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Abstract

Atomistic modeling methods such as molecular dynamics play important roles in investigat-

ing time-dependent physical and chemical processes in the microscopic level. In the simulations,

energy and forces, sometimes including stress tensor, need to be recalculated iteratively as the

atomic configuration evolves. Consequently, atomistic simulations crucially depend on the accu-

racy of the underlying potential energy surface. Modern quantum mechanical modeling based on

density functional theory can consistently generate accurate description of the potential energy

surface. In most of the cases, molecular dynamics simulations based on density functional theory

suffer from the highly demanding computational costs. On the other hand, atomistic simulations

based on classical force fields have proven to be essential in the computational modelling commu-

nity due to their unrivaled computational efficiency. However, classical force fields are only useful

for inspecting the qualitative insights because they fail to provide confidence in the quantitative

results for a lot of cases. In this thesis, I will show the power of machine learning potentials, re-

solving the predicaments described above. First, the machine learning potential methods will be

applied to SiO2 for investigating the implications of different machine learning potentials. Second,

the machine learning potentials will be extended to predict physical properties of crystalline sili-

con, Ni-Mo system, high entropy alloy of NbMoTaW, and Pt for nanoparticle systems. Finally, the

diffusion barriers of Pt adsorptions on Pt(111) and Pt(100) surfaces will be examined in detail.
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Chapter 1 Introduction

Recently, the availability of extensive dataset with the improvement in algorithms, along with

the exponential growth in computing power, has guided unparalleled surge of interest in machine

learning research. A major portion of our daily life from fraud detection [1], email/spam filtering

[2], credit scores [3], image/speech recognition [4, 5], to recommendation system [6] is powered

by machine learning algorithms. Many more exciting applications such as self-driving cars [7,

8] are being integrated in our daily life at the time of writing. Unsurprisingly, machine learning

methods in solving materials science problems have become hot topic in the community [9].

Traditionally, experiments had dominated discoveries of new materials in the past. Many im-

portant discoveries happened mostly through human intuition or serendipity [10]. On the other

hand, the first computational revolution in materials science was stimulated by the emergence of

tractable computational method such as the state-of-the-art density functional theory (DFT) [11,

12], Monte Carlo simulations, and molecular dynamics (MD) to study large variety of problems,

ranging from exploration phase space [13] to protein foldings [14]. In the information age, tremen-

dous efforts have been dedicated to empowering the rise of the second computational revolution

inspired by the Materials Genome Initiative (MGI) [15].

The aim of MGI is to accelerate materials development via creation of publicly-available large

sets of comprehensive data, which can bridge the gap between experiment and theory. Hence,

the high-throughput (HT) computational materials design has become popular in materials science

recently [16, 17]. HT computational materials researches are conducted based on the construction

of databases that span over a large volume of crystal structures computed by the DFT method.

There are several available databases online such as AFLOWLIB (∼3,000,000 data with over 500

millions calculated properties) [18], Materials Project (∼800,000 data) [19], OQMD (∼800,000

data) [20], etc. These databases based on DFT method have built a highway for materials discovery.

Despite of these advances, traditional computations based on the accurate DFT are still expensive
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in decoding most of the materials science problems.

Despite the accuracy, DFT simulations can be extendable only to a few hundreds of atoms at a

few picoseconds in MD simulations. In MD simulations, energy and forces need to be recalculated

iteratively as the atomic configuration evolves. Consequently, MD simulations crucially depend

on the accuracy of the underlying potential energy surface (PES). DFT method can accurately

represent the PES. However, MD simulations based on DFT suffer from the highly demanding

computational cost due to solving the Kohn-Sham equation. Solving the equation requires thou-

sands of quantum-mechanical calculations that are scaled at O(N3) with respect to the number of

atoms N . In consequence, simulating the structural evolution of many of complicated systems in

DFT remains demanding in spite of the remarkable progress in computational facilities and effi-

cient algorithms. This bottleneck in the DFT method is likely to persist in the foreseeable future.

On the other hand, the classical MD method can model large systems at long-time scale [21,

22, 23], countering the unwavering issue of the DFT method. A great amount of efforts has been

dedicated in developing PES using the classical method [24, 25, 26, 27, 28]. The reconstruction

of the PES is usually based on simple analytical functions related to the scalar properties of the

system. The class force fields can be applied to comprehend the qualitative behavior of the system.

However, they are often inadequate to describe the quantitative properties of the system.

Recently, machine learning methods have been widely applied to resolve the dilemma in com-

prising between accuracy and cost [29]. The machine learning potential (MLP) are trained by

minimizing the cost function to attune the model to deliberately describe the ab initio data. The

cost of atomistic simulation is orders of magnitude lower than the quantum mechanical simula-

tion, allowing the system to be scaled up to 105–106 atoms [30, 31]. The power of MLP method

is illustrated by many applications to a range of materials [32, 33, 34, 35]. A large amount of

DFT data (structures, energy, forces, and stresses) are required to develop an accurate MLP. The

structures must be represented by appropriate descriptors (high-dimensional real valued array) in

order to identify the similarities and/or dissimilarities in the atomic environments. In MLP fitting,

a variety of regression techniques are used to correlate between the descriptor and energy/forces.
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Several machine learning techniques for developing MLP had been successfully implemented:

linear/polynomial regression [36, 37, 38, 39], Gaussian process regression (GPR) [40, 41], and

high-dimensional neural network potential (NNP) [42, 29].

1.1 Thesis Layout

The thesis will be presented as follow: In Chapter 2, the methods will be described in details. The

method section includes the theories of quantum-mechanical computations, classical force field

methods, and machine learning potential techniques. In Chapter 3, a publicly-available package,

PyXtal FF for constructing machine learning potentials will be introduced. The philosophy of

PyXtal FF and example usage will be shown for those practitioners. In Chapter 4, the applications

of PyXtal FF will be demonstrated with SiO2, crystalline silicon, Ni-Mo alloys, NbMoTaW high

entropy alloy, and Pt nanoclusters. In Chapter 5, the diffusion barriers of Pt adsorptions on Pt(111)

and Pt(100) surfaces will be examined comprehensively.
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Chapter 2 Theory

2.1 Potential Energy Surface

The potential energy surface (PES) is a surface described in a very high-dimensional configuration

space, which represents all possible configurations. The surface consists of many local minima,

which can be obtained through geometry optimization, via attractive interactions. Meanwhile, the

transition states or saddle points are the connecting states amongst minima via steepest-descent

pathway. The number of distinct points on the surface can be estimated as:

K =

(
V/δ3

N

)∏
i

(
Natom

ni

)
(2.1)

where ni is i-th species in the unit cell, Natom refers to the number of atoms enclosed in the

volume V . δ represents the discretization parameter. Typically, δ has the value of 1. Moreover, the

dimensionality of the PES scales as the number of geometric degrees of freedom of the molecule:

D = 3N + 6 (2.2)

where 3N degrees of freedom for the 3-dimensional space for each atoms, and lattice defines the

remaining six dimensions. Any atomistic simulation, including crystal structure search, requires

a description of the interacting atoms—the energy and forces, sometimes stress, that governs the

atomic motion and formation—that can be described by the PES. Hence, constructing the true PES

can be a NP-hard problem.

2.2 Quantum Theory

The most accurate determination of the energy of a system is to be calculated quantum-mechanically.

Calculation of energy of a system is crucial in many applications such as geometry optimization,
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atomistic simulations, etc. In physics, a calculation is said to be from first principles or ab ini-

tio, when it begins directly at the fundamental laws of physics. By solving the non-relativistic

Schrödinger’s equation, the energy (E) and wavefunction (Ψ) of a many-body electron-nuclear

system can be obtained:

ĤΨ = EΨ (2.3)

where the full Hamiltonian operator, Ĥ , of the many-body system is:

Ĥ =−
∑
i

~2

2me

52
i −
∑
i,I

ZIe
2

|ri −RI |
+

1

2

∑
i 6=j

e2

|ri − rj|

−
∑
I

~2

2MI

52
I +

1

2

∑
I 6=J

ZIZJe
2

|RI −RJ |

(2.4)

In Eq. 2.4, the top row belongs to the electronic contribution, while the bottom row describes

the kinetic energy of the nuclei and nuclear-nuclear Coulomb interaction, respectively. me and MI

are the mass of electron and nuclei, respectively. The charge of nucleus is denoted as ZI . The

first term is the kinetic energy of the electron (T̂e); the second term defines the electron-nuclear

interaction (V̂ext), which corresponds to the the potential created by the nucleus for electron to live

in. The third term is the Coulomb interaction amongst electrons (V̂int). Solving the Schrödinger’s

equation is a daunting task as the wavefunction lives in the 3Nele dimensional space (R3Nele),

where Nele is the number of electrons. Therefore, several approximations need to be introduced

throughout this section.

The first approximation is the Born-Oppenheimer Approximation. The approximation assumes

the electrons instantaneously go to the ground state as an atom is displaced. This is due to the

heavier nuclei, which are about 2000 times heavier, have slower motions than the lighter electrons.

This allows the fourth and fifth terms in Eq. 2.4 to be neglected as the computation of Schrödinger’s

equation becomes:

(T̂e + V̂ext + V̂int)Ψ = EΨ (2.5)
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Due to the wavefunction is a function of 3Nele degrees of freedom, this poses a critical problem

in computational bottleneck. Even for a small system such as Si dimer, solving the equation is

computationally impossible.

2.2.1 Hartree Method

Hartree method is the starting point of the Hartree-Fock and Kohn-Sham methods, which are the

methods used in practical computations nowadays. In Hartree model, it is assumed that the wave-

function is written in the product of the individual electronic orbital wavefunctions:

Ψ(ri) = φ1(r1)φ2(r2) . . . φn(rn) (2.6)

Hence, the Schrödinger’s equation is transformed into a set of electronic orbital terms:

[
− ~2

2me

52
i −
∑
I

ZIe
2

|r −RI |
+ e2

∫
dr′
|Ψ(r′)|2

|r − r′|

]
φi(r) = εiφi(r) (2.7)

Notice, that the first and second terms are consistent with Eq. 2.5, while the third term ends up

in the interaction between the i-th orbital and all other electrons in the system in a mean-field

approximation. This means that the other electrons are the average of their probabilities in time.

This term is also sometimes called the Hartree potential. In the computational point of view, there

are Nele 3-dimensional functions to be solved in Eq. 2.7, whereas there is one 3Nele dimension in

Eq. 2.5. This is a huge improvement.

Nevertheless, the critical problem posed in the Hartree model is that the wavefunction (Ψ)

suggests that there is no correlation between the orbital wavefunctions (φ). This is inconsistent

with Pauli exclusion principle, i.e. the electrons should be indistinguishable. If the electrons are

indistinguishable, swapping two electrons should change the wavefunction’s sign.
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2.2.2 Hartree-Fock Method

The Hartree model was improved by Fock by taking account of the antisymmetric behavior of the

wavefunction (i.e. Pauli Exclusion principle). The Hartree-Fock equation is expressed as:

F̂ φi(r) = εiφi(r) (2.8)

To compensate for the nature of fermionic particles, the Hartree-Fock wavefunction of an N -

electron system is written in a single Slater determinant composed of electronic orbital wavefunc-

tions:

Ψ(r1, r2, ..., rN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(r1, s1) φ2(r1, s1) . . . φN(r1, s1)

φ1(r2, s2) φ2(r2, s2) . . . φN(r2, s2)

...
...

...

φ1(rN , sN) φ2(rN , sN) . . . φN(rN , sN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.9)

where φi(ri, si) is spin-orbital wavefunction, in which si denotes the spin. Swapping particles

(i.e. swapping the rows of the Slater determinant) changes the sign of the wavefunction. This is

in agreement with the nature of the Pauli Exclusion principle. Therefore, the explicit form of the

Schrödinger’s equation can be written explicitly as,

[
− ~2

2me

52
i−
∑
I

ZIe
2

|r −RI |
+e2

∫
dr′
|Ψ(r′)|2

|r − r′|

]
φi(r)−e

2

2

∑
i 6=j

∫
dr′

φ∗j(r
′)φi(r

′)

|r − r′|
φj(r) = εiφi(r)

(2.10)

The first three terms are similar to the Hartree method, while the forth term is called exchanged

term, which appears as the result of the antisymmetric nature of the electrons. The term corrects the

probability of two electrons with parallel spin occupying the same orbital. Hartree-Fock method

was the first theory that successfully allowed quantitative predictions of atoms and molecules. Nev-

ertheless, the exchange term is computationally expensive because the wavefunction is determined

as the result of the integration over the whole space. Finally, Hartree-Fock approach neglects the
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correlation effect (i.e. the Coulomb repulsion) between electrons.

2.2.3 Density Functional Theory

2.2.3 Hohenberg-Kohn Method

Density functional theory (DFT) is the workforce of electronic structure calculations to date. It

formulates the quantum theory into the manageable 3D electron density instead of the 3N dimen-

sional wavefunction. The foundation of DFT is deduced from the Hohenberg and Kohn theorems

[11, 43]:

Theorem 1. The ground state electron density (n0(r)) uniquely determines the external poten-

tial (Vext). Consequently, the electron density determines the wavefunction and the total energy.

Theorem 2. The electron density that minimizes the energy of the overall functional is the true

ground state of electron density, i.e. the exact n0(r) gives the ground state energy of the system.

The electron density n(r) is expressed by

n(r) = 〈Ψ|n̂|Ψ〉 (2.11)

where,

n̂ =
N∑
i=1

δ(r − ri)δσ,σi (2.12)

Hence, the total energy of the system according to the Hohenberg and Kohn theorems is

E[n] = F [n(r)] +

∫
n(r)Vext(r)dr (2.13)

Since the electron-ion (external) potential can be exactly determined by the electron density (i.e.

Theorem 1), the challenging part now is to determine the kinetic energy and the electron-electron

interactions.
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Start

Guess the initial electron density: 𝑛𝑖𝑛 𝒓

Construct the KS Hamiltonian:

𝐻𝐾𝑆 𝑛𝑖𝑛 𝒓 = −
1

2
∇2 + 𝑉𝑒𝑓𝑓[𝑛

𝑖𝑛 𝒓 ](𝒓)

Solve the KS equation to obtain the occupied single particle 
orbitals: {𝜙𝑖}

Calculate the output electron density: 𝑛𝑜𝑢𝑡 𝒓 :

Does 𝑛𝑜𝑢𝑡 𝒓 = 𝑛𝑖𝑛 𝒓 ?

Construct a new 𝑛𝑖𝑛 𝒓

Stop 

No

Yes

Figure 2.1: Representation of self-consistent field loop for solving Kohn-Sham equation. The Veff
includes the electron-ion potential, Hartree potential, and exchange-correlation term.
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2.2.3 Kohn-Sham Method

In 1965, a major breakthrough made by Kohn and Sham [12] showing that the energy of many-

body of system can be expressed with density n(r) composed by non-interacting electronic orbital

wavefunctions (i.e. n(r) =
∑
|φi(r)|2). This concept of non-interacting electronic orbital wave-

function has been shown in the Hartree model (see Subsection 2.2.1). The total energy of the

system according to the Kohn-Sham (KS) model is written in the form of

EKS[n(r)] = Ts[n(r)] +

∫
n(r)Vext(r)dr +

1

2

∫
n(r)VH(r)dr + Exc[n(r)] (2.14)

The first term is the non-interacting kinetic energy of electrons. The second term corresponds to

the potential energy due to the electron-ion interactions. The third term is the Hartree potential (i.e.

the third term in Eq. 2.7). It must be emphasized that the first three terms in Eq. 2.14 contains no

information about the interactions amongst the electrons. The fourth term, exchange-correlation

energy, is introduced to compensate for the interactions. Essentially, all of the unknown parts

about the energy term are placed in the exchange-correlation term. Once the exchange-correlation

energy is available, the total energy of the system can be solved using self-consistent field (SCF)

method (see Fig. 2.1). The SCF is an iterative process in order to reach solution by first providing

initial guess of the electronic density (nin(r)). The electronic density will be used to construct

the effective Hamiltonian. Then, a new set of orbital wavefunctions can be found by solving the

single particle Schrödinger’s equation. The solution to the KS energy is obtained once the nin(r)

and nout(r) are consistent. Now, the remaining issue in the DFT method is to approximate the

exchange-correlation functional.

2.2.3 Exchange-correlation Energy

Local Density Approximation. The Local Density Approximation (LDA) was first proposed by

Kohn and Sham in their original breakthrough paper [12] as the simplest method describing the

exchange-correlation energy. In the LDA, the homogeneous electron-gas formula is used for the
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exchange-correlation energy. The LDA is an integral of over space of a function that depends only

on the local density. The exchange-correlation energy density can be written as

ELDA
xc =

∫
n(r)εxc(n)dr (2.15)

where εxc(n) = εx(n) + εc(n). The exchange term is given by the Dirac functional [44]

εLDAx (n(r)) = −3

4

(
3

π

)1/3

n1/3(r) (2.16)

The values for εc(n) have been accurately determined from Quantum Monte Carlo calculations by

Ceperly and Alder [45]. Meanwhile, the interpolation of Ceperly and Alder’s data was provided

by Vosko-Wilk-Nusair (VWN) [46], Perdew-Zunger (PZ) [47], and Perdew-Wang (PW) [48].

Generalized Gradient Approximation. The Generalized Gradient Approximation (GGA) is

an major improvement to LDA by considering the gradient of the electron density. This can be

written symbolically as

EGGA
xc =

∫
εGGAxc (n(r,∇n(r))dr (2.17)

The gradient introduces non-locality to the exchange and correlation interactions. There are two

main GGA approaches: empirical and non-empirical. The empirical approach employs several

fitting parameters to improve the accuracy on atomic and molecular properties. One of the most

popular empirical approach is Becke-Lee-Parr-Yang (BLYP) [49, 50]. On the other hand, Perdew-

Burke-Ernzerhof (PBE) [51] is the most popular non-empirical GGA approach in materials sci-

ence. PBE-GGA is also used and extensively mentioned throughout the thesis.
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2.2.3 Basis Sets

As it is generally unknown, the wavefunction is usually expanded in terms of a set of known

functions. A single-electron wavefunction can be written as

φi(r) =
∞∑
j

cjχj(r) (2.18)

where χj(r) belongs to a complete set of functions. In practical computation, it is impossible

to use an infinite basis functions. Therefore, another approximation has to be imposed by only

considering a finite number of functions. Ideally, the functions must behave as if the real wave-

function, decay to zero at large distance for isolated atoms or molecules. Here, two types of basis

sets will be introduced: plane wave and atomic orbital.

Plane waves. In a solid crystal with periodicity, Bloch’s theorem shows that the wavefunction

for a particle can be expressed as the a product of planewave and a periodic function [52]

φi(r) = eik·ruik(r) (2.19)

where k is the wave vector that only carries discrete values defined by the size of the crystal

structure. The periodic function, ui(r), can be expanded in a set of plane waves like with reciprocal

lattice vector ofG

φi(r) =
∑
G

ci,k+Ge
i(k+G)·r (2.20)

As mentioned before, an infinite plane waves is required to get a perfect expansion. However, the

coefficients (ci,k+G) must go to zero for high energy plane waves. Equivalently, the kinetic energy

of the system will go to infinity. This truncation is justified and is set by an energy cutoff.

In addition, the plane waves as the basis set can also be applied to non-periodic systems by

placing the center of a periodic supercell, i.e. creating vacuum around the cell. If the vacuum

is large enough, the interaction between a cell with the neighboring cells is negligible. However,

more suitable basis sets for molecular systems are based on atomic orbital basis sets.
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Atomic orbital. Atomic orbitals as basis sets come in two forms: Slater-type orbitals and

Gaussian type orbitals. The Slater-type orbitals can be written in spherical coordinates [53]

φnlmη(r, θ0, θ1) = αYlm(θ0, θ1)r
n−1e−ηr (2.21)

where α is a normalization constant. Ylm is the spherical harmonics depending on the angle θ0 and

θ1. n, l, and m are the principal, angular, and magnetic quantum numbers. η is the radius of the

orbit. The exponent term is similar to the exponential term in the one-electron atom solution (i.e.

Hydrogen).

Furthermore, the Gaussian type orbital is expressed in

φnlmη(r, θ0, θ1) = αYlm(θ0, θ1)r
2n−2−le−ηr

2

(2.22)

The prominent difference between the Gaussian-type and Slater-type orbitals is in the exponential

term. In practice, the Slater-type yields to better accuracy. However, the Gaussian-type orbitals are

computationally more efficient. As consequence, Gaussian-type orbitals are more frequently used

in calculations.

2.2.3 Brillouin Zone Sampling

The Bloch’s theorem reduces the infinite plane wave functions into finite wave functions. However,

there are still an infinite number of discrete k points to be considered due to the energy of the unit

cell is integrate over k within the first Brillouin Zone. Luckily, only a finite set of k points has to

be sampled due to the k points that are closed together are similar. Thus, an interpolation scheme

can be used. It is important to check the convergence when the interpolation scheme is used as

finite number of k points can induce error in energy calculations.

The two most common schemes are the Chadi-Cohen scheme [54] and the Monkhorst-Pack

scheme [55]. The later one is the most popular scheme. The Monkhorst-Pack scheme provides a
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set of k points sampling as:

k = upb1 + urb2 + usb3 (2.23)

where b1, b2, and b3 are the reciprocal lattice vectors. The up, ur, and us are determined by the

relationship of

ur =
2r − q − 1

2q
(2.24)

where r = 1, 2, 3, ..., q, and q3 is the total number of k points. This can be reduced significantly

due to symmetry.

2.2.3 Pseudopotentials

For most systems, most physical properties depend on the valence electrons more than the core

electrons, e.g. binding energy. Most of the core electrons stay chemically inert and do not partici-

pate in bonding. The pseudopotential takes account of this behavior of core electrons and replaces

them by a weaker potential that acts on the active valence electrons. There two regions in a pseu-

dopotential separated by radius, rc. As seen in Fig. 2.2, inside of the core radius (r < rc) the

pseudo-wavefunction has smoother form than the all-electron wavefunction while retaining the

same number of electrons, whereas the wavefunctions are correctly representing the outside of the

core radius (r < rc). The construction of pseudopotentials is non-unique. The larger rc provides

smoother potentials and reduce the number of plane waves, but the accuracy is also decreases.

A set of rules must be satisfied in order to ensure optimum smoothness and transferability of

pseudopotential [56]:

1. All-electron energies and pseudo-eigenvalues must agree.

EAE
i (r) = EPP

i (r) (2.25)
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Figure 2.2: The comparison of between pseudo-wavefunction/pseudopotential (red) and the all-
electron wavefunction/potential (blue) (from wikipedia).

15



2. The all-electron wavefunction and pseudo-wavefunction must agree when r < rc.

ΨAE(r) = ΨPP (r), for r ≥ rc (2.26)

3. The total charge of pseudo-wavefunction must be equal to the charge of the all-electron

wavefunction. ∫ rc

0

|φAEi (r)|2dr =

∫ rc

0

|φPPi (r)|2dr (2.27)

4. The scattering properties must be conserved.

Essentially, there are two kinds of pseudopotentials that satisfied the rules: norm-conserving

soft pseudopotential [57] and Vanderbilt ultrasoft pseudopotential [58]. The ”softer” pseudopoten-

tial implies that fewer plane waves are required to expand it. In the Vienna Ab initio Simulation

(VASP) Package, the projector augmented wave (PAW) potentials are used [59, 60].

2.2.4 Summary

The summary of this section is illustrated in Fig. 2.3. The accurate calculation of energy of a

system can be determined quantum-mechanically. Solving the Schrödinger’s equation for many-

body systems (e.g. silicon dimer) is an impossible task as the wavefunction has 3Nele degree of

freedom (R3Nele), where Nele is the number of electrons. For example, there are 103x28 integral

operations needed at 10x10x10 grid to compute the energy for a silicon dimer. Hartree model

simplified the wavefunction by decomposing it into individual electronic orbital wavefunctions

(Eq. 2.6). According to Hartree model, the Schrödinger’s equation can be solved within NeleR
3

dimensions. Now, the computation of energy of silicon dimer needs 28x103 calculations. The

reduction in dimensionality is a major leap in the field of computational physics, redeeming the

impossible task into a tractable one.

Although Hartree model successfully reduces the computational effort, it has no practical use

in any real simulation. This is due to the fermionic nature of electron is not considered in the
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Figure 2.3: The summary for Section 2.

wavefunction. To compensate for this, Hartree-Fock model was introduced by imposing the Slater

determinant to the wavefunction. Hartree-Fock model is a successful routine in many real applica-

tions such as MgSiO3 [61], MgCO3 [62], SiO2 [63], etc. It takes account of exchange potential that

is missing in the Hartree model. The exchange potential is non-local which makes Hartree-Fock

model expensive.

DFT is the most successful model to date that uses the concept of individual electronic orbital

from Hartree model. The two theorems of DFT was first formulated by Hohenberg and Kohn. The

first theorem states that the external potential Vext is a functional of electron density n(r). The

second theorem states that the ground-state energy of a system can be found as the ground-state

of electron density is provided. Again, this is a profound scheme in reducing the computational

cost to 3 dimensional problem (i.e. the electron density lives in 3D space). However, the error

associates to the kinetic energy is too troublesome in real applications.

Later, Kohn and Sham devised a method which rearranging the Hamiltonian into a set of non-

interacting individual electronic orbital system (as seen in the Hartree model). The caveat raises in

the interaction part of the Hamiltonian is concealed in the exchange-correlation term (Exc[n(r)]).
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Essentially, several approximation schemes have to be introduced to reveal the unknown Exc[n(r].

The two most popularExc[n(r)] are LDA and GGA. As theExc[n(r)] portion is available, the total

energy of the system can be solved iteratively via self-consistent field method.

2.3 Classical Force Field

Unlike the ab initio method, classical force field follows a functional form and try to fit the hy-

perparameters to the functional form from a set of experimental data or high accuracy ab initio

calculations. This functional form is usually called interatomic potential. An interatomic potential

has the general form of

Φ = Φ(r1, ..., rN , Z1, ..., ZN ;θ) (2.28)

where N represents the total number of atoms. r1, ..., rN and Z1, ..., ZN are the atomic Cartesian

coordinates and species, respectively. Since classical force field is parametric, the potential energy

is parameterized with parameters, θ. Nevertheless, the interatomic potential must satisfy certain

laws of physics [64]:

1. The potential energy Φ must be invariant with respect to translational and rotational opera-

tions

Φ(Sr1 + c, ...,SrN + t, Z1, ..., ZN ;θ) = Φ(r1, ..., rN , Z1, ..., ZN ;θ) (2.29)

for every rotation S ∈ SO(3) and translational vectors t ∈ R3.

2. An interatomic potential must be invariant with respect to inversion operation

Φ(−r1, ...,−rN , Z1, ..., ZN ;θ) = Φ(r1, ..., rN , Z1, ..., ZN ;θ) (2.30)

3. An interatomic potential must be invariant with respect to permutation of the coordinates of
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atoms within the same species

Φ(P [r1, ..., rN ], Z1, ..., ZN ;θ) = Φ(r1, ..., rN , Z1, ..., ZN ;θ) (2.31)

where P [·] is permutation operator.

The first and second rules implies that the interatomic potential Φ can only be a function of dis-

tances between atoms.

2.3.1 Lennard-Jones Potential

Arguably, the simplest interatomic potential is Lennard-Jones potential [65, 66]:

φ(rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6]
(2.32)

where ε is the depth of the potential well, and σ is the distance which the inter-particle is zero. The

first term determines the repulsion between atoms when they are close. This behavior is similar

to that of short-range Pauli repulsion due to the overlapping electronic orbitals. The second term

starts to take control as distance increases, representing attractive interaction due to the long range

interactions such as van der Waals force or dispersion force.

2.3.2 Morse Potential

Morse potential is an interatomic potential model for a diatomic molecule. It is more suitable for

covalently bonded molecules. The expression of Morse potential is

φ(rij) = ε(e−2α(rij−r0) − 2e−α(rij−r0)) (2.33)

ε is the depth of the well, α governs the width of the potential, and r0 is the equilibrium bond

distance.
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2.3.3 Buckingham Potential

Buckingham potential is a modification to the Lennard-Jones potential by replacing the repulsion

term (1/r12ij ) with an exponential term:

φ(rij) = Ae−Brij − C

r6ij
(2.34)

where A, B, and C are constants. The first and second terms constitute the repulsion and attraction

interactions. Generally, the first term yields better physical description of the repulsive force due

to the overlapping electron clouds.

2.3.4 Tersoff Potential

The Tersoff potential is a three-body potential functional. The potential includes angular effect of

the force. The key idea of the potential is that the bonding strength depends on the local environ-

ment. An atom will form weaker bonds as its immediate neighborhood consists of many atoms.

On the other hand, an atom will bond stronger to a few number of neighboring atoms. The poten-

tial was first applied to silicon [67] and later for carbon [68]. The Tersoff potential calculates the

energy E of the system as

E =
1

2

∑
i 6=j

Vij

Vij = fc(rij)

[
fR(rij) + bijfA(rij)

] (2.35)

where fc is a smooth cutoff function, and fR and fA are the repulsive (two-body term) and attractive

pair potential (three-body term), respectively. These three terms can be explicitly written as

fc(R) =


1 r < R−D

1
2
− 1

2
sin π

2
r−R
D

R−D < r < R +D

0 r > R +D

(2.36)
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fR(r) = Ae−λ1r

fA(r) = −Be−λ2r
(2.37)

R andD are parameters that are chosen to include the first-neighbor shell only. The main ingredient

of this potential is included in the bij term. As mentioned, the strength of bonding between atoms

relies on the local environment. It is due to the local environment, the bij term can amplify or

shrink the importance of attractive force relative to the repulsive force, such that

bij =
1

(1 + βnζnij)
1/2n

ζij =
∑
k 6=i,j

fc(rij)g(θijk)e
λ33(rij−rik)3

g(θ) = 1 +
c2

d2
− c2

(d2 + (h− cosθ)2)

(2.38)

The ζ term defines the coordinate number of i-th atom with respect to the two neighbors j and k

with the bond-angle (θ) between bond ij and bond ik. The parameters A, B, λs, R, D, n, c, d, β,

h for carbon and silicon are given in the paper [69].

2.3.5 Embedded Atom Model

Embedded Atom Model (EAM) determines the energy of a metallic material or a metallic alloy

through pairwise interactions, which is metallic bonding in particular [70, 24, 25]. The EAM

exploits the intuition of the physics of a given metal and the simplicity of the computational model,

which is needed for large systems. The total energy of an atom i is given by

Ei = Fα

(∑
j 6=i

ρβ(rij)

)
+

1

2

∑
j 6=i

φαβ(rij) (2.39)

where φ is a pair potential interaction, and α and β are the element types of atoms i and j. F is a

function of the atomic electron density ρ. This indicates that the i-th atom is embedded in a host
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of electron gas ρ created by its j neighboring atoms. F can have many forms. For example, the

EAM function can be derived from nearly first-principles method to describe elemental Ni [71].

2.4 Machine Learning

Before diving into the theory of MLPs, some machine learning basics will be introduced. Further-

more, a light discussion to linear regression as a machine learning algorithm will be examined.

2.4.1 Machine Learning Basics

Mitchell defines machine learning as [72]: A computer program is said to learn from experience

E with respect to some class of tasks T and performance measure P, if its performance at tasks

in T, as measured by P, improves with experience E. Essentially, learning means attaining the

ability to perform the task. Machine learning has encountered many breakthroughs from playing

Go [73] in 2016 to self-driving cars [74]. Typical tasks that can be solved by machine learning

algorithm to date are, includes but not limited to, classifications [75], regressions [29, 41], machine

translation [76, 77], anomaly detection [78], denoising [79, 80], and etc. In general, machine

learning algorithms can be categorized as unsupervised and supervised depending to the experience

E that is allowed during the learning process. The experience E refers to training set.

Unsupervised Learning algorithms experience a dataset that only contains a set of inputs

{x1,x2, ...,xn}. The algorithms can be decomposed into three groups determined from the their

purposes: visualization [81], density estimation, and clustering. Ultimately, the subdivisions aim

to learn the structural features or unknown patterns of the given dataset or experience E. For exam-

ple, clustering groups subsets of the dataset according to the similarity within the subsets, while

density estimation determines the probability distribution that generated a dataset. In visualization,

the dataset inputs can projected into a two or three dimensional graphs. Unsupervised learning al-

gorithms are usually computationally complex and not well-defined since there is no benchmark

to the performance measure P.

Supervised Learning algorithms experience a dataset that contains a set of inputs {x1,x2, ...,xn}
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and the corresponding targeted outputs {y1,y2, ...,yn}. There are two common tasks of supervised

learning: regression and classification. If the targeted outputs consist of values belonging to the

set of distinct or discrete values, the task is called classification. Meanwhile, regression is referred

to the continuous values of the outputs belonging to the set of any value within a finite or infinite

interval. The abilities of a supervised learning method conducting the tasks T are evaluated by

some performance measure, P.

In consequence, a quantitative measure must be design to evaluate the performance P. For in-

stance, the accuracy measure (i.e. mean absolute error (MAE) or root mean squared error (RMSE))

is often used in regression model, corresponding to how well the regression model reproducing the

true outputs. In classification, one can also measure the error rate, the gauge of how often the

model produces incorrect outputs. Error rate often refers to the expected loss of 0-1. The common

routine for machine learning practitioners is to evaluate the accuracy measure with data that have

not been seen by the machine learning model. The unseen data is called test set.

In summary, machine learning can be categorized into supervised and unsupervised learning.

Later in the section, one can identify that the MLP developments belong to the regression problem

in supervised learning category. In addition, Principal Component Analysis (PCA), one of the

unsupervised learning technique, is used to learn the unknown patterns of the input data for both

training and test set. In the next subsection, the core mechanism of machine learning technique

will be inspected as linear regression will be exploited.

2.4.2 Linear Regression as Machine Learning Algorithm

As mentioned, a machine learning algorithms is an algorithm that is capable to improve itself

upon the performance by carrying out tasks via experience. Here, linear regression model will be

examined to illustrate the machine learning definition. Linear regression model solves regression

problem. This means that the model accept a vector input of x ∈ Rn to predict a scalar output of
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y ∈ R. The predicted output ŷ is a linear function of input x:

ŷ = wTx (2.40)

where w ∈ Rn is a vector parameters.

Parameters control the behavior of the machine learning algorithm, in this case linear regression

model. If a weight (wi) is negative in value, the prediction ŷ will decrease as the input value xi

increases. The weight can be large in magnitude to emphasize the importance of the particular

input value. On the other hand, zero weight means that the input value has no impact on the

prediction. Now, the job is to determine the weight parameters.

First, one must define a performance measure between the predicted output ŷ and the true

output y. Mean square error (MSE) is one way to measure performance:

MSE =
1

m

∑
i

(yi − ŷi)2 (2.41)

where m is the total number of data points. In order to optimize the weight parameters, one can

minimize the MSE with respect to the parameters and solve the equation when the gradient is zero:

∇wMSE = 0 (2.42)

After the derivation of the MSE gradient, the optimal weights (ŵ can be obtain by solving the

system of equations known as normal equations:

w = (XTX)−1XTy (2.43)

The optimal weights depend on input value x and ŷ, which belong to data points. Due to its

simplicity, increasing data points will no longer increase the accuracy of linear regression model

at some point. However, linear regression model is sufficient to illustrate the underlying principles

of machine learning. Later in the upcoming section, many machine learning algorithms will be
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discussed in more details.

2.4.3 Unsupervised Learning: Principal Component Analysis

Principal Component Analysis (PCA) algorithm [82, 83] provides a mean of compressing the a

vector input of value x ∈ Rn to x′ ∈ Rn′, where n′ < n without demeaning the true representation

of x. In another words, PCA learns a representation from x and lowers its dimensionality. PCA

can represent a new input values x′ which are linearly independent from each other.

Suppose that there is an input matrix ofX , whereX is of the size ofmxn. In real applications,

n is usually much smaller than m. For example, the number of observations m is much larger than

the number of input values n. The unbiased covariance matrix associated withX is given by

Σ[X] =
1

m− 1
XTX (2.44)

Principal components (PCs) can be obtain through singular value decomposition such that X =

USV T . U is a matrix of mxm, S is a mxn matrix, and V is a nxn matrix. It is important to note

that S is a diagonal matrix up to n-th row such that



s1 0 ... 0

0 s2 ... 0

...
...

...
...

0 0 ... sn

0 0 ... 0

...
...

...
...

0 0 ... 0


mxn

(2.45)

where s1 > s2 > ... > sn are the eigenvalues in hierarchical ordered. Therefore, U and V are
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both hierarchical ordered as well. Hence, the covariance matrix can be recovered as follow

Σ[X] =
1

m− 1
(USV T )T (USV T ) = V S2V T (2.46)

where U and V are unitary such that V TV = I .

Through linear transformation such thatX ′ =XV , the transformed matrixX ′ can be derived

in term of singular value decomposition:

X ′ = XV

= USV TV

= US

(2.47)

According to Eq. 2.45, the matrixX ′ can be reduced to nxn matrix such that

X ′ = U redSred (2.48)

Furthermore, the covariance ofX ′ can be written as

Σ[X ′] =
1

m− 1
(X ′)TX ′

= V TXTXV

= V TV S2V TV

=
1

m− 1
S2

(2.49)

The elements in X ′ are essentially mutually uncorrelated since S is diagonal matrix. PCA pos-

sesses the ability to transform data into elements of mutually uncorrelated representation.

Since X ′ are mutually uncorrelated, and the S are hierachically arranged, a machine learning

practitioner can choose up to n′ principal components, where n′ < n such that the total variation
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in the data is retained: ∑n′

i=1 Sii∑n
i=1 Sii

≥ ε (2.50)

In a practical usage, the total variation (ε) is usually measured from 95% up to 99%. This implies

that the variation of choosing n′ number of principal components represents 95% up to 99% of the

entire dataset.

2.5 Machine Learning Potentials

2.5.1 Background

As previously mentioned, ab-initio calculations can accurately describe most systems with high

computational price. Typically, the price is too high for atomistic simulations or crystal structure

prediction with large number of atoms. Indeed, most atomistic simulations are normally conducted

with classical force fields. While the accuracy of classical force fields is overlooked due to classical

force fields scale linearly with the number of atoms, enabling long simulations for large systems.

Nevertheless, it is possible to apply machine learning concept for constructing the PES, allowing

computations to be as accurate as the DFT accuracy without sacrificing too much computational

time.

The MLP developments belong to supervised learning category, in particular regression prob-

lem. The inputs are the atomic coordinates and species in the configurations. The more sophis-

ticated inputs are atom-centered descriptors. Atom-centered descriptors are mapping of the coor-

dinates and species of atoms along with their neighboring information in an atomic configuration

into symmetry-invariant numerical values. The details of atom-centered descriptors deserves a

section itself (see Section 2.5.3). Although other target values such as formation energies can

be considered as the targeted outputs, the outputs are usually the total potential energies of the

configurations.

Technically speaking, the development of classical force field can be considered as MLPs.

Nevertheless, the mathematical forms of classical force fields are designed accordingly to the un-
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derlying physics in the materials systems. By training the classical force fields with more data,

the force fields will likely to gain insignificant improvement. On the other hand, the mathematical

forms of MLPs are designed to be fitted against a large amount of data, as the MLPs will gain

systematical improvement upon observation of even more data.

Among many different ML models, two regression techniques are becoming increasingly pop-

ular in the materials modelling community. They include the neural networks and Gaussian process

regressions. The neural networks approach has an unbiased mathematical form that can adapt to

any set of reference points through an iterative fitting process given “enough” training data. The

first well accepted neural networks potential (NNP) was originally applied to elemental silicon

system by Behler and Parrinello [42], which demonstrated that the NNP was able to reproduce the

energetic sequences of many silicon phases, as well as the radial distribution function of a silicon

melt at 3000 K from DFT simulation. To gain a better predictive power, they also proposed to

use a series of symmetry functions (see Section 2.5.3.2), instead of the Cartesian coordinates, as

the descriptors to represent the atomic environment. Since then, many attempts have been under-

taken to improve the capability of neural networks approach [84]. The accomplishments of neural

networks approach have been extended to multi-component [33, 85] and organic [86] systems.

In addition, Gaussian Approximation Potential (GAP), in conjunction with the bispectrum coeffi-

cients of atomic neighbour density (see Section 2.5.3.4), was first introduced to model the carbon,

silicon, germanium, iron, and gallium nitride [40]. GAP was further enhanced by replacing bispec-

trum coefficients with smooth overlapping power spectrum coefficients with explicit radial basis

[87]. Similar to GAP, Thompson et al. [36] developed (quadratic) Spectral Neighbor Analysis

Potential (SNAP) method based on the Taylor expansion of bispectrum coefficients. In addition,

linear regression model based on the moment tensor—comparable to atomic environments iner-

tia tensors—as the descriptor [88] was also demonstrated to be a competitive approach. Many

applications based on different MLP models have shown that machine learning potentials work

remarkably well in different types of atomistic simulations [89, 90, 91, 92, 93, 94].

28



2.5.2 Mathematical Form

In this section, in-depth discussions of the two main ingredients in creating MLP will be discussed:

atom-centered descriptor and regression technique. The construction of the total energy of a crystal

structure can be written as the collections of atomic energy contributions, in which is a functional

(E ) of the atom-centered descriptor (X i):

Etotal =
N∑
i=1

Ei =
N∑
i=1

Ei(X i) (2.51)

Specifically, the functional represents regression techniques such as neural networks or generalized

linear regressions.

Since neural networks and generalized linear regressions have well-defined functional forms,

the analytic derivatives can be derived by applying the chain rule to obtain the force at each atomic

coordinate, rm:

Fm = −
N∑
i=1

∂Ei(X i)

∂X i

· ∂X i

∂rm
(2.52)

Force is an important property to accurately describe the local atomic environment especially in

geometry optimization and MD simulation. Finally, the stress tensor is acquired through the virial

stress relation:

S = −
N∑
m=1

rm ⊗
N∑
i=1

∂Ei(X i)

∂X i

· ∂X i

∂rm
, (2.53)

where ⊗ is the outer product.

According to Eqs. 2.52 and 2.53, one needs to compute the energy derivative ∂E
∂X

and the

derivatives of descriptor X with respect to the atomic positions. For a structure with N atoms and

L descriptors, the energy derivative is a 2D array of [N,L]. The force related derivative (dxdr)

can be best organized as a 4D array with the dimension of [N,N,L, 3]. Note that dxdr[i, j, :, :] is

zero when the i-j atomic pair has a distance larger than the cutoff distance. Thus, it may become

a sparse array when the structure has a large number of atoms. Correspondingly, one can easily

derive the 5D rdxdr array by multiplying r to each dxdr according to the outer product. In Python,
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one can simply compute the forces and stresses based on the following Einstein summation as

follow:

import numpy as np

"""

Einstein summation to compute force and stress.

dedx: 2D array [N, L]

dxdr: 4D array [N, N, L, 3]

rdxdr: 5D array [N, N, L, 3, 3]

force: 2D array [N, 3]

stress: 2D array [3, 3]

"""

force = -np.einsum("ik, ijkl->jl", dedx, dxdr)

stress = -np.einsum("ik, ijklm->lm", dedx, rdxdr)

Listing 2.1: Force and stress computation in Python.

2.5.3 Atom-centered Descriptors

Descriptor—a representation of a crystal structure—plays a critical role in constructing reliable

MLP. If the MLP is directly mapped from the atomic positions or the Cartesian coordinates, it can

only describe systems with the same number of atoms due to the fixed length of the regression

input. In addition, Cartesian coordinates are poor descriptors in describing the structural envi-

ronment of the system, restricted by the periodic boundary conditions. While the total energy of

the structure remains the same by translation, rotational, or permutation operations, the atomic

positions will change. A good descriptor must satisfy the following requirements:

1. A set of descriptors must invariant with respect to the choice of the frame of reference such

as translation, rotation, and inversion of the system and permutation of atoms within the

same species.
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2. A set of descriptors must be complete. A set of descriptors is complete if it uniquely deter-

mines the atomic environments. If a subset of the set of descriptors can achieve the unique-

ness, then the entire set is over-complete. This requirement enables one-to-one mapping

between the descriptors and the atomic environments. In other words, one-to-one mapping

cannot be attained unless the descriptors are exactly complete.

3. A set of descriptors must be continuous and differentiable. Continuous descriptor establishes

smoothness in the prediction of the PES. It will be challenging to machine learning model to

recuperate the smooth PES with non-continuous descriptor. It is important for the descriptor

to be differentiable as some of the physical properties such as elastic constants rely on the

derivatives.

4. The number of descriptors must be independent to the number of atom neighbors.

5. Ideally, the computation of descriptors should be cheap.

The descriptors that satisfied the requirements above will be called atom-centered descriptors in

this writing. Several types of atom-centered descriptors have been developed in the past few years

[95].

In the atom-centered descriptors, one usually needs to consider the neighboring environment

for the centered atom within a cutoff radius of Rc. To ensure the descriptor mapping from the

atomic positions smoothly approaching zero at the Rc, a cosine cutoff function (fc) is included to

every mapping scheme:

fc(R) =


1
2

cos
(
π R
Rc

)
+ 1

2
R ≤ Rc

0 R > Rc

(2.54)

where R is distance. The cutoff function is zero at Rc and the intensity decreases as R approaches
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Rc. Consequently, the derivative of the cosine cutoff function is:

∂fc
∂R

=


− π

2Rc
sin
(
π R
Rc

)
R ≤ Rc

0 R > Rc

(2.55)

One should heed of the importance of the vanishing derivative of cutoff function at Rc, which is

important in describing the force. By definition, there is no discontinuity as the slope decays to

zero at Rc. Additionally, other types of cutoff functions are available in Appendix A.

2.5.3 Coulomb Matrix

Coulomb matrix has been widely used due to its simplicity (Req. #5). Coulomb matrix encom-

passes self interaction based on the nuclear charge and Coulomb repulsion between two nuclei [96,

97].

Mij =


0.5Z2.4

i for i = j

ZiZj

Rij
for i 6= j

(2.56)

Logically, the Coulomb matrix can be upgraded for periodic crystals through Ewald summation

that includes long range interaction calculated in reciprocal space. In addition, many-body tensor

representation—derives from Coulomb matrix while related to bag of bonds which corresponds to

different types of bonding in molecular systems—can be used for both finite and periodic systems

when interpretability/visualization is desirable [98]. These descriptors have been widely used to

model the molecules [99, 100].

The coulomb matrix captures the translational, rotational, and inversion symmetries, but it

unsuccessfully describes the difference in permuting two atoms with the same species. Another

possible source of error for MLP development is that Coulomb matrix may be able to distinguish

two chemical environments in isolation, it may not be able to distinguish the two well-separated

paired chemical environments [101]. In another words, Coulomb matrix as descriptors is not

complete (Req. #2). Hence, better descriptors needs to be developed.
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2.5.3 (Weighted) Atom-centered Symmetry Functions (G)

The atom-centered symmetry functions (ACSFs) are the very first types of descriptors used in

the MLP development [42] that satisfy all of the requirements. In general, there are two classes

of ACSFs: radial and angular symmetry functions [29]. The radial symmetry function or G(2)

describes the radial distribution of the atomic environment, and the angular symmetry functions,

G(4) and G(5), account for the three-body angular distribution of atoms in the neighborhood. The

G(2) is expressed as the sum of the radial distances between the center atom i and the neighbor

atoms j as follow:

G
(2)
i =

∑
j 6=i

e−η(Rij−Rs)2 · fc(Rij) (2.57)

Here, G(2) value is controlled by the width (η) and the shift (Rs).

G(4) and G(5) symmetry functions are a few of many ways to capture the angular information

via three-body interactions (θijk). As the structures are constraint by the periodic boundary condi-

tion, a three-body periodic description such as cos(θijk) is used. The explicit form of G(4) and G(5)

are:

G
(4)
i =21−ζ

∑
j 6=i

∑
k 6=i,j

[(1 + λ cos θijk)
ζ · e−η(R2

ij+R
2
ik+R

2
jk)·

fc(Rij) · fc(Rik) · fc(Rjk)]

(2.58)

G
(5)
i =21−ζ

∑
j 6=i

∑
k 6=i,j

[(1 + λ cos θijk)
ζ · e−η(R2

ij+R
2
ik)·

fc(Rij) · fc(Rik)]

(2.59)

ζ determines the strength of angular information. The degree of ζ is normalized by 21−ζ for

unvarying the values of G(4) and G(5) symmetry functions due to ranges of ζ . λ values are set to

+1 and -1, for inverting the shape of the cosine function. The difference between G(4) and G(5)
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symmetry functions is in the interactions between the neighbors j and k. The modification in G(5)

symmetry function yields in dampening value of G(5), which can be beneficial in representing

larger atomic separation between the two neighbors.

Clearly, the number of ACSFs will grow depending on chemical species as the separations of

chemical species are needed. For instance, in a binary AB system, the number of G(2) ACSFs

on specie A need to double to distinguish A-A and A-B pair interactions. For G(4), three differ-

ent triplets A-A-A, A-A-B, B-A-B (where the middle position denotes the center atom) will be

needed. To avoid this unpleasant growth, one can apply a weighting parameter based on the chem-

ical species when counting these atomic pairs and triplets. One popular choice is simply to use

the atomic number as the weighting parameters. Hence, Gastegger and coauthors proposed the

weighted version of ACSF [102], in which each component of the radial and angular symmetry

functions in Eqs. (2.57, 2.58, 2.59) can be multiplied by the followings:

the weighted ACSF:


Zj radial

ZjZk angular

where Zj, Zk represents the atomic number of neighboring atom j and k.

To obtain a satisfactory MLP model, one has to choose a set of parameters to construct the

(w)ACSF descriptors, which may require demanding human intervention [102, 103, 104]. As

mentioned, the choice of λ is straightforward. In general, ζ takes the value of 1. Increasing ζ

focuses on the strength of the angular information in region close to 0◦ and 180◦, and decreasing

it will weaken the contribution of angular information at around 90◦. Since the exponential term

has larger effect on the symmetry functions, the selection of η and Rs can be more elaborate. The

selection routines are done by fixing η while varying Rs or vice versa [102, 105, 106].

Here, the parameters selection method suggested by Imbalzano et. al. will be discussed. First,
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the (w)ACSF can be generated by centering the reference atom (i.e. Rs=0) as the η varies:

ηm =

(
nm/n

Rc

)2

(2.60)

where n is the chosen number of intervals, and m = {0, 1, ..., n}. Second, the parameter Rs can be

selected by the following:

Rs,m =
Rc

nm/n
(2.61)

while the η are selected as follow:

ηs,m =
1

(Rs,n−m −Rs,n−m−1)2
(2.62)

The selection method is effective by choosing finer grid closer to the central atom, while it creates

wider grid as the distances increases. The phenomena can be seen in in Fig. 2.4.

2.5.3 Embedded Atom Density (ρ)

Embedded atom density (EAD) descriptor [105] is inspired by embedded atom method (EAM)—

description of atomic bonding by assuming each atom is embedded in the uniform electron cloud

of the neighboring atoms [24, 70]. In EAD, the electron density is modified by including the square

of the linear combination the atomic orbital components:

ρi =

lx+ly+lz=Lmax∑
lx,ly ,lz

Lmax!

lx!ly!lz!

( N∑
j 6=i

ZjΦ(Rij)

)2

(2.63)

where Zj represents the atomic number of neighbor atom j. Lmax is the quantized angular momen-

tum, and lx,y,z are the quantized directional-dependent angular momentum. For example, Lmax = 2

corresponds to the d orbital. Lastly, the explicit form of Φ is:

Φ(Rij) =
xlxijy

ly
ij z

lz
ij

R
lx+ly+lz
c

· e−η(Rij−Rs)2 · fc(Rij) (2.64)
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Figure 2.4: G(2) symmetry function generated using n = 5 and Rc = 6Å. The red curves are the
radial symmetry functions with shifted Rs and η (Eq. 2.61 and 2.62). The blue curves are the
results of the centring Rs method, as described in Eq. 2.60. The black dashed curve represents the
cosine cutoff function with Rc = 6Å.

According to quantum mechanics, ρ follows the similar procedure in determining the probability

density of the states, i.e. the Born rule.

EAD can be regarded as an alternative version of ACSF without classification between the

radial and angular term. The angular or three-body term is implicitly incorporated in when Lmax >

0 [105]. By definition, the computation cost for calculating EAD is cheaper than angular symmetry

functions by avoiding the extra sum of the k neighbors. In term of usage, the parameters η and Rs

are similar to the strategy used in the Gaussian symmetry functions, and the maximum value for

Lmax is 3, i.e. up to f orbital.

36



2.5.3 SO(4) Bispectrum (B)

The SO(4) bispectrum components [40, 87, 36] are another type of atom-centered descriptor based

on the harmonic analysis of the atomic neighbor density function on the 3-sphere. The atomic

neighbor density function is given by [87]:

ρ(r) = δ(r) +
Rc∑
i

wifc(ri)δ(r − ri) (2.65)

where wi is a species dependent weight factor and fc is a cutoff function. The cutoff function is

fc is introduced to ensure that the atomic neighbor density function goes smoothly to zero at the

cutoff.

Then we map the atomic neighbor density function from 3-D euclidean space to another 3-D

space, the surface of a four dimensional hypersphere:

s1 = r0 cosω

s2 = r0 sinω cos θ

s3 = r0 sinω sin θ cosφ

s4 = r0 sinω sin θ sinφ,

where r0 is a parameter and the polar angles are defined by:

θ = arccos
(z
r

)
φ = arctan

(y
x

)
ω =

πr

r0

(2.66)

The Winger-D matrix elements (Dj
m′,m) are the harmonic functions on the 3-sphere, therefore

an arbitrary function defined on the 3-sphere can be expanded in terms of Wigner-D matrix ele-

ments. Here we expand the atomic neighbor density function on the 3-sphere in terms of Wigner-D
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matrices.

ρ(r) =
+∞∑
j=0

+j∑
m′,m=−j

cjm′,mD
j
m′,m (ω; θ, φ)

where the expansion coefficients cjm′,m are given by the following inner product

cjm′,m =
〈
Dj
m′,m|ρ(r)

〉
= D∗jm′,m(0) +

ri≤Rc∑
i

fc(ri)D
∗j
m′,m(ωi; θi, φi) (2.67)

Finally, the SO(4) bispectrum components can then be calculated using third order products of the

expansion coefficients:

Bj1,j2,j
i =

j∑
m′,m=−j

c∗jm′,m

j1∑
m′

1,m1=−j1

cj1m′
1,m1
×

j2∑
m′

2,m2=−j2

cj2m′
2,m2

Cjj1j2
mm1m2

Cjj1j2
m′m′

1m
′
2
,

(2.68)

where C is a Clebsch-Gordan coefficient. Finally, the derivation of the derivatives can be found in

Appendix B.

2.5.3 Smooth SO(3) Power Spectrum (P )

The Smooth SO(3) Power Spectrum components were been proposed to describe the atomic local

environment [87]. In contrast to the SO(4) bispectrum components, the Smooth SO(3) power

spectrum is based on an alternative atomic neighbor density while also expanded on the 2-sphere

and a radial basis. The alternative atomic neighbor density is defined in terms of Gaussians as

follows:

ρ′(r) =

ri≤Rc∑
i

wie
−α|r−ri|2 , (2.69)

Then the atomic neighbor density function is then expanded in terms of spherical harmonics and a

radial basis gn(r) as shown in Eq. 2.69:
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ρ′(r) =
+∞∑
l=0

+l∑
m=−l

cnlmgn(r)Ylm(r̂)

where the expansion coefficients cnlm are given by

cnlm = 〈Ylmgn(r)|ρ′〉 = 4π

ri≤Rc∑
i

wie
−αr2i Y ∗lm(r̂i)×

∫ Rc

0

r2gn(r)Il(2αrri)e
−αr2dr (2.70)

where Il is a modified spherical Bessel function of the first kind. A convenient radial basis for this

purpose, gn(r), consisting of cubic and higher order polynomials, orthonormalized on the interval

(0, Rc) has been suggested by Bartok [87].

gn(r) =
∑
α

Wn,αφα(r) (2.71)

where Wn,α are the orthonormalization coefficients given by the relation to the overlap matrix S

byW = S−1/2 and

φα(r) = (Rc − r)α+2/Nα

Nα =

√
2r

(2α+7)
cut

(2α + 5)(2α + 6)(2α + 7)

and the elements of the overlap matrix S are given by

Sαβ =

∫ rcut

0

r2φα(r)φβ(r)dr

=

√
(2α + 5)(2α + 6)(2α + 7)(2β + 5)(2β + 6)(2β + 7)

(5 + α + β)(6 + α + β)(7 + α + β)

(2.72)
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and finally, the Smooth SO(3) power spectrum is given by

P n1n2l
i =

+l∑
m=−l

cn1lmc
∗
n2lm

(2.73)

2.5.4 Regression Models

Here, we discuss the regression model, i.e., the functional form (E ) presented in Eq. 2.51. Each

regression model is species-dependent, i.e. as the the number of species increases, the regression

parameters will increase. For the sake of simplicity, we will explain the regression models for the

single-species system.

In any regression model, the objective is to minimize a loss function which describes the dis-

crepencies between the prediction and true reference values (including energy, force, and stress

tensors) for each atomic configuration in the training dataset.

∆ =
1

2M

M∑
i=1

[(
Ei − ERef

i

N i
atom

)2

+
βf

3N i
atom

3N i
atom∑

j=1

(Fi,j − F Ref
i,j )2

+
βs
6

2∑
p=0

p∑
q=0

(Spq − SRef
pq )2

] (2.74)

where M is the total number of structures in the training pool, and N atom
i is the total number of

atoms in the i-th structure. The superscript Ref corresponds to the target property. βf and βs are

the force and stress coefficients respectively. They scale the importance between energy, force,

and stress contribution as the force and stress information can overwhelm the energy information

due to their sizes. Additionally, a regularization term can be added to induce penalty on the entire

parameters preventing overfitting:

∆p =
α

2M

m∑
i=1

(wi)2 (2.75)
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where α is a dimensionless number that controls the degree of regularization.

Clearly, one has to choose differentiable functional as well as its derivative due to the existence

of force (F ) and stress (S) contribution along with the energy (E) in the loss function. In the

following sections, generalized linear regression and neural network regression will be introduced.

2.5.4 Generalized Linear Regression

This regression methodology is a type of polynomial regression. Essentially, the quantum-mechanical

energy, forces, and stress can be expanded via Taylor series with atom-centered descriptors as the

independent variables:

Etotal = γ0 + γ ·
N∑
i=1

X i +
1

2

N∑
i=1

XT
i · Γ ·X i + · · · (2.76)

where N is the total atoms in a structure. γ0 and γ are the weights presented in scalar and vector

forms. Γ is the symmetric weight matrix (i.e. Γ12 = Γ21) describing the quadratic terms. In this

equation, we only restricted the expansion up to polynomial 2 due to to enormous increase in the

weight parameters.

In consequence, the force on atom j and the stress matrix can be derived according to Eqs.

(2.52, 2.53), respectively:

Fm = −
N∑
i=1

(
γ · ∂X i

∂rm
+

1

2

[
∂XT

i

∂rm
· Γ ·X i +XT

i · Γ ·
∂X i

∂rm

])
(2.77)

S = −
N∑
m=1

rm ⊗
N∑
i=1

(
γ · ∂X i

∂rm
+

1

2

[
∂XT

i

∂rm
· Γ ·X i +XT

i · Γ ·
∂X i

∂rm

])
(2.78)

Note that the energy, force, and stress share the weight parameters {γ0,γ1, ...,γn,Γ11,Γ12, ...,Γnn},

where n is total the number of descriptors of the center atom. Once the energy, force and stress

tensors are known, the derivative of the loss function can be evaluated. Finding the zero derivative

of loss function (Eq. 2.74) in linear regression is equivalent to solve a set of linear equations of
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2.5.4 Neural Network Regression
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Figure 2.5: (a) A schematic diagram of high-dimensional neural networks. (b) A zoom-in version
of the color-coded part in (a).

Compared to the linear regression, neural networks provides more flexible functionals to fit a

large datasets. Figure 2.5 shows a schematic diagram based on neural networks training. Prior to

the neural networks architecture, the atom-centered descriptors are mapped based on the atomic

environment of a structural configuration as discussed in the previous section. These descriptors

serve as the input to the neural networks architecture and are arranged in the first layer as shown

in Figure 2.5b. The next layers are the hidden layers. Neural networks can simply cast more
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weights parameters as needed through increasing number of hidden layers and/or hidden layers

nodes without the increasing number of descriptors. The nodes in the hidden layers carry no

physical meaning.

For each of the hidden nodes, activation functions such as Tanh and Sigmoid functions are

frequently used in our NNP implementation. While ReLU as an activation function is extremely

popular in image processing, we believe ReLU is not an appropriate choice in constructing MLP,

due to the function carries discontinuity at zero. These nodes are connected via the weights and

biases and propagate in forward direction only. In the end, the output node represents the atomic

energy. A mathematical form to determine any node value can be written as:

X l
ni

= alni

(
bl−1ni

+
N∑

nj=1

W l−1,l
nj ,ni
·X l−1

nj

)
(2.79)

The value of a neuron (X l
ni

) at layer l can determined by the relationships between the weights

(W l−1,l
nj ,ni

), the bias (bl−1ni
), and all neurons from the previous layer (X l−1

nj
). W l−1,l

nj ,ni
specifies the

connectivity of neuron nj at layer l − 1 to the neuron ni at layer l. bl−1ni
represents the bias of

the previous layer that belongs to the neuron ni. These connectivity are summed based on the

total number of neurons (N ) at layer l − 1. Finally, an activation function (alni
) is applied to the

summation to induce non-linearity to the neuron (X l
ni

).Xni
at the output layer is equivalent to an

atomic energy, and it represents an atom-centered descriptor at the input layer. The collection of

atomic energy contributions are summed to obtain the total energy of the structure. At the end, the

total energy, forces, and stress tensors are compared to the reference values (see Eq. 2.74). This

process is called forward propagation.

Similar to the linear regression, one needs to obtain a set of weight parameters to minimize

the loss function. In NN architecture, the gradient of loss with respect to the weight parameters

can be conveniently done by the backpropagation algorithm [107]. The backpropagation algorithm

technique demands anO(W ) computational cost, proportional to the number of weight parameters

[81].
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A number of optimization algorithms can be applied here to update the weights iteratively, until

the optimal solution is found. Limited Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm

[108] and Adaptive Moment Estimation (ADAM) [109] will be used for most of our applications,.

In ADAM, mini-batch optimization method is usually performed by randomly selecting a subset of

the entire dataset for each optimization step. Since one can use mini-batch optimization for neural

networks regression, neural networks algorithm is ideal for training huge dataset.

2.5.4 Gaussian Process Regression

Gaussian Process Regression (GPR) model is categorized in the domain of Bayesian statistics. The

Bayesian uses probability to reflect degrees of certainty in the states of knowledge. It estimates

all of the predictions as a random variable account of it being a function of the dataset. Typically,

Bayesian models generalize much better when limited dataset is available. It tends to protect

against overfitting by dealing it with integrating over the uncertainty in the estimator. However, it

suffers from high computational cost as the dataset gets larger [110].

Here, the Bayesian approach will be utilized to learn linear regression model. In particular, the

energy of an atom is assumed to be mapped linearly from atom-centered descriptors (X i) (see Eq.

2.51)

Ei = wX i (2.80)

As the name GPR is implied, the prior probability distribution of the weights (w) is initiated to be

Gaussian distribution with zero mean and covariance C:

P (w) = N (w; 0,C) (2.81)

Due to one of the property of Gaussian distribution, the energy is also distributed in Gaussian
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statistics. Hence, the covariance of two atomic energies can be written as

〈EiEj〉 = 〈EiEj〉 = 〈wX iw
′Xj〉

= σ2
w〈X iXj〉

(2.82)

In the equation, the relation of 〈whw′h′〉 = δhh′σ
2
w is exploited, where σw is a scalar. Since the

atomic energies are unavailable in practical quantum calculations such as DFT method, one can

only predict the total energy:

〈ENEM〉 = σ2
w

∑
i∈N

∑
j∈M

〈X iXj〉 (2.83)

where i and j are the indices of atoms for structures N and M , respectively. Now, the challenge is

to determine the relationship between the two atom-centered descriptors, i.e. 〈X iXj〉.

A kernel function can be used to determine 〈X iXj〉. Kernel functions are to be understood

as a similarity measure between two atomic neighbor environments. General rules in choosing

a kernel function are discussed in detail in the literature [111]. In this study, a similarity kernel

function can be written as

K(X i,Xj) = exp

(
−(1− d(X i,Xj)

2)

2l2

)
(2.84)

where,

d(Xj,Xj) =
X i ·Xj

|X i||Xj|
(2.85)

Hence, Eq. 2.83 can be written as for simplicity

CEE = 〈ENEM〉

= σ2
w

∑
i∈N

∑
j∈M

K(X i,Xj)
(2.86)

In the MLP development, one can also consider the derivative of total quantum mechanical
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energy with respect to the relative positions of atoms (see Eq. 2.52) in the training process. This

can be achieve by differentiating the Eq. 2.86, one obtains the covariance between the force and

energy relation.

CFE =

〈
∂EN
∂rn

EM

〉
=
∂〈ENEM〉

∂rn

= σ2
w

∑
i∈N

∑
j∈M

∂K(X i,Xj)

∂rn

= σ2
w

∑
i∈N

∑
j∈M

∂K(X i,Xj)

∂X i

∂X i

∂rn

(2.87)

where rn is the x, y, and z positions of n-th atom. Here,CFE is an array of three components. ∂Xi

∂rn

becomes zeros as the pair distance between ri and rn is beyond the cutoff radius (see Eq. 2.54).

Due to the symmetry of the kernel function (see Eq. 2.84 and 2.85), the covariance between the

energy and force can be written as the transpose of the the covariance between the force and energy

such that

CFE = CT
EF (2.88)

Similarly, the derivative between two forces is

CFF =

〈
∂EN
∂rn

∂EM
∂rm

〉
=
∂2〈ENEM〉
∂rm∂rn

= σ2
w

∑
i∈N

∑
j∈M

∂XT
i

∂rn

∂2K(X i,Xj)

∂X i∂Xj

∂Xj

∂rm

(2.89)

Furthermore, one can include the training of stress by including the covariance of stress-energy,
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stress-force, and stress-stress relations such that

CSE =

〈∑
n

rn ⊗
∂EN
∂rn

EM

〉
= σ2

w

∑
i∈N

∑
j∈M

(∑
n

rn ⊗
∂XT

i

∂rn

)
∂K(X i,Xj)

∂X i

CSF =

〈∑
n

rn ⊗
∂EN
∂rn

∂EM
∂rm

〉
= σ2

w

∑
i∈N

∑
j∈M

(∑
n

rn ⊗
∂XT

i

∂rn

)
∂2K(X i,Xj)

∂X i∂Xj

∂Xj

∂rm

CSS =

〈∑
n

rn ⊗
∂EN
∂rn

∑
m

rm ⊗
∂EM
∂rm

〉
= σ2

w

∑
i∈N

∑
j∈M

(∑
n

rn ⊗
∂XT

i

∂rn

)
∂2K

∂X i∂Xj

(∑
m

rm ⊗
∂Xj

∂rm

)
(2.90)

where ⊗ is the cross product and rm is the x, y, and z positions of the m-th atom. The KSE , KSF ,

and KSS are vector with 6 components, 6x3 matrix, and 3x3 matrix, respectively. In stress tensor,

there are supposed to be 9 components to be considered such that xx, xy, xz, yx, yy, yz, zx, zy, and

zz. Due to the rotational invariant of the atom-centered descriptor, there are only 6 components to

be considered: xx, yy, zz, xy, xz, and yz. This also helps for the effort of computational efficiency.

Moreover, the energy-stress and force-stress relations can be found to inherit the symmetrical

behavior, i.e. KES = KT
SE and KFS = KT

SF , respectively.

Finally, the covariance matrix (C) can be written as follow

C =


CEE ηfCEF ηsCES

ηfCFE η2fCFF ηfηsCFS

ηsCSE ηfηsCSF η2sCSS

 (2.91)

The covariance matrix above are the measure of signals between multiple configurations. It should

be noted that the CEE is now a matrix of NxN , where N is the number of configurations in

a training dataset. Assuming there are M atoms for every structure, the CFF is a 3NMx3NM

matrix. The CSS is a 6Nx6N matrix. ηf and ηs are hyperparameters to emphasize the importance

of force and stress contributions, respectively, with respect to the energy.

Normally, a hyperparameter called noise (ν) is introduced to the diagonal elements of the
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covariance matrix to ensure positive definiteness such that C = C + ν−1δnm. This is sometimes

called noisy covariance. The noise ν is typically in the order of 106. Decreasing ν can increase

positive definiteness in general.

In model above, the covariance contains two hyperparameters: σw and l. There are several

tensorial choices of l according to Ramussen et. al. [111]. Here, we choose l such that it is a

scalar. The hyperparameter l is also called the characteristic length-scale. It apprises the devia-

tion between two input variable. The two hyperparameters will be bundled as θ for simplicity.

To optimize the two hyperparameters, the log marginal likelihood is applied as the measure of

performance or loss function:

logP (t|X,θ) = −1

2
tTC−1t− 1

2
log|C| − n

2
log(2π) (2.92)

where t is the target values. Target comprises of structural energies and may include force and

stress information. The consequence of the target only appears in the first time, which means the

data fitting is captured in the first term. The second term is the complexity penalty. Lastly, the final

term is the normalization constant, where n is the total number of target values. Obviously, the

hyperparameters are found by minimizing the log marginal likelihood with respect to θ:

∂

∂θ
logP (t|X,θ) =

1

2
tr

(
(ααT −C−1)∂C

∂θ

)
(2.93)

where α = C−1t. The computational complexity is dominated by the demanding inverse of the

covariance matrix. Standard methods for inverting positive definite symmetric matrix will cost

O(n3), while the computation of the derivatives costs O(n2) after C−1 is known. Nevertheless,

the O(n3) computational cost can be reduced to O(nk2) by employing Cholesky decomposition,

where k is less than n.

Cholesky decomposition can be thought of as the square root of amatrix such that C = LLT ,

where L is the lower triangular matrix. Using Cholesky decomposition, one can evaluate the

first term in the log marginal likelihood by reconstructing of ZTZ, where Z = LT t. The log
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determinant or the second term becomes the sum of the diagonal element of the Cholesky matrix

such that log|C| =
∑n

i log(lii), where lii is the diagonal of L. Finally, the linear equation in Eq.

2.80 can be solved by employing the Cholesky matrix in the form of

t = αL (2.94)

where α is the coefficients of training data points in kernel space. The number of coefficients

equals to the total number of data points in the training dataset.

Finally, prediction of the energy, force, and stress can be determined once the α is solved.

Suppose that, there is a new input of a structure represented asXnew
i , ∂X

new
i

∂r
, and

∑
k rk ⊗

∂Xnew
i

∂rk
.

The new covariance matrix needs to be constructed such that the kernels between the training

dataset and the new data points have to be computed. For instance, the energy prediction is

Ê = α · (CEtrainEnewCF trainEnewCStrainEnew) (2.95)

The first index in the indices ofC is of all of the training dataset, while the second index represents

the new data point. The force and stress predictions will yield

F̂ = α · (CEtrainFnewCF trainFnewCStrainFnew)

Ŝ = α · (CEtrainSnewCF trainSnewCStrainSnew)

(2.96)

In conclusion, GPR formalism for MLP development has been presented in details. For a

linear model, the weights are assumed to be Gaussian distributed. Due to the property of Gaussian

distribution, the linear model can be considered to be Gaussian as well. In order to determine the

multi-dimensional Gaussian distribution, the mean and covariance matrix have to be determined.

The determination of covariance matrix with kernel has been shown in details. In the end, one

can predict the energy, force, and stress from solving the covariance matrix and determining the

α coefficients of training data points in the kernel space. The coefficients α can be viewed as
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a function of covariance matrix. Therefore, the construction of the covariance matrix is the vital

component in GPR model.

2.6 Comparison between Neural Networks and Gaussian Process Regressions

One of the advantage of using GPR is that overfitting is not necessarily a problem as the models

get large [112], since GPR is based on Bayesian formalism. On the other hand, neural networks

are known to suffer from overfitting. Nonetheless, overfitting can be rectify by adding penalty

term (see Eq. 2.74) in the loss function. Second, GPR captures model uncertainty. For example,

GPR gives the mean and the distribution for the prediction value via standard deviation, rather than

just one value. Whereas, the uncertainty is not directly available in neural network regression. By

knowing the uncertainty in the prediction, one can further improve the accuracy of GPR model by

including the predictions with high uncertainty in the training process.

The disadvantage of GPR model is that the algorithm is not built for training large dataset. The

inversion of covariance matrix can be extremely inconvenient as the training size gets large. More

importantly, the prediction depends on the training dataset as shown in Eq. 2.95 and 2.96. It is not

only the training can be computationally intractable, but also the prediction can be computationally

expensive. On the other hand, neural networks model is great for developing MLP with large

dataset size. As long as neural networks model has the optimal weight parameters, the prediction

do not scale as a function of training dataset.
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Chapter 3 PyXtal FF Package

In this chapter, the development of PyXtal FF package will be introduced. The aim of PyX-

tal FF is to promote the application of atomistic simulations with MLPs by providing several

choices of atom-centered descriptors and machine learning regressions in one platform. PyX-

tal FF is an open source package, written in Python, for developing MLPs, in particular NNPs and

GLPs [113]. Since it is written in Python, this platform is constructed in modular approach, en-

abling convenient effort to add new functionality. It provides unified interfaces to train the MLPs

and perform atomistic simulations. PyXtal FF package, along with the documentation, is publicly

available at https://pyxtal-ff.readthedocs.io.

3.1 Capabilities of PyXtal FF

Presently, the package is equipped with two regression models and four types atom-centered de-

scriptor, as explained in Chapter 2. As mentioned, these regression models and atom-centered

descriptors are easily extendable without changing the core user-interface features. Figure 3.1

represents the workflow of PyXtal FF.

Dataset. The dataset is comprised of a set of atomic configurations along with the energy,

forces, and stress, typically obtained from the first-principle calculations. An atomic configuration

data should include the lattice matrix of the configuration cell, atomic species, and the coordinates

of all atoms. Although the reference output values such as energy, forces, and stress are usually

presented in the unit of eV, eV/Å, and GPa as the default unit in PyXtal FF, they can be easily

converted. PyXtal FF utilizes the Atomic Simulation Environment (ASE) package [114] to parse

and store the DFT data assembled in several formats, including but not limited to, ASE database,

JSON, extended XYZ and the VASP OUTCAR formats. Furthermore, ASE is employed to compile

the atomic neighborhood of each atom in the unit cell based on the periodic boundary conditions

within a cutoff radius. After the neighboring data are gathered, it will compute the user-defined
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type of descriptor.

Atom-centered descriptors. Users have five types of atom-center descriptors to choose from:

ACSF, wACSF, EAD, SO(4) Bispectrum, and SO(3) Power Spectrum. The computation of the

atom-centered descriptors follows the theory described in Section 2.5.3 utilizing NumPy—a Python

library for scientific computing [115]. Since SO(3) Power Spectrum and SO(4) Bispectrum re-

quire heavy computations, the implementation of SO(3) Power Spectrum and SO(4) Bispectrum is

wrapped in Numba—a just-in-time compiler that translates a subset of Python/NumPy code into

fast machine code [116]. The computations can approach the speed of C or FORTRAN languages

with Numba decorators added to descriptor calculator. For every structure, the descriptor calcula-

tor will return the descriptors and derivatives related to the force and stress, as seen in Eq. 2.52

and Eq. 2.53, respectively. Here, the force and stress descriptors are 4-D and 5-D arrays. The first

and the second, and third dimensions represent the i-th center atom and the j-th pair neighboring

atom, and the k-th descriptor. For stress descriptors, the second dimension is usually compressed,

since atomic stress is not required in MLP development. The forth dimension of force descrip-

tors describes the direction of forces, whereas the forth and fifth dimension for stress descriptor

incorporates the stress tensor. In addition, the calculations of descriptors along with the derivative

components can be computed in parallel using multiple cores. Due to a large number of data, a

common approach is storing and reading the descriptors in disk. After the computation of de-

scriptors is finished, they will go through a data parser along with the DFT energy, forces, and

stress. The data parser will ensure the descriptors are coupled with the correct DFT data. In neural

network, the data parser includes normalization for the calculated descriptors, whereas the first

dimension of the force descriptors is compressed for linear regression. Eventually, the normalized

descriptors represent the independent variables in the models to obtain the predicted energy and

the derivative terms are needed to compute the force and stress values.

Regression Models. The Pyxtal FF supports two models, linear/quadratic regression and neu-

ral networks. The neural network regression is powered by PyTorch [117]—an open-source deep

learning framework centered on automatic differentiation [118]. Automatic differentiation if Py-
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Figure 3.1: Schematic diagram of PyXtal FF workflow for NNP/GLP training.

Torch records operation history (i.e. addition or multiplication) by constructing computational

graph and defines formulas for differentiating operations. When computing the derivatives, the

graph is processed in the topological ordering. Meanwhile, PyXtal FF supports three iterative op-

timization algorithms for training or weights optimization: Limited Broyden-Fletcher-Goldfarb-

Shanno (L-BFGS) [108], Adaptive Moment Estimation (Adam) [109], and stochastic gradient de-

scent (SGD) with momentum [119]. PyTorch uses Kaiming method [120] as the default to generate

the initial guesses for the weights. The recommended option for optimizing the weights is the L-

BFGS method with approximated line search as the training data is relatively small. This is due

to the quasi-Newton method is generally more stable and can find local optima more efficiently.
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With larger training datasets, however, the L-BFGS method is memory demanding, and one can

seek to use first-order methods such as Adam or SGD with momentum prior to applying L-BFGS

method. Both SGD and Adam optimizers are usually done in mini-batches, where the gradients

for each weight update are calculated based on a subset of the entire training data set. Training in

mini batches can reduce the variance of the parameter updates leading to stable convergence. The

training is terminated after the convergence criteria is reached, i.e. maximum allowed minimiza-

tion step or the loss value (see Eq. 2.74 have reached a negligible improvement. In addition, the

training can also be done in graphical processing units (GPU) mode. After the training is done, the

model will be saved in a PyTorch binary file, usually in .pth extension.

Atomistic Simulations. In addition to the force field generation, PyXtal FF also provides the

supports to utilize the trained models for several types of atomistic simulations, including geometry

optimization, MD simulation, physical properties prediction, nudge elastic band simulation, and

phonon calculation. These features are managed by ASE calculator, in which the MLP potential

generated by PyXtal FF passes the energy, forces, and stress tensors to the calculator. Then, ASE

can perform the relevant atomistic simulations. Since these simulation will be powered by Python,

we recommend to use them only for light-weight simulations. In the near future, we will be

interfacing the trained MLP with LAMMPS [121] to enable the large-scale atomistic simulations.

3.2 Example Usage of PyXtal FF

PyXtal FF can be used as stand-alone library in Python scripts. A PyXtal FF example code to train

an MLP for elemental platinum (Pt) is shown in the Listing 3.1. The atom-centered descriptors and

the model are described in dictionary. The dictionary keys determine the necessary command for

the code and are made as intuitive as possible. In this case, the SO4 Bispectrum is used as the

descriptors. For the descriptors, most of keys follow the hyperparameters naming as mentioned in

the Section 2.5.3. The cutoff radius (Rc) is 4.9 Å, and the bispectrum components will be computed

up to lmax =3.
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from pyxtal_ff import PyXtal_FF

# Define the path of train/test data.

train, test = ’train.json’, ’test.json’

# Define the descriptor.

descriptor = {’type’: ’Bispectrum’, ’Rc’: 4.9

’parameters’: {’lmax’: 3}}

# Define the neural network regression model.

model = {’system’ : [’Pt’],

’hiddenlayers’: [16, 16],

’epoch’: 1000,

’path’: ’Pt-Bispectrum/’

’optimizer’: {’method’: ’lbfgs’}}

# Define the descriptor and model to PyXtal_FF and run the training.

mlp = PyXtal_FF(descriptor, model)

mlp.run(TrainData=train, TestData=test)

Listing 3.1: PyXtal FF script for force field training

By default, PyXtal FF will use neural networks as the regression algorithm. Here, PyXtal FF

will look for train.json and test.json files to parse them in ASE format as described in Subsection

3.1. The optimizing algorithm L-BFGS will iteratively run for 1000 epoch. After the training

is complete, the trained model is saved in the result directory—Pt-Bispectrum—with a name of

16-16-checkpoint.pth, in which 16-16 denotes two hidden layers with 16 nodes for each layer.

Although user can train their model in polynomial (linear or quadratic) regression as shown in

Listing 3.2. Linear or quadratic regression is defined by the order: 1 for linear and 2 for quadratic.
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For both polynomial and neural network regression, a regularization factor with Euclidean norm

(’norm’: 2) can be easily added to the loss function by enabling the alpha keyword.

model = {’system’ : [’Pt’],

’algorithm’: ’PolynomialRegression’,

’order’: 1,

’alpha’: 1e-4,

’norm’: 2,

’path’: ’Pt-Bispectrum/’}

Listing 3.2: An example to define linear regression model.

Additionally, PyXtal FF provides a built-in interface with the ASE code, in which one can use

the model to perform different types of calculations through ASE. A simple example to perform

the geometry optimization on a Pt bulk crystal (Pt bulk.cif ) based on the trained model from the

Listing 3.1 can be viewed in Listing 3.3. In addition to geometry optimization and MD simulation,

PyXtal FF also provides several utility functions to simulate the elastic and phonon properties,

which are based on several external Python libraries including Phonopy [122], seekpath [123]

and matscipy [124]. More detailed examples can be found in the online documentation https:

//pyxtal-ff.readthedocs.io.
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from pyxtal_ff import PyXtal_FF

from pyxtal_ff.calculator import PyXtalFFCalculator, optimize

from ase.io import read

# Load the trained model.

mlp = "Pt-Bispectrum/16-16-checkpoint.pth"

ff = PyXtal_FF(model={’system’: ["Pt"]}, logo=False)

ff.run(mode=’predict’, mliap=mlp)

calc = PyXtalFFCalculator(calc)

# Read the initial structure.

pt_bulk = read(’Pt_bulk.cif’)

# Perform the geometry relaxation.

pt_bulk.set_calculator(calc, box=True)

pt_bulk = optimize(pt_bulk)

print(’energy: ’, pt_bulk.get_potential_energy())

Listing 3.3: PyXtal FF script to perform geometry optimization
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Chapter 4 Applications

4.1 Binary System

The SiO2 dataset [125] was generated by the DFT method within the framework of VASP [126], us-

ing the generalized gradient approximation Perdew-Burke-Ernzerhof (PBE) exchange-correlation

functional [127]. The kinetic energy cutoff was set to 500 eV, and the energy convergence crite-

rion for constructing the k-point mesh is within 10 meV/atom. The MD trajectories are taken at

different temperatures including liquid, amorphous and crystalline (α-quartz, α-cristobalite, and

tridymite) configurations. The original dataset contain 3,048 SiO2 configurations (60 atoms per

structure). For simplicity, a subset that consists of 1,316 structures are considered, with the goal

of to gaining an overview of performances and computation costs for each descriptor. Below gives

the parameters to define each descriptor.

# ACSF (70)

para = {’G2’:

{’eta’: [0.003214, 0.035711,

0.071421, 0.124987,

0.214264, 0.357106,

0.714213, 1.428426],

’Rs’: [0]},

’G4’:

{’lambda’: [-1, 1],

’zeta’:[1, 2, 4],

’eta’: [0.000357, 0.028569, 0.089277]}}

descriptor = {’type’: ’ACSF’,

’Rc’: 4.9,

’parameters’: para,}
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# wACSF (26)

descriptor = {’type’: ’wACSF’,

’Rc’: 4.9,

’parameters’: para,}

# EAD (30)

para = {’eta’: [0.003214, 0.035711,

0.071421, 0.124987, 0.214264],

’Rs’: [0, 1.50],

’lmax’: 2,}

descriptor = {’type’: ’EAD’,

’Rc’: 4.9,

’parameters’: para,}

# SO3 (40)

descriptor = {’type’: ’SO3’,

’Rc’: 4.9,

’parameters’: {’nmax’: 4,

’lmax’: 3},}

# SO4 (30)

descriptor = {’type’: ’SO4’,

’Rc’: 4.9,

’parameters’: {’lmax’: 3},}

Listing 4.1: PyXtal FF script to define the descriptors.

In short, a universal cutoff value of 4.9 Å is chosen for all descriptors. Each descriptors

requires some manual selection of hyperparameters in the real (e.g., η, λ, ζ, Rs) or integer (lmax,
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nmax) space. The ACSF parameters were taken from Ref. [125] which lead to 70 descriptors. In

its wACSF version, the number is reduced to 26. For EAD, a similar set of parameters for η and

Rs is chosen, which make 30 descriptors when Lmax = 2. For SO3 and SO4, only the integer type

hypeparameters need to be provided. In this work, 40 SO3 descriptors with nmax = 4 and lmax =3

and 30 SO4 descriptors with lmax =4 are set. Table 4.1 summarizes the performances for neural

networks and linear regressions.

First, the neural networks regression is used with two hidden layers with 30 nodes each. The

training was conducted with 12000 steps. The ACSF-70 set yields the best accuracy in both energy

(1.3 meV/atom) and forces (81.2 meV/Å), while the errors in its corresponding wACSF-26 set rise

by 60-70% in both energy (2.1 meV/atom) and forces (141.8 meV/Å). On the other hand, the

weighted EAD-30 descriptor, supposed to mimic G2 and G4 ACSFs, gives the highest errors (4.0

meV/atom for energy and 300 meV/Å for forces). This may be due to lack of optimization on

the hyperparameters. However, it should be noted that the computation of EAD is much faster

than ACSF. Therefore, it is worth exploring a systematic approach to obtain the optimum set for

EAD. For the two spectral descriptors, SO3-40 seems to outperform SO4-30 while it cost about

a similar level of CPU time. In terms of accuracy, SO3-40 (1.4 meV/atom in energy MAE and

115.1 meV/Å in force MAE) is in the middle of ACSF-70 and wACSF-26. Another remarkable

advantage of the spectral descriptors is that tuning the hyperparameters is much easier. If one

does not want to spend too much time on choosing the hyperparameters, SO3 seems to be a better

choice than ACSF. It is important to note that all descriptor computations are based on Python.

It is expected that the speed will be much faster when they are implemented in FORTRAN or C

languages. In addition, the overall performances of neural networks are superior than those of

linear regressions.

It is worth noting that the training of linear regression takes a fraction of the time it takes to

train neural networks, despite the performances. The performances between neural networks and

linear regression are expected due to neural networks are more flexible, meaning they carry more

adjustable weight parameters. This can be further verify that ACSF-70 in both linear regression
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Table 4.1: The MAE values of the predicted energy/forces of 1316 SiO2 dataset from the neural
networks, linear regression, and quadratic regression models with different descriptors. The neural
networks model was performed with 2 hidden layers at 30 nodes for each layer within 12000 L-
BFGS steps of training. The force is measured in meV/atom, and the energy is measured in eV/Å.
For each type of descriptors, the average CPU time for descriptor computation per structure is also
given.

CPU time Neural Networks Linear Regression Quadratic Regression
(secs/60 atoms)

ACSF (70) 4.374 1.3/81.2 3.1/184.9 N/A
wACSF (26) 4.372 2.1/141.8 6.5/322.2 2.6/179.3
EAD (30) 0.584 4.8/259.0 12.9/553.3 6.2/360.4
SO3 (40) 1.028 1.4/115.1 7.5/359.6 1.9/187.9
SO4 (30) 1.078 3.3/204.2 12.8/540.0 6.1/364.2

and neural networks perform the best out of all descriptor types. Although SO4-30 performs

slightly better than EAD-30, EAD-30 is a more suitable descriptors considering the computation

of EAD is about 50% cheaper than SO4-30. An impressive improvement can be seen in SO3-40

with nearly 40% reduction in the MAEs for energy and forces. Nevertheless, wACSF-26 gives

better performance than SO3-40. This behaviour can be due to the neural networks can learn the

relationship between the descriptors of SO3-40 better than linear regression. For example, the

first hidden layer contains information amongst the input layer, and the second layer contains in

information amongst the first layer. As the layer propagation continues, the neural networks can

learn the relationship between the neurons. On the other hand, linear regression has no capability

of learning the relationship between descriptors. In consequence, quadratic regression can be used

to learn the relationship between two descriptors.

As seen in Table 4.1, quadratic regression gives significant improvement on SO3-40 as well

as wACSF-26. The energy MAE results between SO3-40 and wACSF-26 have the opposite effect

as seen in linear regression. Meanwhile, the force MAE results between SO3-40 and wACSF-26

have almost negligible differences. This can be due to more correlation between three or more

descriptors are needed as seen in the neural networks results. Moreover, SO4-30 and EAD-30 gain
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significant improvement as the number of weight parameters increases. However, the computa-

tional cost in term of memory can hinder the popularity of quadratic regression since quadratic

regression algorithm is not design to handle big data. Therefore, the quadratic regression for

ACSF-70 is not explored, but it is expected to yield results in between those of neural networks

and linear regression models, while close to the results of neural networks model.

4.2 Silicon MLP for General Purposes

In this section, the development of accurate and transferable MLP will be discussed. First, there

are two types of datasets—a localized dataset and a diverse dataset—used in this study. Second,

the validation on the machine learning framework with the localized dataset as the baseline will

be inspected. Third, the interplay between bispectrum coefficient and the two machine learning

regression (generalized linear regression and neural networks) on the localized dataset will be

explored. The interplay is dedicated to further validate the localized dataset with a new NNP

fitting strategy. Finally, a transferable silicon MLP based on the new strategy will be explored.

4.2.1 Datasets

In this study, two silicon datasets will be used. The Set #1 is the localized data set, obtained from

Ref. [128]. Set #1 contains 244 structures in total, which includes the ground state of crystalline

structure, strained structures, slabs, vacancy and liquid configurations from MD simulations. To

generate the diverse data set, an in-house PyXtal code [129] is used to produce thousands of silicon

structures with various numbers of atoms in the unit cell from 1, 2, 4, 6, 8 to 16. Random space

group (1 to 230) assignment was applied to these silicon structures. For each random structure,

four consecutive geometry optimization steps at the level of DFT with steady increase in precision

were performed. The maximum numbers for each ionic step were 10, 25, 50 and 50. The relaxed

images were then selected to our training pool to represent the shape of PES towards to the energy

minima. With this scheme, it was ensured that not only the minima, but also the configurations

around the minima would be captured during the energy fitting. Afterwards, single-point DFT

62



calculations were carried out for all configurations in the training pool. For each configuration,

the total energy and forces were calculated at DFT level through the ASE package [114]. ASE

provides interface to the VASP code [130] within projector augmented wave methodology [59] to

perform geometry relaxations. In the calculation, the PBE-GGA [127] as the exchange-correlation

functional with an energy cutoff of 600 eV and a Γ-centered KSPACING of 0.15 is used. Finally,

5352 silicon structures (Set #2) were selected by removing structures with energies that are higher

than -4.000 eV/atom (i.e., 1.400 eV/atom higher than the ground states). In total, Set #1 has 15078

atoms, and Set #2 has 31004 atoms. It is important to note that the energy cutoff (600 eV) used in

Set #2 DFT calculations is slightly higher than the one (520 eV) used in Ref. [128]. However, the

differences resulted in negligible results according to the test for the same structures. Therefore,

these two data sets can be used for direct comparison.

As shown in Fig. 4.1, Set #2 covers more diverse atomic environments in terms of energy, force,

and density. Set #1 includes 244 structures that span from -4.560 to -5.425 eV/atom in energy, and

17.56 to 40.89 Å
3
/atom in density. The energy of Set #2 ranges from -4.000 to -5.425 eV/atom,

and the density ranges from 8.295 to 52.81 Å
3
/atom. The force distribution in Set #2 is wider than

that in Set #1. The principal component analysis (PCA) technique is utilized to further assess the

similarity between the two datasets. The projection of two most dominating principal components

are shown in Fig. 4.1. The principal components were fitted with the bispectrum coefficients

mapped from the Set #2 structures. The inset shows that the data points of Set #1 cover mostly

the empty space in the concentrated area. In other words, it appears to be that Set #1 and Set #2

rarely overlap. This indicates that two data sets encompass different atomic environments, which

is expected since two different strategies were employed in generating the atomic configurations.

Therefore, the two data sets are complementary and can be used to cross-validate each other in the

MLP development for Si.

It is important to note that these two sets of data were obtained through entirely different ap-

proaches. Set #1 was not designed to generate an accurate force-field for Si, but rather to compare

different MLPs on a small, standardized data set applicable to several elemental systems (for ex-
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Figure 4.1: (a) The energy versus volume plot for training Set #1 and Set #2. The histograms
of energy and forces are presented in (b) and (c), respectively. (d) The projection of two most
dominating principal components of the atomic bispectrum coefficients. The inset illustrates a
zoom-in view of the concentrated area. In the area, Set #1 is highly concentrated, whereas Set #2
is more widely spread.
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ample only 20 snapshots from ab-initio MD were included into it). In a typical MLP development,

a few thousand or more configurations will be needed for both Gaussian Process [131, 132] and

neural networks regressions [133, 134]. Therefore, the training results from Set #1 are expected to

gain some improvements by employing a larger version Set #1 with the same strategy (e.g., adding

more MD snapshots). However, many other features in the PES will remain missing. Compared

to Set #1, Set #2 covers more energy basins in the PES since it was obtained from an unbiased

and more uniform sampling. For instance, it was found that Set #2 contains the high pressure

β-Sn phase of silicon and many other phases with five- and six-coordinated silicon atoms. While

such atomic environments can also exist in silicon grain boundaries and other types of defects

generated from high temperate MD simulations, the MLP training may not describe these atomic

energetics accurately when it attempts to fit the total energy of the system. Therefore, it is believed

that a MLP with better coverage of the PES landmarks by small structures is more effective for

an accurate modeling of rare events under various conditions (e.g. phase transitions, pronounced

deformations, and chemical reactions). As it will be discussed in the next subsections, fitting on

Set #2 is considerably more challenging than Set #1. While many relatively simple models data

can yield satisfactory errors for Set #1, the overall accuracy for Set #2 is notably lower regardless

the machine learning methods. Therefore, the goal of this work is to fit a Si MLP for general

purposes which can describe Set #2 reasonably well while retaining a similar level of accuracy for

Set #1. Prior to showing this result, the MLP implementation should be verify with Set #1 in the

next subsection.

4.2.2 Verification with the Localized Data Set

In Ref. [128], the authors presented an extensive benchmark for silicon (as well as several other

elemental systems) with different MLP approaches. This provided us a foundation to verify our

MLP implementations by using their data for training and testing. With Set #1, it is necessary to

reproduce the results based on the NNP, SNAP, and quadratic SNAP (qSNAP) methods. To com-

pute the descriptors, the same parameter setting as reported in Ref. [128] was employed, which is
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Table 4.2: The setting used to compute the atom-centered descriptors in this study. The ACSF de-
scriptors are consistent with Ref. [128], except thatRc was set to 4.8 Å for the quadratic regression
in the previous literature. Moreover, bispectrum coefficients with the band limit lmax up to 8 were
considered. The asterisk symbol denotes the reduced parameter set for ACSF descriptors.

Descriptors Parameters Values

G2

Rc (Å) 5.2
Rs (Å) 0
η (Å−2) 0.036*, 0.071*, 0.179*, 0.357*, 0.714*,

1.786*, 3.571, 7.142, 17.855

G4

Rc (Å) 5.2
λ (Å) -1, 1
ζ 1

η (Å−2) 0.036*, 0.071*, 0.179*, 0.357*, 0.714,
1.786, 3.571, 7.142, 17.855

B
Rc (Å) 4.9
lmax 2, 3, 4, 5, 6, 7, 8

Normalization True, False

summarized in Table 4.2. In the original literature, there were 9 G2 and 18 G4 descriptors. A

further inspection was performed to reduced the number of hyperparameters, i.e. the η by con-

structing the histogram of the computed ACSFs of the entire Set #1. Apparently, the descriptors

with large η values span in a very narrow range. Narrow-range descriptors are less likely to dis-

criminate different local atomic environments, and they could introduce numerical noise. There-

fore, the reduced parameter set, which included only 6 G2 and 8 G4 descriptors, are marked with

asterisk symbol. For convenience, the 27 ACSFs descriptors are named as G27, and the reduced

ACSFs descriptors are denoted as G14. For bispectrum coefficient, the expansion is limited to

several finite orders, since the higher indices of l can only be beneficial in detecting subtle signals

on the neighbor density map. In this study, only band limits (lmax) up to 8 are considered. How-

ever, the band limits of 3, 4, and 5 (30, 55, and 91 bispectrum coefficients) will be repeatedly used

here. They are denoted as B30, B55, and B91. There are two additional cases with bispectrum

as the descriptors: normalized and non-normalized. The normalized bispectrum are denoted as
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Figure 4.2: The comparison of fitting between linear and quadratic regression based on the B55
descriptors (lmax = 4) applied to Set #1. For each regression, the energy MAE and force MAE
values were collected by gradually varying the force coefficients from 1e-6 to 1. The numbers of
weight parameters are given in the parentheses. The marked black asterisks correspond the results
when the force coefficient is at 1e-4.

B̂30, B̂55, and B̂91. Correspondingly, the labelings with the regression techniques are NNP+G27

for the neural networks regression with G27 descriptors, LR+B55 for linear regression with B55

descriptors, and QR+B55 for quadratic regression with B55 descriptors.

For the cases of linear and quadratic regressions, the results are deterministic as long as the

force coefficient in Eq. 2.74 is given. Fig. 4.2 displays the gradual changes of mean absolute error

(MAE) values for energy and forces by varying the force coefficient (β) from 1e-6 to 1e+0 for both

LR+B55 and QR+B55. For each regression, these points seem to form a Pareto front. Namely,

there is no single point which can beat the other points in both energy and force MAE values. Here,

a range from the Pareto front which leads to an approximately even change on other sides is chosen.

This point corresponds to the force coefficient closest to 1e-4. When β=1e-4, B55+LR yields the
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Figure 4.3: The performance of neural networks regression on G14 and B30 as a function of weight
parameters. For comparison, the results from linear and quadratic regressions are also included.

MAE values of 6.94 (6.28) meV/atom for energy and 0.11 (0.12) eV/Å for force in training (test)

data set. For B55+QR, the results gain significant improvement. The final energy MAE value is

2.50 (2.21) meV/atom, and the force MAE value is 0.06 (0.08) eV/Å. The results are expected

since the quadratic form allows the coupling of bispectrum coefficients [37]. However, the number

of weight parameters also increases notably from 56 to 1596, which increases the computational

cost for both FF training and prediction.

For NNP+G27, the NNP fitting with neural networks architecture of 27-24-24 was tested. The

predicted MAE values are 5.65 meV/atom in the training dataset and 5.60 meV/atom in the test

dataset. The metrics are close to the previously reported values: 5.88 and 5.60 meV/atom in Ref.
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Table 4.3: The comparison of mean absolute error (MAE) values between this work and Ref. [128]
for the same 244 Si data set (Set #1). The results from Ref. [128] are shown in parentheses. For
LR+B55 and QR+B55, the results are shown when force coefficient is at 1e-4. For the NNP fitting,
neural networks architectures of 27-24-24 and 14-12-12 were used.

Fitting Train Energy Test Energy Train Force Test Force
Method (meV/atom) (meV/atom) (eV/Å) (eV/Å)
LR+B55 6.94 (6.38) 6.28 (6.89) 0.11 (0.21) 0.12 (0.22)
QR+B55 2.50 (3.98) 2.21 (3.81) 0.06 (0.18) 0.08 (0.17)

NNP+G27 5.65 (5.88) 5.60 (5.60) 0.09 (0.12) 0.11 (0.11)
NNP+G14 5.95 6.33 0.10 0.11

[128]. Our force MAE values are 0.095 and 0.106 eV/Å, agreeing with the previous report as well.

Furthermore, reduced ACSFs as the descriptor were employed to the NNP fitting (NNP+G14). It

is found that the training with NNP+G14 also yielded comparable metrics. This indicated that the

removed ACSFs descriptors were indeed redundant, and they can cause numerical noise during

the NNP training. Correspondingly, an adjustment to training strategy was made to investigate the

impacts of hyperparameters on the NNP training. In contrast to linear regression, the NNP training

is much less vulnerable to the choice of force coefficient since the NNP can compromise for more

flexible functional forms. It is rather reliant to the hidden layer size. Fig. 4.3 shows the energy

MAE values scanning across the hidden layer sizes for NNP+G14 with β fixed at 0.03. Overall

picture suggests that NNP performances tend to improve as the NNP model becomes more flexible.

However, the NNP accuracy will saturate at some point. Beyond the saturation point, increasing

the hidden layer size will only raise the computational cost and lower the chance of finding optimal

weight parameters. The results from QR+B14 yields better performance than NNP with the same

number of parameters. In principle, NNP should be able to self-learn a model similar to QR with

the same number of weight parameters. However, different NNP trainings from different initial

random guesses may yield somewhat less optimal solutions. This practice suggests that quadratic

regression can be an alternative approach when the descriptor size is relatively small.
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The results of verification with different training strategies are summarized in Table 4.3. Com-

pared to Ref. [128], our results are close or maybe slightly better, especially in the force perfor-

mances for generalized linear regression. Therefore, further investigations can be carried out on

Set #1 by using different strategies.

4.2.3 Bispectrum Coefficients & Algorithms Interplay

In this section, MLP fitting with bispectrum coefficients will be discussed in details by using

both generalized linear and neural networks regressions on Set #1. First, the performances of

generalized linear regression can be improved based on the normalization factor of bispectrum

coefficients prior to the MLP fitting. In the original implementation of SNAP [36], the bispectrum

coefficients are not normalized prior to the MLP fitting. However, Fig. 4.4 shows the benefits

of normalization prior to the MLP fitting. Linear regression achieves better performances for both

energy and forces as lmax increases. At lmax > 5, there are no significant gains in the MAE values as

the computational cost increases. The insignificance of normalization can be due to the limitation

of linear regression ability to express the complexity.

Second, Fig. 4.3 shows the overall NNP fitting with bispectrum coefficients as the inputs to the

neural network architecture. The results of NNP+B30 are trained with different hidden layer sizes.

The best accuracy is achieved with the hidden layer size of [24, 24]. The 30-24-24 architecture con-

sists of 1369 parameters in total. The training MAE values are 3.18 meV/atom and 0.07 eV/Å, and

the test MAE values are 3.54 meV/atom and 0.08 eV/Å. These metrics reach comparable values

to that from QR+B55 (see Table 4.3) with less bispectrum coefficients. For reference, linear re-

gression and quadratic regression results with the corresponding number of bispectrum coefficients

are also marked in Fig. 4.3. NNP with bispectrum coefficients can gain notable improvements in

comparison to linear regression and quadratic regression. The improvements are expected since

neural networks allows more flexible functional forms to describe the deviation from linearity.

Meanwhile, quadratic regression achieves significant improvement in accuracy compared to linear

regression due to the extended polynomial forms. However, similar accuracy can be attained with
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Figure 4.4: The performance of linear regression based on the bispectrum coefficients without (a)
and with normalization (b). In each plot, lmax values from 2 to 8 were considered. The number of
descriptors are given in the parenthesis.
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Table 4.4: The MAE values of the predicted energy and forces of Set #2 by training on Set #1. The
30-10-10 is used as the neural networks architecture for providing comparable weight parameters
as the quadratic regression. The numbers inside parentheses are the test MAEs.

Neural networks LR QR
Energy (meV/atom) 4.7 (70) 7.5 (110) 4.0 (265)
Force (eV/Å) 0.08 (0.13) 0.12 (0.15) 0.08 (0.21)
Number of parameters 431 31 496

NNP fitting with smaller number of weight parameters.

4.2.4 Transferability of the MLP from a Localized Dataset

PyXtal FF has the ability to apply various descriptors and regression techniques to train MLPs with

satisfactory accuracy (<10 meV/atom in energy MAE and <0.15 eV/Å in force MAE) on Set #1.

From computational perspective, bispectrum coefficients can cover more orthogonal sets and are

easier to be expanded. Therefore, the bispectrum coefficients will be used as the main descriptors

from now on. Using the MLP trained on Set #1, the prediction power on Set #2 (the more diverse

data set) will be validated. The models include NNP with 30-10-10 architecture (431 parameters,

with β at 0.03), linear regression (31 parameters), and quadratic regression (528 parameters). The

three scenarios use normalized bispectrum coefficients with lmax of 3, as normalized bispectrum

coefficients suggest slight accuracy improvement. Table 4.4 summarizes the results. In general,

the prediction power of the MLP on Set #2, especially in energy, is still poor, though the force

errors are acceptable. It is not surprising as the machine learning ability in extrapolation is known

to be poor. The performance of the MLP yields great accuracy based on the given training data set.

The characteristic of atomic environments of Set #2 is too broad and most of the data points lay

outside of the Set #1. Therefore, the predicted energy and force are no longer reliable.

Despite the unsatisfactory accuracy, some insights can be gained from this numerical exper-

iment. Neural networks regression can achieve better transferability in comparison to linear and
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quadratic regression. Although the quadratic regression yields the best accuracy in training (3.99

meV/atom in energy and 0.08 eV/Å) in force, it also produces the largest error on the test set. On

the contrary, neural networks regression achieves a similar level of accuracy on the training (4.70

meV/atom in energy and 0.08 eV/Å), but the errors on the test set (69.8 meV/atom energy MAE

and 0.13 eV/Å force MAE) are much smaller. This can be partially explained by the fact that

neural networks adopts more flexible functional forms during fitting.

4.2.5 Training with Data from Random Structure Generator
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Figure 4.5: The performance of trained MLP on Set #2.
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For the sake of data diversity, it is more natural to train the MLP based on Set #2, and test its

performance on Set #1. To train reliable MLP on Set #2, more bispectrum coefficients are em-

ployed with a larger neural networks architecture. In addition, polynomial fittings are included for

the purpose of comparison. In the end, the trained NNP will be tested on Set #1. For polynomial

regression, lmax at 5 with cutoff radius of 4.9 Å was applied. According to Fig. 4.4, normalizing

the bispectrum coefficients had negligible effect on the results. Hence, normalization was ignored.

The β value was fixed at 1e-4 for quadratic regression, and 1e-3 for linear regression. The neu-

ral networks architecture of 91-34-34 was used to give a comparable weight parameters as the

quadratic regression.

Fig. 4.5 summarizes the results of Set #2 training. In term of energy, quadratic regression

performs the best accuracy (5.90 meV/atom), whereas NNP can predict less accurate energy (9.81

meV/atom) but better forces (0.08 eV/Å). It should be emphasized that Set #2 contains smaller

unit cell (1-16 atoms in a unit cell) than Set #1 (up to 64 atoms in a unit cell). This transition

from smaller to larger cells can introduce long-range effects that were not accounted for in the

training [135]. Therefore, the MAE values on the test set are consistently larger than the training

set. Furthermore, Set #1 may contain some manually-selected atomic configurations. These con-

figurations may not be fully covered by our random generated structures. While linear regression

predicts well on the forces, it guides the energy predictions to unsatisfactory results. This may due

to the limitation of the regression technique as the smaller number of parameters fail to describe

the true PES. Therefore, our recommendation is to use either quadratic regression (similar to the

recently proposed qSNAP method [37]) or neural networks for a better fitting of a diverse dataset.

Compared to the quadratic regression, neural networks is our preferred choice due to its flexibility.

In comparison to literature, this study yields comparable results as a previous study of diverse

silicon cluster [136]. The authors juxtaposed among several atom-centered descriptors, including

bispectrum coefficients, that were coupled with Gaussian process regression. In particular, the

root mean square errors (RMSEs) for energy and forces with lmax at 5 are 20.2 meV/atom and

0.25 eV/Å. Meanwhile, the training RMSEs of our quadratic regression yield 9.7 meV/atom and

74



0.22 eV/Å and the training RMSEs of 91-34-34 architecture are 14.8 meV/atom and 0.16 eV/Å.

In another study, Kuritz et al. focuses on training atomic forces using deep learning model with

the environmental distances as the descriptors. The force predictions are performed at a scaling

from 16 atoms to 128 atoms yields MAE of 0.12 eV/Å [135], given that the neural networks nodes

are in the order of 103/layer. This phenomenon proves that the choice of descriptor can reduce the

complexity of MLP.

Table 4.5: Comparison of different machine learning potentials of Si shown in RMSE values.

QR Neural networks GPR[136] DL[135]
Energy (meV/atom) 9.7 14.8 20.2 N/A
Force (eV/Å) 0.22 0.16 0.25 0.12

4.2.6 Physical Properties

One of the critical requirements for MLPs is to predict basic material properties, including but not

limited to lattice parameter, elastic constants, and bulk moduli of diamond cubic Si. To obtain the

elastic constants, the stress-strain relation are computed and fitted the relation to a set of linear

equations built from the symmetry. For each applied deformation, the geometry of the structure

are optimized to gain net force of zero. The summary of the properties is tabulated in Table 4.6.

First, it is crucial to validate on Set #1. On the column of Set #1 in Table 4.6, the performances

of the MLPs are presented with different training strategies: energy-force linear regression (EF-

LR), energy-force-stress linear regression (EFS-LR), energy-force quadratic regression (EF-QR),

energy-force-stress quadratic regression (EFS-QR), energy-force neural networks (EF-NN), and

energy-force-stress neural networks (EFS-NN). All of the training involved bispectrum coefficients

as the descriptor. Linear and quadratic regression used bispectrum coefficients with lmax of 4,

whereas neural networks used lmax of 3. Here, the neural network architecture of 30-10-10 was
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used. Moreover, EF were trained with DFT energy and forces only as the reference values, while

EFS included the DFT stress information in the training. Without stress involvement, the quadratic

regression performances are the closest to the DFT values. Seemingly, linear and neural networks

regressions fail to extrapolate the C12. However, the C12 values tend to get closer to the DFT with

tiny sacrifice in accuracy of C11, when stress is involved.

Second, without stress information, linear and quadratic regression are considered to be more

transferable in predicting the physical properties on Set #2. Evidently, linear regression gains no

prominent refinement without trade-off between elastic constants as stress information is added.

However, the values are the closest to the experimental values. On the other hand, quadratic

regression exhibits accuracy boosts in C11 and the lattice constants in comparison to the DFT. As

stress training is employed, NNP seems to benefit the most in term of transferability. Consequently,

it is crucial to include stress tensors during the training of NNP.

4.2.7 Discussion

Training dataset. In general, MLP lacks extrapolative ability, unlike the traditional force field

method. The training data set plays an extremely important role in MLP development. A more

complete data set can grant the trained MLP with more powerful predictive ability. The use of

randomly pre-symmeterized crystal structures is able to produce a data set with highly diverse

atomic distribution [129, 132, 139]. In this work, the training dataset from crystal structure predic-

tion techniques was prepared. However, several recent works demonstrated the MLP can be also

trained on-the-fly [94, 132]. In addition to generating random structures, advanced sampling tech-

niques such as metadynamics [35, 140] and stochastic surface walking [133] have also been used

to provide the training data for MLP development. In general, each method focuses on different

aspects of the PES. For instance, the surface walking method may work better in describing the

transition path between different low energy configurations, while random structure generation of-

fers more energy basins of the PES. On the other hand, metadynamics method excels at describing

the liquid and amorphous states. At the moment, it remains challenging in obtaining a universal
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Table 4.6: The experiment elastic constants [137] of cubic-diamond silicon are shown at zero-Kelvin values, while the DFT data are
obtained from Ref. [128]. In comparison to the Gaussian approximation potential (GAP) of Si[138], the GAP results is shown below.
The numbers of weight parameters are displayed in parentheses. EF and EFS stands for energy-force and energy-force-stress training.
LR, QR, and neural networks are linear, quadratic, and neural network regressions, respectively. The neural networks architecture for
Set #1 is 30-10-10 and 91-34-34 for Set #2.

Set #1 Set #2
Exp DFT GAP EF-LR EFS-LR EF-QR EFS-QR EF-NN EFS-NN EF-LR EFS-LR EF-QR EFS-QR EF-NN EFS-NN

(56) (56) (1596) (1596) (431) (431) (91) (91) (4371) (4371) (4353) (4353)
a(Å) 5.429 5.469 — 5.467 5.466 5.462 5.467 5.473 5.468 5.415 5.469 5.503 5.468 5.509 5.467

C11(GPa) 167 156 153 153 151 149 152 157 154 137 167 173 158 167 153
C12(GPa) 65 65 56 100 62 60 57 96 58 76 73 55 55 128 57
C44(GPa) 81 76 72 69 70 75 75 66 68 73 85 81 71 43 76
BV RH(GPa) 99 95 89 118 92 90 89 117 90 96 104 94 89 141 89
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MLP to fully replace DFT simulation for general purpose [138]. Given the increasing power of

regression techniques such as deep learning [103, 141], it will be interesting to know if a MLP

can ultimately achieve the DFT accuracy by considering all training configurations from different

sampling techniques.

Fitting scheme. Linear regression, as the simplest method in curve fitting, has been used in

developing several MLPs [36, 39]. In particular, the MTP approach [128] can predict energy and

forces with great accuracy while maintaining acceptable computational cost. The advantage of

linear regression method lies in its simple algorithm which provides easy and fast computation.

It should be emphasize that by applying normalization to the atom-centered descriptors can help

improving the linear regression training. Despite the simplicity, linear/quadratic regressions are

usually sensitive to the noise in the data set. In this work, neural networks regression is the focus,

since it has more flexibility, which can yield better accuracy. Compared to the linear/quadratic

regressions, including stress training in NNP is critical to promote the transferability. Beside neural

networks, some non-parametric regression techniques, such as Gaussian Process Regression, have

also been proved to be efficient in MLP development [41]. However, this is beyond the scope of

the current study.

Applicability. For the purpose of MD simulation around the equilibrium state, fitting the MLFF

with a localized data set generated from MD simulation is, perhaps, sufficient. However, the

primary goal of this work is to generate high quality silicon MLP for a more general purpose,

which requires a complete description of PES for a given chemical system. As discussed above,

the MLP trained with Set #2 is generally capable of describing the entire PES of crystalline system

better. We expect that the MLP generated in this work can be used to replace DFT simulation in

predicting the structures of crystalline silicon, given that similar works have been done in several

elemental systems [94, 132]. Yet, one needs to keep in mind that the quality still depends on the

coverage of training data set. For instance, additional data is needed to enable predictions for

surfaces and clusters [138], including liquid and amorphous configurations. Moreover, the trained

MLP may not be able to describe the high energy configurations well, since Set #2 only contains
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structures with energy less than 1.400 eV/atom from the ground state. It was found that some

nonphysical configurations (e.g., short distances and overly clustered) may be favored under high

temperature MD simulations. In this case, it is useful to either add a few explicit two-body and

three-body terms to prevent the nonphysical configurations [131], or include some highly strained

configuration in the training. Therefore, the the combination between the physical and machine

learning terms in the training can be further prove and investigate for the applicability.

4.2.8 Summary

In conclusion, a systematic investigation of MLPs fitting for elemental silicon using PyXtal FF has

been presented. The silicon MLPs are developed by implementing different regression techniques

based on ACSFs and bispectrum coefficients as the descriptors. The MLPs trained with Set #1

(the localized data set) can be described accurately in both energy and forces using generalized

linear regression and neural networks based on both descriptor choices. Among the MLPs, fitting

NNP with the bispectrum coefficients is the most favorable option. This is due to the expansion of

bispectrum coefficients is more straightforward than ACSF descriptors. In addition, NNP provides

more flexible framework in which the functional form can be easily adjusted by adding/reducing

the size of weight parameters. For Set #2 generated from random symmetric structures, the NNP

fitting with bispectrum coefficients achieves accuracy at 9.8 meV/atom for energy and 80 meV/Å

for force, which is comparable to the current state of arts based on other approaches.

4.3 Ni-Mo

In this section, the computational costs will firstly be compare for bispectrum and power spectrum

descriptors as a function of the hyperparameters.The accuracy of each representation in relation to

both the number of descriptors and its computational cost will be then investigated by regressing

on energies, forces, and stresses of a representative binary alloy Ni3Mo/Ni4Mo system using linear

regression. Last, a more flexible neural network regression model will be introduced to improve

the accuracy of fitting on the extended Ni-Mo dataset within a larger chemical space.
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4.3.1 Dataset

In parallel to force field fitting, generating a diverse training data set is also a challenging task.

Recently, there is an increasing trend for research groups to share their own data to the entire

MLIAP community. Thanks to this trend, the examination of the dataset from a recent work by Li

et. al. [90] will be conducted in this study.

There are 4019 atomic configurations for elemental Ni, elemental Mo, Ni3Mo alloys, Ni4Mo

alloys, and doped Ni-Mo alloys. The dataset consists of (1) undistorted ground state structures for

Ni, Mo, Ni3Mo, and Ni4Mo, (2) distorted structures obtained by applying strains of −10% to 10%

at 1% intervals to a bulk supercell, (3) surface structures of elemental structures, (4) snapshots

from ab initio molecular dynamics simulations of the bulk supercell at several temperatures, (5)

doped alloy structures constructed by partial substitution of the bulk fcc Ni with Mo and the bulk

bcc Mo with Ni. In addition, a dataset on Mo from Ref. [142] will be added to the Ni-Mo dataset.

For the computation of each descriptor below, a uniform cutoff distance of 4.9 Åwas applied.

4.3.2 Computational Cost Comparison

This subsection will start with evaluating the computational cost of the SO(4) bispectrum compo-

nents and the Smooth SO(3) power spectrum components, which requires some measure of the cost

of each method. By far, the gradient is the most expensive part of the calculation so we estimate

the cost of each method by the accumulation of the gradient for one neighbor. The cost function

for each method is evaluated by the asymptotic cost of accumulating the gradient plus the cost of

precomputing the expansion coefficients and their gradients for a given truncation.

For the SO(4) bispectrum components the cost of precomputation is equivalent to the number of

Wigner-D matrix elements to evaluate,
∑2jmax

j=0 (j+1)2, where for the smooth SO(3) power spectrum

the cost of precomputation is equal to the number of Wigner-D matrix elements to evaluate, (lmax +

2)2, added to the number of radial functions to evaluate for the quadrature (Eq. 4.2), to compute

each integral, we use 10(n+ l+ 1) quadrature nodes. In the implementation, the cost of evaluating

the radial functions is less than that of evaluating the D-functions. Nevertheless, the cost model
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are treated as equal for the sake of simplicity.

cost = costaccum + costprecomputation (4.1)

Therefore, the estimate the computational cost of each descriptor works as follows,

SO(4): j5max +

2jmax∑
j=0

(j + 1)2

SO(3): n2
maxl

2
max +

[
(lmax + 2)2 +

nmax∑
n=1

lmax∑
l=0

10(n+ l + 1)

] (4.2)

The cost of each descriptor is then compared with the number of elements of that descriptor.

The number of unique elements of each descriptor are given by:

NSO(4) = (jmax + 1)(jmax + 2)(jmax + 3/2)/3

NSO(3) = nmax(nmax + 1)(lmax + 1)/2

(4.3)

Fig. 4.6 is the plotted computational cost given by Eq. 4.2 with respect to the number of descriptors

(Eq. 4.3) for both SO(4) bispectrum and SO(3) power spectrum.

As shown in Figure 4.6, the SO(4) bispectrum components are much less costly than the

Smooth SO(3) power spectrum components in the low band limit (N ≤ 30). At higher band

limits, including more terms in the radial expansion of the smooth SO(3) power spectrum results

in a less costly computation in comparison to the SO(4) bispectrum components.

4.3.3 Linear regressions on Ni4Mo and Ni3Mo

A subset of data from Ni-Mo dataset, which includes 642 atomic configurations only in the Ni3Mo

and Ni4Mo stoichiometries, is utilized to evaluate the performance of the two descriptors. Linear

regression is fitted to this data for each representation using a set of descriptors obtained through

different hyperparameters in Eq. 4.2, while varying the coefficients of force’s contribution to the

total loss function.
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Figure 4.6: The computational cost of the SO(4) bispectrum descriptor and the smooth SO(3)
power spectrum descriptor versus the total number of elements of that descriptor. The smooth
SO(3) power spectrum is also colored according to the number of radial components in the expan-
sion.

The results of these regressions are shown in Figure 4.7. Clearly, there is a general trend that

both SO(3) power spectrum and SO(4) bispectrum can continuously achieve better accuracy with

the inclusion of more components, although at high bandlimits that increased accuracy becomes

marginal. In addition, the results show that high bandlimit fits vary less with respect to the change

of force coefficient, indicating a convergence of the regression. However, a full convergence at

high bandlimits results an in incredibly expensive calculations. In real applications, it is generally

advised to choose a smaller bandlimit. For the SO(4) bispectrum components, holding the trun-

cation of jmax = 3 is a rather common choice [128, 90, 143]. A more detailed analysis regarding

the cost of computing the SO(4) bispectrum components with respect to jmax can be found in Ref.

[37]. Therefore, the aim is to for a better solution through investigating the smooth SO(3) power

spectrum.
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Figure 4.7: Linear regressions of both the SO(4) and SO(3) representations with varying numbers
of components. The force coefficients used fall between 1e-6 and 1e+0 with most points falling
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Although both descriptors yield satisfactory accuracy on the Ni3Mo/Ni4Mo data set, it is dif-

ficult to maintain the same level of accuracy when extending the training dataset with other sto-

ichimetries (e.g., elemental Ni/Mo) for the regression. In principle, one can improve the regression

by tuning force and stress coefficients, applying regularization, and adopting a nonuniform weight

scheme on each sample [37, 90]. However, a more automated approach to dealing with large data is

to employ a more flexible regression model such as NN regression to be presented in the following

subsection.

4.3.4 Neural network regressions on Ni-Mo alloys

When dealing with a large amount of data, linear regression requires very fine tuning of hyper-

parameters to achieve acceptable accuracies. To achieve these accuracies, optimization schemes

are adopted to adjust hyperparameters such as descriptor size, specie weights, cutoff radii, and

nonuniform data weighting so that obtaining an optimal fit requires many training cycles [37, 90,

142]. Neural network regression provides a more automated approach to achieve greater accuracy

on larger datasets without the need for high bandlimit descriptors or heavy hyperparameter opti-

mization. In this study a small set of descriptors (30) is applied to train a MLP for the entire Ni-Mo

dataset consisting of over 4000 structures to satisfactory accuracy through a simple feed forward

neural network consisting of two hidden layers of 16 neurons each. For a fair comparison, two sets

of descriptors are prepared: (1) the bispectrum components with jmax = 3; and (2) the smooth SO(3)

power spectrum components with lmax = 4 and nmax = 3. To ensure that the results can describe

elastic deformation well, virial stress contribution is included in the training. Correspondingly, the

hyperparameters β, γ, and λ for the evaluation of the loss function (Eq. 2.74) are set to 3e-3, 1e-4,

and 1e-8 in all subsequent neural network runs.

Table 4.7 lists the training results in terms of energy and force for all three models. In the

previously reported linear SNAP model [90], the overall fitting results are 22.5 meV/atom in energy

MAE, and 0.23 eV/Å. Clearly, both neural networks models are able to yield significantly better

results ( 6 meV/atom for energy and 0.08 eV/Å for force) than the previous reported linear model.
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Table 4.7: Comparison of the spectral Neural networks models’ MAE values from different descriptors. For reference, the previous
NiMo model trained from SNAP [90] is also included. Note that in the SNAP model [90], only 247 Mo structures were used for
training. In this work, the elastic configuration data are replaced with the data set from Ref. [142]. The parentheses gives the number of
configurations for each group.

Properties Descriptor jmax lmax nmax Architecture Mo Ni MoNi NiMo Ni3Mo Ni4Mo Overall
(377) (414) (918) (1668) (321) (321) (4019)

Energy
(meV/atom)

SO(4)[90] 3 Linear Reg. 16.2 7.9 22.7 33.9 5.2 4.0 22.5
SO(4) 3 30-16-16-1 6.2 7.3 5.6 6.1 6.1 6.4 6.1
SO(3) 4 3 30-16-16-1 6.3 3.6 6.2 6.7 4.9 4.6 5.9

Force
(eV/Å)

SO(4)[90] 3 Linear Reg. 0.29 0.11 0.13 0.55 0.16 0.14 0.23
SO(4) 3 30-16-16-1 0.19 0.07 0.06 0.10 0.10 0.09 0.10
SO(3) 4 3 30-16-16-1 0.18 0.04 0.06 0.10 0.09 0.07 0.08
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Notably, the linear regression also reports drastically lower accuracy in both energy and force for

the MoNi/MoNi sets, suggesting that the elemental Ni/Mo and Ni3Mo/Ni4Mo portions of the data

were weighted much higher in the regression. In particular, the 1668 NiMo set, occupying the

largest percentage of the data, has a energy MAE of 33.9 meV/atoom and force MAE of 0.55

eV/Å. As such, the predictability of linear SNAP model is likely to be limited in describing the

configurations in the vicinity of the MoNi/MoNi alloys. In contrast, the neural network regressions

do not need a special weighting scheme. The models from both SO(4) bispectrum and SO(3) power

spectrum yield not only lower energy and force errors for the overall fitting. The energy/force

errors for each group are also more evenly distributed.

The elastic tensor is another important metric to check if the trained MLPs are able to reproduce

the fine details of the PES on the representative basins. To ensure a satisfactory fitting to the elastic

properties, training on the stress tensors for the elastic configurations from the previous works

[90, 142] is included. Table 4.8 shows the predicted elastic properties from each model for the

ground state structures of BCC Mo, FCC Ni, Ni3Mo, and Ni4Mo. In agreement with the previously

reported linear SNAP model [90], the elastic data predicted by each MLP agrees with the reported

DFT result within similar levels of accuracy across all four ground state structures. In the previous

work, it is likely that the authors adjusted the weight for each group of structures in order to achieve

a better fit in the elastic properties at the expense of accuracy in energy and force. However, these

neural networks regressions can circumvent this trade-off by using a more flexible expression in

describing the target properties (energy, force, stress tensor) in fitting. As such, the neural networks

models can yield greater accuracy with respect to energy and force while maintaining accuracy in

elastic properties all without the need for heavy hyperparameter optimization.

Last, it is also of interest to compare the performance of fitting between the SO(4) bispectrum

and smooth SO(3) power spectrum models. In the previous section, it is clear that SO(3) is superior

to SO(4) in the context of linear regression. However, this is no longer the case for neural network

regression. With the same number of descriptors (30), both NN models yield very similar levels

of accuracy. In terms of elastic properties prediction, the SO(4) model seems to be slightly better
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Table 4.8: Comparison of elastic properties predicted from several different models for Ni-Mo
dataset. B and G denote the empirical Voigt-Reuss-Hill average of bulk and shear moduli respec-
tively. ν is the Poisson’s ratio.

DFT SNAP[90] SO(4) SO(3)
σ(MAE) (GPa) N/A 0.295 0.289
Mo
c11 (GPa) 472 475 487 479
c12 (GPa) 158 163 153 168
c44 (GPa) 106 111 108 82
B (GPa) 263 267 265 271
G (GPa) 124 127 129 106
ν 0.30 0.29 0.29 0.33
Ni
c11 (GPa) 276 269 275 271
c12 (GPa) 159 150 162 150
c44 (GPa) 132 135 137 120
B (GPa) 198 190 199 188
G (GPa) 95 97 96 88
ν 0.29 0.28 0.29 0.30
Ni3Mo
c11 (GPa) 385 420 426 402
c22 (GPa) 402 360 354 382
c33 (GPa) 402 408 379 394
c12 (GPa) 166 197 159 159
c13 (GPa) 145 162 133 109
c23 (GPa) 131 145 208 173
c44 (GPa) 58 N/A 54 70
c55 (GPa) 66 N/A 68 52
c66 (GPa) 94 84 79 58
B (GPa) 230 243 240 229
G (GPa) 89 100 80 80
ν 0.33 0.32 0.35 0.34
Ni4Mo
c11 (GPa) 313 326 319 343
c33 (GPa) 300 283 294 293
c12 (GPa) 166 179 166 160
c13 (GPa) 186 164 199 193
c44 (GPa) 130 126 136 131
c66 (GPa) 106 N/A 102 113
B (GPa) 223 220 221 222
G (GPa) 91 95 96 102
ν 0.33 0.31 0.31 0.30
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than SO(3) though SO(3) generated a slightly lower MAE value for stress tensors overall. It is

important to note that each neural networks training follows a stochastic optimization process. So

each time, it may generate slightly different results. Hence the comparison is not definitive. From

the point view of computational cost, computing the 30 bispectrum components is less expensive

than computing the same number of power spectrum components. Therefore, it is fair to conclude

that two descriptors are competitive for the application of neural networks regression.

4.3.5 Summary

First, the computational cost of bispectrum components and smooth power spectrum has been eval-

uated as the SO(3) power spectrum are much costly than the SO(4) bispectrum components at low

band limit (N ≤ 30). However, more term on the radial expansion of the SO(3) power spectrum

gives lower cost in comparison to the SO(4) bispectrum compoenents when higher band limit is

considered. Using these descriptors to fit machine learning interatomic potentials for a small set

of Ni-Mo stoichiometries within a narrow chemical composition space, both descriptors are able

to yield satisfactory accuracy within the framework of linear regression. However, the linear re-

gression is not easily extended to fit a more diverse data set from a larger chemical composition

space and even then accuracy can still be lacking without hyperparameter optimization such as de-

scriptor size, specie weights, cutoff radii, and nonuniform data weighting. Hence, neural networks

regression paired with the SO(4) bispectrum components or the smooth SO(3) power spectrum

components can provide a better trained model without the need for large band limit descriptors

or heavy hyperparameter optimization. The validity of the trained models are further supported by

the accuracy of elastic property calculations. Last, the SO(3) power spectrum descriptor clearly

exhibits better agreement with the total energy than the SO(4) bispectrum components, thus it is a

better choice for linear regression. However, when adopted to the neural networks regression, both

descriptors tend to yield the same level of accuracy.
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Figure 4.8: The correlation plots between NNP and DFT for (a) energy and (b) forces in the HEA
system. The energy MAE values are 6.69 meV/atom and 7.57 meV/atom for training and test sets,
while the force MAE values are 0.14 eV/Å and 0.17 eV/Å.
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4.4 High Entropy Alloy

High entropy alloys (HEAs) are systems that encompass four or more equimolar/near-equimolar

alloying elements. It has been shown that HEAs carry many interesting properties such as high

hardness and corrosion resistance [144, 145]. Due to the high computational cost of DFT method,

HEA serves as a great example in MLP development with PyXtal FF. Here, NbMoTaW HEA will

be used as an example [146], which are comprised of elemental, binary, ternary, and quaternary

systems. Each of the elemental systems has their ground state, strain-distorted, surface, and AIMD

configurations. The binary alloys are composed of solid solution structures with the size of 2 ×

2 × 2 supercell. Lastly, 300 K, 1000 K, and 3000 K AIMD configurations along with special

quasi-random structures establish the ternary and quaternary data points. The total structures used

in developing the MLP are 5529 configurations for training set and 376 configurations for test set.

In the original work [146], SNAP based on the linear regression predicted that the MAE values

for energies are 4.3 meV/atom and 5.1 meV/atom for the training and test sets, and the MAE values

in forces are 0.13 eV/Å and 0.14 eV/Å. The results demonstrated a quite satisfactory accuracy

comparable to the quantum calculation. However, it needs to be noted that the energy training

in Ref. [146] was based on the comparison of formation energy relative to the elemental solids,

which spans from -0.193 to 0.934 eV/atom for the entire dataset, whereas the atomic energy spans

from -12.960 to -9.502 eV/atom. Training with the energy in a normalized range can surely reduce

the error of fitting. However, this fitting method does not fully solve the force field prediction

problem since it relies on some DFT reference data. Therefore, the linear regression model to fit

only the absolute DFT energy based on the same descriptor as used in Ref. [146] was attempted

to be reproduced. The resulting MAE values are 944 meV/atom and 6.329 eV/Åfor energy and

force when the force coefficient is 10−4. Furthermore, the MAE values of formation energy fitting

yield remarkable improvement of 22 meV/atom and 0.243 eV/Åfor energy and force, respectively.

Despite this improvement, the accuracy is insufficient. Perhaps, it is due to lack of fine tuning of

hyperparameters, such as atomic weights and cutoff radii for each species.
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Table 4.9: Comparison of physical properties predicted with SO3-NNP. The DFT and experiment
values are obtained from Ref [146]. B and G denote the empirical Voigt-Reuss-Hill average bulk
and shear moduli. ν is the Poisson’s ratio. The DFT results were taken from open database of
Materials Project [19].

C11 C12 C44 B G ν
(GPa) (GPa) (GPa) (GPa) (GPa)

Mo
DFT 472 158 106 262 127 0.30
Ref[146] 435 169 96 258 110 0.31
NNP 453 161 107 259 121 0.30
Nb
DFT 233 145 11 174 24 0.45
Ref[146] 266 142 20 183 32 0.42
NNP 255 130 -3 171 N/A 0.47
Ta
DFT 265 158 69 194 63 0.35
Ref[146] 257 161 67 193 59 0.36
NNP 280 165 72 203 66 0.35
W
DFT 510 201 143 304 147 0.29
Ref[146] 560 218 154 332 160 0.29
NNP 527 196 143 306 151 0.29
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To obtain a better accuracy, it is natural to employ a model with more flexibility such as NNP.

The NNP will be trained to fit the absolute DFT energy and forces with the smooth SO(3) power

spectrum as the descriptors, which are formed by nmax=4 and lmax=3 with 40 components in total

up to the cutoff radius of 5.0 Å. The NNP training is executed with 2 hidden layers with 20 nodes

for each layer while energy, force, and stress contributions are trained simultaneously. The impor-

tance coefficients of force and stress are set to 10−3 and 10−4, respectively. The results of the NNP

training is illustrated in Figure 4.8. The NNP energy MAE values for the training and test sets

are 6.69 meV/atom and 7.57 meV/atom, and the NNP force MAE values are 0.14 eV/Å and 0.17

eV/Å. In addition, the MAE value of stress for training set is 0.078 GPa. Our results of energy

and force yield worse performance compared to the previous report. Nevertheless, our NNP model

offers a more general representation of the DFT PES since it does not rely on any prior reference

values (i.e. formation energy relies on prior reference values).

Furthermore, Table 4.9 shows the physical properties calculations such as elastic constants,

bulk and shear moduli, and the Poisson’s ratio of the cubic elemental crystals. From the table, the

overall performances of NNP in predicting the physical properties are reasonable, except that the

C44 value of Nb is negative. However, this is consistent with the fact that the DFT’s C44 is also

significantly lower than other terms. Hence, the negative C44 is acceptable if one considers the

noise of stress data in training. Meanwhile, the C44 value may be remedied by providing additional

training dataset focusing on the shearing effect of Nb, increasing the importance of the stress

coefficient, or increasing the hidden layer size in the NNP training. In addition, SO3 descriptor

can be conveniently expanded in terms of both radial basis (nmax) and angular momentum (lmax)

for achieving better overall accuracy.

In summary, linear regression model has applied to the absolute energy and forces on NbMoTaW

HEA dataset, while unsatisfactory results were obtained at 944 meV/atom and 6.329 eV/Åfor

energy and force, respectively. Despite the major improvement, fitting to the formation energy

and forces with linear regression results in insufficient performances at 22 meV/atom and 0.243

eV/Åfor energy and force, respectively. The discrepancies in results with the original study [146]
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can be due to the lack of hyperparameters optimizations. Hence, the neural networks model with

SO(3) power spectrum as the descriptors was applied to train on the absolute energy and forces.

The NNP energy MAE values yields 6.69 meV/atom and 7.57 meV/atom. Meanwhile, the force

MAE values are 0.14 eV/Åand 0.17 eV/Å. In addition, the MAE value of stress is 0.078 GPa for

training set. Finally, the elastic constants, bulk and shear moduli, and the Poisson’s raito of cubic

elemental crystals were predicted with reasonable results (see Table 4.9).

4.5 Pt MLP for General Purposes

4.5.1 Dataset

Compared to crystalline systems, surfaces and nanoparticles generally represent the more chal-

lenging cases in MLP training as the nanoparticle contain more versatile atomic environments and

more complex PES is expected. Here, the NNP model was applied to a Pt dataset [103], which

consists of three data types: Pt surface, Pt bulk, and Pt cluster. There are 927 clusters of 15 atoms,

and the Pt bulk type consists of 1717 configurations which are composed of 256 atoms. Pt surface

are constructed from (001), (110), and (111) surfaces. Respectively, there are 949, 819, and 700

structures which consist of 320, 160, and 320 atoms.

4.5.2 MLP Setup

The SO3 power spectrum descriptor with lmax = 3 and nmax = 4 at radius cutoff of 4.9 Å was

used to construct the MLP in the NNP model with two hidden layers with 30 nodes each. Unlike

the previous examples, the minibatch scheme with the Adam optimizer was employed. In each

iteration, the training process was updated in a batch size of 25 configurations.

4.5.3 MLP results

In the original literature [103], DeepPot-SE includes MoS2 slab and Pt clusters on MoS2 substrate

(MoS2/Pt). The performance of DeepPot-SE yields satisfactory results. Meanwhile, embedded

atom neural networks method can achieves outstanding results using a fraction of the same dataset
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Table 4.10: The trained RMSE values of the predicted energy and forces of Pt dataset from the 30-
40-40-1 NNP model. For reference, the results from the DeepPot-SE model [103] is also reported.
It should be noted that that DeepPot-SE results were based on training the entire MoS2/Pt dataset.

SO3-NNP DeepPot-SE [103]
Energy Force Energy Force
(meV) (meV/Å) (meV) (meV/Å)

Bulk 1.64 64 2.00 84
Surface 5.91 87 6.77 105
Cluster 7.63 247 30.6 201

[105]. Both of the methods exploit a large number of neural networks parameters, in the order

of 104–105, while the current study only adopts 2191 weight parameters for exemplary purpose.

As shown in Table 4.10, the accuracy from our small neural network model is comparable to that

of DeepPot-SE results. Not surprisingly, the group of Pt bulk has the lowest errors with only 1.64

meV/atom for the RMSE in energy and 67 meV/Å in force. On the contrary, the errors on Pt clus-

ters are about 2-4 time higher for both energy and forces. This is expected since the local atomic

environments in the clusters are more diverse and thus learning the relation is harder. Neverthe-

less, the values from this exploratory study is comparable to the results from deep learning models.

This example also suggests that a small NNP model with the properly constructed features can be

a complementary solution for MLP development.

Furthermore, the equilibrium lattice constant (a) and the total energy of fcc Pt are calculated

with the trained Pt MLP. The structural optimization was performed in the framework of ASE

through BFGS (a second order optimization method) optimizer with 4 atoms in the unit cell. The

equilibrium lattice constant predicted by the Pt MLP is 3.996 Å, whereas the lattice constant from

DFT method is 3.985 Å [147]. The DFT ground state energy [19] of the fcc Pt is -6.057 eV/atom,

while our result suggests -6.054 eV/atom with 3 meV/atom discrepancy with respect to the DFT

result. Along with the physical properties of fcc Pt, the energy of fcc Pt are tabulated in Table 4.11.
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Table 4.11: The equilibrium energy and physical properties of fcc Pt. ∆ is the absolute relative
error in percentage between DFT and NNP values. The DFT results were collected from open
database of Materials Project [19].

E0 a C11 C12 C44 B G ν

eV/atom Å (GPa) (GPa) (GPa) (GPa) (GPa)
DFT -6.057 3.985 303 220 54 247 49 0.41
NNP -6.054 3.996 293 243 131 259 68 0.37
∆(%) 0.05 0.28 3.30 10.5 143 4.86 38.8 9.76

The overall result is encouraging except for the C44. As the training dataset was generated from

MD-simulated method, there are probably a few of the structures to none that describe the shear-

ing behavior of fcc Pt. Therefore, it is expected that the NNP fails to describe C44. To improve

the accuracy of C44, one can include the training of stress, which was not involved previously, or

adding structures with shearing effect of fcc Pt.
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Chapter 5 Nudged Elastic Band Simulations

5.1 Introduction

Nudged elastic band (NEB) simulation [148] is a method for finding the minimum energy of a

transition path for a given system [149, 150]. NEB simulations have successfully applied in the

framework of DFT calculations [151, 152, 153], and in combination with classical force field [154,

155]. Studies for large systems (over 3 x 106 atoms) have been performed [156]. Given an initial

and a final states, NEB constructs images in between the initial and the final states of the system,

and relaxes the images. These ”images” are sometimes called ”chain” of ”replicas”, typically in

the order of 4-20 replicas between the initial and final states. A spring interaction is attached in

between two consecutive images ensuring a continuous path (i.e. this mimics an elastic band). In

Fig. 5.1, a chain of 5 replicas are used to illustrate the NEB simulation to find the minimum energy

path (MEP). In practice, the chain will be initially interpolated as a ”straight” line between the

initial configuration and the final configuration.

Here, the diffusion barriers of Pt adsorption on Pt(111) and Pt(100) surfaces will be examined

using the NEB method. The MLP from the earlier section will be employed for the simulations.

The simulations will be enabled by PyXtal FF via ASE package. The structural optimizations will

be performed using L-BFGS method while the surface structures will be constructed using the

ASE package as well. The initial guess from initial to final images. The convergence criteria is

that the all of the atomic forces is less than a certain value (fmax)such that:

fmax > max|F a| (5.1)

where most of the energy convergence criteria is set to 0.01 eV/Å.
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Figure 5.1: An illustration of a NEB simulation. The MEP is the optimal transition state for that
particular system. In order to find the MEB, forces (perpendicular force F⊥ and parallel/spring
force F ‖) are to be optimized. FNEB is the total net force. Source: https://theory.cm.utexas.edu/
henkelman/research/saddle/.
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5.2 Pt(111) Surface

Here, we will discuss adsorption and diffusion of a Pt adatom on the Pt(111) surface. The Pt(111)

surface is constructed with a supercell of (5x5) with 10 layers deep as the convergence was exam-

ined with respect to the number of layers. A vacuum of 20 Å are applied to the two surfaces. The

bond length of Pt-Pt is 2.81 Å. An illustration of a Pt(111) surface is depicted in Fig. 5.2. There

are 4 types of arrangements for the adatom on the surface: ”ontop”, ”bridge”, ”hcp”, and ”fcc”.

Fcc site is the preferred binding site in Pt(111) surface. This site can also be considered as the

”threefold” site the adatom is bonded to the three nearest atoms on the surface (see Fig. 5.2). The Pt

adatom at fcc site lies closer to the surface than the others, because the binding in the fcc geometry

is somewhat stronger. The predicted bond length of the fcc adatom to the nearest neighboring atom

is 2.63 Å (i.e. about 93% of adatom-adsorbent to Pt-Pt bond length). In consequence, it agrees

with the expected bond-order bond-length correlation [157].

The bridge site is an unstable site. Initially, the adatom at the bridge site is relaxed by con-

straining the x and y axes (i.e. relaxation only on the distance above the surface) yielding the

adatom-adsorbent bond length of 2.59 Å. Afterwards, the adatom and the top layer atoms are per-

mitted to relax resulting the energy difference of 0.34 eV between the bridge and the fcc sites. In

the previous study [157, 158], the range for the diffusion barrier is between 0.33-0.47 eV. In the

lower end of the predicted diffusion barriers, the adatom and the first two top layer are allowed to

be relaxed. Hence, our result yields a consistency with the previous study.

The hcp site is a local minima site. Relaxing the adatom and the top layer atoms produces a

preference of 0.18 eV for the fcc against the hcp site, where the bond length of adatom-adsorbent

is 2.63 Å. Our result is consistent with the previous studies where the adsorption energy difference

between the fcc and hcp site is 0.17 ± 0.03 eV [157, 158]. This difference is considered large due

to the angular behavior of the d orbitals in the Pt system [159]. Due to this difference, the adatom

does not visit the hcp site when it diffuses from one fcc site to another fcc site [158].

Now, the diffusivity from one fcc site to another fcc site will be performed using NEB method.
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(a)

(b)

Figure 5.2: A 3-layer deep Pt(111) surface shaded by multiple layers of greens with (a) top view
and (b) side view. The blue, yellow, and red adatoms are on the ”bridge”, ”fcc”, and ”hcp” sites,
respectively. For comparison, the purple adatom represent the ”ontop” site. The adsorbent is
arranged in ABC packing. Since Pt is a fcc metal, it prefers high to low coordination. Hence, the
one-fold bonding type (i.e. ”ontop” site) is not considered.
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Both equilibrium sites are fully relaxed by allowing the adatom and the first top layer atoms to

move as needed. There are 7 ”chain” of replicas in between the two equilibrium sites. The energy

barrier crossing the ”bridge” site from the NEB method is 0.21 eV, whereas we obtained 0.34 eV.

This energy difference is due to NEB simulation allows the adatom’s neighbors to move accord-

ingly as it passes the ”bridge” site. Hence, it lowers the overall energy barrier. In addition, the

adatom nearly crosses the hcp site as it diffuses with the bond length to the nearest surface atom of

2.62 Å (bond length at the hcp site is 2.63 Å). Due to the small change in bond length, the energy

difference between near hcp and hcp sites does not exceed 0.001 eV. Experimentally, the diffusion

barrier of 0.25 ± 0.02 eV has been performed using field-ion miscroscopy (FIM) measurements

within temperature range of 92-100 K [157].

Figure 5.3: The result of NEB simulation of Pt adatom on Pt(111) surface diffused from one fcc
site to the other nearest fcc site.
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5.3 Pt(100) Surface

Here, we will discuss adsorption and diffusion of a Pt adatom on the Pt(100) surface. The Pt(100)

surface is constructed with a supercell of (4x4) with 10 layers deep as the convergence was exam-

ined with respect to the number of layers. A vacuum of 20 Å are applied to the two surfaces. There

are 3 types of arrangements for the adatom on the surface: ”ontop”, ”bridge”, ”hollow”.

The ”hollow” site is the preferred binding site of the Pt adatom on Pt(100) surface. The ”hol-

low” site can be regarded as fourfold site. Here, the surface diffusion energy barrier from one

hollow site to the next nearest hollow site using NEB method. During the NEB simulation, the

first layer atoms and the adatoms are permitted to relax. Prior to the NEB simulation, the two

equilibrium sites are fully relaxed. The bond-length of the adatom-adsorbent at the ”hollow” site

is 2.64 Å (i.e. about 94% of adatom-adsorbent to Pt-Pt bond length). Finally, a diffusion barrier

of 0.83 eV for passage over a bridge is predicted (see Fig. 5.4).

5.4 Summary

NEB simulations have been performed to predict the diffusion barriers of Pt adsorption on Pt(111)

and Pt(100) surfaces. Since Pt is a fcc metal, it prefers high to low coordination. Hence, the one-

fold bonding type (i.e. ”ontop” site) is not considered for both Pt(111) and Pt(100) surfaces. While

the ”traditional” method of relaxing the adatom on Pt(111) surface from the ”bridge” site to ”fcc”

site fails to reproduce the experimental result, our result using NEB method is consistent with

the experimental diffusion barrier. In addition, we were able to reproduce the previously studied

results with the ”traditional” method. For Pt(100) surface, the ”hollow” site is the preferred site as

the passage over the ”bridge” site takes 0.83 eV.
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Figure 5.4: The result of NEB simulation of Pt adatom on Pt(111) surface diffused from one fcc
site to the other nearest fcc site.
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Chapter 6 Conclusions and Future Work

Atomistic simulation with MLP is a useful computational tool to examine materials at micro-

scopic level. MLP has the ability to perceive the atomic environment among crystal structures and

thus provides accurate descriptions of the forces governing the atomic motion. As seen in Chapter

5, the diffusion barriers of Pt adsorption on Pt(111) and Pt(100) surfaces have been successfully

reproduced using the developed Pt MLP. Moreover, the surface diffusion energy barriers using the

(NEB) method have painted a clearer description in comparison to the experimental values. This

effort has shown that atomistic simulation at DFT level while retaining low computational cost is

truly tractable.

The atomistic simulation with MLP is facilitated through PyXtal FF, a Python software pack-

age that I have developed during my doctoral study. The aim of PyXtal FF is to promote the

application of atomistic simulations with MLPs by providing several choices of atom-centered de-

scriptors and machine learning regressions in one platform. Presently, the PyXtal FF is equipped

with two regression models and four types atom-centered descriptor, and counting. With the PyX-

tal FF, we have successfully developed MLPs for SiO2, crystalline Si, Ni-Mo, HEA NbMoTaW,

and Pt nanoclusters. The predictive ability of these MLPs are at the level of DFT accuracy. Since it

is written in Python, this platform is constructed in modular approach, enabling convenient effort

to add new functionality. We are going to work on interfacing the trained MLP with LAMMPS

[121] to enable the large-scale atomistic simulation in the near future.

In the future, we foresee the upcoming developments for PyXtal FF:

Active Learning. In this thesis, I have shown the development of Si MLP for general purposes.

Despite the great predictive ability of the physical properties (see Section 4.2), the training dataset

generated from random crystal structures perhaps contains many redundant structures. This can

pose several problems such as bias in fairness [160]. Machine learning algorithms can achieve

excellent predictability on the data that are well-presented, while it will fail on data that are under-
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represented. Due to the issue, active learning has been suggested to rectify the unfairness in dataset

[161]. It has been shown that active learning is also provide wonderful pathway in crystal structure

predictions as well [94, 162]. Currently, we are developing Bayesian Optimization algorithm

coupled with GPR to accelerate crystal structure prediction to find the global minimum structure.

The idea of this method is to minimize the number of electronic optimization through the expensive

DFT calculations. The dataset generated from this method, instead of random structure generation,

can potentially be useful in developing more accurate MLP avoiding unfairness in the dataset.

Additional atom-centered descriptors. Although MLP method is orders of magnitude faster than

the DFT method, the bottleneck for MLP is at the construction of atom-centered descriptors. For

example, the usage of symmetry functions as the atom-centered descriptors is about two orders of

magnitude times slower than the Tersoff potential. The creation of new atom-centered descriptors

must satisfy the requirements stated in Section 2.5.3.

Additional MLPs for nanoparticles. In this thesis, I have demonstrated the power of MLP on

predicting the diffusion barriers of Pt adsorption on Pt surfaces. In the future, the intention is to

extend the capability of Pt MLP on more challenging task such as Pt nanoparticles. It is well known

that nanoparticles have many modelling challenges. For example, nanoparticles belonging to the

exactly same system may have different properties if they have different sizes. I would eager to

learn the behaviors of nanoparticles, in particular carbon monoxide binding on Pt nanoparticles.
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Appendix A Additional Cutoff Functions

First, let’s define a general notation for x:

x =
R

Rc

(A.1)

where R is the distance between two atoms and Rc is the cutoff radius.

A.1 Tanh

f(x) = (tanh(1− x))3

df

dx
= −3 tanh2(1− x)(1− tanh2(1− x))

(A.2)

A.2 Exponential

f(x) = exp

{
1− 1

1− x2

}
df

dx
= −2x

exp
{

1− 1
1−x2

}
(1− x2)2

(A.3)

A.3 Polynomial1

f(x) = x2(2x− 3) + 1

df

dx
= 6x(x− 1)

(A.4)

A.4 Polynomial2

f(x) = x3(x(15− 6x)− 10) + 1

df

dx
= −30x2(x− 1)2

(A.5)
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A.5 Polynomial3

f(x) = x4(x(x(20x− 70) + 84)− 35) + 1

df

dx
= 140(x3(x− 1)3)

(A.6)

A.6 Polynomial4

f(x) = x5(x(x(x(315− 70x)− 540) + 420)− 126) + 1

df

dx
= −630x4(x− 1)4

(A.7)
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Appendix B Derivatives of Atom-centered Descriptors

B.1 The Derivatives of (w)ACSF

Following the Eq. 2.57 the derivative with respect to an atom m can be written in the following

form:
∂G

(2)
i

∂rm
=
∑
j 6=i

e−η(Rij−Rs)2
(
∂fc
∂Rij

− 2η(Rij −Rs)fc

)
∂Rij

∂rm
(B.1)

For the periodic system, the computation of ∂Rij

∂rm
is straightforward except that one needs to

consider one additional case. When i = j, the derivative is always zero.

∂Rij

∂rm
=



0 m /∈ [i, j]

0 m = i = j

− rij

Rij
m = i (when i 6= j)

rij

Rij
m = j (when i 6= j)

(B.2)

In Eqs. (2.58, 2.59), the cosine function can be defined as:

cos θijk =
rij · rik
RijRik

(B.3)

where rij is the relative position between atom j and atom i.
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In the following, the expressions for the derivative with respect to an interacting atom m are:

∂G
(4)
i

∂rm
= 21−ζ

∑
j 6=i

∑
k 6=i,j

e−η(R
2
ij+R

2
ik+R

2
jk)

[
λζ(1 + λ cos θijk)

ζ−1∂ cos θijk
∂rm

fc(Rij)fc(Rik)fc(Rjk)−

2η(1 + λ cos θijk)
ζ

(
Rij

∂Rij

∂rm
+Rik

∂Rik

∂rm
+Rjk

∂Rjk

∂rm

)
fc(Rij)fc(Rik)fc(Rjk)

+ (1 + λ cos θijk)
ζ

(
∂fc(Rij)

∂Rij

∂Rij

∂rm
fc(Rik)fc(Rjk)

+ fc(Rij)
∂fc(Rik)

∂Rik

∂Rik

∂rm
fc(Rjk) + fc(Rij)fc(Rik)

∂fc(Rjk)

∂Rjk

∂Rjk

∂rm

)]

(B.4)

∂G
(5)
i

∂rm
= 21−ζ

∑
j 6=i

∑
k 6=i,j

e−η(R
2
ij+R

2
ik)

[
λζ(1 + λ cos θijk)

ζ−1∂ cos θijk
∂rm

fc(Rij)fc(Rik)

− 2η(1 + λ cos θijk)
ζ

(
Rij

∂Rij

∂rm
+Rik

∂Rik

∂rm
+Rjk

∂Rjk

∂rm

)
fc(Rij)fc(Rik)

+ (1 + λ cos θijk)
ζ

(
∂fc(Rij)

∂Rij

∂Rij

∂rm
fc(Rik) + fc(Rij)

∂fc(Rik)

∂Rik

∂Rik

∂rm

)]
(B.5)

The derivatives of atomic distances, Rij and Rik, carry the same meaning as in Eq. B.2. The

expression of the cosine of triple-atom angle is

∂ cos θijk
∂rm

=
rik

RijRik

· ∂rij
∂rm

+
rij

RijRik

· ∂rik
∂rm

− rij · rik
R2
ijRik

∂Rij

∂rm
− rij · rik

RijR2
ik

∂Rik

∂rm
(B.6)

∂rij
∂rm

=


δmj − δmi 0 0

0 δmj − δmi 0

0 0 δmj − δmi

 (B.7)

where δmj is the Kronecker delta between atom m and j.

108



B.2 The Derivatives of EAD

The expression of the derivative with respect to an interacting atom m is shown in the following:

∂ρi
∂rm

=

lx+ly+lz=L∑
lx,ly ,lz=0

2Lmax!

lx!ly!lz!

[ N∑
j 6=i

ZjΦ

][ N∑
j 6=i

Zj
∂Φ

∂rm

]
(B.8)

where the derivative of Φ with respect to an interacting atom m is

∂Φ

∂rm
=
e−η(Rij−Rs)2

R
lx+ly+lz
c

[(
∂xlxij
∂rm

y
ly
ij z

lz
ij + xlxij

∂y
ly
ij

∂rm
zlzij + xlxijy

ly
ij

∂zlzij
∂rm

)
fc

+xlxijy
ly
ij z

lz
ij

(
∂fc
∂Rij

− 2fcη(Rij −Rs)

)
∂Rij

∂rm

)] (B.9)

B.3 The Derivatives of Bispectrum

For the SO(4) bispectrum components, we need to calculate the Wigner-D matrices for each neigh-

bor. Here we use a polynomial form of the Wigner-D matrix elements suggested by Boyle [163].

Dj
m′,m =



(−1)(j+m)R2m
b δ−m′,m, |Ra| < 10−15

R2m
a δm′,m, |Rb| < 10−15√
(j+m)!(j−m)!
(j+m′)!(j−m′)!

|Ra|2j−2mRm′+m
a R−m

′+m
b ×∑

k

(
j+m′

k

)(
j−m′

j−m−k

) (
− |R

2
b |

|R2
a|

)k
, |Ra| ≥ |Rb|

(−1)j−m
√

(j+m)!(j−m)!
(j+m′)!(j−m′)!

Rm′+m
a Rm−m′

b |Rb|2j−2m×∑
k

(
j+m′

j−m−k

)(
j−m′

k

) (
− |R

2
a|

|R2
b |

)k
, |Ra| < |Rb|

(B.10)

where Ra and Rb are the Cayley-Klein parameters representing the rotation. In the angle-axis

representation of rotation the Cayley-Klein parameters representing a rotation about an axis defined
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by r = (x, y, z) through an angle ω can be written as:

Ra = cos(ω/2) + i
sin(ω/2)

r
z

Rb =
sin(ω/2)

r
(y + ix)

(B.11)

These polynomials are finite and the coefficients of each term are known. Different from

previous works [87, 143] based on a recursive scheme as discussed in Appendix C, we evaluate the

Wigner-D matrix elements using Horner’s method for the terms in the summation, which allows

evaluation of a polynomial of degree n with only n multiplications and n additions.

P (x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

= a0 + x(a1 + x(a2 + · · ·+ x(an−1 + xan)))

(B.12)

Using Horner’s method is also convenient for the simultaneous computation of the gradient.

To obtain the gradient with respect to cartesian coordinates, the chain rule is applied through the

Cayley-Klein parameters and their conjugates.

In addition, we make use of the symmetries of the SO(4) bispectrum components discovered

by Thompson [143].
Bj1j2j

2j + 1
=

Bjj2j1

2j1 + 1
=

Bj1jj2

2j2 + 1
(B.13)

These symmetries reduce the number of necessary bispectrum components to compute to only the

unique components which also greatly reduces the complexity of the gradient calculation. For

brevity we denote the two inner sums of the bispectrum component calculation as Zm,m′

j1,j2,j
[143]:

j1∑
m1,m′

1=−j1

j2∑
m2,m′

2=−j2

cj1m′
1,m1

cj2m′
2,m2

Cjj1j2
mm1m2

Cjj1j2
m′m′

1m
′
2
. (B.14)

So that, when utilizing the symmetries in Eq. B.13, the gradient of the bispectrum components
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with respect to an atom i can be written as[143]:

∇iB
(i)
j1,j2,j

=

j∑
m,m′=−j

∇i

(
cjm′,m

)∗
Zm,m′

j1,j2,j
+

2j + 1

2j1 + 1

j1∑
m1,m′

1=−j1

∇i

(
cj1m′

1,m1

)∗
Z
m1,m′

1
j,j2,j1

+

2j + 1

2j2 + 1

j2∑
m2,m′

2=−j2

∇i

(
cj2m′

2,m2

)∗
Z
m2,m′

2
j1,j,j2

,

(B.15)

where the gradient of the inner product with respect to one atom is:

∇ic
j
m′,m = ∇i

(
fcut(ri)D

∗j
m′,m(ri)

)
(B.16)

B.4 The Derivatives of Power Spectrum

In calculating the smooth SO(3) power spectrum, three main challenges exist. First, the calculation

of the spherical harmonics, and second the radial inner product in Eq. 2.70, and third the gradient

of the expansion coefficients in Eq. 2.70. To start, the spherical harmonics can be considered as

a subset of the Wigner-D matrices in the z-y-z Euler-angle representation, where the spherical

harmonic vector Yl is a row vector of the corresponding D-matrix Dl with some additional scalar

factors as given in the equation below[164]:

Ylm (θ, φ) = (−1)m
√

2l + 1

4π
Dl

0,−m (χ, θ, φ) ,

where the Wigner-D matrices are in the z-y-z Euler-angle representation and χ is arbitrary, thus,

without loss of generality, we choose χ = 0.

The z-y-z Euler-angle representation represents a rotation about the original z-axis through an

angle α, then a rotation about the new y-axis through an angle β, and then a rotation about the

new z-axis through an angle γ, which we can parameterize through composing rotations using the

Cayley-Klein parameters in the angle-axis representation. For the case of calculating spherical
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harmonics and choosing χ = 0, we have a rotation about the original y-axis through an angle

θ then a rotation about the new z-axis through an angle φ. We represent each of these rotations

individually by the Cayley-Klein parameters in the angle-axis representation.

Raθ = cos
θ

2

Rbθ = sin
θ

2

Raφ = cos
φ

2
+ i sin

φ

2

Rbφ = 0

To make sense of how to compose rotations represented by the Cayley-Klein parameters it is worth-

while to note that the Cayley-Klein parameters are the matrix elements of the SU(2) representation

of rotation. So that the rotation (denoted by R̂) can be represented as:

R̂ =

 Ra Rb

−R∗b R∗a


Then when composing rotations

R̂ = R̂2R̂1

where R̂1, R̂2 are SU(2) matrices that represent arbitrary rotations. Performing the matrix multi-

plication we obtain the composition rule for rotations represented by the Cayley-Klein parameters.

Ra = Ra2Ra1 −Rb2R
∗
b1

Rb = Ra2Rb1 +Rb2R
∗
a1

(B.17)
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Then for the case of spherical harmonics the composition rule reduces to:

Ra = RaφRaθ =

(
cos

φ

2
+ i sin

φ

2

)
cos

θ

2

Rb = RaφRbθ =

(
cos

φ

2
+ i sin

φ

2

)
sin

θ

2

(B.18)

Finally, using the composition rule we can then calculate the spherical harmonics using their rela-

tionship to the Wigner-D matrices.

Ylm (Ra, Rb) = (−1)m
√

2l + 1

4π
Dl

0,−m(Ra, Rb) (B.19)

The radial inner product
∫ rcut

0
r2gn(r)e−αr

2
Il(2αrri)dr in Eq. 2.70 cannot be solved analyti-

cally so we employ numerical integration for this purpose. Chebyshev-Gauss quadrature is used so

that the quadrature nodes for the interval (0, rcut) never include r = 0 for any N number of nodes

in the quadrature; the Chebyshev-Gauss quadrature nodes for the interval (0, rcut) are given by:

xi =
rcut

2

[
cos

(
2i− 1

2N
π

)
+ 1

]
(B.20)

Avoiding the removable singularity at r = 0 due to I allows for the use of the following

recursion relation to compute I at each of the nodes.



I0(x) = sinh(x)
x

I1(x) = x cosh(x)−sinh(x)
x2

...

In(x) = In−2(x)− 2n−1
x
In−1(x)

(B.21)
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The gradient of the smooth SO(3) power spectrum components then follows:

∇ipnn′l =
+l∑

m=−l

(c∗n′lm∇icnlm + cnlm∇ic
∗
n′lm) (B.22)

where the gradient of the expansion coefficients is obtained through the applying the product

rule on Eq. 2.70 and then differentiating under the integral sign (as ri is independent of r).

∇icnlm =

4π∇i

(
e−αr

2
i

)
Y ∗lm(r̂i)

∫ rcut

0

r2gn(r)e−αr
2

Il(2αrri)dr+

4πe−αr
2
i∇i (Y

∗
lm(r̂i))

∫ rcut

0

r2gn(r)e−αr
2

Il(2αrri)dr+

4πe−αr
2
i Y ∗lm(r̂i)∇i

(∫ rcut

0

r2gn(r)e−αr
2

Il(2αrri)dr

)
(B.23)

∇i

(
e−αr

2
i

)
= −2αrie

−αr2i r̂i

∇i

(∫ rcut

0

r2gn(r)e−αr
2

Il(2αrri)dr

)
=

2α

∫ rcut

0

r3gn(r)e−αr
2

I ′l(2αrri)drr̂i

We again evaluate the radial integral using Chebyshev-Gauss quadrature and use the following

recursion relation for the evaluation of the first derivative of the modified spherical Bessel function.

I ′n(x) =
1

2n+ 1
[nIn−1(x) + (n+ 1)In+1(x)].

Computing the gradient of the spherical harmonics is not as trivial as computing the gradient

of the Wigner-D functions due to the singularities that exist at the north and south poles of the

2-sphere in Cartesian and spherical polar coordinates. Here we remove those singularities through

taking the gradient with respect to the covariant spherical coordinates. The covariant spherical
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coordinates are related to Cartesian coordinates by the following relation[164]:

x+1 = − 1√
2

(x+ iy)

x0 = z

x−1 =
1√
2

(x− iy)

Then, the gradient of the spherical harmonics with respect to the covariant spherical coordinates is

given by[164]:

∇0Yl,m = − l
r

√
(l + 1)2 −m2

(2l + 1)(2l + 3)
× Yl+1,m

− l + 1

r

√
l2 −m2

(2l − 1)(2l + 1)
× Yl−1,m

∇±1Yl,m = − l
r

√
(l ±m+ 1)(l ±m+ 2)

2(2l + 1)(2l + 3)
× Yl+1,m±1

− l + 1

r

√
(l ∓m− 1)(l ∓m)

2(2l − 1)(2l + 1)
× Yl−1,m±1

(B.24)

So that we can obtain the gradient with respect to Cartesian coordinates by transforming the basis

vectors back to Cartesian unit vectors[164].

ex =
1√
2

(e−1 − e+1)

ey =
i√
2

(e−1 + e+1)

ez = e0

(B.25)
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Appendix C Alternative Expression to compute D

We are aware that two previous works [87, 143] used a different approach to compute the

Wigner-D martices [87, 143]. To start, a different set of Cayley-Klein parameters were used,

Ra =
1√

r2 + r2 cot2(ω/2)
(r cot(ω/2) + iz)

Rb =
1√

r2 + r2 cot2(ω/2)
(y + ix) ,

(C.1)

which can be shown to be identically Eq. B.11. However, when implemented numerically, there

exists a singularity at ω = 0 and ω = 2π, so we choose to implement Eq. B.11 rather than treating

ω = 0 as a separate case, and omitting ω = π altogether. Moreover, they used a recursive scheme

to compute the D matrices,


Dj
mm′ =

√
j−m
j−m′R

∗
aD

j−1/2
m+1/2,m′+1/2 −

√
j+m
j−m′R

∗
bD

j−1/2
m−1/2,m′+1/2, m′ 6= j

Dj
mm′ =

√
j−m
j+m′RbD

j−1/2
m+1/2,m′−1/2 +

√
j+m
j+m′RaD

j−1/2
m−1/2,m′−1/2, m′ 6= −j

(C.2)

Compared to the polynomial form Eq. B.12, the recursive form requires less floating point

operations in general and is more efficient in serial calculations. However, in parallel architectures

a polynomial form of theD-matrices is advantageous as no single term depends on another. During

our implementation we found that using Numba’s automatic parallelization [116], we were able to

fuse all loops in the D-matrix calculation to achieve parallelization more so than algorithm when

compared to the recursive version. This difference results in an improved scaling of the algorithm.
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