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Abstract

The vibrational contribution to the second hyperpolarizability (γ) of gas phase H2 was mea-

sured using electric field induced second harmonic generation. Measurements were made

for the pure vibrational 3-0 Q(J) overtone transitions (v=0,J → v’=3,J for J = 0,1,2,3).

Measured intensities were found to be 4-14% larger than ab initio calculations. The first

chapter of this thesis provides an introduction to nonlinear optics, second harmonic genera-

tion, and the tensor nature of hyperpolarizabilities. The second chapter provides theoretical

expressions for γ and relevant static and Raman polarizabilities. The third chapter covers

the experimental design and electric field induced second harmonic generation. The final two

chapters discuss the results and analysis of the experiment and possible future impact.
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1 Introduction

This thesis presents the results of an investigation into the second hyperpolarizability (γ) of

H2 gas using electric field induced second harmonic generation (ESHG). In order to appreciate

the findings, an introduction to nonlinear optics (NLO) is required. This introduction chapter

will cover a very brief history of NLO, molecular polarization and polarizability, a simple

description of the second hyperpolarizability, and finally will provide a guide to tensors,

abbreviations, and units used to explain such phenomena along with their typical sizes.

Beyond this introductory chapter there are four additional chapters. These four additional

chapters are: first, the theoretical foundation for γ mediating second harmonic generation

along with static and dynamic polarizabilities; next, a description of the experimental set-up

including spectral resolution, noise reduction techniques, and a description of the technique

of electric field induced second harmonic generation; then, the results and analysis of the

experiment including pressure shifts and ab initio comparisons of Raman polarizabilities;

finally, closing remarks and possible applications of the experimental method used are pro-

vided.

1.1 A Very Brief History of Nonlinear Optics

Optical tools and theory have existed in various cultures throughout time, from Mesopotamia

(∼4,000 BCE), as evidenced by the archaeological discoveries of polished rock-crystal lenses

[1], to Epicurus of Samos (340-270 BCE) in ancient Greece, who wrote about relations be-

tween light and color [2]. In the West, theoretical and experimental investigations of optics

expanded during the European Enlightenment period (∼1685-1815) with the theories of

Newton, Kepler, and Euler [3]. Nonlinear electromagnetic phenomena have been investi-

gated since the discovery of iron’s nonlinear response to an external magnetic field in the

19th century [4] and was furthered by the formalization of quantum mechanics in the 20th

century, which led to the development of (nonlinear) quantum optics. For a more in-depth
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investigation of the history of optics see Olivier Darrigol’s A History of Optics, From Greek

Antiquity to the Nineteenth Century [5].

The study of quantum optics was advanced with the invention of the laser in 1960 by

Theodore Maiman [6], which allowed for the creation of a high powered (intense) coherent

light source necessary for NLO investigations. The NLO phenomenon of interest to this thesis,

second harmonic generation, was theoretically predicted in 1931 by Maria Göppert‐Mayer [7],

and was first experimentally observed in 1961 by Franken et al [8]. Sum frequency generation

(SFG), which is the broader category that second harmonic generation (SHG) belongs to,

is primarily of interest for frequency conversion (for which crystals and condensed phase

materials are preferred for applications), while other applications in biological research [9]

(SHG microscopy, THG microscopy), quantum information [10] (parametric amplification in

fibers), and device production [11] (lasers, optical devices such as phase conjugate mirrors)

also contribute to the widespread interest in sum frequency generation. While early research

focused on nonlinear effects in crystals lacking centro-symmetry, such research was stymied

by absorption effects and high intensity surface damages, reducing the number of usable

materials for various applications [12]. The shift in NLO research from crystals to gas and

vapors has allowed for a wider range of investigation for light and molecules.

1.2 Molecular Polarizability and Polarization

Molecular optics studies the way in which the electromagnetic field of light manipulates

charge within materials. There are two major considerations when discussing molecular op-

tics, the way to think about the electromagnetic field (classical, quantum) and the strength

of the electromagnetic field.

Consider the applied electromagnetic field in terms of a photon with momentum p = E/c

interacting with a single molecule: the photon’s momentum will transiently be transferred to

the molecule but will not excite the molecule and so there will be almost no energy transfer

between the photon and molecule (Rayleigh scattering). At the instant of momentum transfer

2



the photon is considered to be absorbed and the molecule is in a virtual state – that is the

molecule is in a superposition of stationary states. The virtual state does not last forever and

as a result of this decay, a scattered photon with the same energy as the incident photon’s

energy is produced when the molecule transitions from the virtual state to its initial state.

Momentum transfer between a photon and a molecule is not restricted to one photon at a

time and a stronger electric field will increase the probability of multi-photon interactions

with a single molecule. Multi-photon interactions give rise to frequency mixing such as SHG

where two photons of equal frequency are absorbed and from this, a photon with twice the

frequency is generated.

Considering the applied electromagnetic field in terms of a plane wave, the coupling

between the field and the molecule can be approximated as a classical dipole interaction

with the field inducing a time-dependent polarization of the molecule. Such interactions can

be expressed mathematically by a Taylor series approximation of the electric dipole moment

µ̄ which is induced by an applied electric field Ej

µi = µ
(0)
i + αijEj +

1

2!
βijkEjEk +

1

3!
γijklEjEkEl + ..., (1)

where µi is the Cartesian component i of the total induced dipole moment, µ(0)
i is the per-

manent (unperturbed) dipole moment of the molecule, αij is the linear polarizability tensor,

βijk is the first hyperpolarizability tensor, γijkl is the second hyperpolarizability tensor, and

so on. Ej are components of the applied electric field. The nonlinear polarizability tensors

(βijk, γijkl) allow for a more accurate description of the total induced dipole moment when

larger electric fields are applied to the molecule.

Physically, Equation 1 can be visualized as light traveling through a medium, where the

light’s electromagnetic field interacts with the medium’s charges. Equation 1 breaks down for

applied electric fields stronger than the atom’s Coulomb field, which for H2, is ∼ 1.6× 1011

V/m. The applied electric field used for this thesis was ∼19.5× 105 V/m.
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The induced dipole expressed by Equation 1 depends on local fields experienced by the

molecule. For the present experiment, local fields and the applied electric field are of the

same order [13]. This can be seen by considering the Lorentz local field factors necessary for

relating the microscopic effects to macroscopic effects. That is, the third-order susceptibility,

χ(3), is related to the second hyperpolarizability, γ, by

χ(3) =
1

4

(
n2
0 + 2

3

)(
n2
ω + 2

3

)2(
n2
2ω + 2

3

)
γρ, (2)

where nω and n2ω are the refractive indices related to the incident and second harmonic

frequencies, n0 is the zero frequency refractive index, ρ is the number density of the gas

molecules and the factor 1
4

is associated with second harmonic generation. The Lorentz local

field factors for dilute non-polar gas are L(ω) = n2
2ω+2

3
, L(2ω) = n2

ω+2
3

and for the static field,

L(0) = n2
0+2

3
. The Lorentz local field factors for H2 are n2+2

3
≈ 1 since n− 1 = ρα

3ϵ0
≪ 1, for α

in SI units of Table 1, these field factors are accurate due to the molecular density ρ being

small enough. Physically the microscopic polarizability is a molecule-level characteristic and

is a measure of charge displacement per molecule while the bulk polarization can be regarded

as a density of dipoles.

The macroscopic polarization using macroscopic fields is

PI = ϵ0[χ
(1)
IJEJ + χ

(2)
IJKEJEK + χ

(3)
IJKLEJEKEL + ...], (3)

where PI is the macroscopic (bulk) polarization in the lab frame coordinate direction I, ϵ0 is

the permittivity of free space, χ(1)
IJ is the first order dielectric susceptibility tensor, χ(2)

IJK is the

second order and so on, with EJ being the macroscopic electric field [14]. The susceptibilities

are measures of how responsive the material is to an applied electric field.
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1.3 The Second Hyperpolarizability: γ

For a centrosymmetric molecule such as H2, which has no permanent dipole moment (µ(0)
i )

and no first order hyperpolarizability (β), the nonlinear response can be described by the

second hyperpolarizability tensor (γ). The second hyperpolarizability γijkl(−ωσ;ω1, ω2, ω3) is

a function of the incident electric field frequencies (ω1, ω2, ω3) and the polarizations (i, j, k, l)

and is generated by the induced electronic, vibrational, and rotational motion of the molecule.

While molecules of non-centrosymmetric and poly-atomic nature are beyond the scope of

this thesis, an in-depth discussion on their treatment can be found in Shelton and Rice’s

“Measurements and Calculations of the Hyperpolarizabilities of Atoms and Small Molecules

in the Gas Phase” [15].

Continuing the discussion for centrosymmetric molecules like H2, an invocation of the

Born-Oppenheimer approximation entails that its hyperpolarizability can be examined in

two distinct ways, electronically and vibrationally [16]. This distinction draws from the very

different time scale for response of the nucleus and electrons meaning: 1) the electronic hy-

perpolarizability is a measure to quantify the effect the applied electric fields have on the

motion of electrons while neglecting nuclear motion and 2) the vibrational hyperpolariz-

ability quantifies the effects from geometric changes of the nuclear frame that the electrons

adiabatically follow.

The electronic contribution to the hyperpolarizability of a molecule has been studied

extensively and can generally be described by a single dispersion formula, regardless of

NLO process, at frequencies well below the first electronic resonance. For the case where

the optical and static electric fields are polarized in parallel to one another, the second

hyperpolarizability electronic frequency dispersion formula is determined to be [15]

γe
∥(−νσ; ν1, ν2, ν3) = γe

∥(0; 0, 0, 0)× (1 + Aν2
L +Bν4

L + Cν6
L + ...), (4)

where νσ =
∑

i νi and ν2
L = ν2

σ+ν2
1+ν2

2+ν2
3 . For this experiment, electric field induced second
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harmonic generation, ν1 = ν2, and ν3 = 0, and ν2
L = 6ν2. The component γe

∥(0; 0, 0, 0) is the

parallel component of the electronic hyperpolarizability for the static limit. The coefficients

A, B, and C have been derived and defined by Shelton and Rice [15].

This universality is not seen for the vibrational contribution. The reason for this is that

the frequency dependence for γv is often more complex with resonant frequencies overlapping

oscillating frequencies.

1.4 Definitions and Units

To avoid any confusion between the cited literature and this work there will be a brief

explanation of abbreviations, definitions, and units. Table 1 outlines each polarizability up

to the third order and their subsequent units. In this text, the values for γ and α are reported

in atomic units unless stated otherwise. In most cited literature, SI units were invoked and

conversion may be necessary for comparison.

Table 1: Polarization Units

Polarizability Tensor Rank Linearity atomic units SI units electrostatic units
first order, α 2 linear 1 e2a2

0E−1
h 1.648 778 × 10−41C2m2J−1 1.481 7 × 10−25 cm3

second order, β 3 nonlinear 1 e3a3
0E−2

h 3.206 361 × 10−53 C3 m3 J−2 8.639 2 × 10−33 cm4 statvolt−1

third order, γ 4 nonlinear 1 e4a4
0E−3

h 6.235 377 × 10−65 C4 m4 J−3 5.036 × 10−40 cm5 statvolt−2

It is important to note that the polarizability tensors and the susceptibility tensors in

Equation 1 and Equation 3 are frequency dependent. For example, the second order hyper-

polarizability γijkl should be read as γijkl(−ωσ;ω1, ω2, ω3) which is the fourth rank tensor

describing the optical process where an induced polarization of frequency ωσ is produced as

a result of the action of the three electric field photons of frequencies ω1, ω2, ω3 incident on

6



the molecule.

Two things must be mentioned for frequency: 1) following traditional notation, the leading

frequency (the induced polarization frequency) is denoted by a negative value and is the sum

of the frequencies of the fields associated with the polarizability coefficients (α,β,γ) and 2)

different NLO processes are recognized by different field frequency compositions. For the

process used in this experiment, ESHG, the frequencies are,

ω1 = ω2; ω3 = 0 −→ −ωσ = −2ω (5)

Table 2 shows different NLO processes listed by type, identifying frequencies, and papers

for specific nonlinear events have been listed for those that are curious (though this extends

beyond what is needed for understanding this thesis).

Table 2: Common nonlinear optical processes and accompanying papers

NLO Process ωσ ω1 ω2 ω3 Early Experiments
second harmonic generation -2ω ω ω N/A “Generation of Optical Har-

monics” [8]
electric field induced second
harmonic generation

-2ω ω ω 0 “dc-Induced Optical
Second-Harmonic Gener-
ation in the Inert Gases”
[17]

third harmonic generation -3ω ω ω ω “Optical Third Harmonic
Generation in Gases by a
Focused Laser Beam” [18]

optical Kerr effect -ω ω ω -ω “Optical Kerr effect in liq-
uids” [19]

To distinguish frames of reference different subscript notations are used. Up to this point,

for molecule frames of reference, the microscopic polarizability tensor component has been
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specified by subscripts i, j, k, l which define, along the frame of reference, the molecular axis

along which polarization occurs and the directions of the pertinent applied fields [20]. For the

laboratory frame of reference, the polarizability tensor component has been specified by the

capitalized subscripts I, J,K, L. The molecular frame of reference is set such that the z-axis

is parallel to the molecular bond (see Figure 1) while the lab frame of reference involves

averaging over all possible orientations.

In the following chapters, to comply with accepted notation the tensor subscripts will

be α, β, γ, δ in place of i, j, k, l for molecule frame of reference. To distinguish lab frames of

reference A,B,Γ,∆ for I, J,K, L is used in this thesis.

Figure 1: Molecular frame of reference, for γα,β,γ,δ = γxxxx = γyyyy ̸= γzzzz
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2 Theory

The purpose of this chapter is to expand upon the theory of hyperpolarizability introduced

in the previous chapter. This chapter will cover the following topics: perturbation theory

applied to the total dipole moment (Section 2.1), the Q-branch, S-branch, and O-branch

approximations derived from the total second-hyperpolarizability (Section 2.2), the vibra-

tional resonance approximation derived from the total second-hyperpolarizability (Section

2.3), and finally, static and dynamic linear polarizabilities (Section 2.4).

2.1 Perturbation Theory and the Sum-Over-States Description

The aim of this section is to develop and present an expression for the second hyperpolariz-

ability γ using perturbation theory. Since deriving the second hyperpolarizability would take

up too much time and has been derived elsewhere [21][22], the linear polarizability will be

derived under a similar process as an example to establish the sum over states description.

The time-dependent Schrödinger equation (TDSE) for a time-dependent state vector |Ψ⟩

is

∂

∂t
|Ψ⟩ = (iℏ)−1Ĥ(t) |Ψ⟩ , (6)

where the time-dependent Hamiltonian Ĥ = Ĥ(0)+λV̂ (t) is a summation of the unperturbed

Hamiltonian Ĥ(0) and the time-dependent perturbation λV̂ (t). The adjustable parameter,

λ, varies from 0 to 1 with λ = 0 being an unperturbed system and λ = 1 a fully perturbed

system. Using perturbation theory the wavefunction solution to the TDSE is expressed in

the form of a power series expansion in λ expressed as

|Ψ⟩ = |Ψ(0)⟩+ λ |Ψ(1)⟩+ λ2 |Ψ(2)⟩+ ...+ λN |Ψ(N)⟩ . (7)

Substituting Equation 7 into Equation 6 and collecting terms of like degree in λ leads to

9



the equations

iℏ
∂

∂t
|Ψ(0)⟩ = Ĥ(0) |Ψ(0)⟩ (8)

and

iℏ
∂

∂t
|Ψ(N)⟩ = Ĥ(0) |Ψ(N)⟩+ V̂ |Ψ(N−1)⟩ , (9)

where N = 1, 2, 3, ... Equation 8 is the Schrödinger equation for a molecule with no externally

applied field and Equation 9 is a recursion relation for the N-th order correction to the

wavefunction in terms of the (N-1)-th order correction, for a molecule interacting with an

applied field. The solution to Equation 8 with the system assumed to be in the ground state

|g⟩ is

|Ψ(0)⟩ = exp(−iωgt) |g⟩ . (10)

For Equation 9, |Ψ(N)⟩ is solved by making use of the fact that the energy eigenfunctions

for Ĥ(0) constitutes a complete set of basis functions, and so

|Ψ(N)⟩ =
∑
l

a
(N)
l (t)exp(−iωlt) |l⟩ . (11)

Substituting Equation 11 into Equation 9 where a
(N)
l are to be determined gives

iℏ
∑
l

ȧ
(N)
l (t)exp(−iωlt) |l⟩ =

∑
l

a
(N−1)
l (t)exp(−iωlt)V̂ |l⟩ . (12)

The above expression can be simplified by multiplying the entire expression by ⟨m| and

integrating over all-space, with ⟨m|l⟩ = δml leading to

ȧ(N)
m (t) = (iℏ)−1

∑
l

a
(N−1)
l (t)Vml(t)exp(iωmlt) (13)

10



or

a(N)
m (t) = (iℏ)−1

∑
l

∫ t

−∞
dt′a

(N−1)
l (t′)Vml(t

′)exp(iωmlt
′), (14)

where the transition frequency is denoted by ωml = ωm − ωl and the matrix element of the

interaction Hamiltonian is Vml = ⟨m|V̂ |l⟩.

The zeroth order probability amplitude corresponding to the system being in the ground

state is a
(0)
l = δlg. For finding higher order probability amplitudes the optical field and

interaction Hamiltonian must be defined. The time varying optical field introduced to the

system is defined as

Ē(t) =
∑
p

E0(ωp)exp(−iωpt), (15)

the interaction Hamiltonian defined as V̂ = −µ̂ · Ē(t) is then,

Vml(t) = −
∑
p

µml · E0(ωp)exp(−iωpt). (16)

Plugging these definitions into Equation 14 the first-order amplitude leads to

a(1)m (t) = ℏ−1
∑
p

µmg · E0(ωp)

ωmg − ωp

exp(i(ωmg − ωp)t). (17)

Additionally, the expectation value of the electric dipole moment per molecule (linear in the

applied electric field) can be written as

< µ(1) >=
〈
Ψ(0)

∣∣µ∣∣Ψ(1)
〉
+

〈
Ψ(1)

∣∣µ∣∣Ψ(0)
〉
. (18)

Through algebraic manipulation of Equation 18 and Equation 1 and recalling the defi-

nition of the ground and first excited states to be |Ψ(0)⟩ = exp(−iωgt) |g⟩ and |Ψ(1)⟩ =

11



∑
m a

(1)
m (t)exp(−iωmt) |m⟩ respectively, the linear polarizability is found to be

α ≡ ℏ−1
∑
m

µmgµgm

ωmg − ωp

+
µgmµmg

ω∗
mg + ωp

. (19)

A damping term must be included in the transition frequency to account for decay within

the excited state |m⟩. The damping term [21] is added to the transition frequency such that

ω∗
mg = ωm − ωg − iΓ (20)

where ωm, ωg, and Γ are real and −iΓ satisfies the requirement states must decay for Γ > 0

(i.e. only the ground state is stable). The use of Γ requires the population of excited states

remains insignificant in comparison to the ground state. Equation 19 and the following

Equation 22 are valid for any field frequencies [21] and the damping term can be ignored

except on resonance to avoid divergence.

While the linear polarizability is first order in the applied electric field and second order

in the perturbed parameter the second hyperpolarizability is third order in the applied field

and fourth order in the perturbed parameter. To solve for the second hyperpolarizability the

dipole moment per atom

< µ(3) >=
〈
Ψ(0)

∣∣µ∣∣Ψ(3)
〉
+

〈
Ψ(1)

∣∣µ∣∣Ψ(2)
〉
+

〈
Ψ(2)

∣∣µ∣∣Ψ(1)
〉
+

〈
Ψ(3)

∣∣µ∣∣Ψ(0)
〉

(21)

must be solved once the states |Ψ(2)⟩ and |Ψ(3)⟩ are found using Equation 14.

The second hyperpolarizability for a non-polar molecule (i.e. a molecule with no perma-

nent dipole contribution) can be described by the following off resonance sum-over-states
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expression [22]

γαβγδ(−ωσ;ω1, ω2, ω3) = ℏ−3
∑
P { ∑

m,n,p

⟨g|µα|m⟩ ⟨m|µδ|n⟩ ⟨n|µγ|p⟩ ⟨p|µβ|g⟩
(ωmg − ωσ)(ωng − ω1 − ω2)(ωpg − ω1)

−
∑

m,n ̸=g

⟨g|µα|m⟩ ⟨m|µδ|g⟩ ⟨g|µγ|n⟩ ⟨n|µβ|g⟩
(ωmg − ωσ)(ωng − ω1)(ωng + ω2)

}
,

(22)

where ωσ = ω1+ω2+ω3, |g⟩ is the initial ground state of the system, the states |m⟩ , |p⟩ , |n⟩

are excited electronic or vibrational states, and for H2 the states |m⟩ and |p⟩ must be elec-

tronic excited states to account for wavefunction symmetry. Further, µα denotes the α Carte-

sian component of the electric dipole operator µ, and
∑

P denotes the summation of the 24

terms arising from permuting frequencies with their associated spatial subscripts. For clar-

ity the listed number of terms (pairs) are specific to ESHG and the pairs are (µα, ω−σ),

(µβ, ω1),...,(µδ, ω3). The above expression can be used to isolate the electronic, vibrational,

and rotational contributions to γ by means of identifying and grouping the lowest resonance

frequency for each term with such resonance being electronic, vibrational, or rotational.

Since the molecule under investigation, H2, is a linear homonuclear diatomic molecule,

the dipole matrix elements between rovibrational states in the ground electronic state vanish

by symmetry as ⟨g|µα|m⟩ ⟨m|µβ|g⟩ = 0 when |m⟩ is a ground vibrational state. The only

terms expressing vibrational contribution are found in the first fraction of Equation 22. This

reduction leads to the following vibrational contribution equation

γv
αβγδ(−ωσ;ω1, ω2, ω3) = ℏ−3

∑
P

∑
n(̸=g)

1

(ωng − ω1 − ω2){ ∑
m( ̸=g)

⟨g|µα|m⟩ ⟨m|µδ|n⟩
(ωmg − ωσ)

}

×
{ ∑

p(̸=g)

⟨n|µγ|p⟩ ⟨p|µβ|g⟩
(ωpg − ω1)

}
,

(23)
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Figure 2: Energy level
diagram with
states,
|g⟩ = |e,v⟩
|m⟩ , |p⟩ = |e′′,v′′⟩
|n⟩ = |e,v′⟩
where e′′ ̸= e
and v′ ≠ v
The dashed
line follows
transitions
expressed in
Equation 23

where the vibrational transition frequency is ωng, while the electronic transition frequencies

ωmg and ωpg are from the ground electronic manifold. The matrices in the brackets follow

the transition dipole moment and can be replaced by Raman transition polarizabilities [22].

As mentioned before, the states |m⟩ , |n⟩ , |p⟩ are excited states while |g⟩ denotes the (initial)

ground state (see Figure 2.1).

Since there are many components involved in Equation 23 and not enough ways to

evaluate each component, focus was paid to what is experimentally accessible. Two different

equations are then derived from the vibrational hyperpolarizability expression using different

approximations.

2.2 Approximation, Q-Branch, S-branch, O-branch γv

The first approximation begins by treating the optical frequencies ω1, ω2, ω3 in Equation 23

as negligible in comparison to the electronic transition frequencies (ωmg). This approximation

is justified as electronic transition frequencies (100,000 cm−1) are well above the measured

second overtone (11,765 cm−1) for H2. The next step is to sum over all permuting pairs of

dipole moments.

Applying the above method to the vibrational hyperpolarizability expression of Equation

23 leads to the following averaged vibrational hyperpolarizability equation in the lab frame

14



of reference

< γv >ABΓ∆= γv
ABΓ∆(−ωσ;ω1, ω2, ω3) =

1

ℏ
∑

v,v′( ̸=v)

∑
J

×
{

1

30

[
(J + 1)(J + 2)

(2J + 1)(2J + 3)
ρ(v, J)∆α2

vJ,v′J+26D2(ωvJ,v′J+2)

+
(J + 1)(J + 2)

(2J + 3)(2J + 5)
ρ(v, J + 2)∆α2

vJ+2,v′J6D2(ωvJ+2,v′J)

+
2

3

J(J + 1)

(2J − 1)(2J + 3)
ρ(v, J)∆α2

vJ,v′J6D2(ωvJ,v′J)

]
ρ(v, J)α2

vJ,v′J3D0(ωvJ,v′J)

}
, (24)

where ωv,J denotes the transition frequency of states with vibration and rotation quantum

numbers v, J and ρ(v, J) are the normalized populations for state |v, J⟩. The factor D con-

tains all frequency and polarization dependencies of γv and whose source and derivation are

beyond the scope of this thesis. The derivation can be found in “Vibrational Contributions

to the Hyperpolarizabilities of Homonuclear Diatomic Molecules” [22].

Equation 24 is isotropic averaged and so the only independent tensor components are

A,B,Γ,∆ = xxxx and A,B,Γ,∆ = xyyx for ESHG. The tensor components xxxx and

xyyx correspond to the optical and static electric fields polarized parallel and perpendicu-

lar to each other respectively. For the one-photon resonance at the Q(J) transitions being

investigated, Equation 24 becomes

γv
∥,Q = ρ(J)

2

ℏ(ω0J,vJ − ω)

[
α2
0J,vJ +

4

45

J(J + 1)

(2J − 1)(2J + 3)
∆α2

0J,vJ

]
(25)

γv
⊥,Q = ρ(J)

2

ℏ(ω0J,vJ − ω)

[
1

15

J(J + 1)

(2J − 1)(2J + 3)
∆α2

0J,vJ

]
(26)

where in relation to the molecular axis, the anisotropy and isotropy of the polarizabilites are

expressed as ∆α = (α∥−α⊥) and α =
(α∥+2α⊥)

3
, respectively. For pure vibrational transitions

(v, J → v′, J) the values of the transition polarizabilities α∥ and α⊥ for H2 are found in Hunt
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et al.’s “Ab initio Calculation of Properties of the Neutral Diatomic Hydrogen Molecules H2,

HD, D2, HT, DT, and T2” [23].

The same one-photon equation can be found for the O(J) and S(J) transitions where

v, J −→ v, J ± 2 and they are,

γv
∥,O =

4

3
γv
⊥,O = ρ(J)

2

ℏ(ω0J,vJ−2 − ω)

[
2

15

J(J − 1)

(2J − 1)(2J − 3)
∆α2

0J,vJ−2

]
(27)

γv
∥,S =

4

3
γv
⊥,S = ρ(J)

2

ℏ(ω0J,vJ+2 − ω)

[
2

15

(J + 1)(J + 2)

(2J − 1)(2J + 3)
∆α2

0J,vJ+2

]
(28)

The magnitude of response for the vibrational hyperpolarizability for Q(J)⊥ is roughly as

large as, or larger than, those of the S(J) and O(J) transitions. This is due to there being

no isotropic contribution to the hyperpolarizability for these transitions.

2.3 On Resonance: γv
res

The second hyperpolarizability can be expressed in terms of transition dipole moments where

beginning with Equation 23, only consideration of frequencies near the vibrational transition

frequency ωng ≫ |ωng−ω| are made. Focusing on just terms near ωng and ignoring the spatial

indices α, β, γ, δ, the 24 frequency permutations are then collected. This leads to the following

ESHG resonance expression,

γv
res(−2ω;ω, ω, 0) =

2

ℏ(ωng − ω)

{ ∑
m(̸=g)

2µgmµmn

ℏ(ωmg + 2ω)

}
×

{ ∑
p(̸=g)

2µgpµpn

ℏ(ωpg − ω)

}
(29)

Equation 29 is for molecular frame Cartesian components and is exact for the cases of

α, β, γ, δ = xxxx and zzzz with z being the molecular axis, since all permutations are

the same for these components. The expressions for the remaining independent non-zero

molecular components (α, β, γ, δ = zxxz,xzzx, zzxx,xxzz,xyyx) are more complex and
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will not be discussed.

2.4 Static and Dynamic Polarizabilities

When a molecule is introduced to an external electric field, the polarization of the molecule

can change due to manipulation of the electrons by the applied field (such change is molecule

specific [24]), this change is denoted by the effective polarizability αγ. The effective polariz-

ability for γv
res can be calculated by

αγ =

√√√√{ ∑
m(̸=g)

2µgmµmn

ℏ(ωmg + 2ω)

}
×

{ ∑
p(̸=g)

2µgpµpn

ℏ(ωpg − ω)

}
. (30)

Equation 30 is the square root of the product of the two transition polarizabilities of the γv
res

equation. The dispersion for αγ is the geometric mean of the resonance denominators. Look-

ing at the dispersion of αγ shows that for frequencies of ωmg > 4ω, the effective polarizability

will decrease as frequency decreases.

The static and dynamic (Raman) polarizabiility of H2 can also be related to the γv
res

expression through comparison. Beginning with defining static polarizability using the sum-

over-states method [25]

ααβ(0) = 2
∑
m( ̸=g)

µα
gmµ

β
mn

ℏωgn

. (31)

The transition dipole moment is generated from the ground state |g⟩ to the excited state

|n⟩. The denominator ℏωgn is the transition energy. Using the same notation, the dynamic

polarizability can be expressed as

ααβ(ω) =
∑
m(̸=g)

{
µα
gmµ

β
mg

(ℏωmg + ℏω)
+

µα
gmµ

β
mg

(ℏωmg − ℏω)

}
. (32)

Considering tensor orientation requirements discussed above and that for Raman scattering

the Stokes frequency is defined as ωS = ωP − ωng, with pump frequency ωP , the static and
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dynamic (Raman) polarizabilities can respectively be written as

α0 =
∑
m(̸=g)

{
2µgmµmn

ℏωmg

}
(33)

and

αR(−ωS;ωP ) =
∑
m( ̸=g)

{
ωgmωmn

ℏ(ωmg + ωS)
+

ωgmωmn

ℏ(ωmg − ωP )

}
. (34)

Dispersion of the Raman polarizability is given by the arithmetic mean of the resonance

denominators in αR. This indicates that as the frequency increases, Raman polarizability

will increase, since ωS < ωP .
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3 Experimental Design

The purpose of this chapter is to explain the experimental set-up, equipment resolution, and

how measurements were taken. The chapter begins with an explanation of ring cavity set up

as well as the schematic diagram presented in Figure 4. It moves on to explain ways in which

noise was reduced since the signal size is exceptionally small (≈40 to 300 counts per second)

and frequency dependent. To increase signal size, periodic phase matching was employed.

Periodic phase matching will be expanded upon along with an explanation of measurement

techniques used.

3.1 Design and Set Up

The laser used was a continuous wave Schwartz Electro-Optics Titan CWBB titanium sap-

phire (CW Ti:S) laser pumped with a Coherent Verdi (532 nm) five watt laser. The Ti:S

output beam was, on average, 400 mW for the measured 11600 to 11800 cm−1 range. The

folded linear resonator is converted to a planar ring by rotating mirrors M3 and M4 (see

Figure 3). Then the ring resonator is made into a non-planar ring resonator by raising M3

and the beam path at mirror M3 by 2 cm, and a Faraday rotator is inserted to enforce unidi-

rectional operation. The linear polarization of the resonator mode rotates on each circuit of

the non-planar ring and introduces an excess loss at the Brewster angle surfaces of the Ti:S

crystal and the birefringent filter. However the introduction of the Faraday rotator (FR)

cancels the polarization rotation and excess loss for the beam propagating in one direction

(and not the other direction) [26] [27]. The polarization rotation is doubled and excess loss

prevents lasing for the mode propagating in the opposite direction.

The longitudinal mode spacing (beat note frequency) is increased from 198 to 240 MHz

when the laser was converted from the folded linear to the ring configuration. Single longi-

tudinal mode operation was required to avoid unintended modifications of the ESHG signal

[28] [29], and any measurements with the appearance of inter-mode beat notes were rejected.
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Figure 3: Schematic diagram of the laser cavity described in the text.

The free spectral range of the Ti:S birefringent filter was 150 nm while an additional silica

etalon of thickness 1.686 mm and free spectral range of 2 cm−1 was used to tune the laser to

0.01 cm−1. Mode monitoring of the laser was achieved using a Fabry–Pérot interferometer

and with an RF spectrum analyzer to observe beat notes of the laser output during the

entire experiment.

The experimental set-up is illustrated in Figure 4. The beam travels the following path

upon exiting the cavity. It is immediately partitioned using beam sampler one (BS1) and

then again by beam sampler 4 (BS4), the beam is fiber coupled the beam into a Burleigh WA-

20 wavemeter (WM) with a resolution of 0.01 cm−1 and is also fiber coupled to a scanning

Fabry–Pérot of resolution for mode observation. The wavemeter is a Michelson interferometer

under vacuum.

From beam sampler 1 (BS1) the beam is again partitioned by beam sampler 2 (BS2)

and immediately focused by Lens 5 (L5) onto a 5GHz InGaAs photodiode (PD) that feeds

directly to the RF spectrum analyzer. The beam is then collimated using Lens 1 (L1) and the

desired linear polarization is selected using the half-wave plate (HWP) and prism polarizer

(POL). Once the desired polarization was prepared, the beam waist was focused to the center
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Figure 4: Schematic diagram of the apparatus described in the text. The insert shows
the path of the focused linear polarized laser beam between the alternating
polarity cylindrical electrodes in the gas cell.

of the cell (CELL) by Lens 2 (L2) with a confocal parameter of 20 cm. Centering the beam

waist allows for minimum beam clipping and diffraction by the electrode array. A red glass

filter (RG645) was paired with L2 to remove any light at the second harmonic wavelength

generated prior to the cell.

The cell is composed of two windows each with a tilt angle of 2 degrees to avoid reflections

mixing into the incident beam. The electrode array consists of N=82 electrode pairs with a

period of 5.08 mm, setting an upper-bound for beam size to avoid clipping anywhere within

the cell. The cell was then filled with H2 gas with a purity of 99.999% achieved through

multiple cleaning cycles of the cell. To achieve optimal ESHG signal phase matching was

required. The application of a static electric field, ±6 kV/mm, allows for a larger second

harmonic signal; voltage size is restricted to the breakdown voltage of the H2 gas [30].

Power loss was roughly 1% at each beam sampler. The power was measured after the half-

wave plate and polarizer pair to account for higher power loss from the duo. The beam, upon

transmitting through the polarizer, was partitioned by beam sampler 3 (BS3) and directed

into an integrating sphere (IS) and photodetector. This allows for power measurements to be
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taken simultaneously during ESHG signal measurements. The power was measured during

ESHG measurements and varied less than 1 mW during the duration of measurements.

The transmitted beam through the cell consists of the fundamental beam and ESHG

generated beam which are both collimated by Lens 3 (L3) and then separated by the tandem

Brewster prism spectrometer (P1, P2). The ESHG beam is expanded by Lens 4 (L4) before

reaching the photocathode of the photomultiplier tube (PMT). The bialkali photocathode

used has a quantum efficiency of ∼0.001% for the fundamental beam frequency (11765 cm−1)

and ∼ 25% for the ESHG frequency (23584 cm−1)[31]. Due to the low quantum efficiency of

the photocathode for the fundamental beam frequency, no additional filters were necessary

for beam separation.

Care was taken to avoid any etalon effects created by optical equipment beyond BS3 by

tilting everything save for the electrode array. Tilting avoids any reflected beams overlapping

to create etalon fringes. The expansion of the beam with L4 guarantees no etalon effects are

generated at the photocathode.

3.2 Signal Collection: Photon Counting Statistics

The technique of photon counting statistics was used for measurements and errors on mea-

surements. For a photon incident upon the photocathode, a photoelectron can be ejected

from the photocathode surface, the ejected photoelectron is amplified by secondary emission

at the PMT dynodes, and collected by the PMT’s anode. Upon collection and output by

the anode, the signal is registered by the multi-channel scaler. Ideally each electrical pulse

corresponds to a single photoelectron. The arrival of photons is random in time and therefore

the number of photon counts in a given interval is not constant. This fluctuation of registered

photons is referred to as shot noise and is a fundamental feature of the photoelectric process

[32]. In addition to shot noise there is intensity fluctuations of the incident beam and dark

counts.

Dark counts are predominantly created by the amplification of thermally released elec-
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trons at the photocathode or first dynode and cannot be distinguished from photoelectron

pulses. Dark counts exist regardless of incident light and can be reduced with cooling of the

PMT. For this experiment background was measured by blocking the fundamental beam and

was found to be on average 0.6 counts per second with an uncooled PMT. The measurement

of background includes the dark count of the PMT and since background was 0.15% of the

signal for Q∥(1) no additional steps were taken to reduce dark count.

Errors on the data points were shot noise using the signal to noise ratio,

SNR =
N√
N
. (35)

3.3 Measurement Process: Singlets, Triplets, and Power

The term ‘triplet’ refers to the act of measuring the ESHG signal at a reference point,

an unspecified point (signal), and the reference point again, all measured in immediate

succession (within 2 minutes for changing frequency). The average of the reference points

was calculated and used to normalize the signal. For triplets, the ESHG signal and the

incident beam power were measured for 100 seconds.

The term ‘singlet’ refers to the act of measuring the ESHG signal at a single unspecified

frequency designated as the signal along the resonance curve. Measurement of a reference

point in this instance was not done due to the signal size being over ten times smaller than

Q∥(1) even with a longer measurement duration. For singlet measurements, the ESHG signal

and the incident beam power were measured for 300 seconds.

To account for power fluctuations over the measured frequency range, the square power

of the incident beam (P (ω)) was divided out of the ESHG signal (S(2ω)). Background was

measured (0.6 counts per second on average) and was subtracted from the measured signal.

This describes how wide and narrow range frequencies were treated in Figure 5 and Figure

6.
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3.4 Coherent Background

Second harmonic generation can occur at the surface of prism 1 which will not be discrimi-

nated against by the PMT. To avoid over-counting of second harmonic signals, the coherent

background was measured by adjusting the polarity of the gas cell. The total signal measured

can be described by the sum of the ESHG generated signal and the coherent background,

S± ∝ (±Es + Ebcosϕ)
2 (36)

where S± is the signal generated with positive or negative polarity, Es is the electric field

amplitude of the ESHG signal, and Ebcosϕ is the electric field amplitude of the coherent

background with ϕ phase shift. To measure the coherent background, the ratio of the positive

and negative signals is used. Using Equation 36 and some algebraic manipulation leads to

the ratio,

S+

S−
= 1 +

4Es

Ebcosϕ
⇔ Ebcosϕ

Es

=
1

4

[
S+

S−
− 1

]
(37)

The measured amplitude of the coherent background of the total signal for Q(1) was found

to be |Ebcosϕ
Es

| < 0.07%. So, of the 300+ counts per second, less than 0.2 counts were coherent

background. The coherent background contribution was of the same order for all transitions.

3.5 Electric Field Induced Second Harmonic Generation, Phase-

match Peak

Electric field induced second harmonic generation (ESHG) needs to be briefly described in

order to understand the influences on the measured signal. Periodic phase matching is a

process where an electrode array of N electrodes is used to increase the generated second

harmonic signal by a factor of nearly N2 [33]. Such an increase is made possible by matching

the coherence length of the gas sample to the spatial periodicity of the array. This matching
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is accomplished by adjusting the density of the gas ρ which is proportional to the wave vector

mismatch (∆k) and where,

∆k = 2kω − k2ω =
4π

λω

(nω − n2ω) = − 2π

λωϵω
(α2ω − αω)ρ+ (...)ρ2 (38)

The power of the measured second harmonic signal can be expressed as a function of

the incident power P (ω), the applied static electric field E0
(0), the nonlinear susceptibility of

the gas χNL , the parameters of the electrode array length L, and the confocal parameter

z0(= πr0
nω

λ0
) of the beam. The ESHG power is then,

P
(2ω)
opt =

ω3

πcn2
2ω

[
µ0

ϵ0

]3/2
χ2
NL

(
P (ω)E0

(0)
)2

L

[
z0
L
arctan2

(
L

z0

)
C

(
L

z0

)]
(39)

For this experiment’s range of measured frequencies, the static electric field remains

constant, the confocal parameter change is negligible, and the length of the array remains

constant. The size of χNL will vary proportionally to density and for H2 the relationship

between the microscopic second hyperpolarizability and the macroscopic susceptibility was

shown in Equation 2. This relationship establishes the importance of density for the macro-

scopic susceptibility and the ESHG signal. While it would be beneficial to have a high density,

there is an upper-bound set by the phase match requirement. As phase match is frequency

and density dependent, the density was matched for a frequency less than roughly 1 cm−1

away from the expected resonance frequency using,

p1
p2

∝
(
ν2
ν1

)3

. (40)

Since the temperature of the room and the temperature of the cell fluctuate, the pressure

of the gas was measured before closing off the cell. With the density held constant, the

signal was taken over a broad range (50 - 100 cm−1) to map the phase match peak. Multiple

measurements were also taken near the desired resonance (≥ 2 cm−1 away) to map the phase

match peak slope. This was done each time a Q(J) measurement was taken to account for the
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Figure 5: ESHG signal vs frequency measured for the H2 3-0 Q(1) transition. The
solid lines are fits of Equation 42 to the data points. Dashed lines are where
Q(2),Q(1),Q(0) fall respectively.

difference between Q(J) transition frequencies and for daily cell leaking. Figure 5 shows the

phase match peak for Q(1) over a broad frequency range. The dashed lines, from left to right,

represent the Q(2), Q(1), Q(0) resonant frequencies respectively. Although the phase match

is set for a particular transition, other transitions will influence the peak shape. To avoid

peak shape manipulation by other resonances care was taken to avoid all other resonance

frequencies by 5-10 cm−1.

The wide range points were fit to the normalized phase match peak function,

g(ν) = 1− x2 + 0.42x4 − 0.10x6 (41)

where x = (ν− νm)/w and w ≈ 54 cm−1. The variables νm, w, and Sm are parameters (peak

26



position, width, height) found by fitting the wide scan data points to Equation 41. The solid

line in Figure 5 is the function Smg(ν) fit to the wide scan data points. The observed second

harmonic signal is,
S(2ν)

P 2
= Af(ν)g(ν) (42)

where the function f(ν) is described in the next section.

3.6 Resonant Fit Function

The second hyperpolarizability is proportional to the generated ESHG signal and can be

separated into its resonance and non-resonance parts such that

S(2ω) ∝ |γnr + γv
res|2 = (γnr + γv

res,R)
2 + (γv

res,I)
2. (43)

By representing the (vibrational) hyperpolarizability as a combination of its real and

imaginary resonant parts and its non-resonant parts, calibration of γv
res can be done using

the well studied γnr [34]. Beginning with the anti-Stokes spectrum [35], and through some

algebraic manipulation, the experimental resonant fit function is

f(ν) =

(
1 +

a(b− ν)

(b− ν)2 + c2

)2

+

(
ac

(b− ν)2 + c2

)2

, (44)

with the experimentally determined parameters being defined as the following: a is the

relative amplitude of γres/γnr, b is the resonance frequency, and c is the resonance width.

Experimentally a, b, c, and ν have units of cm−1. The narrow range resonance in Figure 6 is

fit to Equation 44.
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Figure 6: Overtone resonance spectra over 2 cm−1 for H2 transitions (a) Q(0)∥, (b)
Q(1)∥, (c) Q(1)⊥, (d) Q(2)∥, and (e) Q(3)∥. ∥ and ⊥ denote parallel and
perpendicular polarization respectively. The solid curves are fits of Equation
44 to the data points. The vertical dashed lines are measured and ab initio
resonance frequencies. The horizontal dashed lines mark the non-resonant
background contribution.
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Table 3: Experimental results of the fit function Equation 44

Transition a (10−3cm−1) b (cm−1) c (10−3cm−1)
3-0 Q(0) 7.85 ± 0.27 11782.338 ± 0.001 58.9 ± 2.5
3-0 Q(1) 40.87 ± 0.65 11764.956 ± 0.001 59.1 ± 1.0
3-0 Qa

⊥(1) 1.06 ± 0.17
3-0 Q(2) 7.20 ± 0.26 11730.278 ± 0.001 64.9 ± 2.5
3-0 Q(3) 5.49 ± 0.23 11678.513 ± 0.002 68.5 ± 2.9

a: the value of a for 3-0 Q(1)⊥ was found by setting the values
for b and c to those of 3-0 Q(1)∥.
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4 Analysis and Results

The analysis and results section is set up as follows: an introduction to collision broadening

and how it has been measured and calculated, phase match densities and how they are mea-

sured and calculated, the non-resonant contribution to γ and how to calculate it, and finally

the measured value of the hyperpolarizability and a subsequent theoretical comparison.

4.1 Collisional Broadening

The environment necessary for ESHG generation for a light gas such as hydrogen requires

pressure densities of ρ = 406 mol m−3 (9.11 amagat). With such a high density, the pertur-

bation of the molecules will influence the line-shape of their neighbors. The resonance fre-

quency widths are proportional to the density of the gas as expressed by the fitted function in

Owyoung’s “High-Resolution CW Stimulated Raman Spectroscopy in Molecular Hydrogen”

[36].

There has been extensive research on collisional broadening due to its effects on spec-

troscopic resolution [37] [38]. This thesis benefits from previous H2 self-broadening measure-

ments for the Q(0-5) transitions by Rahn, Farrow, and Rosasco and the work of Bragg,

Brault, and Smith which are summarized in Table 4. The ab initio zero pressure broadening

obtained from Brault et al. was used to calculate frequency shifting for the Q(J) transitions

measured in this work. Table 4 gives a list of values from Rahn et al, Brault et al, and

this experiment and should be consulted when analysing the legitimacy of the resonant fit

function. Figure 7 shows the pressure shift and broadening coefficients plotted for different

Q-branch frequencies.

4.2 Effective Polarizability and Non-Resonance Response

The relative amplitude, a, can be calculated using the effective polarizability, the non-

resonant hyperpolarizability γnr at that particular transition frequency, and the population
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Table 4: Pressure shift and broadening coefficients measured for H2 vibration transi-
tions.

Transition νa
0 (cm−1) ρb (amagat) (ν0−b)

ρc
(103 cm−1amagat−1) c

ρd
(10−3 cm−1amagat−1)

1-0 Q(0) 4161.168 4 1.33 ± 0.01
1-0 Q(1) 4155.254 7 2.13 ± 0.04 0.87 ±0.04
1-0 Q(2) 4143.466 0 2.0 ± 0.1 1.48 ± 0.01
1-0 Q(3) 4125.873 9 2.2 ± 0.2 1.21 ± 0.01
1-0 Q(4) 4102.582 0 1.7 ± 1.9 1.71 ± 0.03
1-0 Q(5) 4073.732 7 1.17 ± 0.03

2-0 Q(1) 8075.311 4 4.8 ± 0.2
2-0 Q(2) 8051.991 0 4 ± 3
2-0 Q(3) 8017.190 0 4 ± 4

3-0 Q(0) 11782.397 1 9.059 6.6 ± 1.1 6.5 ± 0.3
3-0 Q(1) 11765.007 8 9.108 5.7 ± 1.1 6.5 ± 0.1
3-0 Q(2) 11730.331 8 9.192 5.9 ± 1.1 7.1± 0.3
3-0 Q(3) 11678.572 1 9.328 6.3 ± 1.1 7.3 ± 0.3

a: ν0 from Ref. [39]
b: 1 amagat = ρSTP = 44.588 mol/m3 for H2 gas.
c: Shift for 1–0 and 2–0 from Ref. [37]
d: Broadening for 1–0 from Ref. [38].

density ρ(J) of rotational state J , where ρ(J) ∝ (2J + 1)gns(J)exp(
E0J

kBT
). The calculated

strength of the relative amplitude is then,

acalc =
ρ(J)α2

effeH

γnr
. (45)

Each transition’s calculated amplitude is in Table 6. To account for detuning of the molecular

system, the equations for one-photon Q-branch transitions being investigated have the damp-

ing term, iΓ, added to the denominators to produce complex hyperpolarizabilities expressed
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Figure 7: Pressure shift (a) and broadening (b) coefficients plotted vs Q-branch tran-
sition frequencies. Lines fit to the data are guides to the eye.

as

γv
∥,Q = ρ(J)

2

ℏ

[
α2
0J,vJ +

4

45

J(J + 1)

(2J − 1)(2J + 3)
∆α2

0J,vJ

]
×

[
(ω0J,vJ − ω)− iΓ

(ω0J,vJ − ω)2 + Γ2

]
(46)

γv
⊥,Q = ρ(J)

2

ℏ

[
1

15

J(J + 1)

(2J − 1)(2J + 3)
∆α2

0J,vJ

]
×

[
(ω0J,vJ − ω)− iΓ

(ω0J,vJ − ω)2 + Γ2

]
. (47)

These equations, defined in Section 2.2, are related to the effective polarizability in the
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following ways

α2
eff,∥ =

[
α2
0J,vJ +

4

45

J(J + 1)

(2J − 1)(2J + 3)
∆α2

0J,vJ

]
(48)

α2
eff,⊥ =

[
1

15

J(J + 1)

(2J − 1)(2J + 3)
∆α2

0J,vJ

]
. (49)

Another value needed for acalc is the non-resonant hyperpolarizability at each transition.

The non-resonant hyperpolarizability response for each transition is calculated using the

function

γnr = γ0(1 +Bν2
L + Cν4

L) +Gν−2 +Hν−4. (50)

The non-resonant hyperpolarizability is found by fitting Equation 50 to previous ESHG

measurements, with 0.5% accuracy, made for H2 over a wide frequency range with parallel

polarization [34]. The parameter values for Equation 50 are found in Table 5.

Table 5: Parameters for Equation 50

γ0 (a.u.) B (cm2) C (cm4) Ga (a.u. cm−2) HA (a.u. cm−4)
686.41 1.200× 1010 2.254× 1020 2.552109 3.997× 1016

a: approximation to the rovibrational contribution off-resonance
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4.3 Comparing Relative Strength of Resonance

For appropriate comparison, Table 6 lists the transition and its associated fractional pop-

ulation, isotropic polarization, anisotropic polarization, non-resonant response, calculated

vibrational response, and the experimental to calculation fractional deviation. The discrep-

ancies between the calculated and experimental resonance strength follow a trend of being

larger than ab initio values; the static nature of αeff and Morse potential are investigated

in the next two sections.

Table 6: Comparison for experimental and calculated resonance at T=295 K

Transition J ρ(J) α (10−2 a.u.) ∆α (10−2 a.u.) γnr (a.u.) acalc (10−3cm−1) aexp/acalc

3-0 Q(0) 0 0.1304 0.993 0.567 745.3 7.57 1.037 ± 0.034
3-0 Q(1) 1 0.6596 0.997 -0.568 745.0 39.08 1.046 ± 0.016
3-0 Q⊥(1) 1 0.6596 0.997 -0.568 256.1 0.97 1.11 ± 0.16
3-0 Q(2) 2 0.1164 1.004 -0.568 744.3 6.98 1.032 ± 0.036
3-0 Q(3) 3 0.0887 1.014 -0.567 743.3 5.43 1.011 ± 0.042

4.4 Data Analysis: Effective Polarizability

The effective polarizability, defined in Equation 30, is static. As the experimental results

are dynamic it is beneficial to consider the dispersion of αeff . To estimate the frequency

dispersion for γv
res, αR, and α0, an effective electronic excitation energy is incorporated into

their sum over excited electronic states.

The effective excitation energy can be calculated by fitting αR to the polarizability dis-

persion of 1-0 Q(1) in Bishop and Pipin [40]. For vertically polarized light, with a frequency

of ℏω = 0.10 a.u., the Raman polarizability is αR = 0.819488 a.u. and an accompanying

static polarizability of αR = 0.749336 a.u. The ratio, αR

α0
= 1.0936 means that for the 1-0
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Q(1) transition the Raman polarizability is 1.094 times larger than the static polarizability.

Summing the static polarizability (Eq. 33) and Raman polarizability (Eq. 34) to a single

state (ωeg) and taking the ratio leads to,

αR

α0

=
ωeg

2

(2ωeg −∆ω)

(ωeg + ωS)(ωeg − ωp)
. (51)

By solving for ωeg with a ratio value of 1.0936 an effective electronic transition frequency

of ωeg = 82000 cm−1 (0.3736 au) is found [41]. To estimate the dispersion for the 3-0 Q(1)

transition, ωeg = 0.3736 a.u., ωp = 0.10 a.u., and the value ∆ω =11765 cm1 (0.0536 au) are

substituted into Equation 51. The dispersion size found is 0.9525 meaning αγ is 0.95 times

the estimated static value from Equation 30. The acalc values are then over estimated by

10% and the discrepancies between theory and experiment are 14% instead of 4%.

Measurements for 3-0 Q(1) were previously taken and found to be α0,1;3,1

α0,1;1,1
= 1.14× 10−2

[42]. Fitting this collected data to Bishop and Pipin’s [40] ab initio values shows a 5%

difference between theory and experiment. Further support for 1-0 Q(1) ab initio values being

underestimated is found in “Raman Chirped Adiabatic Passage: A New Method for Selective

Excitation of High Vibrational States” where the effective Raman transition moment was

found to be nearly 0.8 a.u. [43] which is orders of magnitude off from ab initio calculations.

4.5 Data Analysis: Non-resonant Contributions

As the measured hyperpolarizabilities include the non-resonant hyperpolarizability γnr con-

tributions, these values must also be investigated. Fitting Equation 50 gives the calculated

non-resonant hyperpolarizability contribution for resonant frequency for the parallel compo-

nents. To find the perpendicular components for 3-0 Q(1), previously measured H2 data is

consulted. Referring to Figure 1 in Shelton and Lu’s “Kleinman Symmetry Deviations for

Hydrogen” [44], plotting the the ratio γ∥
γ⊥

for 1-0 Q(1) with a frequency value of ν2
L = 1.04 ×

108 cm−2 leads to the ratio γ∥
γ⊥

= 2.909, meaning the perpendicular measurements are 2.909
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times smaller than their parallel counterparts.

Looking at the non-resonant contributions to 3-0 Q(1), the maximum vibrational hyper-

polarizability was found to be |γv| = 515 a.u. on resonance and 100 cm−1 off resonance |γv|=

± 0.26 a.u. Comparatively the rovibrational contribution to the non-resonant hyperpolariz-

ability for the 3-0 Q(1) transition was found to be γvr
nr= -20.5 a.u. and is dominated by the

contribution of the far off resonance fundamental vibration transition.

The expression for γvr
nr is derived from Equation 50 and found by neglecting the polar-

izability factors in Equation 23. While the frequency dependence of γvr
nr is uncertain, there

is good agreement between calculations for the fundamental transition polarizabilities [45].

The dispersion for γvr
nr is suggested to be important by the discrepancy between the 1-0 Q(1)

Raman polarizability νp =11765 cm−1 and the static value with a ratio of 1.044 and would

produce a 10% increase of the calculated γvr
nr value for ν=11765 cm−1.

Due to multiple contributions of overtone resonances a simple equation like Equation

50 is not possible for γv far off resonance. Support for dispersion of αeff being less than

αR is found in [46], offering accurate experimental results using ESHG and a comparison

of ab initio results for γ at ν=19430 cm1 for H2. Theory and experiment agree with ±0.1%

uncertainty meaning such an agreement 1) indicates the increase of γvr
nr from the dispersion

of the effective polarizability is less than 14% and 2) sets an upper-bound on the error for

calculated values of γvr
nr.

At ν=19430 cm−1 the hyperpolarizability γvr
nr contributes 0.74% of the total γ value.

The uncertainty of γvr
nr does not impact the calculations of γnr or the accuracy of γv for the

measured second overtone Q(J) transitions in this experiment since Equation 43 is fit to

experimental data. The uncertainty does however impact the separation of the non-resonant

hyperpolarizabilities into electronic and rovibrational parts and should be considered for

future works.
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5 Conclusion

The second overtone vibrational contribution to the second hyperpolarizability of H2 was

measured. Measurements were compared to high level ab initio transition polarizabilities

in Section 4.4 and found to be 4-14% larger than predicted and indicate that ab initio

polarizability calculations for ∆v=3 transitions are 2-7% too small. Care was taken to remove

systematic errors as outlined in Section 3 and the use of previously measured non-resonant

hyperpolarizabilities for H2 as calibration for the experiment does not discount the large

discrepancies as discussed in Section 4.5. The method used in this experiment can be applied

to overtone measurements for other small molecules.

37



References

[1] K. Iizuka, “History of optics”, in Engineering Optics (Springer, New York, NY, 2008),

pages 1–24.

[2] Epicurus and D. Laertius, “Letter to Herodotus”, in Lives of Eminent Philosophers,

Vol. 2, translated by R. D. Hicks (William Heinemann, London, 1925), pages 565–613.

[3] F. Ferlin, “New insights into major theoretical research in optics in the age of enlight-

enment”, Centaurus 59, 308–319 (2017).

[4] N. Bloembergen, “Nonlinear optics: past, present, and future”, IEEE Journal of Se-

lected Topics in Quantum Electronics 6, 876–880 (2000).

[5] O. Darrigol, A history of optics from greek antiquity to the nineteenth century (Oxford

University Press, Oxford, 2012).

[6] T. Maiman, “Stimulated optical radiation in ruby”, Nature 187, 493–494 (1960).

[7] M. Göppert-Mayer, “Über elementarakte mit zwei quantensprüngen”, Annalen der

Physik 401 (1931).

[8] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical

harmonics”, Phys. Rev. Lett. 7, 118–119 (1961).

[9] N. H. Green, R. M. Delaine-Smith, H. J. Askew, R. Byers, G. C. Reilly, and S. J.

Matcher, “A new mode of contrast in biological second harmonic generation mi-

croscopy”, Scientific Reports 7 (2017).

[10] D. E. Chang, V. Vuletić, and M. D. Lukin, “Quantum nonlinear optics—photon by

photon”, Nature Photonics 8, 685–694 (2014).

[11] E. Garmire, “Nonlinear optics in daily life”, Optics Express 21, 30532–30544 (2013).

[12] D. C. Hannah, M. A. Yaratich, and D. Cotter, Nonlinear optics of free atoms and

molecules, Vol. 17, Springer Series in Optical Sciences (Springer, New York, NY,

1979).

38

https://doi.org/10.1007/978-0-387-75724-7_1
https://doi.org/10.1111/1600-0498.12163
https://doi.org/10.1109/2944.902137
https://doi.org/10.1109/2944.902137
https://doi.org/10.1038/187493a0
https://doi.org/https://doi.org/10.1002/andp.19314010303
https://doi.org/https://doi.org/10.1002/andp.19314010303
https://doi.org/10.1103/PhysRevLett.7.118
https://doi.org/https://doi.org/10.1038/s41598-017-13752-y
https://doi.org/10.1038/nphoton.2014.192
https://doi.org/10.1364/OE.21.030532


[13] R. W. Boyd, Nonlinear optics, Third (Academic Press, Burlington, MA, 2008).

[14] D. P. Shelton and V. Mizrahi, “Frequency dependence of the hyperpolarizability mea-

sured for SF6”, Chem. Phys. Lett. 120, 318–320 (1985).

[15] D. P. Shelton and J. E. Rice, “Measurements and calculations of the hyperpolarizabil-

ities of atoms and small molecules in the gas phase”, Chem. Rev. 94, 3–29 (1994).

[16] M. Born and R. Oppenheimer, “Zur quantentheorie der molekeln”, Annalen der Physik

389 (1927).

[17] R. S. Finn and J. F. Ward, “Dc-induced optical second-harmonic generation in the

inert gases”, Phys. Rev. Lett. 26, 285–289 (1971), https://link.aps.org/doi/10.1103/

PhysRevLett.26.285.

[18] J. F. Ward and G. H. C. New, “Optical third harmonic generation in gases by a

focused laser beam”, Phys. Rev. 185, 57–72 (1969), https://link.aps.org/doi/10.1103/

PhysRev.185.57.

[19] P. P. Ho and R. R. Alfano, “Optical kerr effect in liquids”, Phys. Rev. A 20, 2170–2187

(1979), https://link.aps.org/doi/10.1103/PhysRevA.20.2170.

[20] D. M. Bishop, “Molecular vibration and nonlinear optics”, in Advances in Chemical

Physics, Vol. 104, edited by I. Prigogine and S. A. Rice (Wiley, New York, NY, 1998).

[21] B. J. Orr and J. F. Ward, “Perturbation theory of the non-linear optical polarization

of an isolated system”, Mol. Phys. 20, 513–526 (1971).

[22] D. P. Shelton, “Vibrational contributions to the hyperpolarizabilities of homonuclear

diatomic molecules”, Mol. Phys. 60, 65–76 (1987).

[23] J. L. Hunt, J. D. Poll, and L. Wolniewicz, “Ab initio calculation of properties of the

neutral diatomic hydrogen molecules H2, HD, D2, HT, DT, and T2”, Can. J. Phys. 62,

1719–1723 (1984).

39

https://doi.org/10.1016/0009-2614(85)87065-2
https://doi.org/10.1021/cr00025a001
https://doi.org/doi:10.1002/andp.19273892002
https://doi.org/doi:10.1002/andp.19273892002
https://doi.org/10.1103/PhysRevLett.26.285
https://link.aps.org/doi/10.1103/PhysRevLett.26.285
https://link.aps.org/doi/10.1103/PhysRevLett.26.285
https://doi.org/10.1103/PhysRev.185.57
https://link.aps.org/doi/10.1103/PhysRev.185.57
https://link.aps.org/doi/10.1103/PhysRev.185.57
https://doi.org/10.1103/PhysRevA.20.2170
https://doi.org/10.1103/PhysRevA.20.2170
https://link.aps.org/doi/10.1103/PhysRevA.20.2170
https://doi.org/10.1002/9780470141632.ch1
https://doi.org/10.1002/9780470141632.ch1
https://doi.org/10.1080/00268977100100481
https://doi.org/10.1080/00268978700100051
https://doi.org/10.1139/p84-217
https://doi.org/10.1139/p84-217


[24] R. Chang, Physical chemistry for the biosciences (University Science Books, Sausalito,

CA, 2005).

[25] S. M. Smith, A. N. Markevitch, D. A. Romanov, X. Li, R. J. Levis, and H. B. Schlegel,

“Static and dynamic polarizabilities of conjugated molecules and their cations”, J.

Phys. Chem. 108, 11063–11072 (2004).

[26] T. Johnston and W. Proffitt, “Design and performance of a broad-band optical diode

to enforce one-direction traveling-wave operation of a ring laser”, IEEE Journal of

Quantum Electronics 16, 483–488 (1980).

[27] D. Welford and M. A. Jaspan, “Single-frequency operation of a cr:yag laser from 1332

to 1554 nm”, J. Opt. Soc. Am. B 21, 2137–2141 (2004), http://josab.osa.org/abstract.

cfm?URI=josab-21-12-2137.

[28] S. Helmfrid and G. Arvidsson, “Second-harmonic generation in quasi-phase-matching

waveguides with a multimode pump”, J. Opt. Soc. Am. B 8, 2326–2330 (1991).

[29] W.-L. Zhou, Y. Mori, T. Sasaki, and S. Nakai, “Theoretical analysis of multimode

pumped second-harmonic generation”, Japanese Journal of Applied Physics 34, 5606–

5609 (1995).

[30] Y. Chen, “Electrical breakdown of gases in subatomic pressure”, Master’s thesis

(Auburn University, Auburn, AL, Aug. 2016).

[31] Hamamatsu, Photomultiplier tubes: Photomultiplier tubes and related products (Hama-

matsu Photonics K.K., Hamamatsu City, Japan, Feb. 2016), https://www.hamamatsu.

com/resources/pdf/etd/PMT_TPMZ0002E.pdf.

[32] P. Koczyk, P. Wiewiór, and C. Radzewicz, “Photon counting statistics—undergraduate

experiment”, American Journal of Physics 64, 240–245 (1996), https://doi.org/10.

1119/1.18211.

[33] D. P. Shelton, “Construction of a periodic electrode array”, Rev. Sci. Instrum. 56,

1474–1475 (1985).

40

https://doi.org/10.1021/jp048864k
https://doi.org/10.1021/jp048864k
https://doi.org/10.1364/JOSAB.21.002137
http://josab.osa.org/abstract.cfm?URI=josab-21-12-2137
http://josab.osa.org/abstract.cfm?URI=josab-21-12-2137
https://doi.org/10.1364/JOSAB.8.002326
https://doi.org/10.1143/jjap.34.5606
https://doi.org/10.1143/jjap.34.5606
https://www.hamamatsu.com/resources/pdf/etd/PMT_TPMZ0002E.pdf
https://www.hamamatsu.com/resources/pdf/etd/PMT_TPMZ0002E.pdf
https://doi.org/10.1119/1.18211
https://doi.org/10.1119/1.18211
https://doi.org/10.1119/1.18211


[34] D. P. Shelton, “Nonlinear-optical susceptibilities of gases measured at 1064 and 1319

nm”, Phys. Rev. A 42, 2578–2592 (1990).

[35] Y.-R. Shen, The principles of nonlinear optics (Wiley-Interscience, New York, NY,

2002).

[36] A. Owyoung, “High-resolution CW stimulated Raman spectroscopy in molecular hy-

drogen”, Opt. Lett. 2, 91–93 (1978).

[37] S. L. Bragg, J. W. Brault, and W. H. Smith, “Line positions and strengths in the H2

quadrupole spectrum”, The Astrophysical Journal 263, 999–1004 (1982).

[38] L. A. Rahn, R. L. Farrow, and G. J. Rosasco, “Measurement of the self-broadening of

the H2 Q(0–5) Raman transitions from 295 to 1000 K”, Phys. Rev. A 43, 6075–6088

(1991).

[39] K. Pachucki and J. Komasa, “Nonadiabatic corrections to rovibrational levels of h2”,

The Journal of Chemical Physics 130, 164113 (2009), https://doi.org/10.1063/1.

3114680.

[40] D. M. Bishop and J. Pipin, “Calculated Raman overtone intensities for H2 and D2”,

J. Chem. Phys. 94, 6073–6080 (1991).

[41] R. M. Ellis and D. P. Shelton, “Vibration overtone hyperpolarizability measured for

H2”, J. Chem. Phys. 152, 154301.

[42] D. P. Shelton, “Raman overtone intensities measured for H2”, J. Chem. Phys. 93,

1491–1495 (1990).

[43] S. Chelkowski and A. D. Bandrauk, “Raman chirped adiabatic passage: A new method

for selective excitation of high vibrational states”, J. Raman Spectrosc. 28, 459–466

(1997).

[44] D. P. Shelton and Z. Lu, “Kleinman symmetry deviations for hydrogen”, Phys. Rev.

A 37, 2231–2233 (1988).

41

https://doi.org/10.1103/PhysRevA.42.2578
https://doi.org/10.1364/OL.2.000091
https://doi.org/10.1086/160568
https://doi.org/10.1103/PhysRevA.43.6075
https://doi.org/10.1103/PhysRevA.43.6075
https://doi.org/10.1063/1.3114680
https://doi.org/10.1063/1.3114680
https://doi.org/10.1063/1.3114680
https://doi.org/10.1063/1.460446
https://doi.org/10.1063/5.00052
https://doi.org/10.1063/1.459127
https://doi.org/10.1063/1.459127
https://doi.org/10.1103/PhysRevA.37.2231
https://doi.org/10.1103/PhysRevA.37.2231


[45] A. Raj, H.-o. Hamaguchi, and H. A. Witek, “Polarizability tensor invariants of H2,

HD, and D2”, J. Chem. Phys. 148, 104308 (2018).

[46] E. A. Donley and D. P. Shelton, “Hyperpolarizabilities measured for interacting molec-

ular pairs”, Chem. Phys. Lett. 215, 156–162 (1993), Erratum-ibid. Donley and Shelton

[47].

[47] E. A. Donley and D. P. Shelton, “Erratum: Hyperpolarizabilities measured for inter-

acting molecular pairs”, Chem. Phys. Lett. 228, 701 (1994).

42

https://doi.org/10.1063/1.5011433


Curriculum Vitae

Rachel Ellis
4505 S Maryland Pkwy, Las Vegas, NV 89154

emailing.with.rachel@gmail.com

Education

University of Nevada - Las Vegas August 2017 - Present

Master in Physics

Department of Physics and Astronomy

University of Nevada - Las Vegas August 2013 - May 2017

Bachelor in Physics

Department of Physics and Astronomy

Projects

Vibrational Contribution to Hyperpolarizability of H2

Project aims at measuring the vibrational contributions to the hyperpolarizability of the

hydrogen molecule. Focus is paid specifically to the second overtones.

Publications

Ellis R. , Shelton D.P. , J. Chem. Phys. 152, 154301 (2020); https://doi.org/10.1063/5.0005233

Technical Strengths

43



Modeling and Analysis SigmaPlot, Mathematica

Software & Tools MS Office, Latex

Laser Alignment CW Ti:S system

Financial Literacy Grant opportunities

Work Experience

Teaching Assistant August 2017 - Present

One-on-one and group distance learning

PhET simulations (Physics)

Extra-Curricular

UNLV Science Fair Judge 2019

44


	Vibration Overtone Hyperpolarizability Measured for H2 Using Electric Field Induced Second Harmonic Generation
	Repository Citation

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Introduction
	A Very Brief History of Nonlinear Optics
	Molecular Polarizability and Polarization
	The Second Hyperpolarizability, Gamma
	Definitions and Units

	Theory
	Perturbation Theory and the Sum-Over-States Description
	Approximation, Q-Branch, S-branch, O-branch Vibrational Hyperpolarizability
	Microscopic Approximation, res
	Static and Dynamic Polarizabilities

	Experimental Design
	Design and Set Up
	Signal Collection: Photon Counting Statistics
	Measurement Process: Singlets, Triplets, and Power
	Coherent Background
	Electric Field Induced Second Harmonic Generation, Phase-match Peak
	Resonant Fit Function

	Analysis and Results
	Collisional Broadening
	Effective Polarizability and Non-Resonance Response
	Comparing Relative Strength of Resonance
	Data Analysis: Effective Polarizability
	Data Analysis: Non-resonant Contributions

	Conclusion
	Bibliography
	Curriculum Vitae

