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ABSTRACT 

Aerodynamic flutter is the unstable oscillation of a body caused by the interaction of aerodynamic 

forces, structural elasticity, and inertial effects induced by vortex shedding. Current models of this 

phenomenon require finite element analysis and extensive computational power and processing time. The 

purpose of this study was to develop and validate a program that is faster and more efficient than existing 

approaches by using the discrete vortex method (DVM). By reducing the complexities of flutter to the 

shedding of vortices in an inviscid model of a two-dimensional flat plate with a torsional spring constant at 

its center, this phenomenon can be modeled for a demonstration. A discrete vortex model of inviscid flow 

past a cylinder is transformed through conformal mappings to model the behavior of a flat plate in an 

impulsively started streamline flow. Discrete vortices are shed at the tips of the plate and the moment 

induced by the vortices on the flat plate result in its angular displacement varying over time to simulate 

flutter. The results of this study provide a rudimentary example of the potential benefit of implementing 

DVM in the field of structural dynamics. 

A FreeBASIC program was developed for this thesis and utilized in several parametric studies. The 

program includes an iterative time loop in which discrete vortices are added to the flow field and the angle 

of the flat plate is updated in every time step. The program is fast enough that it runs in almost real time 

though it slows down as more vortices are added into the field. The resulting flow field displays like a video 

which allows the viewer to visually observe how a plate of user-defined properties will behave in a uniform 

flow. Furthermore, the user can observe the force and pressure distributions on the plate in the same window 

to visualize the aerodynamic forces acting on the plate due to the wake. Finally, the deflection angle, drag 

force, and pressure at a specified probe location in the wake are calculated in each time step and recorded 

in a text file; for data analysis, these values can be extracted and plotted with respect to time. 

Throughout development, the program was validated for realistic results by plotting inviscid 

streamlines, observing the wake generated by discrete vortices, and analyzing the flutter simulation results. 

Once the program development was complete, the parameters varied in this study included plate width, 

uniform velocity, mass moment of inertia, damping coefficient, and torsional stiffness. By performing Fast 
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Fourier Transforms on the deflection angle and pressure data, the damped frequency and the Strouhal 

number of the wake, respectively, were approximated for each case simulated in the program. The 

correspondence between the predicted and actual values for damped frequencies was extremely accurate. 

However, the Strouhal numbers were less conclusive as they were difficult to extract from autospectral 

plots; this can be attributed to various minor issues within the program due to singularities at the tips of the 

plate and at the center of each vortex. Additionally, the times at which specimens failed were recorded for 

each parametric study. It was expected that the failure time would increase for stiffer specimens with more 

damping; the results generated by the model supported this prediction by demonstrating positive 

correlations between these parameters and failure time yet no clear correlation between mass moment of 

inertia and failure time. The correlation between predictions and simulated results provides support that the 

program used is viable. With future adjustments and developments, the discrete vortex model has the 

potential to revolutionize the industry of flutter simulation, providing a faster and more efficient analysis 

technique that can be implemented early on in a structure’s design process. 
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CHAPTER 1 

 

INTRODUCTION 

 

Aeroelasticity is the interaction between aerodynamic forces and the elastic deformation and 

inertial forces of solid bodies. When disturbed by some aerodynamic force, an elastic body will deflect and 

return to its original shape. This movement may induce an oscillatory behavior as the object’s stiffness and 

inertial forces alternate. A prominent and problematic case of aeroelasticity is the phenomenon called 

flutter, the unstable oscillation of a body such as an aircraft wing that can lead to sudden structural failure. 

There have been several cases of aircraft wings breaking off during flight due to flutter-induced motion. 

Flutter is not strictly limited to aircraft, but its prominence and potential consequences deem it a desirable 

topic of investigation for the aerodynamics community. This study seeks to develop a numerical simulation 

of aerodynamic flutter of a flat plate as a demonstration that discrete vortex method (DVM) can be utilized 

to generate results accurately while limiting the necessary computational power and time. Such a powerful 

tool can be used to quickly model test cases of flutter and provide useful data for aircraft design, 

investigations to better understand flutter, and other applications. 

The phenomenon of flutter is present in many engineering disciplines including the design of 

aircraft wings and stabilizers, construction of suspension bridges or buildings, and commonplace objects 

such as powerlines and street signs. When fluid flows past a body and boundary layer separation occurs, 

vortices are shed behind the body, generating a region of high velocity and low pressure. The pressure 

distribution along the back surface of the structure induces aerodynamic forces on the body, altering its 

shape or position. The elastic forces in the body then restore it to its initial form. This pattern repeats itself 

resulting in oscillations of the position or shape of the body. When the oscillations approach the resonant 

frequency of the structure, they can become amplified and surpass the yield stress or fatigue limit of the 

body and result in failure.  
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Design elements have been developed to combat the effects of flutter. For example, fairings on 

aircraft wings and horizontal strakes on chimneys are designed to reduce the size of vortices shed and 

consequently reduce the aerodynamic forces on the body. While these methods are beneficial in remediating 

the effects of flutter, they do not entirely prevent the possibility of it occurring. Crucial to aircraft 

performance and safety, wings and stabilizers must be designed stiff enough to prevent flutter within the 

aircraft’s operating envelope. Accounting for this phenomenon early in the design process mitigates the 

chance of flutter at its source. Unfortunately, this has not yet been considered practical due to a lack of 

understanding of the phenomenon and the time-consuming nature of computationally modeling flutter. 

Since the 1930s, most flutter analysis relied on extensive calculations of a vehicle’s mass and 

stiffness, so flutter checks were not performed until later in the design process. If the flutter check revealed 

any shortcomings of the structure, the aircraft was subject to an expensive overhaul of the design. 

Furthermore, subsequent changes resulted in heavier, less efficient aircraft. In the 1950s and 1960s, Finite 

Element Analysis (FEA) provided a new and improved way to gather flutter data. However, the expertise 

in this method was limited. The time to gather stiffness and mass properties and to mesh and model the 

aircraft resulted in FEA proving no more useful than traditional flutter analyses [1]. 

Today, aircraft flutter is a heavily researched topic. Flutter analyses include the attachment of flutter 

exciters on the wingtips, manipulation of extensive FEA matrices, and other expensive and time-consuming 

methods. Testing always occurs late in the design process and any findings tend to favor active control 

rather than redesign of the structure itself. Many studies and technologies have been developed to mature 

active flutter suppression and other corrective solutions. Damping out structural vibrations, maintaining 

low airspeeds to avoid critical flutter, and automatic control systems using the control surfaces to correct 

flutter are some of the existing solutions proposed to combat aeroelasticity. While these methods of limiting 

flutter work effectively, it would be more ideal to conduct flutter analyses in the early stages of design 

through numerical modelling in order to mitigate rather than remediate the issue. 

Early analyses of flutter are beneficial because they call for simple and inexpensive changes to the 

aircraft design. Such an adjustment may be increasing the thickness and therefore stiffness of the structure 
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of the aircraft wing, for example, increasing its resistance to deflection caused by the airstream. If completed 

early on in the design process, flutter analyses can prevent flutter with the lowest economic impact on the 

design process. That is, however, dependent on the efficiency of the analysis. In 2001, Gonzales developed 

a Multidiscipline Design Optimization (MDO) to map together a structural Finite Element Model (FEM) 

and an aerodynamic Finite Volume Model [2]. By combining a matrix of aerodynamic coefficients and one 

of mass and stiffness properties, the system could be solved for the set of parameters that would induce 

flutter. This MDO capitalizes on recent technological advancements in computational power, rapid meshing 

and modeling techniques, numerical methods, and Computer Aided Design (CAD). This numerical method 

allows flutter analyses to be conducted earlier in the design cycle and at a reasonable pace. 

While effective and continually advancing, the FEM method remains unnecessarily lengthy and 

costly. In order to design an aircraft structure with appropriate mass and stiffness properties, an 

approximation of the structure’s aeroelasticity will suffice. In this study, a method much simpler than 

previous approaches to flutter analysis will be presented using a numerical method involving the classical 

aerodynamic equations for modeling vortices.  

The discrete vortex method (DVM) provides insight into the effects of high Reynolds number flow 

on a rigid body through the positioning of vortices in a flow field to model a continuous vorticity starting 

at the separation point on a body. The technique was developed in the 1930s by Rosenhead [3] and used 

extensively in the 1970s as a computational approach to the modeling of wakes. Since then, DVM has not 

been used very often despite its efficiency and speed. With the rise of computational technology, DVM 

proved to be a very simple and efficient means of simulating a wake behind a rigid body [4]. This method 

was applied to a two-dimensional analysis of vortex shedding by Sarpkaya et al. off a flat plate in 1975 and 

off a circular cylinder in 1979 [5,6]. This research uses inviscid potential flow and boundary-layer 

interactions to project the propagation of shed vortices from a cylinder with time. A complex velocity-

potential function is used to describe the flow field across a cylinder and Pohlhausen’s steady-state 

approximation is used to locate the separation points of the vortices which constantly oscillate around the 

circumference of the profile with every time step. Finally, the vortices are rediscretized as their positions 



4 

 

advance with time. The numerical results of Sarpkaya’s study resulted in reasonable values and visuals to 

explain vortex formulation and shedding from a two-dimensional circle. The graphical results obtained by 

plotting the locations of all the discrete vortices provide excellent visual aids of a computed wake behind 

the body. Sarpkaya’s work will be closely followed in this study; the cylinder will serve as a starting point 

and subsequently be transformed across several planes using conformal mapping to mimic a flat plate at 

various angles in inviscid flow. 

In 1997, Walther et al. applied two-dimensional DVM to bluff bodies including a cylinder and a 

flat plate [7]. Walther’s work included an analysis of a flat plate subject to a harmonic pitching motion. The 

following is a survey of the work produced in the effort to study the airflow past a stop sign undergoing 

torsional oscillations due to aeroelastic deformation, employing a feedback loop rather than simply a 

harmonic input. These results can be compared with the numerical study of flow past an oscillating flat 

plate studied by Walther and the vortices shed off the cylinder studied by Sarpkaya [6]. Assuming inviscid 

flow and treating a flat plate as a bluff body, the results should be similar. 

The objective of this study is to develop a simpler, faster numerical method to model and 

understand the consequences of flutter on an airstream. A simple case of flutter is the torsional oscillation 

of a traditional stop sign subject to wind. This is a simple geometry which can be modeled as a flat plate 

that is free to rotate about its center. Boundary layer separation would occur at the tips of the flat plate. The 

stop sign post has a designated torsional stiffness, damping, mass moment of inertia, and torsional stress 

limit. This investigation is a precursor to analysis of a Joukowski airfoil of which the locations of vortex 

shedding are less obvious than those on a stop sign or flat plate. A Joukowski airfoil can be obtained through 

a series of conformal mappings slightly modified from those used to obtain a flat plate; this profile has been 

modeled in DVM before but never as an oscillating body [8]. With Inviscid Flow Theory and DVM as a 

basis for mathematical formulation and the use of compiled FreeBASIC software to generate a 

computational algorithm, a two-dimensional flat plate is transformed through various complex planes 

demonstrating changing angles of attack determined by the torsional damping and inertia of the plate. The 

benefit of using FreeBASIC is the availability of an existing graphics feature and a compiler that creates an 
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application just as fast as one built in C programming language. The discrete vortices are shed from the 

edges of the plate and their distance from the edge determined by DVM calculations; the vortices can 

subsequently be observed and the resulting pressure distribution, moment, and torsional resistance on the 

stop sign can be calculated to model the sign’s movement in the wind. When this algorithm is eventually 

translated to analyze a Joukowski airfoil, this quick approximation of the airfoil’s aeroelasticity may 

provide a better understanding of a very pertinent flutter for the aerodynamics community.   
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CHAPTER 2 

 

INVISCID FLOW THEORY 

 

 The flow model in this thesis will be approximated using inviscid flow theory. Neglecting friction, 

thermal conduction, and diffusion of the fluid allows for a very simple and highly accurate model of flow 

at high Reynolds numbers. While zero viscosity flow does not exist in nature, many aerodynamic flows can 

be modeled without the influence of transport phenomena. Equations used in this section are the 

culmination of past work on the topics of inviscid flow and conformal mapping. 

 

2.1 Potential Flow 

 Inviscid flow theory is a branch of fluid dynamics that models the behavior of fluid while neglecting 

its viscosity. This assumption corresponds to highly turbulent flow. Note that flows with significant 

vorticity cannot be effectively predicted by this model. For inviscid flows, the no-slip condition does not 

apply. In other words, the transverse velocity gradient found in the boundary layer on a surface can be 

ignored. The flow beyond the boundary layer is considered potential flow because it obeys Laplace’s 

equations and the same laws as electromagnetic fields. Without a boundary layer, the entire flow field can 

be modeled through the use of potential flow equations. Potential flow is defined as a vector field equal to 

the gradient of the velocity potential, 𝜙, a function of both space and time (Equation 1). The curl of the 

velocity field is always equal to zero indicating irrotationality except at singularity points and, in the case 

of incompressible flow, the velocity potential also satisfies Laplace’s equation. 

𝑉⃑ = ∇⃑⃑ 𝜙, ∇2𝜙 = 0 (1) 

The advantage of using inviscid flow is that a potential flow field can be constructed simply by 

superimposing simple flow patterns in the same flow field. For this method, several elementary 

aerodynamic flows can be represented by their velocity potentials or stream functions in the following table 

[9]. These simple flow patterns create much more complex flow patterns via superposition. 
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Table 1 Elementary Aerodynamic Flows 

Type of Flow Velocity Potential Stream Function 

Uniform 

 

𝜙 = 𝑈𝑟 cos 𝜃 𝜓 = 𝑈𝑟 sin𝜃 

Source / Sink 

 

𝜙 = ± 
Λ

2𝜋
ln 𝑟 𝜓 = ± 

Λ

2𝜋
𝜃 

Vortex 

 

𝜙 =
Γ

2𝜋
𝜃 𝜓 = −

Γ

2𝜋
ln 𝑟 

Doublet 

 

𝜙 =
𝐾

2𝜋

cos 𝜃

𝑟
 𝜓 = −

𝐾

2𝜋

sin𝜃

𝑟
 

 

 

For more complex and practical flow patterns, these simple patterns can be summed to yield the 

desired result. A very common pattern is flow past a circular cylinder, demonstrated in Figure 1. This 

pattern is achieved through the addition of uniform flow and a doublet. The resulting equations for velocity 

potential and streamlines are 

𝜙 = 𝑈 (𝑟 +
𝐾

2𝜋𝑈𝑟
) cos 𝜃 , 𝜓 = 𝑈 (𝑟 −

𝐾

2𝜋𝑈𝑟
) sin𝜃 (2) 
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Figure 1 Flow over a cylinder 

 

 Flow past a cylinder is symmetrical in inviscid flow but realistically would include a wake behind 

the cylinder inducing drag on it. However, in inviscid flow, there is no separation of the boundary layer. As 

a result, it is expected that the sum of the aerodynamic forces acting on a body in inviscid flow is always 

equal to zero and flutter cannot be induced. 

 

2.2 Complex Potential 

At each node of the velocity field, the flow can be represented by a vector in the direction of the 

fluid motion at that position. Representation of a two-dimensional vector can be accomplished with a single 

complex number, z. For the purposes of this study, it is necessary to have a good understanding of complex 

numbers. Defined in the Argand-Gauss plane, or complex plane, a complex number, z, consists of a real 

part or abscissa (x) and an imaginary part or ordinate (y) and is plotted analogously to a coordinate on a 

Cartesian system. A complex number is mathematically represented by 

𝑧 = 𝑥 + 𝑖𝑦 = 𝑟𝑒𝑖𝜃 (3) 

where r represents the modulus of the complex number and can be calculated as the magnitude or absolute 

value of z while 𝜃 is the argument of the number and is equal to the inverse tangent of the imaginary term 

divided by the real term. The Euler (polar) form of the complex number assigns both a magnitude and 
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direction to the specified point. All complex numbers abide by operations under the complex variable 

theory, the details of which will not be elaborated in this thesis. 

 

 

Figure 2 Argand diagram of a complex number 

 

 

 With this formulation, a flow field may be described by the complex potential equation, w. At each 

point in the field, a discrete volume of flow has a position defined by a complex number, z, providing its x 

and y locations in a complex, two-dimensional space, thereby making w a function of z, the complex 

variable. This relationship allows for the mapping from the w-plane (uniform flow) to the z-plane (uniform 

flow around a circle, for example).  

𝑤 = 𝑓(𝑧) = 𝜙(𝑥, 𝑦) + 𝑖 𝜓(𝑥, 𝑦) (4) 

For every point (x,y) in the z-plane, there exists a corresponding point (𝜙,𝜓) in the w plane.  In the 

above equation, the real components are combined into the term, 𝜙 (phi). The velocity potential is given by 

the real part of the function w and, when set equal to a constant, yields the equipotential lines of the flow 

field. The imaginary components are combined into the term, 𝜓 (psi). The stream function represents the 

imaginary part of w and the streamlines of the flow field. The streamlines of a flow field are an excellent 

tool for visualizing flow and will be utilized for this purpose. It can be demonstrated that both equations, 𝜙 

and 𝜓, satisfy the Laplace equation because they meet the conditions of continuity and irrotational flow, 
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thus restricting the function w to be considered analytic at all point except at singularities [10]. Singularities 

occur where the velocity of the flow is either zero or infinite. At these points, the conformal mapping 

process does not apply. For the purposes of a computational model, it is acceptable to neglect stagnation 

points, sharp corners, and the centers of vortices, doublets, etc. 

Likewise, the velocity potential can be described by a function of complex numbers in a flow field. 

The complex velocity, of complex operator, is the complex conjugate of the derivative of the function w 

with respect to z. Each point in the complex plane can also be assigned a complex velocity which is the 

time derivative of z. Complex velocity also has both a real and imaginary component as it is represented by 

a vector at each point in the flow field with both a magnitude (speed) and direction. In the complex plane, 

the real part of complex velocity is denoted by u (velocity in the x-direction) and the imaginary part by v 

(velocity in the y-direction). It is equal to the complex conjugate of the derivative of the w function. 

𝑑𝑤

𝑑𝑧
= 𝑢 − 𝑖𝑣 = 𝑉̅ (5) 

 

2.2 Conformal Mapping 

The superposition of potential flow patterns can be executed mathematically with a conformal 

mapping technique. Conformal mapping is the process of using analytic functions to transform points from 

one complex plane to another through a consistent relation. Physically, the w-plane always displays 

uniform, horizontal flow and is transformed into the flow of interest in the z-plane. To obtain different 

physical flows, multiple relations such as 𝑧2 = 𝑓(𝑧1) may be used to map the fluid flow across different 

planes to achieve the desired flow pattern. Common flow patterns such as a source, vortex, and doublet can 

be mapped from a w-plane of parallel flow using a simple transformation. For example, the transformation 

from a uniform flow pattern in the w-plane to a vortex of circulation strength Γ centered at z = a in the x-

plane is given by 

𝑤(𝑧) =  −
𝑖Γ

2𝜋
ln(𝑧 − 𝑎) (6) 
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For every position in the w-plane, there is a corresponding position in the z-plane which represents 

the physical flow pattern of a vortex. These transformation equations resemble the velocity potential and 

streamline equations given in Table 1 due to the relationship between w, 𝜙, and 𝜓. Another equation of 

interest is the transformation from uniform flow to flow past a cylinder given by the equation 

𝑤(𝑧) = 𝑈(𝑧 +
𝑎2

𝑧
) (7) 

where a is the radius of the cylinder and is also equivalent to √
𝐾

2𝜋𝑈
 where K is the strength of the doublet. 

Again, this transformation equation can be derived from the summation of the equations for uniform flow 

and doublet flow given in Table 1. From this transformation, the complex velocity can also be derived as 

the derivative of the function. 

𝑉̅ =
𝑑𝑤

𝑑𝑧
= 𝑈(1 −

𝑎2

𝑧2) (8) 

Through a series of transformations, the circular streamline can be manipulated through several 

different z-planes to obtain a different profile. For example, a circular profile can be flattened to model flow 

past a flat plate. The flow field must first be rotated so that the free stream velocity travels from the top of 

the plane to the bottom. Rotation of the flow field through an angle 𝛼 can be achieved by multiplying the 

current z function by 𝑒𝑖𝛼. The circle with radius, a, can be flattened into a flat plate of width 4a by adding 

the current z function and 
𝑎2

𝑧
. This series of transformations is illustrated in Figure 3. 

The velocity at any point in the zn-plane can be found by multiplying several derivatives. These 

derivatives are obtained by differentiating the equations shown in Figure 3 using the Chain Rule. When the 

derivative of the w-plane with respect to the z-plane of interest is found, the complex conjugate of this value 

gives the velocity vector at any position. 

𝑑𝑤

𝑑𝑧𝑛
=

𝑑𝑤

𝑑𝑧1
∗
𝑑𝑧1

𝑑𝑧2
∗ …∗

𝑑𝑧𝑛−1

𝑑𝑧𝑛
, 𝑉𝑛 =

𝑑𝑤

𝑑𝑧𝑛

̅̅ ̅̅ ̅
(9) 
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Figure 3 Transformation from a cylinder to a flat plate 

 

To account for angle of attack and deflection angle of the plate, three more conformal mappings 

are added the series. The conformal mappings used in this study are provided in Table 2 with a description 

and corresponding equation for each plane. The z6-plane is the physical plane and the plane of interest and 

will be observed for results in this study. In the study, the direction of uniform flow can be rotated by an 

angle of attack, α, and the flat plate can elastically deflect through a deflection angle of θ due to interaction 

with the flow. A conformal mapping of a flat plate at a deflection angle of -20 degrees and an angle of 

attack of 30 degrees is shown below. The bright green line represents the front surface of the flat plate and 

the yellow line the back; the junctions of the green and yellow lines are the location of the tips of the plate. 
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Table 2 Conformal Mapping of the Flow Field 

Plane Equation Description Example 

W 𝑤 = 𝑈𝑦 Uniform flow 

 

Z1 𝑧1 =
𝑤 ± √𝑤2 − 4𝑎2

2
 

Uniform flow around 

a circle 

 

Z2 𝑧2 = 𝑧1𝑒
𝑖𝛼𝑖 

Rotates the flow 

through initial angle 

of attach (𝛼𝑖) 
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Z3 𝑧3 = 𝑧2𝑒
𝑖𝜃 

Rotates the flow 

through deflection 

angle (𝜃) 

 

Z4 𝑧4 = −𝑖𝑧3 

Rotates the circle 90 

degrees; tips of flat 

plate fall on x-axis  

 

Z5 𝑧5 = 𝑧4 +
𝑎2

𝑧4
 

Flattens circular 

profile of radius 𝑎 

into flat plate of 

length 4𝑎 
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Z6 𝑧6 = 𝑖𝑧5𝑒
−𝑖𝜃 

Rotates flat plate 

back to original angle 

of attack 

 
 

 



16 

 

CHAPTER 3 

 

DISCRETE VORTEX METHOD 

 

  Flutter requires nonzero aerodynamic forces acting on a body to induce motion. These forces are a 

result of vortex shedding, a characteristic of viscous flow in which the no-slip condition applies and results 

in boundary layer separation. To incorporate rotational flow effects into an inviscid model, elementary 

vortex flow given by Equation 6 is introduced in the flow field which was previously an example of pure 

inviscid flow. The discrete vortex method (DVM) is a means of modeling a wake that is realistic of a viscous 

flow while still maintaining the simplistic calculations from inviscid flow theory. 

 

3.1 Potential Flow Equation 

 A discrete vortex model is used to model a continuous vorticity in a flow field as a series of line 

vortices. The flow field begins as an inviscid flow as demonstrated in the previous chapter and a number of 

individual vortex flows are superimposed onto the flow field. The vortices are introduced at the tips of the 

flat plate to account for the boundary layer separation that occurs and to meet the Kutta condition. The 

circulation of each discrete vortex introduced into the flow is computed to ensure that the Kutta condition 

is met at the tips of the plate which are separation points. The number of vortices included in the flow 

increases with time; with every time step, the complex potential function becomes more and more 

complicated. The complex potential equations of the inviscid flow field and each additional vortex and its 

image can all be superimposed since both equipotential and stream functions obey Laplace’s equation. 

Sarpkaya used the following equation to model the wake behind a cylinder [6]. 

𝑤(𝑧1) =  𝑈 (𝑧1 +
𝑎2

𝑧1
) −

𝑖

2𝜋
∑Γ𝑗 [ln(𝑧1 − 𝑧1,𝑗) − ln(𝑧1 −

𝑎2

𝑧1,𝑗̅̅ ̅̅
)]

𝑚

𝑗=1

(10) 

 The first term of the complex potential equation is the equation for inviscid flow past a cylinder, 

Equation 8. The second term is the addition of m vortices into the flow field. Each vortex has a strength Γ 
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and position, z1, in the z1-plane. The first term in the summation comes from Equation 6 for vortex flow. 

The second term in the summation creates an image of the vortex inside the cylinder to maintain the shape 

of the profile streamline. The positions of the vortices, as well as any other points in the flow field, can be 

mapped to the physical plane by the equations summarized in Table 3.  

To find the velocity of any point in the physical plane, the z6-plane, complex potential function is 

differentiated and multiplied with the derivatives of the conformal mapping equations, as described in 

Equation 9. The derivatives used in this model are summarized in Table 3.  

 

Table 3 Position and Velocity Transformation Equations 

Planes Position Transformation Velocity Transformation 

𝑤 → 𝑧1 𝑧1 =
𝑤 ± √𝑤2 − 4𝑎2

2
 

𝑑𝑤

𝑑𝑧1
= 1 −

𝑎2

𝑧1
2 

𝑧1 → 𝑧2 𝑧2 = 𝑧1𝑒
𝑖𝛼𝑖  

𝑑𝑧1

𝑑𝑧2
= 𝑒−𝛼𝑖 

𝑧2 → 𝑧3 𝑧3 = 𝑧2𝑒
𝑖𝜃 

𝑑𝑧2

𝑑𝑧3
= 𝑒−𝜃𝑖 

𝑧3 → 𝑧4 𝑧4 = 𝑧3𝑒
−𝑖

𝜋
2 = −𝑖𝑧3 

𝑑𝑧3

𝑑𝑧4
= 𝑖 

𝑧4 → 𝑧5 𝑧5 = 𝑧4 +
𝑎2

𝑧4
 

𝑑𝑧4

𝑑𝑧5
=

1

1 − 𝑎2 𝑧4
2⁄
 

𝑧5 → 𝑧6 𝑧6 = 𝑧5𝑒
𝑖(

𝜋
2
−𝜃)

 
𝑑𝑧5

𝑑𝑧6
= −𝑖𝑒𝑖𝜃 

 

 

The final function for velocity is given by the following equation. This allows the complex velocity 

to be found at any position in the z6-plane.  

 

𝑉̅ = 𝑢 − 𝑖𝑣 =
𝑑𝑤

𝑑𝑧6
=

𝑒𝑖(𝛼+2𝜃)

𝑒2𝑖(𝛼+𝜃) +
𝑎2

𝑧1
2

{ 𝑈 (1 −
𝑎2

𝑧1
2) −

𝑖

2𝜋
∑Γ𝑗

[
 
 
 1

𝑧1 − 𝑧1,𝑗
−

1

𝑧1 −
𝑎2

𝑧1,𝑗̅̅ ̅̅ ]
 
 
 𝑚

𝑗=1

} (11) 
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3.2 Introduction of Nascent Vortices 

For an impulsively started flow, pure inviscid flow past a body is used to begin the simulation. With 

every time step, a discrete vortex is introduced into the flow field at each of the two tips of the plate. The 

size of the time step is selected as 0.125 seconds in this study based on previous findings that this time step 

was adequate for a realistic model [6]. However, this time step can be changed. These vortices are called 

nascent vortices and two new nascent vortices are introduced in each time step. The location of the 

separation points can be found using Pohlhausen’s approximation or by the assumption that separation 

occurs at the tips of a flat plate. The vortices are introduced at a certain distance away from the surface of 

the body and with a specific strength such that the velocity at the surface of the body is zero in order to 

maintain the no-slip condition and satisfy the Kutta condition.  

 The circulation strengths of these nascent vortices are given by Equation 12 and rely on a 

calculation of Us, the velocity on the surface at the separation point. Velocity is calculated at the separation 

point using Equation 11. For inviscid flow past a flat plate, there is a singularity at the tips of the plate 

where the flow separates resulting in infinitely high velocities. As a result, the position used to solve 

Equation 11 is offset from the tip of the plate by a distance of 0.25*a. Testing the program with varying 

offset distances reveals that this parameter has an insignificant effect on the wake behind the plate. Other 

studies have resolved this issue by a variety of means equally arbitrary. Free surface theory and an averaging 

technique [5] were considered for this study but were deemed significantly more laborious, yet no more 

defensible, than the offset of nascent vortices from the tips of the plate.  

Γ𝑛 =
1

2
𝑈𝑠

2 ∗ 𝑑𝑡 (12) 

The circulation strength of the vortex is largely constant and only varies with time due to the steady 

dissipation of all vortices or the amalgamation and elimination of individual vortices. The sign of the 

strength is found by taking the cross product of the complex position of the tip of the plate and the complex 

velocity at that point. A positive vortex strength indicates that it is spinning counterclockwise while a 

negative vortex strength indicates that the vortex is rotating clockwise. As vortices are continuously added 
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into the flow field, the total circulation in the field should remain zero due to the Kelvin Circulation 

Theorem which states that the total circulation in a system is conserved. While the circulation strengths of 

the nascent vortices formed at the tips of the plate are not expected to be exactly equal, the total circulation 

in the flow field should remain relatively close to zero in the implementation of DVM. 

 Once the circulation of the nascent vortex is found, the release position of the vortex is calculated 

using Equation 13. The angle of the release point aligns with the angle of the tips of the plate. The position 

is related to the strength of the vortex. 

𝑧𝑛 = (
1 +

|Γ𝑛|
2𝜋𝑈𝑠

1 −
|Γ𝑛|
2𝜋𝑈𝑠

)𝑒𝑖(𝜋−𝜃) (13) 

 

3.3 Transportation of Discrete Vortices 

In each time step, all existing vortices in the flow are transported by calculating the velocity at their 

present locations through Equation 11 and moving them in the corresponding direction in the flow field 

using a first order Euler method equation, given in Equation 14. As a result, the complex potential function, 

Equation 10, becomes more complicated with time as the number of terms in the summation increases with 

each time step. 

𝑧𝑖+1 = 𝑧𝑖 + 𝑉 ∗ 𝑑𝑡 (14) 

where both z and V are two-dimensional vectors expressed as complex numbers. Each vortex’s position, z, 

has an x and y component while its velocity, V, has a u (velocity in the x-direction) and v (velocity in the y-

direction) component. 

 As the vortices move downstream behind the body, they interact and create a realistic wake in 

which groups of vortices move together in rotating pockets. As one pocket forms, it creates a low-pressure 

zone and pulls fluid from the other side of the body. As a result, these pockets of rotating vortices alternate 

and create a von Kármán vortex street [11]. An image of predicted results based on past work is shown 

below with the general trend of the vortices outlined to simplify the flow visualization.  
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Figure 4 Model of flow past a cylinder using DVM 

  

 The alternating pattern of the wake can be described by Strouhal number, a dimensionless property 

given by Equation 15. This value is related to the frequency at which the rotating pockets of move past a 

given point and can be found by placing a pressure probe in the middle of the wake and measuring the 

velocity at that point in every time step. Strouhal number is related to Reynolds number by the following 

graph obtained from past work and many experimental tests [12]. One portion of the graph is dashed 

because there is insufficient data to characterize it. While some models interpolate the curve in this region, 

others hypothesize different types of behaviors. Reynolds number is calculated by Equation 16 and is also 

dimensionless. In both equations, L is the characteristic length of the body. For flow past a cylinder, L 

would be set equal to the diameter of the circle. For the case of a flat plate in this study, L is equivalent to 

4a. This correlation between St and Re can be used to validate results of the wake generated using DVM. 

 

𝑆𝑡 =
𝑓𝐿

𝑈
(15) 

𝑅𝑒 =
𝑈𝐿

𝜈
(16) 
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Figure 5 Relationship between Strouhal number and Reynolds number 

 

 The frequency of the wake can be found by placing a probe in the wake to measure the pressure at 

each time step. A plot of the pressure at this location over time can be investigated with a Fast Fourier 

Transform (FFT). FFT is an extremely efficient algorithm designed to execute the transformation of a data 

set of N discrete values using a Discrete Fourier Transform (DFT). The Fourier transform of the data set is 

given by Equation 17 where fn represents a discrete value of the input which is a function of time and Fk 

represents a discrete value of the Fourier Transform output, F(ω), which is a function of the angular 

frequency [13]. There exist several software packages that can compute the FFT of a data set which will be 

used to identify the Strouhal frequency of the wake. 

𝐹𝑘 =
1

𝑁
∑ 𝑓𝑛𝑒−

2𝜋𝑖𝑘𝑛
𝑁

𝑁−1

𝑛=0

(17) 

Here, N represents the total number of values in the input data set, f(t), which is measured at discrete 

time intervals, Δt. The complex Fourier function, Fk, is the discrete Fourier transform of f(t) at the 

frequency, ω = 2πk/N. The input signal at time index, n, is fn = f(n*Δt). 

0.1
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 The frequency interval of the autospectrum is given by the reciprocal of the total time elapsed 

during data collection. Only the first half of the autospectrum is plotted on a logarithmic scale and analyzed 

for peaks indicating dominating frequencies in the data. The autospectrum shows the correlation of the 

input signal with itself as a function of frequency. The autospectral or power spectral density, PSD(ω), can 

be found from the Fourier transform of the input signal, F(ω), as well as he phase log, Φ(ω): 

𝑃𝑆𝐷(𝜔) = 𝐹(𝜔) ∗ 𝐹(𝜔) (18) 

Φ(𝜔) = tan−1 (
𝐼𝑚(𝐹(𝜔))

𝑅𝑒(𝐹(𝜔))
) (19) 

 Peaks in the power spectral density correspond to frequencies where the “energy” in the signal is 

concentrated and can indicate Strouhal frequencies or the natural resonant frequency of the flat plate. 
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CHAPTER 4 

 

DYNAMICS OF TORSIONAL OSCILLATION 

 

 To model flutter of a body, the aerodynamic forces due to the wake behind the body must first be 

modeled with DVM. The forces can then be converted into moments which have a fundamental role in a 

feedback loop that drives the motion of the body. These calculations account for the aerodynamic, elastic, 

and inertial forces, providing a comprehensive model of flutter. 

 

4.1 Pressure 

 The pressures along the front and back surfaces of a body are not constant. When DVM is applied 

to the flow field, the distribution is not even symmetrical. As a result, it is necessary to divide the profile of 

the body up into several segments and find the point along each of them. The circular profile in the z1-plane 

is divided into line segments. At the center of each line segment, the pressure of the fluid acting at the center 

of that line is found through Bernoulli’s equation. Normalizing the equation allows the coefficient of 

pressure can be found easily.  

𝐶𝑝(𝑟) =
𝑃 − 𝑃∞
1
2𝜌𝑈2

= 1 −
|𝑉(𝑟)|2

𝑈2
(20) 

where U is the streamline velocity, V is the velocity on the surface at a distance r from the center of the 

plate. The velocity is found from Equation 11. The coefficient of pressure can reach a maximum of one 

when the velocity is zero (stagnation conditions) and the static fluid is pushing on the plate. This means the 

maximum positive force exerted normal to the body is at the stagnation point. However, the coefficient of 

pressure can reach extremely low negative values when the velocity is high and the fluid is pulling on the 

plate. For this study, this is likely to occur on the back surface of the plate where high velocity activity 

occurs and particularly at locations close to the center of an individual vortex. Each discrete vortex has a 
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singularity of infinite velocity at its center, a deviation from realistic vortices which have viscous flow near 

their centers. 

 

4.2 Force 

 At the center of each two-dimensional line segment, the pressure can be equated to an equivalent 

force acting on the surface. Since pressure is the distribution of force over a certain area, the normalized 

force at a distance r from the center of the flat plate can be calculated by multiplying the pressure coefficient, 

Cp, by the length of the line segment, Δs. 

𝐹 = 𝑃 ∗ 𝐴, 𝐹(𝑟) = 𝐶𝑝Δ𝑠 (21) 

 This force can be resolved into x and y-components using Equation 22. The purpose of finding the 

force in both dimensions is to simplify the calculations of the moments acting on the plate and also to be 

able to calculate the total drag force acting on the plate given by the sum of the x-components of force on 

each of the line segments. Figure 6 demonstrates the flat plate deflected at a positive angle θ. The force 

acting on the front surface of the plate is perpendicular to it. Since the y-component is negative despite the 

positive angle, the equation for Fy must include a negative sign. 

𝐹𝑥(𝑟) = 𝐹(𝑟) cos 𝜃 , 𝐹𝑦(𝑟) = −𝐹(𝑟) sin 𝜃 , (22) 

 

 

Figure 6 X and Y components of force vector 
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 The total drag force acting on the plate can be found my summing the x-components of force found 

on each line segment on each surface of the plate using Equation 23. By subtracting the total force on the 

back surface of the plate from the total force on the front surface of the plate, the net force at each point can 

be calculated. In inviscid flow when separation does not occur, the total force is expected to be zero. 

However, when DVM is applied to the flow field, most of the drag force will come from the pressure 

distribution on the back surface of the plate. Due to the rotating fluid behind the plate, there will be a region 

of high velocity and low pressure pulling the plate backward. 

𝐹𝑥 = ∫ 𝐹𝑥(𝑟)𝑑𝑟
2𝑎

−2𝑎

, 𝐹𝑦 = ∫ 𝐹𝑦(𝑟)𝑑𝑟
2𝑎

−2𝑎

(23) 

 Since the length of each line segment, Δs, was chosen based on an even distribution of line segments 

along the circumference of the cylinder in the z1-plane, the length of these segments in the z6-plane varies. 

The segments are longer near the center of the plate and shorter near the tips. This variation in the step size 

of r affects the force calculations and results in a slight difference between the shapes of the force and 

pressure distribution plots. 

 

4.3 Moment 

The velocity, coefficient of pressure, and force are given as functions of the radius from the center 

of the plate. The reason for this notation is because the plate is assumed free to rotate about its center. The 

deflection angle of that rotation is dictated by the total moment about the plate’s center. That moment can 

be calculated from the force moments previously obtained. Each y-component of force is multiplied with 

the x-component of the moment arm from the center of the plate which is simply the x-coordinate of the 

center point of the line segment. Additionally, each x-component of force is multiplied by the y-component 

of the moment arm from the center of the plate given by the y-coordinate of the point. These moments are 

summed up across the front and back surfaces of the plate to find the net moment acting on the plate about 

its center. Like with the forces, the net moment acting on the back of the plate is subtracted from the net 
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moment acting on the front of the plate. A positive moment is considered counterclockwise and a negative 

moment is considered clockwise. 

𝑀𝑧 = (𝑟  × 𝐹 ) 𝑘̂ = ∫ (𝑥𝐹𝑦 − 𝑦𝐹𝑥)
2𝑎

−2𝑎

𝑑𝑟 𝑘̂ (24) 

4.4 Dynamic Motion Equation 

 The net moment exerted by the aerodynamic forces on the plate cause it to rotate about its center. 

The angle by which it rotates is determined by a second order differential equation, Equation 25. The motion 

of the plate depends on the moment induced by the fluid and also by the plate’s structural properties:  mass 

moment of inertia, Izz, damping coefficient, b, and torsional spring constant, κ [14]. All these values affect 

the rotation of the flat plate about the z-axis which is located at its center of the plate. A higher torsional 

stiffness would cause the plate to deflect less under the same aerodynamic loading and return to its original 

position faster. A higher mass moment of inertia would result in initial resistance to deflection from the 

starting position but also result in continued motion and failure to smoothly return to its initial position. A 

higher damping coefficient would cause the plate to oscillate back and forth less when restoring itself to its 

initial position. 

𝐼𝑧𝑧𝜃̈ + 𝑏𝜃̇ + 𝜅𝜃 = 𝑀𝑧(𝑡) (25) 

 The first and second time derivatives can be approximated using finite differencing. For the second 

time derivative of the deflection angle, a second-order accurate central difference is utilized. For the first 

time derivative, a first-order accurate forward difference is used. A forward difference is chosen because it 

uses the most recently recorded values of theta. 

𝜃̈ ≅
𝜃𝑖+1 + 𝜃𝑖−1 − 2𝜃𝑖

(Δ𝑡)2
,   𝜃̇ ≅

𝜃𝑖+1 − 𝜃𝑖

Δ𝑡
(26) 

 By substituting these approximations into Equation 25 and rearranging the terms, the deflection 

angle in the current time step can be solved as a function of the net moment found in Equation 24, the plate 

properties assigned by the user, and the deflection angle recorded in the two previous time steps. 

𝜃𝑖 =
𝜃𝑖−1(2𝐼𝑧𝑧 − 𝜅(Δ𝑡)2 + 𝑏Δ𝑡) − 𝐼𝑧𝑧𝜃𝑖−2 + 𝑀𝑧(Δ𝑡)2

𝐼𝑧𝑧 + 𝑏Δ𝑡
(27) 
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 Because the motion of the plate can be described by a second order differential equation, it has both 

an undamped (natural) and damped resonant frequency given by the following equations. These frequencies 

are functions of the plate properties. The plate can be expected to fail when it begins to oscillate at its 

damped resonant frequency due to the aerodynamic flow. A stiffer plate with a higher rigidity, κ, would be 

expected to demonstrate a higher damped and natural frequency when oscillating. 

𝜔𝑛 = √
𝜅

𝐼𝑧𝑧
(28) 

𝜔𝑑 = √
𝜅

𝐼𝑧𝑧
− (

𝑏

2𝐼𝑧𝑧
)
2

(29) 

 From Equation 14, there exists a certain value of b that results in a damped frequency of zero. A 

system with this damping coefficient is considered critically damped. If b is below the critical value, the 

system is underdamped and if b is above the critical value, the system is considered overdamped. By 

recording the deflection angle of the plate and plotting the results with respect to time, a FFT assessmentcan 

be used again to find the damped frequency at which the plate tends to oscillate. 

 While failure can occur with enough load cycles in the elastic range, this project is simplified by 

assuming the failure of the plate at an arbitrary torsional stress limit. The torsional stress of the stop sign 

post, or flat plate’s center, can be calculated in each time step with Equation 30 to then be compared to the 

stress limit. In this equation, c and H are the radius and height of the stop sign post, respectively, while G 

is its shear modulus. 

𝜏 =
𝑇𝑐

𝐽
=

𝜃𝐺𝑐

𝐻
(30) 
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CHAPTER 5 

 

MODELING AND ANALYSIS OF FLUTTER 

 

 The purpose of this study is to model a flat plate in flutter. The purpose for using a flat plate is to 

eliminate the step needed to find the separation points along the body. Assuming the plate to be fixed at its 

center, simulating a stop sign, simplifies the calculations for the motion of the plate with a second order 

differential equation. Because flutter is the motion of a body over a period of time, the results must include 

a measure of time to measure the time to failure, variations in drag force over time, the frequency of the 

wake, and, most importantly, the deflection angle of the plate with respect to time. By plotting the profile 

of the flat plate at each time step, the program helps the user to visualize the motion of the plate due to 

flutter. A copy of the program used for this study is provided in Appendix A. 

 

5.1 Calculations Performed 

 To develop an iterative simulation of flutter-induced motion, the program consists of a for loop in 

which all the necessary calculations are completed to update the deflection angle of the plate in each time 

step. First, the program reads the user’s input file and extracts all the necessary information about the 

system. It calculates a Reynolds number using Equation 16 and sets up thousands of points in the parallel 

streamlines of the w-plane. Technically, the Reynolds number is infinite in inviscid flow; the value 

calculated by the program uses the viscosity of air (or another fluid) as a reference value to obtain merely 

a pseudo-Reynolds number. These points are later transformed to each of the z-planes to allow the viewer 

to visualize the inviscid streamlines around the flat plate in each of the conformal mappings. 

In the for loop, time begins at zero seconds and increases by the time increment specified by the 

user with each iteration until the specified maximum time or until the specimen fails. The program 

constantly polls for whether a key has been struck to change the screen or display certain points. The 

deflection angle of the plate which initially begins as zero degrees is updated using Equation 27 and the 
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corresponding torsional stress in the stop sign post is calculated by Equation 30. The deflection angle is 

written to a data file for analysis later. Significant points in the flow field include the tips of the plate. They 

are first plotted in the z5-plane where they lie along the x-axis and are then translated to the other z-planes 

using the equations given in Table 2. 

Discrete vortices comprise a major portion of the program. The positions of all existing vortices 

are updated by Equation 14 where each vortex’s current velocity is found from Equation 11. Their positions 

are transformed through all the planes using Table 2 so that the discrete vortices can be plotted in any z-

plane. The updated positions of all the vortices are checked for proximity. Since each vortex has a 

singularity at its center, they can induce extremely high velocities on neighboring vortices. Realistically, a 

vortex has a viscous center and two interacting vortices approaching one another would eventually 

amalgamate into one large vortex. If any two vortices are close together within a 1/80 of the plate width, 

the two vortices are combined into one vortex with a strength equal to the sum of the two vortices’ strengths. 

This value was determined by trial-and-error to eliminate the effect of infinite velocity at the center of each 

vortex. The strength of all remaining vortices is then decreased by a user-defined dissipation factor. Finally, 

vortices are checked for their distance from the plate. If they are so far that they have minimal effect on the 

motion of the plate, they are eliminated from the flow field and their strength becomes zero. To speed up 

the processing power of the program, garbage collection is performed on the arrays containing the position, 

velocity, and strength information of all existing vortices in the flow field. If the number of vortices with 

zero strength reaches 100, these vortices are removed from the arrays and the elements following them are 

moved up to shorten the arrays and speed up the calculations. 

Nascent vortices are introduced into the flow field at each time step. The initial guesses for their 

positions are at the tips of the plate in the z1-plane and offset from the tips’ positions in the z4-plane. The 

velocity is found at these points and used to solve for the circulation strengths and release points of each 

nascent vortex in the z1-plane with Equations 12 and 13. The sign of the strength is determined by the sign 

of the cross product of the complex velocity and position at each tip of the plate. The positions of the nascent 
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vortices are then transformed through the other z-planes. The total circulation in the flow field can be 

calculated as the sum of the strengths of all the existing vortices. 

Other significant points including the top and bottom of the cylinder, forward and rearward 

stagnation points, and the two recently calculated release points of the nascent vortices are defined in all 

six z-planes to be plotted for the user’s interface experience. The stagnation points are known in the z1-

plane (at x-intercepts of the circular profile) and are plotted there first. 

A certain number of points is defined by the input file; the points are identified along the front and 

back surfaces of the circular profile in the z1-plane between the tips of the plate. All the points are 

subsequently transformed through the other z-planes. These sets of points are also available for viewing in 

the display window. The distance between the adjacent points in the z6-plane is calculated. The velocity 

and coefficient of pressure at each point are found. Extremely large velocities are set equal to zero to 

minimize the effect of singularities. Using Equations 19 through 22, the net force in the x and y directions 

as well as the net moment of the fluid acting on the plate are calculated. These values are recorded in an 

output file. 

A pressure probe is placed in the wake downstream of the plate and lies along the x-axis at a distance 

from the origin equal to three times the width of the plate. This distance can be varied according to the 

user’s preference as long as it lies in the zone of established flow. The velocity at the probe location is 

calculated in every time step, converted to a coefficient of pressure, and written to another data file for 

analysis of the wake. 

After plotting the display for that time step, the time is increased by the time increment selected by 

the user (0.125 seconds in this study) and the program returns to the beginning of the time loop. The 

calculations are repeated until the torsional stress calculated exceeds the torsional strength limit assigned 

by the user. 
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Figure 7 Flow chart of program 
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Figure 8 Flow chart of program (continued) 
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5.2 Description of the Program   

The program written for this study was written and compiled in FreeBASIC [15]. When it runs, it 

first reads from an input text file (.txt) in which the user can define properties of the system to be simulated 

including freestream velocity, plate width, torsional stiffness, damping, mass moment of inertia, and more. 

An example of an input file is given in Appendix B. Once compiled, the program becomes an application 

which can be executed. As soon as it runs, the simulation time begins from zero and increases steadily as 

the program cycles through its “for” loop. A window opens and displays the physical z6 plane (as specified 

by the user in the input file) and has the capacity to plot the inviscid streamlines in the vicinity of the body 

as well as plot the locations of all the discrete vortices in the flow field. Each vortex is indicated by a circle 

of size proportional to its strength and color proportional to its direction. Not only does this window help 

the user visualize the physical motion of the plate but also of the air flow around and behind it. The user 

can change the z plane by striking the number key corresponding to the desired plane. The user can also 

locate significant points including stagnation points and nascent vortex release points by striking certain 

keys. The top left corner of the window displays the current plate properties, z plane, and time. A sample 

of this window is shown in Figure 9. 

The program monitors interactive key strokes to change the information displayed on the screen. 

Table 4 contains a list of these interactive keys. If the user strikes the key, “C”, the window changes to 

display the pressure distribution plot. This plot has an x-axis corresponding to the radius, r, from the center 

of the plate and a y-axis corresponding to the coefficient of pressure, Cp, at each location. Three lines are 

plotted on this graph. The cyan line demonstrates the pressure distribution on the front surface. It is expected 

that the highest Cp correspond to the stagnation point on the front surface. The red line demonstrates the 

pressure distribution on the back surface. Positive values of Cp indicate the flow pushing the plate in the 

negative x-direction. Finally, a green line is the sum of the pressure distributions on the front and back 

surfaces to demonstrate the total load subjected to the plate. In the top, left corner of the window, the total 

force in the x and y-directions is given as well as the net moment. These can also be visualized by the shape 

of the green curve. If the user strikes the key, “F”, the window changes to display the force distribution 
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plot. This plot is largely similar to the pressure distribution plot except for some adjustments due to the 

discrepancies in the length of each line segment over which force is exerted. The forces on the surface are 

each acting on a short, linear segment which is part of the circular surface in the z1-plane. These surface 

segments of length Δs are mapped into the z6-plane onto the flat plate, but the conformal mapping is 

nonlinear. As a result, segments in the z6-plane along the surface are not of uniform length. Due to the 

similarities between the force and pressure plots, they will be used interchangeably throughout Chapter 6 

of this study. Other keystrokes allow the user to locate key points in the flow field, visualize inviscid 

streamlines, and observe the motion of the discrete vortices in all six of the z-planes. 

 

Table 4 Program Interactive Key Functions 

Key Name Function 

1 z1-plane Switch view to the z1-plane 

2 z2-plane Switch view to the z2-plane 

3 z3-plane Switch view to the z3-plane 

4 z4-plane Switch view to the z4-plane 

5 z5-plane Switch view to the z5-plane 

6 z6-plane Switch view to the z6-plane 

C Cp Display pressure distribution on each side of the flat plate (and the total) 

F Force Display the distribution of force on each side of the flat plate (and the total) 

a Axis Turn the axes on/off the z-plane 

s Sleep Pause the program 

f Forward 

stagnation point 

Turn on/off colored circle identifying forward stagnation point in z-plane and 

Cp and F plots 

r Rear stagnation 

point 

Turn on/off colored circle identifying rear stagnation point in in z-plane and 

Cp and F plots 

t Top Turn on/off colored circle identifying top of circle in z-plane 

b Bottom Turn on/off colored circle identifying bottom of circle in z-plane 

L Left tip Turn on/off colored circle identifying left tip of flat plate in z-plane 

R Right tip Turn on/off colored circle identifying right tip of flat plate in z-plane 

P Left release 

point 

Turn on/off colored circle identifying vortex release point from the left tip of 

flat plate in z-plane 

Z Right release 

point 

Turn on/off colored circle identifying vortex release point from the right tip 

of flat plate in z-plane 

A Front surface Turn on/off colored line identifying front surface of flat plate in z-plane 

K Back surface Turn on/off colored line identifying back surface of flat plate in z-plane 

S Streamlines Turn on/off pure inviscid flow streamlines in z-plane 

V Vortices Switch style of vortex identifiers: colored circles or plus/minus signs 

q Quit Exit the program 
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When the torsional stress in the stop sign post exceeds the torsional strength assigned to it in the 

input file, the program terminates and issues a warning statement to the user that the stop sign has failed. 

The user can continue to advance the program with the “s” key or exit the program with the “q” key. 

With each iteration of the main program loop, the program appends data to several text files. Each 

of these files includes the time step and data of interest. The first file outputs the deflection angle against 

time. These data points can be graphed and investigated with a Fast Fourier Transform (FFT) package 

provided in Microsoft Excel or downloaded for LibreOffice Calc [16]. The Microsoft Excel package only 

accepts data sets with a lengths equal to powers of two and containing up to 4096 data points. While the 

LibreOffice Calc package accepts arrays of different lengths, it uses a Discrete Fourier Transform (DFT), 

an alternative algorithm that takes far longer to calculate the power spectral density of the set. An 

autospectrum produced by FFT can be used to find the resonant frequency of the structure just before it 

fails in addition to the Strouhal frequency of the wake. The second file outputs the total force in the x 

direction of the plate. This is also known as drag force which has been plotted with respect to time in several 

other papers. These results can also be observed to find the Strouhal number of the wake. The last data file 

includes the coefficient of pressure at the pressure probe’s location in each time step. This plot will provide 

a more accurate value for the Strouhal number of the wake. 

The computation time to run the program is extremely fast and occurs in almost real time. 

Depending on the processing unit, the compiler takes a matter of seconds and when the window opens, the 

plate and vortex positions are updated several times every second. As more vortices are introduced into the 

flow field, the number of calculations that are performed increases and the program slows down. 

Amalgamation and elimination of vortices improves the speed of the program significantly. 

To run multiple iterations of the program for results, a batch file (.bat) was created. A sample of 

the batch file is shown in Appendix D. For each test scenario, an input file was generated and put through 

the program. The program was modified to close instead of paused upon failure of the flat plate modeled 

so that each case could be executed subsequently in the absence of the user. During each time step, the 

deflection angle, forces in the x and y direction, net moment, and coefficient of pressure were recorded 
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together in the same output text file to simplify the data reduction process. From these data files, plots were 

created for deflection angle, drag force, and pressure over time. The failure times and peaks in the FFT 

plots for the deflection angle, drag force, and pressure coefficient were extracted for comparison and 

observations. 

 

 

 

 

 

Figure 9 Physical flow field (main screen) 
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Figure 10 Pressure distribution plot 

 

Figure 11 Force distribution plot 
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CHAPTER 6 

 

RESULTS 

 

 Information was gathered from the program throughout its creation. By observing the output of the 

program at each step as it was being built, the creators were able to verify that the program was providing 

realistic and logical results. Following the theoretical approach to the problem, the results can also be broken 

into three sections: inviscid flow, DVM, and dynamic motion (or flutter). Results of this study comprise 

primarily of observations of the plots produced by the program including the flow field in each of the z-

planes as well as the force and pressure distribution plots. Other data can be analyzed including the output 

files providing information on the wake generated behind the plate and motion of the plate due to flutter.  

 

6.1 Inviscid Flow Results 

The first results were obtained before the addition of the discrete vortices into the flow field. By 

setting up the streamlines in the w-plane and transforming them to each of the z-planes along with 

significant points, inviscid flow results are obtained for analysis. The same conformal mapping of a flat 

plate at a deflection angle of -20 degrees and an angle of attack of 30 degrees from Table 2 is shown in 

Table 5 with all the relevant, key points. Here, the bright cyan line represents the front of the cylinder and 

the yellow line the back of the cylinder. The light and dark blue circles represent the top and bottom of the 

cylinder, respectively, and are clearly placed appropriately as observed in the z1-plane. Meanwhile, the light 

and dark green circles represent the left and right tips of the plate, respectively, supported by their locations 

in the z5-plane and the joints of the front and back surfaces of the plate. The red circle indicates the rearward 

stagnation point and the dark cyan circle represents the forward stagnation points. The locations of these 

points are logical because there are streamlines that terminate at these points when they meet the profile 

streamline. Thousands of small blue dots are plotted to represent the streamline and demonstrate the inviscid 

flow pattern of a fluid past a flat plate. The smooth, clean lines displayed in the z6-plane are indicative of 
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inviscid flow and a lack of boundary-layer separation. The flow inside the circular cylinder is shown in 

Figure 12 in the z1-plane, but since it is not used in the analysis, it is not displayed in the other five planes. 

 

  

  

  
 

Figure 12 Locations of key points in each z-plane 
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Validation of the proper execution of inviscid flow theory is also provided by the plots of the 

coefficient of pressure and the forces along the front and back of the flat plate with respect to location along 

the plate. The z6-plane for flat plates at various deflection angles is shown alongside its associated force 

distribution plot. The stagnation points are shown in both diagrams. It is evident that the stagnation points 

on the front and back surfaces of the plate correspond with the maxima and minima of the force distributions 

on their corresponding surfaces. This is logical because stagnation points indicate a location where the 

velocity of the fluid is zero and the coefficient of pressure is subsequently one, the maximum value of 

pressure, and therefore, force. The forward stagnation point (cyan) corresponds to the maximum of the cyan 

pressure curve while the rearward stagnation point (red) corresponds to the minimum of the red pressure 

curve because the force on the back is plotted upside down as to help the viewer visualize the total force in 

the x-direction. 

As the fluid goes around the tips of the plate, it speeds up resulting in very low, negative pressure 

and force values. This is demonstrated in the pressure distribution plots as the front surface and back surface 

curves approach negative and positive infinity, respectively, at the tips of the plate. In the z5 and z6-planes, 

there are singularities at the tips of the plate. As a result of these infinite velocities, it is impossible to 

calculate the circulation strengths and positions of nascent discrete vortices using Equations 12 and 13. To 

work around this issue, the initial guesses for the nascent vortex locations are not chosen immediately at 

the plate tips, but at a distance just offset from them along the axis of the plate. Various offset distances 

were tested, and the results revealed that this value has little impact on the general behavior of the wake 

behind the plate when DVM was applied to the program. An offset distance of 0.25a outward from the tips 

of the plate was selected to obtain the best results. 

It is also interesting to note that the net forces calculated and displayed in the upper left corner of 

the force distribution plot always remains very close to zero in pure inviscid flow with no discrete vortices. 

Accordingly, the area under the green curve corresponds to the net force in the x-direction and is likely zero 

due to its symmetry about the origin. A zero net force is to be expected as the flow does not separate and 

generate a wake behind the plate creating drag, as it would in real life. On the other hand, the net moment 
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acting on the plate is not zero at all deflection angles, only at angles of zero and ninety degrees.  This can 

be observed by the asymmetry of the green curve about the y-axis in the force distribution plots as well as 

the calculation of the net moment displayed in the upper left corners of the plots. All the aerodynamic forces 

and moments cancel out at these angles; without net forces and moments, a flat plate in inviscid flow would 

remain idle and not be subject to the effects of flutter. Inviscid flow without vortex shedding is an idealistic 

case and does not yield real-world results. 

 

Table 5 Inviscid Flow Pressure Distribution Plots 

Physical Flow Field Force Distribution Plot 
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6.2 Discrete Vortex Results 

 Once the inviscid flow and conformal techniques proved to be working properly, the next step was 

to include DVM into the program. For the DVM results, the display of streamlines were turned off because 

they were too complicated to calculate from the complex potential equation, Equation 10. Instead, the flow 

can be visualized through the positions of the vortices in each time step. Watching the program run allows 

the user to envision the movement of the air in almost real time. Results were examined for the case of a 

stationary plate perpendicular to the flow to simplify analysis. 
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Figure 13 Progression of the wake using DVM 
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A progression of the flow field in the first 100 seconds of impulsively-started flow is shown at 20 

second intervals Figure 13. The flat plate can be seen at the left of the flow field. Each vortex is represented 

by a filled circle. The blue circles represent vortices rotating clockwise and the red circles represent vortices 

spinning counterclockwise. The diameter of each circle is directly proportional to its corresponding vortex’s 

circulation strength. The generation of the rotating pockets of vortices and the alternating pattern is very 

reminiscent of results obtained in previous studies as well as the natural phenomenon of von Kármán vortex 

streets. The patterns developed in this numerical simulation are very realistic and support the notion that 

the equations used to implement DVM on the system is a valid technique for modeling fluid flow. Another 

indicator of a functioning program is the calculation of the total circulation. The circulation of all the 

discrete vortices was summed up and displayed on the screen for observation and it remained very close to 

zero at all times, satisfying the Kelvin Circulation Theorem. 

The behavior of the wake was observed for various time steps. Though 0.125 seconds was the time 

step selected by Sarpkaya [6] for accurate wake generation, verifying the time step was considered in this 

study as well. From Table 6, it is clear that a smaller time step results in more, smaller vortices while choice 

of a larger time step results in very large vortices that throw off the clarity of the flow field and hinders 

visual observation. Sarpkaya’s recommended time step of 0.125 seconds provides a mixture of both large 

and small vortices and is the option that runs the fastest while still maintaining a clear picture and an 

accurate wake frequency. The time step 0.125 seconds will continue to be used as it is the point after which 

the precision error levels off at zero in Figure 14. Overall, the different time steps tested provided similar 

numerical results for wake frequency as well as similar z6-planes. 
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Table 6 Time Step Comparison 

Time 

Step (s) 

Wake 

frequency 

(Hz) 

z6-plane after the first 100 seconds 

0.03125 0.0625 

 

0.0625 0.0602 

 

0.125 0.0664 

 

0.250 0.0784 

 
 

The error between the different time steps is demonstrated in the Figure 14. The steady decline in 

the error indicates that once it levels off, it can be assumed that the time step results in an accurate simulation 

of the wake flow field. When run with time steps greater than 0.125 seconds, the Strouhal frequencies 

calculated were relatively far from one another. On the other hand, the same Strouhal frequency was 

consistently found in the wake when the program was run with time steps of 0.125 seconds or less. The 

repeatability demonstrated with these time steps shows that 0.125 seconds is the cutoff for obtaining 
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accurate results for Strouhal number. Any of the time steps tested below 0.125 seconds could be used for a 

valid model of the wake but 0.125 seconds is chosen because it generates results the fastest while 

maintaining accuracy. 

 

 

Figure 14 Time step Strouhal frequency error 

 

By displaying the force distribution in the window, it is easy to see the effect of the discrete vortices 

on the aerodynamic forces acting on the plate. In Figure 15, the top half of the plate in the z6-plane 

corresponds to the right half of the x-axis in the force distribution plot. The abundance of large blue circles 

on the top of the plate is reflected in the peaks on the right side of the force plot. It is important to note that 

the cyan curve in the force plot is relatively unchanged from its shape before the addition of the discrete 

vortices. This makes sense because the vortices lie behind the plate and therefore do not impact the front 

surface. The peaks are positive on the curve, indicating that they are pulling the plate to the right of the 

screen which makes sense because separation of flow creates drag and would pull the plate backwards. The 

total force acting on the plate in the x-direction is equal to the area under the green curve in the force plot 
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and is also calculated and displayed at the top of the screen. The drag force is positive and the net force in 

the y-direction remains zero corresponding with the zero angle of attack and the direction of airflow past 

the plate. The asymmetry of the green curve is reflected in the net moment calculation which is nonzero. 

This calculation will become essential in finding the deflection angle of a moving plate in the third and final 

part of this study. Aberrations in the force curves may be attributed to discrete vortices very close to the 

surfaces of the plate, inducing infinite velocities and forces. The force at the tips of the plate is still infinite 

due to the singularities at these locations. 

 

 

Figure 15 Force distribution plot with DVM 

 

The data files from this iteration of the program were extracted and plotted in Microsoft Excel. The 

pressure probe placed out into the wake measured the pressure at that point during every time step; the 

following oscillatory pattern of pressure measurements is shown in Figure 16. The large negative values on 

the plot can be disregarded as they are caused by vortices and their singularity points moving directly over 

the probe providing unrealistic data at certain time steps. 
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Figure 16 Pressure probe measurement for stationary plate 

 

 There is a clear characteristic frequency to this wake which can be used to describe the wake’s 

behavior. Known as the Strouhal frequency, this value can be found by measuring the distance between the 

pockets of vortices or by simply analyzing the data in a Fast Fourier Transform (FFT) package and finding 

the peak in the autospectrum. For a cleaner autospectrum, the program is run for a duration of 512 seconds 

though only the first 100 are shown in the time plots. This provides the largest number of data points that 

the Excel FFT package can analyze. A higher number of iterations exaggerates the peaks in the 

autospectrum due to the multiples of peaks aligning at the Strouhal frequency. Furthermore, the curves can 

be smoothed by using a rolling average technique to clean up the graph and allow the user to identify the 

peak more easily. Sometimes, the data is the cleanest in the middle, beginning, or near the end of the data 

set. By visual observation of the Cp versus time plot, a smaller set of data can be selected and analyzed 

faster and with cleaner results for identifying the peak in the autospectrum. However, choosing a smaller 

data segment results in a greater frequency interval and therefore a coarser resolution of the autospectrum. 

For elegance, all the autospectra plotted to obtain Strouhal numbers and damped frequencies from the 

simulation results will not be shown in the main body of the thesis but are provided in Appendix E for 

support of the Strouhal frequencies and numbers discussed in this study. One example of an autospectrum 

is shown in Figure 17. 
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The peak on the power spectral density curve for the data set of the fixed plate indicates that the 

wake behind the flat plate has a characteristic frequency of 0.062 Hz (see the dashed line in Figure 17) 

which corresponds to a Strouhal number of 0.248 at a pseudo-Reynolds number of 265,604, based on the 

width of the flat plate and the uniform velocity of the fluid. These values match the plot of the St-Re 

relationship in Figure 5 and provide additional support for the accuracy of the wake produced using DVM. 

 

 

Figure 17 Autospectrum for pressure probe behind stationary plate 

 

 The Strouhal frequency of the wake is also reflected in the plot of the drag force acting on the plate. 

The variable nature of this force supports proper execution of DVM and compares well with the results of 

previous works on this topic. The force oscillates due to the alternating of the rotating pockets of vortices. 

Unlike in the inviscid flow case where the drag force on the plate was zero, the drag force on a plate with 

a wake behind it is almost always positive, pulling the plate in the direction of the uniform velocity. Again, 

the extreme values on this plot can be overlooked and attributed to singularities at the center of each vortex 

becoming too close to the surfaces of the plate. 
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Figure 18 Drag force on stationary plate 

 

As previously mentioned, the initial guess for the locations of the nascent vortices was offset from 

the tips of the plate by a factor of 0.25a. The selection of this value can be supported by the results shown 

in Table 7. A comparison of the flow field and the Strouhal frequency of the wake shows that after enough 

time elapses, the value chosen to offset the nascent vortices does not affect the wake behavior. However, it 

is important to pick a distance far enough from the plate such that the circulation strengths of the nascent 

vortices are not unreasonably large due to high velocities near the tips of the plate. The pseudo-Reynolds 

number is calculated using Equation 16 with a kinematic viscosity of 1.506E-5 m2/s, the viscosity of air at 

an assumed temperature of 20ᵒC [17]. For a Reynolds number of 265,604, 0.25a is the smallest nascent 

vortex offset distance that prevents this undesirable effect at the beginning of the time loop. It is also 

important to pick a distance close enough to the plate to not distort the flow field from its true form and 

result in skewed data used to characterize the wake frequency. The flow field for an offset distance of a 

shows the pockets of vortices closer together resulting in a slightly higher Strouhal frequency than the other 

test cases show. The discrepancies in the wake frequencies are relatively negligible as the frequency 

increment of the autospectra used to find them is 0.001954 Hz. If the values were able to be found to a 

higher precision, perhaps they would be closer together. Overall, the effect of the wake downstream of the 
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plate has little impact on the aerodynamic forces acting on the plate. This shows that the choice of this 

parameter is not vitally important to the results produced by the program. 

 

Table 7 Nascent Vortex Offset Distance Comparison 

Nascent 

Vortex 

Offset (m) 

Wake 

frequency 

(Hz) 

z6-plane after the first 100 seconds 

0.25a 0.0664 

 

0.3a 0.0664 

 

0.5a 0.0625 

 

a 0.0528 

 
 

 

To quickly trigger asymmetry in the wake, vortices shed from the left tip were assigned zero 

strength for the first 75 time steps. Running the program for a pseudo-Reynolds number of 265,604 with 
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variations of this parameter showed that the results had little influence on the Strouhal frequency of the 

wake but choosing a low number resulted in the program taking a longer time to generate the desired wake 

and choosing a high of a number resulted in a large gap between the first pocket of vortices and its successor. 

 

Table 8 Number of Time Steps to Trigger Asymmetry Comparison 

Number of 

Time Steps 

Wake 

frequency (Hz) 
z6-plane after the first 100 seconds 

25 0.0625 

 

50 0.0664 

 

75 0.0664 

 

100 0.0625 
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Other issues that arose with the program included vortices passing across the plate due to too large 

of a time step. This was accounted for by simply eliminating vortices that passed through the plate from the 

flow field. Another issue was that unrealistically large nascent vortices would be introduced in the flow 

field due to high velocities near the tips. While the 0.25a offset helped mitigate the problem at the beginning 

of the time loop, it still occurred at intermittent time steps in which the proximity of existing vortices to the 

tips of the plate resulted in large nascent vortices. To combat this issue, these vortices were checked and 

adjusted to match the strength of their precursor, assuming the previous vortex’s strength was of reasonable 

size for that point in time. 

Different Reynolds numbers were tested by varying the plate width and uniform velocity of the 

fluid. For cases with lower Reynolds numbers, the number of time steps to trigger asymmetry was decreased 

and the threshold for eliminating large vortices was decreased. It was very difficult to obtain and analyze 

autospectra for very low and very high pseudo-Reynolds numbers so only a limited variety of cases were 

tested. By employing FFT for a clean segment of data to calculate the Strouhal number of each wake, the 

results can be compared to the theoretical Strouhal numbers interpolated from the Re vs. St curve developed 

from previous research.  

 

Table 9 Reynolds and Strouhal Number Comparison 

 
Plate Width (m) 

Uniform Velocity 

(m/s) 

Pseudo-Reynolds 

Number 

Strouhal Number 

Theoretical DVM Model 

U
∞

 

V
ar

ia
ti

o
n
 4 0.1 2.66E+04 0.191 0.2344 

4 0.2 5.31E+04 0.190 0.2344 

4 1 2.66E+05 0.200 0.2579 

4 2 5.31E+05 0.206 0.26588 

a
  

V
ar

ia
ti

o
n
 

1 1 6.64E+04 0.190 0.19145 

2 1 1.33E+05 0.193 0.19536 

3 1 1.99E+05 0.197 0.18768 

4 1 2.66E+05 0.200 0.21896 

5 1 3.32E+05 0.202 0.17582 

6 1 3.98E+05 0.204 0.3042 

7 1 4.65E+-5 0.205 0.3145 
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A graphical representation of the results is shown below where the values obtained from 

autospectra are indicated by points and the theoretical values established by previous experimental studies 

are represented with the solid line. For some of the simulations, the nascent vortex offset distance was 

varied to improve the results and simplify the FFT analysis. Even then, it was very difficult to obtain an 

obvious peak from the autospectra generated by the program with only 512 seconds of run time. This 

parametric study would have benefitted from dedicating more time to running the program for more 

iterations and more time to running a FFT of the larger data set. Furthermore, it should be noted that most 

plots of St versus Re in most textbooks demonstrate uncertainty on the interval 104 < Re < 106 due to 

difficulty in obtaining repeatable Strouhhal frequencies in wind tunnel experiments in this range. In this 

study, cases tested at Reynolds numbers below 10,000 resulted in austospectra that were extremely difficult 

to read and were not included in Figure 19. Subsequently, the cases that were successfully tested fell into 

the uncertain region of the plot. As the reference curve is derived from mere interpolation in this domain, 

the comparison between the computationally obtained results and theoretical results may be subject to error. 

Finally, the application of Inviscid Flow Theory mandates the assumption of zero viscosity. The following 

results were found by arbitrarily assigning the flow a viscosity that matched the properties of air at room 

temperature. Rather than maintaining a constant, arbitrarily chosen viscosity, perhaps varying the viscosity 

for each simulation may have yielded a better correlation between the results and the theoretical predictions. 

Despite the large discrepancies with the velocity variation study and the higher Reynolds numbers 

in the plate width variation, the general trend of the data matches the theoretical curve. The simulation 

results demonstrate a correlation between the plate width, uniform velocity of the fluid, and the resulting 

frequency of the wake that simulates the correlation found in experimental testing carried out in prior studies 

on the subject. Since the rest of the results will be generated near the area of the curve in which the 

theoretical and computed values align fairly well, the results of the DVM portion of the study are acceptable 

and can be further developed to simulate flutter in the third and final portion of this thesis.  
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Figure 19 Strouhal numbers compared with pseudo Reynolds number 
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6.3 Flutter Results 

After validating the functionality of the DVM program, the final stage of the project is to include 

the dynamic motion equation into the time loop so that the deflection angle updates in every time step 

according to the moment induced by the aerodynamic forces acting on the plate. The display window is 

also updated to display the plate’s new position in the z6-plane for the viewer to visualize the movement of 

the plate. A sample case is shown in the image sequence below. 

This case will provide the baseline scenario against which all other test cases can be compared. In 

this simulation, air flows past a 4 m wide flat plate at 1 m/s. The torsional rigidity of the plate as it rotates 

about its center is 50 Nm, the torsional damping is 1 Nms, and the mass moment of inertia is 100 kgm2. 

The stop sign is set to fail at a torsional stress of 20 GPa. These properties are not based on any real materials 

and fall somewhere between plastic and wood; they were simply chosen to obtain results that clearly 

demonstrate the capacity of the program.  

The case shown below oscillates back and forth until it reaches a certain angle such that the 

specimen fails due to a hypothetical torsional stress limit. This occurs at 29.625 seconds. Other cases can 

be run in the simulation by varying the different mechanical properties of the plate and their failure times 

can be compared to this baseline case. While the program is running, the drag force, wake pressure, and 

deflection angle of the plate are recorded in every time step. From the pressure data set, the Strouhal number 

of the wake can be found using FFT in the same way as it was found previously. In a similar manner, the 

deflection angle data array can be utilized to calculate the damped frequency of the stop sign. This value 

can then be compared with a theoretical value based on the stop sign’s mechanical properties. This value 

can also be analyzed for each test case to provide support for the proper implementation of the dynamic 

motion equation of the plate. 
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Figure 20 Flutter simulation 
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Two cases of different torsional stiffness values are compared below while all other properties of 

the plate are held constant. Compared with the baseline test case, a specimen with a torsional stiffness of 

100 Nm (twice the original value of 50 Nm) fails at 44.25 seconds, surviving almost twice as long as the 

original specimen did in the same flow conditions. The same pressure probe is used to record the Cp in the 

wake behind the two plates. At the beginning of the simulation, the two cases yield identical results. 

However, when the plate with lower stiffness begins to undergo significant deflections of more than ten 

degrees, it interacts with the flow and creates anomalous behavior of the fluid in the wake. Shortly after 

that, the specimen fails which signals for the end of data collection. The case with the higher stiffness 

eventually sees the same effect of the plate motion on the flow resulting in rough, choppy behavior in the 

wake just before specimen failure. 

 

 

Figure 21 Pressure comparison for varying torsional stiffness 
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 Both plots for angular deflection over time shown below resemble operation of a second order 

system near resonance; these results support proper implementation of the dynamic motion equation: 

𝐼𝑧𝑧𝜃̈ + 𝑏𝜃̇ + 𝜅𝜃 = 𝑀𝑧(𝑡) (25) 

The case with the higher torsional rigidity deflected less under the same aerodynamic forces and 

took more time to reach failure. Additionally, the frequency at which the plate oscillates just before failure 

is an indication of the plate’s damped frequency which is higher than the specimen with lower torsional 

rigidity. These results match the predictions for this simulation because the deflection angle curve of the 

specimen with the lower torsional rigidity demonstrates oscillations of greater amplitude, a shorter time to 

failure, and a lower damped frequency than the specimen with a higher torsional rigidity. These 

comparisons align with the logical predictions for a stiffer specimen in Equations 23 and 27 and support 

the proper execution of dynamic motion in the program to simulate flutter. 

 

 

Figure 22 Deflection angle comparison for varying torsional stiffness 
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To find the damped frequency of each specimen, the two deflection angle curves were analyzed 

with a FFT shown below. The peaks of the power spectra occur at approximately 0.506 Hz for the 50 

N*m/rad case and 0.700 Hz for the 100 Nm/rad case (see the dashed lines in Figure 23); these values are 

within one frequency increment of the expected values on the autospectra indicating the accuracy of the 

dynamic motion equation. This accuracy is also represented by Figures 30 and 32 in which the calculated 

values for damped frequency of several specimens align closely with their theoretical counterparts. 

 

 

Figure 23 Autospectra of deflection angle for varying torsional stiffness 

 

Several other combinations of plate properties have been tested and their results examined. Their 

predicted values for the plate’s resonant frequency and the wake’s Strouhal frequency are given in the 

following tables. The actual results found after running the simulation are also provided as the DVM Model 

values to be compared with the theoretical values. The time at which each specimen failed and the datasets 

were examined for trends relating each property to the mechanical properties of the plate. For all these 

cases, the uniform velocity was maintained at 1 m/s and the plate width at 4 m. The baseline values for 

torsional stiffness, damping and mass moment of inertia were 50 Nm, 1 Nms, and 5 kgm2 and each 

parameter was varied while keeping all else constant. For data sets which failed rather quickly, there were 
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not many points in the data set; as a result, the frequency interval on the FFT plots to find Strouhal frequency 

was so large that no peak could be discerned and the Strouhal number was deemed inconclusive. 

 

Table 10 Summary of Results 

  

Mass 

Moment 

of Inertia 

(kg*m2) 

Damping 

Coefficient 

(N*m*s) 

Torsional 

Spring 

Constant 

(N*m) 

Time to 

Failure 

(s) 

Damped Resonant 

Frequency (Hz) 
Strouhal Number 

Theo. DVM Theo. DVM 

κ
 V

ar
ia

ti
o
n
 

5 1 10 13.875 0.2245 0.2540 0.2004 inconclusive 

5 1 12 17.500 0.2460 0.2520 0.2004 inconclusive 

5 1 15 12.750 0.2752 0.2540 0.2004 inconclusive 

5 1 25 21.375 0.3555 0.3150 0.2004 inconclusive 

5 1 37 20.500 0.4327 0.4409 0.2004 inconclusive 

5 1 50 29.625 0.5030 0.5039 0.2004 inconclusive 

5 1 75 44.375 0.6162 0.5961 0.2004 0.2510 

5 1 100 59.625 0.7116 0.7216 0.2004 0.7559 

5 1 125 70.625 0.7956 0.7671 0.2004 0.3131 

5 1 150 46.125 0.8716 0.8471 0.2004 0.2510 

5 1 175 71.000 0.9414 0.9237 0.2004 0.3131 

5 1 200 53.375 1.0065 0.9412 0.2004 0.5039 

b
 V

ar
ia

ti
o

n
 

5 0.5 50 15.750 0.5032 0.5079 0.2004 inconclusive 

5 1 50 29.625 0.5030 0.5039 0.2004 inconclusive 

5 2 50 41.875 0.5023 0.4706 0.2004 0.2510 

5 5 50 44.250 0.4970 0.4409 0.2004 0.2510 

5 7 50 43.625 0.4908 0.3150 0.2004 0.2510 

5 10 50 102.125 0.4775 0.3765 0.2004 0.3131 

5 12 50 172.250 0.4656 0.3206 0.2004 0.2502 

5 15 50 134.250 0.4431 0.4457 0.2004 0.2815 

5 20 50 140.250 0.3898 0.2893 0.2004 0.2815 

5 25 50 284.000 0.3082 0.1133 0.2004 inconclusive 

5 30 50 141.125 0.1592 0.0313 0.2004 0.2815 

5 31.622777 50 157.250 overdamped 0.0391 0.2004 0.2502 

5 33 50 136.375 overdamped 0.0313 0.2004 0.2815 

5 35 50 69.250 overdamped 0.0470 0.2004 0.3131 

5 40 50 352.250 overdamped 0.0743 0.2004 0.1094 
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Table 11 Summary of Results (continued) 
 

Mass 

Moment of 

Inertia 

(kg*m2) 

Damping 

Coefficient 

(N*m*s) 

Torsional 

Spring 

Constant 

(N*m) 

Time to 

Failure 

(s) 

Damped 

Resonant 

Frequency (Hz) 

Strouhal Number 

Theo. DVM Theo. DVM 

I z
z 

V
ar

ia
ti

o
n
 

1 1 50 25.875 1.1226 1.1969 0.2004 inconclusive 

2 1 50 41.875 0.7948 0.7529 0.2004 0.2510 

3 1 50 40.750 0.6492 0.5961 0.2004 0.2510 

4 1 50 24.375 0.5623 0.5039 0.2004 inconclusive 

5 1 50 29.625 0.5030 0.5039 0.2004 inconclusive 

6 1 50 19.500 0.4592 0.4409 0.2004 inconclusive 

7 1 50 40.875 0.4252 0.4392 0.2004 0.3765 

8 1 50 31.875 0.3978 0.4392 0.2004 0.2510 

9 1 50 40.625 0.3750 0.3765 0.2004 0.2510 

10 1 50 21.125 0.3558 0.3150 0.2004 inconclusive 

 

 To observe the correlations between each mechanical property and the specimen’s failure time, 

several more test cases were completed to obtain more conclusive graphs with more data points; the 

resulting graphs are shown in Figures 24, 25, and 26. From the following plots, it can be concluded that the 

torsional stiffness and damping coefficient of the specimen have a positive correlation with its resulting 

failure time in the program. However, the mass moment of inertia seems to demonstrate no clear correlation 

with the failure time. The performance of the flat plate can be expressed in terms of a confidence level. One 

can be most confident in the integrity of the flat plate below the lower confidence limit and least confident 

above the upper confidence limit. For changes in failure times due to the torsional spring constant, the 

minimum time to failure is given by Equation 31. If operated below the lower confidence limit (green line 

in Figure 24), it is highly unlikely that the flat plate will fail. 

Δ𝑡𝑓,𝐿𝐶𝐿 ≅ (0.20
𝑠

𝑁𝑚
) ∗ 𝜅 (31) 

 On the other hand, failure is almost guaranteed to occur for time intervals greater than the failure 

time predicted by Equation 32. These results indicate that the flat plate must be operated below the red line 
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in Figure 24 to avoid failure; ideally, the flat plate should be operated below the green line for optimal 

safety measures. 

Δ𝑡𝑓,𝑈𝐶𝐿 ≅ (1.12
𝑠

𝑁𝑚
) ∗ 𝜅 (32) 

 

 

Figure 24 Failure time for varying torsional stiffness 
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Similarly, by varying the damping coefficient of the flat plate, the minimum time to failure clearly 

has upper and lower confidence limits shown by the red and green lines in Figure 25, respectively. If 

operated below the lower confidence limit, the flat plate will not fail. This is the safest time limit during 

which the flat plate should be subject to flutter. 

Δ𝑡𝑓,𝐿𝐶𝐿 ≅ 1.4 (𝑁𝑚)−1 ∗ 𝑏 (33) 

 The upper confidence limit represents the threshold after which the flat plate is extremely likely to 

fail for any given damping coefficient (at the given torsional spring constant and mass moment of inertia). 

This curve can be approximated by the linear equation below. It is possible that the upper confidence limit 

is nonlinear, but more data points should be gathered to draw a conclusion. 

Δ𝑡𝑓,𝑈𝐶𝐿 ≅ 14.0 (𝑁𝑚)−1 ∗ 𝑏 (34) 

 

 

Figure 25 Failure times for varying damping coefficient 
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Finally, by varying the mass moment of inertia of the flat plate, the minimum time to failure has 

horizontal upper and lower confidence limits since there is no clear trend in the data points. The lower and 

upper confidence limits are described by Equations 35 and 36, respectively. With a torsional spring constant 

of 50 Nm and a damping coefficient of 1 Nms, the flat plate can be safely operated up to 19 seconds 

regardless of the mass moment of inertia but will never operate beyond 46 seconds. 

Δ𝑡𝑓,𝐿𝐶𝐿 ≅ 19 𝑠 (35) 

Δ𝑡𝑓,𝑈𝐶𝐿 ≅ 46 𝑠 (36) 

 The confidence lines developed from these results indicate the possibility of utilizing a DVM 

program to provide useful information about an aircraft’s operating envelope, for example. This application 

of results supports the significance and practicality of this simulation technique. 

 

 

Figure 26 Failure times for varying mass moment of inertia 
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 For the test cases summarized in Tables 10 and 11, the wake pressure and deflection angle data 

were analyzed for the Strouhal number of the wake and damped frequency, respectively. Before the 

dynamic motion equation was added into the program, the Strouhal number of the wake was found to be 

between 0.21 and 0.25 (depending on the time steps used to trigger asymmetry and other minor 

modifications to the code).  Now that the plate is free to rotate but the velocity and plate width stay the 

same, the Strouhal frequency of the wake is expected to remain constant. However, the motion of the plate 

interacts with the wake and disrupts the flow. This is evident from direct observation of the z6-plane while 

the program is running. The movement of the plate shows a slight effect on the Strouhal number due to the 

variation of any parameter. However, the graphs reveal no significant trend to the effect of each parameter 

on the Strouhal number of the wake. As with the data taken previously, it was very difficult to ascertain the 

true peak in the autospectra and may have been clearer had more resources and time been dedicated to 

investigating the pressure in the wake behind a flat plate in flutter. 

 

 

Figure 27 Strouhal numbers for varying torsional stiffness 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 50 100 150 200

S
tr

o
u
h
al

 N
u
m

b
er

Torsional Spring Constant (Nm)

Theoretical

DVM Model



68 

 

 

Figure 28 Strouhal numbers for varying damping coefficient 

 

 

Figure 29 Strouhal numbers for varying mass moment of inertia 
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 The damped frequencies of each of the test cases are plotted below. For the torsional stiffness and 

mass moment of inertia parametric studies, the results align with the theoretical predictions based on 

Equation 29. This correlation supports the proper use of the dynamic motion equation in a flutter simulation 

and provides predictable results. However, the damping coefficient variation plot in Figure 31 shows a 

slight deviation of the values obtained in the program from the expected trajectory. It is unlikely that the 

peaks in the autospectra found for these cases, particularly those with higher damping coefficients, are true 

indicators of the damped frequency of the flat plate. For the cases with damping coefficients beyond the 

critical damping coefficient, there is no real value predicted using Equation 29; the autospectral peaks might 

reflect some frequency associated with the interaction of the discrete vortices creating noise unrelated to 

the damping frequency. 

 

 

Figure 30 Damped frequency for varying torsional stiffness 
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Figure 31 Damped frequency for varying damping coefficient 

 

 

Figure 32 Damped frequency for varying mass moment of inertia 
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 Introducing motion of the plate into the program results in a realistic visualization of the movement 

of a flat plate as it rotates about its center due to alternating aerodynamic forces on the plate induced by the 

wake generated behind the plate. The motion of the plate serves as a plausible prediction of flutter. Various 

combinations of mechanical properties were tested in the program and the resulting time to failure, Strouhal 

number, and damped frequency were analyzed. A positive correlation between damping coefficient and 

torsional stiffness with time to failure met the predictions previously stated. However, a lack of correlation 

between mass moment of inertia and time to failure provided insight on the arbitrary nature of this property 

on flutter-induced effects. The Strouhal number of the wake seemed to be rather consistent with the results 

generated with a fixed plate; however, the large frequency interval and the subjectivity in identifying the 

correct peak in the FFT indicates that the results for Strouhal number are inconsistent and inaccurate. 

Finally, the damped frequency found for each specimen correlated well with the results obtained from the 

equation for damped frequency, Equation 29, particularly when varying the torsional stiffness and mass 

moment of inertia. 

 The conclusions drawn from the trends observed in the preceding figures indicate that the motion 

of the plate is realistic and corresponds with the physical expectations based on theoretical equations. As 

with the previous results supporting the use of conformal mapping and DVM, the use of dynamic motion 

in this program is a valid technique for flutter simulation. The combination of these techniques provides a 

potentially revolutionary method of flutter simulation illustrated by the program developed and studied in 

this work. 
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CHAPTER 7 

 

CONCLUSION 

 

Flutter-induced effects can be ultimately catastrophic in many engineering applications such as 

bridges, buildings, and aircraft. Understanding and predicting the behavior of a structure under aerodynamic 

loads is essential to preventing structural failure. The objective of this study was to develop a viable model 

of aerodynamic flutter using Discrete Vortex Method (DVM) to support a proposition for a new, more 

efficient technique to replace current flutter models used in the aerospace industry. Using a FreeBASIC 

compiler, a program was written that utilized the principles of inviscid flow, DVM, and dynamic motion to 

implement a time iterative display representing flow past a flat plate. Complex positions are translated 

between different flow fields using a series of six conformal mappings of z-planes. Viscous effects are 

introduced into the model using DVM. By numerically separating the front and back surfaces of the plate 

into short line segments, the force distribution across each surface and net moment acting on the plate by 

the fluid around it are calculated. Motion of the plate is created by a dynamic motion equation in which the 

mass moment of inertia, damping coefficient, and torsional stiffness of the plate rotating about its center 

dictate the change in displacement of the plate. Flow visualization is accomplished by plotting the locations 

of each of the discrete vortices in the flow field generating a wake behind the plate. The plate oscillates 

about its center due to a fluctuating moment acting on the plate induced by the flow field and calculated 

using inviscid flow theory. By updating the angular displacement of the plate in each time step of the 

program, the movement of the specimen can be visually observed and its failure can be predicted at a certain 

torsional stress.  

The program was built and tested for indicators of accuracy and realism along the way. The inviscid 

flow equations used were confirmed by plotting points along the inviscid streamlines in each of the 

conformal mappings used to obtain the physical flow field. Summation of the total forces acting on plates 

at different angles to the streamline flow resulted in zero net forces as predicted by the assumptions of 
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inviscid flow. DVM was checked by first observing the wake and comparing it to the predicted shape of a 

von Kármán vortex street and then by measuring the Strouhal number of the wake and comparing it with 

experimental results based on the well-established correlation between Strouhal and Reynolds numbers. 

Finally, many flutter simulations were run for cases of varying combinations of mechanical properties 

resulting in damped oscillations of the plate rotating about its center. The flutter predictions were supported 

by finding the damped frequencies of the different specimens and matching the values with predicted 

frequencies based on the plate’s mechanical properties. The computational results for damped frequency 

matched up nearly perfectly with the theoretical values when torsional stiffness and mass moment of inertia 

were varied; however, variation of the damping coefficient resulted more aberrant data. Furthermore, the 

failure times of varying specimens provided insight into trends in the relationship between each property 

and when a specimen might fail; this procedure may be extremely applicable in the aerospace industry in 

the study of aerodynamic flutter. For the simple case of a stop sign rotating about its post, the results 

demonstrated that the life span of a flat plate (stop sign) increased with torsional stiffness and damping 

coefficient but showed no distinct correlation with the sign’s mass moment of inertia. The Strouhal number 

seemed to vary slightly but the results for this property were not very conclusive in this study due to the 

difficulty in identifying the correct peaks in the Fast Fourier Transform (FFT) autospectra. Overall, the 

results indicated that the behavior of the specimen is realistic and that the program serves as a valid model 

for a flat plate in aerodynamic flutter. The parametric studies completed in Chapter 6 of this thesis provide 

a small sample of potential simulations that could be performed to aid and support the design of future 

aircraft, for example. Each simulation only took a matter of minutes to run on a standard laptop computer 

providing evidence of the speed and efficiency achieved with the DVM technique. Compared with existing 

flutter models which used FEA and is extremely slow, this new program shows potential for a very desirable 

method of flutter simulation. 

Because this technique has not previously been used for the purpose of studying flutter, the model 

built is very rudimentary and provides merely a simple demonstration of the potential for employing DVM 

in a simulation of aerodynamic flutter. There are many other factors to be considered and added to the 
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program in future studies. The program should continue to be validated through other indicators of realistic 

results. The wake generated behind the plate using DVM can be compared with other theoretical models 

and other experimental results [12]. To provide some real-world data, a flat plate of known mechanical 

properties can be set up in a wind tunnel, fixed to rotate about its center, and observed as air flows past the 

plate. Results produced by the program can then be compared with the theoretical behavior of the plate 

predicted in the program to further validate the reliability of the simulation’s results. 

One major aspect of structural dynamics neglected in this study was the influence of fatigue in 

structures under repeated loads. Fatigue considerations can be implemented in the program through the 

application of the rainfall technique to the plot of deflection angle over time, a case of variable amplitude 

torsional stress on the specimen [18]. For cases in which the specimen does not reach its torsional stress 

limit for a long period of time, it is likely that it will fail due to fatigue. An algorithm much more complex 

than a simple calculation of torsional stress is required to realistically determine when failure will occur. 

This failure time can be predicted using the rainfall technique and is essential to studies on flutter-induced 

failure in the structural dynamics community. 

Another application to the existing program that will intrigue aerospace engineers for one is the 

consideration of conformal mappings to profiles other than a flat plate. While flat plates are impractical 

surfaces on aircraft, streamlined struts and cambered airfoils are rather prominent. Both of these profiles 

can be obtained through a series of conformal transformations very similar to those discussed in Chapter 2 

of this study with slight modifications in the equation used to transform the z4-plane to the z5-plane. 

Additionally, the separation of the boundary layer can no longer be assumed at the tips of the flat plate. 

Instead, they can be found on the top and bottom surface of the airfoil using Thwaites’ method. The rest of 

the program can be executed in the same manner as with the flat plate. Flutter of an airfoil’s profile may be 

of more interest than a flat plate profile to those studying aerodynamic flutter in aircraft. Moreover, various 

profiles can be plotted in the same flow field and both considered for flutter-induced behavior in the same 

stream of fluid. Since many aircraft have a horizontal stabilizer aft of the wing, an interesting study may 
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include the positioning of two airfoils in the same flow field, one in the other’s wake to observe the resulting 

behavior of the two structures and potential flutter-induced failure. 

The methods used in this study introduce a world of possibility and potential for the future of flutter 

simulations in aerospace engineering. By introducing a method of modeling flutter that is less 

computationally expensive and time consuming, flutter analysis can be employed earlier on in the design 

process of aircraft and other engineering designs. Consideration of flutter-induced effects at an early stage 

in a project’s timeline reduces the likelihood of expensive design overhauls or catastrophic failures in the 

future. A disastrous and common phenomenon, aerodynamic flutter must and can be better understood 

through the integration of discrete vortex method into the field of study. 
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APPENDIX A 

 

FREEBASIC PROGRAM 

 

 Below is a copy of the program used to obtain the results in Chapter 6 of this study. To complete 

operations with complex number, the program references a BI file which is provided at the end of this 

Appendix. This configuration of the program is set up to freeze when the flat plate fails. However, this can 

be modified for processing batches of test cases by changing the phrase “sleep” to “end” under “if 

abs(torsional_stress) > torsional_strength then”. This will automatically end the 

program when the plate fails. 

 

A.1 Main Program 

 

'--------------------------------------------------------------------- 

' 

'   Program:  STOPSIGN24.bas 

' 

'   Purpose:  Compute the flutter of an idealized "stopsign" exposed  

'             to a fluid flow resulting in flutter using the Discrete 

'             Vortex Method (DVM). 

' 

'   Input:   a)  Text file:  "input_stopsign24.txt" 

' 

'   Output:  a)  Output file "output.dat" 

'   Version: ecc, 10/16/19 

' 

'--------------------------------------------------------------------  

 

 

#include "complex.bi" 

 

Declare Function real_color(mycolor as integer) as string 

Declare Function flipflop(x as integer) as integer 

Declare Function C_distance(ZA as complex, ZB as complex) as double 

 

dim as integer NN = 10000 

dim as double  PI = 3.14159265358 

 

dim as double  uniform_velocity, angle_initial, angle_increment, stopsign_width 

dim as integer fluid_choice, output_choice 

dim as double  p_ambient, T_ambient 

dim as double  torsional_strength, torsional_stress, torsional_stiffness, torsional_damping, 

stopsign_MOI,  

dim as integer N_streamlines 

dim as double  N_radii_height, N_radii_width, N_radii_width_mult 

dim as integer color_streamlines, color_cylinder_wall, color_background 

dim as integer color_RT, color_LT, color_RRP, color_LRP 

dim as double  t_max, t_increment 

dim as integer N_points, j, k, m, n, v 

dim as double  a, phi_min, phi_max, psi_min, psi_max 

dim as double  phi, psi(100) 
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dim as double  x_min, x_max, y_min, y_max 

dim as double  streamfunction 

dim as double  scale_of_points 

dim as double  deflection_angle, deflection_angle_old, deflection_angle_older, deflection_degrees 

dim as double  angle_RT, angle_LT, surface_angle 

 

dim as string  input_line 

dim as string  plot_label(10,5) 

 

dim as complex F(10), R(10), T(10), B(10), LT(10), RT(10), LRP(10), RRP(10) 

dim as complex FRONT(10, NN), BACK(10, NN) 

dim as complex argument 

dim as complex streamline(10, 100,NN), w, angle 

 

dim as integer plane_choice, plot_choice, axis_choice 

dim as string  key_choice 

dim as integer F_choice, R_choice, T_choice, B_choice 

dim as integer LT_choice, RT_choice, LRP_choice, RRP_choice 

dim as integer FRONT_choice, BACK_choice, S_choice, V_choice, V_onoff_choice 

dim as integer Q_choice 

 

dim as double  FRONT_delta_s(NN), BACK_delta_s(NN), FRONT_dFx_dr(NN), FRONT_dFy_dr(NN) 

dim as double  BACK_dFx_dr(NN), BACK_dFy_dr(NN), FRONT_dF_dr(NN), BACK_dF_dr(NN) 

dim as double  Z1x, Z1y, Z4x, Z4y, denominator 

dim as complex value, value1, value2, value3, value4, value5 

 

dim as complex FRONT_V(NN),  BACK_V(NN), FORCE 

dim as double  FRONT_Cp(NN), BACK_Cp(NN), TOTAL_Cp(NN), MOMENT 

dim as double  radius, dF, p, density, V2, dM, nu, Re 

dim as double  x, y, dFx, dFy 

dim as double  max_abscissa, max_ordinate, min_ordinate, old_abscissa, old_ordinate 

dim as double  tiempo 

 

dim as complex vortex_position(10,NN), dw_dz(10,NN), vortex_velocity(10,NN), vortex_strength(NN) 

dim as integer N_vortices 

dim as complex z, C_sum, one, a2, negone, C_uniform_velocity, velocity 

dim as double  U_s, circulation, total_circulation, trigger, dissipation, distant, amalg_dist, offset 

 

dim as integer zero_vortices_index(NN), number_of_zero_vortices 

dim as complex probe_position(10), probe_velocity(10) 

dim as double  probe_Cp(NN) 

 

   '----------------------------------------------------------------- 

   ' 

   '  A.  Obtain User Input. 

   ' 

   '----------------------------------------------------------------- 

 

     '------------------------------------------------------------------------- 

     ' 

     '  A.1  Read in user data from 'input-stopsign.txt.' 

     ' 

     '------------------------------------------------------------------------- 

 

         open "input-stopsign24.txt" for input as #1 

 

      do while(eof(1) = 0)   

 

         line input #1, input_line      

         

         if mid(input_line,8,3) = "A.1" then uniform_velocity        = val(mid(input_line,70,10))    

         if mid(input_line,8,3) = "A.2" then angle_initial           =val(mid(input_line,70,10))*PI/180 

        

         if mid(input_line,8,3) = "B.1" then fluid_choice            = int(val(mid(input_line,70,10)))    

         if mid(input_line,8,3) = "B.2" then p_ambient               = val(mid(input_line,70,10)) 

         if mid(input_line,8,3) = "B.3" then T_ambient               = val(mid(input_line,70,10)) 

 

         if mid(input_line,8,3) = "C.1" then torsional_strength      = val(mid(input_line,70,10)) 

         if mid(input_line,8,3) = "C.2" then stopsign_MOI            = val(mid(input_line,70,10)) 

         if mid(input_line,8,3) = "C.3" then torsional_damping       = val(mid(input_line,70,10)) 

         if mid(input_line,8,3) = "C.4" then torsional_stiffness     = val(mid(input_line,70,10)) 

         if mid(input_line,8,3) = "C.5" then stopsign_width          = val(mid(input_line,70,10)) 

        

         if mid(input_line,8,3) = "D.1" then N_streamlines           = int(val(mid(input_line,70,10))) 

         if mid(input_line,8,3) = "D.2" then N_radii_height          = val(mid(input_line,70,10)) 

         if mid(input_line,8,3) = "D.3" then N_radii_width           = val(mid(input_line,70,10)) 
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         if mid(input_line,8,3) = "D.4" then N_radii_width_mult      = val(mid(input_line,70,10)) 

         if mid(input_line,8,3) = "D.5" then color_streamlines       = int(val(mid(input_line,70,10))) 

         if mid(input_line,8,3) = "D.6" then color_cylinder_wall     = int(val(mid(input_line,70,10))) 

         if mid(input_line,8,3) = "D.7" then color_background        = int(val(mid(input_line,70,10))) 

         if mid(input_line,8,3) = "D.8" then N_points                = int(val(mid(input_line,70,10))) 

 

         if mid(input_line,8,3) = "E.1" then t_max                   = val(mid(input_line,70,10)) 

         if mid(input_line,8,3) = "E.2" then t_increment             = val(mid(input_line,70,10)) 

         if mid(input_line,8,3) = "E.3" then output_choice           = int(val(mid(input_line,70,10))) 

         if mid(input_line,8,3) = "E.4" then plane_choice            = int(val(mid(input_line,70,10))) 

         if mid(input_line,8,3) = "E.5" then V_onoff_choice          = int(val(mid(input_line,70,10))) 

 

         if mid(input_line,8,3) = "F.1" then trigger                 = val(mid(input_line,70,10)) 

         if mid(input_line,8,3) = "F.2" then dissipation             = val(mid(input_line,70,10)) 

         if mid(input_line,8,3) = "F.3" then distant                 = val(mid(input_line,70,10)) 

         if mid(input_line,8,3) = "F.4" then amalg_dist              = val(mid(input_line,70,10)) 

         if mid(input_line,8,3) = "F.5" then offset                  = val(mid(input_line,70,10)) 

 

      loop 

 

         close #1 

 

      '------------------------------------------------------------------------ 

      ' 

      '  A.2  Compute preliminary constants. 

      ' 

      '       a                    = cylinder radius (m). 

      '       x_min, x_max         = range of the plot (m) in the x-direction. 

      '       y_min, y_max         = range of the plot (m) in the y-direction. 

      '       Re                   = Reynolds number (-). 

      '       trigger               = distance between nascent vortices and tips (m). 

      ' 

      '------------------------------------------------------------------------ 

 

         a = stopsign_width / 4                          ' Cylinder radius (m). 

   

         x_min = -N_radii_width  * a *.5 

         x_max =  N_radii_width  * a *(N_radii_width_mult-.5) 

         y_min = -N_radii_height * a *(N_radii_width_mult/2) 

         y_max =  N_radii_height * a *(N_radii_width_mult/2) 

 

         if (fluid_choice = 0)  then 

            nu = 15.06e-6               'kinematic viscosity of air at 20C (m^2/s) 

         end if 

 

         Re = uniform_velocity * 4 * a / nu 

 

         trigger = trigger * a 

      '------------------------------------------------------------------------ 

      ' 

      '  A.3  Print out the results to the screen or to a disk file. 

      ' 

      '------------------------------------------------------------------------ 

 

      for output_choice = 1 to 2 

 

         if (output_choice = 1) then open Cons         for output as #2 

         if (output_choice = 2) then open "output.dat" for output as #2 

 

 

         print #2, "*********************************************************" 

         print #2, "*                                                       *" 

         print #2, "*   Output for Program STOPSIGN.bas                     *" 

         print #2, "*                                                       *" 

         print #2, "*********************************************************" 

         print #2, "                                                         " 

         print #2, "I. Input                                                 " 

         print #2, "                                                         " 

         print #2, "   A. Fluid Flow Specifications                          " 

         print #2, "      1. Uniform flow velocity (m/s):              ", uniform_velocity 

         print #2, "      2. Initial angle of flow (degrees):          ", angle_initial * 180 / PI 

         print #2, "                                                         " 

         print #2, "   B. Ambient Fluid Properties                           " 

         print #2, "      1. Fluid (0 = air, 1 = water):               ", fluid_choice  

         print #2, "      2. Ambient pressure (Pa):                    ", p_ambient 

         print #2, "      3. Ambient temperature (K):                  ", T_ambient 
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         print #2, "                                                         " 

         print #2, "   C. Stopsign Mechanical Properties                     " 

         print #2, "      1. Torsional strength (Pa):                  ", torsional_strength 

         print #2, "      2. Moment of inertia (kgm^2):                ", stopsign_MOI 

         print #2, "      3. Torsional damping (Nms):                  ", torsional_damping 

         print #2, "      4. Torsional stiffness (Nm):                 ", torsional_stiffness 

         print #2, "      5. Stopsign width (m):                       ", stopsign_width 

         print #2, "                                                         " 

         print #2, "   D. Plotting Specifications                            " 

         print #2, "      1. Number of streamline points to plot:      ", N_points 

         print #2, "                                                         " 

         print #2, "   E. Simulation Time                                    " 

         print #2, "      1. Maximum time for simulation (s):          ", t_max 

         print #2, "      2. Time increment for simulation (s):        ", t_increment 

         print #2, "      3. Print to screen (1) or output.dat (2):    ", output_choice 

         print #2, "      4. Choice of plane to display:               ", plane_choice 

         print #2, "      5. Choice to show vortices ( 1 for yes):     ", V_onoff_choice 

         print #2, "   F.  Vortex Properties                                 " 

         print #2, "      1. Number of vortices to trigger asymmetry:  ", trigger 

         print #2, "      2. Vortex dissipation factor:                ", dissipation 

         print #2, "      3. Distance at which to eliminate vortices:  ", distant 

         print #2, "      4. Amalgamation distance:                    ", amalg_dist 

         print #2, "      5. Initial guess for release point:          ", offset 

 

         print #2, "                                                         " 

         print #2, "II. Output                                               " 

         print #2, "                                                         " 

         print #2, "   A. Preliminary Values                                 " 

         print #2, "      1. Cylinder radius (m):                      ", a 

         print #2, "      2. Horizontal plot range (m):                ", x_min, x_max 

         print #2, "      3. Vertical plot range (m)                   ", y_min, y_max 

         print #2, "      4. Reynolds Number:                          ", Re' 

 

         close #2 

 

      next output_choice 

 

 

      print "                                                         " 

      print "   <Hit any key to obtain the plot on the screen!>       " 

 

 

 

   '----------------------------------------------------------------- 

   ' 

   '  B.  Conduct initial calculations.. 

   ' 

   '----------------------------------------------------------------- 

 

      '------------------------------------------------------------------------ 

      '  

      '  B.1  Define the scale of points shown on the surface of the 

      '       cylinder or on the flat plate.  This defines the number 

      '       of pixels used to make circles to document the position 

      '       of stagnation and separation points on the plots. 

      ' 

      '------------------------------------------------------------------------ 

 

         scale_of_points = 20 

 

 

      '------------------------------------------------------------------------ 

      ' 

      '  B.2  Make the streamlines.  Define the minimum and maximum values for 

      '       the stream function and the equipotential function at the edges 

      '       of the display box. 

      ' 

      '------------------------------------------------------------------------ 

 

         n = N_radii_width 

         m = N_radii_height 

 

         phi_min = -a * (m + 1/m) 

         phi_max =  a * (m + 1/m) 

  

         psi_min = -a * (n - 1/n) 
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         psi_max =  a * (n - 1/n) 

 

            k = 1 

         for streamfunction = psi_min to psi_max step (psi_max - psi_min) / N_streamlines 

            psi(k) = streamfunction 

            k     += 1 

         next streamfunction 

 

         if (fluid_choice = 2)  then 

            density          = 1.0 

            uniform_velocity = 1.0 

         end if 

 

 

   '----------------------------------------------------------------- 

   ' 

   '  C.  Begin the iteration in time. 

   ' 

   '----------------------------------------------------------------- 

         

         N_vortices = 0:           v = 0                   'set number of vortices and vortex index 

         vortex_strength(1).x = 0: vortex_strength(1).y = 0  

 

      '------------------------------------------------------------------------ 

      ' 

      '  C.1  Initially set the display of all points on the plot to off. 

      ' 

      '------------------------------------------------------------------------ 

 

         F_choice   = 0 

         R_choice   = 0 

         T_choice   = 0 

         B_choice   = 0 

         LT_choice  = 0 

         RT_choice  = 0 

         LRP_choice = 0 

         RRP_choice = 0 

          

         FRONT_choice = 1 

         BACK_choice  = 0 

         S_choice     = 0 

         axis_choice  = 1 

 

         Q_choice   = 0 

 

 

      '------------------------------------------------------------------------ 

      ' 

      '  C.2  Begin the loop in time for stopsign flutter. 

      ' 

      '------------------------------------------------------------------------ 

 

         Screen 20, 2 

 

         deflection_degrees  = 0 

         deflection_angle = deflection_degrees * PI / 180 

 

    for tiempo = 0 to t_max step t_increment  

 

         key_choice = inkey() 'Set key commands for displaying certain planes and points. 

 

         if (key_choice = "1") then plane_choice = 1 

         if (key_choice = "2") then plane_choice = 2 

         if (key_choice = "3") then plane_choice = 3 

         if (key_choice = "4") then plane_choice = 4 

         if (key_choice = "5") then plane_choice = 5 

         if (key_choice = "6") then plane_choice = 6 

         if (key_choice = "a") then axis_choice  = flipflop(axis_choice) 

         if (key_choice = "s") then sleep    

         if (key_choice = "f") then F_choice     = flipflop(F_choice) 

         if (key_choice = "r") then R_choice     = flipflop(R_choice) 

         if (key_choice = "t") then T_choice     = flipflop(T_choice) 

         if (key_choice = "b") then B_choice     = flipflop(B_choice) 

         if (key_choice = "L") then LT_choice    = flipflop(LT_choice) 

         if (key_choice = "R") then RT_choice    = flipflop(RT_choice)             

         if (key_choice = "P") then LRP_choice   = flipflop(LRP_choice) 
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         if (key_choice = "Z") then RRP_choice   = flipflop(RRP_choice)  

 

         if (key_choice = "A") then FRONT_choice = flipflop(FRONT_choice) 

         if (key_choice = "K") then BACK_choice  = flipflop(BACK_choice) 

         if (key_choice = "S") then S_choice     = flipflop(S_choice) 

         if (key_choice = "V") then V_choice     = flipflop(V_choice) 

 

         if (key_choice = "q") then Q_choice     = 1 

 

         if (Key_choice = "C") then       'Set key commands for displaying Cp and Force vs. r plots 

 

            plane_choice = 0 

            plot_choice  = 1 

         end if 

 

         if (Key_choice = "F") then 

            plane_choice = 0 

            plot_choice  = 2 

         end if 

 

      '------------------------------------------------------------------------ 

      ' 

      '  C.3  Update deflection angle based on plate dynamics and compute stress. 

      ' 

      '------------------------------------------------------------------------ 

         deflection_angle_older = deflection_angle_old 

         deflection_angle_old = deflection_angle 

         denominator = stopsign_MOI + torsional_damping*t_increment 

 

         value1.x = 2*stopsign_MOI - torsional_stiffness*t_increment^2 + torsional_damping*t_increment 

         value2.x = stopsign_MOI 

         value3.x = t_increment^2 

    

         deflection_angle = (deflection_angle_old*value1.x - deflection_angle_older*value2.x - 

MOMENT*value3.x)/denominator 

   

         torsional_stress = 72e9 * a / 3 * deflection_angle 'tau=theta*G*c/H 

 

         open "deflection-angle" for append as #5           'Deflection angle data file 

         print #5, "", stopsign_width, uniform_velocity, stopsign_MOI, torsional_damping, 

torsional_stiffness, tiempo, deflection_angle 

         close #5 

 

      '----------------------------------------------------------------------- 

      ' 

      '  C.3  Generate points for the graphs at the tips of the stopsign. 

      '       These points are defined in the z(5) plane (because the  

      '       plate is lying flat and it's easy to do).  We have to  

      '       then compute back through the previous four planes and finish 

      '       by calculating their positions in z(6). 

      ' 

      '       LT = Left tip (bottom) of the plate. 

      '       RT = Right tip (top) of the plate. 

      ' 

      '----------------------------------------------------------------------- 

 

          LT(5).x = -2 * a:                            LT(5).y = 0 

          RT(5).x =  2 * a:                            RT(5).y = 0 

 

        

          LT(4).x = -a:                                LT(4).y = 0 

          RT(4).x =  a:                                RT(4).y = 0 

  

          

          LT(3)   = C_mult(i,  LT(4)) 

          RT(3)   = C_mult(i,  RT(4)) 

  

 

          angle.x = deflection_angle:                angle.y = 0 

 

          LT(2)   = C_mult(  LT(3), C_exp( C_mult( C_neg(i), angle) ) ) 

          RT(2)   = C_mult(  RT(3), C_exp( C_mult( C_neg(i), angle) ) ) 

 

 

          angle.x = angle_initial:                   angle.y = 0 
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          LT(1)   = C_mult(  LT(2), C_exp( C_mult( C_neg(i), angle) ) ) 

          RT(1)   = C_mult(  RT(2), C_exp( C_mult( C_neg(i), angle) ) ) 

  

 

          angle.x = (PI/2 - deflection_angle):      angle.y = 0 

 

          LT(6)   = C_mult(  LT(5), C_exp( C_mult( i, angle) ) ) 

          RT(6)   = C_mult(  RT(5), C_exp( C_mult( i, angle) ) ) 

 

      '------------------------------------------------------------------------ 

      ' 

      '  C.4  Introduce the discrete vortices.  In each time step, introduce  

      '       two vortices, one near the left tip and right tip in the Z5 plane. 

      '       The vortex strength is equal to 0.5 * U_s^2 * t where U_s is the 

      '       velocity in the flow at the surface of the plate (?).  The 

      '       vortices are released at a distance "m" away from the  

      '       stagnation point normal to the surface of the cylinder in the 

      '       Z1 plane. 

      ' 

      '----------------------------------------------------------------------- 

   

      v += 1 

       

         '--------------------------------------------------------------------- 

         ' 

         '  C.4.1  Update positions of all existing vortices. 

         ' 

         '--------------------------------------------------------------------- 

            '--------------------------------------------------------------------- 

            ' 

            '  C.4.1.1  Find the velocity at each vortex's position in the 

            '           z-6 plane and update its position. 

            ' 

            '--------------------------------------------------------------------- 

         for k = 1 to N_vortices 

                   C_sum.x =                0:                    C_sum.y = 0 

                     one.x =                1:                      one.y = 0 

                      a2.x =              a*a:                       a2.y = 0 

      C_uniform_velocity.x = uniform_velocity:       C_uniform_velocity.y = 0 

             

            for j = 1 to N_vortices                                                              

              if j <> k then 

                value1 = C_sub(vortex_position(1,k), vortex_position(1,j)) 

                value1 = C_div(one, value1) 

 

                value2 = C_div(a2, C_conj(vortex_position(1,j))) 

                value2 = C_sub(vortex_position(1,k), value2) 

                value2 = C_div(one, value2) 

 

                value3 = C_sub(value1, value2) 

                value3 = C_mult(vortex_strength(j), value3) 

 

                C_sum  = C_add(C_sum, value3) 

              end if 

            next j 

 

                value4.x = 2*PI:                value4.y = 0 

                value4 = C_div(i, value4) 

                value4 = C_neg(C_mult(value4, C_sum))            'discrete vortex portion of dw/dz1 

          

                value5 = C_mult(vortex_position(1,k),vortex_position(1,k)) 

                value5 = C_div(a2, value5) 

                value5 = C_sub(one, value5) 

                value5 = C_mult(C_uniform_velocity, value5)      ‘inviscid flow portion of dw/dz1                        

 

                dw_dz(1,k) = (C_add(value5, value4))                          

 

 

              angle.x = angle_initial:               angle.y = 0 ‘dw/dz2 = dw/dz1 * dz1/dz2 

              dw_dz(2,k) = C_mult(dw_dz(1,k), C_exp( C_mult(C_neg(i), angle) ) ) 

 

              angle.x = deflection_angle:            angle.y = 0  ‘dw/dz3 = dw/dz2 * dz2/dz3 

              dw_dz(3,k) = C_mult(dw_dz(2,k), C_exp( C_mult(C_neg(i), angle) ) ) 

 

              dw_dz(4,k) = C_mult(i, dw_dz(3,k) )                 ‘dw/dz4 = dw/dz3 * dz3/dz4 
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              value1.x = a * a:                      value1.y = 0 ‘dw/dz5 = dw/dz4 * dz4/dz5 

              dw_dz(5,k) = C_mult(dw_dz(4,k), C_div(one, C_sub(one, C_div( value1, 

C_mult(vortex_position(4,k),vortex_position(4,k)))))) 

 

              angle.x =  deflection_angle:    angle.y =  0        ‘dw/dz6 = dw/dz5 * dz5/dz6 

              dw_dz(6,k) = C_mult(dw_dz(5,k), C_mult(C_neg(i), C_exp(C_mult(i, angle)))) 

 

              vortex_velocity(6,k) = C_conj(dw_dz(6,k))‘velocity = complex conjugate of (dw/dz6=u-iv)      

 

            vortex_position(6,k).x += vortex_velocity(6,k).x * t_increment 

            vortex_position(6,k).y += vortex_velocity(6,k).y * t_increment 

 

         next k 

 

            '--------------------------------------------------------------------- 

            ' 

            '  C.4.1.2  Transform positions of all vortices through all planes. 

            ' 

            '--------------------------------------------------------------------- 

 

     for k = 1 to N_vortices                      ‘Transform the vortex_positions from z-6 to z-1 

          angle.x = (PI/2 - deflection_angle):      angle.y = 0 

          w.x     = vortex_position(5,k).x:         w.y     = vortex_position(5,k).y   

          vortex_position(5,k) = C_mult(vortex_position(6,k), C_exp(C_mult(C_neg(i),angle))) 

          if k < N_vortices and abs(vortex_position(5,k).x) < 2 * a  then    

                if (vortex_position(5,k).y * w.y) < 0 then vortex_strength(k).x = 0 ')>0 then 

vortex_strength(k).x = 0  

          end if                              ‘Prevent vortices from crossing the plate, eliminate 

 

          w.x      = vortex_position(5,k).x: w.y   = vortex_position(5,k).y   

          value.x  = 4 * a * a:            value.y = 0 

          argument = C_sqr( C_sub( C_mult(w, w), value) ) 

          value.x  = 2:                    value.y = 0 

          if vortex_position(5,k).x > 0 then  

             vortex_position(4,k) = C_div( C_add( w, argument), value)        ‘Plus argument         

          else 

             vortex_position(4,k) = C_div( C_sub( w, argument), value)        ‘Minus argument 

          end if 

 

          vortex_position(3,k) = C_mult(i, vortex_position(4,k)) 

           

          angle.x = deflection_angle:                angle.y = 0 

          vortex_position(2,k) = C_mult(vortex_position(3,k), C_exp( C_mult( C_neg(i), angle) ) ) 

 

          angle.x = angle_initial:                   angle.y = 0 

          vortex_position(1,k) = C_mult(vortex_position(2,k), C_exp( C_mult( C_neg(i), angle) ) )        

 

     next k 

 

            '--------------------------------------------------------------------- 

            ' 

            '  C.4.1.1  Amalgamation of adjacent vortices. 

            ' 

            '--------------------------------------------------------------------- 

 

            for k = 1 to N_vortices 

               for j = k + 1 to N_vortices  

                    

                       if C_distance(vortex_position(6,k), vortex_position(6,j)) < a/10 then 

                           vortex_strength(k).x += vortex_strength(j).x 

                           vortex_strength(j).x = 0 

                       end if 

 

                next j 

            next k 

   

            '--------------------------------------------------------------------- 

            ' 

            '  C.4.1.2  Dissipate vortices with time. 

            ' 

            '--------------------------------------------------------------------- 

 

            for k = 1 to N_vortices 

              vortex_strength(k).x *= dissipation 

            next k 
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            '--------------------------------------------------------------------- 

            ' 

            '  C.4.1.2  Zero out distant vortices. 

            ' 

            '--------------------------------------------------------------------- 

 

            for k = 1 to N_vortices 

              if vortex_position(6,k).x > a * distant then 

                 vortex_strength(k).x = 0 

              end if 

            next k 

 

            '--------------------------------------------------------------------- 

            ' 

            '  C.4.1.3  Garbage collection of zero-strength vortices. 

            '           1) Identify the indices of each zero-strength vortex  

            '           2) Create placeholder matrices and fill them with nonzero vortices  

            '           3) Redefine vortex_position, velocity, and strength 

            ' 

            '---------------------------------------------------------------------          

                                

            j = 1 

               for k = N_vortices to 1 step -1 

                   if abs(vortex_strength(k).x) < 1e-5 then 

                      zero_vortices_index(j) = k 

                      j += 1 

                  end if 

               next k 

            number_of_zero_vortices = j - 1 

        

            if number_of_zero_vortices > 100 then  

               for k = 1 to number_of_zero_vortices  

                  for j = 1 to N_vortices - k 

                     for n = 1 to 6 

                         if j > zero_vortices_index(k) - 1 then 

                            vortex_position(n,j) = vortex_position(n,j+1) 

                            vortex_velocity(n,j) = vortex_velocity(n,j+1) 

                            vortex_strength(j)   = vortex_strength(j+1) 

                         end if 

                     next n 

                  next j 

               next k 

 

               for j = N_vortices - number_of_zero_vortices + 1 to N_vortices 

                  for n = 1 to 6 

                     vortex_position(n,j).x = 0: vortex_position(n,j).y = 0 

                     vortex_velocity(n,j).x = 0: vortex_velocity(n,j).y = 0 

                     vortex_strength(j).x   = 0: vortex_strength(j).y   = 0 

                  next n 

               next j 

 

               N_vortices -= number_of_zero_vortices  

               v = N_vortices + 1 

            end if 

         '--------------------------------------------------------------------- 

         ' 

         '  C.4.2  Solve for the position and velocity of the LT nascent vortex. 

         ' 

         '--------------------------------------------------------------------- 

 

          vortex_position(1,v) = LT(1)                              'Initial guess 

          vortex_position(4,v).x = LT(4).x -offset*a : vortex_position(4,v).y = LT(4).y 

 

            '--------------------------------------------------------------------- 

            ' 

            '  C.4.2.1  Solve for the complex velocity at the release point 

            '           of the LT nascent vortex in the Z1 plane. 

            ' 

            '--------------------------------------------------------------------- 

                C_sum.x =                0:                    C_sum.y = 0 

                  one.x =                1:                      one.y = 0 

                   a2.x =              a*a:                       a2.y = 0 

   C_uniform_velocity.x = uniform_velocity:       C_uniform_velocity.y = 0 

 

         for j = 1 to N_vortices                                                              
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             value1 = C_sub(LT(1), vortex_position(1,j))                                         

             value1 = C_div(one, value1) 

 

             value2 = C_div(a2, C_conj(vortex_position(1,j))) 

             value2 = C_sub(LT(1), value2) 

             value2 = C_div(one, value2) 

 

             value3 = C_sub(value1, value2) 

             value3 = C_mult(vortex_strength(j), value3) 

 

             C_sum  = C_add(C_sum, value3) 

 

         next j 

 

               value4.x = 2*PI:                value4.y = 0 

               value4 = C_div(i, value4) 

               value4 = C_neg(C_mult(value4, C_sum) )                ‘discrete vortex portion of dw/dz1 

 

               value5 = C_mult(vortex_position(1,v),vortex_position(1,v)) 

 

               value5 = C_div(a2, value5) 

               value5 = C_sub(one, value5) 

               value5 = C_mult(C_uniform_velocity, value5)        ‘inviscid flow portion of dw/dz1 

 

               dw_dz(1,v) = (C_add(value5, value4))           ‘assume velocity at release point is 

equal to the velocity at the surface (ignore no-slip condition) 

 

            '--------------------------------------------------------------------- 

            ' 

            '  C.4.2.2  Transform it to the Z6 plane to solve for U_s. (dw/dz6) 

            ' 

            '         1. Calculate velocity of the flow at the release point (U_s) 

            '         2. Calculate strength of nascent vortex (circulation) 

            '  

            '--------------------------------------------------------------------- 

 

              angle.x = angle_initial:               angle.y = 0  ‘dw/dz2 = dw/dz1 * dz1/dz2 

              dw_dz(2,v) = C_mult(dw_dz(1,v), C_exp( C_mult(C_neg(i), angle) ) ) 

 

              angle.x = deflection_angle:            angle.y = 0  ‘dw/dz3 = dw/dz2 * dz2/dz3 

              dw_dz(3,v) = C_mult(dw_dz(2,v), C_exp( C_mult(C_neg(i), angle) ) ) 

 

              dw_dz(4,v) = C_mult(i, dw_dz(3,v) )         ‘dw/dz4 = dw/dz3 * dz3/dz4 

 

              value1.x = a * a:                      value1.y = 0 ‘dw/dz5 = dw/dz4 * dz4/dz5 

              dw_dz(5,v) = C_mult(dw_dz(4,v), C_div(one, C_sub(one, C_div( value1, 

C_mult(vortex_position(4,v),vortex_position(4,v)))))) 

 

              angle.x =  deflection_angle:    angle.y =  0        ‘dw/dz6 = dw/dz5 * dz5/dz6 

              dw_dz(6,v) = C_mult(dw_dz(5,v), C_mult(C_neg(i), C_exp(C_mult(i, angle)))) 

 

              vortex_velocity(6,v) = C_conj(dw_dz(6,v))  ‘velocity = complex conjugate of (dw/dz6=u-iv) 

 

              U_s = sqr(vortex_velocity(6,v).x * vortex_velocity(6,v).x + vortex_velocity(6,v).y * 

vortex_velocity(6,v).y)             ‘U_s = magnitude of velocity 

 

              circulation = 0.5 * U_s * U_s * t_increment  ‘circulation = strength of a nascent vortex       

 

if V_onoff_choice = 1 then                          

              if (LT(6).x*vortex_velocity(6,v).y-LT(6).y*vortex_velocity(6,v).x) > 0 then          

'vortex strength will remain constant with time and displacement of vortex (in all planes)  

                  vortex_strength(v).x =  circulation:    vortex_strength(v).y = 0      ‘ccw          

              else 

                  vortex_strength(v).x = -circulation:    vortex_strength(v).y = 0      ‘cw 

              endif  

 

              if v < trigger then                                               ‘trigger asymmetry 

                 vortex_strength(v).x = 0:               vortex_strength(v).y = 0 

              endif 

 

             'replace the big vortices with realistically-sized ones 

              if abs(vortex_strength(v).x) > 5 then vortex_strength(v).x = vortex_strength(v-2).x         

               

else 

                 vortex_strength(v).x = 0:               vortex_strength(v).y = 0 

endif 
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            '--------------------------------------------------------------------- 

            ' 

            '  C.4.2.3  Calculate release distance of the nascent vortex. 

            ' 

            '--------------------------------------------------------------------- 

 

               one.x   = 1:                                one.y   = 0            

              angle.x = atan2(LT(1).y , LT(1).x):          angle.y = 0 

              value.x = abs(circulation) / (2 * PI * U_s): value.y = 0  'value = |circulation j| / 

(2*PI*U_s j) = velocity of a flow field due to vortex 

              value   = C_div(C_add(one, value), C_sub(one, value))’1 + mj = (1 + value) / (1 - value) 

             

              vortex_position(1,v) = C_mult(value, C_exp(C_mult(i, angle)))  

              LRP(1) = vortex_position(1,v) 

         '--------------------------------------------------------------------- 

         ' 

         '  C.4.3 Repeat for the right tip nascent vortex. 

         ' 

         '--------------------------------------------------------------------- 

          N_vortices += 1:            v += 1 

          vortex_position(1,v) = RT(1): vortex_position(4,v).x = RT(4).x + offset*a  

          vortex_position(4,v).y = RT(4).y                 'Initial guess 

            '--------------------------------------------------------------------- 

            ' 

            '  C.4.3.1  Solve for the complex velocity at the release point 

            '           of the LT nascent vortex in the Z1 plane. 

            ' 

            '--------------------------------------------------------------------- 

                C_sum.x =                0:                    C_sum.y = 0 

                  one.x =                1:                      one.y = 0 

                   a2.x =              a*a:                       a2.y = 0 

   C_uniform_velocity.x = uniform_velocity:       C_uniform_velocity.y = 0 

 

         for j = 1 to N_vortices                                                              

 

             value1 = C_sub(RT(1), vortex_position(1,j))                                         

             value1 = C_div(one, value1) 

 

             value2 = C_div(a2, C_conj(vortex_position(1,j))) 

             value2 = C_sub(RT(1), value2) 

             value2 = C_div(one, value2) 

 

             value3 = C_sub(value1, value2) 

             value3 = C_mult(vortex_strength(j), value3) 

 

             C_sum  = C_add(C_sum, value3) 

 

         next j 

 

               value4.x = 2*PI:                value4.y = 0 

               value4 = C_div(i, value4) 

               value4 = C_neg(C_mult(value4, C_sum) )             ‘discrete vortex portion of dw/dz1 

 

               value5 = C_mult(vortex_position(1,v),vortex_position(1,v)) 

               value5 = C_div(a2, value5) 

               value5 = C_sub(one, value5) 

               value5 = C_mult(C_uniform_velocity, value5)        ‘inviscid flow portion of dw/dz1 

                       

               dw_dz(1,v) = (C_add(value5, value4))     ‘assume velocity at release point is equal to 

the velocity at the surface (ignore no-slip condition) 

            '--------------------------------------------------------------------- 

            ' 

            '  C.4.3.2  Transform it to the Z6 plane to solve for U_s. (dw/dz6) 

            ' 

            '         1. Calculate velocity of the flow at the release point (U_s) 

            '         2. Calculate strength of nascent vortex (circulation) 

            '  

            '--------------------------------------------------------------------- 

 

              angle.x = angle_initial:               angle.y = 0  ‘dw/dz2 = dw/dz1 * dz1/dz2 

              dw_dz(2,v) = C_mult(dw_dz(1,v), C_exp( C_mult(C_neg(i), angle) ) ) 

 

              angle.x = deflection_angle:            angle.y = 0  ‘dw/dz3 = dw/dz2 * dz2/dz3 

              dw_dz(3,v) = C_mult(dw_dz(2,v), C_exp( C_mult(C_neg(i), angle) ) ) 
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              dw_dz(4,v) = C_mult(i, dw_dz(3,v) )         ‘dw/dz4 = dw/dz3 * dz3/dz4 

 

              value1.x = a * a:                      value1.y = 0 ‘dw/dz5 = dw/dz4 * dz4/dz5 

              dw_dz(5,v) = C_mult(dw_dz(4,v), C_div(one, C_sub(one, C_div( value1, 

C_mult(vortex_position(4,v),vortex_position(4,v)))))) 

 

              angle.x =  deflection_angle:           angle.y =  0 ‘dw/dz6 = dw/dz5 * dz5/dz6 

              dw_dz(6,v) = C_mult(dw_dz(5,v), C_mult(C_neg(i), C_exp(C_mult(i, angle)))) 

 

              vortex_velocity(6,v) = C_conj(dw_dz(6,v))  ‘velocity = complex conjugate of (dw/dz6=u-iv) 

 

              U_s = sqr(vortex_velocity(6,v).x * vortex_velocity(6,v).x + vortex_velocity(6,v).y * 

vortex_velocity(6,v).y)             ‘U_s = magnitude of velocity 

 

              circulation = 0.5 * U_s * U_s * t_increment   ‘circulation = strength of a nascent vortex       

 

if V_onoff_choice = 1 then    

              if (RT(6).x*vortex_velocity(6,v).y-RT(6).y*vortex_velocity(6,v).x) > 0 then          

'vortex strength will remain constant with time and displacement of vortex (in all planes)  

                 vortex_strength(v).x =  circulation:    vortex_strength(v).y = 0      ‘ccw          

              else 

                 vortex_strength(v).x = -circulation:    vortex_strength(v).y = 0      ‘cw 

              endif 

 

              'replace the big vortices with realistically-sized ones 

              if abs(vortex_strength(v).x) > 5 then vortex_strength(v).x = vortex_strength(v-2).x       

else 

             vortex_strength(v).x = 0:                    vortex_strength(v).y = 0  

endif 

 

            '--------------------------------------------------------------------- 

            ' 

            '  C.4.3.3  Calculate release distance of the nascent vortex. 

            ' 

            '--------------------------------------------------------------------- 

 

              one.x   = 1:                                           one.y   = 0            

              angle.x = atan2(RT(1).y, RT(1).x):                     angle.y = 0     

              value.x = abs(circulation) / (2 * PI * U_s):           value.y = 0  

              value   = C_div(C_add(one, value), C_sub(one, value)) ‘1 + mj = (1 + value) / (1 - value) 

              

              vortex_position(1,v) = C_mult(value, C_exp(C_mult(i, angle)))  

              RRP(1) = vortex_position(1,v) 

         '--------------------------------------------------------------------- 

         ' 

         '  C.4.4  Transform both points through all planes.   

         ' 

         '--------------------------------------------------------------------- 

            for j = v-1 to v 

               angle.x = angle_initial:               angle.y = 0                         ‘z1 to z2 

               vortex_position(2,j) = C_mult(vortex_position(1,j), C_exp( C_mult( i, angle) ) ) 

                

               angle.x = deflection_angle:            angle.y = 0                         ‘z2 to z3 

               vortex_position(3,j) = C_mult(vortex_position(2,j), C_exp( C_mult( i, angle) ) ) 

 

               vortex_position(4,j) = C_mult( C_neg(i),vortex_position(3,j) ) 

 

               value.x = a * a:                       value.y = 0                         ‘z4 to z5 

               vortex_position(5,j) = C_add( vortex_position(4,j), C_div( value, vortex_position(4,j))) 

 

               angle.x =  PI/2 - deflection_angle:    angle.y =  0                         ‘z5 to z6 

               vortex_position(6,j) = C_mult(vortex_position(5,j), C_exp(C_mult(i, angle)) ) 

            next j  

 

          N_vortices += 1           

 

          total_circulation = 0     ‘Calcualte the total circulation in the flow field - should be 0 

            for j = 1 to N_vortices 

                total_circulation += vortex_strength(j).x 

            next j 

 

      '----------------------------------------------------------------------- 

      ' 

      '   C.5  Next, figure out the positions of the position of points on  

      '        the original circle in the Z(1) plane.  This includes: 

      ' 
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      '        T = Top of the cylinder. 

      '        B = Bottom of the cylinder. 

      '        F = Forward stagnation point. 

      '        R = Rearward stagnation point. 

      '        LRP = Left release point. 

      '        RRP = Right release point. 

      ' 

      '----------------------------------------------------------------------- 

 

         '--------------------------------------------------------------------- 

         ' 

         '  C.5.1  Z1-Plane. 

         ' 

         '--------------------------------------------------------------------- 

 

            F(1).x = -a:   F(1).y =  0 

            R(1).x =  a:   R(1).y =  0 

            T(1).x =  0:   T(1).y =  a 

            B(1).x =  0:   B(1).y = -a 

 

         '--------------------------------------------------------------------- 

         ' 

         '  C.5.2  Z2-Plane. 

         ' 

         '--------------------------------------------------------------------- 

 

            angle.x = angle_initial:               angle.y = 0 

 

            F(2) = C_mult( F(1), C_exp( C_mult( i, angle) ) ) 

            R(2) = C_mult( R(1), C_exp( C_mult( i, angle) ) ) 

            T(2) = C_mult( T(1), C_exp( C_mult( i, angle) ) ) 

            B(2) = C_mult( B(1), C_exp( C_mult( i, angle) ) ) 

            LRP(2) = C_mult(LRP(1), C_exp( C_mult( i, angle) ) ) 

            RRP(2) = C_mult(RRP(1), C_exp( C_mult( i, angle) ) )    

         '--------------------------------------------------------------------- 

         ' 

         '  C.5.3  Z3-Plane. 

         ' 

         '--------------------------------------------------------------------- 

 

            angle.x = deflection_angle:            angle.y = 0 

 

            F(3) = C_mult( F(2), C_exp( C_mult( i, angle) ) ) 

            R(3) = C_mult( R(2), C_exp( C_mult( i, angle) ) ) 

            T(3) = C_mult( T(2), C_exp( C_mult( i, angle) ) ) 

            B(3) = C_mult( B(2), C_exp( C_mult( i, angle) ) ) 

            LRP(3) = C_mult(LRP(2), C_exp( C_mult( i, angle) ) ) 

            RRP(3) = C_mult(RRP(2), C_exp( C_mult( i, angle) ) ) 

 

         '--------------------------------------------------------------------- 

         ' 

         '  C.5.4  Z4-Plane. 

         ' 

         '--------------------------------------------------------------------- 

 

            F(4) = C_mult( C_neg(i), F(3) ) 

            R(4) = C_mult( C_neg(i), R(3) ) 

            T(4) = C_mult( C_neg(i), T(3) ) 

            B(4) = C_mult( C_neg(i), B(3) ) 

            LRP(4) = C_mult( C_neg(i), LRP(3) ) 

            RRP(4) = C_mult( C_neg(i), RRP(3) ) 

 

         '--------------------------------------------------------------------- 

         ' 

         '  C.5.5  Z5-Plane. 

         ' 

         '--------------------------------------------------------------------- 

 

            value.x = a * a:                       value.y = 0 

 

            F(5) = C_add( F(4), C_div( value, F(4)) )  

            R(5) = C_add( R(4), C_div( value, R(4)) ) 

            T(5) = C_add( T(4), C_div( value, T(4)) )  

            B(5) = C_add( B(4), C_div( value, B(4)) ) 

            LRP(5) = C_add(LRP(4), C_div( value,LRP(4)) )  

            RRP(5) = C_add(RRP(4), C_div( value,RRP(4)) ) 
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         '--------------------------------------------------------------------- 

         ' 

         '  C.5.6  Z6-Plane. 

         ' 

         '--------------------------------------------------------------------- 

 

            angle.x =  PI/2 - deflection_angle:    angle.y =  0 

 

            F(6)   = C_mult(   F(5), C_exp(C_mult(i, angle)) ) 

            R(6)   = C_mult(   R(5), C_exp(C_mult(i, angle)) ) 

            T(6)   = C_mult(   T(5), C_exp(C_mult(i, angle)) ) 

            B(6)   = C_mult(   B(5), C_exp(C_mult(i, angle)) ) 

            LRP(6)   = C_mult(LRP(5), C_exp(C_mult(i, angle)) ) 

            RRP(6)   = C_mult(RRP(5), C_exp(C_mult(i, angle)) ) 

 

      '------------------------------------------------------------------------ 

      ' 

      '  C.6  Identify labels for the plots in each plane.  

      ' 

      '------------------------------------------------------------------------ 

 

         plot_label(1, 1) = "Z1-Plane" 

         plot_label(2, 1) = "Z2-Plane" 

         plot_label(3, 1) = "Z3-Plane" 

         plot_label(4, 1) = "Z4-Plane" 

         plot_label(5, 1) = "Z5-Plane" 

         plot_label(6, 1) = "Z6-Plane" 

 

         plot_label(1, 2) = "Deflection Angle:    " & (deflection_angle * 180 / PI) & " (deg)" 

         plot_label(1, 3) = "Moment of Inertia:   " & (stopsign_MOI) & " (kg * m^2)" 

         plot_label(1, 4) = "Damping Coefficient: " & (torsional_damping) & " (Nms)" 

         plot_label(1, 5) = "Torsional Rigidity:  " & (torsional_stiffness) & " (Nm)" 

         plot_label(1, 6) = "Streamline Velocity: " & (uniform_velocity) & " (m/s)" 

         plot_label(1, 7) = "Plate Width:         " & (stopsign_width) & " (m)" 

         plot_label(1, 8) = "Time (s):            " & (tiempo) 

 

      '------------------------------------------------------------------------ 

      ' 

      '  C.7  Identify points on the front and back of the stopsign.  Define 

      '       these points in the z(1) plane and transform them to the other  

      '       planes.   

      ' 

      '------------------------------------------------------------------------ 

 

         '--------------------------------------------------------------------- 

         ' 

         '  C.7.1  Z1-Plane. 

         ' 

         '--------------------------------------------------------------------- 

         angle_RT = C_arg(RT(1)) 

         angle_LT = C_arg(LT(1)) 

 

               angle_increment = ( angle_LT - angle_RT ) / N_points 

               surface_angle   = angle_LT 

            for j = 1 to N_points  

               value.x = a:                        value.y = 0 

               angle.x = surface_angle:            angle.y = 0 

               FRONT(1, j) = C_mult(value, C_exp( C_mult( i, angle) ) ) 

               surface_angle -= angle_increment           

            next j 

               surface_angle   = angle_LT 

            for j = 1 to N_points  

               value.x = a:                        value.y = 0 

               angle.x = surface_angle:            angle.y = 0 

               BACK(1, j) = C_mult(value, C_exp( C_mult( i, angle) ) ) 

               surface_angle += angle_increment           

            next j 

 

 

         '--------------------------------------------------------------------- 

         ' 

         '  C.7.2  Z2-Plane. 

         ' 

         '--------------------------------------------------------------------- 
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            angle.x = angle_initial:               angle.y = 0 

 

            for j = 1 to N_points 

               FRONT(2,j) = C_mult( FRONT(1,j), C_exp( C_mult( i, angle) ) ) 

                BACK(2,j) = C_mult(  BACK(1,j), C_exp( C_mult( i, angle) ) ) 

            next j 

 

 

         '--------------------------------------------------------------------- 

         ' 

         '  C.7.3  Z3-Plane. 

         ' 

         '--------------------------------------------------------------------- 

 

            angle.x = deflection_angle:            angle.y = 0 

 

            for j = 1 to N_points 

               FRONT(3,j) = C_mult( FRONT(2,j), C_exp( C_mult( i, angle) ) ) 

                BACK(3,j) = C_mult(  BACK(2,j), C_exp( C_mult( i, angle) ) ) 

            next j 

 

 

         '--------------------------------------------------------------------- 

         ' 

         '  C.7.4  Z4-Plane. 

         ' 

         '--------------------------------------------------------------------- 

 

            for j = 1 to N_points 

               FRONT(4,j) = C_mult( C_neg(i), FRONT(3,j) ) 

                BACK(4,j) = C_mult( C_neg(i),  BACK(3,j) ) 

            next j 

 

 

         '--------------------------------------------------------------------- 

         ' 

         '  C.7.5  Z5-Plane. 

         ' 

         '--------------------------------------------------------------------- 

 

            value.x = a * a:                       value.y = 0 

 

            for j = 1 to N_points 

               FRONT(5,j) = C_add( FRONT(4,j), C_div( value, FRONT(4,j)) ) 

                BACK(5,j) = C_add(  BACK(4,j), C_div( value,  BACK(4,j)) ) 

            next j 

 

 

         '--------------------------------------------------------------------- 

         ' 

         '  C.7.6  Z6-Plane. 

         ' 

         '--------------------------------------------------------------------- 

 

            angle.x =  PI/2 - deflection_angle:    angle.y =  0 

 

            for j = 1 to N_points 

               FRONT(6,j) = C_mult( FRONT(5,j), C_exp( C_mult( i, angle) ) ) 

                BACK(6,j) = C_mult(  BACK(5,j), C_exp( C_mult( i, angle) ) ) 

            next j 

 

 

         '------------------------------------------------------------------ 

         ' 

         '  C.7.7  In the Z6-plane, what are the distances between each 

         '         point in FRONT and BACK and what is the velocity and 

         '         pressure in each of these point regions. 

         ' 

         '            FRONT_delta_s(j) = distance between point "j" and 

         '                               "j+1" on the front of the flat 

         '                               plate (stopsign). 

         '             BACK_delta_s(j) = distance between point "j" and 

         '                               "j+1" on the back of the flat 

         '                               plate (stopsign). 

         ' 

         '------------------------------------------------------------------ 
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                  FRONT_delta_s(1) = 0 

                   BACK_delta_s(1) = 0 

 

               for j = 2 to (N_points - 1) 

                  FRONT_delta_s(j) = C_distance( FRONT(6, j), FRONT(6, j+1) ) 

                   BACK_delta_s(j) = C_distance(  BACK(6, j),  BACK(6, j+1) ) 

               next j 

 

                  FRONT_delta_s(N_points) = C_distance( FRONT(6, N_points), LT(6) ) 

                   BACK_delta_s(N_points) = C_distance(  BACK(6, N_points), LT(6) ) 

 

 

         '-------------------------------------------------------------------- 

         ' 

         '  C.7.8  Print out the points on the front and the back, the  

         '         distances between points, the velocity at each point,  

         '         and the pressure coefficient. 

         ' 

         '         FRONT_V(j)  = velocity vector at each point on the front. 

         '          BACK_V(j)  = velocity vector at each point on the back. 

         '         FRONT_Cp(j) = pressure coefficient at each front point. 

         '          BACK_Cp(j) = pressure coefficient at each back point. 

         '         FORCE       = net force on the stopsign (fx + i fy). 

         '         MOMENT      = net momment about the stopsign center. 

         ' 

         '-------------------------------------------------------------------- 

 

          open "check" for output as #3 

              

               print #3, "                                                       " 

               print #3, "Right Tip Position:  x6, y6 = ", LT(6).x, LT(6).y 

               print #3, "Left  Tip Position:  x6, y6 = ", RT(6).x, LT(6).y 

               print #3, "                                                       " 

               print #3, "FRONT                                                  " 

               for j = 1 to N_points 

                  print #3, "   j, x, y, ds:  ", j, FRONT(6, j).x, FRONT(6, j).y, FRONT_delta_s(j) 

               next j 

 

 

               print #3, "                                                       " 

               print #3, "Right Tip Position:  x6, y6 = ", LT(6).x, LT(6).y 

               print #3, "Left  Tip Position:  x6, y6 = ", RT(6).x, LT(6).y 

               print #3, "                                                       " 

               print #3, "BACK                                                   " 

               for j = 1 to N_points 

                  print #3, "   j, x, y, ds:  ", j, BACK(6, j).x, BACK(6, j).y, BACK_delta_s(j) 

               next j 

 

            '-------------------------------------------------------------------- 

            ' 

            '  C.7.8.1  Compute the velocity at each point and the pressure coefficient.     

            ' 

            '-------------------------------------------------------------------- 

 

               '-------------------------------------------------------------------- 

               ' 

               '  C.7.8.1.1  Front surface.     

               ' 

               '-------------------------------------------------------------------- 

 

            for k = 1 to N_points 

 

                C_sum.x =                0:                    C_sum.y = 0 

                  one.x =                1:                      one.y = 0 

                   a2.x =              a*a:                       a2.y = 0 

   C_uniform_velocity.x = uniform_velocity:       C_uniform_velocity.y = 0 

 

         for j = 1 to N_vortices                                                              

 

             value1 = C_sub(FRONT(1,k), vortex_position(1,j))                                         

             value1 = C_div(one, value1) 

 

             value2 = C_div(a2, C_conj(vortex_position(1,j))) 

             value2 = C_sub(FRONT(1,k), value2) 

             value2 = C_div(one, value2) 
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             value3 = C_sub(value1, value2) 

             value3 = C_mult(vortex_strength(j), value3) 

             C_sum  = C_add(C_sum, value3) 

 

         next j 

 

               value4.x = 2*PI:                value4.y = 0 

               value4 = C_div(i, value4) 

               value4 = C_neg(C_mult(value4, C_sum) )              'discrete vortex portion of dw/dz1 

 

               value5 = C_mult(FRONT(1,k),FRONT(1,k)) 

 

               value5 = C_div(a2, value5) 

               value5 = C_sub(one, value5) 

               value5 = C_mult(C_uniform_velocity, value5)         ‘inviscid flow portion of dw/dz1 

 

               dw_dz(1,k) = (C_add(value5, value4))           ‘assume velocity at release point is 

equal to the velocity at the surface (ignore no-slip condition) 

                                                                                               

 

              angle.x = angle_initial:               angle.y = 0  ‘dw/dz2 = dw/dz1 * dz1/dz2 

              dw_dz(2,k) = C_mult(dw_dz(1,k), C_exp( C_mult(C_neg(i), angle) ) ) 

 

              angle.x = deflection_angle:            angle.y = 0  ‘dw/dz3 = dw/dz2 * dz2/dz3 

              dw_dz(3,k) = C_mult(dw_dz(2,k), C_exp( C_mult(C_neg(i), angle) ) ) 

 

              dw_dz(4,k) = C_mult(i, dw_dz(3,k) )                 ‘dw/dz4 = dw/dz3 * dz3/dz4 

 

              value1.x = a * a:                      value1.y = 0 ‘dw/dz5 = dw/dz4 * dz4/dz5 

              dw_dz(5,k) = C_mult(dw_dz(4,k), C_div(one, C_sub(one, C_div( value1, 

C_mult(FRONT(4,k),FRONT(4,k)))))) 'dw_dz(4,k),dw_dz(4,k)))))) 

 

              angle.x =  deflection_angle:    angle.y =  0        ‘dw/dz6 = dw/dz5 * dz5/dz6 

              dw_dz(6,k) = C_mult(dw_dz(5,k), C_mult(C_neg(i), C_exp(C_mult(i, angle)))) 

 

              FRONT_V(k) = C_conj(dw_dz(6,k))    

 

                  V2 = (FRONT_V(k).x)^2 + (FRONT_V(k).y)^2 

 

                  '  Take care of infinite velocities predicted near singularities. 

 

                  if (V2 > 100 * uniform_velocity^2) then  

                      FRONT_V(k).x = 0.0 

                      FRONT_V(k).y = 0.0 

                      V2           = 0.0 

                  end if  

 

                  FRONT_Cp(k)  = 1.0 -  V2 / uniform_velocity^2  

        

               '-------------------------------------------------------------------- 

               ' 

               '  C.7.8.1.1  Back surface.     

               ' 

               '-------------------------------------------------------------------- 

 

                C_sum.x =                0:                    C_sum.y = 0 

                  one.x =                1:                      one.y = 0 

                   a2.x =              a*a:                       a2.y = 0 

   C_uniform_velocity.x = uniform_velocity:       C_uniform_velocity.y = 0 

 

         for j = 1 to N_vortices                                                              

 

             value1 = C_sub(BACK(1,k), vortex_position(1,j))                                         

             value1 = C_div(one, value1) 

 

             value2 = C_div(a2, C_conj(vortex_position(1,j))) 

             value2 = C_sub(BACK(1,k), value2) 

             value2 = C_div(one, value2) 

 

             value3 = C_sub(value1, value2) 

             value3 = C_mult(vortex_strength(j), value3) 

 

             C_sum  = C_add(C_sum, value3) 

 

         next j 
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               value4.x = 2*PI:                value4.y = 0 

               value4 = C_div(i, value4) 

               value4 = C_neg(C_mult(value4, C_sum) )               ‘discrete vortex portion of dw/dz1 

                value5 = C_mult(BACK(1,k),BACK(1,k)) 

 

               value5 = C_div(a2, value5) 

               value5 = C_sub(one, value5) 

               value5 = C_mult(C_uniform_velocity, value5)          'inviscid flow portion of dw/dz1 

               dw_dz(1,k) = (C_add(value5, value4))                 'assume velocity at release point 

is equal to the velocity at the surface (ignore no-slip condition) 

               

              angle.x = angle_initial:               angle.y = 0  ‘dw/dz2 = dw/dz1 * dz1/dz2 

              dw_dz(2,k) = C_mult(dw_dz(1,k), C_exp( C_mult(C_neg(i), angle) ) ) 

 

              angle.x = deflection_angle:            angle.y = 0  ‘dw/dz3 = dw/dz2 * dz2/dz3 

              dw_dz(3,k) = C_mult(dw_dz(2,k), C_exp( C_mult(C_neg(i), angle) ) ) 

 

              dw_dz(4,k) = C_mult(i, dw_dz(3,k) )                 ‘dw/dz4 = dw/dz3 * dz3/dz4 

 

              value1.x = a * a:                      value1.y = 0 ‘dw/dz5 = dw/dz4 * dz4/dz5 

              dw_dz(5,k) = C_mult(dw_dz(4,k), C_div(one, C_sub(one, C_div( value1, 

C_mult(BACK(4,k),BACK(4,k)))))) 

 

              angle.x =  deflection_angle:    angle.y =  0        ‘dw/dz6 = dw/dz5 * dz5/dz6 

              dw_dz(6,k) = C_mult(dw_dz(5,k), C_mult(C_neg(i), C_exp(C_mult(i, angle)))) 

 

              BACK_V(k) = C_conj(dw_dz(6,k))   

 

                  V2 = (BACK_V(k).x)^2 + (BACK_V(k).y)^2 

 

                  '  Take care of infinite velocities predicted near singularities. 

 

                 if (V2 > 100 * uniform_velocity^2) then  

                      BACK_V(k).x = 0.0 

                      BACK_V(k).y = 0.0 

                      V2          = 0.0 

                  end if  

 

                 BACK_Cp(k)   = (1.0 -  V2 / uniform_velocity^2)   

 

                 TOTAL_Cp(k)  = FRONT_Cp(k) - BACK_Cp(k)    

               next k 

 

         '--------------------------------------------------------------------- 

         ' 

         '  C.7.9  Forces and Moments on the FRONT Surface. 

         ' 

         '         Next, compute the total force in the x-direction and in the 

         '         y-direction.  In the same loop, compute the moment about the  

         '         center of the plate. 

         ' 

         '--------------------------------------------------------------------- 

 

                 FORCE.x = 0.0:                FORCE.y = 0.0 

                 MOMENT  = 0.0 

 

                 x            = FRONT(6, 1).x 

                 y            = FRONT(6, 1).y 

                 radius       = sqr(x * x + y * y) 

                 max_abscissa = radius 

 

               for j = 1 to N_points 

                      

                 x        = FRONT(6, j).x 

                 y        = FRONT(6, j).y 

                 radius   = sqr( x * x + y * y ) 

 

                 '  I assume that c(p) = 1 - V^2/U(inf)^2 = (p - p(inf)) / (0.5 * density * U(inf)^2) 

                 '                c(p) = (p - 0) / (1) = p. 

 

                 dF  =   FRONT_Cp(j) * FRONT_delta_s(j) 

                 dFx =   dF * cos(deflection_angle) 

                 dFy = - dF * sin(deflection_angle) 

 

                 FRONT_dFx_dr(j) = dFx / FRONT_delta_s(j) 
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                 FRONT_dFy_dr(j) = dFy / FRONT_delta_s(j) 

                 FRONT_dF_dr(j)  = dF  / FRONT_delta_s(j)  

 

                 FORCE.x += dFx 

                 FORCE.y += dFy 

 

                 dM       = (x / radius) * dFy - (y / radius) * dFx 

 

                 MOMENT  += dM 

 

 

               next j 

 

 

               '--------------------------------------------------------------- 

               ' 

               '  C.7.9.1  Repeat for the BACK surface. 

               ' 

               '--------------------------------------------------------------- 

 

               for j = 1 to N_points 

                      

                 x        = BACK(6, j).x 

                 y        = BACK(6, j).y 

                 radius   = sqr( x * x + y * y ) 

 

                 '  I assume that c(p) = 1 - V^2/U(inf)^2 = (p - p(inf)) / (0.5 * density * U(inf)^2) 

                 '                c(p) = (p - 0) / (1) = p. 

 

                 dF       =   BACK_Cp(j) * BACK_delta_s(j) 

                 dFx      = - dF * cos(deflection_angle) 

                 dFy      =   dF * sin(deflection_angle) 

 

                 BACK_dFx_dr(j) = dFx / BACK_delta_s(j) 

                 BACK_dFy_dr(j) = dFy / BACK_delta_s(j) 

                 BACK_dF_dr(j)  = dF  / BACK_delta_s(j) 

 

                 FORCE.x += dFx 

                 FORCE.y += dFy 

 

                 dM       = (x / radius) * dFy - (y / radius) * dFx 

                 MOMENT  += dM 

 

               next j 

 

         close #3 

         open "plate-drag" for append as #6 

         print #6, "", stopsign_width, uniform_velocity, stopsign_MOI, torsional_damping, 

torsional_stiffness, tiempo, FORCE.x, FORCE.y, MOMENT 

         close #6 

         '--------------------------------------------------------------------- 

         ' 

         '  C.7.10  Pressure probe in wake. 

         ' 

         '--------------------------------------------------------------------- 

 

         probe_position(6).x = 12 * a:     probe_position(1).y = 0 

        

            '--------------------------------------------------------------------- 

            ' 

            '  C.7.10.1  Position the probe in all 6 planes. 

            ' 

            '--------------------------------------------------------------------- 

 

          angle.x = (PI/2 - deflection_angle):      angle.y = 0 

          probe_position(5) = C_mult(probe_position(6), C_exp(C_mult(C_neg(i),angle))) 

 

          w.x      = probe_position(5).x: w.y   = probe_position(5).y   

          value.x  = 4 * a * a:            value.y = 0 

          argument = C_sqr( C_sub( C_mult(w, w), value) ) 

          value.x  = 2:                    value.y = 0 

 

          'Prevent vortices from transforming to inside the cylinder 

          if probe_position(5).x > 0 then  

             probe_position(4) = C_div( C_add( w, argument), value)                 ‘Plus argument         

          else 
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             probe_position(4) = C_div( C_sub( w, argument), value)                 ‘Minus argument  

          end if 

 

          probe_position(3) = C_mult(i, probe_position(4)) 

           

          angle.x = deflection_angle:                angle.y = 0 

          probe_position(2) = C_mult(probe_position(3), C_exp( C_mult( C_neg(i), angle) ) ) 

 

          angle.x = angle_initial:                   angle.y = 0 

          probe_position(1) = C_mult(probe_position(2), C_exp( C_mult( C_neg(i), angle) ) )        

 

            '--------------------------------------------------------------------- 

            ' 

            '  C.7.10.2  Calculate the velocity at that position in the z-6 plane. 

            ' 

            '--------------------------------------------------------------------- 

 

                   C_sum.x =                0:                    C_sum.y = 0 

                     one.x =                1:                      one.y = 0 

                      a2.x =              a*a:                       a2.y = 0 

      C_uniform_velocity.x = uniform_velocity:       C_uniform_velocity.y = 0 

             

            for j = 1 to N_vortices                                                              

              if j <> k then 

                value1 = C_sub(probe_position(1), vortex_position(1,j)) 

                value1 = C_div(one, value1) 

 

                value2 = C_div(a2, C_conj(vortex_position(1,j))) 

                value2 = C_sub(probe_position(1), value2) 

                value2 = C_div(one, value2) 

 

                value3 = C_sub(value1, value2) 

                value3 = C_mult(vortex_strength(j), value3) 

 

                C_sum  = C_add(C_sum, value3) 

              end if 

            next j 

 

                value4.x = 2*PI:                value4.y = 0 

                value4 = C_div(i, value4) 

                value4 = C_neg(C_mult(value4, C_sum))             ‘discrete vortex portion of dw/dz1 

          

                value5 = C_mult(probe_position(1), probe_position(1)) 

                value5 = C_div(a2, value5) 

                value5 = C_sub(one, value5) 

                value5 = C_mult(C_uniform_velocity, value5)       ‘inviscid flow portion of dw/dz1                        

 

                probe_velocity(1) = (C_add(value5, value4))‘Not technically the velocity here; dw/dz1 

 

 

              angle.x = angle_initial:               angle.y = 0        ‘dw/dz2 = dw/dz1 * dz1/dz2 

              probe_velocity(2) = C_mult(probe_velocity(1), C_exp( C_mult(C_neg(i), angle) ) ) 

 

              angle.x = deflection_angle:            angle.y = 0  ‘dw/dz3 = dw/dz2 * dz2/dz3 

              probe_velocity(3) = C_mult(probe_velocity(2), C_exp( C_mult(C_neg(i), angle) ) ) 

 

              probe_velocity(4) = C_mult(i, probe_velocity(3) )         ‘dw/dz4 = dw/dz3 * dz3/dz4 

 

              value1.x = a * a:                      value1.y = 0 ‘dw/dz5 = dw/dz4 * dz4/dz5 

              probe_velocity(5) = C_mult(probe_velocity(4), C_div(one, C_sub(one, C_div( value1, 

C_mult(probe_position(4),probe_position(4)))))) 

 

              angle.x =  deflection_angle:    angle.y =  0        ‘dw/dz6 = dw/dz5 * dz5/dz6 

              probe_velocity(6) = C_mult(probe_velocity(5), C_mult(C_neg(i), C_exp(C_mult(i, angle)))) 

 

              probe_velocity(6) = C_conj(probe_velocity(6))  

          

           j = tiempo / t_increment 

           probe_Cp(j)  = 1.0 - (probe_velocity(6).x^2 + probe_velocity(6).y^2) / uniform_velocity^2 

 

         open "pressure-probe" for append as #4 

         print #4, "", stopsign_width, uniform_velocity, stopsign_MOI, torsional_damping, 

torsional_stiffness, tiempo, probe_Cp(j) 

         close #4 

 

      '------------------------------------------------------------------------ 
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      ' 

      '  C.8  Define the streamlines to plot in each of the Z planes. 

      ' 

      '          streamline(plane, streamline index, number of points to plot) 

      ' 

      '       1.  W(z) plane to the z1-plane.  Uniform flow about a circular 

      '           cylinder.  Flow is in x1-direction. 

      ' 

      '              z1 = [w +/- sqr(w^2 - 4a^2)] / 2 

      ' 

      '              w(z1) = z1 + a^2 / z1)                            

      ' 

      ' 

      '       2.  Z1-plane to the z2-plane.  Set the angle of attack to  

      '           the initial value. 

      ' 

      '              z2 = z1 * e^[i * alpha(initial)] 

      ' 

      '              z1 = z2 * e^[-i * alpha(initial)] 

      ' 

      ' 

      '       3.  Z2-plane to the z3-plane.  Rotate the system through the  

      '           deflection angle. 

      ' 

      '              z3 = z2 * e^[ i * deflection_angle] 

      '       

      '              z2 = z3 * e^[-i * deflection_angle] 

      ' 

      ' 

      '       4.  Z3-plane to the z4-plane.  Rotate the z3 plane by PI/2 to 

      '           prepare the cylinder to be squished. 4 

      ' 

      '              z4 = z3 * (-i) 

      ' 

      '              z3 = z4 * i 

      ' 

      ' 

      '       5.  Z4-plane to the z5-plane.  Squish the cylinder. 

      ' 

      '              z5 = z4 + a^2 / z4 

      ' 

      '              z4 = [ z5 +/- sqr(z5^2 - 4a^2) ] / 2 

      '  

      ' 

      '       6.  Z5-plane to the z6-plane.  Rotate the flow back by the  

      '           angle PI/2 minus the deflection_angle angle.. 

      ' 

      '              z6 = z5 * e^[-PI/2 + deflection]*i 

      ' 

      '              z5 = z6 * e^[ PI/2 - deflection]*i 

      ' 

      '------------------------------------------------------------------------ 

      if (S_choice) = 1 then 

         '------------------------------------------------- 

         ' 

         '  C.8.1  W to Z1-Plane 

         ' 

         '------------------------------------------------- 

  

            for k = 1 to (2 * N_streamlines) 

          

                  j = 1 

 

             for phi = phi_min to phi_max step (phi_max - phi_min) / N_points 

 

  

                 w.x      = phi:                  w.y     = psi(k)   

                 value.x  = 4 * a * a:            value.y = 0 '                  

                 argument = C_sqr( C_sub( C_mult(w, w), value) ) 

                 value.x  = 2:                    value.y = 0 

 

                  streamline(1, k, j) = C_div( C_add( w, argument), value)     ‘Inviscid component ONLY 

 

 

                 j += 1 
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             next phi 

 

                  j = N_points 

 

             for phi = phi_min to phi_max step (phi_max - phi_min) / N_points 

 

                  w.x      = phi:                  w.y     = psi(k) 

                  value.x  = 4 * a * a:            value.y = 0 

                  argument = C_neg( C_sqr( C_sub( C_mult(w, w), value) ) ) 

                  value.x  = 2:                    value.y = 0 

                  streamline(1, k, j) = C_div( C_add( w, argument), value) 

 

                  j += 1 

 

             next phi 

 

            next k 

    

         '------------------------------------------------- 

         ' 

         '  C.8.2  Z1 to Z2-Plane 

         ' 

         '------------------------------------------------- 

 

            angle.x = angle_initial:               angle.y = 0 

 

            for k = 1 to 2 * N_streamlines 

               for j = 1 to 2 * N_points 

 

                  streamline(2, k, j) = C_mult( streamline(1, k, j), C_exp( C_mult(i, angle ) ) ) 

     

                  '  Eliminate the streamlines within the cylinder. 

         

                  if (C_abs(streamline(2, k, j)) < a) then 

                     streamline(2, k, j).x = 0 

                     streamline(2, k, j).y = 0 

                  end if 

 

               next j 

            next k 

 

 

         '------------------------------------------------- 

         ' 

         '  C.8.3  Z2 to Z3-Plane 

         ' 

         '------------------------------------------------- 

 

            angle.x = deflection_angle:            angle.y = 0 

 

            for k = 1 to 2 * N_streamlines 

               for j = 1 to 2 * N_points 

 

                  streamline(3, k, j) = C_mult( streamline(2, k, j), C_exp( C_mult(i, angle ) ) ) 

    

                  '  Eliminate the streamlines within the cylinder. 

         

                  if (C_abs(streamline(3, k, j)) < a) then 

                     streamline(3, k, j).x = 0 

                     streamline(3, k, j).y = 0 

                  end if 

 

               next j 

            next k 

 

 

         '------------------------------------------------- 

         ' 

         '  C.8.4  Z3 to Z4-Plane 

         ' 

         '------------------------------------------------- 

 

            for k = 1 to 2 * N_streamlines 

               for j = 1 to 2 * N_points 

                  streamline(4, k, j) = C_mult( C_neg(i), streamline(3, k, j) ) 

               next j 
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            next k 

 

 

         '------------------------------------------------- 

         ' 

         '  C.8.5  Z4 to Z5-Plane 

         ' 

         '------------------------------------------------- 

 

            value.x = a * a:                       value.y = 0 

 

            for k = 1 to 2 * N_streamlines 

               for j = 1 to 2 * N_points 

                  streamline(5, k, j) = C_add( streamline(4, k, j), C_div( value, streamline(4, k, j))) 

               next j 

            next k 

 

 

         '------------------------------------------------- 

         ' 

         '  C.8.6  Z5 to Z6-Plane 

         ' 

         '------------------------------------------------- 

 

            angle.x =  PI/2 - deflection_angle:    angle.y =  0 

 

            for k = 1 to 2 * N_streamlines 

               for j = 1 to 2 * N_points 

                  streamline(6, k, j) = C_mult( streamline(5, k, j), C_exp(C_mult(i, angle)) ) 

               next j 

            next k 

 

 

 

    end if 

 

   '----------------------------------------------------------------- 

   ' 

   '  C.10  Plot out a screen. 

   ' 

   '----------------------------------------------------------------- 

 

      '------------------------------------------------------------------------ 

      ' 

      '  C.10.1  Set up the graphics screens to flip them. 

      ' 

      '------------------------------------------------------------------------ 

 

          ScreenSet 2,1 

          cls 

          view   (0,0) - (700,700), color_background,0  'Upper left (0,0), Lower right (700,700) pixels 

 

         '------------------------------------------------------------------------ 

         ' 

         '  C.10.1.1  Plot Cp. 

         ' 

         '------------------------------------------------------------------------ 

 

      if (plane_choice = 0) then 

 

         if (plot_choice = 1)  then 

            'Plot out a data graph. 

               window (-1.1, -1.1) - (1.1, 1.1) 

    

            'Plot the axes. 

 

               line (-1,    0) - (1,   0), 0 

               line ( 0, -1.2) - (0, 1.2), 0 

 

            'Label the axes. 

 

               draw string (-0.95,  0.90), "* Pressure Coefficient, Cp *", 0 

               draw string (-0.95,  0.85), "Deflection Angle (deg) = " & deflection_angle * 180 / PI, 0 

 

               max_abscissa = 2.0 * a 

               min_ordinate = FRONT_Cp(1) 
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               max_ordinate = FRONT_Cp(1) 

 

            for j = 1 to N_points 

  

               if (min_ordinate > FRONT_Cp(j)) then min_ordinate = FRONT_Cp(j) 

               if (max_ordinate < FRONT_Cp(j)) then max_ordinate = FRONT_Cp(j) 

 

               if (min_ordinate >  BACK_Cp(j)) then min_ordinate =  BACK_Cp(j) 

               if (max_ordinate <  BACK_Cp(j)) then max_ordinate =  BACK_Cp(j) 

 

               if (max_ordinate < abs(min_ordinate) ) then max_ordinate = abs(min_ordinate) 

 

            next j 

 

               max_ordinate = 15 

               min_ordinate = 15 

 

               draw string (0.95,  0.10), "r (m)", 0:       draw string (0.05,  1.05), "Cp", 0 

               draw string (-1.0, -0.07), "-" & a,0:        draw string (1.0, -0.07), "" & a,0 

               draw string (-0.1, 1.05), "" & max_ordinate,0 

               draw string (-0.1, -1.05), "-" & min_ordinate,0 

 

               draw string (-0.95, 0.80), "Net force x (N)  = " & FORCE.x, 0 

               draw string (-0.95, 0.75), "Net force y (N)  = " & FORCE.y, 0 

               draw string (-0.95, 0.70), "Net moment (N-m) = " & MOMENT, 0 

               draw string (-0.95, 0.65), "FRONT = Cyan, BACK = Red, TOTAL = Green", 0 

 

            for j = 1 to N_points 

            'Plot pressure distribution on front surface 

              if FRONT_Cp(j)-FRONT_Cp(j-1) <> 0 and abs(FRONT_Cp(j)-FRONT_Cp(j-1)) < 10 then            

               x      = FRONT(6, j).x / max_abscissa 

               y      = FRONT(6, j).y / max_abscissa 

               radius = sqr(x * x + y * y) 

               if (j < N_points/2) then radius = -radius         

               line (radius, FRONT_Cp(j) / max_ordinate) - (radius, FRONT_Cp(j-1) / max_ordinate), 3  

              end if  

            ‘Plot pressure distribution on back surface 

              if BACK_Cp(j)-BACK_Cp(j-1) <> 0 and abs(BACK_Cp(j)-BACK_Cp(j-1)) < 10 then      

               x      = BACK(6, j).x / max_abscissa 

               y      = BACK(6, j).y / max_abscissa 

               radius = sqr(x * x + y * y) 

               if (j < N_points/2) then radius = -radius 

               line (radius, -BACK_Cp(j) / max_ordinate) - (radius, -BACK_Cp(j-1) / max_ordinate), 4 

              end if 

            ‘Plot total pressure distribution 

              if abs(TOTAL_Cp(j)-TOTAL_Cp(j-1)) < 10  then                

               line (radius, TOTAL_Cp(j) / max_ordinate) - (radius, TOTAL_Cp(j-1) / max_ordinate), 2 

              end if 

            next j 

 

          if deflection_angle + angle_initial > 0 then 

             if(F_choice= 1) then circle (- sqr(F(6).x^2+F(6).y^2)/(2*a),0),a/scale_of_points/4, 3,,,,F 

             if(R_choice= 1) then circle (  sqr(R(6).x^2+R(6).y^2)/(2*a),0),a/scale_of_points/4, 4,,,,F 

          else  

             if(F_choice= 1) then circle (  sqr(F(6).x^2+F(6).y^2)/(2*a),0),a/scale_of_points/4, 3,,,,F 

             if(R_choice= 1) then circle (- sqr(R(6).x^2+R(6).y^2)/(2*a),0),a/scale_of_points/4, 4,,,,F 

          end if 

 

      if abs(torsional_stress) > torsional_strength then  

         draw string (-0.95, 0.68), "FAILURE: EXCEEDED TORSIONAL STRENGTH",4  

         sleep 

      end if 

 

         end if 

 

 

         '------------------------------------------------------------------------ 

         ' 

         '  C.10.1.2  Plot Forces. 

         ' 

         '------------------------------------------------------------------------ 

 

         if (plot_choice = 2)  then 

               window (-1.1, -1.1) - (1.1, 1.1)                               ‘  plot out a data graph. 

    

               line (-1,    0) - (1,   0), 0                                  ‘  Plot the axes. 
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               line ( 0, -1.2) - (0, 1.2), 0 

 

               draw string (-0.95,  0.90), "* Forces:  dFx/dr, dFy/dr (N/m) *", 0 '  Label the axes.   

               draw string (-0.95,  0.85), "Deflection Angle (deg) = " & deflection_angle * 180 / PI, 0 

 

               max_abscissa = 2.0 * a 

               min_ordinate = FRONT_dFx_dr(1) 

               max_ordinate = FRONT_dFx_dr(1) 

 

            for j = 1 to N_points 

  

               if (min_ordinate > FRONT_dFx_dr(j)) then min_ordinate = FRONT_dFx_dr(j) 

               if (max_ordinate < FRONT_dFx_dr(j)) then max_ordinate = FRONT_dFx_dr(j) 

 

               if (min_ordinate >  BACK_dFx_dr(j)) then min_ordinate =  BACK_dFx_dr(j) 

               if (max_ordinate <  BACK_dFx_dr(j)) then max_ordinate =  BACK_dFx_dr(j) 

 

               if (max_ordinate < abs(min_ordinate) ) then max_ordinate = abs(min_ordinate) 

 

            next j 

 

               max_ordinate = 15 

               min_ordinate = 15 

 

        draw string (0.95,  0.10), "r (m)", 0:          draw string (0.05,  1.05), "dF/dr (N/m)", 0 

        draw string (-1.0, -0.07), "-" & a,0:           draw string (1.0, -0.07), "" & a,0 

        draw string (-0.1, 1.05), "" & max_ordinate,0:  draw string (-0.1, -1.05), "-" & min_ordinate,0 

 

              

               draw string (-0.95, 0.80), "Net force x (N)  = " & FORCE.x, 0 

               draw string (-0.95, 0.75), "Net force y (N)  = " & FORCE.y, 0 

               draw string (-0.95, 0.70), "Net moment (N-m) = " & MOMENT, 0 

               draw string (-0.95, 0.65), "FRONT = Cyan, BACK = Red, TOTAL = Green", 0 

 

               max_ordinate = 15 

               min_ordinate = 15 

 

            for j = 1 to N_points 

              if FRONT_dF_dr(j)-FRONT_dF_dr(j-1) <> 0 and abs(FRONT_dF_dr(j)-FRONT_dF_dr(j-1))<10 then 

               x      = FRONT(6, j).x / max_abscissa 

               y      = FRONT(6, j).y / max_abscissa 

               radius = sqr(x * x + y * y) 

               if (j < N_points/2) then radius = -radius         

           line (radius, FRONT_dF_dr(j) / max_ordinate) - (radius, FRONT_dF_dr(j-1) / max_ordinate), 3 

              end if 

              if BACK_dF_dr(j)-BACK_dF_dr(j-1) <> 0 and abs(BACK_dF_dr(j)-BACK_dF_dr(j-1)) <10 then 

               x      = BACK(6, j).x / max_abscissa 

               y      = BACK(6, j).y / max_abscissa 

               radius = sqr(x * x + y * y) 

               if (j < N_points/2) then radius = -radius 

           line (radius, -BACK_dF_dr(j) / max_ordinate) - (radius, -BACK_dF_dr(j-1) / max_ordinate), 4 

              end if 

              if abs((FRONT_dF_dr(j) - BACK_dF_dr(j))-(FRONT_dF_dr(j-1) - BACK_dF_dr(j-1))) <10 then 

          line (radius, (FRONT_dF_dr(j) - BACK_dF_dr(j)) / max_ordinate) - (radius, (FRONT_dF_dr(j-1) - 

BACK_dF_dr(j-1)) / max_ordinate), 2 

              end if 

            next j 

           

 

      if deflection_angle + angle_initial > 0 then 

        if(F_choice=1) then circle (-sqr(F(6).x^2+F(6).y^2)/max_abscissa,0),a/scale_of_points/4, 3,,,,F 

        if(R_choice=1) then circle ( sqr(R(6).x^2+R(6).y^2)/max_abscissa,0),a/scale_of_points/4, 4,,,,F 

      else 

        if(F_choice=1) then circle ( sqr(F(6).x^2+F(6).y^2)/max_abscissa,0),a/scale_of_points/4, 3,,,,F 

        if(R_choice=1) then circle (-sqr(R(6).x^2+R(6).y^2)/max_abscissa,0),a/scale_of_points/4, 4,,,,F 

      end if 

 

      if abs(torsional_stress) > torsional_strength then  

         draw string (-0.95, 0.60), "FAILURE: EXCEEDED TORSIONAL STRENGTH",4  

         sleep 

      end if 

 

         end if 

 

      else 
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          window (x_min, y_min) - (x_max, y_max) 

 

      '------------------------------------------------------------------------ 

      ' 

      '  C.10.2  Plot the cylinder wall. 

      '   

      '------------------------------------------------------------------------     

 

         if (plane_choice = 1) then circle (0, 0), a, color_cylinder_wall,,,,F 

 

 

      '------------------------------------------------------------------------ 

      ' 

      '  C.10.3  Plot the front and back surfaces of the stopsign in each Z plane. 

      ' 

      '------------------------------------------------------------------------ 

 

         if(FRONT_choice = 1)  then 

            for j = 1 to N_points 

               circle(FRONT(plane_choice, j).x, FRONT(plane_choice, j).y), a/scale_of_points, 0,,,,F 

            next j 

         end if 

 

 

         if(BACK_choice = 1)  then 

            for j = 1 to N_points 

               circle(BACK(plane_choice, j).x, BACK(plane_choice, j).y), a/scale_of_points, 14,,,,F 

            next j 

         end if 

 

      '------------------------------------------------------------------------ 

      ' 

      '  C.10.4  Plot key points on the surface of the stopsign as small circles. 

      ' 

      '------------------------------------------------------------------------ 

 

  if(F_choice   = 1) then circle (  F(plane_choice).x,   F(plane_choice).y), a/scale_of_points, 3,,,,F        

  if(R_choice   = 1) then circle (  R(plane_choice).x,   R(plane_choice).y), a/scale_of_points, 4,,,,F 

  if(T_choice   = 1) then circle (  T(plane_choice).x,   T(plane_choice).y), a/scale_of_points, 6,,,,F 

  if(B_choice   = 1) then circle (  B(plane_choice).x,   B(plane_choice).y), a/scale_of_points, 5,,,,F 

  if(LT_choice  = 1) then circle ( LT(plane_choice).x,  LT(plane_choice).y), a/scale_of_points, 10,,,,F 

  if(RT_choice  = 1) then circle ( RT(plane_choice).x,  RT(plane_choice).y), a/scale_of_points, 2,,,,F 

  if(LRP_choice = 1) then circle (LRP(plane_choice).x, LRP(plane_choice).y), a/scale_of_points, 11,,,,F 

  if(RRP_choice = 1) then circle (RRP(plane_choice).x, RRP(plane_choice).y), a/scale_of_points, 3,,,,F 

  'circle (probe_position(plane_choice).x, probe_position(plane_choice).y), a/scale_of_points, 14,,,,F 

    

      '------------------------------------------------------------------------ 

      ' 

      '  C.10.5  Plot axes on the reactor drawing.and label the plane. 

      ' 

      '------------------------------------------------------------------------ 

      if (axis_choice=1) then 

         line (0, y_min) - (0, 0.6*y_max), 0 

         line (x_min, 0) - (x_max, 0), 0 

      end if 

 

         draw string (0.95*x_min, 0.98*y_max), plot_label(plane_choice, 1),0      

         draw string (0.95*x_min, 0.94*y_max), plot_label(           1, 2),0      

         draw string (0.95*x_min, 0.90*y_max), plot_label(           1, 8),0 

 

         draw string (0.95*x_min, 0.86*y_max), plot_label(           1, 3),0 

         draw string (0.95*x_min, 0.82*y_max), plot_label(           1, 4),0    

         draw string (0.95*x_min, 0.78*y_max), plot_label(           1, 5),0 

         draw string (0.95*x_min, 0.74*y_max), plot_label(           1, 6),0  

         draw string (0.95*x_min, 0.70*y_max), plot_label(           1, 7),0    

       

      '------------------------------------------------------------------------ 

      ' 

      '  C.10.6  Plot the inviscid streamlines. 

      ' 

      '------------------------------------------------------------------------ 

 

         if(S_choice = 1) then 'Show all inviscid streamlines 

           for k = 1 to 2 * N_streamlines 

             for j = 1 to 2 * N_points 

   pset(streamline(plane_choice, k, j).x, streamline(plane_choice, k, j).y), color_streamlines 
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             next j 

           next k 

         end if 

 

         if(S_choice = 0) then 'Show profile streamline only 

           line (LT(plane_choice).x,LT(plane_choice).y) - (RT(plane_choice).x,RT(plane_choice).y), 0                

         end if 

      '------------------------------------------------------------------------ 

      ' 

      '  C.10.7  Plot the vortices. (+ counter clockwise, - clockwise) 

      ' 

      '------------------------------------------------------------------------ 

 

         for j = 1 to N_vortices 

           if vortex_strength(j).x > 1e-5 then  

              if (V_choice = 1) then 

                 line (vortex_position(plane_choice,j).x - (N_radii_width_mult/2)*a/scale_of_points, 

vortex_position(plane_choice,j).y) - (vortex_position(plane_choice,j).x + 

(N_radii_width_mult/2)*a/scale_of_points, vortex_position(plane_choice,j).y), 0         'ccw 

                 line (vortex_position(plane_choice,j).x, vortex_position(plane_choice,j).y - 

(N_radii_width_mult/2)*a/scale_of_points) - (vortex_position(plane_choice,j).x, 

vortex_position(plane_choice,j).y + (N_radii_width_mult/2)*a/scale_of_points), 0         'ccw 

              else 

                 circle (vortex_position(plane_choice,j).x, vortex_position(plane_choice,j).y), 

2*a/scale_of_points*(N_radii_width_mult/2)*vortex_strength(j).x, 4,,,,F 

              end if 

           elseif vortex_strength(j).x < -1e-5 then 

              if (V_choice = 1) then 

                 line (vortex_position(plane_choice,j).x - (N_radii_width_mult/2)*a/scale_of_points, 

vortex_position(plane_choice,j).y) - (vortex_position(plane_choice,j).x + 

(N_radii_width_mult/2)*a/scale_of_points, vortex_position(plane_choice,j).y), 0         'cw 

              else 

                 circle (vortex_position(plane_choice,j).x, vortex_position(plane_choice,j).y), 

2*a/scale_of_points*(N_radii_width_mult/2)*-vortex_strength(j).x, 1,,,,F 

              end if 

           end if     

         next j 

 

 

      if abs(torsional_stress) > torsional_strength then  

         draw string (0.95*x_min, 0.66*y_max), "FAILURE: EXCEEDED TORSIONAL STRENGTH",4  

         sleep 

      end if 

 

 

      '------------------------------------------------------------------------ 

      ' 

      '  C.10.9  Flip the graphics screens. 

      ' 

      '------------------------------------------------------------------------ 

         ScreenSet 1,1 

         ScreenSync 

         Flip 2,1 

 

 

      end if 

 

   next tiempo 

 

end 

 

 

function C_distance(ZA as complex, ZB as complex) as double 

 

'------------------------------------------------------------------------------ 

' 

'   Function:  C_distance 

' 

'   Purpose:   Compute the distance between two points, ZA and ZB, expressed 

'              in complex coordinates. 

' 

'------------------------------------------------------------------------------ 

 

   dim as double distance 

 

   distance = sqr( (ZB.x - ZA.x) * (ZB.x - ZA.x) + (ZB.y - ZA.y) * (ZB.y - ZA.y) ) 
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   return(distance) 

 

end function 

 

 

function real_color(mycolor as integer) as string 

 

'-------------------------------------------------------------------- 

' 

'   Function:  real_color 

' 

'   Purpose:   This function returns the actual color that will be 

'              plotted based on the color number (integer), for a  

'              16 color palette. 

' 

'-------------------------------------------------------------------- 

 

   if mycolor =  0 then return("black") 

   if mycolor =  1 then return("blue") 

   if mycolor =  2 then return("green") 

   if mycolor =  3 then return("cyan") 

   if mycolor =  4 then return("red") 

   if mycolor =  5 then return("magenta") 

   if mycolor =  6 then return("brown") 

   if mycolor =  7 then return("white") 

   if mycolor =  8 then return("gray") 

   if mycolor =  9 then return("bright blue") 

   if mycolor = 10 then return("bright green") 

   if mycolor = 11 then return("bright cyan") 

   if mycolor = 12 then return("bright red") 

   if mycolor = 13 then return("pink") 

   if mycolor = 14 then return("yellow") 

   if mycolor = 15 then return("bright white") 

 

end function 

 

function flipflop(x as integer) as integer 

 

'------------------------------------------------------------------------------ 

' 

'   Function:  flipflop 

' 

'   Purpose:   Flip an integer of 1 t a 0 and a 0 to a 1. 

' 

'------------------------------------------------------------------------------ 

 

   dim as integer value 

 

   if(x = 0) then 

      value = 1 

   else 

      value = 0 

   end if 

 

   return(value) 

 

end function 
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A.2 Complex Functions 

 

 The BI file that gives the program the capability to analyze complex numbers is provided below. 
 
Type complex 

   dim as double x, y 

End Type 

 

dim shared as complex i 

   i.x = 0 

   i.y = 1 

 

dim shared as complex unity 

   unity.x = 1 

   unity.y = 0 

 

Declare function sinh(x as double) as double 

Declare function cosh(x as double) as double 

Declare function tanh(x as double) as double 

Declare function coth(x as double) as double 

Declare function sech(x as double) as double 

Declare function csch(x as double) as double 

Declare function  cot(x as double) as double 

 

Declare function C_print(z as complex) as double 

Declare function C_add(z1 as complex, z2 as complex) as complex 

Declare function C_sub(z1 as complex, z2 as complex) as complex 

Declare function C_mult(z1 as complex, z2 as complex) as complex 

Declare function C_div(z1 as complex, z2 as complex) as complex 

Declare function C_conj(z as complex) as complex 

Declare function C_exp(z as complex) as complex 

Declare function C_ln(z as complex) as complex 

Declare function C_real(z as complex) as double 

Declare function C_imag(z as complex) as double 

Declare function C_abs(z as complex) as double 

Declare function C_arg(z as complex) as double 

Declare function C_reciprocal(z as complex) as complex 

Declare function C_pow_real(z as complex, d as double) as complex 

Declare function C_pow(z as complex, q as complex) as complex 

Declare function C_sqr(z as complex) as complex 

Declare function C_neg(z as complex) as complex 

 

Declare function C_sin(z as complex) as complex 

Declare function C_cos(z as complex) as complex 

Declare function C_tan(z as complex) as complex 

Declare function C_sec(z as complex) as complex 

Declare function C_csc(z as complex) as complex 

Declare function C_cot(z as complex) as complex 

 

Declare function C_asin(z as complex) as complex 

Declare function C_acos(z as complex) as complex 

Declare function C_atan(z as complex) as complex 

Declare function C_acot(z as complex) as complex 

 

Declare function C_sinh(z as complex) as complex 

Declare function C_cosh(z as complex) as complex 

Declare function C_tanh(z as complex) as complex 

Declare function C_csch(z as complex) as complex 

Declare function C_sech(z as complex) as complex 

Declare function C_coth(z as complex) as complex 

 

Declare function C_asinh(z as complex) as complex 

Declare function C_acosh(z as complex) as complex 

Declare function C_atanh(z as complex) as complex 

Declare function C_acoth(z as complex) as complex 

 

function sinh(x as double) as double 

   return((exp(x) - exp(-x))/2) 

end function 

 

 

function cosh(x as double) as double 

   return((exp(x) + exp(-x))/2) 
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end function 

 

 

function tanh(x as double) as double 

   return((exp(x) - exp(-x)) / (exp(x) + exp(-x))) 

end function 

 

 

function coth(x as double) as double 

   return((exp(x) + exp(-x)) / (exp(x) - exp(-x))) 

end function 

 

 

function sech(x as double) as double 

   return(2/(exp(x) + exp(-x))) 

end function 

 

 

function csch(x as double) as double 

   return(2/(exp(x) - exp(-x))) 

end function 

 

 

function cot(x as double) as double 

   dim as double value 

    

   value = 1 / tan(x) 

   return(x) 

end function 

 

 

 

function C_print(z as complex) as double 

   if (z.y >= 0.0)  then 

      print z.x;" + ";z.y;"i" 

   else 

      print z.x;" - ";-z.y;"i" 

   end if 

end function 

 

 

function C_add(z1 as complex, z2 as complex) as complex 

   dim value as complex 

   value.x = z1.x + z2.x 

   value.y = z1.y + z2.y 

   return (value) 

end function 

 

 

 

function C_mult(z1 as complex, z2 as complex) as complex 

   dim value as complex 

   value.x = z1.x * z2.x - z1.y * z2.y 

   value.y = z1.x * z2.y + z2.x * z1.y 

   return (value) 

end function 

 

 

 

function C_sub(z1 as complex, z2 as complex) as complex 

   dim value as complex 

   value.x = z1.x - z2.x 

   value.y = z1.y - z2.y 

   return (value) 

end function 

 

 

function C_div(z1 as complex, z2 as complex) as complex 

   dim value as complex 

   dim denominator as double 

   denominator = z2.x * z2.x + z2.y * z2.y 

   value.x = (z1.x * z2.x + z1.y * z2.y) / denominator 

   value.y = (z2.x * z1.y - z1.x * z2.y) / denominator 

   return (value) 

end function 
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function C_conj(z as complex) as complex 

   dim value as complex 

   value.x =  z.x 

   value.y = -z.y 

   return (value) 

end function 

 

 

function C_exp(z as complex) as complex 

   dim value as complex 

   value.x = exp(z.x) * cos(z.y) 

   value.y = exp(z.x) * sin(z.y) 

   return (value) 

end function 

 

 

 

function C_ln(z as complex) as complex 

   dim value as complex 

   value.x = 0.5 * log(z.x * z.x + z.y * z.y) 

   value.y = atan2(z.y, z.x) 

   return (value) 

end function 

 

 

 

function C_imag(z as complex) as double 

   return (z.y) 

end function 

 

 

 

function C_real(z as complex) as double 

   return (z.x) 

end function 

 

 

function C_abs(z as complex) as double 

   return (sqr(z.x * z.x + z.y * z.y)) 

end function 

 

 

 

function C_arg(z as complex) as double 

   dim as double value, PI = 3.14159265358 

   value = atan2(z.y, z.x) 

 

   if(value < 0) then value += 2 * PI 

 

   return (value) 

end function 

 

 

 

function C_reciprocal(z as complex) as complex 

   dim value as complex 

   value.x =  z.x / (z.x * z.x + z.y * z.y) 

   value.y = -z.y / (z.x * z.x + z.y * z.y) 

   return (value) 

end function 

 

 

 

function C_pow_real(z as complex, d as double) as complex 

   dim value as complex 

   dim r as double 

   r = (z.x * z.x + z.y * z.y)^(d/2) 

   value.x = r * cos(d * atan2(z.y, z.x)) 

   value.y = r * sin(d * atan2(z.y, z.x)) 

   return (value) 

end function 
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function C_pow(z as complex, q as complex) as complex 

   dim as double j, k, m, argument 

   dim as complex u, value 

 

   u = C_pow_real(z, q.x) 

   m = exp(-q.y * atan2(z.y, z.x)) 

 

   argument = (q.y/2) * log(z.x * z.x + z.y * z.y) 

   j = cos(argument) 

   k = sin(argument) 

 

   value.x = m * (u.x * j - u.y * k) 

   value.y = m * (u.y * j + u.x * k) 

 

   return(value) 

 

end function 

 

 

 

function C_sqr(z as complex) as complex 

   dim as double m, a, argument 

   dim as complex value 

 

   a = 1/2 

   m = (z.x * z.x + z.y * z.y)^(a/2) 

   argument = a * atan2(z.y, z.x) 

 

   value.x = m * cos(argument) 

   value.y = m * sin(argument) 

 

   return(value) 

 

end function 

 

 

 

function C_neg(z as complex) as complex 

   dim as complex value 

 

   value.x = - z.x 

   value.y = - z.y 

 

   return(value) 

end function 

 

 

 

 

function C_sin(z as complex) as complex 

   dim as complex value 

 

   value.x =  sin(z.x) * cosh(z.y) 

   value.y =  cos(z.x) * sinh(z.y) 

 

   return(value) 

 

end function 

 

 

 

 

function C_cos(z as complex) as complex 

   dim as complex value 

    

   value.x =  cos(z.x) * cosh(z.y) 

   value.y = -sin(z.x) * sinh(z.y) 

 

   return(value) 

 

end function 

 

 

 

function C_tan(z as complex) as complex 

   dim as complex value 
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   dim as double d 

 

   d       =  cos(2 * z.x) + cosh(2 * z.y) 

   value.x =  sin(2 * z.x) / d 

   value.y = sinh(2 * z.y) / d 

 

   return(value) 

 

end function 

 

 

 

 

function C_sec(z as complex) as complex 

   dim as complex value 

   dim as double d1, d2, d 

 

   d1      = cos(z.x) * cos(z.x) * cosh(z.y) * cosh(z.y) 

   d2      = sin(z.x) * sin(z.x) * sinh(z.y) * sinh(z.y) 

   d       = d1 + d2 

 

   value.x =  (cos(z.x) * cosh(z.y)) / d 

   value.y =  (sin(z.x) * sinh(z.y)) / d 

 

   return(value) 

 

end function 

 

 

 

 

function C_csc(z as complex) as complex 

   dim as complex value 

   dim as double d1, d2, d 

 

   d1      = sin(z.x) * sin(z.x) * cosh(z.y) * cosh(z.y) 

   d2      = cos(z.x) * cos(z.x) * sinh(z.y) * sinh(z.y) 

   d       = d1 + d2 

    

   value.x =  (sin(z.x) * cosh(z.y)) / d 

   value.y = -(cos(z.x) * sinh(z.y)) / d 

 

   return(value) 

 

end function 

 

 

 

function C_cot(z as complex) as complex 

   dim as complex value 

   dim as double d 

 

   d       =   sin(2 * z.x) * sin(2 * z.x) + sinh(2 * z.y) * sinh(2 * z.y) 

 

   value.x =   sin(2 * z.x) * (cos(2 * z.x) + cosh(2 * z.y)) / d 

   value.y = -sinh(2 * z.y) * (cos(2 * z.x) + cosh(2 * z.y)) / d 

 

   return(value) 

 

end function 

 

 

function C_asin(z as complex) as complex 

   dim as complex value, i, neg_i, unity 

   

   i.x     = 0 

   i.y     = 1 

 

   neg_i.x =  0 

   neg_i.y = -1 

 

   unity.x =  1 

   unity.y =  0 

 

   value = C_mult( C_ln( C_add( C_sqr( C_sub( unity, C_mult(z,z))), C_mult(i, z))), neg_i) 
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   return(value) 

 

end function 

 

 

 

function C_acos(z as complex) as complex    

   dim as complex prefix, value 

   dim as double PI 

 

   PI = 3.14159265358 

 

   prefix.x = PI/2 

   prefix.y = 0 

 

   value = C_sub(prefix, C_asin(z)) 

   return(value) 

 

end function 

 

 

 

 

function C_atan(z as complex) as complex 

   dim as complex i, iz, one, two, value 

 

   i.x = 0 

   i.y = 1 

 

   one.x = 1 

   one.y = 0 

 

   two.x = 2 

   two.y = 0 

 

   iz = C_mult(i, z) 

 

   value = C_ln( C_div( C_sub( one, iz), C_add( one, iz) ) ) 

   value = C_mult( C_div(i, two), value) 

 

   return(value) 

 

end function 

 

 

 

 

function C_acot(z as complex) as complex 

   dim as double real, PI 

   dim as complex value, prefix, neg_prefix 

 

   PI           = 3.14159265358 

 

   prefix.x     = PI/2 

   prefix.y     = 0 

 

   neg_prefix.x = -PI/2 

   neg_prefix.y =  0 

 

   real = C_real(z) 

 

   if (real >= 0.0)  then 

      value = C_sub(    prefix, C_atan(z)) 

   else 

      value = C_sub(neg_prefix, C_atan(z)) 

   end if 

 

   return(value) 

 

end function 

 

 

 

function C_sinh(z as complex) as complex 

   dim value as complex 
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   value.x = cos(z.y) * sinh(z.x) 

   value.y = sin(z.y) * cosh(z.x) 

 

   return(value) 

 

end function 

    

 

 

function C_cosh(z as complex) as complex 

   dim value as complex 

 

   value.x = cos(z.y) * cosh(z.x) 

   value.y = sin(z.y) * sinh(z.x) 

 

   return(value) 

 

end function 

 

 

function C_tanh(z as complex) as complex 

   dim value as complex 

   dim as double d1, d2, d 

 

   d1 = cos(z.y) * cos(z.y) * cosh(z.x) * cosh(z.x) 

   d2 = sin(z.y) * sin(z.y) * sinh(z.x) * sinh(z.x) 

   d  = d1 + d2 

 

   value.x = (sinh(z.x) * cosh(z.x)) / d 

   value.y = ( sin(z.y) *  cos(z.y)) / d 

 

   return(value) 

 

end function 

    

    

 

function C_csch(z as complex) as complex 

   dim as complex unity 

 

   unity.x = 1 

   unity.y = 0 

 

   return( C_div( unity, C_sinh(z)) ) 

end function 

 

 

 

function C_sech(z as complex) as complex 

   dim as complex unity 

 

   unity.x = 1 

   unity.y = 0 

 

   return(C_div( unity, C_cosh(z)) ) 

end function 

 

 

 

function C_coth(z as complex) as complex 

   dim as complex unity 

 

   unity.x = 1 

   unity.y = 0 

 

   return(C_div( unity, C_tanh(z))  ) 

end function 

 

 

 

 

 

function C_asinh(z as complex) as complex 

   dim as complex value, unity 

 

   unity.x = 1 
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   unity.y = 0 

 

 

   value = C_ln( C_add( C_sqr( C_add( C_mult( z, z), unity)), z)) 

   return(value) 

end function 

 

 

 

 

function C_acosh(z as complex) as complex 

   dim as complex value, neg_unity 

 

   neg_unity.x = -1 

   neg_unity.y =  0 

 

 

   value = C_ln( C_add( C_sqr( C_add( C_mult( z, z), neg_unity)), z)) 

   return(value) 

end function 

 

 

 

function C_atanh(z as complex) as complex 

   dim as complex value, unity, two 

 

   unity.x = 1 

   unity.y = 0 

 

   two.x   = 2 

   two.y   = 0 

 

   value = C_div( C_ln( C_div( C_add( unity, z), C_sub( unity, z))), two) 

   return(value) 

end function 

 

 

 

 

function C_acoth(z as complex) as complex 

   dim as complex value, unity, two 

 

   unity.x = 1 

   unity.y = 0 

 

   two.x   = 2 

   two.y   = 0 

 

   value = C_div( C_ln( C_div( C_add( z, unity), C_sub( z, unity))), two) 

   return(value) 

end function  
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APPENDIX B 

 

SAMPLE INPUT FILE 

 

 Below is the input text file that was used to simulate a 4 m wide flat plate with a torsional spring 

constant of 50 Nm, damping coefficient of 1 Nms, and mass moment of inertia of 5 kgm2 in a horizontal 

flow of 1 m/s. This was the reference case form which all parametric studies were performed. 

 

 

'-------------------------------------------------------------------- 

' 

'   Input File for Program STOPSIGN24.bas 

' 

'   Color code:  0 = black 

'                1 = blue 

'                2 = green 

'                3 = cyan 

'                4 = red 

'                5 = magenta 

'                6 = brown 

'                7 = white 

'                8 = gray 

'                9 = bright blue 

'               10 = bright green 

'               11 = bright cyan 

'               12 = bright red 

'               13 = pink 

'               14 = yellow 

'               15 = bright white 

' 

'   Assumptions: 

'      1.  Stopsign does not deflect, except torsionally, about the 

'          z-axis. 

' 

'-------------------------------------------------------------------- 

 

   A.  Fluid Flow Specifications 

  

       A.1  Uniform flow velocity (m/s):                             1 

       A.2  Initial angle of attack (degrees):                       0 

 

   B.  Ambient Fluid Properties 

 

       B.1  Fluid (0 = air, 1 = water, 2 = unity):                   0       

       B.2  Ambient pressure (Pa):                                   101325 

       B.3  Ambient temperature (K):                                 293 

 

   C.  Stopsign Mechanical Properties 

    

       C.1  Torsional strength (Pa):                                 2e10 

       C.2  Moment of inertia (kgm^2):                               5 

       C.3  Torsional damping (Nms/rad):                             1 

       C.4  Torsional stiffness (Nm/rad):                            50 

       C.5  Stopsign width (W) in (m):                               4 
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   D.  Plotting Specifications 

 

       D.1  Number of streamlines to plot:                           40 

       D.2  Number of radii in height for square plot:               5 

       D.3  Number of radii in width to square plot:                 5 

       D.4  Number of radii in full plot                             2 

       D.5  Color of streamlines:                                    1 

       D.6  Color of cylinder wall:                                  15 

       D.7  Color of the background:                                 15 

       D.8  Number of points per streamline to plot:                 500 

 

   E.  Simulation Time 

 

       E.1  Maximum time for simulation (s):                         5000 

       E.2  Time increment for simulation (s):                       0.125 

       E.3  Print to screen (1) or output.dat (2):                   1 

       E.4  Choice of output plane to initially view (1 to 6):       6 

       E.5  Choice to show vortices (1 for yes):                     1 

 

   F.  Vortex Properties 

       F.1  Number of vortices zeroed to trigger asymmetry:          75 

       F.2  Vortex dissipation factor:                               0.999 

       F.3  Number of radii after which to zero out distant vortices:100 

       F.4  Amalgamation distance:                                 a/20 

       F.5  Initial guess for release point:                       a*0.25 

 

    

      

 

 

         



114 

 

APPENDIX C 

 

SAMPLE OUTPUT FILE 

 

The three output files that are appended to with each loop of the program are combined into the 

following sample output file. The values from left to right represent: plate width in meters, uniform velocity 

in m/s, mass moment of inertia of the plate in kgm2, damping coefficient in Nms, torsional spring constant 

in Nm, time elapsed in seconds, deflection angle in radians, the net force in the x direction in Newtons, the 

net force in the y direction in Newtons, the net moment in Nm, and the coefficient of pressure. This output 

file corresponds to the input file provided in Appendix B. 

4 1 5 1 50 0 0 0 0 -0.0251 0.0279  

4 1 5 1 50 0.125 0.0001 -0.5739 0.0000 1.0061 0.0345 

4 1 5 1 50 0.25 -0.0029 -0.5290 -0.0015 1.2950 0.0388 

4 1 5 1 50 0.375 -0.0094 -0.4582 -0.0043 1.1723 0.0421 

4 1 5 1 50 0.5 -0.0178 -0.0774 -0.0014 1.2521 0.0449 

4 1 5 1 50 0.625 -0.0271 0.1009 0.0027 1.1989 0.0474 

4 1 5 1 50 0.75 -0.0357 0.3482 0.0124 1.0613 0.0497 

4 1 5 1 50 0.875 -0.0419 0.5464 0.0229 1.0009 0.0519 

4 1 5 1 50 1 -0.0446 0.7586 0.0339 0.9712 0.0539 

4 1 5 1 50 1.125 -0.0434 0.8136 0.0354 0.8250 0.0558 

4 1 5 1 50 1.25 -0.0382 1.2133 0.0463 1.0426 0.0576 

4 1 5 1 50 1.375 -0.0304 1.4380 0.0437 1.1491 0.0593 

4 1 5 1 50 1.5 -0.0216 1.7121 0.0371 1.2141 0.0610 

4 1 5 1 50 1.625 -0.0135 1.7662 0.0239 1.1353 0.0626 

4 1 5 1 50 1.75 -0.0070 1.9600 0.0138 1.2136 0.0643 

4 1 5 1 50 1.875 -0.0033 2.2826 0.0075 1.4415 0.0661 

4 1 5 1 50 2 -0.0036 2.3821 0.0085 1.4716 0.0679 

4 1 5 1 50 2.125 -0.0078 2.4266 0.0188 1.4715 0.0698 

4 1 5 1 50 2.25 -0.0152 2.2457 0.0340 1.2664 0.0718 

4 1 5 1 50 2.375 -0.0239 2.2169 0.0530 1.2247 0.0738 

4 1 5 1 50 2.5 -0.0326 2.3399 0.0762 1.3784 0.0759 

4 1 5 1 50 2.625 -0.0402 2.3133 0.0931 1.3411 0.0780 
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4 1 5 1 50 2.75 -0.0457 2.3262 0.1063 1.2991 0.0801 

4 1 5 1 50 2.875 -0.0480 2.1635 0.1039 1.1163 0.0821 

4 1 5 1 50 3 -0.0463 2.2262 0.1032 1.1468 0.0842 

4 1 5 1 50 3.125 -0.0411 2.3275 0.0958 1.2049 0.0863 

4 1 5 1 50 3.25 -0.0335 2.4554 0.0822 1.2824 0.0884 

4 1 5 1 50 3.375 -0.0248 2.7777 0.0689 1.5533 0.0905 

4 1 5 1 50 3.5 -0.0173 2.8974 0.0502 1.6306 0.0927 

4 1 5 1 50 3.625 -0.0123 2.9814 0.0368 1.6875 0.0949 

4 1 5 1 50 3.75 -0.0107 2.8252 0.0303 1.5235 0.0973 

4 1 5 1 50 3.875 -0.0122 2.8179 0.0343 1.5247 0.0998 

4 1 5 1 50 4 -0.0164 2.7709 0.0454 1.5018 0.1024 

4 1 5 1 50 4.125 -0.0226 2.6956 0.0609 1.4598 0.1050 

4 1 5 1 50 4.25 -0.0296 2.6067 0.0772 1.4075 0.1078 

4 1 5 1 50 4.375 -0.0363 2.7142 0.0985 1.5486 0.1106 

4 1 5 1 50 4.5 -0.0419 2.6418 0.1109 1.5044 0.1135 

4 1 5 1 50 4.625 -0.0457 2.0260 0.0926 1.1630 0.1196 

4 1 5 1 50 4.75 -0.0459 -2.1593 -0.0992 -1.8403 0.1365 

4 1 5 1 50 4.875 -0.0335 -2.6249 -0.0880 -1.9596 0.1463 

4 1 5 1 50 5 -0.0103 -2.6341 -0.0272 -1.6668 0.1546 

4 1 5 1 50 5.125 0.0189 -2.4704 0.0467 -1.3869 0.1622 

4 1 5 1 50 5.25 0.0488 -2.1447 0.1048 -0.9066 0.1693 

4 1 5 1 50 5.375 0.0733 -1.9553 0.1436 -0.6033 0.1760 

4 1 5 1 50 5.5 0.0879 -1.6762 0.1476 -0.2586 0.1825 

4 1 5 1 50 5.625 0.0894 -1.5431 0.1384 -0.1139 0.1887 

4 1 5 1 50 5.75 0.0777 -1.3251 0.1032 0.0601 0.1948 

4 1 5 1 50 5.875 0.0542 -1.2327 0.0669 0.0614 0.2008 

4 1 5 1 50 6 0.0229 -1.0372 0.0237 0.1504 0.2066 

4 1 5 1 50 6.125 -0.0117 -0.9104 -0.0106 0.1476 0.2124 

4 1 5 1 50 6.25 -0.0440 -0.7908 -0.0348 0.1569 0.2182 

4 1 5 1 50 6.375 -0.0694 -0.7243 -0.0503 0.1498 0.2238 

4 1 5 1 50 6.5 -0.0840 -0.6396 -0.0538 0.1866 0.2296 

4 1 5 1 50 6.625 -0.0860 -0.6004 -0.0518 0.2184 0.2354 

4 1 5 1 50 6.75 -0.0755 -0.5932 -0.0449 0.3024 0.2413 

4 1 5 1 50 6.875 -0.0547 -0.5746 -0.0315 0.2823 0.2474 

4 1 5 1 50 7 -0.0269 -0.5624 -0.0152 0.3313 0.2535 

4 1 5 1 50 7.125 0.0033 -0.5168 0.0017 0.4128 0.2597 
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4 1 5 1 50 7.25 0.0310 -0.4526 0.0140 0.5110 0.2660 

4 1 5 1 50 7.375 0.0517 -0.3747 0.0194 0.6097 0.2722 

4 1 5 1 50 7.5 0.0622 -0.3006 0.0187 0.7006 0.2784 

4 1 5 1 50 7.625 0.0609 -0.2404 0.0146 0.7740 0.2846 

4 1 5 1 50 7.75 0.0479 -0.2259 0.0108 0.7961 0.2907 

4 1 5 1 50 7.875 0.0255 -0.1379 0.0035 0.8791 0.2969 

4 1 5 1 50 8 -0.0029 -0.1400 -0.0004 0.9280 0.3030 

4 1 5 1 50 8.125 -0.0330 -0.1605 -0.0053 0.8863 0.3092 

4 1 5 1 50 8.25 -0.0600 -0.1573 -0.0095 0.8651 0.3154 

4 1 5 1 50 8.375 -0.0799 -0.1469 -0.0118 0.8578 0.3217 

4 1 5 1 50 8.5 -0.0897 -0.1687 -0.0152 0.7708 0.3280 

4 1 5 1 50 8.625 -0.0880 -0.2861 -0.0252 0.6769 0.3347 

4 1 5 1 50 8.75 -0.0749 -0.3770 -0.0283 0.6356 0.3414 

4 1 5 1 50 8.875 -0.0527 -0.4118 -0.0217 0.6665 0.3484 

4 1 5 1 50 9 -0.0250 -0.4517 -0.0113 0.6973 0.3555 

4 1 5 1 50 9.125 0.0037 -0.4642 0.0017 0.7539 0.3627 

4 1 5 1 50 9.25 0.0288 -0.4824 0.0139 0.8469 0.3700 

4 1 5 1 50 9.375 0.0464 -0.4691 0.0218 0.9221 0.3775 

4 1 5 1 50 9.5 0.0536 -0.4645 0.0249 0.9970 0.3851 

4 1 5 1 50 9.625 0.0494 -0.4352 0.0215 1.0327 0.3929 

4 1 5 1 50 9.75 0.0347 -0.4643 0.0161 1.0350 0.4008 

4 1 5 1 50 9.875 0.0119 -0.4177 0.0050 1.0849 0.4089 

4 1 5 1 50 10 -0.0155 -0.4150 -0.0064 1.0550 0.4173 

4 1 5 1 50 10.125 -0.0431 -0.4189 -0.0181 0.9948 0.4258 

4 1 5 1 50 10.25 -0.0664 -0.4295 -0.0286 0.9096 0.4345 

4 1 5 1 50 10.375 -0.0819 -0.4575 -0.0375 0.8070 0.4436 

4 1 5 1 50 10.5 -0.0869 -0.5040 -0.0439 0.6983 0.4528 

4 1 5 1 50 10.625 -0.0807 -0.5630 -0.0455 0.5956 0.4624 

4 1 5 1 50 10.75 -0.0642 -0.6164 -0.0396 0.5132 0.4722 

4 1 5 1 50 10.875 -0.0398 -0.6516 -0.0260 0.4572 0.4822 

4 1 5 1 50 11 -0.0114 -0.6937 -0.0079 0.3923 0.4925 

4 1 5 1 50 11.125 0.0169 -0.7040 0.0119 0.4046 0.5030 

4 1 5 1 50 11.25 0.0407 -0.6704 0.0273 0.4032 0.5137 

4 1 5 1 50 11.375 0.0565 -0.6372 0.0360 0.4127 0.5245 

4 1 5 1 50 11.5 0.0620 -0.5466 0.0339 0.4232 0.5356 

4 1 5 1 50 11.625 0.0566 -0.5252 0.0298 0.3974 0.5470 
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4 1 5 1 50 11.75 0.0416 -0.4921 0.0205 0.3350 0.5586 

4 1 5 1 50 11.875 0.0195 -0.4357 0.0085 0.2272 0.5703 

4 1 5 1 50 12 -0.0057 -0.3871 -0.0022 0.1129 0.5823 

4 1 5 1 50 12.125 -0.0297 -0.2928 -0.0087 -0.0982 0.5944 

4 1 5 1 50 12.25 -0.0483 -0.1256 -0.0061 -0.2911 0.6065 

4 1 5 1 50 12.375 -0.0583 0.0265 0.0015 -0.5350 0.6188 

4 1 5 1 50 12.5 -0.0574 0.1911 0.0110 -0.7977 0.6311 

4 1 5 1 50 12.625 -0.0454 0.3483 0.0158 -1.1055 0.6433 

4 1 5 1 50 12.75 -0.0234 0.5923 0.0139 -1.4346 0.6554 

4 1 5 1 50 12.875 0.0060 0.8819 -0.0053 -1.6959 0.6673 

4 1 5 1 50 13 0.0389 1.1944 -0.0465 -1.9919 0.6789 

4 1 5 1 50 13.125 0.0712 1.5355 -0.1095 -2.2912 0.6901 

4 1 5 1 50 13.25 0.0989 1.8688 -0.1853 -2.5739 0.7010 

4 1 5 1 50 13.375 0.1186 2.1292 -0.2537 -2.7892 0.7113 

4 1 5 1 50 13.5 0.1283 2.2589 -0.2913 -2.8811 0.7211 

4 1 5 1 50 13.625 0.1269 2.2148 -0.2827 -2.8031 0.7303 

4 1 5 1 50 13.75 0.1148 2.1641 -0.2496 -2.7110 0.7388 

4 1 5 1 50 13.875 0.0938 2.1730 -0.2044 -2.6515 0.7465 

4 1 5 1 50 14 0.0671 2.1974 -0.1476 -2.5518 0.7532 

4 1 5 1 50 14.125 0.0385 2.2690 -0.0874 -2.4642 0.7589 

4 1 5 1 50 14.25 0.0123 2.4139 -0.0297 -2.4159 0.7636 

4 1 5 1 50 14.375 -0.0077 2.5843 0.0200 -2.3976 0.7671 

4 1 5 1 50 14.5 -0.0188 2.8766 0.0542 -2.5679 0.7695 

4 1 5 1 50 14.625 -0.0190 3.1621 0.0600 -2.8787 0.7706 

4 1 5 1 50 14.75 -0.0074 3.4608 0.0256 -3.2672 0.7706 

4 1 5 1 50 14.875 0.0150 3.7770 -0.0565 -3.6108 0.7693 

4 1 5 1 50 15 0.0455 4.0515 -0.1844 -3.8637 0.7669 

4 1 5 1 50 15.125 0.0801 4.3564 -0.3499 -4.0918 0.7632 

4 1 5 1 50 15.25 0.1142 4.6466 -0.5329 -4.2877 0.7585 

4 1 5 1 50 15.375 0.1431 4.8143 -0.6936 -4.3900 0.7528 

4 1 5 1 50 15.5 0.1628 4.8697 -0.8001 -4.4121 0.7462 

4 1 5 1 50 15.625 0.1707 4.7066 -0.8115 -4.1768 0.7388 

4 1 5 1 50 15.75 0.1652 4.2602 -0.7101 -3.5426 0.7306 

4 1 5 1 50 15.875 0.1453 4.0828 -0.5976 -3.0697 0.7218 

4 1 5 1 50 16 0.1132 3.9597 -0.4502 -2.5222 0.7125 

4 1 5 1 50 16.125 0.0723 3.9694 -0.2874 -2.0275 0.7026 



118 

 

4 1 5 1 50 16.25 0.0275 4.0889 -0.1126 -1.4378 0.6923 

4 1 5 1 50 16.375 -0.0160 4.3314 0.0691 -1.0146 0.6816 

4 1 5 1 50 16.5 -0.0528 4.7155 0.2494 -0.7727 0.6707 

4 1 5 1 50 16.625 -0.0784 5.1178 0.4022 -0.6395 0.6594 

4 1 5 1 50 16.75 -0.0895 5.4914 0.4927 -0.6912 0.6479 

4 1 5 1 50 16.875 -0.0845 5.8827 0.4984 -1.0665 0.6362 

4 1 5 1 50 17 -0.0635 6.2699 0.3989 -1.6072 0.6245 

4 1 5 1 50 17.125 -0.0285 6.7330 0.1918 -2.2020 0.6125 

4 1 5 1 50 17.25 0.0168 6.9805 -0.1171 -2.8396 0.6008 

4 1 5 1 50 17.375 0.0670 7.2082 -0.4838 -3.5121 0.5891 

4 1 5 1 50 17.5 0.1165 7.6665 -0.8975 -4.0124 0.5772 

4 1 5 1 50 17.625 0.1593 7.5983 -1.2209 -4.3341 0.5659 

4 1 5 1 50 17.75 0.1900 7.7489 -1.4901 -4.4880 0.5545 

4 1 5 1 50 17.875 0.2046 7.2270 -1.4997 -4.0779 0.5440 

4 1 5 1 50 18 0.2001 6.3664 -1.2914 -3.2084 0.5341 

4 1 5 1 50 18.125 0.1750 5.7570 -1.0181 -2.4011 0.5246 

4 1 5 1 50 18.25 0.1312 5.2696 -0.6953 -1.5087 0.5156 

4 1 5 1 50 18.375 0.0730 5.0516 -0.3695 -0.6569 0.5069 

4 1 5 1 50 18.5 0.0071 5.2045 -0.0371 0.0367 0.4986 

4 1 5 1 50 18.625 -0.0583 5.5639 0.3250 0.7175 0.4905 

4 1 5 1 50 18.75 -0.1155 6.1909 0.7184 1.2137 0.4828 

4 1 5 1 50 18.875 -0.1574 6.8127 1.0812 1.5200 0.4755 

4 1 5 1 50 19 -0.1789 7.2332 1.3078 1.3475 0.4686 

4 1 5 1 50 19.125 -0.1767 7.2982 1.3031 0.4147 0.4622 

4 1 5 1 50 19.25 -0.1489 7.1692 1.0753 -0.5943 0.4564 

4 1 5 1 50 19.375 -0.0972 7.0597 0.6886 -1.6595 0.4510 

4 1 5 1 50 19.5 -0.0270 7.4330 0.2006 -2.9933 0.4459 

4 1 5 1 50 19.625 0.0548 8.0524 -0.4418 -4.4198 0.4409 

4 1 5 1 50 19.75 0.1397 7.9366 -1.1162 -5.1475 0.4362 

4 1 5 1 50 19.875 0.2170 7.7324 -1.7044 -6.1694 0.4325 

4 1 5 1 50 20 0.2780 -0.1301 0.0371 1.2183 0.4293 

4 1 5 1 50 20.125 0.2915 -44.0608 13.2224 46.9992 0.4264 

4 1 5 1 50 20.25 0.1170 4.8541 -0.5704 -4.5217 0.4270 

4 1 5 1 50 20.375 -0.0574 3.2573 0.1871 -3.4885 0.4266 

4 1 5 1 50 20.5 -0.2081 2.5643 0.5414 -3.0240 0.4255 

4 1 5 1 50 20.625 -0.3142 2.3245 0.7554 -2.2615 0.4242 
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4 1 5 1 50 20.75 -0.3629 1.8263 0.6935 -2.1045 0.4231 

4 1 5 1 50 20.875 -0.3487 1.5530 0.5646 -2.1479 0.4224 

4 1 5 1 50 21 -0.2751 2.9954 0.8456 -4.0773 0.4222 

4 1 5 1 50 21.125 -0.1490 2.4696 0.3707 -3.2726 0.4223 

4 1 5 1 50 21.25 0.0068 2.9054 -0.0196 -3.6552 0.4222 

4 1 5 1 50 21.375 0.1688 43.2862 -7.3780 -43.9681 0.4211 

4 1 5 1 50 21.5 0.4353 3.8621 -1.7959 -3.9198 0.4185 

4 1 5 1 50 21.625 0.6408 3.4623 -2.5821 -4.0429 0.4160 

4 1 5 1 50 21.75 0.7560 3.4613 -3.2633 -4.4892 0.4139 

4 1 5 1 50 21.875 0.7668 3.2033 -3.0861 -4.1880 0.4139 

4 1 5 1 50 22 0.6732 1.9059 -1.5199 -2.1780 0.4168 

4 1 5 1 50 22.125 0.4859 0.0017 -0.0009 0.1846 0.4207 

4 1 5 1 50 22.25 0.2286 -1.2537 0.2917 0.8430 0.4229 

4 1 5 1 50 22.375 -0.0599 -1.0124 -0.0607 0.4593 0.4225 

4 1 5 1 50 22.5 -0.3336 -0.3872 -0.1342 0.1224 0.4193 

4 1 5 1 50 22.625 -0.5502 -0.2376 -0.1457 -0.2909 0.4126 

4 1 5 1 50 22.75 -0.6767 -0.2735 -0.2197 -0.4875 0.4021 

4 1 5 1 50 22.875 -0.6955 -0.3317 -0.2768 -0.4771 0.3878 

4 1 5 1 50 23 -0.6063 -0.7185 -0.4983 -0.6447 0.3717 

4 1 5 1 50 23.125 -0.4250 -1.1102 -0.5024 -0.6160 0.3560 

4 1 5 1 50 23.25 -0.1814 -1.0503 -0.1926 -0.5772 0.3446 

4 1 5 1 50 23.375 0.0857 0.5263 -0.0452 -1.2010 0.3426 

4 1 5 1 50 23.5 0.3368 1.9325 -0.6767 -1.3293 0.3454 

4 1 5 1 50 23.625 0.5346 1.8103 -1.0718 -0.3952 0.3416 

4 1 5 1 50 23.75 0.6472 1.5465 -1.1688 -0.6037 0.3053 

4 1 5 1 50 23.875 0.6603 1.1775 -0.9143 -0.5203 0.1241 

4 1 5 1 50 24 0.5739 0.3635 -0.2350 0.1185 -0.6410 

4 1 5 1 50 24.125 0.4019 -0.9386 0.3989 0.8836 -0.1637 

4 1 5 1 50 24.25 0.1700 -1.8379 0.3156 0.7185 0.3177 

4 1 5 1 50 24.375 -0.0842 -1.4647 -0.1237 0.0359 0.4526 

4 1 5 1 50 24.5 -0.3196 -0.3801 -0.1258 0.0138 0.5114 

4 1 5 1 50 24.625 -0.5005 -0.2310 -0.1263 -0.5253 0.5498 

4 1 5 1 50 24.75 -0.5991 -0.3307 -0.2258 -0.9030 0.5842 

4 1 5 1 50 24.875 -0.6013 -0.5568 -0.3819 -1.1365 0.6240 

4 1 5 1 50 25 -0.5082 -1.0232 -0.5700 -1.2952 0.6812 

4 1 5 1 50 25.125 -0.3360 -1.4241 -0.4974 -1.2787 0.7785 
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4 1 5 1 50 25.25 -0.1129 -1.1387 -0.1291 -0.7797 0.9320 

4 1 5 1 50 25.375 0.1244 33.7674 -4.2209 -34.5693 0.9414 

4 1 5 1 50 25.5 0.4423 1.3189 -0.6246 0.0393 0.8591 

4 1 5 1 50 25.625 0.6849 1.2392 -1.0122 1.5348 0.8372 

4 1 5 1 50 25.75 0.8125 1.6220 -1.7125 1.7194 0.8204 

4 1 5 1 50 25.875 0.8079 0.3898 -0.4078 2.3355 0.7876 

4 1 5 1 50 26 0.6732 0.6658 -0.5309 0.8136 0.7475 

4 1 5 1 50 26.125 0.4366 -0.0781 0.0364 -0.1085 0.7043 

4 1 5 1 50 26.25 0.1396 -0.8712 0.1224 0.0464 0.6478 

4 1 5 1 50 26.375 -0.1716 -0.0795 -0.0138 0.0641 0.5656 

4 1 5 1 50 26.5 -0.4493 -0.2205 -0.1063 -1.0782 0.4590 

4 1 5 1 50 26.625 -0.6484 -0.3213 -0.2434 -1.6129 0.4074 

4 1 5 1 50 26.75 -0.7388 -0.4028 -0.3669 -1.7325 0.4923 

4 1 5 1 50 26.875 -0.7092 -0.5774 -0.4955 -1.8073 0.6166 

4 1 5 1 50 27 -0.5667 -0.9555 -0.6080 -1.7732 0.7034 

4 1 5 1 50 27.125 -0.3358 -1.4764 -0.5153 -1.5651 0.7543 

4 1 5 1 50 27.25 -0.0547 -0.9921 -0.0543 -1.1100 0.7837 

4 1 5 1 50 27.375 0.2314 0.3264 -0.0769 -0.5609 0.7979 

4 1 5 1 50 27.5 0.4769 0.8430 -0.4356 -0.3233 0.8060 

4 1 5 1 50 27.625 0.6447 1.1482 -0.8633 -0.4007 0.8090 

4 1 5 1 50 27.75 0.7113 1.0655 -0.9183 0.0697 0.8114 

4 1 5 1 50 27.875 0.6677 0.7117 -0.5613 -0.0551 0.8205 

4 1 5 1 50 28 0.5236 0.0686 -0.0396 -0.1133 0.8302 

4 1 5 1 50 28.125 0.3034 -0.9104 0.2851 -0.1228 0.8244 

4 1 5 1 50 28.25 0.0428 -1.2071 0.0517 -0.2950 0.8060 

4 1 5 1 50 28.375 -0.2171 -0.6944 -0.1532 -0.4752 0.7868 

4 1 5 1 50 28.5 -0.4361 -0.4050 -0.1888 -0.9119 0.7699 

4 1 5 1 50 28.625 -0.5805 -0.4073 -0.2671 -1.1123 0.7542 

4 1 5 1 50 28.75 -0.6295 -0.5846 -0.4258 -1.2399 0.7388 

4 1 5 1 50 28.875 -0.5776 -0.9903 -0.6454 -1.4283 0.7233 

4 1 5 1 50 29 -0.4345 -1.5852 -0.7357 -1.5647 0.7074 

4 1 5 1 50 29.125 -0.2239 -2.0465 -0.4661 -1.2994 0.6905 

4 1 5 1 50 29.25 0.0196 -1.4865 0.0292 -0.5901 0.6720 

4 1 5 1 50 29.375 0.2560 45.4331 -11.8939 -47.2135 0.6527 

4 1 5 1 50 29.5 0.5916 11.7767 -7.9127 -12.1033 0.6325 

4 1 5 1 50 29.625 0.8657 1.2558 -1.4756 1.5457 0.6122  
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APPENDIX D 

 

SAMPLE BATCH FILE  

 

 Below is the batch file used to run different cases of varying torsional spring constant. Several 

input files were created (see Appendix B) with everything held constant except for the κ values. They 

were run in the following order by executing the file batchfile.bat. 

                   COPY 4-1-5-1-10-INPUT.TXT INPUT-STOPSIGN23.TXT /Y 

           STOPSIGN23 > 4-1-5-1-10-OUTPUT 

            RENAME DATA 4-1-5-1-10-DATA 

 

                   COPY 4-1-5-1-12-INPUT.TXT INPUT-STOPSIGN23.TXT /Y 

           STOPSIGN23 > 4-1-5-1-12-OUTPUT 

            RENAME DATA 4-1-5-1-12-DATA 

 

                   COPY 4-1-5-1-25-INPUT.TXT INPUT-STOPSIGN23.TXT /Y 

           STOPSIGN23 > 4-1-5-1-25-OUTPUT 

            RENAME DATA 4-1-5-1-25-DATA 

 

                   COPY 4-1-5-1-37-INPUT.TXT INPUT-STOPSIGN23.TXT /Y 

           STOPSIGN23 > 4-1-5-1-37-OUTPUT 

            RENAME DATA 4-1-5-1-37-DATA 

 

                   COPY 4-1-5-1-50-INPUT.TXT INPUT-STOPSIGN23.TXT /Y 

           STOPSIGN23 > 4-1-5-1-50-OUTPUT 

            RENAME DATA 4-1-5-1-50-DATA 

 

                   COPY 4-1-5-1-75-INPUT.TXT INPUT-STOPSIGN23.TXT /Y 

           STOPSIGN23 > 4-1-5-1-75-OUTPUT 

            RENAME DATA 4-1-5-1-75-DATA 

 

                   COPY 4-1-5-1-100-INPUT.TXT INPUT-STOPSIGN23.TXT /Y 

           STOPSIGN23 > 4-1-5-1-100-OUTPUT 

            RENAME DATA 4-1-5-1-100-DATA 

 

                   COPY 4-1-5-1-125-INPUT.TXT INPUT-STOPSIGN23.TXT /Y 

           STOPSIGN23 > 4-1-5-1-125-OUTPUT 

            RENAME DATA 4-1-5-1-125-DATA 

 

                   COPY 4-1-5-1-150-INPUT.TXT INPUT-STOPSIGN23.TXT /Y 

           STOPSIGN23 > 4-1-5-1-150-OUTPUT 

            RENAME DATA 4-1-5-1-150-DATA 

 

                   COPY 4-1-5-1-175-INPUT.TXT INPUT-STOPSIGN23.TXT /Y 

           STOPSIGN23 > 4-1-5-1-175-OUTPUT 

            RENAME DATA 4-1-5-1-175-DATA 

 

                   COPY 4-1-5-1-200-INPUT.TXT INPUT-STOPSIGN23.TXT /Y 

           STOPSIGN23 > 4-1-5-1-200-OUTPUT 

            RENAME DATA 4-1-5-1-200-DATA 
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APPENDIX E 

 

FFT AUTOSPECTRA 

 

 In Section 3.2, stationary plates are compared with varying parameters to validate the minimal 

impact of those parameters on the flow field. This was determined by measuring the Strouhal frequencies 

of the wake using the pressure probe tool. 

 Table 6 compares the Strouhal frequencies for various time steps. The autospectra used to obtain 

those numerical values are shown in the figure below. These curves all have peaks at approximately the 

same frequency. 

 

 

Figure 33 FFT: Time step comparison 
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 In Table 7, the z6-planes are shown for several cases using different distances of offset for the 

nascent vortices and the approximate Strouhal frequencies of the wake are given. These values for 

frequency are found from the peaks of the following autospectra, all of which have peaks at approximately 

the same frequency. 

 

 

Figure 34 FFT: Offset distance of nascent vortices comparison 
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Figure 35 FFT: Number of time steps to trigger offset comparison 

 

In Table 9, the theoretical and computed Strouhal numbers of several wakes are given. The DVM 

values for Strouhal number are found from the peaks of the following autospectra of the deflection angle 

data from the program. For the velocity variation, the higher velocities result in peaks at higher frequencies 

indicating higher Strouhal numbers. For plate width variation, a wider plate resulted in a wake with a lower 
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of Reynolds number and Strouhal number provided in Figure 5.  
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Figure 36 FFT: Uniform velocity comparison 

 

Figure 37 FFT: Plate width comparison 
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effect on the Strouhal number of the wake. 

10

100

1000

0.001 0.01 0.1 1

P
o

w
er

 S
p

ec
tr

al
 D

en
si

ty

Frequency (Hz)

0.1 m/s

0.2 m/s

1 m/s

2 m/s

1

10

100

1000

0.001 0.01 0.1 1

P
o
w

er
 S

p
ec

tr
al

 D
en

si
ty

Frequency (Hz)

1 m

2 m

3 m

4 m

5 m

6 m

7 m



126 

 

 

 

 

Figure 38 FFT: Strouhal numbers for varying torsional stiffness 
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Figure 39 FFT: Strouhal numbers for varying damping coefficient 
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Figure 40 FFT: Strouhal numbers for varying mass moment of inertia 
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Figure 41 FFT: Damped frequency for varying torsional stiffness 

0.01

0.1

1

10

100

0.01 0.1 1 10

P
o

w
er

 S
p

ec
tr

al
 D

en
si

ty

Frequency (Hz)

k = 10 Nm

k = 12 Nm

k = 15 Nm

k = 25 Nm

0.01

0.1

1

10

100

0.01 0.1 1 10

P
o
w

er
 S

p
ec

tr
al

 D
en

si
ty

Frequency (Hz)

k = 37 Nm

k = 50 Nm

k = 75 Nm

k = 100 Nm

0.01

0.1

1

10

100

0.01 0.1 1 10

P
o

w
er

 S
p

ec
tr

al
 D

en
si

ty

Frequency (Hz)

k = 125 Nm

k = 150 Nm

k = 175 Nm

k = 200 Nm



130 

 

 

 

 

Figure 42 FFT: Damped frequency for varying damping coefficient 
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Figure 43 FFT: Damped frequency for varying mass moment of inertia 

  

0.01

0.1

1

10

100

0.01 0.1 1

P
o

w
er

 S
p

ec
tr

al
 D

en
si

ty

Frequency (Hz)

I = 1 kgm^2

I = 2 kgm^2

I = 3 kgm^2

I = 4 kgm^2

I = 5 kgm^2

0.1

1

10

100

0.01 0.1 1

P
o
w

er
 S

p
ec

tr
al

 D
en

si
ty

Frequency (Hz)

I = 6 kgm^2

I = 7 kgm^2

I = 8 kgm^2

I = 9 kgm^2

I = 10 kgm^2



132 

 

REFERENCES 

[1]  Morris, R. A. (1997). Aeroelastic modeling and flutter control in aircraft with low aspect ratio 

composite wings (Doctoral dissertation, Virginia Polytechnic Institute and State University, 1996). 

Ann Arbor, MI: UMI Microform. Retrieved May 23, 2019, from http://ezproxy.library.unlv.edu. 

[2]  Gonzales, A. B. (2002). A proposal for aircraft early accurate rapid flutter analysis (Master's thesis, 

California State University, Long Beach, 2001). Ann Arbor, MI: ProQuest Information and Learning 

Company. Retrieved May 23, 2019, from http://ezproxy.library.unlv.edu. 

[3]  Rosenhead, L. “The formation of vortices from a surface of discontinuity,” Proceedings of the Royal 

Society of London, Vol. 134, No. 823,1931, pp. 170-192. doi: 10.1098/rspa.1931.0189. 

[4] Chorin, A. J. (1973). Numerical study of slightly viscous flow. Journal of Fluid Mechanics, 57(4), 

785–796. doi: 10.1017/s0022112073002016 

[5]  Sarpkaya, T. (1975). An inviscid model of two-dimensional vortex shedding for transient and 

asymptotically steady separated flow over an inclined plate. Journal of Fluid Mechanics, 68(01), 

109–130. doi: 10.1017/s0022112075000717 

[6]  Sarpkaya, T., & Schoaff, R. L. (1979). Inviscid Model of Two-Dimensional Vortex Shedding by a 

Circular Cylinder. AIAA Journal, 17(11), 1193-1200. doi:10.2514/3.61300. 

[7]  Walther, J. H., & Larsen, A. (1997). Two dimensional discrete vortex method for application to bluff 

body aerodynamics. Journal of Wind Engineering and Industrial Aerodynamics, 67-68, 183-193. 

doi:10.1016/s0167-6105(97)00072-x. 

[8]  Lin, H., “Prediction of separated flows around pitching aerofoils using a discrete vortex method,” 

Ph.D. Dissertation, University of Glasgow, Glasgow, 1997. 

[9]  Anderson, J. D. (2011). Fundamentals of Aerodynamics (5th ed.). New York, NY: McGraw-Hill 

Education.  

[10]  Vallentine, H. R. (1969). Applied hydrodynamics (SI ed.). London: Butterworths. 

[11]  Agrawal, B. N., & Platzer, M. F. (2018). Standard handbook for aerospace engineers (2nd ed.). 

New York: McGraw-Hill Education. 



133 

 

[12]  Schlichting, H. (1979). Boundary Layer Theory (7th ed.). New York, NY: McGraw-Hill, 1979. 

[13]  Chapra, S. C., & Canale, R. P. (1998). Numerical Methods for Engineers (2nd ed.). Boston: 

McGraw-Hill. 

[14]  Hodges, D. H., & Pierce, G. A. (2011). Introduction to Structural Dynamics and Aeroelasticity. 

Cambridge University Press. Retrieved May 25, 2019, from http://ebookcentral.proquest.com. 

[15]  FreeBASIC Development Team. (2016). FreeBASIC. Retrieved August 3, 2019, from 

https://freebasic.net/. 

[16]  Que, A. (2017). Fast Fourier Transform for LibreOffice Calc. Retrieved November 20, 2019, from 

http://fft4loc.drque.net/.  

[17]  Engineering ToolBox. (2003). Air - Dynamic and Kinematic Viscosity. Retrieved December 18, 

2019, from https://www.engineeringtoolbox.com/air-absolute-kinematic-viscosity-d_601.html. 

[18]  Fatemi, A. Fatigue from Variable Amplitude Loading. Retrieved December 28, 2019, from 

https://www.efatigue.com/training/Chapter_9.pdf. 

  



134 

 

  

CURRICULUM VITAE 

   

Graduate College 

University of Nevada, Las Vegas 

  

  

Emma C. Chao 

  

 

Contact Information 

4505 S Maryland Pkwy 

Howard R. Hughes College of Engineering 

University of Nevada, Las Vegas 

Las Vegas, NV 89154 

Email: echao97@gmail.com 

 

Education 

Bachelor of Science in Engineering – Mechanical Engineering, 2019  

University of Nevada, Las Vegas  

  

Thesis Title 

Discrete Vortex Modeling of Aerodynamic Flutter of Flat Plate with Damped Oscillations 

 

Thesis Examination Committee  

Chairperson, Dr. William Culbreth   

Committee Member, Dr. Woosoon Yim 

Committee Member, Dr. Mohamed Trabia  

Graduate Faculty Representative, Dr. Evangelos Yfantis 


	Discrete Vortex Modeling of Aerodynamic Flutter of a Flat Plate with Damped Oscillations
	Repository Citation

	tmp.1600197123.pdf.QlUHN

