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ABSTRACT

UNCERTAINTY QUANTIFICATION FOR MAXWELL’S EQUATIONS
by
Zhiwei Fang
Dr. Jichun Li, Examination Committee Chair
Professor of Mathematical Sciences

University of Nevada, Las Vegas

This dissertation study three different approaches for stochastic electromagnetic fields
based on the time domain Maxwell’s equations and Drude’s model: stochastic Galerkin
method, stochastic collocation method, and Monte Carlo class methods. For each method,
we study its regularity, stability, and convergence rates. Numerical experiments have been
presented to verify our theoretical results. For stochastic collocation method, we also simu-
late the backward wave propagation in metamaterial phenomenon.

It turns out that the stochastic Galerkin method admits the best accuracy property but
hugest computational workload as the resultant PDEs system is usually coupled. The Monte
Carlo class methods are easy to implement and do parallel computing but the accuracy is
relatively low. The stochastic collocation method inherits the advantages of both of these

two methods.
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CHAPTER 1

INTRODUCTION

In 1873, Maxwell came up with the famous partial differential equations (PDEs) to char-
acterize the dynamics of electromagnetic fields, which brings the science in a new chapter.
Given the material with permittivity ¢ and permeability g, the electronic field E, and the
magnetic flux density B can be described by the following PDEs system

0B
E=——
VX ot
oD
H=—+j
V X 5 +3j,
V-D =p,
V-B=0.

supplemented with the following constitutive relations:

B=uH, j=cE, D=c¢cE.

Here H represents the magnetic field intensity, D is the electric flux density, o is the electric
conductivity, and p is the volume charge density. By solving this system of PDEs with initial
and boundary conditions, we may predict how the electromagnetic fields evolve on a domain.

Nevertheless, things are more complicated than our imagination. In practical problems,
especially engineering problems, the material usually contains uncertainty, due to modeling
error, measure error or other factors. These random uncertainties may change the solution
of a physical model drastically. Therefore, many mathematicians have examined uncertainty
quantification (UQ). Uncertainty is ubiquitous in many complex physical systems, such as
electromagnetic and acoustic waves and the diffusion of thermal energy through random

media, and flow and propagation driven by stochastic forces and stochastic initial conditions.



Stochastic partial differential equations (SPDEs) have played an important role in the study
of uncertainty quantification in many branches of science and engineering. In the solid state
field, fluctuations in the production process (such as during the lithography) of materials
allow us to treat the permittivity and permeability as uncertain parameters (e.g. [1, 2]).
Stochastic Maxwell equations with additive noise were investigated in [3, 4].

Due to the curse of dimensionality [5], it is very challenging to solve SPDEs efficiently.
Many methods have been come up with to conquer the high dimensionality issue in SPDEs.
Three major classes of numerical methods have become very popular in solving stochastic
PDEs. First one is the so-called non-intrusive stochastic collocation method (cf. [6, 7, 8]),
which is simple in implementation and the system of resulting equations is decoupled and
hence is efficient to solve. The stochastic collocation method can achieve fast convergence
when the solutions are sufficiently smooth in the random space. The second one is the intru-
sive stochastic Galerkin method [6, 7, 8], which shows fast convergence rates with increasing
order of expansions, provided that the solution of the underlying differential equation is
sufficiently smooth in the random space. However, the system of equations resulting from
the stochastic Galerkin methods is in general coupled and quite expensive to solve especially
for problems requiring high-dimensional random spaces. The last popular method is Monte
Carlo class methods. The Monte Carlo class methods are easy to implement and friendly to
parallel computing. However, the classic Monte Carlo method only has half order accuracy
[9]. By using a multi-level technique, we may fix this issue [10].

In this dissertation, we will study the theory of these three popular methods for elec-
tromagnetic fields and their applications. In chapter 2, we will investigate the stochastic
Galerkin method and apply it for standard Maxwell’s equations. In chapter 3, we will
consider the Monte Carlo class methods for Maxwell’s equations. In chapter 4, stochas-
tic collocation method has been considered for Maxwell’s equations with Drude’s metama-
terial. Besides the theoretical analysis, we also simulate the backward wave propagation
phenomenon in this chapter. We conclude this dissertation in chapter 5.

Before the next chapter, we will introduce the following notations which will be used for

all chapters throughout this dissertation.



We introduce the following Hilbert spaces:

H(div; Q) = {u € (L*(Q))*: V-u e (L*()°},
H(cwrl; Q) = {u € (L*(Q))*: V xu € (L*(Q))*},
Hy(curl; Q) = {u € H(curl;2) : m x u =0 on 00},

where Q) is a bounded domain in R®, and n denotes the unit outward normal vector on ).
Suppose €2 has been partitioned by a family of regular cubic or tetrahedral mesh T" with
maximum mesh size h, and adopt the r-th (r > 1) order Raviart-Thomas-Nédélec (RTN)

mixed finite element spaces Uj, and V, [15, 16]. That is, for any r > 1,

U, = {uh € H(le, Q) : ’Ll,h‘K € (p,_l)s @ﬁr,lw, VK € Th} ,
Vi ={vy € Hlew; Q) : vyl € (p,-1)* @ S, VK € T},

S,={pe®)’: z-p=0},
or RTN cubic elements:

Uh - {uh € H(ChV; Q) : uh|K € Qr,r—l,r—l X Qr—l,r,'r’—l X Qr—l,r—l,m VK € Th} 9
Vh = {Uh € H(Curl; Q) . vh|K S Qrfl,r,r X Qr,rfl,r X Qr,r,rflv VK € Th} .

Here p, denotes the space of homogeneous polynomials of degree r, and @); ;, denotes the
space of polynomials whose degrees are less than or equal to ¢, j, k in variables z, vy, z,
respectively. To impose the perfect electrical conductor (PEC) boundary condition, we

denote

V)i={veV,: vxn=0ondQ}.

This RTN mixed finite element is also called edge element.
In numerical simulation, we also consider the transverse electric (T'E,) mode or transverse
magnetic (T'M,) mode. In this case, the lowest order (linear) edge element can be constructed

by the following:



Up = {1 € L*(2) : ¢p)e is a constant, Ve € T},
Vi, ={p, € H(curl; Q) : ,|c € span{p;Vo; — d;Vi}i,j=1,2,3,Ve € Tp},

where ¢; denotes the barycentric coordinates of a triangular element e. To impose the 2D

perfect conducting boundary condition, we introduce the subspace
V)={p,€Vy: 7 -¢,=0, on o0},

where 7 is the unit tangential vector on 0.



CHAPTER 2

STOCHASTIC GALERKIN METHODS FOR
MAXWELL’S EQUATIONS WITH RANDOM
INPUTS

2.1 Introduction

As mentioned in chapter 1, the system of PDEs arising from the stochastic Galerkin meth-
ods is generally coupled and quite expensive to solve especially the dimension of random
variables (R.V.s) are very high. The stochastic Galerkin method is based on the polynomial
chaos (PC) approximation, originally developed by Ghanem and Spanos [7] using Wiener-
Hermite expansion and finite element discretization for a wide range of problems. It was
later extended by Xiu and Karniadakis [11] to generalized polynomial chaos (gPC) expan-
sion by using general orthogonal polynomials. Based on the gPC expansion and stochastic
Galerkin projection, a given SPDE can be transformed into a system of deterministic PDEs
(the Galerkin system) which can be solved by any existing popular numerical methods.

Compared with many current papers on numerical SPDEs, there are few works for solv-
ing stochastic Maxwell’s equations, especially by gPC methods. In physical and engineering
projects, uncertainties may caused by physical materials, by the source wave, and by the
physical domain, etc. Therefore, the development of an efficient and high accurate algo-
rithm for Maxwell’s equations is meaningful for practical purposes and also interested for
mathematicians.

The rest of this chapter is organized as follows. In section 2.2, we carry out some analysis
of the gPC method for Maxwells equations. In section 2.3, we develop and analyze both the
semi-discrete and fully-discrete finite element schemes for solving the system arising from the
gPC method. Numerical experiments are presented in section 2.4 to support our theoretical

analysis. This chapter is based on my published paper [12].



2.2 The gPC method for Maxwell’s equations

Consider the following Maxwell’s equation in R? with random coefficients

ez, y)0E(t,xz,y) = VxH(tzy), (2.1)
wz,y)0H(t,z,y) = -V x E(t,z,y), (2.2)
where x denotes the spatial variable in the domain Q C R?, and y = (y1, 92, - - - Jyn)| € RY,

N > 1, is a random vector with independent and identically distributed (i.i.d.) components.
The curl operators are understood to operate on the spatial variables &. What is more, we

assume that the equations (2.1)-(2.2) are subject to the initial conditions
E(0,z,y) = Eo(x,y), H(0,z,y)=Hoz,y), (2.3)
and the PEC boundary condition
nx E =0, on 012, (2.4)

where n denotes the unit outward normal vector on 0f2, and Eq and H are given functions.

Following the standard gPC notations [13], we assume that {®,,(y)}¥_, be the N-variate

N+p

N ) Every multivariate polyno-

orthonormal polynomials of degree up to p, where M = (
mial ®,,(y) € {®,.(y)}*_, is constructed as a product of univariate polynomials in each

m=1

direction variable y;, ¢ = 1,--- , N. That is,

N N
k=1 k=1

where m; is the degree of the univariate polynomial ¢, (y;) for 1 < i < N. For the sake
of accuracy and computational cost, we will adopt the weighted orthonormal polynomials.

That is, we assume the univariate polynomials {¢;}, are orthonormal with weight p;(y;)

El¢;(ys)or(ys)] := /: &5(yi)or (i) pi(yi)dyi = Oji, 1<4,5,kE<N,



Table 2.1: Commonly used distributions (measures) and corresponding orthogonal polyno-
mials.

Distribution | Orthogonal polynomials Support Alias
Gaussian Hermite polynomials R Wiener chaos (Hermite chaos)
Uniform Legendre polynomials [a, b] Legendre chaos
Beta Jacobi polynomials [a, b] Jacobi chaos
Gamma Laguerre polynomials [0, 00) Laguerre chaos
Poisson Charlier polynomial {0,1,2,---} Charlier chaos
Binomial | Krawtchouk polynomial | {0,1,2,--- ,N} Krawtchouk chaos

where E[-] is the expectation operator, d;; is the Kronecker delta function, p;(y;) is the density
function for the R.V. y;, and Z; is the domain of y;. Thus, the choice of ¢;(y;) depends on
the underlying probability density function p;(y;). Table 2.1 lists some commonly used
distributions and their orthogonal polynomials [14]. Let p(y) = [[~, pi(y:) be the joint

density function, and = = []\, Z;, then the N-variate basis polynomials {®,,(y)}M_, are

M

also orthonormal{®,,(y)},_,

E[®,, ()8, (y)] = / () On(W)p(Y)dy O 1 <mn <M (25)

With the weighted orthonormal basis {®,,(y)}M

m_1, We may approximate the solution of

(2.1)-(2.2) as power series

E(t,xz,y) =Y E.(tz)P(y), H(tzy => Hyltz)P.(y). (26
m=1 m=1

Remark 1. In fact, some conditions are needed for the approzimation (2.6), and the con-
ditions are varying for different kinds for approximations. For example, the L* least square
approzimation (general Fourier series) requires the solution is bounded in L* norm, and
Fourier coefficients converge to 0. But the proof of these conditions are not elementary.
We hence simply assume these conditions are satisfied without any proof. The mathematical

proof of those conditions are remained as a future work.



Substituting (2.6) into (2.1)-(2.2), we get

bjg

e(x,y)OEn(t,x) —V x H,(t,x)) P,(y) = 0 (2.7)

3
I

K

(u(x,y)0rH,(t,x) +V X E(t,x)) Pp(y) = 0 (2.8)

3
I

Multiplying (2.7)-(2.8) by ®x(y)p(y) for any & > 1, and then integrating the resultant, we
obtain, by the orthonormality (2.5),

Z A5 WO E,(tx) — V x Hy(t,z) = 0, (2.9)
Z Al OH ,(t,x)+V x Ey(t,x) = 0, (2.10)
m=1

where

Apm = /_ e(z,y)n(Y)Pr(y)o(y)dy,  Ap,, = / (@, Y) P (Y) Pr(y)p(y)dy

If we truncate the approximation to p-th term, that is, consider the p-th order gPC approx-
imations of E and H, then

Ey(t,z,y) = Z E.(t, )P, (y), vtz y) ZHm (y). (2.11)

The coefficients Em and H, n satisfy the following PDEs system

Z A5 WO En(t,x) —V x Hy(t,®) = 0, (2.12)
ZA m(t, ) +V x Ey(t,z) = 0, (2.13)
By using the column vector notations E= (E’l, e ,EM)T, H = (f-I\l, e ,f—I\M)T, and ma-

trices notations A*(x) = (A}, )1<km<ym and A* = (A} )i<km<m, the above PDEs system



can be written as

A (@)8,E(t,x) —V x H(t,x) = 0, (2.14)
AM)0,H (t,x) — V x E(t,x) = 0, (2.15)

which are subject to the PEC boundary condition

A~

nx E =0, on 02, (2.16)
and the initial conditions
E(0,z) = Eo(x), H(0,z) = Hy(x), (2.17)

where Eq(x) and H, o(x) are the gPC expansion coefficient vectors obtained by expressing
the initial condition (2.3) in the form of (2.11).

For the sake of solvability of (2.1)-(2.2) and (2.14)-(2.15), we assume the following uniform
boundness of the permittivity and permeability: there exists constants €in, €max, Mmin, and

Imax Such that
0 < Cmin < (2, Y) < Emaxs 0 < fanin < (2, Y) < fimax, YV E€Q, Yy e RY  (2.18)

Then, we have the following theorem about the coefficient matrices A°(x) and A*(x).

Theorem 1. Under the assumption (2.18), the matrices A°(x) and A*(x) are positive def-

inite for any x € 2, and satisfy the following estimates

0< 5min||u||%2(9) <u' A%(x)u < smax||u||%2(ﬂ), (2.19)

0 < fimin[[ul|720) < w0 A (@) < prmax|re]| 220, (2.20)

for any M dimensional non-zero vector u.

Proof. Let u = (U, ,Up)' be an arbitrary non-zero vector, and u(y) = >, U Px(y).



By the definition of A®(x), we have for any x € €,

WA @)=Y > i [ <@ y)Buly)n(y)ow)dy

k=1 m=1 E

le(w,y)u2(y)p(y) > 0, (2.21)

which shows the positive definiteness of A°(x). Then the boundness of (2.19) is given by
(2.21) and (2.18). The conclusion for A*(x) follows the same argument. O For the PDEs

system (2.14)-(2.15), we have the following energy conservation property.

A~

Theorem 2. The solution (E(t,:n)j—I\(t,m)) of (2.14)-(2.15) subject to the PEC boundary
condition (2.16) satisfies the following energy identity for any t € [0,T] and k >0

2 2
(‘ L2(Q)> —r <‘ L?(Q))

where (A%/?)2 = A® and (A*?)? = A" are the square root of A° and A", respectively, and

(2.22)

~112 —~
A€/2atkEH ¥ HAM/2atkH
12(@)

~12 —~
AE/QatkEH ¥ HAM/%tkH
12(0)

t=0

Oy 1S the k-th order time derivative operator.

Proof. Multiplying (2.14) and (2.15) by Eand H , and integrating over €, respectively.
Then, summing up the resultants and using the PEC boundary condition (2.16), we easily
see that (2.22) holds true for k£ = 0.

For high order time derivatives, we take the k-th time derivative of (2.14)-(2.15), and

follow the same step as for the k = 0 case. O

2.3 The finite element time domain schemes

In this section, we solve the PDEs system (2.14)-(2.15) by a finite element method.

10



2.3.1 The semi-discrete scheme and its analysis

Let us first consider a semi-discrete scheme for (2.14)-(2.15): find E), € (V)M H, € UM
such that

(AsatEIha bEnR)Q — (ﬁm V X opn)a =0, Vop, € (VHM, (2.23)
(Auatﬁh, dmn)a+ (VX E,, dun)o =0, Vom, € (UM, (2.24)

subject to the initial conditions
En0,2) =SEo(z), Hp0,z)='Hy(x), (2.25)

where we denote TI§ the Nédélec interpolation operator and I1¢ the L? projection into the

space Uy,. It is known that II§ and II{ satisfy the following error estimates [15, 16]:

|l — w2 + |V x (w — )| 1200 < Ch ||| grewrio), Yu € H (curl;Q), (2.26)

v — T¢w] 2y < ChT||vllirioy, Yo € H'(Q). (2.27)

Now, we are going to provide the error estimate for the semi-discrete scheme (2.23)-(2.24).
Let E(t,z,y) and H(t,x,y) be the exact solution of (2.1)-(2.2) subject to the initial con-
ditions (2.3) and the PEC boundary condition (2.4), and E(t,x,y) and H}(t,x,y) be the

numerical solution
M A~ —1
Wt x,y) ZEthD n(t,x,y) ZHmh<I> (2.28)

where Em,h and f{\m,h are the m-th component of Ej(t, ) and f—I\h(t, x) of (2.23)-(2.25).

Considering the following errors
E—-E,=(E—Ey)+(Ey—E,), H-H,=(H-Hy)+ (Hy - H,;), (229)

where E); and H ), are the gPC approximations given by (2.11). In the next theorem, we

will show that the error bound is optimal and the error grows only linearly in time.

11



Theorem 3. Denote the M-dimensional vectors RE and R* with k-th components given by

Z A (@) By (tx), Ry = > Al ()0 H,(t,x), 1<k<DM. (2.30)

m=M+1 m=M+1

Then, we have the optimal error estimate: for any t € [0,T],

E||E — E;||? s E||H - H,|? i
I nllz2(0) + | nll72(0)

- 1/2
< 2 2
< Cm( S Bt + S IH., tm)HL(m)

m=M-+1 m=M+1
~ ~ —~ —~ 1/2
+ CTH 10ax (I0E I curty + 1Bl iy + 10 H [ir(@y + 1 H )

. - 1/2
+OT max (I A72RE By + AR By (2.31)

where the constant C > 0 is independent of T and h, and A~%/*> and A=*/? are the inverses

of A%/ and AM?, respectively.

Proof. Asshown in (2.29), we will split the errors into two parts: the gPC approximation
error and the semi-discretization error. We will then prove them in order. (I) By the
expansion (2.6) and (2.11), and the orthonormality condition of ®,(y), we easily see that

the mean of the gPC approximation error

E [HE - EMH%%Q) = /_ I1E— EMH%%Q)P(?J)dy
2

/ / Y En®u(y)| deply)dy
m= 1 m=M+1
M 2 0 2
- /Q / !Z S Enda(y) ]my)dydw
m=M+1

—ZHE t,@) = En(t, @) 72(0) + Z 1Em(t )72

m=M+1

By the same argument, we have

E|IH - Hull}q) = ZHH (@) = Fnt @)+ > IHalt2)lEso

m=M-+1

12



To investigate the error E — E); and H — H ;, let us introduce E = (Eq,--- ,EM)T and
H = (Hy,--- ,Hy)", where E; and H; are the coefficients in the expansion (2.6). By
(2.9)-(2.10), we know that E and H satisfy the following equations

A (2)0,E(t,x) —V x H(t,x) = R” (2.32)
AM(x)o,H (t,x) +V x E(t,x) = R” (2.33)

subject to the PEC boundary condition
nxE=0, ondf, (2.34)

and the initial conditions

E(0,z) = Eo(x), H(0,x)= Hy(x), (2.35)

where Eq(z) and H, o(x) are the gPC expansion coefficient vectors obtained by expressing
the initial condition of (2.3) in the form of (2.6). Moreover, the k-th components of R and
RH are given by (2.30).

By (2.14)-(2.15) and (2.32)-(2.33), we obtain the following error equations in the weak

form:

(A°0,(E — E), p)o — (H — H,V x @p)o = (R, )0,V @ € (H(curl; Q)™
(2.36)

(A“0,(H — H),pp)a + (V x (E — E),py)a = (R, )0,V ¢y € (H(div; )M, (2.37)
subject to the PEC boundary condition

nx(E—-FE)=0, onodQ, (2.38)

13



and the initial conditions

(E — E)0,%) = (H — H)(0,z) = 0. (2.39)
Choosing ¢, = 2(E — E)(t,a:) and @y = 2(ﬁ— f{\)(t,m) in (2.36) and (2.37), respec-

tively, adding the resultants together, and using the Cauchy-Schwarz inequality, we have

d /0 = A —

= (148 = B)ffa0) + 1 A**(H — H) [}2(a)) (2:40)
= 2(R",E — E)o+2(R" . H — H)q
<6 (|47 — E) 320y + 1|A**(H — H) [}2(0) )

1 . -
+ 5 (IA72 Ry + | AT RF [fa(qy ) (2.41)

Integrating (2.41) from ¢ = 0 and any ¢ < T in time and taking the maximum of right
hand side with respect to ¢t € [0, 7], we obtain

(||A€/2(E — E)|32q) + |A"*(H — H)||%z(m) (t)

< 0T max (4B = B)|3x(q) + | A*2(H ~ )|l

0<t<T

T . _
+ = max ([ A72RE |3y g + AR |22(q, ) (2.42)

0 0<t<T

Taking the maximum at left hand side with respect to t € [0, 7], and setting 6 = %, we
obtain
max ([|A7(E = B)[faq) + 4" (H - H) 320

< AT? max ([|[ A2 R”| T2y + [[AT*2RY||720)),

0<t<T

which leads to

SO —_ 1/2
max (I|4°2(E - B)|3xq) + [ 42(H - H) [32(0))

0<t<T

< CT max (AR |[Zq) + AR [ 120))' 2. (2.43)

0<t<T

14



(IT) Multiplying (2.14)-(2.15) by ¢p; and ¢y, and integrating over €2, we obtain

(AOE, @rp)o — (H,V X pp)a =0, Ve, € (Vi)Y (2.44)
(Auatﬁa c)"H,h)Q + (v X E? (pH,h)Q = 07 vLIOH,h S (Uh)M (245>

Subtracting (2.23)-(2.24) from (2.44)-(2.45), we obtain the error equations:

(Aeat<E - Eh)a QOE,h)Q - (f_I\_ ﬁh? V x (PE,h)Q = 07 v(PE,h S (V?L)M7 (246>

(A“@t(f-I\ - ﬁh)a ean)at (V x (E - Eh>7 Pup)o =0, Vg, € (Uh)M- (2.47)
Let us introduce the shorthand notations
EI = H;’;E, ﬁ; = Hfj{\.
Choosing ¢p ), = 2(E;— E),) and Pun= 2(f-I\1 — f—I\h) in (2.46)-(2.47), respectively, we have

d [ epim = =
= (1421 = Bl + |A“*(Hy = H))lF2(0))
= 2A°0(E;—E)E,—E))o+2H—H,,V x (E, - Ey))q

+2(A*0,(H,; — H),H,; — H,)o—2(V x (E— E;),H; — Hy)q

< A (%H@t(]@] — E)H%z(g) + 0| E; — EhH%?(Q))
+A" (%Hat(ﬁl - ﬁ)”%?(n) + 0| H — ﬁh“%?(ﬂ))
+%HV x (E — EI)H%%Q) + 5HEI - ﬁhH%%Q)’

< A (C’*T 10 ey + 31 B — Eh\|i2<m)

)
C’hZT - — —
T A (THaﬁHH%{T(Q} +0|H; — Hh||%2(9))
Ch2r

T

1Bz curiy + O H r — Hil 720, (2.48)

curl;)

where the fact that V x (E I — Eh) € U}, the Cauchy-Schwarz inequality, and the interpo-

lation and projection error estimates (2.26)-(2.27) has been used.
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Integrating (2.48) from ¢ = 0 to any ¢ < 7T in time, and taking the maximum of the right
hand side with respect to t, we get

(HAE/Q(E[ — Eh)H%Q(Q) + HAM/Z(HI - Hh)”%ﬂ((l)) (t)

< (141 = B)llfaq + 1A (Hy = Hy)laa)) (0)

TCh? ~ — ~
— max (10 ey + 10:H o) + 1B curtn)

+C§T012ta£§[“ <HE1 - EhH%2(Q) + HH[ — Hh”%Q(Q)) . (249)

Noting that the first term on the right hand side of (2.49) is zero due to (2.25), then

taking the maximum of the left hand side with respect to ¢, and choosing ¢ such that § = 20%,
we have
e/2( 1 AR /2(TF 7.\ 112 1/2
max (|A7(Br = Byl + 14 (Hy — Hy) o))
r 73112 712 752 1/2
< 1w wax (10E ey + 10H 3y + 1B unsey) - (250)

Using the interpolation and projection error estimates (2.26)-(2.27) and the triangle in-

equality, from (2.50) we have

~ o~ o~ 1/2
max (11452 — Bu) 3o + 142(H = Hy)l3xa))

0<t<T
~ ~ — _ 1/2
< CTh' Jnax, (HatE”%JT(curl;Q) + ||E||§{T(curl;§2) + ||6tH||§{T(Q) + HH”%{T(Q)) :

(2.51)

By the error definition (2.29) and the obtained error estimates (2.43) and (2.51), we conclude
the proof of (2.31). O

Remark 2. For any given small number €y > 0, under the assumption that there exists a
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sufficiently large M in (2.11) so that

. 1/2
o | (3 1Bt + 3 I

m=M+41 m=M+1

1/2
+ (142 RE By + AR (o)) ] <, (2.52)

A~

and the solutions (E, ) of (2.14)-(2.15) are smooth enough and bounded above:

~ N _— _ 1/2
max (10 3 curtey + 1Bty + 10 H @y + 1 Hlry) - <C (253)

0<t<T

then the optimal error estimate (2.31) becomes
) 1/2 ) 1/2
(E[IE - Brl3w)])  + (E[IH - Hillxo)|) © <O+ Dew+CTH.  (254)

Similar to remark 1, exact conditions for the assumption (2.52) are unclear since they involve
a prior estimate of the solution and the underlying polynomial basis, which are complicate.
Nevertheless, such issues have been explored for the stochastic Helmholtz equation [17] and

the stochastic Darcys equation [18].

2.3.2 The fully-discrete scheme

To construct a fully discrete finite element scheme, we assume that the time interval [0, 7]
is partitioned uniformly into 0 =ty < t; < --- < tn, =T, where t;, = i1, 1 = 0,--- | Ny,
and 7 = Nlt denotes the time step size. Furthermore, we introduce the following backward

difference and average operators: For any discrete time solution u",

n+1 n

u"tt —wu
dru = —
un Tt — 20" 4yt
SZ2u"t = 5, (5u" ) = 5 ,
-
61‘:+1un+1 _ 57(61‘:”7#1)7 E>1
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Leap-frog scheme

Now we can construct a leap-frog type scheme for solving (2.14)-(2.15): given proper initial

. . =0 ~—3 0 ~ ot 0 k41
approximations H, € Uy and E;," € V, for k> 0 find E, ~ € V}, and H;, € U, such

that
EH% Ek_% k
A . T L 790E,h - (Hhv V X SOE,h)Q = Oa VSOE,h S V?l, (255)
Q
ﬁk+1 ﬁk
<‘/4/J L T h7(PH,h> + (v X Eh+27<pH7h> = 0, v‘PH,h € Uh. (256)
Q Q

Notice that the above leap-frog scheme decouples the original coupled system by first
~k+1 —k+1

solving for Eh+2 through (2.55), and then solving H,LJr from (2.56). We like to remark that

the leapfrog scheme does not conserve the energy anymore due to time staggering, but the

scheme is conditionally stable as shown below.

Theorem 4. Let Cj,, > 0 be the constant appearing in the standard inverse estimate
||V X ’U,hHLQ(Q) S Cinvh_1||uh||L2(Q)- (257)
Then under the time step constraint
(Emin,u/min)l/Qh

e (2.58)

kbl
for any k > 0, the solution (EZ+2,HZ+1> of (2.55)-(2.56) satisfies the enerqy stability:

~k+1 2 k1112 1 2 —~012
(LSRN S V-l BT VS0 IS 0= N B
L2(Q) L2(Q) £2(9Q) L2(Q)
Proof. In (2.55) and (2.56), we set
~k+2 ~k—1 —~k+1  —k
‘PE,h:T(Eh ‘+ E, 2)7 ‘PH,h:7'<Hh +Hh>‘

18



Then summing up the resultants, we have

2 2
st (HA“”H’““
L2(Q)

L2(Q)

—~k ~k+31 ~k—1 ~ktl okl =k
Q Q

—~k ~k—1 /\k+1
_ KHVE ) _( VKB H (2.60)
Q Q

Summing up (2.60) from k = 0 to any k < N;, we get

~k
_ HAE/ZE’L

1 2 1 2
bt P ) - (P, o1
L2( L2(Q) L2(Q) 2(Q)
—0 ~— = —~k ~ 1
= 7 Kﬂh,v x Eh2> (Hh“ v x E?) } . (2.61)
Q Q

By using the Cauchy-Schwarz inequality, the inverse estimate (2.57), and Theorem 2, we

have

—k+1 ~k+1 —k+1 ~k+1
T(Hh VxE, ngHh ‘ E,
Q

AR/2 ﬁ:“

Cirw h~ !
Q)

L3( L2(Q)

—-1/2
7-ILLITIH'I

Consh et | A2 B,

mll’l

IA

@) 2@)

1 2
2 . (2.62)
12(Q)

3 Skt
APE,

IN

Th_lcinvgm}I{Q/’Lm:llI{2 (HAM/QHk+1
2

\

By the similar argument, we have

1 W10, e U2 o1 4
(Hh,V % E ) < T Emin Hmin HAM/QH ‘ A5/2Eh2
Q

2

2
(2.63)
L2(Q)

The proof is completed by substituting the estimates (2.62) and (2.63) into (2.61), and using

L2(Q) ‘

the time step constraint (2.58). O
We like to remark that C, = (5minumin)_1/ 2 denotes the wave propagation speed in a
medium with permittivity €., and permeability pin,. With this notation, the time con-

straint (2.58) becomes 7 < which is similar to the stability constraint obtained for

Cz nv Cv
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the leap-frog scheme developed for solving the metamaterial Drude model [16].

Modified leap-frog scheme

To further reduce the computational workload, we consider a more efficient scheme than the
leap-frog scheme. Following the same idea in [13], it can be proved that the matrices A®(x)

and A*(x) are strictly diagonal dominant, and we can rewrite them as
A(x) = D¥(x) + S(x),  A'(x) = () + (=), (2.64)

where D*(x), D*(x), and S°(x), S*(x) are the diagonal and off-diagonal parts.
By using the Taylor expansion, we can establish the following second order backward

finite difference scheme:

5

92 k—% 3 k—3 k-5
“ W EEW gk 4 O(), (2.65)

T

Using (2.64)-(2.65), we propose the following modified leap-frog type scheme for solving
—0 ~— L

(2.14)-(2.15): given proper initial approximations H, € Uj, and E,*> € V', for k > 0, find

~k++ —~k+1

Eh+2 € V) and I—I,;r € Uy, such that

~k— ~k—3 ~k—5
2E, * -3E, *+E, *
+ | 5L Th b epn| =0 Vep, eV,

f—I\kJrl f{\k k44
<Duu7¢f[,h> +(VXEh 790H,h)
Q

Q

T Q

—k —k—1 —k—2
T

790H,h> =0 VYeu, €U
Q

Though we could not strictly prove the stability of this modified leap-frog scheme at this
moment, it is a high accurate scheme (second order in time) and much more efficient than the

leap-frog scheme (2.55)-(2.56). We will verify this advantage in the numerical experiments
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given below.

2.4 Numerical experiments

In this section, we will perform some numerical tests to verify our theoretical analysis and
present some applications of random Maxwells equations. All our numerical experiments
are carried out on a 2017 MacBook Pro laptop with processor of 2.8GHz Intel Core i7, and
memory of 16GB 2133MHz LPDDRS3.

To implement the leap-frog scheme (2.55)-(2.56) for solving (2.14)-(2.15), we assume some
given proper initial approximations ff\z € Uy and E;% € V. Then our problem reads: for

~k+1 —~k+1
k>0, find E, 2 € V?and H, € Uy, such that

~k+1 ~k—1
E, °*—-FE ° —~k
Ar=r - " v PE - (Hmv X ‘PE,h)Q = (f7 ‘PE,h) , Vg, € V%a
Q

ﬁk—H ﬁk k41

_ SR
(Au " - h"PH,h) + (V o 2a"PH,h) = (g790H,h)7 Veoun € U

QO Q

where f and g are artificial terms to test the convergence rate of the numerical scheme.
We partition the physical domain € into N, = N? elements with N; edges. By applying

the finite element discretion, we assume the coefficients in (2.28) have the following form:

t Ne t t N t
Em,h = Em,j,hsoE,j,h(m) Hm,h = E Hm,j,h<PH,j,h<33)
=1 j=1

where Ng and Ny are the number of basis functions of E and H, respectively. We hence

get the algebraic equations about Ej, and H), as following:

k+1/2 k—1/2
e QEMYZ_ g ®En7j7h/ +THE M+ TFE

m,n,i,j .3, m,n,i,j
Iz k+1 _ qm k k+1/2 3 ;T k
Apnij @H, =A@ Hy iy —TE "M, + 7G,
where A5 ;- and A; ;. are two fouth order tensors whose element by element definitions
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are given by

B = | @00 )Ps@)Pr0(2) - 05,0 ()o(v)ldy
Xz
Aoy = | @000 0)010(2) - 011,0()olv)ndy
X
and
Fy; = U PY)On(y)f(tr, 2, y) - soE,j,h(@dwdy] , 1<n<M, 1<j<Ng,
QxQ MXNg
Gy = U P(Y)Pn(y)g(ts, z, y) - wH,j,h(w)dwdy} , 1<n<,M 1<j<Npg.
QxQ M XNy
Denote B}, ;, and H,, ;, for the two second order tensors (i.e., matrices):
¢ ~t .
Enjh [Emj’h]MxNE, 1§’I”L§M, 1§]§NE7

H! H

njt = [ n,j,h]MxNH7 1<n< M, 1<j<Ny.

and ® for a tensor product like operator:

M Ng

A @B =S B, / (@, Y) B (8) (1)1 s (T) - Py (@) () dezcly

m=1 i=1
M Ng

—~t
'Aumnz] ® Ht Jh T Z ZHn]h/ K m7y)q)m(y)q)n(y)goH,i,h(w) ' QOH,j,h(w)p(y)dxdy

m=1 i=1

and M; ; for the stiffness matrix

M;; = [/ Prih VX ¢E,j,h(w)dw:| , 1<i< Ny, 1<j5<Ng.

NHXNE

Therefore, once we have Et ih and H! gho the numerical solutions of F;, and H;, can be

computed by the following quadratic forms:

Eh(ta .’E,y) = ((I)l(y>7 T 7CI)M(y)) ’ Eatz,j,h ' (‘PE,I,h(x)? T 7‘PE,NE,h(w))T7 at t = tk-‘rl/??

H)(t,z,y) = (P1(y), - Pu(y)) - H;m (pman(@), - 790H,NH,h(33))Ta at t = ty.
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for k=0,1,---, N

2.4.1 Example 1: test of convergence and CPU time

For simplicity, we solve the two-dimensional T'E, mode equation:

e(x,y)Ey, (t,x,y) = 0, H(t, x,y) + f1(t, 2, y),
€(w7 y)atE$2 (t7 :B’ y) = _a-IlH<t7 w? y) + f2(t7 m’ y)’

:U’(wv y)atH(t> T, y) = _<8331E$2 (t> T, y) - aszwl (t, €T, y)) + g(t, €T, y)'

subject to the PEC boundary condition (2.4). We solve this system on © x Z x [0,7],
where Z = Q = [0,1]> and T = 107°. The domain € is partitioned uniformly into N, = N?
rectangular elements with a total edge number Ny, where N, is the total time steps. We solve
the problem by using the lowest order edge element on €2, hence N = Nj and Ny = N..

We choose the permittivity and permeability as follows:

e(x,y) =1+ 0.1(sin(z1) cos(y1) + cos(xz) sin(ys)),

p(x,y) =14 0.1(cos(zq) sin(y;) + sin(xz) cos(yz)),

for any @ = (x1,22) € Q and y = (y1,92) € Z. The following exact solution is used to test

the accuracy of our numerical scheme:

E,, (t,x,y) = sin(rzy)e (1 + 0.1sin(my; ) cos(mya)),
E,,(t,z,y) = sin(rx)e (1 + 0.1 cos(my; ) sin(rys)),

H(t,z,y) = m(cos(mz;) — cos(mzs))e " (1 + 0.1sin(my; ) sin(mys)),

with appropriate source terms f = (f1, f2) and g = g. We use orthogonal polynomials of
degrees up to 5 and assume that y has a 2-dimensional uniform distribution on [0, 1]. Hence,

p(y) =1 for y € = and we set M = 21. We calculate the errors of E := (E,, E,) and H at

23



Table 2.2: Errors of E and H by leap-frog scheme
Mesh | [|[E — Ep|;22) | Rate | |[H — Hp|;2(z2) | Rate | CPU time (s)
2x2 |8.517593e — 02 — 3.259975e — 01 — 13.243185
4 x4 | 1.760587e — 02 | 2.2744 | 8.343959¢ — 02 | 1.9925 | 104.981369
8 x 8 | 4.620225¢ — 03 | 2.1022 | 2.110498e — 02 | 2.0072 727.997221
16 x 16 | 1.323839¢ — 03 | 1.9953 | 5.162830e — 03 | 2.0313 | 5630.592848

the final time T by the following norm:

Ne
||U—UhHl22(L2) = /_p(y)ZhL(wz;y) _uh(wlay)‘2|Kl‘dy7
= i=1

where x; is the middle point of element K, |K;| is the area of element K;, and u represents
E or H.

The solution errors are presented in Table 2.2, which clearly shows a second order con-
vergence for both E and H. This is consistent with the theoretical result of leap-frog scheme
shown in [16].

To test the convergence of gPC expansion on 2, we solved the problem by using different
orders of orthogonal polynomials for E and H with a fixed N, = 20. Observing the error
of H in Figure 2.1, we can find that the error is decreasing when the degree p of the gPC
orthonormal polynomials is increasing. Note that the error stops going down further when
p > 4. This is because the gPC error is so small for p > 4 that the spatial and temporal error
of the scheme will dominate the total error. Therefore, in the above numerical example, we
choose p = 5 so that the gPC error will not affect the total error.

Considering that the standard leap-frog scheme (2.55)-(2.56) involves the full matrices
A5®) and AM®) | we expect that the modified leap-frog type scheme would be more efficient.
By using this scheme, we just need to handle the diagonal matrices D*®) and D*®) The
CPU time and errors calculated by this modified scheme are shown in Table 2.3, which shows
that the new scheme is such a CPU time saver with almost the same accuracy. Note that
this example is not energy conservative, so we did not test how the energy changes with

time.
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I2(L2) error of H

Figure 2.1: Error of gPC expansion

Table 2.3: Errors of E and H for modified leap-frog type scheme
Mesh | [|[E — Ep|;22) | Rate | [[H — Hp|;2(z2) | Rate | CPU time (s)
2x2 | 8517593e — 02 — 3.259975e — 01 — 0.893071
4 x4 | 1.760587e — 02 | 2.2744 | 8.343959¢e — 02 | 1.9847 6.487596
8 x 8 | 4.520225e — 03 | 2.1180 | 2.110498e — 02 | 1.9942 44.077161

16 x 16 | 1.284596e — 03 | 2.0115 | 5.257084e — 03 | 2.0052 | 358.162832

2.4.2 Example 2: application with random permittivity

Here we will display one numerical experiment for wave scattering problem solved by using
our method. The numerical test is done by using 1600 rectangular edge elements in the
physical domain Q = [—0.5,0.5]2. The time domain for the test is [0,0.9] with N, = 100.
We still choose p = 5 for the orthonormal polynomial in = since it is accurate enough as

discussed above. A similar setup as the experiment 5.2.2 of [1] is used. Namely, we solve the
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scattered fields E° and H?® governed by the following equations:

OE®
e =V x H* +0E* +8SF,
OH?

= -V x E*+ 8"
Ly x E°+ 87,

and the source term S and S are given by

. OE' -
E _ X R i
S¥ =—(e E)E)t A—l—(a o VE',
- OH"
H _ 0

Here the incident field (Ei,I-I ") is a solution of Maxwells equation with permittivity &7,

permeability ¢, and conductivity o?. More specifically, we set

E! = sin(my) sin(7t),
B, = sin(mr) sin(nt),

H' = (cos(mz) — cos(my)) cos(rt),

o=o0c"=0, and
, 2.25¢% if £ € B(0.1),
e'(w,y) =
1 otherwise,
where B(r) denotes a disc centered at origin of the physical domain with radius r. In other
words, £'(x,y) is a univariate function on Q = [0,1] and p(y) = 1.
A good measurement of scattering problem is the so-called radar cross section (RCS)

[19]:

RCS(¢) = lim 101n <27T,0W> (2.66)

r—00 |IDZ |2
where ¢ € [—m, 7] is the polar angle. In Figure 2.2, we plot the electronic field E = (E,, E,)
on , and in Figure 2.3 we present the mean and variance of the RCS given by (2.66).
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Figure 2.2: The plot of vector field E.
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Figure 2.3: Mean and variance of RCS
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CHAPTER 3

QUASI-MONTE CARLO METHODS
3.1 Introduction

In this chapter, we still consider the Maxwell’s equations with random coefficients (2.1)-
(2.2) in chapter 2 with the same setup. But here we assume the parameter vector y =
(y1,y2, - ,yn)' € [0,1]Y := =, where {y;}¥, is a set of i.i.d. R.V.s on [0,1]. Initial
condition (2.3) and boundary condition (2.4) are also be assumed to be satisfied, respectively.
Boundness condition (2.18) also been assumed satisfied.

Our goal is to obtain statistical information on the solution (E, H) to (2.1)-(2.2), espe-

cially its expected value, which is defined on = by

Elu] = /:u(y)p(y)dy, foru=FE, H.

where p(y) is the density function. To approximate the expected value, we can adopt the
single level Monte Carlo (SLMC), multi-level Monte Carlo (MLMC) quadrature rules, and
the Quasi-Monte Carlo (QMC) quadrature method. There is a huge list of the literature
on the application of QMC to PDEs (especially elliptic PDEs) with random coefficients, see
20, 21, 22, 10] and references therein. To the best of our knowledge, there exist few works
in the literature which study the QMC method for solving the Maxwell’s equations with
random inputs.

Since the solutions of (2.1)-(2.2) involve an extra parameter y, we introduce the following

space to measure the solutions in this chapter:
L'EV)={v: 2=V ||v|ir@Ev) < oo},
where V' is a Banach space of real-valued functions on domain € with norm || - ||y, and the
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space L"(Z; V) is equipped with the norm

( / ||v<-,y>||’“vp<y>dy) {0 <1< oo,
||| r vy = =

esssupycz|[v(-, y)llv if r = oo.

In this chapter, we also adopt the following notations

[0l z2xz) = vl 2@z, [[ollie@xz) = esssupyez|lo(-, y)l o)

The structure of this chapter is as follows. Section 3.2 is dedicated to development and
error analysis for the single level and multi-level Monte Carlo finite element methods. In
section 3.3, we introduce the QMC method, establish the regularity analysis of the solution
with respect to the random vector, and prove the error estimate of the QMC method. Section
3.4 presents numerical results which confirm our theoretical results. This chapter is based

on my paper [23], which is under review and will be published in a journal.

3.2 The Monte Carlo finite element methods

3.2.1 Edge element for Maxwell’s equations

By using the setup and notations in chapter 2, section 2.3, we have the following weak

formulation for (2.1)-(2.2):

(e E,p) = (H,V X ), Ve e Hy(curl;Q) (3.1)
(WOH, ) = —(V x E, ), Yo € H(div;Q) (3.2)

where (-, ) denotes the usual inner product on L?(2).

To define a fully discrete scheme, we divide the time interval [0,7] into M uniform
subintervals by points 0 = tg < t; < --- < tx =T, where t;, = k7, and 7 = T//K. Moreover,
we denote the k-th subinterval by Iy = [tx_1,tx], and the central difference and average

operators for any time series u* = wu(-, k7) for 0 < k < K, and the central difference and
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average operators:

Now we can formulate our Crank-Nicolson mixed finite element scheme

cfork=1,2,--- K,
find E}f € V9 and H} € U}, such that:

=

— — k1
(55TEI:L on) — (H), 2,V x ) =0 Vg, e Vy, (3.3)

—k—1
) (VX Ey 2 4p,) =0 Vap,, € Uy,

D=

k—
(noH),

subject to the initial conditions

E(]Jz($7y) = HZEo(iB,y) H2($7y) = HZHO(@',?J)’

where I1¢ denotes the L? projection into space U}, and I1§ denotes the Nédélec interpolation
on V7 introduced in chapter 2.

Note that the above scheme (3.3)-(3.4) can be written as follows:

T _ T _
(E;Ellfmﬁph) - §<H];L7V X (Ph) = (gEfL 1730h) + §(H;CL 17v X Soh); (35)
T _ T _
(MHZ>¢h)+§(VXEza¢h):<MHﬁ 17¢h)_§(VXEI;:L 17¢h)' (36)

Hence, at each time step, the coefficient matrix of (3.5)-(3.6) with the vector solution

(EY, H")" can be written as Q =

. , which can be proved to be non-singular (cf.
B

[16, Lemma 3.14]).

First, we have the following unconditional stability for our scheme.

Lemma 5. For the solution (E%, HY) of (3.3)-(5.4) and any k € [1, K] NN, we have
1 e
Proof. Choosing ¢, = TE: > and v, = THZ > in (3.3) and (3.4), respectively, and

2 2

1 2 1
AL, 0
2l e + ||p2 A,

1
55E2’

2
2@Q) ‘

1
§I—IO‘
+ HN« "Ml L2 @)

L2()

=
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adding the results together, we have
2
)5 (] )
L2(Q) L2(Q
which concludes the proof. O

for the wave propagation speed in a medium with permittivity ¢ and

0,

_HMQHk 1

L2(Q)

L k-1
e2 By

o |

_ 1
Denote C, = 7
permeability . Then we can prove the following optimal error estimate for our scheme.

Theorem 6. Suppose that the solution (E, H) of (3.1)-(3.2) satisfy the following regqularity:

2 E € (L°(0,T; H' (curk;Q)))*, e20,E € (L*(0,T; H' (curl; 2)))?,
g%V X OpE € (L2(07T§ LQ( )))

phH € (L0 T H ()Y, uhV x 0:H € (1(0.7:1())"

then for any k € [1, K] NN, we have

ei(EL — E(t,,c,a:,y))H(L2

Q))3 (L2())3
< o (|t |-*5| ] )
L2(0,T;H" (curl;2)))3 (L= (0,T;H" (curl;Q2))) L (0,T;H"(22)))3
szaHH ‘%vXaEH , 3.7
(H/L || aoizaaapys TINEY X OB e (3.7)

where the constant C' > 0 is independent of h and T, and r > 1 is the degree of the finite
element spaces V), and U,.

Proof. Integrating (2.1) and (2.2) from #;_; to t, multiplying the results by ¢, € V)

and 1, € U;, and integrating over €2, respectively, we obtain

E* — EF1 1
(&____@Q_(_ H@yX¢Q:Q (3.8)
T T I
H' — H! 1
@——7——w0+(l/vXEwa=, (3.9)
Iy,

where for simplicity we denote w/ = u(t;) for u = E or H.
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Let us introduce the errors

E, = E;-E'=(E;-1;E") - (E* - I,E*) = E;. — E}, | (3.10)

H, = H;,-H'=(H;-1;H") - (H" -1l H") = H}, — H} . (3.11)
Subtracting (3.8)-(3.9) from (3.5)-(3.6), respectively, we obtain the error equations:

Er—E " H, +H, ' HY + H' 1
<€H,¢h>_<H7VX¢h> —<— HdS,VX(,Oh>,

T 2 2 T Iy,
(3.12)
—~k —~k—1 ~k ~k—1
H —H E,+E 1 E'+ BV
(MH,W)JF(va,wh):( VXEdS—VX+a¢h)'
T 2 T JI, 2
(3.13)

Using the error decomposition (3.10)-(3.11), we can rewrite the above error equations as

follows:

k-1 — k-1
(567Eh§ 2 ) — (th 5V X py)
_1 1 —p_1 1
— @B ) - (), T + (B -1 [ BV xe), 61

T Iy

1

k—1 —k-1
(Ho-Hye *,py) + (VX Epe *4y,)

_1 1 1 e
= (N57H2n27¢h)+<vXEZn27¢h>+ (; VXEdS—VXE/Jg Qa’lph)'

Iy,

(3.15)

1 g1
Choosing ¢, = QTE:5 >in (3.14) and @, = 2’7‘H:£ % in (3.15), then adding the resultants,
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we obtain

2 ‘

1 _
_ Huzﬂig

1
aeiEﬁ5

F— 1 2

(! Aui) + (HWH%
1

= 2 (0.5, By ) — 2 (2 V < By Y
k-3 1

: Hds,V x E,; ° )

I,

T)

+27 (H
+or (ua H 2 Hy, ) +or (v < B ? ,Hﬁ;f)

6
1 1l g1
+27 (— VxEds—VxE Q,Hﬁg 2) = E Err;. (3.16)
T JI i

By the Cauchy-Schwarz inequality, the following estimate [16, Lemma 3.16]:

1112
uk_uk 1

1 [
<2 [ 0l s Ve H (1) )

Lo () lg—1
(3.17)

T

and the interpolation error estimates: for any r > 1,

e — Tl ey + 11V % (0~ T0) |y < OB sl sy, ¥ € HY(curl: 2),

(3.18)
|lv — HZ'UH[Q(Q) < O ||lullgr), Y veH'(Q). (3.19)
we have
k—1 —k:——
Erry <2 ’ S5 B ‘ SE
| Rt BN (PR Al (PP
1 1 E—11(2 1—k—12
<rT c20,. F, 2 «|lez B, L2
- ( " i Lz(m he Lm))
1 1 2
< 20,FE ds + 279, ‘eﬁEk ‘ ‘52Ek ! )
46, /Ik e £al® ( ") " s
<—/ Ch?*" 528tE ds + 479, max )52Eh§’
Hr(curl;Q) LQ(Q)

gl
By the definition of projection I1¢ and the property V x Ezg > e Uy, we have Erry = 0,
Erry = 0.
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Using integration by parts, the following estimate [16, Lemma 3.16]:

u(tk_l) -+ U(tk) 1 7'3 b
— 2= [ u(s)ds < 1D2ul[7, g ds
Iy L2(Q) b1

2 T
Vuée Hl((tk_l,tk); LQ(Q)), (3.20)

and the Cauchy-Schwarz inequality, we have

7k_l 1 1
Errs <21 (Vx| H ? Hds h§2
Iy,

1 1 L 1 2 L p-1]?
<270y | =—— |2 (VX H" %2 — — V x Hds) + 26, E§Eh§2
<2rC Ts/H %VX(aH)(2 s+ 0. | e Lkt
= 4T 1395 K v Loy 0 T O he L)
1k
< 165 / Hu 2V x (9,52H)’ 2(9)d3+47'5 +Cy OglixK e2Ey

Using the Cauchy-Schwarz inequality and the interpolation error estimate (3.18), we have

Errs <21 HV X EZ;f

!

La(Q) Lo (Q)

2

<o, (L B 7o
7C, €
= 86, | (e "Ly
C,Ch? 2
< Tl ez +47C,0, max HM%H&H .
O (Lo (0,T;H™ (curl;Q2)))3 0<k<K Lo ()

By the Cauchy-Schwarz inequality and (3.20), we have

1 1 1 _ -1 2 1——f1 2
Erre <270, e2 |- VxEds—-VxE * N H
80, T J, L2(Q) La(Q)
1 k 2
< 165 £2V x at2E)‘ oy b5+ ATC i ]‘ﬂzﬂhEHLQ(Q)

Substituting the above estimates of Err; into (3.16), then summing up the resultant from
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k=1 ton < K and using the fact that nt < T, we have

L 2
sm -l (b, -t )
(‘ L2(9) Q) BEEhe]| o
Oh27“ tn 2
Sy gaatE) : géEMH
(S* 0 Hr(curl;Q) %)
TC 1 2 L 2
L 5V % (0 H et E H
+166* . (O H) La(Q) =7 B 00
T i 2r 2
—i——C Ch E%E
O (Lo°(0,T;HT (curl;Q2)))3
7_40 tn 1 2
+165*/0 eV x (OB o (321
where we denote
le? Engllo0 == Og}f?%HgQEthLz o) and |12 Hel|oo = OQI;Q%HWHMHLQ

Taking the maximum of (3.21) with respect to n, then choosing ¢, small enough (e.g.,

476, max(1,C,) < 3), we have

]+ o]

< cn (|t + | )
L2(0,T;H" (curl;2)))3 (L= (0,T;H" (curl;2)))3
ver? ([t x @) + 49 < 0:) )
(L2(0,T;L2()))3 (L2(0,T;L2(%)))3
(3.22)
Using the interpolation error estimates (3.18)-(3.19), we obtain
) °E + H *H
£
"l gz T I gy
< Con (‘g%E HMH ) (3.23)
(Lo (0,T;H" (curl;2)) (L*°(0,T;H" (curl;Q)))3

Combining the estimates of (3.22) and (3.23), and using the triangle inequality, we com-
plete the proof. O
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3.2.2 Analysis of single level Monte Carlo method

The idea of Monte Carlo finite element method is very simple: given a sample y, (3.1)-(3.2)
becomes a deterministic problem in the physical domain €2, which can be solved by any
classic finite element method for Maxwell’s equations [15, 16].

In practice, we are often interested in estimating the expected value (also known as
expectation) of the random solutions. The expectation E[u] can be estimated by a sample
mean over the solution samples {@'}, i = 1,2,--- M, corresponding to M i.i.d. realizations

of the random inputs:
Efu] ~ Bylu] == 5 Zm (3.24)

Here u can denote either the analytic solutions E and H, or the finite element solutions E},
and H;,.
The following result was proved in [10] and gives a bound on the statistical error for the

Monte Carlo estimator (3.24).

Lemma 7. [10, Lemma 4.1] Let V = L*(Q2). For any M € N and u € L*(Z;V), we have

[E[w] = Eylulll2@xz) < \/—HUHH (@x2

Remark 3. If we define the variance of a function w as o(u) := \/E[[|ul|?] — [[E[u]||?, then
we have a more accurate statistical error estimate for the Monte Carlo method (cf. the proof
of [10, Lemma 4.1]):

[E[u] = Enlu]llr20xz) = —==0(u).

VM

The single level Monte Carlo method is to find out the estimator Ey/[u] defined in (3.24).
To this end, we pick a sequence of i.i.d. sample points ¥, i = 1,2,--- M, and compute the
corresponding numerical solution @’ of (3.5)-(3.6). The error estimate of single level Monte

Carlo finite element method is given by the following theorem:

Theorem 8. Under the same regqularity assumptions given in Theorem 6, the single level

Monte Carlo method (3.5)-(3.6) satisfies the following error estimate: at any time step
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tr=Fkr, k=1,2,---, K, we have
IEIE(t)] — Bu[Efllizoxe) + [EH (1) — Ea[HE)l2ouz) < C (724 07+ M3)

Proof. For simplicity, we denote E* := E(z,t;,) and H* := H(x,ty,).

Using Jessen’s inequality for the solution E, we have

|E[E(tr)] — Eu[E}]ll2@xz) < |E[E(te)] — E[E}]| 20xz) + |ELE}] — Ex(Ej)||20x2)

<E[I|B(t) - Billv) + BB} - EulEfl@ne)
which, along with a similar estimate for the solution H, leads to
IE[E(te)] — Ext(Ef)lr2axz) + IEH (t)] — Ex[H})||120x2) < V21 + 11, (3.25)
where we denote

=E[|E(tx) — ELI5 + |1 H (1) — Hj5]* .

= |ELE}] — Ex(Ejllli20xz) + [ELH}] — Ex[Hjl120x2).

The first term 7 in (3.25) measures the error of the finite element scheme and the second
term /1 gives the statistical error. Note that the estimate of I is given by Theorem 6, with
the constant coefficient C' independent of vector y after taking the mean.

To bound the term I7, we use Lemma 7 and Lemma 5 to obtain

5nmn||IEE'“] Ev[ER|Z2xz) + Huinl [EIH}] — Ex[H} |72 0z)

(//5|E +M\Hﬁ|2dyd:c>
C

(EmaXHE HL2 Ox= )+Umax”H HLQ(QX )) S M

i |

IN
<=

This leads to I/ < C'M~z. Substituting the estimates of I and II into (3.25) concludes our

proof. O
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3.2.3 Analysis of multi-level Monte Carlo method

As shown in theorem 8, the single level Monte Carlo method only has half order convergent
rate. This means to get a desired accuracy we have to solve the PDEs system several times,
which is still a huge workload. We then enlightened by multi-level finite element methods
come up with the multi-level Monte Carlo method (MLMC). The basic idea of MLMC is the
solve the PDEs problems on a relatively rough mesh and then finer later. By using the linear
combination, their error have been canceled partially. Finally, we use smaller workload to
achieve the same accuracy compared with single level Monte Carlo method.

For the MLMC method we discretize the physical domain 2 by a sequence of nested
partitions {7;}%, with corresponding mesh size h; and time step 7;. That is, Tx C Tr
for k = 1,2,--- ;L — 1. And then, we solve the finite element scheme (3.5)-(3.6) in the
corresponding mixed finite element spaces U}, and V,. Introducing the notation wg := 0,

we can write

where u; represents the solution obtained on mesh 7j.

By the linearity of expectation, we have

E{’UJL] =E

Z(ul - ul1>] = Z]E[’U,l — ul,l].

In the MLMC method, we estimate E[u; — u;_1] by a level dependent number of samples
M, i.e, the MLMC estimator is given by:

Elug) ~ EM [u] =) Ey[w — w_] (3.26)

Theorem 9. Under the same assumptions as Theorem 8, the MLMC finite element solution
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of (3.5)-(3.6) satisfies the following error estimate:

|IE[E(tx)] — EM[E}]|| 2xz) + |E[H (t)] — EMF[H) || 120x2)

L _1
<C (rf +hy Y (B + )M, 2) :

=1

Proof. Similar to the proof of Theorem 8, we rewrite the error of E in two parts:

IE[E(tx)] — EMY[E}]|| L2(xz)

E[E(t)] — E[E}] + E[E}] i Ey[Ef — EF ]

=1 L2(QxE)
L
< IB{B(t)] ~ LBl iaus + |3 (BLEY - BE] — BulBf — BE,)
=1 L2(QxE)
1 L
2
<E|IB(t) - Byl + ||D (BB — B - Bu,[Ef - EL))
=1 L2(QxE)

Similar estimate holds true for H.

Hence, we have

IE[E(t)] — EMH (B} 1205 + |E[H (t)] — EMY[H} || 20x2) < V21 + 11,

where we denote

[un

E[HE ~ B |30 + | H () = HE 30|
L
= | ®IB! - B - BB - L)
=1 L2(QxE)
L
{10 (mEf - B - By - HE)
=1 L2(QxE)

The error term [ is the error caused by the finite element scheme, which is given by Theorem

6.
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To estimate term /1, by Lemma 7, for any 1 <[ < M we have:

H (E[Ef - Ef—l] — Ep, [Ef - Ef—l]) +

HLQ(QXE)

|(E[H} — H{ )] - Ey,[H} — HY )

HLQ(QXE)

- H(E o EMZ)[Ef o Ef—l]HLQ(QxE) + H(E - Eﬁ]\/[l)[I{éC o Hf—l]”LZ(QXE)
_1

< Ml ’ (HEk - EfHLQ(QxE) + ”Ek - E;C—1||L2(Q><E)

+[|H* — H} || 2xz) + | H* - qu”L?(ﬂxa))

< CM, 2 (hj + 77 4+ hi_y + 174) < CM, 2 (h] +17).

1
Hence we have the error estimate for term IT: 1T < C'S ¢ (hy +72)M, ?, which, along with

the estimate of I, completes the proof. O

3.3 Quasi-Monte Carlo finite element method

Due to the slow convergence of the classical Monte Carlo method, the quasi-Monte Carlo
methods have been proposed to solve stochastic elliptic equations (e.g., [24, 25]). In this sec-
tion, we will analyze the usage of this method for solving the stochastic Maxwell’s equations.
Instead of considering the expectation of E and H directly, we will find out estimator of
E[G(E)] and E[Gy(H)| respectively, where Gy, Gy : L*(2) — R are some bounded linear

functionals.

3.3.1 QMC integration in the finite dimensional setting

For any function F' defined on = = [0, 1], consider the following integral

I(F) ::/:F(y)dy.

To approximate [(F'), we use the N point QMC estimator given by
| N
QN(F) '_Ni_l F<y )7
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where {yW}¥, C = is the set of points which needs to be chosen carefully. Here we just
focus on the shifted rank-1 lattice rules. In these rules, the quadrature points are given by

the following formula
) — frac (2 + A ' —=1,2,---N
y rac (N + ) ? ) ) )

where z € 7Z° is known as the generating vector, A € [0,1]® is the shift, and frac(-) means
taking the fractional part of each component in the vector. More details on the general
theory and choices of quadrature points for QMC lattice rules for the s-dimensional cube
can be found in [25, 26] and references therein.

To measure the error of this method, we need the following weighted and unanchored
Sobolev space W, which is a Hilbert space containing functions defined over U, equipped

with the norm

IFI2 > / (/ oF )d )2d
Weqy = Yu o \ oo dy, Y Yspu) Y {1:sh\u Yu

uC{l:s}

2
= Z ’Yu_l/ (/ auF(lMy{1;s}\u)dy{1:s}\u) dy,
[0,1]1l [0,1]5—

uC{1:s}

where {1 : s} is a shorthand notation for the set of indices {1,2,--- s}, % and O"F
denote the mixed first derivative with respect to the active variables y; with j € u, and
Y15 denotes the inactive variables y; with j € u. And 7, > 0 is a weight parameter
associated with each group of variables y,, with the convention that vy = 1. If 7, = 0, then
we expect that the corresponding integral of the mixed first derivative is also zero, and we
follow the convention "0/0 = 0.

The weighted spaces was first introduced by Sloan and Wozniakowski [27] and later
generalized in many papers (e.g., [28, 29]). We now state the essential theorem for QMC

error estimate.

Theorem 10. [48, Theorem 4.1] Let s, N € N be given, and assume F € W, for a
particular choice of weights v. Then a randomly shifted lattice rule can be constructed using

a component-by-component algorithm such that the root-mean-square error satisfies: for all
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L
2X

|l
Vealir -l < | X 2 (550) | e i, e

0#uC{1:s)

where Ba[-] denotes the expectation with respect to the random shift which is uniformly

distributed over =, and ¢ is the Euler’s totient function.

3.3.2 Regularity analysis with respect to the random vector

To obtain the error estimate for the QMC finite element method, we need the regularity
estimate for the solution of (2.1)-(2.4) in chapter 2 with respect to the random vector.

First, we have the following energy conservation property.

Theorem 11. For the solution (E, H) of (2.1)-(2.4) and any m > 0, we have ¥t € [0,T],
(20" Bl L2 xz) + 11207 H [ 120k (t) = (12207 El|72 quz) + 11207 HI[ 12 (0=)) (0),

here and below we denote 0" := Opm for the m-th derivative with respect to variable t.

Proof. When m = 0, the proof is the same as that of [37, Lemma 2.1] even when ¢ and
1 depend on spatial variable @.
For any m > 1, taking the m-th time derivative of (2.1) and (2.2), multiplying the

respective result by 0;"FE and 0;"H, then integrating over = and 2, and adding the results
together, we obtain

1d ‘ 2
2dt L2(QxE)

= //Vx@f”‘H-(?[”Edwdy—//Vx@?E-@[”Hdwdy
zJQ EJQ

= —// (n x O"E) - 0"H dsdy
=Joq

=JoQ

5%8;”E

2 1
iﬁmH‘
HLZ(QXE) + H’u ¢

where we used the PEC boundary condition (2.4) in the last step. Integrating (3.28) from
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t = 0 to any time ¢ concludes the proof. O
With Theorem 11, we can prove the following bound for the first derivative of the solution

with respect to the random vector.

Theorem 12. Denote the constant C# := |e7'0} €| (axz) + |17 105 Lo (axz) for any in-

teger s > 1. Then for the solution (E,H) of (2.1)-(2.4), we have: for any t € [0,T] and

(
< [tCi" (]

+ (‘ E%OyiE

Proof. Differentiating (2.1) and (2.2) with respect to y;, respectively, we have

Yi,

2

L%ng)) (t)

ot )0

1 2
558y1.E‘
L2(QxE)
2

|

ILL%@ZHH‘

5%8tE‘

|

L2(QXE)

2 2

#égyiH‘

. | ) (0)] exp(tCH).

L2(OXE L2(OxE)

0,0, E+ 0y - E — V x0,H, (3.29)

Multiplying (3.29) and (3.30) by 0,,E and 0,, H, respectively, then integrating over =
and €2, and adding the resultants together, we obtain

1d ‘ 2
2dt L2(QxE)

= /_/Q (=0ye-OE+V x0,H)-0,FE dedy

1 2

€2 /‘%ayiH

|

Yl Lz axe)

—[/Q Oy - O H+V x 0, F) -0, H dedy

= —//@,ﬁ-@tE-@yiE dwdy—//ai,u-atH-ﬁyiH dzdy, (3.31)
=Jo =Jo

where we used integration by parts and the PEC boundary condition (2.4) in the last step,

ie.,

//anyiEﬁyiH:// nxayiE-ﬁyint//8yiEoV><8yiH://ByiE~V><8yiH.
=JQ = /o0 EJQ =JQ
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By the Cauchy-Schwarz inequality, from (3.31) we have

2
LQ(QX:))

4 (el < o]
_— 19 . .
2 dt Yz axe) HE

_ 1 1 2

< }5 ) 9 (’ 628tE) 2 (xE ) 2 )
L2(QxE) L (Q>< )
+ iy ! <Hu58H ) >
VilTlL(QxE) 2 T r2axe) L2(QxE)

1 ek P > 0
- 2 L2(QxE) L2(QxE)

o 1 . 2 . 2
o 2 (’ 526%E‘ L2(QXE) + HMZ@MH’ L2(Q><E)) ’

where we used the notation of C" and Theorem 11 in the last step.
Using the Gronwall inequality to the last inequality concludes the proof. O

By the same technique, we can prove the following bound for the higher order derivatives

of the solution with respect to the random vector.

Theorem 13. For the solution (E, H) of (2.1)-(2.4) and any |m| > 1, we have: ¥Vt € [0, T
t
<‘ L2(QxE ) ( )
m
< ep
sexp (1 Z (S)CS {(’ L?(Qx
1<|8|<|m|

/ ( )C’j“ (‘
0 s
1<|8|<|my

where we denote 65"" = 3;}1 . -652” and (Tg)

528‘m‘E‘

el
L2(OxE

528|

g

L2(QxE )) (0)

)dt ,
L2(QxE

= H?:I(le) for any m = (my,--- ,my) and

1 _ 2
e?&Z"" ‘S|8tEH +H,u28|m| ‘S|8H‘
L2(Qx

s = (81, ,8n) with m; and s; either 0 or 1.

Proof. Taking the |m|-th mixed derivative of (2.1) and (2.2) with respect to yi,- -+, yn,
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respectively, we have

ed, (a};’”@) = VxMH- Y <m>85'gag’"s'atE, (3.32)
1<s=my) N °

) a|m|H — a\m\ _ m a\3| a\m|—|5|aH

10y (Oy V x 0y "'E > . )0y 1y H . (3.33)
1<|s|<m)|

Multiplying (3.32) and (3.33) by 8‘ym"E and 8zn|H, respectively, then integrating over

= and 2, and adding the resultants together, we easily obtain

1d ‘
th L2(OXE)

= // Z (Jaﬁ'w}}"'s'@E-aZ""E dzdy

1<|8s|<|m|

L X () oo s

1<|s|<|my

1

e,

> (W)
1<|8|<|m|

m cen 1

s 2 (W)ers (e
1<|8I<|m|

which, along with the Gronwall inequality, completes the proof. O
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)

;L?almlH‘

IA

1 _ 2
o™ ¥l,)|

"uza|m| |3\a H‘
L2(QxE)

L2 Qx_))

3.34
L2(Qx_)) ’ (3.34)

LM E ‘

2
L2(OQxE) "u

Note that Theorem 13 involves the estimate

which can be bounded as below.

MQalml \S|atH‘

and ‘

E2a|m| \3\6 E‘

L2(OXE) L2 Qx”)

Theorem 14. For the solution (E, H) of (2.1)-(2.4) and any |/m|,n > 1, we have: ¥ t €
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[0,T7],

(

1.m 2 1.m
£39) |6{‘E‘ ™oy H

L2(QxE)

|

2L2(Qx5)> ®)

m 1oIm on | Lol gn ||
< i
< exp (t Z <8)Cs ) [(‘ 526& O E‘ L2(QxE) * ) “285 % H‘ L2(Qx5)> ©
1<|s|<|my|
t 2 2
+/ > (M) (||lrormEore e S ¢ at| .
; s 3 L2(OxE) 13 L2(QxE)
1<s|<|my

Proof. Taking the n-th derivative of (3.32) and (3.33) with respect to ¢, respectively, we

have

o, (MopE) = vxo™MorH - Y (m)ags|ga|£m|—satn+lE’
1<si<my N °

(3.35)
o a|m|8nH I v/ a|m\anE_ m 8'8‘ 8|m\—|3|8n+1H
Hor (% G X0 Ot > s )Y€ H% t -

1<|8[<my

(3.36)

Multiplying (3.35) and (3.36) by 8|£m|8t”E and 8£m‘8fH , respectively, then following
the proof of Theorem 13, we easily conclude the proof. O

Using Theorem 11, and Theorem 14 recursively in Theorem 13, we can see that the higher
order derivatives (|\a%a'£m‘EH%2(QX5) - \méa‘gm'HH%Q(Q@))(t) can be bounded by a linear

combination of the initial values:

2

1om| 1AM |
) e20¢ E’ L2(QxE) (0), H'W&E H’ L2(QxE) (0), (3.37)
1815 || H K H2 1<i< 1< <
HaE atEHLQ(M) o). o], 0. vi<i<iml1<]s|+1<|m]|
(3.38)

But an explicit expression for the bound is too complicated to write down due to the recursive

dependence. Below we illustrate the exact bound for m = 2.
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Theorem 15. For the solution (E, H) of (2.1)-(2.4) and any t € [0,T], we have:

(‘ L2(Qx_)) ®)

< expietaci + ¢ { | n u%‘g I

L2(QXE) ‘

2
,u?@eH

2
5%8§EH + ‘
L2(QxE)

o
)) )

553§EH

+ |utoed

L2(Qx
i) ©)
L2(Qx_)) <0)} '

Proof. Using Theorem 13 for m = 2, we have

(‘ L2(9x~)) 0

. exp@(zoiuo;“))-{(\ezaéEH2 ot

t
el .
I RE( M%tﬂhmx)
1 2
o () HO.E e ))} dt} . (3.39)

L2(QxE)
To bound the 0¢0,F and 0¢0,H terms in (3.39), we use Theorem 14 with m =n =1 to

(

< exp(tCh) - (\

t
[ o (|
0

< etc?)- (|

€2 agatE’

+ 2exp(tCH) K’

L2(QxE)

e

e (‘

LQ(QX

+tC3* (‘

L2(QxE) ‘

6285

+H 59
Ox= H £

L2 (

Mia& ‘ L2 Qx_)) <0)

2
00E| ) +\

uQatH

|

obtain

M28€8tH LQ(QX )) (t)

uzagatH(

1 2
5§0§8tEH } ‘

irn) ©

)
L2(Q2xE)

ot HM& ) ©

) O

62858,5EH +|

L2(QXE)

|

52 /“
L2(QxE)

g%agatE‘

1

5t !

+tC* <‘

L2(Qx

where in the last step we used Theorem 11 with m = 2.
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Substituting (3.40) into (3.39) and using the following estimates

t ¢
o e e e o 1 ep e
/ CHHe!“rdt = 0 — 1 < e, / tCHe O dt = te'r — W(etcl —1) < tefr,
0 0 1

we conclude the proof. O

3.3.3 The error estimate

In this subsection, we are going to find out the error G1(E(-,y)— E(-,y)) and Go(H (-, y) —
H,(-,y)) where y € U is given and E},(-,y) and H(-,y) are the finite element solutions of
(2.1)-(2.2).

Theorem 16. Under the same conditions as Theorem 10, we have the following error esti-

mate

waA |1(G1(B)) = Qu(GA (BN + | [(Ga(H)) = Qu(Ga(H)[

<C (h’“ + 724 go(M)—%) ,

where T (1 ) }9)

15 the Fuler’s totient function. Here the product is over the distinct prime numbers dividing

n.

Proof. By the triangle inequality, we have
Ea [[1(G1(E)) = Qu(Gi(EL)|” + [I(Ga(H)) = Qu(Go(HE)['] < Brey + i,

where

Erry =Ea [|(I — Qn)(G1(E))]* + [(I — Qn)(G2(H))?]
Erry = Ea [Qn(Gi(E — E}))* + Qn(G2(H — HY))?J .
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The first term, which is the statistical error of QMC, can be estimated by Theorem 10. In

fact, by Theorem 10 and the derivative estimates given by Theorems 13-14, we have
Ea [I(7 - Qu)(GUE)T] < Co(M) 3| By, < Cp(M)5.
Using the similar estimates for H, we have
Err; < C@(M)_%.
For the second term, we first notice that G; and G5 are bounded on V':
G(E — E})| < ||IGillv-|E - Ejllv,  |Go(H — H})| < ||Gallv- |1 H — Hyllv.

Applying the property that the QMC quadrature weights 1/N are positive and have a sum

1, we obtain
Es |Qn(Gi(E - B})?| <Ea [QN (IGallv-1B — E’;;HV)Q] < OB~ B} <O+ 1)
Hence, by Theorem 6 we have
Erry < O(|B — By} + | H ~ H{]}) < O + )

Combining the estimates Err; and Erry together, we complete the proof. O

3.4 Numerical Experiments

In this section, we present three numerical examples to verify our analysis. As shown in
Sec. 3.2.1, we will apply the Crank-Nicolson scheme for the T'E, mode, which has unknowns
as electric field E := (E,,, E,,) and magnetic field H, with the lowest order edge element
on the triangular mesh. We will compute the sample means by using the simple level Monte
Carlo, multi-level Monte Carlo and QMC methods, respectively.

To test the convergence rate with an exact solution, we add additional source terms to the
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original governing equations. More specifically, we solve the following mixed finite element

scheme: for any k > 1, find Ef := (E* , E* ,) € V' HF € U, such that

x1, ho x9, h

\ =

T _
(5Eh790h) Z(Hhav X ) = (5Ek 1»90h)+§(Hf]f LV x ‘Ph)‘l'T(fk 2790h>

(H’H}]fawh) + %(v X E 7¢h) (#Hk 17¢h> (V X Ei_lvwh) +7 (gk_%7¢h>

hold true for any ¢, € V% and v, € U, where f and g are the added source terms.

The finite element spaces U, and V' on a regular triangular mesh 7, of the domain
Q = [0,1]? are chosen as 2D linear edge element.

As shown in [16], there is a superconvergence at the midpoint of triangle elements’ edges
for lowest order edge elements. We hence define the Pju as the linear interpolation of u on
each element K; € T, by using the average of u on the midpoints of three edges of K;. After

this post-processing, we define the discretized [? error of numerical solutions as

— 2
IE[u] — Ealunllzq) = Z‘E — PyEnlup]|” | K]
where N is the partition number of €2.

3.4.1 Single level Monte Carlo Method

For this example, we adopt the following random coefficients and exact solutions: for any

€ (0,1],

e(z,
pz,

y) =1+ 0.01(y121 + yozo + y3$1 + y4x2 + Y5122 + y6$1)
y) =
E.(t,z,y) = sin(rx;) cos(mzz)e ™ (e + 2u),
) =
) =

=1+ 0.01(y122 + Y21 + Y325 + YaZ] + Ys0172 + Yes),

E,(t,x,y) = — cos(mz;) sin(mze)e ™ (2e + p),

H(t,x,y) = sin(rz;) sin(mzy)e ™ (e — 2u),
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Table 3.1: Errors of (E,,, E.,, H) obtained by the single level Monte Carlo method with the
lowest edge element

Mesh | [|[E[E(T)] — En [E’;]le(m Rate | [[E[H(T)] - Em [HQ]HZQ(Q) Rate | CPU time(s)
N=2 2.025681F — 01 - 9.855452F — 01 - 0.57096
N=14 8016480 — 02 1.9413 2.456558E — 01 1.9868 | 13.29811
N=38 1.846385E — 02 2.0869 6.260263E — 02 1.9837 | 540.99794
N=16 4241596 — 03 2.0654 1.580314F — 02 1.9891 | 43986.39742
N=32 1.053961E — 03 2.0088 3.972438E — 03 1.9921 | 258671.07102
where © = (z1,72) € Qand y = (y1,-- ,¥6) € = = [0,1]%, i.e., y; are uniformly distributed

random variables. The source functions f and ¢ are obtained by plugging the exact solutions
E,, E,, H into the governing equations.

As shown in theorem 8 To test the convergence rate, we set the number of samples for
Monte Carlo test as M = N* where N is the number of partition Q in both z and y-
direction, i.e., we first partition €2 into NV x N rectangles, then partition each rectangle into
two triangles by connecting the diagonals. The total number of time steps is chosen as N
also. All the numerical tests have been carried out by using the FEniCS package on a 2017
MacBook Pro laptop with a 2.8 GHz Intel Core i7 processor and a memory of 16 GB 2133
MHz LPDDR3. The discrete [?(§2) errors between the expectation of exact solution and
the sample mean of numerical solution at the final time 7" = 1 is computed to check our
theoretical convergence rate given in Theorem 8.

Table 3.1 shows clearly that both the errors of E and H are second order, which is due
to the superconvergence phenomenon obtained for the lowest order triangular edge element
[30]. Note that the finest mesh numerical test needs to solve the problem 32* = 1,048,576
times, which takes about 72 hours, which shows that the simple level Monte Carlo method is
impractically slow. Later, we will show that the multi-level Monte Carlo and QMC methods
are much more effcient than the simple level Monte Carlo method.

To further confirm our theoretical analysis, we resolve this example by using one order
higher basis functions, i.e., a second order edge element for the electric field and linear
Lagrange element for the magnetic field. The numerical results are presented in Table 3.2,

which clearly shows the second order error estimate for both . and H. This is consistent
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Table 3.2: Errors of (E,,, E.,, H) obtained by the single level Monte Carlo method with the
second order edge element

Mesh | [[E[E(T)] — Em [E’;L]||l2(m Rate | [[E[H(T)] — Em [HQ]HZQ(Q) Rate | CPU time(s)
N=2 1.467381E — 01 - 5.914026 E — 01 - 0.53130
N =4 3.563603F — 02 2.0418 1.550685E — 01 1.9312 15.71102
N=38 9.159853EF — 03 2.0009 3.790434F — 02 1.9819 | 733.77024
N =16 2.232569F — 03 2.0075 9.409349F — 03 1.9954 | 67682.74943

Table 3.3: Errors of (E,,, E,,, H) obtained by the multi-level Monte Carlo method

Mesh [ [[E[E(T)] — Em [E§]||12(Q) Rate | [[E[H(T)]— Eum [H,’;]||12(Q> Rate | CPU time(s)
L=1 8.022609F — 02 - 2.464436F — 01 - 0.61908
L=2 1.866771E — 02 1.8555 6.106013E — 02 2.0151 23.07685
L=3 4516066 — 03 1.7770 1.496582E — 02 2.0165 | 437.75725
L=4 1.758842E — 03 1.7113 3.842888E — 03 2.0196 | 27501.86158
L=5 4.211790F — 04 2.0621 9.102927E — 04 2.0778 | 69150.66038

with Theorem &.

3.4.2 Multi-level Monte Carlo Method

We repeat the last numerical example by using the multi-level Monte Carlo method analyzed
in Sec. 3.2.3 and compute the sample mean by the telescope series of (3.26). At level [ of
" and M; = 1672, where [ =1...L.

each numerical test, we set hy =7, = %

As we can see from Table 3.3, the errors are still second order, which verifies Theorem
9. For the finest mesh case (L = 5), it requests total 3, , M; = 84,510 Monte Carlo tests.
Compared to the single level method, this saves a lot in the computational time as shown in

Table 3.3.

3.4.3 The QMC method

This test is used to verify Theorem 16. We used the shifted lattice rule to generate the quasi
random sequence on [0, 1]5. Since the theoretical convergent results of QMC in this case is
of O(M~'em) where 0 < ¢, < 1 (see [24]), we just take the total QMC test times M = N?
for each test, where NV is the spatial and temporal partition number. As shown in Table 3.4,

both the convergent rates of E and H are about second order. Note that the QMC sample
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Table 3.4: Errors of (E,,, E,,, H) obtained by the QMC method

Mesh [ [[E[E(T)] — Em[E}] ||l2(m Rate | [[E[H(T)] — Em[H]] le(m Rate | CPU time(s)
N=2 2.022678F — 01 - 9.852111F — 01 - 0.13250
N=14 8.019398F — 02 1.9454 2.455848F — 01 1.9872 0.71975
N=38 1.843664F — 02 2.0936 6.260027F — 02 1.9844 8.207584
N=16 4.244253F — 03 2.0758 1.580382F — 02 1.9903 | 165.89224
N =32 1.037406E — 03 2.0325 3.965429F — 03 1.9947 | 4970.95464

for the finest temporal and spatial mesh is only M = 322 = 1,024, which is much lower than
both the single level and multi-level Monte Carlo methods.
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CHAPTER4

STOCHASTIC COLLOCATION METHODS FOR
METAMATERIAL MAXWELL’S EQUATIONS
WITH RANDOM INPUTS

4.1 Introduction

So far, we studied the stochastic Galerkin method and Quasi Monte Carlo method for stan-
dard Maxwell’s equations (2.1)-(2.2).

By taking advantage of the strength of Monte Carlo methods and the stochastic Galerkin
methods, the stochastic collocation method (cf. [31, 5]) achieves fast convergence when the
solutions are sufficiently smooth in the random space. More importantly, the stochastic
collocation method is simple in implementation and the system of resulting equations is
decoupled and hence is efficient to solve. The stochastic collocation method have been
widely used to solve various problems, such as elliptic problems [32], hyperbolic equations
[33]. More details can be found in recent review articles [32, 34] and monographs [35, 36, 14].

Compared to many papers published for other problems, there are not many existing
works on numerical methods for solving stochastic Maxwell’s equations in stochastic collo-
cation method. In this chapter, we will shift our focus from standard Maxwell’s equations
to Drude’s model, which is an extension of Maxwell’s equations in metamaterial. We will
solve stochastic Drude model by using stochastic collocation method.

The rest of this chapter is organized as follows. In section 4.2, we first present detailed
regularity analysis of the metamaterial Maxwell’s equations with respect to random variables.
Then we establish the convergence analysis for the stochastic collocation method developed to
solving this model. Numerical results are presented in section 4.3 to support our theoretical

analysis. This chapter is based on my published paper [37, 38].
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4.2 Maxwell’s equations in metamaterial with random

coeflicients

By using the same setup and notations in chapter 2, we consider the following Maxwell’s

equations in metamaterial [16]

e(x,y)0E(t,x,y) =V x H(t,z,y) — J(t,z,y), (4.1)
p(e, y)oH(t,x,y) = -V x E(t,z,y) - K(t,z,y), (4.2)
O J(t, @, y) + Te(x, y)J (t, @, y) = e(x,y)w’ (z,y)E(t, z,y), (4.3)
0K (t, 2, y) + Tl y) K(t, 2, y) = w(@,y)w,, (z, y) H(t, 2, y), (4.4)

where J (t, z, y) is the electric current density, K (¢, ,y) is the magnetic current density, and

Yy = (y1,%2, - ,yq) . The system (4.1)-(4.4) are subjected to the random initial conditions

E(O,.’B,y) = Eo(way)ﬂ H(vaay) = HO(way)v (45)

J(Oamay) :Jﬂ(may>a K(O,Q’S,y) :KO(wvy)v (46)
and the PEC boundary condition:
nx E=0, on 09, (4.7)

where Ey, Hy,Jy and K are some given functions. To accommodate the uncertainty or
randomness of the material, we assume that the permittivity e, permeability p, electric
plasma frequency wy., magnetic plasma frequency wy,,, electric damping frequency I',. and
magnetic damping frequency I'p,, are all random. Here and below, m denotes the unit
outward normal vector on the boundary 92, where 2 C R? is a bounded polyhedral domain
with a Lipschitz boundary. For simplicity, we denote 0,; the jth derivative with respect to
variable s, e.g., s =t or y;. We like to emphasize that here and below V is only for spatial
variable @.

To solve problem (4.1)-(4.7), we use the Lagrange interpolation approach by following
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}(N—l-l)

8, 39, 40]. We first choose a set of Gauss-Lobatto collocation points {y, € =, where

N + 1 denotes the number of collocation points in each random variable space. We then

solve the following system of equations at each collocation point y;,j =1,--- , (N + 1)4:
s,y B(tw.y,) =V x H(t,z,y;) - I (t,z,y,), (4.8)
,U(.CL', y]>atH(t7 T, yj) =-V X E(ta T, y]) - K(ta €T, yj)a (49)
at (t r yj) + I (iB yj>J<t7 T, yg) = E'~(w7 yj)wz%e(m?yj)E(t? Z, yj)7 (41())

atK(ta wayj) + Fm<w7y])K<t7 Z, y]) = M(w, yj)w§m<mayj)H(t7 Zx, yj>7

(4.11)
subject to the initial conditions
E(O7mayj) :EO(m>yj)v H(07m>yj) :HO(mvyj)7 (412)
J(07m7yj) = JO(mayj)7 K(O’wayj) = KO(w’yj)7 (413)
and the PEC boundary condition:
nx E(t,z,y,) =0, on 00, (4.14)
i.e., we can simply denote the approximate solution as
(N+1)? (N+1)¢
EN(t7 €T, y) = Z E(tv €, yk)‘ck(y>7 HN(ta €T, y) = Z H(tv €T, yk>£k<y);
k=1 k=1
(4.15)
N+1) (N+DT
It x,y) Z Itz y)Li(y), KN(tzy) = ) K(t,®,y,)Le(y),
k=1 k=1
(4.16)

where L (y) are the tensor-product Lagrange interpolation polynomials. In Remark 4, we
show that u” (¢, z, y) is just the interpolation of u, denoted as I'u = ,(fi#)d u(t, z, y,) Lr(y),

whereu=FE H,J, K.
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To prove the convergence rate of this scheme, we first need to establish the regularity for
the solution of our model problem (4.1)-(4.7). To simplify the notation and make the proof

clear, sometimes we drop the explicit dependence of all physical parameters on & and y.

Remark 4. To justify that EN(t,z,y) = ILE, HY (t,z,y) = ILH, JY(t,x,y) = I}J
and K" (t,x,y) = IL K, we denote the errors

~N —N
E (t,(L’,’y]):EN(t,.'IJ,yJ)—E(t,ZB,y]), H (t7537y]) :HN(tawayj>_H(t7mayj)7
~N —N
J (taazvy]):JN(tawayj)_J(t7$ay])7 K <t7w7y]) :KN(t,w,yj)—K(t,a:,yj)

Choosing y = y; in (4.1)-(4.7) and subtracting the resultants from the correspond-
~ N
ing equations of (4.8)-(4.14), we can see that EN(t,:v,yj), H (
~N
K (t,x,y;) satisfy the following equations:

~N
t,x,y;), J (t,z,y;) and

~N N ~N
e(x,y;)0E (t,x,y;)=VxH (t,z,y;)—J (t,z,y;), (4.17)
~N ~N ~N
/”'(mayj)atH (tamvyj) =—-VxFE (t7m7yj) - K (tamayj)a (418)
~N ~N ~N
6#] (t7 T, yg) + Fe(l', y])‘] (t’ T, yj) = 5(337 yj)wﬁe(w’ yj)E (t7 z, yj)7 (419)
8tK (tv €T, y]) + Fm(mv y]>K (tv €T, y]) = ,U,(J}, yj>w§m(w7 yg)H (t7 T, yj):
(4.20)
subject to the zero initial conditions
~ —~N
EN(O,:I;,yj) =H (0,z,y;) =0, (4.21)
~ ~N
T 0,2,y = K (0,2,y;) =0, (4.22)
and the PEC boundary condition:
~N
nx FE (t,m,yj) =0, on ON. (4.23)
o ~N —~N ~N ~N
Multiplying (4.17)-(4.20) by E (0,z,y;), H (t,z,y;), J (t,z,y;) and K (t,z,y;),
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respectively, and integrating over S, we can easily see that (cf. proof of Lemma 3.12 in [16]):

H .
T, (=62 T [V
+/( o A e )—o. (4.24)
Q gwpe /prm

Integrating (4.24) from t =0 to t and using the zero initial conditions, we easily have

(tv y]) S Oa

)

+var

L2(Q

H\/_”Pm

L2(Q)

which leads to

~N

—~N =N —N
E (Oawayj) =H (07m7yj) =J (Oamvyj) =K (O7w7yj> =0.

These justify that EN (t, @, y) = ILE, HY (t,z,y) = I H, JV (t,x,y) = ILJ and K" (t,z,y) =
K.

4.2.1 Regularity analysis

Lemma 17. For problem (4.1)-(4.7) and any t € [0,T] , we have

[ [ ot (wyuﬂ+MwwHP @ﬂ;%%MUP

e KT ) )ty

(@, y)w

< [ o) (B« ptw g +

uwy><wwm“)“@

Proof. Multiplying (4.1)-(4.4) by 2p(y)E,2p(y)H,2p(y)J and 2p(y) K, respectively,
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|J*

then integrating over ) and =, and adding the resultants, we have
1
e(x, y)wp.(,y)

( c(a, Y| Bl + (e, y)| H +

Le(z,y) 2 L' (, y) 2) dx
; (w,y)m ! (. y)w2, (@ y)’K\ ) dady = 0
(4.25)

) wpe

//QP e

where in the last step we used the PEC boundary condition (4.7) in the following identity
// E-VxH //p(y)H-VxE— // yH nxE=0
= /o9

r(y)
Q
Integrating (4.25) with respect to ¢t from ¢ = 0 to ¢ concludes the proof. O

Whe + 2,02, +

Lemma 18. Denote
mazl ‘= 2Ma N
1 oz <€u P

0, |*

2.(x,y)

Then for problem (4.1)-(4.7) and any t € [0,T] , we have
e(z,y)

( (2, )0 BI + ()| OHI +

u( Y)ws, (T, y)

< Cmawl / /

Ko|? ) dedy.
2| Yy

wpm

1
0K P) (dady
(MW X Hol* + |V x Eo|* + | Eo|* + u|Ho|*

59

2 |‘IO|2

Ewz,



Proof. Taking the time derivative of (4.1)-(4.4), we obtain

e(x,y)h(OE) =V x (0,H) — 0, (4.26)
@, y)0 (0, H) = =V x (& E) — O, K, (4.27)
! YO+ — Y 55 aE (4.28)

e(x,y)w2 (z,y) e(x,y)w2 (z,y)
1 Fm(way)
W@ gy ) T i e (o)

Multiplying (4.26)-(4.29) by 2p(y)O.E, 2p(y)0: H , 2p(y)0J and 2p(y)0, K, respectively,

then integrating over ) and =, and adding the resultants, we have

1
// < (o) DB + (e ) OHE + 0T
9 pe

+—\8tK|2) dxdy
(. y)ws

//2p ( Le(@.y) g5 4 Fm(a;’w |6tK|2) dady

Y)wp. (T, Y) @, y)wy,, (x,y)
- ﬁ / 20(y) [V x (,H) - 3E — V x (0,E) - 0, H]

_ /: /6 2ly)n x (9.)-9.H =0 (4.30)

where in the last step we used integration by parts and the PEC boundary condition (4.7).
Integrating (4.30) with respect to ¢ from ¢ = 0 to ¢, then using the governing equations
(4.1)-(4.4) and the Cauchy-Schwarz inequality, we have
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1 1
)|0LE|? OH|* + ————— 0, > + ———— |0, K| | (t)dxd
L[ o) (e 0B + w wl0HE 4 e 0T K (i
1 1
< // < e(x,y) |0 Eol* + p(z, )|8tH0|2+2|3tJ0|2+2|3tK0|2> dxdy
E(m, y)wpe ,U,($, y)wpm
2 2 2 2

< |V><H0| + |Jol?) + ;(|V><Eo| + | Kol%)

Q

200l 4 [Bol) + 2 (T4 Kol + | ol | dady
pm
1
_ // [ (WY % Hof? + €|V x Bof?) + 2(u?, +T%) - ——|Jof?
ewz,
2 2 2 2 2 2 2
1
< Cmaml//P(MVXH0|2+€|V><E0|2+ | Tof?
=Jo EWpe
1
s Kol + el Bol 4 ol ) dady, (a.31)
pm

which concludes the proof. O

In the rest of the paper, we will use the following Gronwall inequality a lot.

Lemma 19. If Q(t) Satzsﬁes < Q@ + dy for some constant cog # 0 and dy, then we have

d
Q(t) < e (Q(O) + —“) . Vit>0.
Co
Theorem 20. Denote constant C,:
0, (ew? 0y, (pw? 0y, 0y,
C]_ max ( yz( pe) + ’ayll—\e| 7 yl(u pm) + |ay11—\m| ’ Lg 7 y“u ) )
QxE EWpe pm 2 H
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Then for any t € [0,T] andi=1,--- ,d, we have

1
L[ oto) (clon B2+ o 1P+ 0, 9+ |ayiK|2) (t)dady
=JQ Ewpe pm
1
< [ [ o) (clonBR 4 uion HE + 10,77+
=JQ E(")pe
1
—|—eclt(1+(]max1)//p<5|V><E0|2+,uW><H02—|—5]E0|2+,u]H0|2+6w2 Tol?
2JQ pe

1
+ D) |K02> .
Hipm

Proof. Differentiating (4.1)-(4.4) with respect to any y; (1 = 1,--- ,d), we obtain

@J(P) )dxdy
P

€0,(0,,E) —V x (0, H) + 0,,J = —0,e0,E (4.32)

pdy (0, H) +V x (0, E)+ 0, K = —08,u0,H, (4.33)

0y, J) + 0y, J — ew2, 0, E = 0y (ewi)E — 9, (4.34)

(0, K) + 0y, K — i 0, H = 0, (uws, )H — 9,1, K. (4.35)
Multiplying (4.32)-(4.35) by 2p(y)0,, E, 2p(y)d,, L " y>a K, respectively,

then integrating over 2 and =, and adding the resultants, we have

d 1 1
— E|? H|? JP?+ ——10, K|*) dzd
dt/E/Qp(y) (e\ayl ? + ulo,, H]| +6w§€|8yl | T 10, |> zdy

pm

L (g e e )

a 2
//2p(y) {—0yie'8tE~8yiE O, OuH -0, H+%E 0,.J
=ZJQ

| o
——8ylFeJ-8yiJ+—yZ(N o) gy 0, K — 8@/;

K0, K 4.36
EWpe pw? pw? " } (436)

where in the last step we used the following identity:

// WV x0,H-0,E—-N x0,E-0,H)= // y)(n x 0, E-0,H)=0.
oD
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By the Cauchy-Schwarz inequality, it is easy to see that

[ [2wocor 0,8~ [ [ 25 op veo,E
=JQ =JQ

< %( 8yi€>//p(y) (a|8tE]2+e|8yiE|2), (4.37)
/ / 2p()0y pOH - 0, H — / / Owlt o H - o, H
< x| 2 D [ [ otw) (u|atHr2+u|ayiH|2). (438)

Similarly, we can obtain

y (ews)
2 PR < E2 2 4
/E ., p(y) e, Dy max ewpe / / (e|E|" + ), (4.39)
Dy
/2’)(1’)'WH % K<max< i) >// Y HI? + —5—0, K 2),
EJQ HWhm ExQ uwpm p
Oy F )
2p(y) - -y £J - 0y, J<max (10y,Te]) |J| + 10y, 1), (4.40)
z=Ja
2 ) Bl g, & < (o |// ) (1K + 0, K aay

Denote constants Cy and C3 as follows:

10,T.]. |ayirm|) . Cy = max (
Ox=

Oy, (5W2 )

pe
EWpe

Oy,€
£

HWpm

)
Y ILL Y

Cy = max (

Qx=E

Let us introduce the notations

1 1
ENGy(t) // (5]E|2+M|H\2+—2\JP+ 5 |K]2) (t)dxdy,

and

ENGi(0) = [ [ otu) (08P + o, HP + -

1
\ TP+ — |8yiK]2) (t)dady.
pm
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Substituting (4.37)-(4.41) into (4.36), we have

d
ZENGy(t) < CENGy(t) + CLENGA (1) + Cy / / p(y) (OB + ploH|?) . (4.42)
=JQ

Applying the Gronwall inequality stated in Lemma 19 to (4.42) and Lemmas 17-18; we

have

ENG:(t)

1
< Ot { ENG1(0) + &~ [C2ENGo(0) + C3Cnant (ENGo(0)
1

+/E/Qp(e\v X Bof? + |V Ho|2))]}

< Cut [ENGl(O) (14 Conaat ) (ENGo(0) + / / eV x Eol? + u|V x Hol2)| |
=JQ

which concludes the proof. In the last step we used the fact that Cy < C} and C3 < 4. O

Remark 5. If the physical parameters e, 1, U'e, I'y, Wpe, Wpm are independent of y;, then Cy =
Cy = C3 =0. Hence from (4.42) we easily see that Theorem 20 becomes

1 1
0, E|? 0, H|? 0, J|? 0, K|?)| (t)dzd
L otw) (05 i, FP 0,7 + 10, ) (i
1 1
< [ [ ot (e|ayiE|2+u|ayiH|2+ 10, TP+ — |aiK|2) (0)dwdy.
=JQ €wpe wpm

In the more general case, Theorem 20 shows that if the following initial conditions are

L? bounded:

1
510y, T 1> + —
cwl, om
1, 1
cw? [ol” + w2
pe pm

1

/ / o) <6]8yiE]2 + ulo, HI? + @J{P) (0)daxdy < C,
=JQ

L9 (619 % Bl 4 119  HoP 4 clBof? + ulEof? +
=JQ

|K0|2) <C,

then the solution (E, H,J, K) of (4.1)-(4.7) is also L*? bounded:

E H 1 1
2 2 2 9 c
/E/Qp(y) <€|8yi [+ ul0y HI"+ 2 Oy T I” + il |0y, K| ) (t)dzdy < Ce“*.

pe pm

This boundness guarantees that the mean squared error is O(N~') when the stochastic collo-
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cation method is used to solve the model problem (4.1)-(4.7). Details see Theorem 27 proved

later.

To prove higher order convergence, we need to show that higher derivatives with respect
to the random variables are L? bounded. Below we just present the proofs of L? boundness
for the second-order derivatives, which depend on the estimates of V x u,V x 0;u and

V x0yuforu=FE, H,J, K. These estimates will be proved in the following three lemmas.

Lemma 21. Denote the constant

V()

pm

C] = max
OQOXE

+|VT,|,

)

(e

Wpe

My
).

v
|V, ‘?8

Then for any t € [0,T] andi=1,--- ,d, we have

1 1
/ / p(y) (elV x E? +u|V x H? + |V x J|? + IV x K|* | (t)dzdy
=Jo ew? pew?

pe pm

N 1 1
<2+ Oant) [ [ o0 <€|VXE02+M|VXH0|2+ VT |V><K0|2>
=2JQ a")pe wpm

1
Ew

1
| Jol? + 2 |K0|2) :

2
pe pm

414 Ct) [ [ 0to) <€|E0|2 uH? +
=JQ

Proof. Taking Vx of (4.1)-(4.4), and using the identity V X (¢u) = ¢V x u+ Vo X u

for any scalar function ¢ and vector function w, we obtain

e(VXE)—VXx(VxH)+VxdJ=-Vexo,FE, (4.43)
P (Vx H)+Vx (VXE)+VxK=-Vux0oH, (4.44)
H(VxJ)+I.VxJ—ew,VxE=V(w,) X E—Vl.xJ, (4.45)
W(VxK)+T,Vx K-, VxH=V(u., )xH-Vl,xK. (4.46)
Denote
ENG3(t) = / / o(y) (g|v x B> + u|V x H|? + %IV x J|> + 12 |V x K|2> (t)dxdy.
=JQ gwpe l’[’wpm

Multiplying (4.43)-(4.46) by 2p(y)V x E,2p(y)V x H, 22V x J and 2LV x K, re-
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spectively, then integrating over {2 and =, and adding the resultants, we have

—ENGg

[ f

z//(V><V><H~2,oV><E—V><V><E-2pV><H)
zJo

// (VI x K)

(i o)

2
i

Le(x,y)
wyw?(wy)

Vo dP+ —m@Y g k12 dedy
(@, y)wpm, (T, y)

—//(Vex&tE)-QpVxE—//(VuxatH)-ZpVxH

/ (VI x J)
Q

/ Vaw)xE 2V><J
Q w

EWpe

7
g VXK::ZETW.

pm i=1

VxK+/ pm

(4.47)

Using integration by parts, (4.1), and boundary conditions n x E =0 and n x J = 0,

//VxVxH-QpVxE
=Ja

we obtain

which leads to Err; = 0.

:// nx(VxH)~2pV><E+//VxH«ZpVxVxE

= Jog =Jo

:// n><(58tE+J)-2pV><E+//V><H-2pV><V><E
= Jog =Jo

://VXH-2pV><V><E,
=Jo

By the Cauchy-Schwarz inequality and the identity

we have

Erry

IN

lu

(

|- |v|sinf, where 0 is the angle between u and v,

//Z—X\/_atE VeV x E

max
QxE

Vg

) () frast | [ )
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Similarly, we can obtain
Erry < (max

wel5) (L W'@tﬂl”/m'm'?)v
Erry < (maX|VF |> // + IV x JP),

Errs < (max ) (/ / pe|E|* + // 51V x J]2>
Ox= 8wpe pe
Errg < ( ax [V, |) / / (K> +|V x K?),
xX= pm
Err; < (max V) ) ( /W\H|2 // |V x K|2)
Qx= /,prm /,L pm

Denote constants C35 and C5 as follows:

Ve

Cs m1>, O;r:max( ‘@)
QxE M

QE

(‘ V (ewpe)

EWpe

‘ V(uw?,,)

pm

Recall the notation

1 1
ENGy(t) // (5]E|2+M|H\2+J\JPjLF\K]Q) (t)dxdy,

pe pm

and substitute the above estimates into (4.47), we have

d
S EN
dt Gs (1)

< C3ENGo(t) + CIENGa(0) + G [ [ ply) (0P + wlosHP)
=JQ

< CEENGs(t) + CLENGo(0) + CiConant (ENGO / / eV x Bol2 + u|V x Ho )) (4.48)

where we used Lemmas 17-18 in the last step.
Applying the Gronwall inequality (cf. Lemma 19) to (4.48) and the facts that C5 < Cf
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and C3 < C7, we have
ENG;(1)

/ pelV x Bol? + |V x Ho“‘))]
Q

< eCit [ENGg(O) + (1 4 Crnaz1) (ENGo(0) + /
1 2 1 2
K
cw? [Jol” + pw? | Kol )

Secff(ucml)//p(s|Eo|2+u|Ho|2+
=2JQ pe pm

« 1 1
+e01t(2+cmm)//p(g|V><E0|2+M|VXHO|2+ IV Toff 4 VxK0|2),
=2JQ

2 2
5wpe pm

which concludes the proof. O

Remark 6. Similar remark as Remark 5 holds true. More specifically, if the physical param-

eters €, i, U'e, 'y, Wpe, wpm are independent of the spatial variable x, then C7 = C5 = C5 = 0.

In this case, Lemma 21 just becomes

2

1 1
//p(y) <€|v X B+ plV x HP + — |V x I+ — |V x KP) (1) dady
=JQ

pe pm

1 1
< / / p(y) (e\v X B> + p|V x H? + — |V x J|* + ——|V x K|2> (0)dxdy.
=JQ gwpe :uwpm
Lemma 22. Denote constants Cy and Cs as
C, = max ( Ve ‘ A\ Wpe VE N Wpm V |
OxE \|E/EN JA/EML € 1
V (pw? V (ew?
i)l oy |ZE5) 4 o).
pm pe
V(ew? V (pw?
05 — max ( wpeV»s n |vre| 7 wpmvu‘ + |VFm| : ( pe) ‘ (M pm) ) .
Ox= gwpe wam

Then for any t € [0,T) andi=1,--- ,d, we have

1 1
/ / p(y) <gyv x OE|? + pu|V x 0, H|* + IV x 0,J)? + o |V x M{P) (t)dady
=JQ

awf,e o
Cut C5Cma;tl 2 2 1 2
<e 1+T4 . Qp(y) E‘antE’ +M|v><8tH‘ + |v><8tJ|

ew,
1
+ ——|V x 8tK|2> (0)

HZ,

1 1
) p<y>(arvxE012+u|vxHo\2+e\EoP+u\Hor?+ ol + rKoP)]
=J0

2 2
EWze Wi,
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Proof. Taking 0; of (4.43)-(4.46), we obtain

Z‘:at(v X @gE) —V x (V X 8tH) + V X @J = —Ve X 8t(3tE), (449)

u@t(v X 8tH) + V x (V X atE) +V x atK = —VM X 8t(8tH), (450)
(Vx0J)+T.V x0oJ— gwf,ev x O F = V(awﬁe) x OFE — VI, x 0,J, (4.51)
WV x O,K)+ T,V x 0K — pw?, V x 0,H =V (uw,,,) X ,H — VI, x ,K. (4.52)
Denote
ENG4(t) / / (e|V x OE|* + pu|V x 0,H|?
JP? + ——|V x atKF) (t)dzdy,
pm
and
1 1
ENG;(t // (5|5tE|2 + o HP? + —5 10, > + — |8tK|2) (t)daxdy.

Multiplying (4.49)-(4.52) by 2p(y)Vx0,E, 2p(y)V x 0, H , % 2p<y VxdJ and 22Y ant

respectively, then integrating over 2 and =, and adding the resultants, we have

_ENG4 //2p ( L@y g, 9p

y)wi(z,y)

Fm(w7 y)
ez, y)wy,(z,y)

://(VXVXatHQpVXatE—VXVX@E2pv><atH)

|V x 6tK|2) dxdy

// Ve x 0t(8tE) QpV X 8tE // V,LL X (9t(8t ) 2pV X atH

//vr x 0,J) J+//Vew )% OB -0 x 0,7
EW,
2
//VF x O K K+//Vuwpm) M

= Z Err;. (4.53)
i=1
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Using integration by parts, (4.1), and boundary conditions n x E = 0 and n x J = 0,

we obtain

//VXVX@HQpVX@tE

=Ja

:// nx(antH)QpVx&tE—i—//Vx@tH~2pVxVx8tE
= Joa =Ja

:// nx(58t2E+8tJ)-2pV><8tE+//Vx&tH-QpVxantE
= Joa =Ja

Z//VxﬁtHQpVXVX@E
=2JQ

which leads to Err; = 0.

Using (4.1) and the Cauchy-Schwarz inequality, we have

ETTQZ_/ %X(antH 0t ) QpVxﬁtE
=2J0

= X (puV x O,H) - \/peV x O.FE

= Ja

+//2“LV5><( A 28tJ) JVEY x O,E

< (max )//p(e\Vx@tE|2+u|Vx6tH|2)

n (max WpeV€ ) // ( |8tJ|2 _|_€|v > atE|2)
=

Using (4.2) and the Cauchy-Schwarz inequality, we can obtain

Errs = / / (VxO,E+0,K)-2pV x O,H
< (max )// (e|V x O.E)* + pu|V x 0H|?)
Ox=

UmeV,UJ‘)//p( . |atK|2+,u|v % atH|2> )
1 =Jo \ i,

+ (max
Ox=
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Similarly, by the Cauchy-Schwarz inequality, we have

Erry < (max|VFe|) //
QOxE

J?+ |V x0,J),

Errs < (max ) (//p€|3tE|2 // 51V x at-]|2)
OxE Ewpe pe

Errg < (max |VFm|) / K|*+ |V x 9,K|?),
OxE

Err; < (ma ,uwpm ) (//pu|@tﬂ|2 // |V x 8tK|2>
QxE |  HWpm HW pm

Substituting the above estimates into (4.53) and using the notations ENG,(t) and
ENG5(t) and Lemma 18, we have

d
—ENG(?)

< Cy- ENGy(t) + Cs - ENG5(t)

< Cy- ENG4(t) + CsCinamt {ENGO // IV % Bl + 4V x Hy| )} (4.54)

Applying the Gronwall inequality (cf. Lemma 19) to (4.54), we have

ENGA4(t)
< et [ENG4(O)+% (ENGO // (el V x Eo|* + p|V x Ho|? ))1
4
§€C4 (1+—C5%maacl> |:ENG4( )+ENGO // IVXE(]’Z—F,U/IVXHO’ ):|
4

which concludes the proof. O

Remark 7. If the physical parameters €, j1,I'c, I'py, Wpe, wpm are independent of the spatial

variable x, then the constants Cy = Cs = 0. In this case, Lemma 22 simply reduces to

1
/ / p(y) (g\v x OGE|* + pulV x O.H|* + — IV x 0 J|* + IV x 8tK|2> (t)dady
=2JQ pe

pm

1 1
< / / o) (£IV % OB + ulV x O.H? + — |V x 0,J + — |V x 0,K ) (0)daedy.
=JQ E(")pe :U‘wpm
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Theorem 23. Denote constants Cg 1, Cs 2, Cs 3, Csa and Cg as

Ve

Co1 = max ( Wpe Ve N ’(0%.52)V5 N ‘V(ayis) ' N Oy,€ N ‘ Vu ) |
Ox= \|E\/EM € € € jvE

Co» = max (' Vi |, wpmw‘ N ‘(GWZ)W' N ’V(ayiu)’ N @yiu’ L Ve ) |
Ox= I I I E\/EW

V (ew? V (9, (sw? 0,, (ew?

0673 _ Illaz( (|VF6| + ‘ ( wpe) + ‘ ( yz( wpe)) ’ + yz( wpe) + |v(ayll—\e)|

QXE Wpe EWpe pe
+[0y.Lel)
V (pw? YV (0, (jw? 0y, (pw?

0674 _ glaz( (|Vrm| + ' (luwpm) + ‘ ( Yi (luwpm>>‘ + Yi (luwpm)

Ox= ,u(-“-)pm ,Uwpm ,Uwpm
IV (9y,I'm)| + 10y, L'ml)
Cs = max (Cs1,Cs2,Co3,Cs4), Cra=Cs+ Cs+ C1 + CF.
Then for any t € [0,T]) andi=1,--- ,d, we have
//,o(y) <5|V X 0y, B’ + p|V x 8, H]> + —|V x 9, J|?
=JQ pe
1
+—5—|V x 8yiK|2) (t)dxdy
pm
< 20y [/ / p <€|V X 0y, EI> + pu|V x 8, H|> + —-|V x 9, J|?

pe

) Oy

/ / (5|Eo| O+
+//p(5|V><E0|2—|—u|V><H0|2—|—
= Jo
+//p(e\Vx@tEP—i—,quatHF—i—

) (0)dzdy

/ / (e|ayzE|2 o, HP +

where constant Ci3 > 0 depends on parameters e, (i, Wpe, Wpm, I'e and I'y,, but is independent

of t.

1
N |K0|2) dwdy

pm

—|V x Jo|* + — |V><K0|2> dzdy

pe pm

5 |V X (9“”2

pe

Yi

: |awK|2) <o>dmdy] |

pm
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Proof. Taking Vx of (4.32)-(4.35), we obtain

€0(V x 0y, E) =V x (Vx0,H)+V x0,J

= —Ve X 0y, E — V(0y,6) X O E — (0,,6)0:(V x E), (4.55)
1o (V x 0, H)+V x (Vx0,E)+V x0,K

= VX Oy, H — V(0 1) x O, H — (8,,11)0,(V x H), (4.56)
h(V x 0y, J) + TV x 9,0 —ew, V x 8, E = =V x 9, J +V(ews,) x 0, E

+ V(8y,(ew2,)) X E + (9,,(ew,))V x E —V(9,,I'e) x J — (9, L)V x J, (4.57)
(Y x 0, K) + T,V x 0, K — pw?, ¥V x 9, H = —VT,, x 0, K + V(uw?,,) x 9, H

+ V(0y, (pw2,)) x H + (0, (i, )V x H =V (9,T) x K — (9,T,)Vx K. (4.58)

pm

Denote

ENG(t)
1
— / / o(y) (g|v X 0y, B’ + p|V x 8, H]> + —|V x 9, J|?
=2JQ 8C"')pe
1
+——|V x 8yiK|2) (t)dxdy.
pm

Multiplying (4.55)-(4.58) by 2pV x 0, E,2pV x 0,,H, %V x 0y, J and —2-V x 0, K,

2
HWpm,
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respectively, then integrating over €2 and =, and adding the resultants, we have

—ENG6 //2,0 < 6)%2() 19 %2, T |2

Fm(:l:, y)
(@, y)wz, (x,y)

://(V><VxayiH-2pV><8yiE—VxVxﬁyiE-QpanyiH)
=Jo

|V x ayiK|2) dxdy

—[/ﬂVa X Oy, B - 2pV x 0, E
- /_ /Q[V(@yie) X HE + e - ,(V x E)| - 2pV x 8, E

—/H/QW X Oy, H - 2pV x 0,, H

_K/S)[V(ﬁyiﬂ) X OH + Oy, 11 04(V x H)|-2pV x 0, H

+ /_ /Q[—vre X Oy d + V(w?) X 0, E + V(9,,(e62,)) X E+8,,(s%) -V x E
- Vu(é’y,.Fe) x J — (0,T)V x J] - 2’;

pe

b [ [V X 0,0+ Vlpst) x 0, H + V(0 () < H
=JQ

V x 0,,J

+ ayi(uwﬁm) -VxH-V(,T.) x K —(9,T,,)V x K|

V x0,K = ZEm (4.59)

I['prm i=1

Below we will estimate each Err; of (4.59). First, using integration by parts, (4.32), and

boundary conditions n X E =0 and n x J = 0, we obtain

/_/QVXVXE)%H-Q,OVX%E
:/H/aﬂnx(VxﬁyiH)-QpVxayiE+[/(2Vx8yiH-2pVxanyiE
= /_/mn X (€0, E + 0y, J + 0y,eOE) - 2pV x 0, E

+/H/QV><8yiH-2pV><V><8yiE

://VX@MH-?,vavxﬁyiEa
=JQ
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which leads to Err; = 0.
Using (4.32) and the Cauchy-Schwarz inequality, we have

Erry = //—x (V x0,H — 0y,J —0,e0,F) - 2pV x 0,, E
Q
stx )//ﬁ@vX@m%wa%Hm
Ox= =

+ (max )// ( 10,,J|* +¢|V x 9, E|2)
Qx=

8. \Y%

By the Cauchy-Schwarz inequality, we can obtain

Wpe V

Errgz_//zm x /peO,E - \/peV x 0,,E
—/ aylg\/_at(v < E) - \/peV x 0,,E

< (max V(9e) ) //p(s@E\z +¢|V x 9,,E[?)
OxE 5 =JQ
+ <max % > //p (e|0(V x E)]? +¢|V x 9,,E[?) .
QxE =JQ

Similarly, by (4.33) and the Cauchy-Schwarz inequality, we have

Erm—// (Vx0,E+0,K + 0,,10,H) - 2pV x 0,, H
< (max ) //p(eW x Oy, B> + u|V x 9, H|?)
QOXE =

mV 1
+@m“p“D//4—T@waWx%mﬁ
Qx=E =JQ luwpm
L

Oy, )V
+ (Iélxai( (Z/L,u—zD /_/QP(M@tHP‘i‘N‘V X ayiH|2>‘

1)



By similar arguments, we have

V(0,,
SO [ [ oot + v < 0, 17)
K Jq
+(max

0y,
wox| ) [ o oS < BDP 4 4lV % 0, HP).
P+

o ey [t o)
") [ fo(omat )

Errs < | max
Ox=

QxZ 5wpe

(mm ”\)// Gmﬁ |vX@ﬂﬁ

Ox= 6wpe

(s |)) Lo (e )

Ox= Ewa

+< ax V(9,,T.) )// < +€w§e|anyiJ|2>
1

Ggg%noé%}(&&WxJP+wgvX%ﬂﬁ,

Yi

_l’_
and
Err < (mnwmo// (oK + 0, KT")
OxXE pw pm
w?
+<ma>< Vst )// (MI%HF i )
QxXE wam
V(o
(s - 2
Ox= prm
Yi ILprm 2 2
+me V[ @WxH«+ QWx%KQ
OxE ,uwpm ,uwpm
1
rmnrn) | (et e <)
QXE lu /”prm
1
+<maX|3yiFm\>//p( |V x K|+ — !anyiKF)-
Qx= =J0O /‘prm :uwpm
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Let us introduce the notations:

C7 = max (0,,6)Ve + V(9y,€) ’ (Oy, )V n V (0, 1t) |
OxE g2 c 12 i
ngmax(% | MD
Ox= £ o
s V(ew? V (uw?
Co ZmaX< e VE| L v w”va’ + |V, (5wie) ‘ (10pm) )
Ox= 15 gwpe ,uwpm
9, (ew? O (1w
(%_mw(yx%a7%m%mﬁ%nM%mD,
OxE=E Eo.}pe om
V(9,, (sw? v (8, (
Ox= a*)pe wam

Substituting the above estimates into (4.59) and using the notation ENGg(t), we have

d
GENG(t) < GENG(0) + G [ [ p (0B + wo.HP)
=JQ

+Cs [ [ 9609 x B+ o¥ < DP)

1
+Co [ [ o(clonBP + wo, HE + 10,8+ 10, KP)
2JQ 6(")pe pm
+C1o//p<€|V><E\2—|—,u\V><H|2+ —|V x JP? + ]VxKP)
= pe pm
1
+C11 // <5|E|2 + u|H|)? + yJ|2 5 \K|2> . (4.60)

Applying Lemma 18, Lemma 22, Theorem 20, Lemma 21 and Lemma 17 to the C7, Cs, Cy, C1g

7



and C7; terms, respectively, we obtain

%EN@@) < CsENGy(t)

+ C7Cmax1 / / p(€|V X E0|2 +/L|V X H0|2 +€|E0|2 +N|H0’2
=2JQ

1 1

C5C,
2 2 Cy 5V maxl 2
+5w2 ‘Jo‘ +/m2 ‘Kg’ )dwdy—l—Cge t(l—i-T) [/ELp(€’VX8tE’

pe pm

1 1
2|VX8tJ|2+ B

pe pm

—|—//p(e\VxEo\z—i—,u\vXH0\2—|—5]E0\2+MH0]2—|—
=J0

1
+—— | Ko
2,

1 1
+ Coe?t {/ﬂ/ﬂp <a€|8yiE|2 + 110, H|* + " 10, J|* + WW%KF) (0)dzdy

pe pm

1

2
pe

| Jo|?

+ (1 + Cmawl) / / P (E‘V X Eo‘2 +/.L‘V X 1¥0‘2 —|—€|E0‘2 +/.L‘H0’2+
=JQ

1 1
ew? [Tof* + w? |K0|2>]
pe pm

+ Choe“t" {(2 + Crnaz1) / / p (e|V x Eo> + u|V x H|?
=Jo

1 1
+ 5 |V><J0|2+ 3 |VXKO|2)

pe pm

1 1
+(1+Omax1>//p 8|E0|2+M|H0|2+ 2 |J0|2+ 2 ’I{O|2
=JQ gwpe wpm
1 1
+Cu//p (g\E0|2+M|HO|2 +—5 ol + — |K0|2> : (4.61)
=ZJQ gwpe :uwpm

Using Lemma 19 to (4.61) and absorbing those constants in (4.61), we conclude the proof.

With Lemmas 21-22 and Theorem 23, we can prove the boundness of the second derivative

with respect to the random variables.
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Theorem 24. Denote the following constants:

0,2€ 2(0,.¢)? 20... ey
Clay = max < Vi |4 ‘ ( y;€> 4| 2% WpeOy, € ) |
Ox= g E g lgu c
0,2 2(0,. 11)? 20... 2y O
Crap = maX< s + ‘ ( y’QM) - ‘ il | | 24yt ) 7
Ox= M lj, Iu’ /EM [1/
€0,2T’ 2e0,,T. 0,2 (ew?, 20,, (ew?,
014,3 = Illaz( yz e 5 Yi + yl( p ) + yz( D ) ’
QxE I, I'. EWpe EWpe
D2 (e, 20, (jiw?
Ciaq = max <|8yzFe!+|2ayirm| + i (1) +‘ b (1)
Ox=E v

7
pm wam )

Crqs = max (Cia1, Cia2, Cra3,Craa), Cis=Ciy+ Cra+ Ca.

Then for any t € [0,T] andi=1,--- ,d, we have

1 1
[ [ oto) (0B + o+ 0T ng|@ng|2) (t)dwdy

1
< 6015t020 |:/—/ p <E‘v % ayiE‘Z +M|V X 8yiH|2 + w2 ’V X 8%-']’2
pe

|V x 9, K|2> (0)dzdy

T %

# [ o (B + il ¢ 4 Kol ) dady
= Pe pm

/ <eyv x Eo|? + pu|V x Hol* + — IV x Jo|? + |V x K0\2> dedy
= ew pe pm

/ < IV x QE* + u|V x 0,H|* + — |v x 9 J|? + IV x GtK|2> (0)dxdy
= pm

1

w [ [ o (0B o B+ 10,7 4 0, K ) (O)dudy
= Pe pm

/ <6\6 2 E|? + o, 2H|2 |8ng|2> (O)d:cdy] ,
= om "

where constant Cyy > 0 depends on parameters e, (b, Wpe, Wpm, I'e and T'y,, but is independent

of t.
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Proof. Differentiating (4.32)-(4.35) with respect to any y; (i = 1,--- ,d), we obtain

0,0, E) =V x (0,,H) + 0,pJ = —(9,26) 0 E — 2(0,,2)0y, E, (4.62)
10, (02 H) + V x (02E) + 0,2 K = —(0,201)0, H — 2(0y, 1) 0, H., (4.63)
01(0,pd) + Tedpd — ewr 0,2 E

= —(0,2Te) T —2(0,,T)0y,J + (9,2 (ewi,)) E + 20y, (ew, )0y, E, (4.64)
(0, K) + 0 K — pws,, 0, H

pm=Y;

Denote

ENGH(t) // <s|aygE|2+u|ay3H\2+ 10T+

pe pm

|8yi2K|2> (t)dxdy.

Multiplying (4.62)-(4.65) by 2p(y)0,2E, 2p(y)d,2H, 2;5?5)8ng and ii(_,%ay?Kv respec-

tively, then integrating over 2 and =, and adding the resultants, we have

aovasn - [ oo (o >($p1:)v,y>‘a?"'2+u(mfaﬁifz;%L,y)'any'Q)d“’dy

—/:/Q(ay?g)atE-QPany—/:/Q(Qayﬁ)@tyiE-QpaygE
_//(3 2#)8tH.2p8y3H—//(28yiﬂ)atyiH.2pay§H
// J 2,0(92J //2aylr yJ 2p82J
Q €w2 Q 6&)2 i
2 (EWpe 20, (ew?,
// g, 2P32J+// 5 20u) 5 . 200,20
p€ EUJ
// K QpﬁzK //28 F ayzK QszK

// #u ; H 2p82K+// yz” 21y ayiH-Qp@yng. (4.66)

By the Cauchy-Schwarz inequality, we have

)// (c|OEI? + £]0,2 E[?).

26

Erry < | max
QxE




Similarly, by (4.32) and the Cauchy-Schwarz inequality, we have

// 295 (V7 % 0, H — 0,0 — 0, 20,E) - 2p0,,E
2

Erry = —
20,,¢
< (glg 5 f—) [ [ otalv < 0, 1P + <1,
X (maX QWpea 8)// X +€|a 2E| )
OxE
+ (max M (5|8E|2+ 0. EP)
axz | €2 C ) P 1=

Similarly, by (4.33) and the Cauchy-Schwarz inequality, we have

Erry //2M(VxﬁyiEJrayiKJr@yiuatH) 200, H
L) [ [ olelv =0, B + o HP)

< (max
OxE
2y,
+ (ma§ MD//p<—2I%KlzJrulf%,gHIQ)
QxE=E pew pm
(x| 222N [ [ ot + slo
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Similarly, by the Cauchy-Schwarz inequality, we have

Errs < (max s )//P(M|3tH|2+M|3y2H|2),
OxE=E
58 QF
Errs < < >// ([T +10,2 J\)
pe
2 6 e
Errg ( max | 220l e )// (10,12 + 0,271,
Err; < (mx )// <5|E|2 |8 2J|2>
OxE 6wpe
20, (e
Errg < (mx L “he )// (5|8%E]2 2J]2)
QxE EWpe
Errg §(mx|32fm|)// |K|2+|82K|)
OxE=E pm
Erryy < < §|28yzfm|) / » + 19, 2K| ),
w?
Erry < 3( ACT // u|H]2 2K|2)
XE ,uwpm
20, ( w
Erry < (m 200 405m) ) p (o B+ oK),
OxE | [Wpm pm
Denote the following constants:
Opel 12(0,,2)2| |9y 2(0,,p1)?
016—max( v —l—‘ (yf) ; yfﬂ‘+‘ (%2“) )7
OxE € ) v
0,2 (ew? 0,2 (pw? 0,2,
C17 = max < yi( be) % (1) | —= yzrm’> ;
OxZ= 8(-'(-)pe ,uwpm Fe ¢
20, (cw? 20, (juw? 2¢0,. I’ 2.0y,
018 = maX( yZ( pe) yl('u pm) ? 2 LA wpe ylg 7|2ayv,rm|> )
Ox= EWpe HWpm Fe
20, 20,
Ch9 = max ( Oyie , Ouilt > )
OxE ENEM HA/E L
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Substituting the above estimates into (4.66), we obtain

d
S ENGH{1) < CLBNGH{1) + Cig / / OB + |0, H?)
1
voa [ [ (6|E|2+MIH|2 T !KIQ)
+018// <g\a EP+ 10, H|2+—|am2 1 |8Z.K|2>
w2, 2
+019//p(5|V><ayiE|2+u|vxayim ) (4.67)
=JQ

Applying Lemma 18, Lemma 17, Theorem 20, and Theorem 23 to the Cig, Ci7, Cis and
(19 terms, respectively, then using the Gronwall inequality (cf. Lemma 19) to the resultant,

we conclude the proof. 0

Remark 8. By similar techniques, we belicve that if the random parameters are smooth
enough, then higher derivatives with respect to the random wvector y can be proved to be
bounded similarly as stated in Theorems 20, 23 and 24. Since the proofs will become quite

technical and are similar, we skip the proofs for higher derivatives.

4.2.2 Convergence analysis

To prove the convergence estimate for the stochastic collocation method, let us first recall

the following interpolation error estimates.

Lemma 25. [/9, p.289-290] Let Iyu denote the polynomial of degree N that interpolates
u at the (N + 1) Gauss, or Gauss-Radau, or Gauss-Lobatto points {y;}1L, i.e., I{u(y) =

Z;'V:() u(y;)L;(y). Then we have the interpolation error in the L*-norm:
lu— Iju| 210y < CN""|ulgm—11y, YV ue H™(=1,1) withm > 1, (4.68)
and the interpolation error in the H'-norm:

|u — Ijull g1y < C’N2l_%_m|u|Hm(,1’1), Vue H"(-1,1) withm >1>1.  (4.69)
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For the Gauss-Lobatto interpolation, we have the following optimal error estimate:
[(u— I%u) || p2-10y < CNY™ulgm-11), YV u€ H™(—1,1) withm > 1. (4.70)

Below are the extension of the above interpolation results to tensor product interpolation.

Lemma 26. Let Iyu = IV I -+ I¥u denote the d-dimension tensor product polynomial of
the 1-D interpolation polynomial of degree N that interpolates u at the (N + 1) Gauss, or
Gauss-Radau, or Gauss-Lobatto points {y;} i=o- Then we have the interpolation error in the

L2-norm [49, (5.8.20)]:
|u — Inul|r2z) < CN"ulgmE), Y ue H™(Z) withm > d/2. (4.71)
For the Gauss-Lobatto interpolation, we have the following optimal error estimate [49, (5.8.21)]:
lu— Inul| ) < ONYulgme), YV ue H™E) withm > (d+1)/2. (4.72)

To present the error estimate, recall that the mean (or expectation) of a function u is

defined by
// u(t, x,y)dxdy, (4.73)

and its mean square is defined by

= ([ [ owuteav dmdy)? @)

Theorem 27. Let (E,H) be the solution of (4.1)-(4.7), and (EY, H™) be the stochastic
collocation solution of (4.15). If the assumptions of Theorems 20 and 23 are satisfied, then
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the following mean and mean square errors hold: For any 0 <t < T,

M[E — EN]+ M[H — HY]+ M|V x (E — EM)]+ M|V x (H — HY)] < C;N7%,
(4.75)

E[|E— EV|+E[|H — HY|+E[V x (E — EM)|+E[V x (H— H)] < C;N~".
(4.76)

Here and below Cr is a constant depending on T but independent of N. Furthermore, if the

assumptions of Theorem 24 are satisfied, then we have the following higher error estimates:

Forany 0 <t <T,
M[E — EN] + M[H — HY] +E||E - EY|| +E[|H - H"|] < C;N~2. (4.77)

Finally, if the assumptions of Theorem 24 are satisfied, for the Gauss-Lobatto interpolation,
we have the error estimate for the derivative of the solution with respect to the random

variables: For any 0 <t <T, and j=1,--- ,d,
M([0,,(E—EM)|+M|[0,,(H—H")|+E[|9,,(E—E")||+E[|0,,(H—H")] < CN~". (4.78)

Proof. For any fixed x, using (4.68) of Lemma 22 for u = E and v = H with m = 1,

respectively, we have

/: (p<y>e<a:, VB z.y) — B (12 y)]
(e, y) | H(t 2, y) — HY(t,2,9)]) dy

< ON- / (2, )0, B> + p(y) (@, v)|0,H?) dy. (4.79)

Similarly, using (4.68) of Lemma 22 for v = V x E and v = V x H with m = 1,
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respectively, we have

/: (p(@)e(@,y)IV x (B(t,z,y) — BN (t,z,y))

+p(y)u(z, y)|V x (H(t,z,y) — H(t,z,y))|*) dy

< ON- / =@, 9)[0,(V x ) + ply)u(x, 9)|0,(V x H)P) dy. (4.80)

Adding (4.79) and (4.80) together, then integrating the resultant with respect to @ over
D and using Theorems 20 and 24, we complete the proof of (4.75).

The estimates (4.77) can be proved similarly by using (4.68) of Lemma 22 with m = 2
and the higher regularity obtained in Theorem 24.

Similarly, using (4.70) of Lemma 22 with m = 2, and the higher regularity proved in
Theorem 24, we obtain the proof of (4.78).

Finally, the mean errors follow from the standard inequality ||u||z: < C|lul|z2 and the
estimates (4.75), (4.77) and (4.78). O

With the above interpolation estimate, we can show that the overall errors for solving
the metamaterial Maxwell’s equations by the classical Yee scheme (cf. [41]) are estimated
as follows. Denote the electric field solution of Yee scheme for any fixed random vector y
as BV, and E,JZV A¢ for the electric field solution of the fully-discrete solution with stochastic
collocation method and Yee’s scheme imposed. Denote the discrete L2-norm over the physical

space Q as |-|2(q) (cf. [41]). Then we can obtain the discrete mean square error as following:

5 3
( IR EhN,AA?zm)dy) < ( [ 2518 - B0+ 1B - EzV,AA?Q(m)dy)

< CIN™+ (B* + (At)?)], (4.81)

where we used the error estimate of Yee scheme and Theorem 27. The error estimate for

other variables can be bounded similarly.
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4.3 Numerical results

To justify our theoretical analysis, here we present some numerical results carried out for

the metamaterial model in 7'M, mode, whose governing equations are:

Moagfl = —S—Z — Ky, + g1, (4.82)
Mo 8[;:52 = g—i — Ky, + 9o, (4.83)
50%—13 = 88[;[:;2 - a@i? —J+gs (4.84)
O BT 4 (4.85)
% = powp, Hyy — T Koy + g, (4.86)
- A (4.87)

where g; (1 <1i < 6) are added source terms used to construct exact solutions for checking

convergence rates. The parameters g, €9, I'yn, I'e, wp, and w, are functions of spatial variable

x and random vector y.

Example 1. In this test, we choose the following parameters:

=1+ 0.01(sin(m(y121 + yox2 — 1)) + cos(m(ysz1 + yaza — 1)) + exp(—ysz1 — ye22)),
=1+ 0.01(sin(m(y121 + yox2 — 1)) + exp(—y3x1 — yaxa2) + cos(mw(ysx1 + yera — 1))),

=7+ 0.01(cos(m(y121 + yawe — 1)) + sin(w(ysx1 + yaza — 1)) + exp(—ysz1 — ysx2)),

)

)

)

where y; (1 < i < 6) are uniform independent random variables on [0, 1].

In our tests, we use Yee scheme (cf. [41]) to solve the T'M, model on physical domain
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Table 4.1: Errors of the solutions when the analytic solutions are infinitely smooth in both

random and spatial variables.

Mesh 1/5 1/10 Rate 1/20 Rate 1/40 Rate
E[|H;, — H;Ll ] 9.51281F — 03 | 2.25052E — 03 | 2.0796 | 4.90362F — 04 | 2.1390 | 1.16331E — 04 | 2.1259
M[|Hey — H;”l [] | 9.51281E — 03 | 2.25090F — 03 | 2.0794 | 4.90442F — 04 | 2.1389 | 1.16353E — 04 | 2.1258
E[|Hy, — H;}Z 1] 9.51281F — 03 | 2.25462E — 03 | 2.0770 | 4.91154FE — 04 | 2.1378 | 1.16533E — 04 | 2.1252
M[|Hzy — H!ELQ [] | 9.51281E — 03 | 2.25498F — 03 | 2.0768 | 4.91231F — 04 | 2.1377 | 1.16554E — 04 | 2.1251
E[|E — Eill ] 1.14777E — 02 | 2.33418E — 03 | 2.2978 | 5.27242E — 04 | 2.2221 | 1.26109E — 04 | 2.1670
M[E —EP || | LI4777E — 02 | 2.33587E — 03 | 2.2068 | 5.27710E — 04 | 2.2215 | 1.26237E — 04 | 2.1666
E[[Ka, — K |] | 8.77292E —03 | L.7I711E — 03 | 2.3531 | 3.72208E — 04 | 2.2794 | 8.73870E — 05 | 2.2154
MKz, — K;JL1 [] | 8.77292E — 03 | 1.71767TE — 03 | 2.3526 | 3.72326FE — 04 | 2.2792 | 8.74154E — 05 | 2.2153
E[| K¢y — K:{clz ] 8.77292E — 03 | 1.71711E — 03 | 2.3531 | 3.72208E — 04 | 2.2794 | 8.73870FE — 05 | 2.2154
M[[Kay — KI || | 8.77292E — 03 | L.71767E — 03 | 2.3526 | 3.72326E — 04 | 2.2792 | 8.74154E — 05 | 2.2153
E[|J — J;Ll ] 1.71215E — 02 | 3.95199E — 03 | 2.1152 | 9.11318E — 04 | 2.1159 | 2.18246E — 04 | 2.0998
M][|J - Ji.Ll 1] 1.71215FE — 02 | 3.95296F — 03 | 2.1148 | 9.11584FE — 04 | 2.1156 | 2.18302E — 04 | 2.0997

Q = [0,1]? and time domain [0, 1] with the exact solution given as

H,, = sin(mx; + po) cos(mxa + po) exp(—nt),

H,, = —cos(mxy + po) sin(mzy + po) exp(—mnt),
E = sin(mzy + €) sin(mxs + €y) exp(—mt),

K,, = m*tsin(nz;) cos(may) exp(—t),

K,, = —mtcos(mw) sin(mwy) exp(—nt),

J = m?tsin(mwy) sin(7xy) exp(—7t).

To test the convergence rate, we vary the partition size in the x; and x, directions
hyy, = hg, = h from 1/5 to 1/40, and time step size from 1/10 to 1/80. We set time partition
equals two times of spatial to guarantee the stability. In the same time, the partition
numbers in random space vary from 1 to 8. We present the errors of all six components
(Hy, Hyy, B, Ky, Ky, J) in the discrete E[-] and M| in Table 4.1. We can see clearly that
all solutions show second order convergence which agrees with our theoretical result, since
in this case the exact solution is infinitely smooth in both random and spatial variables and
the overall error is dominated by the numerical scheme error.

In Figure 4.1, we present one sample magnetic field and its mean and variance obtained by

solving the same problem by a 20 x 20 spatial uniform partition on [0, 1]2. We set the initial
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Figure 4.1: Comparison of a random sample of magnetic field and its mean and variance
obtained with y = (0.8147,0.9058,0.1270,0.9134, 0.6324, 0.0975).

conditions and boundary values using the above exact solution and no added source functions.
Figure 4.1 is obtained with the random vector y = (0.8147,0.9058,0.1270,0.9134, 0.6324, 0.0975),

and shows that the mean magnetic field is similar to the sample field in this case.

Example 2

This example is used to test the convergence rate when the solution has limited regularity
in the random variables. For simplicity, we use the same exact solution as Example 1 except
H,, being given as:

V2 V2

H,, = sin(mzy + po) cos(mxa + p19) exp(—nt) + (y1 — T)msgn h——1|, m=1,2.

We choose number 1/2/2 to avoid the case that some interpolation point falls at this cusp
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Table 4.2: Errors of the solutions when H,, € H3/?7¢(Z)

N 2 4 Rate 8 Rate 16 Rate

SHHII — H!gl ] 2.544284F — 01 5.899390F — 02 1.8103 1.560676 E — 02 1.6431 6.047332FE — 03 1.3678
M[|Hyy — Hﬁl ] | 2.972258FE — 01 | 7.969676FE — 02 | 1.6161 | 2.654922FE — 02 | 1.4797 | 1.024674E — 02 | 1.3735
El|Hzy — Hi?2 ] 9.506088F — 06 | 1.570312E — 05 | 0.9623 | 5.537782F — 06 | 1.7153 | 1.456298FE — 06 | 1.9270
M([[Hyy — H |] | 1.576924E — 05 | 1.125031E — 05 | 1.1302 | 5.549302E — 06 | 1.4701 | 1.465709E — 06 | 1.9207
E| Kz, — K;}l ] 6.473112FE — 04 | 1.479130E — 04 | 2.0982 | 3.443082FE — 05 | 2.0817 | 8.255164F — 06 | 2.0603
M[|Kzy — K;ll ] | 6.473390FE — 04 | 1.479207F — 04 | 2.0982 | 3.443912F — 05 | 2.0816 | 8.255810F — 06 | 2.0606
El|Kzy — K;Lz I 5.212914F — 04 | 1.306984F — 04 | 2.0072 | 3.209770FE — 05 | 2.0099 | 8.057718E — 06 | 1.9940
M[|Kzy — K£2 ] | 5.213384E — 04 | 1.307129F — 04 | 2.0070 | 3.211124F — 05 | 2.0095 | 9.062296F — 06 | 1.9938
E||E — EhH 1.291961F — 04 | 4.004254F — 05 1.9222 | 9.690372F — 06 | 2.0176 | 2.442342F — 06 1.9883
M[E — EM] 1.297785F — 04 | 4.008978F — 05 | 1.9236 | 9.704608FE — 06 | 2.0176 | 2.445378FE — 06 | 1.9886
ENJ — T 1.206363E — 03 | 3.078828E — 04 | 1.9984 | 7.689780F — 05 | 2.0120 | 1.892578FE — 05 | 2.0226
M([|J = J] 1.206383F — 03 | 3.078850F — 04 | 1.9984 | 7.690346F — 05 | 2.0119 | 1.892703F — 05 | 2.0226

point. The corresponding source terms are obtained by plugging the exact solution into the
governing equations. It is easy to check that the exact solutions are infinitely smooth except
that H,, (Z) € H™*'/27¢(Z) when m = 1,2, respectively.

To investigate the convergence rate, we initialize the partition number for z1, o, t and
y as 10, 20, 40 and 2 respectively to make a uniform spatial and temporal partition and use
a Gauss-Lobatto points for each random space. Then we double all partition numbers three
times.

The numerical results of original solutions are given in Tables 4.2 and 4.3 for m = 1 and
m = 2, respectively. Table 4.2 shows that the error of H,, is about O(N~!3) in both mean
and mean square norm defined earlier, and errors of other solutions are still O(N~?) due to
their infinite smoothness. This is consistent with our theoretical analysis. When m = 2, all
the solutions have O(N~2) convergence, which shows clearly by the results stated in Table
4.3. Notice the rate of H,, is limited to 2 due to the 2nd convergent rate of the FDTD

scheme. We also plotted the variances of the electric fields at variance times in Figure 4.2.

Example 3
In this example, we solve a classic example showing the backward wave propagation

in metamaterials (cf. [42, 41]). This example assumes that a metamaterial slab of size

[0.024, 0.054]m x [0.002,0.062]m is located inside a vacuum of size [0,0.07]m x [0,0.064]m.

An incident source wave is imposed as E field and excited at line x; = 0.004m ranging from
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Table 4.3: Errors of the solutions when H,, € H*?7¢(=2)

N 2 4 Rate 8 Rate 16 Rate

El|Hyy — H:ﬁl ] 4.707117E — 02 | 6.770013E — 03 | 2.7029 | 7.617172E — 04 | 2.5807 | 1.891617E — 04 | 2.0096
M|[|Hzy — H;Ll ] | 5.827503E — 02 | 8.021087E — 03 | 2.6621 | 1.028223E — 03 | 2.5124 | 2.463826E — 04 | 2.0612
El|Hzy — H£2 ] 2.053239F — 05 | 3.153899F — 06 | 1.9998 | 1.204564F — 06 | 1.7503 | 2.786668F — 07 | 2.1119
M([|Hgy — Hﬁz ] | 2.361496E — 05 | 3.209744FE — 06 | 2.0270 | 1.213414FE — 06 | 1.7048 | 3.020466E — 07 | 2.0062
El| Kz, — K;Ll ] 3.563472F — 04 | 8.236230E — 05 | 2.0961 | 2.025432FE — 05 | 2.0996 | 4.483891F — 06 | 2.1754
M| Kz, — K;‘l ] | 3.563567E — 04 | 8.236546E — 05 | 2.0961 | 2.025525E — 05 | 2.0996 | 4.484184FE — 06 | 2.1754
E|Kzy — Kf;,z I 3.563472F — 04 | 8.236230E — 05 | 2.0961 | 2.025432E — 05 | 2.0996 | 4.483891F — 06 | 2.1754
M[| Kz, — Kfc’2 ] | 3.563567TE — 04 | 8.236546F — 05 | 2.0961 | 2.025525F — 05 | 2.0996 | 4.484184F — 06 | 2.1754
E||E — Eh|] 8.567125FE — 05 | 1.922316E — 05 | 2.0511 | 4.694926F — 06 | 2.0016 | 1.198734F — 06 | 1.9696
MI[|E — Eh|] 8.570607FE — 05 | 1.923237E — 05 | 2.0509 | 4.697663FE — 06 | 2.0013 | 1.199810F — 06 | 1.9691
EllJ — Jh\ 4.566191F — 04 | 1.075776FE — 04 | 2.0366 | 2.599359F — 05 | 2.0100 | 6.630678E — 06 | 1.9709
M| — Jh ] 4.566465E — 04 | 1.075871E — 04 | 2.0366 | 2.599465FE — 05 | 2.0100 | 6.631424F — 06 | 1.9708

VIE]

VIE]

0.8

VIE]

Figure 4.2: Example 2. The variances of electronic fields at t = 0.25 (Top left), ¢ = 0.5 (Top
right), ¢t = 0.75 (Bottom left) and t = 1 (Bottom right).
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xy = 0.025m to x5 = 0.035m. The source wave varies in space as exp(—(z; — 0.03)?/(50h)?)

where h is the partition size in space, and in time as:

(

0 t<O0ort>2m+k)T,
g1(t)sin(wet) 0 <t <mi,

sin(wot) mT, <t < (m+k)T,

| 92(t) sin(wot)  (m+ k)T, <t < (2m + k)T,

where

g1(t) = 10a® — 15a* + 6a°, a=t/mT,

g2(t) =1 — (106* — 156* + 6b°), b= (t — (m + k)T,)/mT,

here T, = 1/ fo and wy = 27 fp. In this simulation, m = 2, k = 100, fo = 30GHz.
This model is solved on a uniform mesh with time step size 7 = 107135 = 0.1ps and 12
perfectly matched layer (PML) imposed around the physical domain. Details can refer to

our previous work [41]. We use the following random parameters for our simulation:

co(z,y) = 111 x 107 (1 + 91 + v),

po(,y) = 107°/(1 + y1 + 1),
T, ) = 108(1 + 1074 (y5 — 0.5)),

Pe(z,y) = 10°(1 + 107" (ya — 0.5)),
Wi (2, ) = 27V/2 x 3 x 101°(1 + 1074 (y5 — 0.5)),
we(x,y) = 27V2 x 3 x 10°(1 + 107*(ys — 0.5)).

The obtained electric field at various time steps are plotted in Figure 4.3, which shows that
as the source wave enters the metamaterial slab, the wave propagates backward due to the
negative refractive index of the metamaterial and propagates forward after the wave moves
out the metamaterial subdomain. This example shows that the backward wave propagation

phenomenon still exists in the random metamaterial.
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Figure 4.3: The contour plot of electric field |E| at various time steps.
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CHAPTER 5

CONCLUSION AND FUTURE WORK
5.1 Conclusion

This dissertation focused on the uncertainty quantification in electromagnetic fields, includ-
ing the efficient algorithm, regularity and error analysis, and numerical simulation. The
stochastic Galerkin method, quasi Monte Carlo method, and stochastic collocation method
have been discussed, and the numerical experiments have been shown to verify the theoretical
results.

In chapter 2, we use the stochastic Galerkin method to solve the standard Maxwell’s
equations with random inputs. We first showed that the stochastic Galerkin method is
energy preserved. Additionally, we come up with the spatial finite element method and
two different time. The modified leap-frog type scheme was designed to further reduce the
computational cost. The numerical experiments are used to support our theoretical results.

In chapter 3, we discuss the single and multi-level Monte Carlo methods and quasi Monte
Carlo method for Maxwell’s equation with random inputs. The advantage of Monte Carlo
class methods is that all the governor PDEs for different samples are totally decoupled.
Hence, it is super easy to establish the parallel algorithm for stochastic PDEs problems
by using Monte Carlo class methods. The convergence results have been proved, and the
numerical experiments have been displayed to verify our theoretical results.

In chapter 4, we establish the regularity and error analysis of the time-dependent Maxwell’s
equations in Drude metamaterial with randomness. In the numerical experiments, we first
verify the convergence rates and compare the CPUs’ times. And then, we demonstrate the
backward wave propagation phenomenon happened when the electromagnetic wave travels

in the random metamaterial.
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5.2 Future work

The uncertainty quantification is still a popular topic in mathematical and engineering area.
Due to curse of dimensionality, it still deserves our efforts to develop more efficient algo-
rithms. Recently, a machine learning method has been developed to solve the stochastic
PDEs problems with amazing efficiency. This new idea can be used in stochastic electro-
magnetic fields.

Another promising idea is the high level quasi Monte Carlo method, for example, multi-
level quasi Monte Carlo method. As showed in chapter 3, the Monte Carlo class methods is
decoupled but their accuracy is low. Quasi Monte Carlo may conquer this issue, and then
balance the computational workload and the accuracy.

I will also keep working on another area I am interested in. In [43], we solved metamaterial
design problems by using optimal control method. But the theoretical analysis, such as
existence, smoothness of the solution, are still unsolved. These meaningful works worth our
best efforts to solve them.

For the classic numerical algorithms, such as finite element method and Yee scheme, there
are lot of work should be done. In [44], we shown analysis of Ziolkowskis PML problems. In
[45], we presented the analysis of Crank-Nicolson Yee scheme. Those works can be continued
for more complicate models.

In [46], we shown a FDTD scheme for Kerr-type nonlinear media. Actually, this algorithm
can be more efficient if compact finite difference scheme or hp finite element methods have
been used.

Finally, I am also interested in a variational approach for PDEs. In [47], we showed a sym-
metry breaking result by using bifurcation and critical group. The symmetry preservation

problem will be a potential future work.

95



1]

[10]

[11]

BIBLIOGRAPHY

Chauviere, C., Hesthaven, J.S. and Lurati, L., 2006. Computational modeling of uncer-
tainty in time-domain electromagnetics. STAM Journal on Scientific Computing, 28(2),
pp.751-775.

Benner, P. and Schneider, J., 2015. Uncertainty quantification for Mazwell’s equations
using stochastic collocation and model order reduction. International Journal for Uncer-
tainty Quantification, 5(3).

Hong, J., Ji, L. and Zhang, L., 2014. A stochastic multi-symplectic scheme for stochastic
Mazwell equations with additive noise. Journal of Computational Physics, 268, pp.255-
268.

Horsin, T., Stratis, [.G. and Yannacopoulos, A.N., 2010. On the approximate control-
lability of the stochastic Mazwell equations. IMA Journal of Mathematical Control and
Information, 27(1), pp.103-118.

Babuska, I., Nobile, F. and Tempone, R., 2007. A stochastic collocation method for el-
liptic partial differential equations with random input data. SIAM Journal on Numerical
Analysis, 45(3), pp.1005-1034.

Babuska, I., Tempone, R. and Zouraris, G.E., 2004. Galerkin finite element approzi-
mations of stochastic elliptic partial differential equations. STAM Journal on Numerical
Analysis, 42(2), pp.800-825.

Ghanem, R.G. and Spanos, P.D., 2003. Stochastic finite elements: a spectral approach.
Courier Corporation.

Gunzburger, M.D., Webster, C.G. and Zhang, G., 2014. Stochastic finite element meth-
ods for partial differential equations with random input data. Acta Numerica, 23, pp.521-
650.

Caflisch, R.E., 1998. Monte carlo and quasi-monte carlo methods. Acta numerica, 7,
pp-1-49.

Barth, A., Schwab, C. and Zollinger, N., 2011. Multi-level Monte Carlo finite element
method for elliptic PDEs with stochastic coefficients. Numerische Mathematik, 119(1),
pp-123-161.

Xiu, D. and Karniadakis, G.E., 2002. The Wiener-Askey polynomial chaos for stochastic
differential equations. SIAM journal on scientific computing, 24(2), pp.619-644.

96



[12]

[13]

[14]

[15]

[16]

[17]

[21]

[22]

23]

[24]

Fang, Z., Li, J., Tang, T. and Zhou, T., 2019. Efficient stochastic Galerkin methods
for Mazwells equations with random inputs. Journal of Scientific Computing, 80(1),
pp-248-267.

Xiu, D. and Shen, J., 2009. Efficient stochastic Galerkin methods for random diffusion
equations. Journal of Computational Physics, 228(2), pp.266-281.

Zhang, Z. and Karniadakis, G., 2017. Numerical methods for stochastic partial differen-
tial equations with white noise. Springer International Publishing.

Monk, P., 2003. Finite element methods for Mazwell’s equations. Oxford University
Press.

Li, J., Huang, Y.: Time-Domain Finite Element Methods for Maxwells Equations in
Metamaterials. Springer Series in Computational Mathematics, vol. 43. Springer, Berlin
(2013)

Cao, Y., 2006. On convergence rate of Wiener-Ito expansion for generalized random vari-
ables. Stochastics: An International Journal of Probability and Stochastics Processes,
78(3), pp.179-187.

Galvis, J. and Sarkis, M., 2009. Approximating infinity-dimensional stochastic Darcy’s
equations without uniform ellipticity. STAM Journal on Numerical Analysis, 47(5),
pp-3624-3651.

Balanis, C.A.: Advanced Engineering Electromagnetics, 2nd edn. Wiley, Hoboken, NJ
(2012)

Cliffe, K.A., Giles, M.B., Scheichl, R. and Teckentrup, A.L., 2011. Multilevel Monte
Carlo methods and applications to elliptic PDFEs with random coefficients. Computing
and Visualization in Science, 14(1), p.3.

Graham, I.G., Kuo, F.Y., Nichols, J.A., Scheichl, R., Schwab, C. and Sloan, I.H., 2015.
Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random
coefficients. Numerische Mathematik, 131(2), pp.329-368.

Harbrecht, H., Peters, M. and Siebenmorgen, M., 2016. Multilevel accelerated quadra-
ture for PDEs with log-normally distributed diffusion coefficient. STAM/ASA Journal
on Uncertainty Quantification, 4(1), pp.520-551.

Xiang Wang, Jichun Li, and Zhiwei Fang, Analysis and application of single level, multi-
level Monte Carlo and quasi-Monte Carlo Finite element methods for Mazwell’s equa-
tions with random inputs. publish soon.

Kuo, F.Y., Schwab, C. and Sloan, I.H., 2012. Quasi-Monte Carlo finite element meth-
ods for a class of elliptic partial differential equations with random coefficients. STAM
Journal on Numerical Analysis, 50(6), pp.3351-3374.

97



[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Dick, J., Kuo, F.Y. and Sloan, I.H., 2013. High-dimensional integration: the quasi-Monte
Carlo way. Acta Numerica, 22, pp.133-288.

Cools, R., Kuo, F.Y. and Nuyens, D., 2006. Constructing embedded lattice rules for
multivariate integration. STAM Journal on Scientific Computing, 28(6), pp.2162-2188.

Sloan, I.LH. and Wozniakowski, H., 1998. When are quasi-Monte Carlo algorithms effi-
cient for high dimensional integrals?. Journal of Complexity, 14(1), pp.1-33.

Dick, J., Sloan, I.H., Wang, X. and Wozniakowski, H., 2004. Liberating the weights.
Journal of Complexity, 20(5), pp.593-623.

Sloan, I.LH., Wang, X. and Wozniakowski, H., 2004. Finite-order weights imply tractabil-
ity of multivariate integration. Journal of Complexity, 20(1), pp.46-74.

Huang, Y., Li, J. and Wu, C., 2013. Averaging for superconvergence: verification and
application of 2D edge elements to Mazwells equations in metamaterials. Computer
Methods in Applied Mechanics and Engineering, 255, pp.121-132.

Xiu, D. and Hesthaven, J.S., 2005. High-order collocation methods for differential equa-
tions with random inputs. STAM Journal on Scientific Computing, 27(3), pp.1118-1139.

F. Nobile, R. Tempone and C.G. Webster, A sparse grid stochastic collocation method
for partial differential equations with random input data, STAM J. Numer. Anal. 46(5)
(2008) 2309-2345.

M. Motamed, F. Nobile and R. Tempone, A stochastic collocation method for the second
order wave equation with a discontinuous random speed, Numer. Math. 123 (2013) 493-
536.

C. Schwab and C.J. Gittelson, Sparse tensor discretizations of high-dimensional para-
metric and stochastic PDEs, Acta Numer. 20 (2011) 291-467.

D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach,
Princeton University Press, 2010.

G.J. Lord, C.E. Powell and T. Shardlow, An Introduction to Computational Stochastic
PDFEs, Cambridge University Press, Cambridge, 2014.

Li, J. and Fang, Z., 2018. Analysis and application of stochastic collocation methods
for Maxwells equations with random inputs. Advances in Applied Mathematics and
Mechanics, 10(6), p.1305.

Li, J., Fang, Z. and Lin, G., 2018. Regularity analysis of metamaterial Mazwells equa-
tions with random coefficients and initial conditions. Computer Methods in Applied
Mechanics and Engineering, 335, pp.24-51.

J. Tryoen, O. LeMaitre, M. Ndjinga and A.Ern, Intrusive Galerkin methods with upwind-
ing for uncertain nonlinear hyperbolic systems, J. Comput. Phys. 229 (2010) 6485-6511.

98



[40]

[41]

X. Wan and G.E. Karniadakis, Solving elliptic problems with spatially-dependent non-
Gaussian random inputs: algorithms, error analysis and applications, Comput. Methods
Appl. Mech. Engrg. 198 (2009) 1985-1995.

J. Li and S. Shields, Superconvergence analysis of Yee scheme for metamaterial
Mazwell’s equations on non-uniform rectangular meshes, Numer. Math. 134 (2016) 741-
781.

J. Li and J. Hesthaven, Analysis and application of the nodal discontinuous Galerkin
method for wave propagation in metamaterials, J. Comput. Phys. 258 (2014) 915-930.

Fang, Z., Li, J. and Wang, X., 2019.Optimal control for electromagnetic cloaking meta-
material parameters design. Computers & Mathematics with Applications.

Huang, Y., Li, J. and Fang, Z., 2020. Mathematical analysis of Ziolkowskis PML model
with application for wave propagation in metamaterials. Journal of Computational and
Applied Mathematics, 366, p.112434.

Wang, X., Li, J. and Fang, Z., 2018. Development and analysis of CrankNicolson
scheme for metamaterial Mazwell’s equations on nonuniform rectangular grids. Nu-
merical Methods for Partial Differential Equations, 34(6), pp.2040-2059.

Jia, H., Li, J., Fang, Z. and Li, M., 2018. A new FDTD scheme for Mazwells equations
i Kerr-type nonlinear media. Numerical Algorithms, pp.1-21.

Costa, D.G. and Fang, Z., 2019. A note on breaking of symmetry for a class of variational
problems. Applied Mathematics Letters, 98, pp.329-335.

Kuo, F.Y., Schwab, C. and Sloan, I.H., 2011. Quasi-Monte Carlo methods for high-
dimensional integration: the standard (weighted Hilbert space) setting and beyond. The
ANZIAM Journal, 53(1), pp.1-37.

C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods Fundamen-
tals in Single Domains, Springer-Verlag, 2006.

99



CURRICULUM VITAE

Graduate College
University of Nevada, Las Vegas

Zhiwei Fang
Email: zhiweifang1987@gmail.com
Degrees:

Bachelor of Science, Hospitality Administration, 2011
Tianjin University of Finance and Economics, Tianjin, China

Master of Science, Mathematical Sciences, 2014
Tianjin University of Finance and Economics, Tianjin, China

Doctor of Philosophy, Mathematics, 2020
University of Nevada, Las Vegas

Special Honors and Awards:
UNLV Summer Doctoral Research Fellowship (2018)

Publications (During Ph.D.):
Fang, Z. and Zhan, J., 2019. A Physics-Informed Neural Network Framework For Partial
Differential Equations on 3D Surfaces: Time Independent Problems. IEEE Access.

Fang, Z. and Zhan, J., 2019. Deep Physical Informed Neural Networks For Metamaterial
Design. TEEE Access.

Fang, Z., Li, J. and Wang, X., 2019. Optimal control for electromagnetic cloaking meta-
material parameters design. Computers & Mathematics with Applications.

Fang, Z., Li, J., Tang, T. and Zhou, T., 2019. Efficient Stochastic Galerkin Methods for
Mazxwells Equations with Random Inputs. Journal of Scientific Computing, pp.1-20.

100



Huang, Y., Li, J. and Fang, Z., 2019. Mathematical analysis of Ziolkowskis PML model
with application for wave propagation in metamaterials. Journal of Computational and Ap-
plied Mathematics, p.112434.

Costa, D.G. and Fang, Z., 2019. A note on breaking of symmetry for a class of variational
problems. Applied Mathematics Letters.

Li, J., Fang, Z. and Lin, G., 2018. Regularity analysis of metamaterial Mazwells equations
with random coefficients and initial conditions. Computer Methods in Applied Mechanics
and Engineering, 335, pp.24-51.

Wang, X., Li, J. and Fang, Z., 2018. Development and analysis of CrankNicolson scheme
for metamaterial Maxwell’s equations on nonuniform rectangular grids. Numerical Methods
for Partial Differential Equations.

Jia, H., Li, J., Fang, Z. and Li, M., 2018. A new FDTD scheme for Mazwells equations
in Kerr-type nonlinear media. Numerical Algorithms, pp.1-21.

Li, J. and Fang, Z., 2018. Analysis and Application of Stochastic Collocation Methods
for Mazwells Equations with Random Inputs. Adv. Appl. Math. Mech., Vol. 10, No. 6, pp.
1305-1326.

Publications (Before Ph.D.):

Wang, S., Zhang, S. and Fang, Z., 2015. A superconvergent fitted finite volume method
for BlackScholes equations governing European and American option valuation. Numerical
Methods for Partial Differential Equations, 31(4), pp.1190-1208.

Chang, S., Fang, Z., Liu, X. and Shaydurov, V., 2014. A fitted finite volume method for
unit-linked policy with surrender option. Computational Research, 2(3), pp.49-53.

Dissertation Title: Uncertainty Quantification for Maxwell’s Equations

Dissertation Examination Committee:
Chairperson, Jichun Li, Ph.D.
Committee Member, Hongtao Yang, Ph.D.
Committee Member, Pengtao Sun, Ph.D.
Committee Member, Monika Neda, Ph.D.
Graduate Faculty Representative, Robert A. Schill Jr., Ph.D.

101



	Uncertainty Quantification for Maxwell's Equations
	Repository Citation

	tmp.1600197123.pdf.X1P87

