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Abstract

ProcessJ is a modern Process-Oriented language that builds on previous work from other languages

like occam and occam-pi. However, the only readily-available runtime system is built on top of

the Java Virtual Machine (JVM). This is not a choice made intentionally, but simply out of a lack

of other implementations – until now. This thesis introduces the new C++-based runtime system

for ProcessJ, coupled with a new C++ code generator for the ProcessJ compiler. This thesis later

examines the implementation details of the runtime system, including the components that make

it up. We also examine the ability to cooperatively schedule many processes within the runtime

environment, inside a separate scheduling system built on top of traditional operating system

threading, rather than simply mapping processes one-to-one with threads. We later exemplify

some of the cooperatively-schedulable code generated by the compiler, giving a complete rundown

of the constituents and their various design choices. Lastly, we show the results of several tests

that demonstrate the performance benefits of a bespoke C++-based runtime system, and discuss

the future work and optimizations of this system.
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Chapter 1

Introduction

When one considers the idea of modern computing – and by association hardware limitations –

Moore’s Law typically comes to mind. This law states that as time goes on, the number of transistors

in any integrated circuit will double, but the price of said integrated circuit will halve. We have

seen this hold true again and again in the past decades. This law is commonly associated with

hardware limitations, not software. When we think of modern computers (at least at the time this

paper was written), we probably only think about the vast amounts of RAM and high CPU speeds

that are made possible (and affordable) by the phenomenon described in Moore’s Law. However,

another similarly-important but less-thought-of law better describes the improvement of software

performance in terms of cores-per-CPU, and threads-per-core. This law is known as Amdahl’s Law

[WA05], and is mathematically given as:

S(p) =
p

1 + (p− 1)f
(1.1)

where p is the number of processors a machine has, and f is the percentage of any program that

is not able to be divided into concurrent tasks. This equation describes the speedup factor of a

program when parallelized. Think of the simple task of doing your laundry: you might place all

your clothes in a washing machine, then wait for them to finish and then move them to a tumble

dryer, then wait for them to finish drying before finally folding your clothes back up and putting

them in your closet or dresser. We can describe these tasks are sequential, in that you cannot wash

your clothes and dry them at the same time (unless you have some sort of cutting-edge laundry

machine). However, if you wait for your clothes to finish washing by doing some other sort of chore

before moving them to the dryer, and then do the same with your time spent waiting on the dryer,

then you have made your whole task of laundry concurrent by interleaving other tasks in with
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the whole process. In other words, you multiplex over several tasks in a sort of ordered system.

Suppose you are doing several chores at one time: laundry, dishes, mopping, or other common

household tasks. Suppose that your laundry has just been put in the washing machine and is just

now starting to run, and your dryer is also running, so you don’t need to check on that. Then you

can move on to another task like putting the dishes into the dishwasher, or taking them out and

putting them away. Then, as soon as you have put away all of the dishes, you can come back to

your washing machine (or dryer) to see if the laundry is ready to be moved to the next stage of

the full task of doing your laundry, and move the full process itself along as a result. Alternatively,

the washing machine or dryer may still be running, which allows you to move on to some other

chore, like mopping your floors. Now suppose you had another person around, and divided the

work between the two of you (perhaps your friend could put clothes into the washer while you take

clothes out of the dryer, for example). The two of you would be an example of parallel “processes”

being performed at the same time by two different “processing units.” Now we can observe the

beauty of Amdahl’s Law. Suppose that 15% of the entire process of doing laundry is sequential, like

the time taken for one person to load laundry, move loads between machines, and finally remove

and put away the laundry. If we also assume that there are at least 2 loads of laundry that need

doing, this gives us a base speedup factor for one person doing laundry:

S(1) =
1

1 + (1− 1)0.15

= 1

and a speedup factor for two people doing laundry:

S(2) =
2

1 + (2− 1)0.15

= 1.739...

This is a prime example of the beauty of concurrency and parallelism. Rather than just getting

everything done in sequence, we can break up the entire process into parallel and sequential parts,

distributing the parallel sections to several “workers” and getting the entire job done faster overall

than if we had just left it purely sequential. However, with current language paradigms, tackling

the issue of concurrency and parallelism is not an easy task. Several constructs like mutexes,

semaphores, monitors, and more have been developed in the past as a sort of shim that protects

against the issue of data race conditions. These tools come with their own set of problems, like

deadlock, that pose incredibly complex problems for the programmers that use them. Knowing this,
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it would be beneficial to use a language that builds on top of state-of-the-art programming tools to

allow for concurrent and parallel programs to run correctly, as a layer of abstraction that simplifies

the task of implementation without directly exposing the programmers utilizing the language to the

aforementioned issues. This would certainly be a great problem to solve using ProcessJ, as it is a

language that uses the process-oriented paradigm. This paradigm is such a good fit for our problem

because it does exactly that: it abstracts the lower-level elements of ensuring proper concurrent

behavior, and gives programmers the higher-order tools to aid them in their task of developing

concurrent systems. Utilizing the ProcessJ language as developed thus far, we can further extend

our solution to not just one target like the JVM, but also to others as needed. One such extension

is towards C++, and is exactly the extension that has been designed and written to accompany

this thesis.

Now that we have outlined a basic understanding of concurrency and parallelism, the question

remains: “what can we do to implement software using concurrent and parallel concepts?” A näıve

answer to that question would be to use threads and processes at the operating system level that

use a shared memory pool for their objects and other data constructs. These threads and processes

can also utilize mutexes to guard against data races. However, there are some problems with this

model that should be considered.

The first of these is that threads and processes, as they currently stand in implementation, are

too coarse-grain for the performance and scalability that we want to achieve. The most threads

you could run on a single core of a processor is limited – perhaps around ten thousand or so at

a time – which is quite shy of millions, or even billions. Another problem is that, as the number

of threads and processes in a solution increases, the complexity of correct implementation using

locking mechanisms also increases. In other words, the more threads you use, the more difficult it is

to achieve the correct behavior while still guarding against race conditions. It would greatly benefit

the programmer if there were some sort of easier way to reason about these abstract processes and

their involvement and cooperation with other processes.

Another problem in the way of concurrency and parallelism today is that these concepts and

object-oriented programming do not mix together as easily as one might think. Object-oriented

programming relies on the concept of passive objects that are manipulated by the process or threads

that need to use it. The objects themselves are not the “active” part of the software, and are not

in control of their own code, or even their own data. Object-oriented programming, therefore, is

not as analogous to modeling the real world as we would like. In the real world, “objects” have
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their own autonomy, and operate themselves, instead of being operated on. In the world of object-

oriented programming, an object can be passed around to many different threads of control, which

in turn can operate on this object in many different ways. Even with the proper amount of locking

to avoid race conditions, there is still a problem with too many external factors having access to

an object at one point in time, with behavior that could potentially change the state of an object

without all of the other entities knowing about this change. The result of this happening can be

catastrophic at best, and would be better avoided altogether.

Enter CSP: Communicating Sequential Processes. While this concept is touched on in greater

detail in a later chapter of this paper, one of the core ideas from this process algebra is clearly

what we would like to include in our solution to the above problems. The idea of synchronous (in

coordination), blocking (waiting), non-buffered message passing is more accurate in describing one

of the many ways processes can interact with each other. More importantly, each procedure as

described by CSP runs its own process itself, and has full autonomy over its execution and data,

unlike the passive nature of objects. Processes, on the other hand, as described by CSP, are active

themselves, and can decide whether or not they want to communicate with other processes, as well

as which processes they want to communicate with. And, since communication is synchronous, we

can formally reason about the program itself in terms of its behavior. This means that we can

prove that a program under this model of thought can be free of deadlock or livelock. We can also

formally prove if one process refines another, or if one process is closer to the exact behavior we

want than its predecessor(s).

For this to be achieved, we need a few basic things. First, we need a language to be able to

design and create programs that use this system. The language ProcessJ is just that language: a

process-oriented one, rather than object-oriented. Next, we need a compiler that can take programs

written using this language and produce executable forms that perform exactly to the specifica-

tions described above. Thankfully, the work done in [Cis19] gives us a powerful compiler that turns

ProcessJ code into JARs that can be run using the Java Virtual Machine, that behave according

to the concurrent and parallel semantics we want. Lastly, we need a runtime for these programs

to utilize. It is not enough to build programs that utilize locking mechanisms and threads; a

serious environment that introduces formal constructs of CSP in a way that both simplifies pro-

gramming to the user and guarantees the behavior according to the aforementioned concepts is

well-warranted. This has been formalized, proved correct, and modeled by [Cis19], [SP16], [Shr16],

[PC19]. However, even this is not enough. Not only is a foundation for a runtime necessary, but
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an actual implementation of this runtime, along with a powerful scheduling system, is required to

fully realize and implement these components. The groundwork for this has also been done by

[Cis19] for the Java Virtual Machine, but with some pitfalls and issues relating to performance.

Thankfully, we have a new basis for this runtime system: the C++ programming language. Using

C++ and its constructs for a runtime system, along with the ability to generate binary executables,

we can potentially achieve performance greater than that of the Java Virtual Machine by removing

the extra layer of abstraction that it is built on. This paper will introduce, explain, and explore in

great detail the design, implementation, and implications of this new runtime system, along with

the appropriate code generator that has been added to the aforementioned compiler.

1.1 Motivation

The motivation for this thesis comes from the future work described in [Cis19]. It is mentioned

that having several different runtime systems written on top of different languages is a substantial

benefit to developers because of the advantage of being able to use language-specific libraries without

throwing out the idea of backward compatibility. This is also an obvious benefit because developers

may want several different target languages and builds to fit their specific project needs. To be more

specific the ProcessJ compiler’s C++ code generation potentially allows us to create a very smooth

way for ProcessJ programs to communicate and work together with other C++-based programs.

The same can be said about other potential target languages, which will be described later in

Chapter 7. Also, there are several performance benefits to having a runtime built on top of C++.

The ability of ProcessJ’s compiler to utilize a C++ compiler to produce binary executables gives

us the potential ability to use C++ compiler optimizations on the generated code and therefore

potentially improve the runtime performance of the program itself on top of the added benefit of

concurrency.

One of the more pertinent motivations behind the C++ runtime system and code generator for

ProcessJ is to build a runtime system that is not coupled to the pitfalls of utilizing the JVM and

Java as the main underlying environment for ProcessJ. This difference in implementation opens

up new opportunities for performance, specialized language features, and more. As will be shown

later in this paper, the JVM implementation of ProcessJ’s runtime system has been tested to show

great performance increases over other runtime systems. However, the question posed in [SP16],

“how many processes can be run on a single machine,”, is yet to be answered with “billions.” This

new runtime system has been conceptualized (and now implemented) with the hopes that it will
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be able to not only outperform its predecessors, but finally achieve the scalability that has been

sought after. A new opportunity to further the performance of process-oriented languages has been

opened by utilizing a different underlying language, and this effort has been made as a way to show

that the current performance benefits and efficiency of the JVM implementation can be expanded

upon.

To describe the work done on the ProcessJ C++ runtime and code generator, there are two

main points to be made. First, an efficient and accurate port of the JVM runtime system needed

to be made. Second, the proper code to utilize this new C++-based runtime system needed to be

written to take full advantage of the many features introduced. This paper will go into appropriate

detail as described in the next section.

1.2 Thesis Outline

In this thesis, Chapter 2 will lay some background knowledge to be able to understand the un-

derlying ideas behind the language and its concepts, like CSP. Chapter 2 also touches on some

of the history of process-oriented languages, runtime systems, and libraries, and their methods of

tackling the problem of concurrency and parallelism in programming languages. Chapter 3 covers

the implementation of the ProcessJ C++ runtime system in terms of constructs, operations, and

Chapter 4 shows some examples of the code generated by the C++ code generator. Later, Chapter

5 shows some simple test programs written in ProcessJ, and then their execution results. Chapter 6

will conclude with a summary of all work done, and the results of this project’s completion. Finally,

Chapter 7 will outline any future work both introduced by this Thesis’ completion and carried over

from previous publications.
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Chapter 2

Background Knowledge

The world of computer science is saturated with languages that incorporate the paradigm known as

Object-Oriented Programming. This paradigm is particularly useful when describing objects within

a system and how they interact alone or with each other. Some of these languages, like C++, build

on top of another pre-existing set of operations and constructs, such as C. For example, in C++,

you have the option to use the underlying constructs as if you were writing in C, because C++

was built as an extension of C. You have access directly to any C function so long as you include

it in your program, as well as any of the functions that C++ offers itself. As another slightly

different example, Python builds on top of several other languages such as C (CPython) [Fou20a],

Java (Jython) [Fou20b], and more, while providing exclusively its own syntax and semantics: the

C function strtok() is not available immediately to somebody using Python, but you can imagine

that there are a multitude of functions written in CPython that use this function under the hood.

The same can be said about other functions in Java that are used in the implementation of Jython,

and so on. Both of these languages offer solutions to common problems from an object-oriented

point of view using the base operations offered by the target language one way or another. ProcessJ

differs from C++ and Java in that ProcessJ is a Process-Oriented Programming language, meaning

that the basic elements are not objects, but processes themselves. If we look into C++ and

Java specifically, we see that there are object-oriented solutions to concurrency and parallelism

built-in, but several of their more dangerous lower-level constituents are bare and exposed to the

programmer, leaving room for a lot of errors. This is the main problem that ProcessJ solves:

instead of leaving the messy details of concurrent and parallel programming to the programmer,

we provide an abstraction on top of these constructs, such as mutexes in C++ and Java monitors,

and base the behavior of said abstraction on the process algebra known as CSP, Communicating
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Sequential Processes.

2.1 Communicating Sequential Processes

Communicating Sequential Processes [Hoa85] is a process algebra designed by Sir Tony C.A.R.

Hoare. It allows processes to be behaviorally described by events in sequence. It also allows those

processes to be placed in sequence or in parallel with one another, and to communicate with one

another via channels. This section will lay the background knowledge of CSP required to understand

the inner workings of ProcessJ, and later on the C++ runtime system that implements several of

the constructs of CSP. The examples given in the below subsections are taken from [Ros10].

2.1.1 Processes

In the world of CSP, the most basic building block we have is a single event. It may belong to a

set of events called an alphabet. A single event in our alphabet is the opportunity for a process to

engage in some sort of communication with its external environment. The process in question and

its external environment must agree on this event before anything can be accomplished. That is,

if the process is willing to engage in some event, the process can only proceed in doing so if the

environment itself is also willing to engage in the same event. A process may also decide to simply

not communicate or engage in anything at all. This process is called STOP, and does just that.

Another process, called SKIP, is the process that successfully terminates execution.

2.1.2 Prefixing

We can combine processes in CSP with other processes by using the prefixing operator,→, in order

to create a process that engages on some event from our alphabet, and then stops. To demonstrate

this operator, given some event α in our alphabet Σ, the process

P = α→ STOP

is a process that will engage in the event α and then continue to behave like STOP. Here we see the

simplest example of prefixing with STOP. We can go further to define processes that use prefixing

to engage in several atomic events sequentially and then stop using this method. For instance, if

we wanted to describe a simple daily routine using CSP, we could define a process as follows:

Day = getup→ breakfast→ work → lunch→ play → dinner → tv → gotobed→ STOP
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As a side note, we can now better define SKIP. we can consider SKIP to be defined as engaging in

a special event, which we may notate as X, that means that the process is finished with what it is

doing, and then behaving like STOP. That is,

SKIP = X→ STOP

The events that processes engage in can also be used to describe communication in terms of reading

or writing, with the use of channels. In CSP, given a process, P, a channel, c, a subset of our alphabet

Σ, called A, and Processes P(x) defined for any event in A, the process

P = c?x : A→ P (x)

is a process which “reads” some event α restricted to subset A from some channel c, and then

behaves like P(α). We can also remove the restriction of communicating only elements of A, by

simply removing it, obtaining the notation:

P = c?x→ P (x)

Similarly, to “write” any arbitrary event over some channel c, we simply adjust our notation:

P = c!x→ P

2.1.3 Simple Recursion

The concept of prefixing allows us to place several events in sequence to describe some process’

behavior. But what if we wanted to create a recursive process? The prefixing operator also allows

for this to happen fairly easily. Given the event, α from our alphabet Σ, we can define a process,

P = α→ P

That is, we can define a process that engages in the event α and then continues to behave like the

process P. Thus the process P is a process which engages in events α infinitely.

2.1.4 External and Internal Choice

The ability to compound processes and events using the prefix operator is a very necessary part

of CSP, but it can only get us so far. We still do not have a method of choosing between several
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different communication events. This method is given to us as the operator 2, known as external

choice. Given two processes P and Q, perhaps defined to engage in events α, β ∈ Σ as:

P = α→ STOP

Q = β → STOP

then the external choice between these two processes is notated as:

P 2Q

This notation means that the process described by P 2Q will offer to engage on the first events of

P or Q, namely α or β. More specifically, this process is obliged to engage on one of these events,

whichever one the environment is also willing to engage on. This form of choice is often called

deterministic choice, as we will see the second form of choice represents a nondeterministic version.

If we define a process that incorporates internal choice between P and Q, written

P uQ

then we are defining a process that will engage on α or β, or possibly neither of them. In this case,

contrary to external choice, the choice of which one to engage on (if at all!) is in the hands of the

process itself.

2.1.5 Sequential Composition

It may also be beneficial to simply place processes in sequence with one another, unlike using

prefixing. This operator is ;, and combines its argument processes in sequence with one another.

That is, if we take our processes P and Q from above, we obtain

P ;Q

known as the sequential composition of processes P and Q. This process will behave like P until P

terminates, and then behave like Q until Q terminates, at which point the process will behave like

SKIP.

2.1.6 Parallel Composition

In addition to sequential composition, we have another operator that places two processes in parallel

with one another. This operator is called synchronous parallel composition, is notated as ||, and is
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used as follows, redefining the P and Q processes once again:

P = α→ Q

Q =?x : Σ→ x→ Q

Thus the process P ||Q is defined as the process that behaves like P and Q in a parallel orientation.

In other words, the process continually communicates α with itself. P will first communicate α since

P and Q can certainly agree with each other, then Q will communicate α to P, and so on. However,

it should be noted that synchronous parallel composition only works so long as the processes placed

in parallel with one another agree on every single event that they perform. In other words, the

processes placed in parallel with each other must “synchronize” on all events in the alphabet. For

instance, If we redefine P and Q as

P = α→ δ → STOP

Q = β → δ → STOP

That is, if we define P as engaging in events α and δ, and then behaving like STOP, and if we

define Q as engaging in events β and δ, and then behaving like STOP, we now have an event in our

alphabet Σ that the two may synchronize on, but there will never be an agreement between the two

since they deadlock on their respective first events. The solution to this problem is a specialization

of the synchronous parallel composition operator, called alphabetized parallel composition. Again,

with the two processes P and Q, this is notated:

P{δ}||{δ}Q

The bracketed δ indicates the events in our alphabet that the processes on which P and Q will syn-

chronize. Otherwise these processes will run concurrently with each other. For instance, P{δ}||{δ}Q

may behave like the process α → β → δ → STOP , since the two processes do not agree on their

first events, but do agree on their shared event δ and then behave like STOP .

2.1.7 Interleaving

In another simpler way to solve this problem of required synchronization, we are given an operator,

|||. This is the interleaving operator, which allows processes to be placed in a concurrent orientation

without the process requiring a defined synchronization set between them. If we consider our P

and Q from before, and interleave them:

P |||Q
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then the interleaving of these two processes may behave like so: both engage in events α and β

independently (one after the other), then engage in the δ events independently, and then both

will reach STOP independently. It should be noted that interleaving processes will alternate

between each other’s events in some order, whereas parallelized processes will perform all of these

events together (in the case of synchronized parallel) or will perform synchronized events either

independently or together, depending on the synchronization set defined (in the case of alphabetized

parallel).

2.2 occam-π

The occam-π programming language [oK20] is a language maintained by the University of Kent

as an extension of the occam language, with additional features influenced and inspired by CSP

and π-calculus. This new and updated version of occam-π is specifically a continuation of occam

version 2.1. Occam was developed by INMOS, for use on family of computer processors known as

transputers. This language, unlike most languages today, have many built-in facilities for concurrent

design, like abstract concepts of channels and processes, along with several other tools to prevent

race conditions, deadlock, livelock, and other potential concurrent and parallel pitfalls.

The concepts used in ProcessJ are very similar to those used in occam-π, with the main differ-

ences being in syntax. ProcessJ is very heavily inspired by Java’s syntax, whereas occam-π has an

older style. For instance, many occam-π keywords are in an all-uppercase format. This is fairly far

from the syntax of ProcessJ, where there is only an implied necessity of the use of camelCase for

method names, field names, and other special members of the language.

Where occam-π and ProcessJ are the same is their hierarchical logic order. In other words,

both languages offer concurrent and parallel design constructs (like channels, or barriers) at an

atomic level, for users to interact with as basic building blocks of process communication and

parallel/concurrent program creation. This is unlike most other high-level programming languages

where most concurrency and parallelism is achieved using locks and condition variables, or other

mutex-based solutions. Below in listing 2.1 is an example of occam-π code that doubles any number

fed to it three times.

1

2 PROC double (CHAN INT in?, out!)

3 WHILE TRUE

4 INT x:
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5 SEQ

6 in ? x

7 out ! 2*x

8 :

9

10 PROC octuple (CHAN INT in?, out!)

11 CHAN INT a, b:

12 PAR

13 double (in?, a!)

14 double (a?, b!)

15 double (b?, out!)

16 :

Listing 2.1: occam-π language example - double and octuple procs.

2.3 JCSP

JCSP [WBM+07] is a Java library written to provide a model of concurrency, as an amalgam of the

CSP and π-calculus process calculi. JCSP was initially introduced in 1996 after a WoTUG “Java

Threads Workshop”, and since then has been developed and built out by numerous University

of Kent students. The library itself is touted for its improvements over occam-π. To be more

specific through some examples, JCSP allows true aliasing by Java’s rules, unlike occam-π, and

also lacks the archaic syntax design that occam and occam-π are so deeply coupled with. JCSP

is a solid extension of the principles of process oriented design that occam-π was built for, and

pushes the idea of process oriented design as a whole into the modern age. By bridging the gap

between modern programming languages and time-tested concurrency models, the paradigm shift

from simple locks and condition variables to a mathematical model of concurrency and parallelism

is much closer than it may seem.

One of the biggest impacts on JCSP in terms of feature choice is that the library itself maps CSP

processes to Java threads. This choice is convenient for development, because of the lack of necessity

to provide a separate runtime scheduler on top of the already-existing schedule paradigms provided

through the JVM. However, this choice drastically limits the scalability of JCSP when compared

to the underlying runtime system for ProcessJ, JVMCSP. This is because the JVMCSP runtime

system does not map CSP processes to threads, but rather to a higher-level object that is handled
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by a hand-written cooperative runtime scheduler. This is the implementation difference between

potentially hundreds of thousands of CSP processes, and potentially billions of CSP processes.

This difference between implementations is exemplified in the comparisons made in [SP16],

where we can clearly see the performance differences between JCSP and ProcessJ’s JVMCSP. To

simplify this difference, the time between mere context switches was much lower for JVMCSP than

JCSP, specifically by one order of magnitude on a Mac Pro running a quad-core Intel i7 Xeon

processor, and two orders of magnitude on twin-sixteen-core AMD Opteron machine. One could

easily attribute this (in part) to the difference between context switching in the realm of threads

versus context switching in the realm of our smaller, more simplified “threading” system.

2.4 C++CSP2

While there is much to discuss about the pros and cons of JCSP’s implementation, the ProcessJ

C++ runtime system would be better compared against a runtime that is also written in C++.

C++CSP2 [Bro07] is a C++-based CSP runtime library written and maintained by the Uni-

versity of Kent. This runtime library can be thought of as a C++ version of JCSP, with a few

caveats. The most obvious one being that this is a C++ library, and thus does not suffer the

performance penalties that Java incurs by running on a virtual abstraction above the hardware.

C++CSP2 however, like its Java counterpart, makes the decision to map its abstract concept of

“processes” (in the context of process-oriented design) to the concrete implementation of threads.

This is a great benefit because it shifts the burden of scheduling alongside an operating system

to the operating system itself. There is no need to attempt to circumvent the operating system

scheduler, because the operating system scheduler is exactly what we need in order to manage

how threads are run and terminated. However, this poses a problem as process-oriented programs

scale upwards. Perhaps on some large-scale machines, the idea of having hundreds of thousands

of threads running at one time seems like the upper limit of process-oriented design with respect

to the current limitations of computer hardware. Once you pass a certain number of threads on a

machine, performance begins to suffer greatly, especially as the number of threads grows onward

from there. This is what could be considered as the Achilles heel of C++CSP2 versus the Pro-

cessJ C++ runtime system, just like the difference between JCSP and the ProcessJ JVM runtime

system. Instead of mapping processes to threads, we map processes to a smaller item that can be

scaled over threads before threads must be scaled over a machine. That is, by treating threads as

another layer of scheduling, we can achieve parallelism and concurrency that scales far beyond the

14



limitations of threads themselves.

In the later chapters of this paper, we will look at some tests of the ProcessJ C++ runtime

system, and draw similar conclusions to those found in [SP16], as discussed previously in section

2.3.

2.5 MPI

MPI, also known as Message Passing Interface, is a standard of message-passing maintained by the

MPI Forum. The goal of MPI is to create a uniform concept of message passing for high-performance

parallel computing. This is achieved by standardizing the way messages are transmitted between

processing units by requiring both the sending and receiving processing units to cooperate together

in their communication. MPI defines several different methods of communication that can be used

to assist in the implementation of distributed systems and the efficiency of distributed computing

as a whole. The standard itself has had many implementations, perhaps the most popular and

widely used of these being the OpenMPI implementation [Pro20].

The main concept by which MPI operates divides a distributed system into two categories of

machines: master and slaves. The master processing unit is typically in charge of distributing

the data being operated on to the slaves. The slaves then are then responsible for receiving this

data, and doing whatever calculations are necessary with the data before returning the result to

the master. The slaves may also communicate with each other, along with the master, in order to

carry out a particular distributed task that the system must perform.

This poses the problem that MPI has been standardized to solve: how do machines with entirely

separated address spaces communicate with each other uniformly? Through the specifications of

the MPI standard, a system model has been designed that can send data in serial, whether it be a

simple array of primitive values, or a complex data type, over a network. In other words, the MPI

standard provides an organized and efficient way to move data from one machine’s address space

to another, even across several different machine architectures.

2.6 OpenMP

OpenMP, also known as Open Multi-Processing [DM98], is a grouping of libraries, along with some

preprocessor and compiler directives, implemented for Fortran as well as C and C++ that are

used to assist in the development of parallel computing solutions. In contrast to MPI, which is
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geared towards distributed memory models of parallel computing, OpenMP is specifically made to

simplify the shared memory model of parallel computing. That is, instead of distributed machines

with separate address spaces, OpenMP operates on one machine with one address space.

OpenMP operates using what is called the fork/join model. This means that a program may

start with one single thread of execution that collects and prepares data for calculation. The

program may then use the facilities exposed to the developer to then fork other processes with

multiple copies of the data distributed between them. These other processes will then run on the

data given to them, and finally join with the original process after finishing and sending back their

constituents of the solution to the original process.

The only problem that is left to the programmer in the case of using OpenMP is the protection

of data that is shared between the many processes deployed to solve a problem. This is because

compilers that recognize and handle OpenMP implementations do not have constructs in place that

are able to handle or eliminate data dependency issues, let alone report them effectively.

2.7 C++ Coroutines

The C++20 standard defines a new set of tools for those looking for an easier way to think about

concurrency. This set of tools is included in the coroutines library [CPP20], and outlines the formal

syntax and semantics for coroutines within C++. This specification is not finalized yet, as C++20

itself has not been finalized at the time of writing, but we have a decent amount of solid draft work

to understand the basic concept behind coroutines, along with their behavior within C++.

A coroutine in C++ is a function that has the ability to be suspended and resumed at a later

time in execution. These functions utilize the new operators co await, co yield, or co return to

await resumption, yield execution to another function and return a value, or to return a value out-

right, respectively. Promise objects are utilized internally by coroutines to achieve their suspension

and resumption abilities, as well as the method for returning values to the caller of the coroutine.

Coroutines are inherently stack-less, and are contextually stored in a heap-allocated object (unless

otherwise optimized out). This object is used in lieu of stack allocation, and contains the corou-

tine’s promise object, along with any parameters (whether by-value or by-reference), the point of

suspension (to know where to resume if the coroutine is able to do so), and any local variables that

are in scope at the time of suspension.

The implications of coroutines are many, but for the purposes of this paper, will be limited to the

context of ProcessJ’s C++ runtime system. Using coroutines and their native yielding ability would
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provide a large benefit over the way yielding and resuming is handled within the ProcessJ runtime,

as we would be able to allow the language itself to handle the logic for “process” resumption and

suspension as these features in ProcessJ are mapped to them. This also potentially makes short

work of any local variables defined within a coroutine, since the scoping and variable declaration

are also handled by the language, and do not, for instance, require all variables declared in a

process to be static to the run() function itself. By mapping CSP processes to coroutines, the code

generated by the ProcessJ Compiler’s C++ code generator would be much simpler to understand

in the context of a coroutine instead of a bespoke resumable “process.” People can easily read up

on what a coroutine is once they recognize its structure in the generated code, instead of having to

read into internal documentation or source code for the transpiler.
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Chapter 3

Runtime System & Code Generation

To achieve the goal of translating ProcessJ files to C++, and later compile these files to actual

binary executables, the current ProcessJ compiler needed an additional code generator to produce

the C++ code, as well as an actual runtime system to represent the constructs of ProcessJ in

C++. In this chapter, some basic information about the implementation itself is given, and these

two systems are explored in detail.

3.1 Runtime System Concepts and Background

3.2 Runtime System

The ProcessJ C++ Runtime System is a fully-implemented representation of the constructs defined

and provided by ProcessJ. The runtime system itself is comprised of several header files that make

up the C++ representations of ProcessJ. These files are all referenced in a source file for when a

ProcessJ program is built. The build system make is used to automate this build process. This

runtime system is structured file-wise as follows:
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/

include

runtime

pj alt.hpp

pj barrier.hpp

pj channel.hpp

pj channel type.hpp

pj inactive pool.hpp

pj many2many channel.hpp

pj many2one channel.hpp

pj one2many channel.hpp

pj one2one channel.hpp

pj par.hpp

pj process.hpp

pj protocol.hpp

pj record.hpp

pj run queue.hpp

pj runtime.hpp

pj scheduler.hpp

pj timer.hpp

pj timer queue.hpp

utilities

delay queue.hpp

pj utilities.hpp

rtti.hpp

lib

libprocessj.a (generated when the runtime is built)

src

runtime

pj runtime.cpp

utilities

pj utilities.cpp

Makefile

3.2.1 pj scheduler.hpp

The C++ runtime scheduler, similar to the JVM runtime scheduler, is built on the principle of non-

preemptive cooperative scheduling [Cis19]. The C++ runtime scheduler is built around a construct

called a run queue, which is used as an organizational container for the processes that are currently

running in the context of a ProcessJ program. These processes are operated on by the runtime

scheduler through interacting with the run queue, which is detailed later in this section. Processes

themselves are always aware of the scheduler that they are in through a member pointer to the

scheduler, which allows them to insert other processes (in the case of the main process, or any par
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blocks that a process may have). The scheduler itself is structured and has members given in this

subsection.

A Näıve Non-Preemptive Cooperative Multi-core Scheduler

One of the more interesting features of the C++ runtime scheduler is the addition of a näıve

implementation of a multicore scheduler. This implementation itself is not yet finished, and still

has a lot of work to be done, but the initial idea, as well as a functional prototype, has been

introduced as of the time of writing. This subsection, in addition to a detailed overview of the

scheduler, will give an overview of the features added to the runtime scheduler to enable proper

multicore behavior. In addition, code to exemplify the functionality as well as the performance of

said implementation will follow in Chapter 5, along with a description of future work needed on

the implementation in Chapter 7.

Listing 3.1 is the beginning of the header file defining the pj scheduler class. A scheduler

instance is created in the main() function of a ProcessJ program, and at the end of the program’s

runtime is then destructed according to the constructor(s) and destructor given.

1 #ifndef PJ_SCHEDULER_HPP

2 #define PJ_SCHEDULER_HPP

3

4 #include <runtime/pj_inactive_pool.hpp >

5

6 #include <runtime/pj_run_queue.hpp >

7 #include <runtime/pj_process.hpp >

8 #include <runtime/pj_timer.hpp >

9

10 #include <mutex >

11 #include <string >

12

13 #include <sched.h>

14 #include <pthread.h>

15 #include <sys/types.h>

16

17 namespace pj_runtime

18 {

19 class pj_scheduler

20



20 {

21

22 public:

23 pj_inactive_pool ip;

24

25 // default ctor with 1 scheduler on cpu 0

26 pj_scheduler ()

27 : cpu(0), cpus(std:: thread :: hardware_concurrency ())

28 {

29

30 }

31

32 // specialized ctor for use when multiple schedulers

33 // are desired: cpu indicates the cpu the scheduler thread

34 // is isolated to

35 pj_scheduler(uint32_t cpu)

36 : cpu(cpu), cpus(std:: thread :: hardware_concurrency ())

37 {

38

39 }

40

41 // clean up the scheduler thread and the timer queue

42 ~pj_scheduler ()

43 {

44 if(this ->sched_thread.joinable ())

45 {

46 this ->sched_thread.join();

47 }

48

49 /* timer queue should only be killed once */

50 tq.kill();

51

52 std::cerr << "[Scheduler " << cpu << "] Total Context Switches

: "

53 << context_switches

54 << "\n[Scheduler " << cpu << "] Max RunQueue Size: "
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55 << max_rq_size

56 << std::endl;

57 }

58

59 // insert a process into the scheduler ’s run queue

60 void insert(pj_process* p)

61 {

62 std:: lock_guard <std::mutex > lk(mutex);

63 rq.insert(p);

64 }

65

66 // insert a timer into the scheduler ’s timer queue

67 void insert(pj_timer* t)

68 {

69 std:: lock_guard <std::mutex > lk(mutex);

70 tq.insert(t);

71 }

72

73 // start the scheduler

74 void start()

75 {

76 /* only need to start the timer queue once */

77 tq.start ();

78 this ->sched_thread = std:: thread (& pj_scheduler ::run , this);

79

80 if(this ->sched_thread.joinable ())

81 {

82 this ->sched_thread.join();

83 }

84 }

85

86 ...

87

88 protected:

89 // query the scheduler ’s size

90 int size()
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91 {

92 std:: lock_guard <std::mutex > lk(mutex);

93 return rq.size();

94 }

95

96 // increment context switches

97 void inc_context_switches ()

98 {

99 std:: lock_guard <std::mutex > lk(mutex);

100 context_switches ++;

101 }

102

103 // increment rq max

104 void inc_max_rq_size(size_t size)

105 {

106 std:: lock_guard <std::mutex > lk(mutex);

107 if(size > max_rq_size)

108 {

109 max_rq_size = size;

110 }

111 }

112

113 ...

114

115 };

116 }

117

118 #endif

Listing 3.1: The pj scheduler class definition.

Listing 3.2 shows the private data members of the pj scheduler class. We can see both the

run queue (rq) and timer queue (tq), which are both used to store processes that have yet to run

again, and for timers that will be used by processes, respectively. We also see each instance has a

pair of mutexes for guarding different critical sections of the scheduler’s behavior and I/O calls, as

well as some other members that assist in calculating stats about the program’s execution. One

thing to note is that each instance of a scheduler object has a thread object, which is the thread
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of execution for the scheduler itself. When the scheduler is started, this thread is handed the code

that handles the scheduler’s behavior and the thread is then executed. The code for the scheduler

itself is given in listing 3.3.

1 private:

2 pj_timer_queue tq;

3 pj_run_queue rq;

4

5 std:: mutex mutex;

6 std:: mutex iomutex;

7

8 uint64_t start_time = 0;

9 int32_t context_switches = 0;

10 size_t max_rq_size = 0;

11

12 std:: thread sched_thread;

13 uint32_t cpu;

14 uint32_t cpus;

Listing 3.2: The pj scheduler class definition – private data members.

In Listing 3.3 we can see how the scheduler works, noting that it is indeed a near-exact port of

the JVM runtime scheduler [Shr16]. In short, the scheduler will continuously remove processes from

the run queue, and will hand over control to the run() method of each process, as long as they are

ready to be run. Otherwise, it will place the process back into the queue, and move onto the next

process. If the process has terminated execution, then the process will be destroyed appropriately,

instead of being placed back into the run queue.

1 // scheduler behavior

2 void run(void)

3 {

4 // isolate the scheduler thread to its cpu

5 this ->isolate_thread ();

6

7 // while we have more processes to run

8 while(rq.size() > 0)

9 {

10 // grab max run queue size for stats
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11 if(static_cast <size_t >(rq.size()) > max_rq_size)

12 {

13 max_rq_size = rq.size();

14 }

15

16 // grab our next process

17 pj_process* p = rq.next();

18

19 // if it’s ready to be run

20 if(p->is_ready ())

21 {

22 // run it

23 p->run();

24 // we switched contexts

25 context_switches ++;

26 // if it’s not terminated yet

27 if(!p->is_terminated ())

28 {

29 // insert the process back into the run queue

30 rq.insert(p);

31 }

32 else

33 {

34 // finalize the process

35 p->finalize ();

36 // delete the process

37 delete p;

38 }

39 }

40 else

41 {

42 // if it’s not ready , just place it back in the queue

43 rq.insert(p);

44 }

45 }
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46 }

Listing 3.3: The pj scheduler class definition – run() member function.

Note line 5 of listing 3.3: a call to a member function isolate thread(). This function reassigns

the scheduler’s thread of execution to a single core of a multicore CPU. While this is not very useful

in the case of single core scheduling, it is much more effective in the case of multicore scheduling

when we want to ensure that one scheduler is running on one core at any given moment – thus

allowing for guaranteed parallel behavior. This function is given in listing 3.4.

1 // isolate the thread of execution for the scheduler behavior to a

2 // cpu , defined by the cpu variable.

3 // ---

4 // this only currently works on posix -compliant machines

5 void isolate_thread(void)

6 {

7 std:: unique_lock <std::mutex > lock(this ->iomutex , std:: defer_lock);

8

9 // grab thread id

10 std:: thread ::id th_id = this ->sched_thread.get_id ();

11

12 lock.lock();

13 pj_logger ::log("isolating thread ", th_id , " to cpu ", cpu);

14 lock.unlock ();

15

16 // current/new cpu sets to indicate what cpus the thread will

17 // be run on and what cpus we want the thread to be run on

18 cpu_set_t cur_set;

19 cpu_set_t new_set;

20 pthread_t p_th;

21 uint32_t i;

22

23 // zero out the new cpu set before we set it correctly

24 CPU_ZERO (& new_set);

25

26 // error sanity check on cpu count argument

27 if(!this ->cpus)
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28 {

29 lock.lock();

30 std::cerr << "error: hardware_concurrency not set/determinable\n";

31 lock.unlock ();

32 abort ();

33 }

34

35 // array of integers to track current/new cpu set

36 uint8_t arr_cur_set[this ->cpus];

37 uint8_t arr_new_set[this ->cpus];

38

39 // zero out both

40 for(i = 0; i < this ->cpus; ++i)

41 {

42 arr_cur_set[i] = 0;

43 arr_new_set[i] = 0;

44 }

45

46 // grab native thread handle for setting cpu set

47 p_th = this ->sched_thread.native_handle ();

48 lock.lock();

49 pj_logger ::log("the native_handle is ", p_th);

50 lock.unlock ();

51

52 // error condition on not getting thread back

53 if(!p_th)

54 {

55 lock.lock();

56 std::cerr << "error: native_handle () returned null\n";

57 lock.unlock ();

58 abort ();

59 }

60

61 lock.lock();

62 pj_logger ::log("getting thread cpu_set ...");

63 lock.unlock ();
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64

65 // zero out the current cpu set

66 CPU_ZERO (& cur_set);

67

68 // get the current cpu set for the thread

69 if(pthread_getaffinity_np(p_th ,

70 sizeof(cpu_set_t),

71 &cur_set))

72 {

73 lock.lock();

74 perror("pthread_getaffinity_np");

75 lock.unlock ();

76 abort ();

77 }

78

79 // print out which cpus this thread will run on

80 lock.lock();

81 for(i = 0; i < this ->cpus; ++i)

82 {

83 if(CPU_ISSET(i, &cur_set))

84 {

85 pj_logger ::log("cpu ", i, " is in thread ", th_id , "’s current

cpu set");

86 }

87 }

88

89 pj_logger ::log("now setting thread ", th_id , "’s cpu_set to ", cpu);

90 lock.unlock ();

91

92 // set the new cpu set to contain only the cpu this scheduler

93 // sould run on

94 CPU_SET(cpu , &new_set);

95 arr_new_set[cpu] = 1;

96

97 lock.lock();

98 pj_logger ::log("new cpu_set is:");
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99 for(i = 0; i < cpus; ++i)

100 {

101 std::cout << static_cast <uint32_t >( arr_new_set[i]) << " ";

102 }

103 pj_logger ::log("which implies:");

104 for(i = 0; i < cpus; ++i)

105 {

106 if(CPU_ISSET(i, &new_set))

107 {

108 pj_logger ::log(i);

109 }

110 }

111 std::cout << std::endl;

112 lock.unlock ();

113

114 // if we don’t set the new cpu set for the thread correctly ,

115 // error out

116 if(pthread_setaffinity_np(p_th ,

117 sizeof(cpu_set_t),

118 &new_set))

119 {

120 lock.lock();

121 perror("pthread_setaffinity_np");

122 lock.unlock ();

123 abort ();

124 }

125

126 lock.lock();

127 pj_logger ::log("verifying thread ", th_id , "’s cpu_set ...");

128 lock.unlock ();

129

130 // double -check our new cpu set is what we want it to be

131 // as a sanity check

132 CPU_ZERO (& cur_set);

133 if(pthread_getaffinity_np(p_th ,

134 sizeof(cpu_set_t),
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135 &cur_set))

136 {

137 lock.lock();

138 perror("pthread_getaffinity_np");

139 lock.unlock ();

140 abort ();

141 }

142

143 lock.lock();

144 for(i = 0; i < cpus; ++i)

145 {

146 if(CPU_ISSET(i, &cur_set))

147 {

148 pj_logger ::log("cpu ", i, " is in new current cpu set");

149 arr_cur_set[i] = 1;

150 }

151 }

152

153 // sanity check on whether or not the cpu set was modified correctly

154 for(i = 0; i < cpus; ++i)

155 {

156 if(arr_cur_set[i] != arr_new_set[i])

157 {

158 std::cerr << "error: cpu " << i << " is in thread " << th_id

159 << "’s cpu_set\n";

160 lock.unlock ();

161 abort ();

162 }

163 }

164 lock.unlock ();

165

166 lock.lock();

167 pj_logger ::log("thread ", th_id , "’s cpu_set successfully modified\n")

;

168 lock.unlock ();
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169 }

Listing 3.4: The pj scheduler class definition – isolate thread() member function.

The only current downside to utilizing isolate thread() this way is that the implementation is

coupled to the POSIX thread standard, used on several UNIX-like operating systems. It is untested

(and probably does not work altogether) on Windows. The resolution of this problem will be left

as future work for the time being.

3.2.2 pj process.hpp

Listing 3.5 shows us the contents of pj process.hpp. That is, this shows us the runtime represen-

tation of a process. A process is the method by which every invocation or process is executed.

Each process has a run() method that processes will overload with their own code by extending

the pj process class. Additionally, a process may overload finalize() in the event that there are

barriers or par blocks that require a process to resign from or decrement the counter of, respectively.

We return to these two cases in Section 3.2.6 and 3.2.3.

1 #ifndef PJ_PROCESS_HPP

2 #define PJ_PROCESS_HPP

3

4 #include <iostream >

5 #include <ostream >

6 #include <mutex >

7

8 #include <sys/types.h>

9

10 namespace pj_runtime

11 {

12 class pj_process

13 {

14 public:

15 pj_process ()

16 {

17

18 }

19
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20 virtual ~pj_process ()

21 {

22

23 }

24

25 // ready flag getter

26 bool is_ready ()

27 {

28 return ready;

29 }

30

31 // ready flag setter

32 void set_ready ()

33 {

34 std:: unique_lock <std::mutex > lock(this ->mtx);

35 if(!ready)

36 {

37 ready = true;

38 }

39 }

40

41 // ready flag setter

42 void set_not_ready ()

43 {

44 std:: unique_lock <std::mutex > lock(this ->mtx);

45 if(ready)

46 {

47 ready = false;

48 }

49 }

50

51 // terminated flag setter

52 void terminate ()

53 {

54 terminated = true;

55 }
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56

57 // terminated flag getter

58 bool is_terminated ()

59 {

60 return terminated;

61 }

62

63 // process behavior member function , overloaded by any process

64 virtual void run()

65 {

66

67 }

68

69 // process finalization member function , overloaded by any

70 // process resigning from a barrier or decrementing a par counter

71 virtual void finalize ()

72 {

73

74 }

75

76 // run_label setter

77 virtual void set_label(uint32_t label)

78 {

79 run_label = label;

80 }

81

82 // run_label getter

83 virtual uint32_t get_label ()

84 {

85 return run_label;

86 }

87

88 friend std:: ostream& operator <<(std:: ostream& o, pj_process& p)

89 {

90 return o << "base process operator << called (nothing

overwritten)";

33



91 }

92

93 protected:

94 std:: mutex mtx;

95

96 private:

97 uint32_t run_label = 0;

98 bool ready = true;

99 bool terminated = false;

100 };

101 }

102

103 #endif

Listing 3.5: The pj process class definition.

3.2.3 pj par.hpp

The code given in listing 3.6 describes the runtime representation of a par block in ProcessJ. A

par block in ProcessJ describes a block of code to be executed in parallel. For example, listing 3.7

below gives an example of a simple ProcessJ file that utilizes a par block.

1 #ifndef PJ_PAR_HPP

2 #define PJ_PAR_HPP

3

4 #include <runtime/pj_process.hpp >

5

6 #include <sys/types.h>

7

8 namespace pj_runtime

9 {

10 class pj_par

11 {

12 public:

13 pj_par () = delete;

14

15 // initialize with the process declaring a par
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16 // (p) and the number of processes in the par

17 pj_par(int process_count , pj_process* p)

18 : process_count(process_count)

19 {

20 this ->process = p;

21 }

22

23 ~pj_par () = default;

24

25 // proc count setter

26 void set_process_count(int32_t count)

27 {

28 this ->process_count = count;

29 }

30

31 // decrement the number of processes still executing

32 // that were invoked from inside the par. if there

33 // are no more , then set the process declaring the par

34 // ready

35 void decrement ()

36 {

37 std:: lock_guard <std::mutex > lock(this ->mtx);

38

39 this ->process_count --;

40

41 if(this ->process_count == 0)

42 {

43 this ->process ->set_ready ();

44 }

45 }

46

47 // returns true if there are processes in the par ,

48 // setting the par process not ready , and false otherwise

49 bool should_yield ()

50 {

51 std:: lock_guard <std::mutex > lock(this ->mtx);
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52

53 if(this ->process_count == 0)

54 {

55 return false;

56 }

57

58 this ->process ->set_not_ready ();

59 return true;

60 }

61

62 protected:

63 private:

64 pj_process* process;

65 int32_t process_count;

66 std:: mutex mtx;

67 };

68 }

69

70 #endif

Listing 3.6: The pj par class definition.

1 // import io library

2 import std.io;

3

4 // foo process

5 public void foo() { println("Hello from foo!"); }

6

7 // bar process

8 public void bar() { println("Hello from bar!"); }

9

10 // main process

11 public void main(string [] args) {

12 // run the following in parallel

13 par {

14 println("Print from Hello");

15 foo();
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16 bar();

17 }

18 }

Listing 3.7: Hello.pj.

On line 8 of listing 3.7, we see the declaration of a par block for calls to println() (a member of

the io library), and the two methods foo() and bar() defined on lines 3 and 5, respectively. Note

that these are non-yielding procedures, and are not treated as processes themselves, but are treated

as static functions by the C++ runtime system, and handed off to an anonymous procedure that

will then invoke the static function. The runtime handles this as follows: the main process creates a

par object with an argument of 3 passed to it, indicating the number of processes in the par. Then,

the main process creates three anonymous non-yielding processes that invoke println() with the

specified string (on line 9), foo() with no arguments (line 10), and bar() with no arguments (line

10). These processes are then scheduled one after the other. Upon their termination, finalize() is

invoked, which has been overloaded to include a call to decrement() on the par that the process

has been declared inside. This way, the par object will know that the processes declared inside of

it have completed, and the process declaring the par can then resume execution.

3.2.4 pj channel.hpp

The file pj channel.hpp, shown entirely below in listing 3.8, describes the representation and be-

havior of a channel in ProcessJ. A channel is a construct used as a medium by which processes can

communicate with each other. Anything can be sent through these channels to other processes,

including processes themselves. The concept of mobile processes utilizes these channels to accom-

plish its goal, though process mobility itself is still left for future work.

1 #ifndef PJ_CHANNEL_HPP

2 #define PJ_CHANNEL_HPP

3

4 #include <runtime/pj_process.hpp >

5 #include <runtime/pj_channel_type.hpp >

6

7 #include <mutex >

8
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9 namespace pj_runtime

10 {

11 class pj_channel

12 {

13 public:

14 // default constructor with default NONE channel type

15 pj_channel ()

16 : type(pj_channel_types ::NONE)

17 {

18

19 }

20

21 // specialized constructor with a type as an argument

22 pj_channel(pj_channel_types t)

23 : type(pj_channel_type(t))

24 {

25

26 }

27

28 // specialized constructor with a type as an argument

29 pj_channel(pj_channel_type t)

30 : type(t)

31 {

32

33 }

34

35 // move constructor

36 pj_channel(pj_channel && other)

37 {

38 this ->reader = other.reader;

39 this ->writer = other.writer;

40 }

41

42 // move assignment operator

43 pj_channel& operator =( pj_channel && other)

44 {
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45 this ->reader = other.reader;

46 this ->writer = other.writer;

47 return *this;

48 }

49

50 virtual ~pj_channel ()

51 {

52 reader = nullptr;

53 writer = nullptr;

54 }

55

56 // returns the type of the channel

57 pj_channel_type get_channel_type ()

58 {

59 return type;

60 }

61

62 // if we already have a writer , register the alt process p

63 // as the reader , and return the writer pointer

64 pj_process* alt_get_writer(pj_process* p)

65 {

66 std:: lock_guard <std::mutex > lock(this ->mtx);

67 if(! writer)

68 {

69 reader = p;

70 }

71

72 return writer;

73 }

74

75 // sets the reader to the argument process and returns

76 // a pointer to the writing process

77 pj_process* set_reader_get_writer(pj_process* p)

78 {

79 reader = p;

80 return writer;
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81 }

82

83 // following four member functions are overloaded by child classes

,

84 // namely one2one , many2one , one2many , and many2many channels

85 virtual bool claim_read(pj_process* p)

86 {

87 return false;

88 }

89

90 virtual void unclaim_read(pj_process* p)

91 {

92

93 }

94

95 virtual bool claim_write(pj_process* p)

96 {

97 return false;

98 }

99

100 virtual void unclaim_write(pj_process* p)

101 {

102

103 }

104

105 friend std:: ostream& operator <<(std:: ostream& o, pj_channel& c)

106 {

107 o << c.type;

108 return o;

109 }

110

111 protected:

112 pj_channel_type type;

113 std:: mutex mtx;

114 pj_process* writer = nullptr;

115 pj_process* reader = nullptr;
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116 };

117 }

118

119 #endif

Listing 3.8: The pj channel class definition.

A channel in ProcessJ’s C++ runtime system can have one of four specific channel types, which

are all described by the pj channel type class. Specifically, these four types of channels are one-

to-one, one-to-many, many-to-one, and many-to-many. To accomplish the implementation of these

specialized channels, the pj channel class is extended by four new classes, each used to describe

and facilitate these different behavior specifications. These four specialized channel types, as well

as their C++ class representation will be described in the following sections.

pj channel type.hpp

The class pj channel type defines an internal bookkeeping class for the C++ runtime system to

identify what kind of channel is being used or referenced from the viewpoint of a generic pj channel

object instead of a specialized one. This class defines an enumeration of the different channel types,

and includes a string representation of the channel type as well.
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1 #ifndef PJ_CHANNEL_TYPE_HPP

2 #define PJ_CHANNEL_TYPE_HPP

3 #include <string >

4

5 namespace pj_runtime

6 {

7 // enumeration of channel types

8 enum pj_channel_types

9 {

10 NONE ,

11 ONE2ONE ,

12 ONE2MANY ,

13 MANY2ONE ,

14 MANY2MANY

15 };

16

17 class pj_channel_type

18 {

19 public:

20 // default constructor with default NONE type

21 pj_channel_type ()

22 : type(pj_channel_types ::NONE)

23 {

24

25 }

26

27 // specialized constructor with channel type as argument

28 pj_channel_type(pj_channel_types t)

29 : type(t)

30 {

31 switch(t)

32 {

33 case pj_channel_types :: ONE2ONE:

34 type_str = "one -to-one channel for use by one writer and one

reader";

35 break;
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36 case pj_channel_types :: ONE2MANY:

37 type_str = "one -to-many channel for use by one writer and many

readers";

38 break;

39 case pj_channel_types :: MANY2ONE:

40 type_str = "many -to-one channel for use by many writers and one

reader";

41 break;

42 case pj_channel_types :: MANY2MANY:

43 type_str = "many -to-many channel for use by many writers and many

readers";

44 break;

45 default:

46 type_str = "bad channel type";

47 break;

48 }

49 }

50

51 virtual ~pj_channel_type ()

52 {

53

54 }

55

56 // channel type getter function

57 pj_channel_types get_type ()

58 {

59 return type;

60 }

61

62 // channel type as -a-string getter function

63 std:: string get_type_string ()

64 {

65 return type_str;

66 }

67

68 friend std:: ostream& operator <<(std:: ostream& o, pj_channel_type& t)
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69 {

70 o << t.type_str;

71 return o;

72 }

73

74 private:

75 pj_channel_types type;

76 std:: string type_str = "";

77 };

78 }

79

80 #endif

Listing 3.9: The pj channel type class definition.

pj one2one channel.hpp

The pj one2one channel class is the C++ runtime representation of a one-to-one channel in Pro-

cessJ. This type of channel has one reader, and one writer. The file pj one2one channel.hpp is

given in Listing 3.10, and a brief description of behavior is given afterwards.

1 #ifndef PJ_ONE2ONE_CHANNEL_HPP

2 #define PJ_ONE2ONE_CHANNEL_HPP

3

4 #include <runtime/pj_channel.hpp >

5

6 namespace pj_runtime

7 {

8 // template -generic channel class definition

9 template <typename T>

10 class pj_one2one_channel : public pj_runtime :: pj_channel

11 {

12 public:

13 // default constructor with default NONE type

14 pj_one2one_channel ()

15 {

16 this ->type = pj_channel_types :: ONE2ONE;
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17 }

18

19 ~pj_one2one_channel ()

20 {

21

22 }

23

24 // write data to the channel , and become not ready

25 // to run until the reader wakes us (the writer) up

26 // again

27 void write(pj_process* p, T data)

28 {

29 std:: lock_guard <std::mutex > lock(this ->mtx);

30 this ->data = data;

31 writer = p;

32 writer ->set_not_ready ();

33 if(reader)

34 {

35 reader ->set_ready ();

36 }

37 }

38

39 // read from the channel , set the writer ready

40 // again , and clear our reader/writer pointers

41 T read(pj_process* p)

42 {

43 std:: lock_guard <std::mutex > lock(this ->mtx);

44 writer ->set_ready ();

45 writer = nullptr;

46 reader = nullptr;

47 return this ->data;

48 }

49

50 // returns true if there is a writer registered

51 // on the channel already , and false otherwise ,

52 // also setting the reader not ready until the
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53 // writer comes along and wakes us (the reader) up

54 bool is_ready_to_read(pj_process* p)

55 {

56 std:: lock_guard <std::mutex > lock(this ->mtx);

57 if(writer)

58 {

59 return true;

60 }

61 else

62 {

63 reader = p;

64 reader ->set_not_ready ();

65 }

66 return false;

67 }

68

69 // a one2one channel is always ready to be written to

70 bool is_ready_to_write(pj_process* p)

71 {

72 return true;

73 }

74

75 // rendezvous code for before a channel read

76 T pre_read_rendezvous(pj_process* p)

77 {

78 T data = this ->data;

79 this ->data = reinterpret_cast <T>(0);

80 return data;

81 }

82

83 // rendezvous code for after a channel read

84 void post_read_rendezvous(pj_process* p)

85 {

86 writer ->set_ready ();

87 writer = nullptr;

88 reader = nullptr;
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89 }

90

91 protected:

92 T data;

93 };

94 }

95

96 #endif

Listing 3.10: The pj one2one channel class definition.

There are two general initial cases for this channel type: either a process claims the chan-

nel to write something to a potential reading process, or a process claims the channel to read

something from a potential writing process. In the first of these cases, the writing process calls

is ready to write(), which always returns true in the case of a one-to-one channel. This fact may

seem surprising, but is in fact verified by the findings of [PC19]. To put it simply, a one-to-one

channel is always ready to be written to whenever a writing process gets to a write statement, be-

cause there is only ever one writer using this channel. A write statement would only be delayed if a

reader is not present to read the data from the channel, and in that case, the reader is responsible

for setting the writer ready after reading.

The writer then calls write() to place data into the channel. Afterwards, the writer will be set

as not ready and wait for the reading process to read the data out of the channel. Then, a reading

process will (hopefully!) claim the channel and check if it is ready to be read from by calling

is ready to read(), which returns true if there is already a writing process, or sets the reading

process not ready and returns false if a writing process is not present. If this returns true, the

reading process then calls read() which returns the data from the channel, and then both reading

and writing processes are set as ready, and the program continues.

In the latter case where a process wants to read before a writer has written something to the

channel, the reverse of the previous case happens. In other words, the reading process checks if

the channel is ready, and becomes not ready as it waits for a writing process. A writing process

claims the channel, writes some data to it, and waits for the reader to receive the data. The reading

process then reads from the channel, the writing process is set ready, and execution of the program

continues.
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pj one2many channel.hpp

The pj one2many channel class is the C++ runtime representation of a one-to-many channel in

ProcessJ. This type of channel has one writer and many readers. The file pj one2many channel.hpp

is given in listing 3.11, and a brief description of behavior is given afterwards.

1 #ifndef PJ_ONE2MANY_CHANNEL_HPP

2 #define PJ_ONE2MANY_CHANNEL_HPP

3

4 #include <runtime/pj_channel.hpp >

5 #include <runtime/pj_one2one_channel.hpp >

6

7 #include <queue >

8

9 namespace pj_runtime

10 {

11 template <typename T>

12 class pj_one2many_channel : public pj_runtime :: pj_one2one_channel <T>

13 {

14 public:

15 // default constructor with null read_claim pointer

16 pj_one2many_channel ()

17 : read_claim(nullptr)

18 {

19 this ->type = pj_channel_types :: ONE2MANY;

20 }

21

22 ~pj_one2many_channel ()

23 {

24 read_claim = nullptr;

25 }

26

27 // claim the read end of the channel , optionally being set

28 // not ready to run and enqueued on the read queue if

29 // there is already an active reading process

30 bool claim_read(pj_process* p)

31 {
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32 std:: lock_guard <std::mutex > lock(this ->mtx);

33 if(! read_claim || read_claim == p)

34 {

35 read_claim = p;

36 return true;

37 }

38 else

39 {

40 p->set_not_ready ();

41 read_queue.push(p);

42 }

43

44 return false;

45 }

46

47 // deregister from the read end of the channel , optionally

48 // grab the next reader from the queue and set them ready

49 void unclaim_read ()

50 {

51 std:: lock_guard <std::mutex > lock(this ->mtx);

52 if(read_queue.empty())

53 {

54 read_claim = nullptr;

55 }

56 else

57 {

58 pj_process* p = read_queue.front ();

59 read_queue.pop();

60 read_claim = p;

61 p->set_ready ();

62 }

63 }

64

65 protected:

66 pj_process* read_claim = nullptr;

67 std::queue <pj_process*> read_queue;
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68 };

69 }

70

71 #endif

Listing 3.11: The pj one2many channel class definition.

For a one-to-many channel, the way that a process accomplishes writing to a channel is the

same as a one-to-one channel. The difference comes from having many readers at the other end

of the channel. This channel type, instead of utilizing a single reader, has instead a std :: queue

of potential readers, stored in the order in which they committed to a read on the channel itself.

A potential reading process calls claim read(), which will set them as the current active reader if

there are no readers in the channel’s read queue, and add them to the queue if otherwise. Then,

the current active reader will call read() to extract the written data, or wait until there is data

to be read. Then, assuming the current reading process has completed a read() call, the current

reader then calls unclaim read() which removes them from being the current reading process, and

dequeues the next reading process from the queue as the new current reading process.

To consider the correctness of this channel type in a näıve manner, consider a program with

one writing process, and, arbitrarily, four reading processes. If the writing process arrives at the

channel write first, it will of course write its data to the channel, and yield to wait for a reader to

come by and read the data. Otherwise, if one or more of the reading processes get to their channel

read first, they will first check if the channel read head can be claimed via a call to claim read(),

in which case they will be set as the current reading process, or in the event that the read head has

already been claimed, will be set not ready to run and placed in the potential reader queue. Once

a reading process is woken up because something is ready to be read from the channel, the channel

then calls is ready to read(), which returns true if there is a writer present, and false if there is not,

also setting the reading process back to not being ready. This specific sequence of calls has a very

important feature to it: by checking if the read head has been claimed, and then checking if the

channel is ready to be read from, or in other words, if the channel already has a writer committed

on the writing end of the channel, then there is no case where a reader will be able to invoke read()

without a writer being present. This aforementioned sequence of function calls is a safety net to

be sure that there is always data to be read when a read() call comes around.
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pj many2one channel.hpp

The pj many2one channel class is the C++ runtime representation of a one-to-many channel in

ProcessJ. This type of channel has many writers and one reader. The file pj many2one channel.hpp

is given in listing 3.12, and a brief description of behavior is given afterwards.

1 #ifndef PJ_MANY2ONE_CHANNEL_HPP

2 #define PJ_MANY2ONE_CHANNEL_HPP

3

4 #include <runtime/pj_one2one_channel.hpp >

5

6 #include <queue >

7

8 namespace pj_runtime

9 {

10 template <typename T>

11 class pj_many2one_channel : public pj_runtime :: pj_one2one_channel <T>

12 {

13 public:

14 pj_many2one_channel ()

15 {

16

17 }

18

19 ~pj_many2one_channel ()

20 {

21

22 }

23

24 // claim the write end of the channel , optionally being set

25 // not ready to run and enqueued on the write queue if

26 // there is already an active writing process

27 bool claim_write(pj_process* p)

28 {

29 std:: lock_guard <std::mutex > lock(this ->mtx);

30 if(! write_claim || write_claim == p)

31 {

51



32 write_claim = p;

33 return true;

34 }

35 else

36 {

37 p->set_not_ready ();

38 write_queue.push(p);

39 }

40

41 return false;

42 }

43

44 // deregister from the write end of the channel , optionally

45 // grab the next writer from the queue and set them ready

46 void unclaim_write ()

47 {

48 std:: lock_guard <std::mutex > lock(this ->mtx);

49 if(write_queue.empty())

50 {

51 write_claim = nullptr;

52 }

53 else

54 {

55 pj_process* p = write_queue.front ();

56 write_queue.pop();

57 write_claim = p;

58 p->set_ready ();

59 }

60 }

61

62 protected:

63 pj_process* write_claim = nullptr;

64 std::queue <pj_process*> write_queue;

65 };

66 }

67
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68 #endif

Listing 3.12: The pj many2one channel class definition.

The way that a process writes over a many-to-one channel is similar to the way that a process

reads from a one-to-many channel. A many-to-one channel utilizes a std :: queue on the writer end

to handle having several writing processes. Like the reading method for a one-to-many channel,

a process that wants to write over a many-to-one channel will call claim write() and be set as

the current writing process, or be placed into the write queue. Then, the current writing process

will write its data to the channel, and wait for a process to read the data. Once a reading pro-

cess has taken the data from the channel, the writer will be released from the channel by calling

unclaim write() and a new current writing process will be dequeued from the write queue. This

type of channel benefits from the same guarding sequence of function calls as the one-to-many

channel, but in a different manner. A writer will always yield after a write to wait for a reader to

read the data out of the channel, which will then wake up the writing process again. The writing

process will then relinquish the writing head and set the next queued writer as the writing process,

and so on.

pj many2many channel.hpp

The pj many2many channel class is the C++ runtime representation of a many-to-many channel

in ProcessJ. This type of channel has many writers and many readers, making it a sort of amalgam

of the many-to-one and one-to-many channels. The file pj many2many channel.hpp is given in

listing 3.13, and a brief description of behavior is given afterwards.

1 #ifndef PJ_MANY2MANY_CHANNEL_HPP

2 #define PJ_MANY2MANY_CHANNEL_HPP

3

4 #include <runtime/pj_one2one_channel.hpp >

5

6 #include <queue >

7

8 namespace pj_runtime

9 {

10 template <typename T>

11 class pj_many2many_channel : public pj_runtime :: pj_one2one_channel <T>
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12 {

13 public:

14 pj_many2many_channel ()

15 {

16

17 }

18

19 ~pj_many2many_channel ()

20 {

21

22 }

23

24 // claim the read end of the channel , optionally being set

25 // not ready to run and enqueued on the read queue if

26 // there is already an active reading process

27 bool claim_read(pj_process* p)

28 {

29 std:: lock_guard <std::mutex > lock(this ->mtx);

30 if(! read_claim || read_claim == p)

31 {

32 read_claim = p;

33 return true;

34 }

35 else

36 {

37 p->set_not_ready ();

38 read_queue.push(p);

39 }

40

41 return false;

42 }

43

44 // deregister from the read end of the channel , optionally

45 // grab the next reader from the queue and set them ready

46 void unclaim_read ()

47 {
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48 std:: lock_guard <std::mutex > lock(this ->mtx);

49 if(read_queue.empty())

50 {

51 read_claim = nullptr;

52 }

53 else

54 {

55 pj_process* p = read_queue.front ();

56 read_queue.pop();

57 read_claim = p;

58 p->set_ready ();

59 }

60 }

61

62 // claim the write end of the channel , optionally being set

63 // not ready to run and enqueued on the write queue if

64 // there is already an active writing process

65 bool claim_write(pj_process* p)

66 {

67 std:: lock_guard <std::mutex > lock(this ->mtx);

68 if(! write_claim || write_claim == p)

69 {

70 write_claim = p;

71 return true;

72 }

73 else

74 {

75 p->set_not_ready ();

76 write_queue.push(p);

77 }

78

79 return false;

80 }

81

82 // deregister from the write end of the channel , optionally

83 // grab the next writer from the queue and set them ready
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84 void unclaim_write ()

85 {

86 std:: lock_guard <std::mutex > lock(this ->mtx);

87 if(write_queue.empty())

88 {

89 write_claim = nullptr;

90 }

91 else

92 {

93 pj_process* p = write_queue.front ();

94 write_queue.pop();

95 write_claim = p;

96 p->set_ready ();

97 }

98 }

99

100 protected:

101 pj_process* read_claim = nullptr;

102 pj_process* write_claim = nullptr;

103 std::queue <pj_process*> read_queue;

104 std::queue <pj_process*> write_queue;

105 };

106 }

107

108 #endif

Listing 3.13: The pj many2many channel class definition.

As stated previously, the behavior of a many-to-many channel is a combination of the many-

to-one and one-to-many channels. This channel type utilizes both a read queue and a write queue.

As reading processes or writing processes attempt to read or write to the channel, the first for

each will be placed as the current active reading or writing processes, or enqueued in the read or

write queue, respectively. This is accomplished by the readers calling claim read(), or the writers

calling claim write(). Then, the current reading process or writing process will read or write to

the channel, and call unclaim read() or unclaim write() to remove themselves from the channel

and allow the next dequeued reader or writer to continue on with communication.
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3.2.5 pj alt.hpp

The file pj alt.hpp, shown in part in listing 3.14, describes the representation of an alt construct in

ProcessJ. An alt itself is an object of pj alt type that is maintained by the process in which the alt

was declared. This object stores all of the important information and other elements that an alt

needs. Line 18 defines the type of alt guards, which is a std::variant of the three possible constructs:

a string (specifically the SKIP string defined on line 25), a channel read end, or a timeout. lines

34 through 36 define the elements of an alt, including the process declaring the alt, a std :: vector

of alt guards, and a std :: vector of Boolean guards. The pj alt class defines operations specific to

an alt, namely set guards(), enable(), and disable(). The first of these member functions has an

obvious function: it is responsible for setting the guards of the alt based on the guards that are

locally declared and initialized from the alternating process. The last other two member functions

are touched on in more detail later on in this section.

1 #ifndef PJ_ALT_HPP

2 #define PJ_ALT_HPP

3

4 #include <runtime/pj_process.hpp >

5 #include <runtime/pj_channel.hpp >

6 #include <utilities/rtti.hpp >

7

8 #include <iostream >

9 #include <vector >

10 #include <variant >

11 #include <string >

12

13 #include <sys/types.h>

14

15 namespace pj_runtime

16 {

17 // typedef for the kinds of alt guards we can expect

18 typedef std::variant <std::string , pj_channel*, pj_timer*>

pj_alt_guard_type;

19

20 // pj_alt class def

21 class pj_alt

57



22 {

23 public:

24 // c++ implementation of SKIP

25 inline static const std:: string SKIP = "skip";

26

27 pj_alt () = delete;

28

29 // specialized constructor with count of processes in the alt

30 // and the process in which the alt was declared itself as arguments

31 pj_alt(uint64_t count , pj_process* p)

32 {

33 this ->process = p;

34 }

35

36 ~pj_alt ()

37 {

38 pj_logger ::log("pj_alt destructor called");

39 }

40

41 // set the boolean and object guards of the alt

42 bool set_guards(std::vector <bool > b_guards ,

43 std::vector <pj_alt_guard_type > guards)

44 {

45 this ->b_guards = b_guards;

46 this ->guards = guards;

47

48 for(uint32_t i = 0; i < this ->b_guards.size(); ++i)

49 {

50 if(b_guards[i])

51 {

52 return true;

53 }

54 }

55

56 return false;

57 }
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58

59 ...

60

61 private:

62 pj_process* process;

63 std::vector <pj_alt_guard_type > guards;

64 std::vector <bool > b_guards;

65 };

66 }

67

68 #endif

Listing 3.14: The pj alt class definition.

In the ProcessJ program in Listing 3.15, we see the processes writer1, writer2, and reader

defined, with reader alternating on a sequence of guards, with the first two guards being channel

reads from writer1 and writer2, and the default guard being skip. The code that is generated

for an alt statement uses two specific member functions to operate, namely enable() and disable().

These functions are detailed in listings 3.16 and 3.17, and work with each other to ensure that the

correct guard is selected out of the alt.

1 // import io library

2 import std.io;

3

4 // writer process

5 public void writer1(chan <int >. write out) {

6 out.write (42);

7 }

8

9 // writer process

10 public void writer2(chan <int >. write out) {

11 out.write (43);

12 }

13

14 // reader process , with alt between reading from in1 or in2 ,

15 // optionally skipping if none are ready to be read from

16 public void reader(chan <int >.read in1 , chan <int >.read in2) {
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17 int v;

18 alt {

19 v = in1.read() : { println("Got " + v + " from writer 1."); }

20 v = in2.read() : { println("Got " + v + " from writer 2."); }

21 skip : { println("in skip"); }

22 }

23 }

24

25 // main process , with 2 channels (c1 and c2) declared ,

26 // and the two writers/a reader set in parallel with each other

27 public void main(string [] args) {

28 chan <int > c1 , c2;

29 par {

30 writer1(c1.write);

31 writer2(c2.write);

32 reader(c1.read , c2.read);

33 }

34 }

Listing 3.15: alttest.pj.

In listing 3.16 and 3.17, we can see that enable() simply iterates through the alt guards in

sequence, selecting the first one whose preguard is ready. Note that the boolean guard (being

accessed on line 8) is checked first. This is because a boolean preguard is considered before the

actual alt guard itself is checked. If a boolean preguard is set as true, then that alt is considered.

Otherwise, the alt guard is skipped over using a continue statement on line 10. In the case that a

boolean preguard is true, and thus the alt guard must be considered, “readiness” is defined in terms

of the alt guard we are looking at. A channel must have a valid writing process set as its writer,

that is still waiting to write some data to the channel. For a timeout statement to be “ready,” the

timer simply must have timed out. A skip guard is always ready, and is thus treated as a “default”

case. Following the code for enable() and disable(), the alternating process first invokes enable() to

select a guard that is ready. In this particular implementation of alts, we have generalized the alt

to behave as a form of prioritized alt. That is, once the guard that is ready is selected (noting that

the guards are visited and considered in order, from top to bottom), the alternating process then

yields, and invokes disable() when it is woken up. In the case of a non-prioritized alt, disable()
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then moves back up from the selected alt (the index of which is returned from enable()) to the first

alt guard, making sure that the alternating process is not still registered on some channel from

another alt guard, or that a timer has been expired and is not still running for the alternating

process. However, in the case that the keyword pri is used, indicating that a prioritized alt is

indeed wanted, then disable() ensures that the first guard that is ready is chosen, regardless of

the returned index from enable(), all while still ensuring that appropriate deregistration from any

timers or channels happens.

1 // first pass _down_ the alt guards

2 int32_t enable(void)

3 {

4 // iterate through all the object guards

5 for(uint32_t i = 0; i < this ->guards.size(); ++i)

6 {

7 // if the boolean guard is false , skip this guard entirely

8 if(!this ->b_guards[i])

9 {

10 continue;

11 }

12

13 // if it’s a string (a SKIP)

14 if(std:: holds_alternative <std::string >(this ->guards[i]))

15 {

16 // check if it’s literally SKIP

17 if(std::get <std::string >(this ->guards[i]) == SKIP)

18 {

19 // set the process ready and return the index of our

selected alt

20 this ->process ->set_ready ();

21 return static_cast <int32_t >(i);

22 }

23 }

24 // if it’s a channel read

25 else if(std:: holds_alternative <pj_runtime :: pj_channel *>(this ->

guards[i]))

26 {
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27 // if the channel has a writer already (is ready to be read

from)

28 if(std::get <pj_runtime :: pj_channel *>(this ->guards[i])->

alt_get_writer(this ->process) != nullptr)

29 {

30 // set the process ready and return the index of our

selected alt

31 this ->process ->set_ready ();

32 return static_cast <int32_t >(i);

33 }

34 }

35 // if it’s a timeout statement

36 else if(std:: holds_alternative <pj_runtime :: pj_timer*>(this ->guards

[i]))

37 {

38 // if the timer has timed out

39 if(std::get <pj_runtime :: pj_timer*>(this ->guards[i])->

get_real_delay () <= std:: chrono :: time_point_cast <std:: chrono ::

milliseconds >(std:: chrono :: system_clock ::now()))

40 {

41 // set the process ready , expire the timer , and return the

index

42 this ->process ->set_ready ();

43 std::get <pj_runtime :: pj_timer*>(this ->guards[i])->expire ()

;

44 return static_cast <int32_t >(i);

45 }

46 else

47 {

48 // start the timer if not started already

49 std::get <pj_runtime :: pj_timer*>(this ->guards[i])->start();

50 }

51 }

52 }

53

54 // default case -- no guards ready
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55 return -1;

56 }

Listing 3.16: The pj alt class definition – enable() member function.

1 // second pass _up_ the alt guards

2 int32_t disable(int32_t i)

3 {

4 int32_t selected = -1;

5

6 // if we previously did not have a ready guard , start from the very

bottom

7 if(i == -1)

8 {

9 i = this ->guards.size() - 1;

10 }

11

12 // iterate back up the guards

13 for(int32_t j = i; j >= 0; --j)

14 {

15 // if the boolean flag for this guard is false , skip it

16 if(!this ->b_guards[i])

17 {

18 continue;

19 }

20

21 // if it’s a SKIP , select it

22 if(std:: holds_alternative <std::string >(this ->guards[j]))

23 {

24 if(std::get <std::string >(this ->guards[j]) == SKIP)

25 {

26 selected = j;

27 }

28 }

29 // if it’s a channel read and we have a writer , select it

30 else if(std:: holds_alternative <pj_runtime :: pj_channel *>(this ->

guards[j]))
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31 {

32 if(std::get <pj_runtime :: pj_channel *>(this ->guards[j])->

set_reader_get_writer(nullptr) != nullptr)

33 {

34 selected = j;

35 }

36 }

37 // if it’s a timer that has expired (timed out), select it ,

otherwise kill it

38 else if(std:: holds_alternative <pj_runtime :: pj_timer*>(this ->guards

[j]))

39 {

40 if(std::get <pj_runtime :: pj_timer*>(this ->guards[j])->expired ()

)

41 {

42 selected = j;

43 }

44 else

45 {

46 std::get <pj_runtime :: pj_timer*>(this ->guards[j])->kill();

47 }

48 }

49 }

50 return selected;

51 }

Listing 3.17: The pj alt class definition – disable() member function.

3.2.6 pj barrier.hpp

The file pj barrier.hpp, shown entirely below in listing 3.18, describes the representation of a barrier

in ProcessJ. A barrier is a construct used to synchronize one or more processes before proceeding

onward. The barrier accomplishes this in the C++ runtime by using the member functions enroll(),

resign(), and sync().

1 #ifndef PJ_BARRIER_HPP

2 #define PJ_BARRIER_HPP
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3

4 #include <runtime/pj_process.hpp >

5

6 #include <iostream >

7 #include <vector >

8 #include <queue >

9

10 #include <sys/types.h>

11

12 namespace pj_runtime

13 {

14 class pj_barrier

15 {

16 public:

17 // vector of synced processes on this barrier

18 std::vector <pj_process*> synced;

19 // number enrolled on the barrier

20 uint32_t enrolled = 0;

21

22 // init with one enrolled

23 pj_barrier ()

24 : enrolled (1)

25 {

26

27 }

28

29 ~pj_barrier ()

30 {

31

32 }

33

34 // enroll n - 1, where n is the number of processes that wish to

35 // synchronize on the barrier

36 void enroll(uint32_t proc_count)

37 {

38 std:: lock_guard <std::mutex > lock(this ->mtx);
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39 this ->enrolled += (proc_count - 1);

40 }

41

42 // resign from the barrier by decr’ing enrolled

43 void resign ()

44 {

45 std:: lock_guard <std::mutex > lock(this ->mtx);

46 if(this ->enrolled > 1)

47 {

48 --this ->enrolled;

49 }

50 }

51

52 // synchronize on the barrier. if every process is synchronized ,

53 // then set them ready and clear the vector.

54 void sync(pj_process* process)

55 {

56 std:: lock_guard <std::mutex > lock(this ->mtx);

57 process ->set_not_ready ();

58 this ->synced.push_back(process);

59 if(this ->synced.size() == enrolled)

60 {

61 for(uint32_t i = 0; i < this ->synced.size(); ++i)

62 {

63 this ->synced[i]->set_ready ();

64 }

65 synced.clear();

66 }

67 }

68

69 protected:

70 private:

71 std:: mutex mtx;

72 };

73 }

74
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75 #endif

Listing 3.18: The pj barrier class definition.

As we can see, the enroll() function, defined on line 36, takes an argument of the number of

processes that we are enrolling on the barrier in question. When sync() is invoked by some process

enrolled on the barrier, that process is set not ready and placed in a std :: vector of processes

that have synchronized on the barrier. In other words, all of the processes that call sync() will

wait until every process that is enrolled on the barrier has synchronized with it. Then, lastly, the

final process to enroll on a barrier triggers the resumption of all processes synchronized thus far,

with the condition on line 59 that allows the processes to be set ready by iterating through the

synced processes and setting them all ready, as seen on lines 61 thru 65. Once these processes finish

running, the scheduler will invoke their finalize() functions. Inside of the finalize() function for

each of the processes that enroll on a barrier, a call to resign() is made to remove the process from

the barrier, such that the barrier can keep track of the processes still potentially using the barrier.

Note that many processes can enroll on a barrier at several points in time during the execution of

a program, and thus the barrier must know how many enrolled processes to expect before setting

them all ready upon receiving the correct number of sync() invocations.

Consider the ProcessJ code in listing 3.19:

1 // import io library

2 import std.io;

3

4 // foo process , sets a variable and syncs on a barrier

5 public void foo(barrier b) {

6 int a = 5;

7 b.sync();

8 }

9

10 // bar process , syncs on a barrier

11 public void bar(barrier b) {

12 b.sync();

13 }

14

15 // main process , declares barrier b and enrolls 2 processes

16 // in parallel on it
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17 public void main(string args []) {

18 barrier b;

19 par enroll b {

20 foo(b);

21 bar(b);

22 }

23 }

Listing 3.19: barrierEx.pj.

In this example, we see that a par block on line 14 is created and enrolls in a barrier, b, declared

on line 13. The main process declares a pj barrier and a pj par, with both objects expecting two

processes to use them. The par block is created with 2 processes inside of it, namely foo and bar,

and enrolls on the barrier b. In this case, the processes themselves are created, their finalize()

function is overloaded to include a resign() call for barrier b, and they are then scheduled. Each

process runs until the sync() invocation is made, in which the process that gets to its sync() call

first will wait for the other to also invoke sync(). Then the two are set ready by the barrier, their

execution is terminated, finalize() is invoked on them, and they are deregistered from the barrier.

The usefulness of this barrier object is clearly seen by considering the possibility of processes

needing to step forward with each other. In other words, the necessity of barriers is clearly seen

in the case of a program that is written to solve a problem where processes must communicate

with one another to solve their next chunk of the problem set given to them. We will see a larger

example of this in some of the larger tests written in chapter ??, where the benefits of a barrier in

concurrent programming and ProcessJ as a whole will be made more clear.

3.2.7 pj record.hpp

A pj record in the C++ runtime system is the internal representation of a ProcessJ record. A

record in ProcessJ is a user-defined data type, similar to a struct in C++. In fact, a record

in ProcessJ is directly mapped to a struct in C++, and as such, records in ProcessJ follow the

inheritance structure of C++ structs.

1 #ifndef PJ_RECORD_HPP

2 #define PJ_RECORD_HPP

3

4 namespace pj_runtime
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5 {

6 // every pj_record inherits from this struct

7 struct pj_record

8 {

9

10 };

11 }

12

13 #endif

Listing 3.20: The pj record class definition.

3.2.8 pj protocol.hpp

The pj protocol class is used to define a ProcessJ data structure, similar to a record, but with the

added feature of enclosed tags that can be used to describe different forms of data. The pj protocol

class definition describe both the base struct that protocols in ProcessJ are mapped to in C++,

along with the pj protocol case struct that is used inside a protocol to define the specific data

elements within.

1 #ifndef PJ_PROTOCOL_HPP

2 #define PJ_PROTOCOL_HPP

3

4 namespace pj_runtime

5 {

6 // Every protocol case inherits from this struct

7 struct pj_protocol_case

8 {

9 public:

10 // tag value set in the code generator to be able

11 // to switch on protocol cases

12 int tag;

13 };

14 }

15

16 #endif

Listing 3.21: The pj protocol and pj protocol case struct definitions.
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This definition, given in listing 3.21, shows exactly what was previously stated: protocols and

protocol cases in ProcessJ are mapped simply to structs. A pj protocol is used to define a protocol

in ProcessJ, and it contains one or more pj protocol cases that are members. The base struct

allows for inheritance in ProcessJ to simply be mapped to the inheritance system of C++, again

similar to the pj record class.

3.2.9 pj run queue.hpp

The pj run queue class is an internal part of the scheduler for the C++ runtime that manages

the organization of processes, running or not, within the runtime system. In the current system

structure, each scheduler instance shares one run queue to pull from and run as needed. In future

revisions to the scheduler system itself, each scheduler instance will have its own run queue that

holds any processes that the scheduler instance is tasked with running.

1 #ifndef PJ_RUN_QUEUE_HPP

2 #define PJ_RUN_QUEUE_HPP

3

4 #include <runtime/pj_process.hpp >

5

6 #include <queue >

7 #include <thread >

8 #include <mutex >

9 #include <iostream >

10

11 #include <sys/types.h>

12

13 namespace pj_runtime

14 {

15 class pj_run_queue

16 {

17 public:

18

19 pj_run_queue ()

20 {

21

22 }

70



23

24 ~pj_run_queue ()

25 {

26

27 }

28

29 // insert a process into the run queue

30 void insert(pj_process* p)

31 {

32 std:: lock_guard <std::mutex > lk(rq_mutex);

33 queue.push(p);

34 }

35

36 // grab the next process from the run queue

37 pj_process* next()

38 {

39 std:: lock_guard <std::mutex > lk(rq_mutex);

40 pj_process* next = queue.front ();

41 queue.pop();

42 return next;

43 }

44

45 // query the size of the run queue

46 size_t size()

47 {

48 std:: lock_guard <std::mutex > lk(rq_mutex);

49 size_t size = queue.size();

50 return size;

51 }

52

53 protected:

54 std::queue <pj_process*> queue;

55

56 private:

57 std:: mutex rq_mutex;

58 };
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59 }

60

61 #endif

Listing 3.22: The pj run queue class definition.

As shown in listing 3.22, the run queue is simply a wrapper class around a std :: queue of

pj processes, with a mutex to guard against concurrent access. It is a simple wrapper that allows

for processes to be inserted using insert(), or removed by using next(). These functions, along

with size() are used by pj scheduler instances’ run() functions to assist in scheduling and running

processes in a ProcessJ program.

3.2.10 pj runtime.hpp

The pj runtime.hpp header is simply a header used that includes all of the runtime elements

discussed in this chapter. This header is included at the top of each program generated by the

ProcessJ compiler so that all the appropriate elements can be included in a program via one single

include guard.

1 #ifndef PJ_RUNTIME_HPP

2 #define PJ_RUNTIME_HPP

3

4 /* include guards for the runtime types */

5 #include <runtime/pj_logger.hpp >

6 #include <runtime/pj_process.hpp >

7 #include <runtime/pj_timer.hpp >

8 #include <runtime/pj_timer_queue.hpp >

9 #include <runtime/pj_run_queue.hpp >

10 #include <runtime/pj_inactive_pool.hpp >

11 #include <runtime/pj_scheduler.hpp >

12 #include <runtime/pj_channel.hpp >

13 #include <runtime/pj_one2one_channel.hpp >

14 #include <runtime/pj_one2many_channel.hpp >

15 #include <runtime/pj_many2one_channel.hpp >

16 #include <runtime/pj_many2many_channel.hpp >

17 #include <runtime/pj_barrier.hpp >

18 #include <runtime/pj_alt.hpp >

19 #include <runtime/pj_record.hpp >
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20 #include <runtime/pj_protocol.hpp >

21 #include <runtime/pj_par.hpp >

22 #include <runtime/pj_array.hpp >

23 #include <runtime/pj_string.hpp >

24

25 #endif

Listing 3.23: The pj runtime.hpp header file.

3.2.11 pj timer.hpp

The pj timer class defines the internal representation of a ProcessJ Timer object in C++. Timers

are quite simple to understand: they are timers that can be set to a specific timeout value (given

in milliseconds by default), and can also be attached to processes waiting for them to timeout.

1 #ifndef PJ_TIMER_HPP

2 #define PJ_TIMER_HPP

3

4 #include <runtime/pj_process.hpp >

5

6 #include <iostream >

7 #include <chrono >

8 #include <ostream >

9

10 namespace pj_runtime

11 {

12

13 class pj_timer

14 {

15 friend class pj_timer_queue;

16 friend class pj_alt;

17

18 public:

19 bool m_started;

20 bool m_expired;

21

22 // default ctor , immediate timeout , no process (the kill timer)
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23 pj_timer ()

24 : m_started(false),

25 m_expired(false),

26 m_delay (0),

27 m_real_delay(std:: chrono :: time_point_cast <std:: chrono ::

milliseconds >(std:: chrono :: system_clock :: time_point ::min())),

28 m_killed(false),

29 m_process(static_cast <pj_process *>(0))

30 {

31

32 }

33

34 // specialized ctor , with specified timeout value

35 pj_timer(long timeout)

36 : m_started(false),

37 m_expired(false),

38 m_delay(timeout),

39 m_real_delay(std:: chrono :: time_point_cast <std:: chrono ::

milliseconds >(std:: chrono :: system_clock :: time_point ::min())),

40 m_killed(false),

41 m_process(static_cast <pj_process *>(0))

42 {

43

44 }

45

46 // specialized ctor , specified process and timeout value

47 pj_timer(pj_process* process , long timeout)

48 : m_started(false),

49 m_expired(false),

50 m_delay(timeout),

51 m_real_delay(std:: chrono :: time_point_cast <std:: chrono ::

milliseconds >(std:: chrono :: system_clock :: time_point ::min())),

52 m_killed(false),

53 m_process(process)

54 {

55
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56 }

57

58 ~pj_timer () = default;

59

60 // calculate the timeout point and mark the timer as started

61 void start()

62 {

63 m_real_delay = std:: chrono :: system_clock :: time_point(std::

chrono :: milliseconds(pj_timer ::read() + this ->get_delay ()));

64 m_started = true;

65 }

66

67 // timeout value setter

68 void timeout(long timeout)

69 {

70 m_delay = timeout;

71 }

72

73 // read the current time

74 static long read()

75 {

76 auto now = std:: chrono :: system_clock ::now();

77 auto now_ms = std:: chrono :: time_point_cast <std:: chrono ::

milliseconds >(now);

78 auto now_epoch = now_ms.time_since_epoch ();

79 auto value = std:: chrono :: duration_cast <std:: chrono ::

milliseconds >( now_epoch);

80 return static_cast <long >( value.count());

81 }

82

83 // kill flag setter

84 void kill()

85 {

86 m_killed = true;

87 }

88
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89 // kill flag getter

90 bool killed ()

91 {

92 return m_killed;

93 }

94

95 // expired flag setter

96 void expire ()

97 {

98 m_expired = true;

99 }

100

101 // expired flag getter

102 bool expired ()

103 {

104 return m_expired;

105 }

106

107 // delay getter

108 long get_delay ()

109 {

110 return m_delay;

111 }

112

113 // timer process pointer setter

114 void set_process(pj_process* p)

115 {

116 m_process = p;

117 }

118

119 // timer process pointer getter. returns the process pointer

120 // iff the timer is not killed yet , else a nullptr is returned

121 pj_process* get_process ()

122 {

123 return (m_killed) ? static_cast <pj_process *>(0) : m_process;

124 }
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125

126 friend std:: ostream& operator <<(std:: ostream& o, pj_timer& t)

127 {

128 return o << "Process: " << t.m_process;

129 }

130

131 protected:

132 // _real_ delay value getter for alt

133 std:: chrono :: system_clock :: time_point get_real_delay ()

134 {

135 return std:: chrono :: time_point_cast <std:: chrono :: milliseconds

>( m_real_delay);

136 }

137

138 private:

139 long m_delay;

140 std:: chrono :: system_clock :: time_point m_real_delay;

141 long m_timeout;

142 bool m_killed;

143 pj_process* m_process;

144 };

145 }

146

147 #endif

Listing 3.24: The pj timer class definition.

In the class definition in listing 3.24, we can see the functions that facilitate a timer being

created, used, and cleaned up by a process that declares one. A pj timer is constructed with either

empty arguments (implying immediate timeout), a specified timeout value as the argument, or a

pj process pointer and a specified timeout value as arguments. Then, a timer can be polled for

its timeout point by using get delay(). Along with some other internal functions like set process()

and get process(), the timer will timeout and whatever process that is waiting (if any) to resume

operation of the process that was waiting for the timer. More examples of this behavior and its

many forms will be detailed int section 3.3.
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3.2.12 pj timer queue.hpp

The pj timer queue class is another internal organization object for use by pj scheduler instances

to manage timers as they are made and used by processes within a ProcessJ program runtime.

Like the pj run queue object, the timer queue is an element that facilitates proper behavior and

organization of timers, but within its own thread. That is, a timer queue has its own thread of

execution separate from a scheduler that facilitates all timer operations while a ProcessJ program

is running.

1 #ifndef PJ_TIMER_QUEUE_HPP

2 #define PJ_TIMER_QUEUE_HPP

3

4 #include <runtime/pj_timer.hpp >

5 #include <utilities/delay_queue.hpp >

6

7 #include <thread >

8 #include <atomic >

9

10 namespace pj_runtime

11 {

12 class pj_timer_queue

13 {

14

15 friend class pj_timer;

16

17 public:

18 // default ctor , exit_value is always set

19 pj_timer_queue ()

20 : exit_value (1)

21 {

22

23 }

24

25 // clean up the timer thread , and the kill timer

26 // if necessary

27 ~pj_timer_queue ()

28 {
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29 if(timer_thread.joinable ())

30 {

31 timer_thread.join();

32 }

33

34 /* make sure we delete our kill_timer sanely */

35 if(kill_timer)

36 {

37 delete kill_timer;

38 }

39 }

40

41 // insert a timer into the timer queue

42 void insert(pj_timer* timer)

43 {

44 std:: lock_guard <std::mutex > lock(this ->mtx);

45 dq.enqueue(timer , timer ->get_real_delay ());

46 }

47

48 // timer queue behavior

49 void start()

50 {

51 timer_thread = std:: thread ([this ]()

52 {

53 while (1)

54 {

55 // get a timer out of the delay queue

56 // ---

57 // this blocks until the timer is ready

58 // to be removed (the timer has timed out)

59 pj_timer* timer = dq.dequeue ();

60

61 // expire the timer

62 timer ->expire ();

63

64 // get the timer’s process
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65 pj_process* p = timer ->get_process ();

66

67 // check if we can safely exit as a thread

68 if(!p && exit_value)

69 {

70 // this is the kill timer , we’re done

71 return;

72 }

73

74 if(p)

75 {

76 // wake up the process waiting on the timer

77 p->set_ready ();

78 }

79

80 // delete the timer object

81 delete timer;

82 }

83 });

84 }

85

86 // kill the timer queue by placing a special timer in ,

87 // to let the timer thread know that we’re done

88 void kill()

89 {

90 // we’re ready to end execution

91 kill_flag.exchange(true);

92

93 // make our kill_timer and place it in the queue

94 kill_timer = new pj_timer ();

95

96 // drop the kill timer in so the timer queue knows

97 // it’s time to stop

98 this ->insert(kill_timer);

99 }

100
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101 // query the size of the timer queue’s delay queue

102 size_t size()

103 {

104 return dq.size();

105 }

106

107 private:

108 pj_utilities :: delay_queue <pj_timer*> dq;

109 std:: thread timer_thread;

110 std:: mutex mtx;

111 std::atomic <int32_t > exit_value;

112 std::atomic <bool > kill_flag;

113

114 pj_timer* kill_timer = nullptr;

115 };

116 }

117

118 #endif

Listing 3.25: The pj timer queue class definition.

As shown in listing 3.25, the timer queue object is a wrapper around a specialized queue called

a delay queue, similar in implementation to a Java delay queue. This wrapper has its own thread

– as mentioned before, which handles the execution of the timer queue’s run() function, and a

mutex to guard against concurrent access problems. The timer queue has functions similar to the

scheduler and run queue, such as insert(), that allow timers to be placed in and waited on by the

runtime system as a whole. The function start() is invoked by the scheduler on startup to initiate

the thread of execution for the timer, before moving on to starting the actual ProcessJ program.

When execution of a ProcessJ program has stopped successfully, and it is time for the runtime to

begin the process of ending its own execution, the function kill() is called by the scheduler to start

the process of killing the timer queue. A std :: atomic value and a special timer called kill timer

are used to signal the timer queue that it is time to stop working and clean up for the runtime

to gracefully stop. The timer is created, and placed into the timer queue. When the timer queue

receives this timer from the delay queue, it checks to see if it is indeed the kill timer, which will

be signified by the attached process being null, and the exit value being set appropriately, as seen
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on line 72. Then, if this condition is true, the timer queue thread returns and ends its execution,

allowing the scheduler and other elements of the runtime system to clean up and finally terminate

as a whole.

3.3 Code Generation

In this section, we will examine some of the generated code for the constructs of ProcessJ, and give

some explanation as to the reasoning behind it.

3.3.1 Alt

To examine the code generation of an alt, we turn again to the example code in alttest.pj. An

excerpt of the generated code for the alt used in the reader process can be seen below in Listing

3.26.

1 // alt object

2 _ld$alt3 = new pj_runtime :: pj_alt(2, this);

3

4 // boolean guards as a vector

5 boolean_guards = { true , true };

6

7 // object guards as a vector

8 object_guards = { _pd$in13 , pj_runtime :: pj_alt ::SKIP };

9

10 // ready flag for the alt , returned by set_guards ()

11 alt_ready = _ld$alt3 ->set_guards(boolean_guards , object_guards);

12

13 // selected value , initialized to 0

14 selected = static_cast <int >(0);

15

16 // local index variable , initialized to 0

17 _ld$index2 = static_cast <int >(0);

18

19 // if the alt guards were not set properly , abort

20 if (! alt_ready) {

21 std::cout << "RuntimeError: One of the boolean pre -guards must be true

!" << std::endl;
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22 abort();

23 }

24

25 // set the process not ready to be run

26 this ->set_not_ready ();

27

28 // index of the selected alt guard from the enable ()

29 _ld$index2 = _ld$alt3 ->enable ();

30

31 // we want to resume from the next label

32 this ->set_label (3);

33 return;

34

35 _proc$reader2$682474708L3:

36

37 // selected contains the guard that was ready on the disable ()

38 selected = _ld$alt3 ->disable(_ld$index2);

39

40 // switch -case statement on the selected guard , and the code

41 // generated for that guard’s behavior

42 switch(selected)

43 {

44 case 0:

45 // channel read

46 if (!_pd$in13 ->is_ready_to_read(this)) {

47 this ->set_label (1);

48 return;

49 }

50

51 _proc$reader2$682474708L1:

52 _ld$v1 = _pd$in13 ->read(this);

53

54 _proc$reader2$682474708L2:

55 io:: println("Got ", _ld$v1 , " from writer 1.");

56 break;

57 case 1:
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58 // skip case

59 io:: println("in skip");

60 break;

61 default:

62 break;

63 }

Listing 3.26: alttest.pj - generated alt code.

In this example, we see the alt object constructed on line 1. Next, the boolean guards and object

guards are constructed as std :: vectors on lines 2 and 3, respectively. The alt is passed the guards

on line 4 with the invocation of set guards(), and we later see enable() invoked, which selects the

guard that is ready. Then, we see an invocation of disable() when the reader process is woken back

up. Once all of this has been done, we see the switch-case statement for the selected variable, which

is returned and set by disable() on line 19. This switch case facilitates the actual choice between

handling the different alt guards. The code for each alt guard may have been generated, but the

selection of the guard and final behavior of the alternating process is dictated by the enable() and

disable() result.

3.3.2 Barrier

Listing 3.27 shows us the program barrierEx.pj. This is a simple test program that places two

processes, foo and bar, in parallel with each other, and enrolls them on a barrier b. Then, these

processes are passed the barrier, and both invoke sync() on the barrier, which causes them to wait

until they have both reached this sync() invocation. This code is shown for bar in Listing 3.28.

1 import std .*;

2

3 public void foo(barrier b) {

4 int a = 5;

5 b.sync();

6 }

7

8 public void bar(barrier b) {

9 b.sync();

10 }

11 texmaker red underline
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12 public void main(string args []) {

13 barrier b;

14 par enroll b {

15 foo(b);

16 bar(b);

17 }

18 }

Listing 3.27: barrierEx.pj.

1 virtual void run()

2 {

3 switch (get_label ())

4 {

5 case 0: goto _proc$bar11198L0; break;

6 case 1: goto _proc$bar11198L1; break;

7 }

8

9 _proc$bar11198L0:

10 _pd$b2 ->sync(this);

11 this ->set_label (1);

12 return;

13 _proc$bar11198L1:

14 terminate ();

15 return;

16 }

Listing 3.28: barrierEx.pj - generated bar :: run() method.

The invocation of sync() on line 10 places the process in the barrier’s sync set, and then sets

the process not ready to run. The process yields after this, and does not get set ready to run again

until all other processes enrolled on the barrier have also synchronized.

The processes that are within the par block of this test program need to have code generated

specially so that they have the ability to resign from the barrier on termination, and decrement the

par’s process counter. This code is shown below in 3.29 on lines 35-39.

1 _ld$_par1 = new pj_runtime :: pj_par(2, this);

2 _ld$b2 ->enroll (2);
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3

4 // local class definition to extend foo , and give it its finalize () code

5 class _proc$foo01198_overload_finalize_0 : public _proc$foo01198

6 {

7 public:

8 _proc$main21169311* parent;

9

10 _proc$foo01198_overload_finalize_0(pj_runtime :: pj_scheduler* sched ,

pj_runtime :: pj_barrier* b, _proc$main21169311* parent)

11 : _proc$foo01198{sched , b}, parent(parent)

12 {

13 }

14

15 virtual void finalize ()

16 {

17 parent ->_ld$_par1 ->decrement ();

18 parent ->_ld$b2 ->resign ();

19 }

20 };

21

22 this ->sched ->insert(new _proc$foo01198_overload_finalize_0(this ->sched ,

_ld$b2 , this));

23

24 // same thing for bar

25 class _proc$bar11198_overload_finalize_1 : public _proc$bar11198

26 {

27 public:

28 _proc$main21169311* parent;

29

30 _proc$bar11198_overload_finalize_1(pj_runtime :: pj_scheduler* sched ,

pj_runtime :: pj_barrier* b, _proc$main21169311* parent)

31 : _proc$bar11198{sched , b}, parent(parent)

32 {

33 }

34

35 virtual void finalize ()
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36 {

37 parent ->_ld$_par1 ->decrement ();

38 parent ->_ld$b2 ->resign ();

39 }

40 };

41

42 this ->sched ->insert(new _proc$bar11198_overload_finalize_1(this ->sched ,

_ld$b2 , this));

43

44 if (_ld$_par1 ->should_yield ()) {

45 this ->set_label (1);

46 return;

47 }

48

49 _proc$main21169311L1:

Listing 3.29: barrierEx.pj - generated barrier code.

The code generated in 3.29 shows the actual construction of the par object, the barrier object,

the enrollment of the processes in the par on the barrier, and even the finalize() code that is

generated in the case of processes needing to decrement the par counter, or resign from a barrier

after execution.

It should also be noted that, since this barrier is part of a par block, the code generated in 3.29

also exemplifies the code generated for a par, where anonymous classes (or in this case, extensions of

previously-declared classes for processes) are generated on-the-fly, given a finalize() that includes

the par block and barriers (if any) the processes are enrolled on, and then instantiated to be passed

to the scheduler.

3.3.3 Channels

This subsection will delve into the four different types of channels, in a grouping of non-shared and

shared channels.

One2One

For a one-to-one channel in ProcessJ, the test program channelWR.pj (shown in Listing 3.30) gives

a basic example of the code generated for a channel read, and a channel write.
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1 import std .*;

2

3 public void foo(chan <int >. write out) {

4 out.write (4);

5 }

6

7 public void bar(chan <int >.read in) {

8 int x = in.read();

9 println("x: " + x);

10 }

11

12 public void main(string args []) {

13 chan <int > c;

14 par {

15 foo(c.write);

16 bar(c.read);

17 }

18 }

Listing 3.30: channelWR.pj.

1 virtual void run()

2 {

3 // switch -case block for process resumption points

4 switch (get_label ())

5 {

6 case 0: goto _proc$foo01171377L0; break;

7 case 1: goto _proc$foo01171377L1; break;

8 }

9

10 // first label

11 _proc$foo01171377L0:

12

13 // write the literal value 4 to the out channel

14 _pd$out1 ->write(this , 4);

15 // set our next resumption label

16 this ->set_label (1);
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17 // yield

18 return;

19

20 // second label

21 _proc$foo01171377L1:

22 // let the scheduler know we’re finished running

23 terminate ();

24 // process end

25 return;

26 }

Listing 3.31: channelWR.pj - foo :: run() method.

1 virtual void run()

2 {

3 // switch -case block for process resumption points

4 switch (get_label ())

5 {

6 case 0: goto _proc$bar11171222L0; break;

7 case 1: goto _proc$bar11171222L1; break;

8 case 2: goto _proc$bar11171222L2; break;

9 }

10

11 // first label

12 _proc$bar11171222L0:

13

14 // initialize x local declaration

15 _ld$x1 = static_cast <int >(0);

16 // if we’re not ready to read , then yield until we’re woken up

17 if (!_pd$in2 ->is_ready_to_read(this)) {

18 this ->set_label (1);

19 return;

20 }

21

22 _proc$bar11171222L1:

23 // read from the in channel into x

24 _ld$x1 = _pd$in2 ->read(this);

89



25

26 _proc$bar11171222L2:

27 // invoke println ()

28 io:: println("x: ", _ld$x1);

29 // let the scheduler know we’re done running

30 terminate ();

31 // process end

32 return;

33 }

Listing 3.32: channelWR.pj - bar :: run() method.

The code in Listing 3.31 shows us the code generated by the foo process, namely a write call on

line 11, which sets the process as not ready until the channel has been read from by bar. Likewise,

in Listing 3.32, we see the resulting code generated for bar and its channel read. In this code,

line 13 invokes is ready to read(), which returns true if there is a writer already present on the

channel, and false otherwise, setting the reader of the channel to the process that called it. Then,

the invocation of read() on line 19 actually returns the data in the channel to the reader, and wakes

up the writer process to continue onward when its turn to run comes around.

Shared (One2Many/Many2One/Many2Many)

To exemplify the code generated by the remaining three channels, we can consider the code gener-

ated for the test program sharedchan.pj, shown in Listing 3.33.

1 // import io library

2 import std.io;

3

4 // reader process that reads from the in channel and prints

5 // what it receives forever

6 public void reader(int id , shared chan <int >.read in) {

7 while (true) {

8 int v; v = in.read();

9 println(id + ": " + v);

10 }

11 }

12

13 // writer process that writes the values 0...n to the channel out
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14 public void writer(shared chan <int >. write out) {

15 int v = 0;

16 while (true) {

17 out.write(v);

18 v = v + 1;

19 }

20 }

21

22 // main process

23 public void main(string args []) {

24 // shared channel

25 shared chan <int > c;

26 // localdecl

27 int a = 129;

28 // run 3 readers and 2 writers in parallel

29 par {

30 reader(1, c.read);

31 reader(2, c.read);

32 reader(3, c.read);

33 writer(c.write);

34 writer(c.write);

35 }

36 }

Listing 3.33: sharedchan.pj.

1 // init local v

2 _ld$v2 = static_cast <int >(0);

3

4 // if we are in the read queue (not immediately the reader), wait

5 // until we are woken up to read

6 if(!_pd$in2 ->claim_read(this))

7 {

8 set_label (1);

9 return;

10 }

11
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12 _proc$reader01099237691L1:

13 // if we’re not ready to read , yield until we are woken up to read

14 if(!_pd$in2 ->is_ready_to_read(this))

15 {

16 set_label (2);

17 return;

18 }

19

20 _proc$reader01099237691L2:

21 // read from in into v

22 _ld$v2 = _pd$in2 ->read(this);

23 set_label (3);

24

25 // release our claim on the read head of the channel

26 _pd$in2 ->unclaim_read ();

27 return;

28 _proc$reader01099237691L3:

29 // print our value

30 io:: println(": ", _ld$v2);

Listing 3.34: sharedchan.pj - shared channel read code.

1 // if we are in the write queue (not immediately the writer), wait

2 // until we are woken up to write

3 if(!_pd$out3 ->claim_write(this))

4 {

5 set_label (1);

6 return;

7 }

8 _proc$writer11171377L1:

9 // write local declaration v to the channel out

10 _pd$out3 ->write(this , _ld$v3);

11 set_label (2);

12 return;

13

14 _proc$writer11171377L2:

15 // release our claim on the write head of the channel
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16 _pd$out3 ->unclaim_write ();

17

18 // increment v

19 _ld$v3 = _ld$v3 + 1;

Listing 3.35: sharedchan.pj shared channel write code.

In Listing 3.34, we see the code generated for a read call. This is the code that is generated for

any read on a one-to-many or a many-to-many channel. The invocation on line 3 to claim read()

sets the reader of the channel, and optionally enqueues the process attempting to claim the read

end of the channel into the channel’s read queue. The process is then set not ready to run, and

yields until it reaches the front of the read queue. Then the read call behaves like a normal one-to-

one channel read, the only difference being the additional call to unclaim read() on line 20, which

deregisters the current active reader from the channel, and wakes up the next reader in the read

queue, if there are any present.

In Listing 3.35, the code generated for a write call can be seen. This code in particular is

generated for all calls to write() to a many-to-one or many-to-many channel. The invocation to

write() is guarded by an invocation to claim write(), which behaves the same as claim read() for

writers, and uses a write queue instead. It is followed by a call to unclaim write(), which does the

same thing as unclaim read() as well, but for writers instead.

3.3.4 Processes

While there is only one real kind of process in the runtime, there are technically three different

ways to generate them. The first of which is a normal process, defined in the global scope as a

C++ class. This kind of process is shown in generated form in Listing 3.36. The second of these is

the anonymous process, which is defined within the scope of an enclosing par block (in the case of

a single line of code), which is defined and scheduled on-the-fly. This process is shown in ProcessJ

form and in generated form in Listing 3.37. The third and final is an extension of the normal

process, which is redefined with an overloaded finalize() function, in the case of a normal process

being invoked from within a par, a par that enrolls on a barrier, or being invoked with a barrier

passed as an argument. Listing 3.38 shows some code that will generate this sort of process, and

shows this type of process as generated by the compiler.
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1 // processes are classes that extend pj_runtime :: pj_process

2 class _proc$reader01099237691 : public pj_runtime :: pj_process

3 {

4

5 public:

6 // local declarations

7 bool _ld$foreverLoop0$1;

8 int _ld$v2;

9

10 _proc$reader01099237691 () = delete;

11 _proc$reader01099237691(pj_runtime :: pj_scheduler* sched ,

12 int _pd$id1 ,

13 pj_runtime :: pj_many2many_channel <int32_t >* _pd$in2)

14 {

15 this ->sched = sched;

16 this ->_pd$id1 = _pd$id1;

17 this ->_pd$in2 = _pd$in2;

18 }

19

20 virtual ~_proc$reader01099237691 () = default;

21

22 virtual void run()

23 {

24 // switch -case block to handle process resumption points

25 switch (get_label ())

26 {

27 case 0: goto _proc$reader01099237691L0; break;

28 case 1: goto _proc$reader01099237691L1; break;

29 case 2: goto _proc$reader01099237691L2; break;

30 case 3: goto _proc$reader01099237691L3; break;

31 }

32

33 _proc$reader01099237691L0:

34 // initialize variables

35 _ld$foreverLoop0$1 = static_cast <bool >(0);

36 _ld$foreverLoop0$1 = true;
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37 // infinite loop begin

38 while (_ld$foreverLoop0$1) {

39 // init local v

40 _ld$v2 = static_cast <int >(0);

41

42 // if we are in the read queue (not immediately the reader),

43 // then yield until we’re woken up to read

44 if(!_pd$in2 ->claim_read(this))

45 {

46 set_label (1);

47 return;

48 }

49

50 _proc$reader01099237691L1:

51 // if the channel isn’t ready to be read from , yield until

52 // we’re woken up to read

53 if(!_pd$in2 ->is_ready_to_read(this))

54 {

55 set_label (2);

56 return;

57 }

58

59 _proc$reader01099237691L2:

60 // read from in into v

61 _ld$v2 = _pd$in2 ->read(this);

62 set_label (3);

63 // release our claim on the read head

64 _pd$in2 ->unclaim_read ();

65 return;

66 _proc$reader01099237691L3:

67 // print v

68 io:: println(": ", _ld$v2);

69 (void)0;

70 }

71 terminate ();

72 return;
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73 }

74

75 protected:

76 // formal variables

77 int _pd$id1;

78 pj_runtime :: pj_many2many_channel <int32_t >* _pd$in2;

79 private:

80 pj_runtime :: pj_scheduler* sched;

81 };

Listing 3.36: A standard process definition.

1 // main process

2 public void main(string [] args) {

3 // non -shared channel b

4 chan <int > b;

5 // local ints

6 int q, r;

7 // write and read in parallel

8 par {

9 c.write(q)

10 r = c.read();

11 }

12 }

13

14 ...

15

16 // anonymous process that wraps the ’c.write(q)’ invocation above

17 class _proc$Anonymous250 : public pj_runtime :: pj_process

18 {

19 public:

20 _proc$main151169311* parent;

21

22 _proc$Anonymous250 () = delete;

23 _proc$Anonymous250(pj_runtime :: pj_scheduler* sched ,

24 pj_runtime ::pj_array <std::string >* _pd$args63 ,

25 _proc$main151169311* parent)
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26 {

27 this ->sched = sched;

28 this ->parent = parent;

29 this ->_pd$args63 = _pd$args63;

30 }

31

32 virtual ~_proc$Anonymous250 () = default;

33

34 virtual void run()

35 {

36 switch (get_label ())

37 {

38 case 0: goto _proc$Anonymous250L0; break;

39 case 1: goto _proc$Anonymous250L1; break;

40 }

41

42 _proc$Anonymous250L0:

43 // anonymous process wraps around this channel write

44 parent ->_ld$b646 ->write(this , parent ->_ld$q672);

45 this ->set_label (1);

46 return;

47

48 _proc$Anonymous250L1:

49 terminate ();

50 }

51 // finalize () is overloaded with a decrement of the par counter

52 // because this is an anonymous process within a par block

53 virtual void finalize ()

54 {

55 parent ->_ld$_par9 ->decrement ();

56

57 }

58 protected:

59 pj_runtime ::pj_array <std::string >* _pd$args63;

60

61 private:
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62 pj_runtime :: pj_scheduler* sched;

63 };

64

65 this ->sched ->insert(new _proc$Anonymous250(this ->sched , _pd$args63 , this))

;

Listing 3.37: An ‘anonymous’ process definition.

1 public void main(string args []) {

2 shared chan <int > c;

3 int a = 129;

4 par {

5 // these readers are overloaded below

6 reader(1, c.read);

7 reader(2, c.read);

8 reader(3, c.read);

9 writer(c.write);

10 writer(c.write);

11 }

12 }

13

14 ...

15

16 // overloaded class for reader proc. since reader () is a defined

17 // process , all we have to do is extend the reader class itself

18 // and overload its finalize () member function for decrementing the

19 // par that it is a member of

20 class _proc$reader01099237691_overload_finalize_0 : public

_proc$reader01099237691

21 {

22 public:

23 _proc$main21169311* parent;

24

25 _proc$reader01099237691_overload_finalize_0(pj_runtime :: pj_scheduler*

sched , int id , pj_runtime :: pj_many2many_channel <int32_t >* in ,

_proc$main21169311* parent)

26 : _proc$reader01099237691{sched , id, in}, parent(parent)
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27 {

28 }

29

30 virtual void finalize ()

31 {

32 parent ->_ld$_par1 ->decrement ();

33 }

34

35 this ->sched ->insert(new _proc$reader01099237691_overload_finalize_0(

this ->sched , 1, _ld$c5 , this));

36 };

Listing 3.38: An ‘overload and finalize’ process definition.

3.3.5 Protocol

To show the generated code for a protocol and all other code associated, we will examine the test

protocolSwitch.pj, given below in Listing 3.39.

1 // wildcard import of std library

2 import std .*;

3

4 // protocol P declaration

5 public protocol P {

6 // protocol case request

7 request : { int number; double amount; }

8 // protocol case reply

9 reply: { boolean status; }

10 }

11

12 // main process

13 public void main(string args []) {

14 // instantiate new P protocol , with protocol case reply

15 P p = new P { reply: status = true };

16 // protocols can be switched on their cases as shown below

17 switch (p) {

18 case request:
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19 println("number: " + p.number + ", amount: " + p.amount);

20 break;

21 case reply:

22 println("status = " + p.status);

23 break;

24 }

25 }

Listing 3.39: protocolSwitch.pj.

There are two protocols given here: protocol P . and protocol X. The main() process then

creates a new P object, and switches on its type, behaving one way or the other depending on the

protocol case stored within p. In this way, one can think of a protocol as a distant cousin of a

union, or variant. However, the inheritance structure for protocols is backwards, compared to the

typical inheritance structure of classes.

1 class P

2 {

3 public:

4 class request : public pj_runtime :: pj_protocol_case

5 {

6 public:

7 int number;

8 double amount;

9

10 request(int number , double amount)

11 {

12 this ->number = number;

13 this ->amount = amount;

14 this ->tag = 0;

15 }

16 };

17

18 class reply : public pj_runtime :: pj_protocol_case

19 {

20 public:

21 bool status;
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22

23 reply(bool status)

24 {

25 this ->status = status;

26 this ->tag = 1;

27 }

28 };

29 };

Listing 3.40: protocolSwitch.pj - protocol P .

The code generated in Listing 3.40 describes the protocol P . This is simply a class with a nested

class within it. In particular, pay attention to the tag variable, which is used for the switch-case

block seen earlier in the test program. Listing 3.41 shows us how the switch determines which

protocol case to select.

1 _ld$p1 = new P:: reply(true);

2 switch(_ld$p1 ->tag) {

3 case 0:

4 io:: println("number: ", reinterpret_cast <P:: request*>(_ld$p1)->number ,

", amount: ", reinterpret_cast <P:: request*>(_ld$p1)->amount);

5 break;

6 case 1:

7 io:: println("status = ", reinterpret_cast <P:: reply*>(_ld$p1)->status);

8 break;

9 }

Listing 3.41: protocolSwitch.pj - protocol switch-case.

As seen above, the new protocol case reply is allocated and stored. Then, the tag variable of

the protocol case is switched on. The value given to this variable is generated by the compiler as

it visits each protocol case.

3.3.6 Record

Records in ProcessJ can be thought of as structs, and that is exactly what they are mapped to

within the C++ representation. Listing 3.42 shows us a few example records, and their generated

counterparts. Listing 3.43 shows some code that creates and accesses members within these structs.

101



1 public record T {

2 int a;

3 }

4

5 public record K {

6 int z;

7 T t;

8 }

9

10 public record X extends T {

11 int p;

12 string b;

13 }

14

15 ...

16

17 struct T : public pj_runtime :: pj_record

18 {

19 public:

20 T() = default;

21 T(int a)

22 {

23 this ->a = a;

24 }

25

26 ~T()

27 {

28 }

29 int a;

30

31 };

32

33 struct K : public pj_runtime :: pj_record

34 {

35 public:

36 K() = default;
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37 K(int z, T* t)

38 {

39 this ->z = z;

40 this ->t = t;

41 }

42

43 ~K()

44 {

45 delete t;

46 }

47 int z;

48 T* t;

49

50 };

51

52 // extends records T

53 struct X : public T

54 {

55 public:

56 X() = default;

57 X(int a, int p, std:: string b)

58 {

59 this ->a = a;

60 this ->p = p;

61 this ->b = b;

62 }

63

64 ~X()

65 {

66 }

67 int a;

68 int p;

69 std:: string b;

70
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71 };

Listing 3.42: pj record declarations.

As we see below in Listing 3.43, the writer process creates a number of new records on lines

2-4. Then the writer synchronizes on a barrier, and writes the record object l to its out channel.

We see the code generated by the compiler on lines 12-37.

1 public void writer(chan <L>. write out , barrier b1) {

2 K k = new K { z = 3, t = new T { a = 45 } };

3 X x = new X { b = "Ben", p = 300, a = 20 };

4 L l = new L { k = new K { z = 4, t = new T { a = 65 }}, str = "Benjamin"

};

5 b1.sync();

6

7 out.write(l);

8 }

9

10 ...

11

12 virtual void run()

13 {

14 switch (get_label ())

15 {

16 case 0: goto _proc$writer0536917446L0; break;

17 case 1: goto _proc$writer0536917446L1; break;

18 case 2: goto _proc$writer0536917446L2; break;

19 }

20

21 _proc$writer0536917446L0:

22

23 _ld$k1 = new K {.z = 3, .t = new T {.a = 45}};

24 _ld$x2 = new X {.a = 20, .p = 300, .b = "Ben"};

25 _ld$l3 = new L {.k = new K {.z = 4, .t = new T {.a = 65}}, .str = "

Benjamin"};

26 _pd$b12 ->sync(this);

27 this ->set_label (1);

28 return;
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29 _proc$writer0536917446L1:

30 _pd$out1 ->write(this , _ld$l3);

31 this ->set_label (2);

32 return;

33

34 _proc$writer0536917446L2:

35 _ld$l3= nullptr;

36 terminate ();

37 return;

38 }

Listing 3.43: pj record usage.

Note that although the L defined on line 25 is allocated in one process, the pointer holding

it is set null instead of being deleted. This is because objects sent over channels like records or

protocols are considered “owned” by the process they are sent to, and thus the recipient is in charge

of deallocating the object.

3.3.7 Timer

To demonstrate the code generated for a timer, the test program timer.pj will be examined in

partial generated form, shown below in Listing 3.44.

1 import std .*;

2

3 public void main(string [] args) {

4 timer t;

5 t.timeout (100);

6 long a = t.read();

7 println("> " + a);

8 }

Listing 3.44: timer.pj.

This test shows both the code for a timeout statement, as well as the code for a timer read.

Both of these generated forms are shown below in Listing 3.45.

1 virtual void run()

2 {

3 switch (get_label ())
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4 {

5 case 0: goto _proc$main01169311L0; break;

6 case 1: goto _proc$main01169311L1; break;

7 }

8

9 _proc$main01169311L0:

10

11 _ld$t1 = static_cast <pj_runtime :: pj_timer *>(0);

12 _ld$t1 = new pj_runtime :: pj_timer(this , 100);

13 _ld$t1 ->set_process(this);

14 _ld$t1 ->timeout (100);

15 _ld$t1 ->start();

16 this ->sched ->insert(_ld$t1);

17 this ->set_not_ready ();

18 this ->set_label (1);

19 return;

20

21 _proc$main01169311L1:

22 _ld$a2 = static_cast <long >(0);

23 _ld$a2 = pj_runtime :: pj_timer ::read();

24 io:: println("> ", _ld$a2);

25 terminate ();

26 return;

27 }

Listing 3.45: timer.pj - generated timeout() and read() code.

As we can see above, the timeout() invocation generates a number of lines of code. First, the

timer has its process pointer set to the process invoking timeout(). The timeout value is set at 100,

then the timer is started and inserted into the schedulers timer queue. The process then yields and

waits to be set ready to run again by the timer object once it has been dequeued from the timer

queue.

The read() invocation, on the other hand, generates one line of code: a call to a static member

function of the pj timer class that simply returns the current system time in milliseconds, as a

long value.
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Chapter 4

Results

In this chapter, a few larger examples will be considered to show some of the more interesting prob-

lems that can be solved using ProcessJ with the new C++ Runtime System and Code Generator.

4.1 Maximum Running Process Benchmarks

It has been a long-term goal of the ProcessJ group to achieve the fabled “one billion process”

runtime goal. As mentioned in [SP16] and [Shr16], we have achieved at maximum 480,900,001

running processes on a single machine. While the machine tested on was quite powerful for the time

(having a whopping 128 Gigabytes of RAM, and a 32-core Xeon CPU), the University of Nevada,

Las Vegas has acquired a considerably more powerful cluster of machines. One such machine,

nicknamed “snorlax” within the “superkitty” computer cluster, has Two AMD EPYC Rome 7452

CPUs, clocked at 2.35GHz (turbo up to 3.35GHz), for a whopping 64 cores, 128 threads total.

Also, this machine has 512 GB (in a 16-by-32-GB configuration) 288 pin DDR4 SDRAM clocked

at 2666MHz, with ECC.

With the acquisition of this machine, and now being armed with 128 threads and 512GB of

unadulterated computational power, it is only natural that one interested in the power of concur-

rency and parallelism would want to take this machine to the max in terms of ProcessJ’s process

scheduling system. With this in mind, a test similar to that run by [SP16] and [Shr16] was compiled

and run on this machine. The test code in ProcessJ can be seen in Appendix A. The following

table shows the results of this testing.

Looking at the results of Table 4.1, it is easy to see that we have now achieved one of the main

goals of ProcessJ for many years: we have successfully run over one billion processes on a single
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Table 4.1: Process Benchmarking Results
Process Count Context Switches Time (seconds) RAM usage (gigabytes)

6,000,001 11,000,002 5.712 1.119

12,000,0001 22,000,002 17.543 2.367

60,000,001 110,000,002 57.762 11.6

240,000,001 440,000,002 236.923 45.96

360,000,001 660,000,002 365.117 68.4

540,000,001 990,000,002 556.697 102

750,000,001 1,375,000,002 766.755 142

1,002,000,001 1,837,000,002 1,044.424 191

2,502,000,001 4,587,000,002 2,755.303 475

core. While it is also obvious that being able to scale to even six million processes is a great feat

over the traditional thread implementations for parallel programming, it is much more exciting to

see such massive scalability. However, this is not the most interesting thing to know about the

runtime itself. While scaling up to billions of processes is indeed good, it would be much more

interesting to know the sizes of the runtime constructs like processes, alternations, and more to see

the memory constraints and how they relate to the runtime of ProcessJ itself. Further tests will be

done in a future paper to truly grasp the power of this new runtime system.

4.2 CommsTime

To test the efficiency of channel communication in the C++ runtime system, the test CommsTime

was used. This test is given in Appendix B. This test consists of a network of processes that

communicate one million numbers, starting from 1 and incrementing to 1000000. This test was

run on a machine with an Intel i7-6700k clocked at 4.20GHz, with 4 cores and 8 threads available.

This machine also has 16 GB (in a 2-by-8-GB configuration) of 288 pin DDR4 SDRAM clocked at

4000MHz. The resulting calculations of this test are in the following table.

Table 4.2: CommsTime Benchmarking Results
µs / iteration µs / communication µs / context switch

0.5308 1.32725 5.309

As an added comparison, though on a different machine, the CommsTime test results from

[Shr16] have been included as well in Table 4.3.
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Table 4.3: Previous CommsTime Benchmarking Results
Mac / OS X AMD / Linux

LiteProc JCSP PJProcess LiteProc JCSP PJProcess

µs / iteration 9.26 27.00 8.30 13.56 136.00 7.52
µs / communication 2.31 6.00 2.08 3.90 35.00 1.88
µs / context switch 1.32 3.00 0.69 1.94 17.00 0.63

4.3 The Santa Claus Problem

In addition to the previous two conformity tests, we would also benefit from seeing some more

real-world-friendly examples. One of these examples is the Santa Claus Problem. This problem,

described in detail by [Tro94], has been solved using ProcessJ, as the constructs within the language

lend themselves to an elegant solution. The code for this solution is in Appendix C.

One of the more important things to note about the implementation of the Santa Claus prob-

lem is that it is notedly difficult to implement in a non-process-oriented language, such as C++.

However, as tested here, the ProcessJ C++ code generator is successful in translating the high-

level ProcessJ description of the problem into lower-level C++ code that behaves correctly. This

is precisely what this test set out to prove about the new code generator and runtime system in

terms of conformity at both compiler and runtime environment level.

4.4 Full Adder Implementation

Another interesting real-world-friendly problem is the implementation of an 8-bit full adder in

ProcessJ. This shows an interesting mapping of ProcessJ to chip design. The code for this problem

is given in Appendix D. To look into this test in more detail, we can use this as an opportunity to

see the translation of ProcessJ into C++ in a more effective view. That is, we can use the fact that

this program has a wide variety of processes that all do different things to compare and contrast

the number of lines in a ProcessJ program versus the number of lines in the generated C++ code

for ProcessJ constructs. These comparisons are given in the following table.

This test in particular shows us a different architecture of program in the context of ProcessJ.

While the Santa Claus Problem was a single layer of different processes working together, the Full

Adder implementation shows a multi-layered system of processes. For example, the 8-bit adder

process is made of 2 4-bit adder processes, and those are each made of 4 1-bit adder processes,

and so on. The channels used for communication between these lower-level processes are passed
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Table 4.4: Full Adder LOC Comparison Table
Full Adder Component ProcessJ LOC Count C++ LOC Count

notGate 5 60
orGate 8 187

andGate 8 187
nandGate 8 96
muxGate 8 180
xorGate 12 219

oneBitAdder 14 271
fourBitAdder 9 174
eightBitAdder 7 164

down from the main process to the very bottom layer of the system itself, which led to a number of

implementation detail revisions, such as the placement of process-local variables when translated

down to C++ (to satiate any curiosity, these local variables live as member variables within each

process’ class definition).
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Chapter 5

Conclusion

In this thesis, we have introduced a new C++-based runtime system, and a new code generator for

the ProcessJ compiler. We have demonstrated the form that ProcessJ’s basic constructs take in

C++, and shown the facilities of the new runtime system that handle the scheduling and running

of processes. To demonstrate the code generated by the compiler, We have also shown the code

generated for constructs like alts, barriers, and other CSP concepts that are at the core of ProcessJ.

To do this, we have given several test programs and their generated code. To demonstrate the cor-

rectness of this runtime, several problems such as the Santa Claus Problem and the implementation

of a Full Adder circuit in ProcessJ were examined, along with their ProcessJ solutions.

In addition, the performance of the scheduler was demonstrated with a simple program that

enabled us to test the maximum number of processes (2,502,000,001) that could be run in a single

scheduler instance within the runtime. The results of these tests have shown us the fully-featured

runtime system is capable of handling much more than the JVM-based runtime system is, as the

C++ runtime was both faster and consumed much less memory than its JVM counterpart.

In conclusion, the C++ runtime system for ProcessJ is a very powerful, efficient, and performance-

oriented system that is an improvement over its predecessors, and the C++ code generator for the

ProcessJ compiler correctly generates code that utilizes this runtime system. These two additions

to the ProcessJ “family” have not only outperformed their C++ predecessors, such as C++CSP2,

but have also outperformed their JVM counterparts within ProcessJ. Thus, the goal of this thesis

has been achieved.
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Chapter 6

Future Work

A number of possible improvements should be investigated for the C++ runtime system. These

possibilities are touched upon here.

6.1 Coroutine-based Implementation

With the addition of C++20, the ProcessJ C++ runtime system would perhaps greatly benefit from

the use of the new coroutine library. This library, as discussed earlier in this paper, effectively makes

yielding and resumption of functions language-intrinsic, which could possibly eliminate the need

for keeping track of a resumption label, as well as provide the ability to use compiler optimizations

introduced with this library to improve runtime performance of ProcessJ further.

6.2 Multi-Core Scheduling

The ProcessJ C++ runtime system has a semi-functional prototype of a multi-core scheduler, which

is currently in experimental development. We expect another paper to come shortly that expands

on this prototype, and introduces an efficient, load-balancing runtime scheduler that can run on

not only one, but several cores at once. The performance implications to this on top of the results

of maximum process benchmarking are many, and will be expanded upon at a later time.

6.3 Runtime Version 2.0

One of the greater challenges in development of this runtime system was the manual memory

management inherent to C++. Without a garbage collector like the JVM runtime system, the

question of ownership, and responsibility of deletion is a non-trivial mess. A rewritten runtime
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that utilizes smart pointers introduced in later C++ versions (11, 14, etc.) would greatly benefit

from compiler optimizations, and the code generation for this runtime would also potentially benefit

from simplification of delete statement generation. The use of move and copy semantics from C++

would also benefit the passing of non-primitive data over channels from process to process. This

topic will hopefully be expanded upon in a future paper.
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Appendix A

Billions of Processes Benchmark Test

for ProcessJ

1 import std.io;

2

3 public void foo(chan <int >.read c1 , chan <int >. write c2) {

4 int x;

5 par {

6 x = c1.read();

7 c2.write (10);

8 }

9 }

10

11 public void bar(chan <int >. write c1 , chan <int >.read c2) {

12 int y;

13 par {

14 y = c2.read();

15 c1.write (20);

16 }

17 }

18

19 public void main(string [] args) {

20 par for(int i = 0; i < 1000000; ++i) {

21 chan <int > c1 , c2;

22 foo(c1.read , c2.write);
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23 bar(c1.write , c2.read);

24 }

25 }

Listing A.1: proctest.pj
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Appendix B

CommsTime Conformity Test for

ProcessJ

1 import std.io;

2

3 public void prefix(long n, chan <long >.read in , chan <long >. write out) {

4 out.write(n);

5 long l = 0;

6 while (l < 1000000) {

7 l = in.read();

8 out.write(l);

9 }

10 }

11

12 public void succ(chan <long >.read in , chan <long >. write out) {

13 long l = 0;

14 while (l < 999999) {

15 l = in.read();

16 out.write(l+1);

17 }

18 }

19

20 public void delta(chan <long >.read in , chan <long >. write out1 , chan <long >.

write out2) {

21 long l = 0;
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22 while (l < 1000000) {

23 l = in.read();

24 par {

25 out1.write(l);

26 if (l != 1000000)

27 out2.write(l);

28 }

29 }

30 }

31

32 public void consume(chan <long >.read in) {

33 long l = 0;

34 while (l < 1000000) {

35 l = in.read();

36 println(l);

37 }

38 }

39

40 public void main(string args []) {

41 chan <long > a,b,c,d;

42 par {

43 delta(d.read , a.write , b.write);

44 succ(b.read , c.write);

45 prefix(0, c.read , d.write);

46 consume(a.read);

47 }

48 }

Listing B.1: commstime.pj.
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Appendix C

Santa Claus Problem Implementation

in ProcessJ

1 import std .*;

2

3 const int N_REINDEER = 9;

4 const int G_REINDEER = N_REINDEER;

5 const int N_ELVES = 10;

6 const int G_ELVES = N_ELVES;

7 const int HOLIDAY_TIME = 100000;

8 const int WORKING_TIME = 200000;

9 const int DELIVERY_TIME = 100000;

10 const int CONSULTATION_TIME = 200000;

11

12 protocol Reindeer_msg {

13 holiday: { int id; }

14 deer_ready: { int id; }

15 deliver: { int id; }

16 deer_done: { int id; }

17 }

18

19 protocol Elf_msg {

20 working: { int id; }

21 elf_ready: { int id; }

22 waiting: { int id; }
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23 consult: { int id; }

24 elf_done: { int id; }

25 }

26

27 protocol Santa_msg {

28 reindeer_ready: { }

29 harness: { int id; }

30 mush_mush: { }

31 woah: { }

32 unharness: { int id; }

33 elves_ready: { }

34 greet: { int id; }

35 consulting: { }

36 santa_done: { }

37 goodbye: { int id; }

38 }

39

40 protocol Message extends Reindeer_msg , Elf_msg , Santa_msg;

41

42 public void random_wait(long max_wait , long seed) {

43 timer t;

44 long wait;

45 initRandom(seed);

46 wait = longRandom ();

47 wait = wait % 250;

48 t.timeout(wait);

49 }

50

51 public void display(chan <Message >.read in) {

52 Message msg;

53 while (true) {

54 msg = in.read();

55 switch (msg) {

56 case holiday:

57 println(" Reindeer -" + msg.

id + ": on holiday ... wish you were here");
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58 break;

59 case deer_ready:

60 println(" Reindeer -" + msg.

id + ": back from holiday ... ready for work");

61 break;

62 case deliver:

63 println(" Reindeer -" + msg.

id + ": delivering toys ... la -di -da -di -da -di -da");

64 break;

65 case deer_done:

66 println(" Reindeer -" + msg.

id + ": all toys delivered ... want a holiday");

67 break;

68 case working:

69 println(" Elf -" + msg.id + ": working");

70 break;

71 case elf_ready:

72 println(" Elf -" + msg.id + ": need to

consult Santa");

73 break;

74 case waiting:

75 println(" Elf -" + msg.id + ": in the waiting

room ...");

76 break;

77 case consult:

78 println(" Elf -" + msg.id + ": about these

toys ...??");

79 break;

80 case elf_done:

81 println(" Elf -" + msg.id + ": OK ... we’ll

built it, bye...");

82 break;

83 case reindeer_ready:

84 println("Santa: Ho -ho -ho ... the reindeer are back!");

85 break;

86 case harness:
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87 println("Santa: harnessing reindeer: " + msg.id);

88 break;

89 case mush_mush:

90 println("Santa: mush mush ...");

91 break;

92 case woah:

93 println("Santa: woah ... we’re back home!");

94 break;

95 case unharness:

96 println("Santa: un -harnessing reindeer: " + msg.id);

97 break;

98 case elves_ready:

99 println("Santa: Ho -ho -ho... some elves are here!");

100 break;

101 case greet:

102 println("Santa: hello elf: " + msg.id);

103 break;

104 case consulting:

105 println("Santa: consulting with elves ...");

106 break;

107 case santa_done:

108 println("Santa: OK , all done -- thanks!");

109 break;

110 case goodbye:

111 println("Santa: goodbye elf: " + msg.id);

112 break;

113 }

114 }

115 }

116

117 public void p_barrier_knock(const int n, chan <boolean >.read a,

118 chan <boolean >.read b,

119 chan <boolean >. write knock) {

120 while (true) {

121 for (int i = 0; i < n; i++) {

122 boolean any;
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123 any = a.read();

124 }

125

126 knock.write(true);

127 for (int i = 0; i < n; i++) {

128 boolean any;

129 any = b.read();

130 }

131 }

132 }

133

134 public void p_barrier(const int n,

135 chan <boolean >.read a,

136 chan <boolean >.read b) {

137 while (true) {

138 for (int i = 0; i < n; i++) {

139 boolean any;

140 any = a.read();

141 }

142 for (int i = 0; i < n; i++) {

143 boolean any;

144 any = b.read();

145 }

146 }

147 }

148

149 public void syncronize(shared chan <boolean >. write a,

150 shared chan <boolean >. write b) {

151 a.write(true);

152 b.write(true);

153 }

154

155 public void reindeer(const int id ,

156 const long seed ,

157 barrier just_reindeer ,

158 barrier santa_reindeer ,
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159 shared chan <int >. write to_santa ,

160 shared chan <Reindeer_msg >. write report) {

161 long my_seed = seed;

162 long wait = HOLIDAY_TIME;

163 long t;

164 timer tim;

165

166 while (true) {

167 report.write(new Reindeer_msg { holiday: id = id });

168 random_wait(wait , my_seed);

169 report.write(new Reindeer_msg { deer_ready: id = id });

170 just_reindeer.sync();

171 to_santa.write(id);

172 santa_reindeer.sync();

173 report.write(new Reindeer_msg { deliver: id = id });

174 santa_reindeer.sync();

175 report.write(new Reindeer_msg { deer_done: id = id });

176 to_santa.write(id);

177 }

178 }

179

180 public void elf(const int id ,

181 const long seed ,

182 shared chan <boolean >. write elves_a ,

183 shared chan <boolean >. write elves_b ,

184 shared chan <boolean >. write santa_elves_a ,

185 shared chan <boolean >. write santa_elves_b ,

186 shared chan <int >. write to_santa ,

187 shared chan <Elf_msg >. write report) {

188

189 long my_seed = seed;

190 long wait = WORKING_TIME;

191

192 while (true) {

193 report.write(new Elf_msg{ working: id = id });

194 random_wait(wait , my_seed);
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195 report.write(new Elf_msg{ elf_ready: id = id });

196 syncronize(elves_a , elves_b);

197 to_santa.write(id);

198 syncronize(santa_elves_a , santa_elves_b);

199 report.write(new Elf_msg{ consult: id = id });

200 syncronize(santa_elves_a , santa_elves_b);

201 report.write(new Elf_msg{ elf_done: id = id });

202 to_santa.write(id);

203 }

204 }

205

206 public void santa(const long seed ,

207 chan <boolean >.read knock ,

208 chan <int >.read from_reindeer ,

209 chan <int >.read from_elf ,

210 barrier santa_reindeer ,

211 shared chan <boolean >. write santa_elves_a ,

212 shared chan <boolean >. write santa_elves_b ,

213 shared chan <Santa_msg >. write report) {

214

215 long my_seed = seed;

216 timer tim;

217 long t, wait;

218

219 while (true) {

220 int id;

221 boolean answer;

222 pri alt {

223 id = from_reindeer.read() : {

224 report.write(new Santa_msg{ reindeer_ready: });

225 report.write(new Santa_msg{ harness: id = id });

226 for (int i = 0; i < G_REINDEER -1; i++) {

227 id = from_reindeer.read();

228 report.write(new Santa_msg{ harness: id = id });

229 }

230 report.write(new Santa_msg{ mush_mush: });
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231 santa_reindeer.sync();

232 t = tim.read();

233 tim.timeout (100);

234 report.write(new Santa_msg{woah: });

235 santa_reindeer.sync();

236 for (int i = 0; i < G_REINDEER; i++) {

237 id = from_reindeer.read({ report.write(new Santa_msg{

unharness: id = id }); });

238 }

239 }

240 answer = knock.read() : {

241 report.write(new Santa_msg{ elves_ready: });

242 for (int i = 0; i < G_ELVES; i++) {

243 id = from_elf.read();

244 report.write( new Santa_msg{ greet: id = id });

245 }

246 syncronize(santa_elves_a , santa_elves_b);

247 report.write(new Santa_msg{ consulting: });

248 t = tim.read();

249 tim.timeout (100);

250 report.write(new Santa_msg{ santa_done: });

251 syncronize(santa_elves_a , santa_elves_b);

252 for (int i = 0; i < G_ELVES; i++) {

253 id = from_elf.read({ report.write(new Santa_msg{

goodbye: id = id }); });

254 }

255 }

256 }

257 }

258 }

259

260 public void main(string [] args) {

261 timer tim;

262 long seed;

263 seed = tim.read();

264 seed = (seed >> 2) + 42;
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265

266 barrier just_reindeer , santa_reindeer;

267

268 shared write chan <boolean > elves_a , elves_b;

269 chan <boolean > knock;

270 shared write chan <boolean > santa_elves_a , santa_elves_b;

271 shared write chan <int > reindeer_santa , elf_santa;

272 shared write chan <Message > report;

273

274 println("SANTA OUTPUT ELF OUTPUT REINDEER OUTPUT");

275 println("

-----------------------------------------------------------------------------------

");

276

277 par {

278 par enroll santa_reindeer {

279 santa(seed + (N_REINDEER + N_ELVES),

280 knock.read , reindeer_santa.read ,

281 elf_santa.read , santa_reindeer ,

282 santa_elves_a.write , santa_elves_b.write ,

283 report.write);

284 par enroll just_reindeer , santa_reindeer {

285 reindeer(0, seed , just_reindeer , santa_reindeer ,

286 reindeer_santa.write , report.write);

287 reindeer(1, seed + 1, just_reindeer , santa_reindeer ,

288 reindeer_santa.write , report.write);

289 reindeer(2, seed + 2, just_reindeer , santa_reindeer ,

290 reindeer_santa.write , report.write);

291 reindeer(3, seed + 3, just_reindeer , santa_reindeer ,

292 reindeer_santa.write , report.write);

293 reindeer(4, seed + 4, just_reindeer , santa_reindeer ,

294 reindeer_santa.write , report.write);

295 reindeer(5, seed + 5, just_reindeer , santa_reindeer ,

296 reindeer_santa.write , report.write);

297 reindeer(6, seed + 6, just_reindeer , santa_reindeer ,

298 reindeer_santa.write , report.write);
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299 reindeer(7, seed + 7, just_reindeer , santa_reindeer ,

300 reindeer_santa.write , report.write);

301 reindeer(8, seed + 8, just_reindeer , santa_reindeer ,

302 reindeer_santa.write , report.write);

303 }

304 }

305

306 par {

307 elf(0, N_REINDEER + seed , elves_a.write , elves_b.write ,

santa_elves_a.write ,

308 santa_elves_b.write , elf_santa.write , report.write);

309 elf(1, N_REINDEER + (seed + 1), elves_a.write , elves_b.write ,

santa_elves_a.write ,

310 santa_elves_b.write , elf_santa.write , report.write);

311 elf(2, N_REINDEER + (seed + 2), elves_a.write , elves_b.write ,

santa_elves_a.write ,

312 santa_elves_b.write , elf_santa.write , report.write);

313 elf(3, N_REINDEER + (seed + 3), elves_a.write , elves_b.write ,

santa_elves_a.write ,

314 santa_elves_b.write , elf_santa.write , report.write);

315 elf(4, N_REINDEER + (seed + 4), elves_a.write , elves_b.write ,

santa_elves_a.write ,

316 santa_elves_b.write , elf_santa.write , report.write);

317 elf(5, N_REINDEER + (seed + 5), elves_a.write , elves_b.write ,

santa_elves_a.write ,

318 santa_elves_b.write , elf_santa.write , report.write);

319 elf(6, N_REINDEER + (seed + 6), elves_a.write , elves_b.write ,

santa_elves_a.write ,

320 santa_elves_b.write , elf_santa.write , report.write);

321 elf(7, N_REINDEER + (seed + 7), elves_a.write , elves_b.write ,

santa_elves_a.write ,

322 santa_elves_b.write , elf_santa.write , report.write);

323 elf(8, N_REINDEER + (seed + 8), elves_a.write , elves_b.write ,

santa_elves_a.write ,

324 santa_elves_b.write , elf_santa.write , report.write);

325 elf(9, N_REINDEER + (seed + 9), elves_a.write , elves_b.write ,

128



santa_elves_a.write ,

326 santa_elves_b.write , elf_santa.write , report.write);

327 }

328

329 display(report.read);

330 p_barrier_knock(G_ELVES , elves_a.read , elves_b.read , knock.write);

331 p_barrier(G_ELVES + 1, santa_elves_a.read , santa_elves_b.read);

332 }

333 }

Listing C.1: santa.pj.
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Appendix D

Full Adder Implementation in

ProcessJ

1 import std .*;

2

3 public void notGate(chan <boolean >.read in , chan <boolean >. write out) {

4 boolean x = false;

5 x = in.read();

6 out.write(!x);

7 }

8

9 public void orGate(chan <boolean >.read in1 , chan <boolean >.read in2 , chan <

boolean >. write out) {

10 boolean x = false , y = false;

11 par{

12 x = in1.read();

13 y = in2.read();

14 }

15 out.write(x || y);

16 }

17

18 public void andGate(chan <boolean >.read in1 , chan <boolean >.read in2 ,chan <

boolean >. write out) {

19 boolean x = false , y = false;

20 par {
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21 x = in1.read();

22 y = in2.read();

23 }

24 out.write(x && y);

25 }

26

27 public void nandGate(chan <boolean >.read in1 , chan <boolean >.read in2 ,

28 chan <boolean >. write out) {

29 chan <boolean > a;

30 par {

31 andGate(in1 , in2 , a.write);

32 notGate(a.read , out);

33 }

34 return;

35 }

36

37 public void muxGate(chan <boolean >.read in , chan <boolean >.read out1 ,

38 chan <boolean >. write out2) {

39 boolean x = false; x = in.read();

40 par {

41 out1.write(x);

42 out2.write(x);

43 }

44 return;

45 }

46

47 public void xorGate(chan <boolean >.read in1 , chan <boolean >.read in2 ,

48 chan <boolean >. write out) {

49 chan <boolean > a, b, c, d , e, f, g, h, i;

50 par {

51 muxGate(in1 , a.read , b.write);

52 muxGate(in2 , c.read , d.write);

53 nandGate(b.read , d.read , e.write);

54 muxGate(e.read , f.read , g.write);

55 nandGate(a.read , f.read , h.write);

56 nandGate(c.read , g.read , i.write);
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57 nandGate(h.read , i.read , out);

58 }

59 }

60

61 public void oneBitAdder(chan <boolean >.read in1 , chan <boolean >.read in2 ,

62 chan <boolean >.read in3 , chan <boolean >. write result

,

63 chan <boolean >. write carry) {

64 chan <boolean > a, b, c, d, e, f, g, h, i, j, k;

65 par{

66 muxGate(in1 , a.read , b.write);

67 muxGate(in2 , c.read , d.write);

68 xorGate(a.read , c.read , e.write);

69 muxGate(e.read , f.read , g.write);

70 muxGate(in3 , h.read , i.write);

71 xorGate(f.read , h.read , result);

72 andGate(g.read , i.read , j.write);

73 andGate(b.read , d.read , k.write);

74 orGate(j.read , k.read , carry);

75 }

76 }

77

78 public void fourBitAdder(chan <boolean >.read inA0 , chan <boolean >.read inA1 ,

79 chan <boolean >.read inA2 , chan <boolean >.read inA3 ,

80 chan <boolean >.read inB0 , chan <boolean >.read inB1 ,

81 chan <boolean >.read inB2 , chan <boolean >.read inB3 ,

82 chan <boolean >.read inCarry , chan <boolean >. write

result0 ,

83 chan <boolean >. write result1 , chan <boolean >. write

result2 ,

84 chan <boolean >. write result3 , chan <boolean >. write

carry) {

85 chan <boolean > a, b, c;

86 par {

87 oneBitAdder(inA0 , inB0 , inCarry , result0 , a.write);

88 oneBitAdder(inA1 , inB1 , a.read , result1 , b.write);
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89 oneBitAdder(inA2 , inB2 , b.read , result2 , c.write);

90 oneBitAdder(inA3 , inB3 , c.read , result3 , carry);

91 }

92 }

93

94 public void eightBitAdder(chan <boolean >.read inA0 , chan <boolean >.read inA1

,

95 chan <boolean >.read inA2 , chan <boolean >.read inA3

,

96 chan <boolean >.read inA4 , chan <boolean >.read inA5

,

97 chan <boolean >.read inA6 , chan <boolean >.read inA7

,

98 chan <boolean >.read inB0 , chan <boolean >.read inB1

,

99 chan <boolean >.read inB2 , chan <boolean >.read inB3

,

100 chan <boolean >.read inB4 , chan <boolean >.read inB5

,

101 chan <boolean >.read inB6 , chan <boolean >.read inB7

,

102 chan <boolean >.read inCarry , chan <boolean >. write

result0 ,

103 chan <boolean >. write result1 , chan <boolean >. write

result2 ,

104 chan <boolean >. write result3 , chan <boolean >. write

result4 ,

105 chan <boolean >. write result5 , chan <boolean >. write

result6 ,

106 chan <boolean >. write result7 , chan <boolean >. write

outCarry) {

107 chan <boolean > a;

108 par {

109 fourBitAdder(inA0 , inA1 , inA2 , inA3 ,

110 inB0 , inB1 , inB2 , inB3 ,

111 inCarry , result0 , result1 ,
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112 result2 , result3 , a.write);

113 fourBitAdder(inA4 , inA5 , inA6 , inA7 ,

114 inB4 , inB5 , inB6 , inB7 ,

115 a.read ,

116 result4 , result5 , result6 ,

117 result7 , outCarry);

118 }

119 }

120

121 public void main(string args []) {

122

123 chan <boolean > a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7;

124 chan <boolean > b0 , b1 , b2 , b3 , b4 , b5 , b6 , b7;

125 chan <boolean > r0 , r1 , r2 , r3 , r4 , r5 , r6 , r7;

126 chan <boolean > inCarry , outCarry;

127

128 boolean p0 , p1 , p2 , p3 , p4 , p5 , p6 , p7;

129 boolean q0 , q1 , q2 , q3 , q4 , q5 , q6 , q7;

130

131 // Addition results

132 boolean f0 , f1 , f2 , f3 , f4 , f5 , f6 , f7;

133 boolean c, inC;

134

135 // Selected numbers

136 p0 = false;

137 p1 = false;

138 p2 = true;

139 p3 = false;

140 p4 = false;

141 p5 = false;

142 p6 = true;

143 p7 = false;

144

145 q0 = true;

146 q1 = true;

147 q2 = false;
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148 q3 = true;

149 q4 = false;

150 q5 = true;

151 q6 = false;

152 q7 = true;

153

154 par {

155 // First number

156 a7.write(p7);

157 a6.write(p6);

158 a5.write(p5);

159 a4.write(p4);

160 a3.write(p3);

161 a2.write(p2);

162 a1.write(p1);

163 a0.write(p0);

164

165 // Second number

166 b7.write(q7);

167 b6.write(q6);

168 b5.write(q5);

169 b4.write(q4);

170 b3.write(q3);

171 b2.write(q2);

172 b1.write(q1);

173 b0.write(q0);

174

175 // Initial carry

176 inCarry.write(inC);

177

178 eightBitAdder(a0.read , a1.read , a2.read , a3.read ,

179 a4.read , a5.read , a6.read , a7.read ,

180 b0.read , b1.read , b2.read , b3.read ,

181 b4.read , b5.read , b6.read , b7.read ,

182 inCarry.read , r0.write , r1.write ,

183 r2.write , r3.write , r4.write , r5.write ,
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184 r6.write , r7.write , outCarry.write);

185

186 f0 = r0.read();

187 f1 = r1.read();

188 f2 = r2.read();

189 f3 = r3.read();

190 f4 = r4.read();

191 f5 = r5.read();

192 f6 = r6.read();

193 f7 = r7.read();

194

195 c = outCarry.read();

196 }

197

198 println(" " + p7 + " " + p6 + " " + p5 + " " + p4 + " " + p3 + " " +

p2 + " " + p1 + " " + p0 + " (InCarry:" + inC + ")");

199 println("+ " + q7 + " " + q6 + " " + q5 + " " + q4 + " " + q3 + " " +

q2 + " " + q1 + " " + q0);

200 println("----------");

201 println(" " + f7 + " " + f6 + " " + f5 + " " + f4 + " " + f3 + " " +

f2 + " " + f1 + " " + f0);

202 println("Carry was: " + c);

203 }

Listing D.1: fulladder.pj.
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