e Wit pZJEI M for every n=0,...,N-1 such that:
2
S [0 4 (V) g = (VG T 00
(@ VB g |~ BT s+ (7B R g G
2
- Z [<Eﬂ+l’ Zjl)gﬂﬂ} - <7_m+1’ Zj1>1‘"+1
i=1 i

holds for every (¢y,1,%n2) € W' and every g, € M;""'. We can now move on to the error

estimate for the fully discrete scheme.

5.1 Fully-Discrete Error Analysis

We'll start with a few lemmas which will allow us to perform the required analysis.

Lemma 5.1. Let opt' € W™, then

tn+1
Ik o X0 gy = Ik gy — | ( / gptt o XETHPY wd) dt.

Proof.
t
%/ |90n+1 th+1| dr / An+1|2jtdl,_/ |An+1 sz 7
. (5.2)
=/ opit o Xp" PV - Gy id.
o
Thus
tntl gt
/ / optt o XPMPY - @ adadt = / / op it o X" Pdudt
(5.3)
:/ |¢n+1|2dx_/ |s0n+1 Xin,n-‘r1|2daj’
ot
where rearranging gives the result. O

The following lemma considers the classical Taylor expansion technique in the context of

the ALE description.
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Lemma 5.2. For any p; € Wh,t; we have

SOi(xn—l-lJ;n—O—l) _ S07’(3;,11,1;17,) _ d@n—'—l

]

At dt

At {d%@?“

. 2| a

drdpd (da
. dt de dx \dt) |

Proof. Expanding ¢;(z",t") at 2", we get

s (Ax)? [(0?p;
(A g —  , (en D ogny n+l 4n n+l 4n
pi(a™ 1) = (a1 ) Aw(ax)u YIS (SE) @ L (54)

Noting that

(%) (l’ +1,t ) == (%) (.T} +1,t +1) — At (m (Q} +1,t +1) + ey

(5.5)
azgoi n+1l 4n\ __ 82802 n+1 yn+1 03% n+1l yn+1
(8x2>(x ,t)—<ax2>(:c Jt >_At(8x28t>(x AT+
we have,
(T 4T 5 T AN il n+1 jn+1 ? n+1l yn+1
e ) = i) = (5] e e 4 e (S5 (@ .
Az)? (02 '
L ;) (a;)(:p”+1,t”+1)+...
Thus,

@i(a™T M) — (@ 1Y) (2T ) — (2 ) . @i (" t") — @i, t7)

At At At

Which, when expanded, gives

Ax (a@l)nJrl - (A.Z')2 (82¢i)n+1 A (82901')”4-1 N Spi(xn+17 tn-‘,—l) _ (pi(xn+l,tn>

At \ ox 2At \ 022 Dzt At ’
(5.8)
where
(n+l gn+1\ _ o (nt+1l gn A\ ntl 2 o\ ntl
(,DZ(ZB o1 ) @z(l‘ T ) _ 8(,01 B g 0 Wi T (59)
At ot 2 ot?

n n+1 n

Since z(%, ") = z(%, ") — At (%) JRm (ﬁ) +... We see that 2% = (%) L.
At (922"
2 (6t2> :
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We then have

QOi(l'nJrl,thrl) _ goi(mn,t") B @ n+1 8902 n+1 B g & n+1 8801 n+1
At ot oz 2 \ o2 oz
o 8_95 ntl [ 927 ntl B g @ n+1172 0, n+1
ot Oxot 2 ot ox?

n (8%)”“ B g (82%>n+1 (5_10)

ot 2 \ ot?

B d@?—H At {624% 92t a(p?—i-l N 2axn+1 aQw?—H <8xn+1)2 6290?—’—1}
dt |, 2|02 " or s ot Ozdt ot 9a2

B dpi At [d?it? dr dy; d (dx

=i —7[ i —md—(a)]

]

The next lemmas are borrowed from Martin et al. (2009). It puts bounds on various

Jacobian terms which arise.
Lemma 5.3. Due to the change of variable X™" !, we have that
lehtt o XPm 2 g < 17 e NP ot i 2 g
Lemma 5.4. There exists Cy and Cy depending on X and hg > 0 such that for 1=1,2
HJli,z‘HLOO(Qo) <Ch vt € [0,T], Vh € (0, ho)
1(Jhi) " ooy < Co V€ [0,T], VA € (0, ho)
17} = JP |l < CAL.

The final lemma is borrowed from (Lee and Xu (2016)). This provides a bound on the

discrete domain velocity based on the regularity of the ALE mapping.

Lemma 5.5. There exists an M > 0 such that

0dJ;

ot

maz{ ||l 1, o, |5 e} < M, VE€[0,T](i = 1,2).
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We can now proceed to the main theorem of the section, the fully discrete error estimate.

Theorem 5.1. Suppose (i1, p1, i) is the solution to (4.10) and (@', ppy',nh') is the

solution to (5.1), then we have the following error estimate:

2
> (1Y = s + Atz 1% = T o)
=1

< C(h+ At) [”Ul“Lm o1m2(0t)d) T |G| Lo 0.7 2000y + ||P1||Loo(0tH1(Ql)) (5.11)

dilq
+ HE .

20,7502 )y + | =~

HLQ(O,T;HQ(Q?)d) + = ||L2(O,T;H1(Q’Z?)):| .
~ n 1 . )
Proof. We let equation (4.10) take values at " and add 91, "2 {0 both sides of the equation.

We then subtract equation (5.1) from this result and apply the H'-projection to get the

following error equation:

> {(éﬁﬁ?*—émﬁ%) o (V (8 =) VO o
i=1
— (@ V) (@ =) i) g + (V@) (@5 = a™), Zjl)wl]

- ((13? —pﬁl) V- WH)QW + (Qthrlvv ( e U’}:jl))Q?H

_Z K((d»n-‘rl ﬁn+1> n+1) _ i(ﬁn+1 n+1) _étﬁ"%
- ? hyi Q;H'l dt 7 » Yhyi Q;H-l % ’

=1
n+1 n+1 T n+1 n+1 n+1
(hl?h,Q)EW s Qny € My
Picking new variables 6! = @7 — @/t ot = P — @t ontl = —ppt! and
reorganize terms as:
2 2 2 6
J _ J
2. =) > Al
i=1 j=1 i=1 j=1
where:
Ll . ét n+%
= o, ,
n+1 n+1
L = M (VU v¢ )Qr_H-l )
1
1 _ -n—+1 n+1 n+1
R; = ((wh,i -V) O Wy )Q{mv
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RE = (V@) (77 07 070 oo

R? - (¢n+1 V- wm_l)ﬂnﬂ + (qh—‘l_lj V- O-n+1)Q;l+1 )

RY =5 (7 00T g

R} = — <% (“?Ha Z:l)gyﬂ - étﬁ?Jr%) )

RS = o]+,

V(TR € Wit gt e M,

Choosing w"H ot qn1 = ¢", the error estimates for the following terms are obtained
using similar methods as demonstrated in Chapter 4:

L2 > CI[Voy |y o,

R} < EHVU?HH Koias + CHanHHO Qs
R? gC(H(Si”HH o T ||a"+1||0m+1> after using Youngs inequality,
R} =0,

RE< O (82 gos + 10742 )

We start first by analyzing the L} term:

3 7 (2

- 1
¢ ”*2 _ n+l _n+l n _n+l n,n+1
dlo, A (o, o] )Q,Hl — (07,0 0 X )Qn ,

and apply Lemma (5.1) to get the following:

1
At

1 tn+1
> IAZ [||0?+1||§79n+1 - ||0f||8’9? +/ (/ o7+ o X2y whzdx> dt} (5.12)

The last term satisfies the following after use of Lemmas (5.3) and (5.4) and is subse-

{ (o7 0T ) g = (o7, o7t 0 X o }
2 2

quently moved to the right hand side of our error equation:

1 tn+1
E / |O_n+1 Xt n+1‘2v dI‘ dt
t’n
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tn+1

1 { ~ n — n i
< —— sup ”Jit(v'wh,i)HOO,QQH(Ji H) 1||oo,m+1/ ||Ui HHgdet
2At ie(tn7tn+1) ¢ ¢ tn T
1
S5 sup 1TV - @ni)lc.00 1 (7)™ oozt o7 g gpe
fe(tntn-‘-l)
< Cllo? 2 g (513)

To estimate R?, let 1i; = ;(f) and first consider the Taylor expansion of

da (7 n+tl t,n+1 n+1
5 (uz, o o X" )Q5 at t" .

d
— n+1 t,n+1
u’L? 7 X ) t

:>dt( 2

1 At { (@, o) g = (@7, 07T o XM

i i

K3
tm i

tntl d2 )
+ (t - tn)ﬁ (’LAL“ O'n+1 O Xt’n+1>9t dt:|

(5.14)

Applying Theorem 2.1 on the following term from the remainder of the Taylor expansion

(5.14) gives us:

2 2.4
d (Uz ntlo Xi’"“) = (d o
iz \"" ai dt?

»

du;
’Ufﬂ oth+1) i ( UA
Qi dt

z

(v X (I}z) O_n+1 OXt n+1)
o

? l

o™+ o X n+1)
& Qt
+ (ﬁz(v . (D})Z, UZ"H o Xt ”H)
of

AV - &)

d*; di; X
< V5| ot + 219 - il G2 | T + Wi 2

d2

T

—|—||V wsz Qt||u7'||OQt:| ||a?+1 OXt7n+1||0,Q§.

(5.15)

We define the following notation and apply Lemma (5.5) to get:

. d?i; du,
=G(t) = ”d2 ||0Qt+2||V ill e 0fll == llogt
. (9(V i)
o af | =7 looor + IV - Gill2, i l1illo
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d?a;
< 0@1—9
dt?

g + 12
Lo gt

losg + 1l
T

By using the results above, we obtain:

R?’:—(

L

—nt1 n+1) _ _n+3
Ui 5 Yhi )gntr U;
K2
d? .
(t _ tn) _ (/&17 0_n+1 o Xt7n+l> X dt
dt? ‘ Qf

(f —t")G(D)[lop+! o XP Y| ed (5.16)

We continue this result using Lemma (5.3) and Youngs inequality

C tn+1 1 1
<% [ 1Ll
tn !
O tn+1 .
SE(/ 1
tn

At ? s —
< 4/ 3 Sup ||Jzt||ooQ?||(Jz ) 1||oo,m+1
fe(tn tnt1) !

wmwwwwwﬁ</
t’ﬂ

A tn+1
< C(At) S 177 oo, 00 1 (T ) ™l oo GH(t)dt + ex]|of T[S grer- (5.17)
te(tn tn tr ’
By Lemma 5.4 we get our error estimate for the term
tn+1
R <C ((At) / G*(t)dt + ||af+1||g,m+l) : (5.18)
tn ¢
We estimate the R as follows:
N 1 1
_at(S?J'—Q _ E [ (5?70.?+1 o Xn,n—l—l)Q? . (5?+170?+1)Q?+1:|
< L 5" o XnJrl,n Jzn n+1 - (6n+1 n+1)
= A\ FESSACR S R G
n+l _ +1n _Ji
<: B 5i 6? o )(n 7LJ?+1 n+&
- At T
Qrtt
Ln _ Ln_Ji
_ 5?—&—1 o 5;1 o Xn+1,n O_@+1 B 52”' 1) Xn—i- n 5@” o Xn+ nJ:H_1 O-nJrl
- At ) gt At o
A Q;{hq

(E = t)G@O)llo7 g rerdt

oo,Q:.H'1

D=

tn+1

(f — tn)2’|0?+1 Hg’mﬂchf)

1
tn+l 2

(I

||f7?+1||0,ﬂf+1

@@@
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The first term of R? will be handled using Lemma 5.2:

n+1 n n+1,n
Qn+1

At T
dt dz dz \ dt T
Qrtt

d(S?H'l
o ar |, 2 e

2

where % € H'(0,T; Wh>(Q1)),

Hd5n+1 h At d25?+1
N dt?

g 15
+ ||0_n+1||0 Qn+1)

mn h
”d5 + HQ N (At)?
Q?"""l 4
st

where 3% = || ( 7

n+1 n+1\ ntl n+1
(N T
dt dx dx \ dt 0,8

B+ ||0-?+1||(2)7Q?+1>

dzx dt

n n+1
(dt)nH (ddi +1> 4 (dm)nH) oo+t < C due to Lemma 4.2.

The second term of R¢ will be handled using Lemmas 5.1 and 5.4:

Jrtl_gn

n n+1,n n n+1,n J i i n n+1,n
0f o X -0 X JT <—Jin+1 =)(07 0 X )
Qn+1 Qn+1

i On—i-l Un—i—l

At Tt At T

< O o Xl g [lo™ g g
< (1 + A5 0 + o3 ),

where, we do an analogous estimate for 67 as we do for o™ in (5.12) and (5.13).

i
dt

Therefore RS < C <||5Zn||(2)97 + ||d6

OQn+1 + <At) + ||0-n+1||0 Q”Jrl)

Combining all bounds, moving all negative terms from left hand side to right hand side,

and take sufficiently small € we have the following:

2 Ha"*lﬂ o Jorl

0,97 i llo,Qp n
Z At + ||VO—Z +1||g79?+1]
=1

2 h
d5n+l
Z [ OQ”‘H + ||5n+1||0 Qn ! + ||5n||0 ar + (At) (5.18)
= 25n+1
o2 gt + (AD) Gz(f)df].
g m
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Combining all constants and multiplying all terms by At, we have the following:

M-

[HU"HHOQTLH — ”0?“(2),9? + (At)HVU?H“g,Q?“}

zi:{AtH

(O g+ (80 [

tn

=1

h

6n+1 . :
s+ (A0 G gy + (AT [ + (A1) (5.19)

tn+1

G?(t )dt]
Sum over n from 0 to N-1, applying telescoping technique:

>

i=1

N-1
lo:¥ 5.0y — ll07115.00 + (A2) Z!IV0"+1\IOQn+1]

n=0

<oy [Z (AR 67 1 o + Z ( L

i=1 n=0

h
Homﬂ + (At)? (5.20)

n

tn+l
Ao 2 g + (07 [ G >dt)}
9% \
Apply Discrete Gronwall inequality to get:

2

i=1

<OZ[Z (A 072 0 + Nzl( o

i=1 =n=0 n=0

+ (At)? /t:nH GQ(f)th)} :

For last two terms on right hand side, we note the following due to the regularity as-

N-—1
o115, 0 = Nl 115,00 + (A2) ZIIVU?“HS,Q?H]
n=0

h
||(2)7Q?+1 4 (At)3 (5.21)

sumption of the real solution @; (i=1,2):

N—-1

Z (A2 [ G2 (Dydi = (A2 [ GA(f)di

=0 2

= (At)? fo (Ha;g;z HOW + Hauz ||o,Q§ + ||ﬁi||0’95) dt < C(At)?
and

N—-1 .

;}(At)?’ < C(A)?PN = C(At)3 (%) = C(At)?
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After applying the projection estimates and combining terms, using Poincare inequality

0

on left hand side as well as choosing 6?” =u;, we get:

2
=1

N—-1
oV 1[5y + (A) ZIIO’”HllmnH]

n=0

N
—n —n n 2
< C(h+ wm[z (@200 + @320z + 27 1.07) (5.22)
d—m—f—l

n=0
2
+z(|| a o) |

By taking the square root both sides of (5.22) and adding to the left hand side [|6]V ||y o~

—m-l—l dpn+1

||m+ +||

and (At)[|6i|, gr+1 for i=1,2, we have our result in (5.11). O
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CHAPTER 6

CONCLUSION

The Stokes/Parabolic interface problem and its ALE finite element analyses conducted
in this thesis provide a foundation for more complex fluid-structure interaction problems’
ALE finite element approximations and their advanced numerical analyses with optimal con-
vergence rate according to a lower solution regularity in reality. We first provided a model
description using moving domains Q! (i = 1,2) and provided the necessary properties of an
appropriate Arbitrary Lagrangian-Eularian (ALE) mapping. Using the ALE description,
we proceeded to discretize the spaces to define its semi-discrete conservative ALE finite el-
ement approximation, analyzing both its stability and error estimates utilizing a novel H!
-projection technique, and demonstrated that the semi-discrete scheme has a convergence
order of O(h) according to a lower solution regularity. We further discretized the moving
temporal domain generated by ALE mapping using the implicit backward Euler scheme,
defining the fully discrete conservative ALE finite element approximation. Through addi-
tional analysis of the fully discrete scheme’s error estimates with respect to the time step
size At, and using the previously defined H! -projection, we obtained a convergence order of
O(h+ At) which is consistent with the spatial convergence rate of the semi-discrete scheme,

also consistent with the first order backward Euler-type time difference scheme.
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