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Abstract 

The proliferation of renewable distributed energy resources, particularly photovoltaic (PV) 

power systems, and the increasing need for a reliable power supply has led to the concept of 

microgrids, a mini-grid that consists of locally connected power generation units and needs, able 

to operate connected or disconnected from the utility grid, using controlled and coordinated 

methods to provide for the users of the microgrid the best possible conditions for their needs. 

The main technical issues facing microgrids include some of the following, seamless transition 

from stand-alone to utility grid connected operation, how to preserve frequency and voltage 

stability, and provide the lowest cost power among numerous power resources. Technologies that 

will be used in the future smart grid will be built, tested, and fielded in modern microgrids with 

many national laboratories, utility companies, and universities using microgrids of all different 

types for research and development. 

This dissertation describes the design, fabrication, and testing of a microgrid facility which 

comprises adjustable resistive and inductive loads, a diesel-powered generator (DG), an 

advanced inverter PV system, a battery energy storage system (BESS), monitoring, protection, 

and control devices. The microgrid facility was built with the foresight that it would be used for 

conducting tests and experiments related to microgrid technical challenges, thus ease of access 

and expandability were built in which allows it to be used for both research and education 

purposes. Numerous experimental tests conducted include the following: (a) the dynamic 

response of a DG to load changes, (b) an advanced PV inverters autonomous functions, (c) 

advanced inverter islanding test, (d) load sharing among the DG and PV system, (e) PV and 

battery storage systems load sharing, (d) dynamic performance of an advanced PV inverter and a 

DG during unintentional islanding under different power export/import conditions, and (e) BESS 
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response to utility outage under different PV operating conditions. Attempts to improve 

reliability and power quality are made by expanding the PV inverter ride-through times during 

frequency and voltage abnormalities. An economic analysis in terms of Net Present Value (NPV) 

is conducted on a residential application where a BESS is paired with a PV system to shift solar 

energy in favor Time-of-Use (ToU) pricing and to provide ancillary grid services. 
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Chapter 1: Introduction 

A microgrid is a local energy grid that can function in a regulated and coordinated way, 

consisting of local loads and generation units that can operate either connected or disconnected 

from the utility grid. Little local networks, or microgrids, were the earliest electricity grids before 

they were connected to make the utility grid we know today. In remote areas, microgrids are the 

only way to have electrical power and therefore have existed for quite some time. In regions 

where grid connections are possible, microgrids are used to back up or serve critical loads, loads 

that even momentary power outages can be catastrophic. Proliferation of renewable distributed 

energy generation sources, chiefly solar photovoltaic systems, will make microgrids spread 

quickly into the residential and commercial areas in urban and rural areas with electricity. The 

future “smart” electric power infrastructure will be based on microgrids and will be among the 

major technical cornerstones [1]. Modern microgrid development, over the past two decades, is 

being driven by multiple items which include but are not limited to the spread of renewable 

distributed resources, rising electricity demands, and increasing necessity for reliable power 

electric supply. [2]–[4] 

Microgrids offer considerable potential in many aspects of how electric energy is generated 

and delivered, from operating connected to the local grid or in stand-alone mode, thus they have 

different ways to meet utilities and electric customers’ demands, they can provide electric energy 

as either physical and/or economic conditions dictate [5]. They can provide electricity through 

local generation to meet attached demand which can, in turn, lower the cost of electricity, make 

access to power secure and reliable, improve the quality of the power used, and through 

renewable power generation support sustainability, and enhance the resiliency of the power grid 

[6]. Many universities have developed or/are developing the teaching tools and for a power 
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systems curriculum to teach modern microgrids because they will play a significant part in the 

smart grid development. The curriculum will not only be hardware-based laboratory microgrids, 

but software development, hardware-in-the-loop, and even PV and/or wind power simulators. 

[7]–[13]. Depending on each university’s unique objectives which will in turn create different 

laboratory settings for microgrid education and research, most will share similarities such as 

being a reconfigurable experimental platform. While in theory, a common approach to microgrid 

design sounds great, it will inescapably drive up costs and not be appropriate [14]. 

In a microgrid configuration, control and protection represent challenges that can be difficult 

to deal with, which include the following. Stability of the voltage and frequency, able to 

transition from a grid connected system to freestanding (islanded) system, protect the system 

from electrical faults, hardened to cyber-attacks but able to communicate to the rest of the grid, 

and continue to operate using the lowest cost source of electric power among the various 

generation resources at the microgrids disposal. Meaningful research continues to build upon the 

successes of the past at research institutions worldwide with the most prominent in North 

America being the CERTS microgrid Facility [6]. In recent years the research on microgrids has 

focused on microgrid control [5], [15]–[17]. DG’s are the backbone of most microgrids because 

they have been proven very reliable and the most part practical, they can be turned on, and 

convert chemical energy to electrical energy when sustainable energy sources cannot provide 

enough energy to meet the local demand. In an effort to rely less on generators, but still have the 

same reliability, other forms of energy sources such as batteries which can ensure power quality 

are gaining wider use in the distributed resources market [18]. Battery storage schemes are not 

economically worthwhile and are expensive to procure except in areas that offer significant 

incentives for PV self-consumption or energy management [19]. 
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The microgrid was built as an outdoor facility at the University of Nevada, Las Vegas 

campus and is described in this dissertation. It is comprised of a reliable standalone energy 

source in the form of a DG, a grid-interactive advanced inverter supplied by a 12 kW PV array, 

and a load with selectable discrete steps. In grid disconnected (islanded) operation, the DG is the 

grid-forming voltage/power source for the microgrid and the PV system is the grid-following 

source. The DG is controlled by an automatic voltage regulator (AVR), used to control the 

voltage output, and a speed control governor for regulation of the frequency. A microcontroller 

based circuit was developed in house to produce repeatable and controllable voltage and 

frequency instabilities, which makes this microgrid different from others found in the literature. 

The IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems 

IEEE Std. 1547-2018 [20] is newly apprised and is focused on advanced inverter functionalities 

which will unleash their application to common voltage regulation issues found in areas where 

there is PV penetration is at high levels [21]. Numerous investigational tests will be covered in 

this dissertation.  

Software applications control advanced inverters making many of their electrical 

characteristics adjustable by commands and settings found in the software and with manufacture 

configured settings even allow the inverters “autonomous” control of their power output to assist 

power quality and system reliability to the local circumstances. For advanced inverters and their 

common functions, references [22], [23] were reviewed to learn how these functions could be 

applied to operational challenges found in area power systems. While numerous computer 

simulations on how to apply these inverter functions to mitigate specific problems that have been 

reported, published experimental and field tests are not readily available as power utility 

companies are slow to use the updated interconnection standard due to many governing controls 
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and regulations. Reference [23] provided the general guidelines on test equipment necessities 

and setup, including PV and grid simulators, allowing for verification of advanced inverter 

functional interoperability. The PV inverter’s ability to function in constant reactive power or 

constant Power Factor (PF) control was tested in Reference [24]. Sania reported on tests using 

communications-based controls of some of the inverter functionalities [25]. Finally, Southern 

California Edison’s Advanced Technology Group recently published results from successful tests 

on numerous advanced inverter functionalities [26]–[28]. The first test reported in this 

dissertation involves using a physical PV array connected to an advanced inverter where select 

critical autonomous functionalities would be of interest, an adjustable load bank, a local utility 

source, and a DG [29]. The functionalities to be tested comprise ‘‘soft restart’’, ‘‘dynamic 

Volt/Var control’’, ‘‘over/under voltage (OUV) ride through”, ‘‘non-unity PF operation’’, and 

“over/under frequency (OUF) ride through’’. 

Interference of some of the above functionalities is a concern with the inverter islanding 

detection methods. Grid support functions envisioned to help alleviate frequency and voltage 

deviations, are diametrically opposed to features found in active islanding detection methods, 

destabilizing voltage, and destabilizing frequency. This becomes a greater issue when the load 

matches inverter supply or when multiple dissimilar companies’ inverters are connected to the 

same local grid. [30], [31]. Hence, the second test reported involves efforts in which an islanded 

condition of an advanced inverter was imposed while generation and load were closely matched 

and with the inverter having certain functions activated [32]. Tested were the following 

capabilities of the inverter, a broader tolerance of frequency and voltage instabilities, dynamic 

Volt/VAR control, and the operation of the inverter with a PF less than one. 
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The third test explains the dynamic performance of a PV inverter, a passive resistive-

inductive load, and a DG based microgrid during an imposed islanding (utility disconnect) [33]. 

The experiments performed were to see if the microgrid would stay connected during grid 

disconnect and if the reliability and power quality could be enhanced by different inverter 

settings, settings that control the time of ride through in frequency, and voltage disturbances 

while adjusting the import/export power conditions.  

For electric utility customers that have behind-the-meter battery energy storage systems that 

have ToU rates available to them can arbitrage their energy production from low-price to high 

price periods. A Net Present Value (NPV) of a battery system must be a positive value to gain 

wide acceptance and to facilitate this outcome, an increased battery systems revenue stream is 

required. It is proposed in this dissertation that this marketplace can be used for energy arbitrage 

which is possible by the use of a utility or regional Energy Imbalance Market (EIM) controlled 

second Battery Energy Storage (BES) service. The method proposed does not require 

complicated co-optimization algorithms and is accomplished by executing in series the two 

services with no time overlap. A case study illustrates the method by utilizing actual household 

power demands, power provided by PV sources, energy rates, and incentives in Southwest US 

[34]. 

This dissertation is organized as follows: Chapter 2 describes the design and fabrication of 

the microgrid under test including a description of the various components. Chapter 3 describes 

the characteristics of the DG containing the governor and voltage regulation controllers. 

Dynamic response to unexpected load deviations is performed through simulations and 

experimental tests. Chapter 4 addresses the performance of a finite number of the autonomous 

functions of the advanced inverter. Chapter 5 summarizes islanding tests on the advanced 
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inverter under various power mismatch conditions. Chapter 6 describes the DG - PV microgrid 

dynamic response during unintentional islanding from the local grid, and during stand-alone 

operation. Chapter 7 summarizes an experimental investigation into transient and steady-state 

conditions of a BESS system integrated into a PV system. This is followed by a residential 

application where the BESS is used to shift solar energy in regions that provide ToU electricity 

pricing, and other additional grid services. Finally, Chapter 8 ends the dissertation with a 

conclusion. 
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Chapter 2: Microgrid Design and Implementation 

The studied microgrid is comprised of a PV system, a DG, a BESS, a local discrete step 

adjustable load, instrumentation, and controls. Its physical location is shown in Figure 2.1 below. 

A description of the various components and their associated controls follows. 

 

 

 

Figure 2.1 Microgrid Physical Location on UNLV Campus (36°06’50” N 115°18’40” W) 

 

 

2.1: Photovoltaic System 

The PV system contains 4 parallel strings of PV panels, with the panels rated for 270 W 

under Standard Test Condition (STC) with each string containing 11 panels connected in series. 

It is ground mounted with a tilt angle of 25° facing south This configuration makes it a 12-kW 

array that is connected to a 3-phase 12 kVA advanced PV inverter which has an output voltage 
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of 480/277 which is converted to 208/120 V via 30 kVA transformer. The common microgrid 

bus voltage local grid voltage is 208/120 V. 

 

 

 

Figure 2.2 PV Array Layout. 

 

 

2.2: Battery Energy Storage System (BESS) 

A Tesla Powerwall 2TM, the installed BESS, is an integrated AC energy storage system that 

contains an integrated bidirectional inverter and liquid cooling system and has a useable capacity 

of 13.5 kWh. The BESS has a maximum continuous power charge/discharge rate of 5 kW with 

an efficiency of 90%, round-trip, when in an environmental temperature of 77° F the continuous 

power charge/discharge rate is 3.3 kW [35]. The Tesla Powerwall 2TM is a complete package that 

can detect a utility disconnect by the voltage and current of the device, activate its 
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communication and control protocols to disconnect from the grid by use of a switch, and restore 

power to the local grid. All this can be accomplished in a fraction of a second but the Tesla 

Powerwall 2TM also assists utilities in stopping utility customers that own the system from 

recycling grid electricity by prohibiting its use as a revenue generator which would be possible 

by storing and selling grid electricity via Net Energy Metering (NEM)and TOU rates. Via a 

software application, the full profile can be viewed of the power traversing the local grid 

including the battery system, the battery state-of-charge (SOC), the local load needs, and the 

generated power of the PV system. At present, the software applications available via the user 

interface include temporal controls, solar self-use, and standby power [35]. 

2.3: Diesel Generator 

The DG set consists of an engine coupled to a pancake brushless generator with the engine 

being a 4-cycle, 3-cylinder, liquid radiated engine with an attached generator rated at 20 kVA at 

0.8 PF, constructed as a 4 pole, 3-phase, 12 lead system. The AVR is supplied electrical power 

from the single-phase auxiliary stator winding, illustrated in Figure 2.3, which allows the AVR 

to control the generators output voltage via a brushless excitation system. To close the feedback 

loop for the AVR, it monitors a single phase of the 3-phase voltage output of the generator and 

adjusts the excitation current as needed. The AVR can either be operated in isochronous or droop 

control modes. The auxiliary winding generator advantages are found in reduced equipment 

compared to other systems which reduce production costs and can make for compact axial 

generators. While the output power can affect the supply voltage of the AVR, which usually 

insignificant, it is a design that rarely fails and can withstand repeated abuses. The auxiliary 

winding design minimizes its mutual inductance with the primary windings and thereby and 

distortions found in the main outputs will have meniscal effects on the AVR’s operation. The 
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generators 12 leads are configured for a parallel-star arrangement with an output voltage of 

208Y/120 V, its electrical specifications are found in Appendices 3 and 4. 

 

 

 

Figure 2.3 Diagram of Generator Excitation System [36]. 

 

 

2.4: Load Banks 

The loads consist of three separate units with discrete manually adjustable steps, the first 

being a resistive (30 kW), an inductive bank (9 kVAR), and a capacitive bank (2.7 kVAR). The 

reactive load bank was designed and built-in house to be a switchable bank that is configured in 

a delta connection. Each leg of the delta consists of 3 inductors in parallel, and their 

specifications are found in Appendix 7. A small capacitor and resistor are added parallel with 

each inductor to provide safety during switching. Finally, the utility power is from a local 
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substation via an underground distribution feeder rated at 12.47 kV to a 75 kVA transformer 

connected to the microgrid. 

2.5: Generator and Inverter Controls  

Inverter Controls – A separate controller from the inverter manufacture allows the user to 

gain access to the inverter software controls and provides system monitoring and data recording. 

The inverter tested in this experiment can only be connected via a controller which provides an 

interphase to the inverter software which allows for system monitoring and recording data. The 

controller uses a communication protocol widely used in the solar industry called Modbus but 

can be controlled via TCP/IP. To change various parameters found in the software of the 

inverter, a code was needed which the manufacturer of the inverter supplied. Inverter 

communication is achieved wirelessly by means of a router that assigns an IP address to the 

controller. The controller in turn communicates with the inverter via an Ethernet cable. An image 

of the controller and a communications diagram are shown in Figure 2.4 and Figure 2.5, 

respectively.  
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Figure 2.4 Image of Inverter Controller with Router. 

 

 

 

Figure 2.5 Communication with Smart PV Inverter. 

 

 

Diesel Generator Synchronizing Module – The investigator used an Auto Mains (Utility) 

Failure Control Module (model DSE8620) that is suitable for paralleling multiple generators 
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(diesel or gas) with the utility grid. The DSE8620 is designed to control the DG to match the 

utility grid’s voltage, frequency, and phase automatically before connection to the microgrid or it 

can switch from utility to generator supply all while providing an electricity service with no 

interruptions. The DSE8620 can detect utility disconnect via both “Vector Shift “ and “Rate-of-

Change-of-Frequency” methods and can control the decoupling grid switch when detected. A 

SEL700G is also installed for additional protection, it allows for the monitoring of electrical 

power amounts and compares the amounts to setpoints and parallel timing thresholds to which it 

can then control the connect/disconnect relay. More data on this module is found in Appendix 4. 

Diesel Generator AVR Module - The diesel power synchronous generators’ original analog 

AVR was replaced with a DESA106 digital closed loop AVR powered by either a shunt or a 

stator auxiliary winding that can operate in either a droop control mode or isolated isochronous 

control mode. This advanced AVR has many abilities which include a connection for a 

quadrature CT for droop tuning, remote voltage tuning, and soft start power ramping. The speed 

controls of the DG have also been modified from OEM by changing the analog 

nonprogrammable governor to a digital programmable governor. This governor uses a magnetic 

pick-up (MPU) sensor to senses the engine rpm via the engine’s flywheel and is well-suited for 

paralleling generators due to its load-share and droop functionalities. The AVR specifications are 

found in Appendix 5. 

Diesel Generator Governor Control Module – A Woodward digital governor controller 

(model DPG-2201-001), the speed control device of the engine, can govern engines fueled by 

either gas or diesel of motor generator sets. The digital controller uses a microprocessor that 

allows it to operate over a wide range of speeds and its embedded software has a user interface to 

allow access to all of the features of the controller. When this conroller is properly tuned to the 
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motor generator set, speed or load changes will be rapidly delivered by the engine all the while 

providing stable isochronous operation. The controller response times are adjustable via distinct 

adjustable Proportional, Integral, and Derivative (PID) gains which proves a way to tailor a 

unique response to and motor generator set application. The controller software allows 

adjustment of acceleration and deceleration ramp rates, startup and torque limits, idle speed, and 

idle hold times. The governor specifications are found in Appendix 6. 

Voltage and Frequency Disturbance Controls – The DG is designed to provide stable 

operation by use of its AVR and governor controllers, which are used to oppose and limit 

disturbances. Therefore, it is not possible to test the PV inverter’s response to disturbances of 

frequency and voltage at the DG output terminals without modification of how the AVR and 

governor received control signals and feedback. Consequently, their inputs that they use for 

control had to be modified by a custom-built microprocessor-based controller which allowed for 

the repeatable manipulation of their control signals. By use of a variac, the sensing input voltage 

for the AVR could be bucked or boosted allowing for externally biasing the set-point control. To 

accomplish this change, the microcontroller circuit energizes several relays to switch in the 

variac that allows for the modification of the sensing input with the original sensing path being 

disconnected. Control of the governor is again manipulated by the microcontroller circuit by 

means of a relay, which applies a signal to the governor which forces the controller to use its 

secondary speed setting. Figure 2.6 below is an image of the controller. 
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Figure 2.6 Frequency and Voltage Disturbances Controller. 
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Chapter 3: Diesel Generator Modeling and Testing 

The diesel generator consists of the diesel engine and the electric synchronous generator 

(SG), and these are coupled through a mechanical drive train, depicted by a block diagram in 

Figure 3.1 below [37]. The figure also shows the mathematical model of both mechanical and 

electrical subsystems including speed governor, fuel actuator, combustion, engine rotating parts, 

automatic voltage regulator, exciter, and synchronous generator. The DG’s dynamic reaction to 

rapid load variations is dictated by the exciter and governor control loops which include the 

mechanical and electrical parameters of DG subsystems. While the generator electrical parameters 

are known, those associated with the AVR and speed control loops are often unknown. To 

develop a simulation, some of these unknown parameters of the AVR and speed control loops 

need to be estimated, which can be accomplished by certain tests given the right test set-up 

conditions. [38]. The same procedure proposed in this latter reference is to estimate the values of 

the governor and voltage regulator parameters; namely, (a) preparing a number of the 

experimental tests on the DG under various load conditions, (b) performing these tests and 

recording the system response in terms of frequency and voltage deviations, (c) developing a 

computer model of the DG set using Matlab-Simulink software, (d) simulating the tests defined 

above and adjusting the associated parameter values until the simulated curves closely match the 

measured ones. 

3.1: Generator Dynamic Model  

The block diagram of the generator is shown in Figure 3.1 and consists of two main parts, the 

diesel engine, and the driven synchronous generator. Linked by a shaft, the electrical frequency 

of the generator is a function of the engine's speed and rotor pole pairs. 
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Figure 3.1 Diesel Generator Block Diagram with Mechanical and Electric Subsystem [37]. 

 

 

 2𝜋𝑓௘ = 𝑛௣𝜔௡ (3.1) 

To main a constant mechanical engine speed (𝜔௠), therefore a constant electrical frequency 

(𝑓௘), the governor applies or removes fuel via a throttle body fuel actuator. The speed that the 

governor tries to maintain is set by the user via software and is detected via a fly wheel sensor, 

which counts the number of teeth passing by it in a set time interval.  

The synchronous generator is a three-phase generator with an AVR which measures the 

terminal voltage, sampled on phase A, and will decrease or increase the field voltage (Vf) to 

maintain the phase voltages, the voltage set in the AVR. As the load varies, it will induce a 
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voltage and speed change in the generator and motor to which the governor and AVR will vary 

fuel and field voltage to maintain a constant frequency and voltage. The parameters from the 

manufacturer of the generator and motor are used in the following models, found in appendix 3. 

3.2: Automatic Voltage Regulator Model 

With the field connections hard to access, the ability to measure Vf directly is problematic, 

therefore tests are chosen to isolate certain parameters that control the predominant transient 

behaviors in the AVR, and therefore we can indirectly measure the quantities of the AVR, gain 

(KA), time constant (TA) [37]. 

Using the approximations of the round rotor, constant field current, balanced phase voltages 

and currents, then the q-axis voltage Vq  is the stator voltage, or the terminal voltage. 

 𝑣௤ =
𝜔

𝜔௦
𝑉ா − 𝑅௔𝑖௤ − (𝐿ௌ

𝑑

𝑑𝑡
𝑖௤ + 𝜔𝐿௦𝑖ௗ) (3.2) 

If the load of the generator is a purely reactive load, then iq will be zero further reducing the 

equation to  

 𝑣௤ = 𝑉௧ =
𝜔

𝜔௦
𝑉ா − 𝜔𝐿௦𝑖ௗ (3.3) 

Where id is the phase current which when the load changes will cause a ΔVt with no Δω. The 

ΔVt will be sensed by the AVR and produce a ΔVE via the field voltage and field current. 

 𝑉ா = 𝜔௦𝐿௔௙𝐼௙ (3.4) 

The AVR modulates Vf to try and maintain a fixed terminal voltage (Vt). Physical inspection 

of this device and the data sheet, the AVR is a rectifier, with a proportional and integral 
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amplifier. The voltage at the terminal and the reference voltage is compared and the difference 

error is used to produce a correcting field voltage, (ΔVf). Examining the IEEE standard 421.5 

[39], the model that most closely represents the AVR is the ST1C type, a DC excitation system. 

A simplified diagram is presented in Figure 3.2 with the power stabilizer and field 

current/voltage limiters ignored. During testing the system transient must not exceed any limiter 

for the simplified model. The time constants TR and TA are also neglected by assuming a fast 

operation of the AVR, thousands of a cycle, and the compensator block is removed due to the 

AVR not having it present in its design. The rectifier/amplifier is modeled by a Proportional 

Integral (PI) controller with a static gain KA, KI, and a time constant TA. 

 

 

 

Figure 3.2 Automatic Voltage Control Model. 

 

 

3.3: Governor Control Model  
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Figure 3.1 shows a simplified model that represents most of the dynamic performance of a 

diesel engine taking into account the following. The throttle actuation, the combustion cycle, the 

engine's moving parts, and the governor. 

The fuelling actuator is modeled as a first-order transfer function with a time constant. 

 
1

𝑇௔𝑠 + 1
 (3.5) 

The engine's combustion process is modeled by the time delay term which represents the 

average time between a fuel flow actuation and the subsequent power stroke. 

 
𝑒ି௦ ೎்

𝑇ௗ𝑠 + 1
 (3.6) 

To derive a simplified model of the combustion process, Td representing between fuel 

addition and combustion, a zero-order Padé approximation of the combustion term as given by 

 𝑒ି௦ ೎் ≈ 1 (3.7) 

 
𝑒ି௦ ೎்

𝑇ௗ𝑠 + 1
≈

1 

(𝑇ௗ𝑠 + 1)
 (3.8) 

The rotating parts model is drived using a droopless model, represented by D=0, for the small 

system, with H representing the inertia of the rotating parts, a value easily obtained from the 

engine manufacturer, the block of the rotating parts can be simplified to  

 
1

𝐷 + 𝑠(2𝐻)
=

1

𝑠(2𝐻)
 (3.9) 

This leads to the flowing block model shown in Figure 3.3, 
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Figure 3.3 Governor Control Model. 

 

 

The governor, the speed control device, of the diesel engine is a Woodward DPG-2223-001. 

It is a microprocessor-based, digital controller and allows adjustment of all the controller 

functions. To provide isochronous operation, the governor senses and reacts quickly to speed 

changes. The governor is a Proportional(KP), Integral(KI), and Derivative(KD) (PID) gain device 

and includes the setting for idle speed and hold time, engine ramp rates of acceleration and 

deceleration, and startup and torque limits. The characteristic equation for the engine speed 

sensor, the throttle solenoid and governor (PID) is given by the following equation. 

 
𝐾஽𝑠ଶ + 𝐾௉𝑠 + 𝐾ூ

𝑠
 (3.10) 

Ta and Td are the response times of the solenoid and sensor and Kp, Kd, and Ki are the gains 

of the PID controller. From figure 3.2 we can develop the characteristic equation for this feed 

back loop. 
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 2𝑇௔𝑇ௗ𝐻𝑠ସ + 2𝐻(𝑇௔ + 𝑇ௗ)𝑠ଷ + (2𝐻 + 𝐾ௗ)𝑠ଶ + 𝐾௣𝑠 + 𝐾௜ (3.11) 

This is a 4 order system in which a fast response is required for stability and some overshoot 

and oscillation is acceptable. Therefore all the poles need to be located in the right-hand plane 

with the 2 dominant poles being located near the axis. 

Figure 3.4 shows the governor model with both governor and AVR models included 

controlling a synchronous generator model. 

 

 

 

Figure 3.4 Complete Generator Model with Controls. 

 

 

3.4: Generator Response to Load Acceptance and Rejection 
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Covered in this section is how when the load changes what frequency and voltage deviations 

will occur when the generator is in stand-alone mode, no other sources or utility grid, the load is 

supplied entirely by the generator. The stability of this system is expected if the electric power 

use is less than the rated output of the DG. Sudden load changes will exhibit the mechanical and 

electrical characteristics of the motor generator sets components which include the voltage 

exciter and speed governor control loops. To ascertain how a PV system will react to sudden 

load changes, it is critical to know and understand the frequency and voltage deviations. The 

frequency and voltage deviations from a 12kW load rejection (loss of load) are shown below in 

Figure 3.5 with the axis scale in 60 Hz cycles. Consider that the voltage first rises to a maximum 

of 140 V (16.6% above nominal) while during the same time the frequency jumped by 2.5%, due 

to lack of mechanical load, before dipping by 1.5% of nominal, these variations are due to the 

governor characteristics as it tries to maintain 60 Hz operation. The PV inverter would probably 

disconnect due to these significant deviations in both voltage and frequency. A 9 kVAR load 

acceptance (gain of load) is shown in Figure 3.6 below, in which the frequency deviation was 

small, due to small real power consumption of the load, but the dip in the phase voltage was 33% 

of nominal (40V) during the sub transient period and by 16% of nominal (20V) during the 

transient period. 
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Figure 3.5 Frequency and Voltage Deviations Due to 12 kW Resistive Load Elimination [33] 

 

 

 

Figure 3.6 Frequency and Voltage Changes Due to 9 kVAR Inductive Load Addition [33] 
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Figure 3.7 shows both the simulated and measured voltage for a 12kW load rejection. The 

output of the system shows an underdamped step response, a damping ratio to be less than 1, with 

a settling time of .9 second and an overshoot of 4%.  

 

 

 

Figure 3.7 Simulated and measured voltage for12 kW resistive load rejection. 

 

 

Using the equations for settling time (Ts) and natural frequency (𝜔௡) 

 𝑇௦ =
4

𝜁 ∗ 𝜔௡
 (3.12) 

 𝜔ௗ = 𝜔௡ඥ1 − 𝜁ଶ (3.13) 

We calculate the following values, which will give the correct general response. 
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 𝜔௡ = 8.14 𝑎𝑛𝑑 𝜁 = .53 (3.14) 

Giving the placement for the two dominating poles as 

 𝑠 = −𝜎 ± 𝑗𝜔ௗ = −4.36 ± 𝑗6.98 (3.15) 

For the 4 poles to be in the right-hand plane the following conditions must be met, 

 
𝐾௣(𝑇௔ + 𝑇ௗ)(2𝐻 + 𝐾ௗ) − 𝐾௣𝑇௔𝑇ௗ − 2𝐻(𝑇௔ + 𝑇ௗ)𝐾௜

(𝑇௔ + 𝑇ௗ)(2𝐻 + 𝐾ௗ) − 𝑇௔𝑇ௗ𝐾௣
> 0 (3.16) 

 2𝐻𝑇௔𝑇ௗ > 0 (3.17) 

 2𝐻(𝑇௔ + 𝑇ௗ) > 0 (3.18) 

 𝐾௜ > 0 (3.19) 

To calculate Td, we must look at the four-stroke engine and the way the engine converts fuel 

into mechanical power. The engine fundamental frequency is determined by half of the number 

of engine rotations since each cylinder is fired once for every two rotations of the crankshaft, it 

can be shown that engine fundamental frequency is given by: 

 𝜔௡ =
𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑒𝑒𝑑

2
∗ 3 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟𝑠 (3.20) 

With 60 rpm = 1 revolution per second, or 1 Hz, an engine connected to a 4-pole generator 

trying to maintain 60Hz with a speed of 1,800rpm. Therefore, the Td time constant is given by 



27 

 𝑇ௗ =
1800𝑟𝑝𝑚 ∗ 3 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟𝑠

2 ∗ 60𝑟𝑝𝑚
= 45𝐻𝑧 𝑜𝑟 𝑎 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 22.2 𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠 (3.21) 

From the fuel actuator used in the design, we get a value for Ta as 45 milliseconds, this is the 

time listed for 64% of travel length, from the data sheet. 

Using the simplified block model diagram, Figure 3.2, of the engine used to compare the 

data. 

With the following parameters, Ki = 65, Kd = 0.1, and Kp = 13.2, set into the Woodward 

governor, represented by the PID controller, the graph in Figure 3.7 was able to closely match 

the collected data for the case of a 9 kVAR load acceptance. The discrepancies are easily 

described by items not modeled, the parasitic losses in the system, and throttle body restrictions. 

The output of the system shows an almost critically damped step response, a damping ratio 

slightly less than one, with a peak time of 56 milliseconds and an overshoot of 4%.  
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Figure 3.7 Measure and Simulated Voltage for 9 kVAR Load Acceptance. 

 

 

The transfer function for the model is derived to be 

 𝑉௧(𝑠) =
(𝐾஺𝑠 + 𝐾ூ) − 𝐼஽(𝑠)[𝑥ௗ

ᇱ ⋅ 𝑠 ⋅ (𝑇ௗ௢
ᇱ 𝑠 + 1) + 𝑠(𝑥ௗ − 𝑥ௗ

ᇱ )]

𝑇ௗ௢
ᇱ 𝑠ଶ + (𝐾஺ + 1)𝑠 + 𝐾ூ

 (3.22) 

We can see that the characteristic equation for this feed back loop is 

 𝑠ଶ +
(𝐾஺ + 1)

𝑇ௗ௢
ᇱ 𝑠 +

𝐾ூ

𝑇ௗ௢
ᇱ  (3.23) 

With 

 𝜔௡
ଶ =

𝐾ூ

𝑇ௗ௢
ᇱ  (3.24) 
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And 

 2𝜁𝜔௡ =
(𝐾஺ + 1)

𝑇ௗ௢
ᇱ  (3.25) 

Using the methods in the paper referenced, the user manual for the AVR, and the 

manufacturer's data for the generator, the gains for KA and KI were found to be 15 and 73 

respectively.  
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Chapter 4: PV System Modeling and Testing of Inverter Autonomous Functions 

This chapter summarizes more advanced inverter experimental test results and several of its 

autonomous functionalities including dynamic Volt/VAR control, soft-reconnect, non-unity PF, 

OUF ride through, and OUV ride through. Since PV and grid simulators were not available at 

the test site, the investigator used physically built and fielded PV system with local generation 

for testing. Section 1 is a brief review of the PV array and circuit models with Second 2 covering 

grid interconnection standards. The experimental setup and test plan are addressed in Section 3 

with Section 4 describing how the inverter parameters are adjusted. Section 5 describes the 

reason and method of the five functionalities above along with the test results. 

4.1: Photovoltaic System and Inverter Model 

A model of an ideal solar cell uses an ideal current source IL and a diode in parallel but to 

represent the non-ideal aspects of the solar cell, a series resistor and shunt resistor are added to 

the ideal model. The ideal source represents the photo-generated current of the solar cell while 

the diode represents the p-n junction of the solar cell, this circuit is shown in Figure 4.1 below 

[40]. 
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Figure 4.1 A Solar Cells Equivalent Circuit. 

 

 

Herein,  

 V = the solar cells terminal voltage, 

 I = the solar cells terminal current,  

 IL = photo-generated current,  

 VD = voltage across the diode,  

 ID = the current through the diode,  

 ISH = current through the shunt resistor, 

 RSH = shunt resistor,  

 RS = series resistance. 

It is evident from the equivalent circuit above that the solar cells’ current output is the photo-

generated current minus the diode current and shunt resistor current: 

 𝐼 = 𝐼௅ − 𝐼஽ − 𝐼ௌு (4.1) 



32 

Using Ohm’s Law, the relationship of the cells diode and terminal voltage related to the 

shunt and series resistors currents is given by: 

 𝐼ௌு =
𝑉஽

𝑅ௌு
,   𝑉஽ − 𝑉 = 𝐼𝑅ௌ (4.2) 

Finally, substituting equations (4.2) into (4.1) one can derive the solar cells characteristic 

equation: 

 𝐼 = 𝐼௅ − 𝐼௢ ൬𝑒
௤(௏ାூோೄ)

௡௞் − 1൰ −
𝑉 + 𝐼𝑅ௌ

𝑅ௌு
 (4.3) 

Note that the above equation has no general analytical solution (i.e., transcendental function) 

due to cell current being on both sides of the equation but by using a numerical method, it is 

solvable. 

Not connecting the solar cell terminals to any electrical circuit, it is said to be open-circuited, 

i.e., when I = 0, with the corresponding voltage at the solar cells terminals defined as the open-

circuit voltage (VOC). The second term found in the right-hand side of equation (4.3) above can 

be neglected since it is relatively small when compared to the first term and by utilizing this 

simplification, the open-circuit voltage value is given by: 

 𝑉ை஼ ≈
𝑛𝑘𝑇

𝑞
ln ൬

𝐼௅

𝐼௢
+ 1൰ (4.4) 

When a short is placed across the outputs of the solar cell, V = 0, the current through the 

short is defined as the short-circuit current (ISC). For solar cells that are of high quality, it can be 

shown that the short-circuit current ISC, due to a low RS and Io and a high RSH, is approximately 

equal to the photo-generated current: 
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 𝐼ௌ஼ ≈ 𝐼௅ (4.5) 

The solar cell terminal current-voltage curve, or I-V curve, is defined by the relationship of 6 

variables as defined above (i.e., IL, T, RS, RSH, Io, and n). These parameters depend on the design 

of the solar cell and the solar irradiance powering the solar cell. The effect on the I-V curve for 

each parameter is well documented. 

One solar cell produces only a few watts of power at a voltage of 0.5-0.6 V. By wiring cells 

in series to form a PV module, a larger voltage with the same current as a single solar cell is 

achievable. Today’s PV modules can generate over 400 W of power under Standard Test 

Condition (STC). Multiple PV modules can be wired in parallel to increase the output current or 

can be wired in series to increase the output voltage and form a PV array of any desired size. The 

voltage of an array that is composed of m series-connected modules, each containing n cells is 

determined by 

 𝑉௦௧௥௜௡௚ = 𝑚. 𝑛. (𝑉஽ − 𝐼𝑅ௌ) (4.6) 

The grid-tied inverter converts the DC power produced by a PV array into AC power and in 

addition to DC-to-AC power conversion, the inverter performs numerous other functions 

including tracking and operating at maximum power, providing a sinusoidal current waveform 

with limited distortion, and synchronizing with the grid voltage supply and disconnecting in case 

of disturbances in the electrical grid. Figure 4.2 shows a typical circuit diagram of a single-phase 

inverter that consists of a capacitive filter on the DC side, a modified square-wave inverter, a 

transformer designed for high-frequencies which is used for voltage amplification and galvanic 

isolation, a full wave bridge rectifier, a DC link capacitor bank for smoothing the rectified 
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voltage, a sinusoidal PWM inverter, and finally filtering of the high-frequency harmonic 

components by use of a low-pass filter. For simplicity, the control circuitry, EMI filters, and 

protection devices are not shown in this diagram. 

 

 

 

Figure 4.2 Typical Circuit Diagram of Single-Phase Grid-Tied Inverter. 

 

 

A ratio of peak-to-peak voltage ripple (ΔVC) to average capacitor voltage (VC) to in DC 

section of the inverter, after the rectifier, is related to the value of the capacitor (C), the AC 

supplies angular frequency (ω), and the generated output power (P) by the following relationship 

[40]. 

 
∆𝑉௖

𝑉஼
=

𝑃

𝜔𝐶𝑉஼
ଶ (4.7) 

The above ripple is typically limited to less than 5% and the pulse-width-modulated 

waveform switching frequency is in the range between10 kHz and 25 kHz. The resulting AC side 
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current waveform contains unwanted frequency components and large voltage “spikes” because 

of fast transition rates, dv/dt, during switching. These unwanted artifacts caused by the AC 

waveform generation are filtered out by low-pass and Electromagnetic interference (EMI) filters, 

as required by interconnection standards, before entering the grid and are reviewed in the 

subsection that follows. The inverter contains a Maximum Power Point Tracker (MPPT) which 

allows for maximizing power production based on current solar and weather conditions. 

Numerous MPPT techniques are available in the literature [41], [42] and the most common ones 

include perturb-and-observe and incremental conductance methods. 

4.2: Review of Interconnection Standards 

Conventional grid-tied PV inverters were originally designed according to IEEE Standard 

1547-2003 which was developed under the assumption that such distributed resources represent 

just a small fraction of the load. These inverters were not allowed to ride through disturbances in 

the utility voltage or frequency and were not allowed assist in voltage regulation through reactive 

power generation/absorption at the point of common coupling (PCC). However, PV penetration 

is reaching a significant level in some distribution systems throughout the US, especially is some 

parts of the State of California. Such large numbers of PV systems are placed in unplanned 

locations, and their fluctuating responses to weather conditions are having a noticeable impact on 

distribution system operation and service reliability. This has led to a universal call to include 

new inverter capabilities and functions that will allow inverters to support distribution grid 

operations and update the interconnection standard under high PV penetration [20]–[23]. Table 

4.1 below lists the new default as well as adjustable clearing times for voltage deviations of the 

new PV inverters. Table 4.2 lists the corresponding clearing times for frequency deviations. 
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Table 4.1 Original and Revised Interconnection Standard Dealing with Ride Through Times to 

Irregular Voltages [20]. 

 

 

 

Table 4.2 Original and Revised Interconnection Standard Dealing with Ride Through Times to 

Irregular Frequencies [20]. 

 

 

 

IEEE Std. 1547-2018 describes inverter advanced functions including Volt/VAR control, 

frequency/watt control, dynamic reactive power support, and ramp rates. It also addresses best 

practices when operating with numerous inverters and microgrids, advanced controls of 
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inverters, transmitted/received data by inverters supporting the grid, offers the newest 

information for Distributed Energy Resource (DER) group conduct, interactions with grid 

hardware/software, and the interconnected system reaction to irregular conditions. 

Prior to the publication of the above IEEE Standard, the 3 major investor-owned utilities in 

the state formed a Smart Inverter Working Group (SIWG) to develop quickly the practical steps 

needed to improve how distributed energy generation is to support the operation of the 

distribution system while upholding the standards of dependable and safe service [22]. SIWG 

proposed the following inverter response to abnormal voltage deviations in Table 4.3 and 

frequency deviations in Table 4.4. 

 

 

Table 4.3 CA Rule 21 Inverter Response to Abnormal Voltages [22]. 
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Table 4.4 CA Rule 21 Inverter Response to Abnormal Frequencies [22]. 

 

 

 

For the autonomous Volt/VAr control function, several dynamic variables denote the change 

required in absorption/generation of VARs in response to changes in the local voltage measured 

at the PCC have been proposed. One piece-wise linear curve with a dead-band that is commonly 

used for this application is shown in Figure 4.3 below. Hysteresis can be added to such a curve to 

provide different return routes and dampen unnecessary swings. CA Rule 21 proposed the 

establishment of Volt/VAR default settings according to the values listed in Table 4.5 where 

%VARAval represents the percentage of VARs available from the inverter.  
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Figure 4.3 Common of Volt/VAR Using Piece-Wise Linear Curve [22]. 

 

 

Table 4.5 CA Rule 21 Default Volt/VAR Control Settings [22] 

 

 

 

4.3: Test Plan and Experimental Setup 

Testing of an advanced or “smart” inverter generally requires a well-equipped laboratory 

with PV array simulators, utility grid simulators, and Real Time Digital Power System Simulator 

(RTDS). In our case, the tests were conducted locally at the microgrid facility described in 
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Chapter 2 above, which is equipped with real power generation systems instead of simulators. 

The local test depended on whether or not the inverter can be “fooled” such that it will treat the 

DG like a local grid. The “smart” inverter that was chosen for testing is SMA’s Sunny Tripower 

(Model STP12000TL-US) which is equipped with a number of grid management functions 

which includes the following, abnormal frequency ride-through, abnormal voltage ride-through, 

reactive power control, ramp rate control, etc. Some technical challenges when using actual PV 

and generation systems include the following: 

 Unlike the PV simulator, the power production of a real PV system depends on weather 

conditions which change continuously. 

 Unlike the grid simulator, a real synchronous generator cannot absorb real power, thus 

requiring a local load bank. Furthermore, the inverter may not synch to such a weak microgrid 

due to its advanced anti-islanding techniques. 

 The active and reactive powers drawn by a constant impedance load bank depend on both 

voltage and frequency. Hence, causing a disturbance in the voltage will affect the frequency and 

vice versa. 

In Figure 4.4 below, the experimental setup of the microgrid is shown as a block diagram, 

which is connected via a 3-phase circuit and contains the following key pieces of equipment: 

 A diesel gnenerator rated at 14 kVA, 208 V, 60 Hz, 1,800 rpm,  

 A 3-phase advanced inverter rated at 408V and 12 kVA,  

 A PV array rated at 12 kW DC rating based on STC,  

 A transformer rated at 480V/208 V and 30 kVA, , 

 An inductive load bank (discrete step adjustable) rated at 9 kVAr, 
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 A resistive load bank (discrete step adjustable) rated at 15 kW  

 Utility grid rated at 208 V. 

To isolate or connect parts of the circuit or equipment, switches (S1-S4) are used, to record 

and measure various power quantities (i.e., AC voltage and current in each phase, frequency, the 

inverters active power generated, and the inverters reactive power generated/absorbed) a power 

recorder is connected at the transformer on the 208 V side, the microgrid side. The sampling 

period of the recording device is 500 milliseconds (30 cycles) and an image of the test equipment 

is shown in Figure 4.5. 

 

 

 

Figure 4.4 Experimental Setup Block Diagram. 
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Figure 4.5 An Image of the Advanced Inverters Experimental Test Setup. 

 

 

Contingent on the capabilities of the inverter to be tested, the DG (off-grid) or with the utility 

grid (grid-tied) can be synched to the PV systems inverter. Inverter tests that do not require 

frequency or voltage disturbances will dictate the inverter be grid-tied (S1 and S4 in the contact 

made position, while S2 and S3 in contact break position) which allows for the testing of the 

non-unity PF operation and soft reconnect capabilities. Inverter tests that do require frequency or 

voltage instabilities will dictate the inverter be disconnected from the utility (S1, S2, and S3 in 

the contact made position, while S4 in contact break position) which allows for the testing of the 

Volt/VAr control, OUF ride through, and OUV ride through capabilities. The latter operation can 

be referred to as a “microgrid” or “islanded” operation since the PV system, generator and load 

form a small electrical system that operates independently from the local utility distribution 

system.  
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The inverter parameters are modified by accessing its embedded software settings as 

described in Section 5 of Chapter 2 and for the five tests mentioned above, parameters associated 

with each are modifiable over a predefined range, shown in Table 4.6 below, with a discussion of 

each to follow in the section below. 

4.4: Test Procedure and Results 

The purpose, test procedure, and test results of each of the five tests mentioned above are 

summarized in this section. Due to limited space, test results at different parameter values that 

had similar results have been omitted. 

4.4.1: Soft Reconnect 

 Purpose: Following a utility outage, if numerous inverter-based generation systems recover 

concurrently (typically takes seconds to reach maximum power available at that time), they result 

in a sizeable intake of real power being injected into the utility grid. The aforementioned systems 

will then cause the feeder to experience an abrupt decline in load as the PV systems go back to 

nominal operation. The result of this will lead to over-voltages that compromise the stability of 

the grid, particularly when demand is minimal and when PV generation is elevated. In order to 

deter this grid disruption from transpiring, system personnel can utilize the functionality of soft 

reconnect found in advanced inverters which allows for the programming of an offset 

reconnection in distributed PV systems on a lone feeder circuit. Lengthening the rise time for the 

maximum real output of a PV plant will allow the systems voltage-controlled equipment the 

ability to react properly. An alternative way to ameliorate such a sharp transition is to assign 

different delay times between power restoration and the reconnection, to the different PV 
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systems on the distribution feeders (instead of having a common delay time with a default of 5 

minutes). 

 

 

Table 4.6 Inverter Software Settings (Parameter, Range, Clearing Times) [29] 

 

 

 

It is worth pointing out that “soft reconnect” is a subset of the inverter’s ramp “ramp rate” 

function. While generating fluctuating power due to moving clouds, the PV inverter ramp-up can 

be slowed down (as the cloud shade starts to clear the PV arrays), but ramp-down (when cloud 

shade starts to cover the PV array) cannot be achieved unless it is equipped with an energy 

storage system. The idea behind the establishment of the ramp-up and ramp-down rates is to 

assist the utility or local grid smooth its change from one power level to another. 
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Test Procedure: To verify the ramp-up rate setting of the inverter, the subsequent test 

procedure will be utilized, which consists of two basic steps. Prior to power generation, a value 

will be entered into the software of the inverter followed by the activation of the inverter 

connected to the grid to examine if the selected value matches the power generation rise rate 

measured. Utilizing the available range in the software, repeat the process for different 

quantities. For the tested inverter, this ranges in the software between 1% - 1,000% of its rated 

power for each second (this will be from 0.002 kW/sec. and 2 kW/sec.). 

Test Results: Figure 4.6 illustrated below captures the PV real power (kW) production and 

the variation in the nominal voltage (per unit) in which multiple tests were performed utilizing 

different output power gradients (ramp rate). In the first part of the figure, it shows the inverter 

coming online with the inverters software output power gradient parameter set to 10%, 1.2 

kW/min, and the maximum power of 8.2 kW was obtained in approximately 7 minutes. The 

middle part of the figure reveals the inverter coming online after a shutdown of the inverter was 

performed and the output power gradient was adjusted to 100% or equivalent to12 kW/min, and 

it should be noted that it took less than sixty seconds to attain the steady value of 8.2 kW. The 

last part of the figure depicts the inverter coming online after the output power gradient was 

adjusted to 1,000%, 120 kW/min, in which the inverter reached 8.5 kW in several seconds. In 

conclusion, the output power gradient control of the inverter worked as expected, the measure 

ramp rates matched the software parameter settings. 
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Figure 4.6 Ramp-Up Adjustment (10%, 100%, 1,000%) of Soft-Start Function [29]. 

 

 

4.4.2: Non-unity PF 

Purpose: First generation PV inverters were designed to function at a PF of one, however, 

with their increased use, distribution systems started operating at lower PFs, but with lower 

losses due to the PV power generation being located close to the load. By shifting the generation 

of power close to the end of the distribution system, it led to a smaller voltage drop across feeder 

conductors due to less real power transiting the resistive portion of the feeder, this led to an over-

voltage at the head of the distribution feeders. This is due to the system being designed to take 

the voltage drop into consideration. Overall, this will negatively impact the distribution system 

operation (less than optimum). Using the PV inverters with a PF less than one (a setting in the 

inverter) allows for the inverter to help the distribution circuit PF reach unity and assist the utility 

in voltage support by either absorbing or injecting reactive power. 
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Test Procedure: The performed tests were comprised of selecting the PF of the inverter 

between 80% lead (under excited) and 80% lag (over excited). After several minutes of operation 

at unity PF, the inverters PF was set to 90% leading followed by successive PF settings at 80% 

leading, 90% lagging, 80% lagging, and ending in the unity setting. 

Test Results: The recorded data are shown below, Figure 4.7, illustrates the generated real 

power (approximately 8 kW) and the reactive power, negative during absorption (leading) or 

positive during generation (lagging), and the resulting PF of the tests. Initially, the inverter was 

configured to operate at unity power but as depicted in the figure, there was approximately 1 

kVAR absorbed reactive power. This is found to be due to the probe placement for the test, the 

reactive power shown was not consumed by the inverter but was consumed by the transformer 

magnetizing and leakage reactances. The transformer reactive power issue led to recorded PFs 

being different than the inverters software settings, but if the component of the transformers’ 

reactive power is removed, the PF parameter adjustment functioned as anticipated. 
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Figure 4.7 PF Adjustment (100%, 90% and 80% Under-Excited and Over-Excited). 

 

 

4.4.3: Over- and Under-Voltage Ride Through 

Purpose: Sudden load changes will cause voltage fluctuations which can result in the voltage 

to rise/drop beyond regulated nominal voltage limits. While these fluctuations are of short 

duration, PV systems will be disconnected by such disturbances, as previously required by IEEE 

Std. 1547. With the sudden loss of PV generation on the feeder, the voltage may be incapable of 

returning to the nominal value in the regulated time limit resulting in unwarranted power 

outages. Advanced grid-tied inverters will be able to take advantage of the proposed new ride 

through time limits regarding high and low voltages or frequency deviations thus reducing the 

unnecessary disconnects of PV systems and their associated power outages. Therefore, using the 

amended interconnection standard, the operator can use the voltage-time settings in advanced 

inverters to best fit their system and provide for increased stability. 
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Test Procedure: By changing the taps of under-load tap changing transformer (ULTC) 

voltage disturbances can be induced, however, this type of transformer is typically available at 

power company distribution substations and obtaining authorization to cause that type of 

disturbances is highly improbable to be granted since it will impact the local consumer, while 

they are connected to the same transformer. Consequently, the local grid is emulated by utilizing 

a 14-kW DG and the load banks, which must be set to utilize more power than is produced by the 

PV system. The Automatic Voltage Regulator (AVR) experiment set-point is biased, via an 

external variac, by bucking or increasing the input of the voltage to be detected at the controller. 

According to IEEE std. 1547, the default values of inverter OUV were set, and its response to 

different magnitudes and periods of voltage deviations were noted. After disconnecting, the 

OUV time was enlarged, and once again the experiment was repeated to ascertain whether the 

inverter will be able to tolerate the disturbances. Table 4.6 delineates the clear times for the 

voltage levels, lowest and highest, for the tested inverter. 

Test Results: The inverter response shown in Figure 4.8 depicts its performance during an 

eight-second period, in an under-voltage condition of 82%. The inverter tripped immediately 

with the default setting upon its first disturbance, within 500 milliseconds, then after increasing 

the inverter ride through time to 15 seconds and under the same voltage conditions, the inverter 

did not trip. The inverter continued to be online as demonstrated in Figure 4.9 when the voltage 

is increased or decreased by 90% and 108% of nominal value. The inverter response depicted in 

Figure 4.10, shows an over-voltage condition duration of 10 seconds that is 112% above 

nominal. The inverter was defaulted back to its original settings and received a similar response. 

The initial trip of the inverter transpired right after the disturbance was initiated but after 

modifying the inverter’s ride through time to 15 seconds, it rode through the same disturbance. 
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Employing the same procedure, the inverter was reset to its default settings, and in Figure 4.11 

one can see a similar response to a 117% over-voltage disturbance, therefore, the expected 

response for the inverter was observed to voltage disturbances. 

 

 

 

Figure 4.8 Temporary 82% Under-Voltage. 
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Figure 4.9 Voltage Variation between 90% and 108%. 

 

 

 

Figure 4.10 Temporary 112% Over-Voltage. 
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Figure 4.11 Temporary 117% Over-Voltage. 

 

 

4.4.4: Over/Under Frequency Ride Through 

Purpose: The direct cause of under or over frequency deviations is the difference between 

load and power generation, produced by a variety of reasons that include sudden loss of 

generated power or an increase/decrease in load. The primary reason of OUF ride through is like 

the OUV ride through, to allow PV systems to operate during frequency deviations for longer 

times as specified in [20]. 

Test Procedure: The test setup is to generate frequency disturbances, and this is 

accomplished by the use of the micro-controller circuit as described by externally triggering the 

governor of the diesel generator via a DC control signal which enables the governors second 

sync speed. The inverters software is set to its default settings, and the inverter response is 

recorded to a frequency deviation. Using the inverters software, the clearing time was increased 
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to a value in the allowable range specified in reference and repeated was the same disturbance as 

before, magnitude and duration. 

Test Results: The inverters response to a 15 second 58 Hz under-frequency condition is 

shown in Figure 4.12, the inverter tripped immediately as soon as the deviation was applied to 

the microgrid. Increasing the inverter’s ride through time to 20 seconds, the inverter did not trip 

to the same disturbance. With the same 20 second inverter software settings, setting the 

frequency range to 60.5 Hz - 59.5 Hz, the inverter rides through the frequency deviations, Figure 

4.13 shows the recorded test results. A 400 millisecond over-frequency condition of 61.5 Hz and 

the inverters response is shown in Figure 4.14 shows the inverter response, the first half of the 

figure is the response when the inverter is set to its 2 second default condition and the second 

half is the inverters response after changing the ride through time to 5 seconds. Similar inverter 

responses are noted for an over-frequency disturbance of 62.5 Hz as shown in Figure 4.15, with 

the multiple tests showing that the inverter responds to the software inputted parameter setting 

regarding frequency ride through time 

4.4.5: Dynamic Volt/VAR Control 

Purpose: Now that PV inverters are allowed to regulate the voltage through their ability to 

generate or absorb reactive power, the VAR output can be controlled in many different ways, 

such as defining a time-based schedule to vary the VAR output, or a function based on the active 

power output, or a function based on the local voltage. The latter method, referred to as 

“Dynamic Volt/VAR Control”, appears to be most effective and hence attracted a lot of attention 

for use in areas of high PV usage [43]–[46]. It permits the inverter to either absorb or supply 

VARs (hence, PF) independently and dynamically to assist in the feeder’s voltage regulation and 

in some applications to help with maintaining Conservation Voltage Reduction (CVR) levels. 
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Figure 4.12 Temporary 58 Hz Under-Frequency. 
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Figure 4.13 Frequency Deviation between 59.5 Hz and 60.5 Hz. 

 

 

 

Figure 4.14 Temporary 61.5 Hz Over-Frequency 
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Figure 4.15 Temporary 62.5 Hz Over-Frequency 

 

 

Dynamic Volt/VAR characteristic “curves” that specify absorption/generation of VARs in 

response to changes in the local voltage measured by the inverter are well established. Herein, 

the amount of reactive power is often defined, as to not affect active power production, as a 

percentage of the “available” VARs. To define how much the reactive power will change as a 

function of voltage change, the gradient of the curve (Q/V%) is also specified. An area around 

the nominal voltage is defined as the dead band and is often included in the curve - sometimes 

with hysteresis - to reduce unnecessary fluctuations.  

Test Procedure: To test the advanced inverter dynamic Volt/VAR control, the parameter 

settings in the inverter software were programed to generate the following volt/VAR curve, dead 

band = ±1% of nominal voltage, the slope of the VAR-to-voltage curve set to 4%, and of the 

available reactive power = 50%. The inverter generating 8 kW during the test, makes 9 kVARs 

of reactive power available, so the 50% setting limited the maximum reactive power generation 
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to ± 4.5 kVARs. With the slope set to 4%, it meant that 0.35 kVARs would be produced for each 

1% deviation of voltage beyond nominal, and the dead band would mean the voltage have to 

reach either .98 or 1.02 pu before reactive power would be generated. To verify the Volt/Var 

control feature was working as programmed, the voltage of the DG would be increased and 

decreased in 1% increments via the microcontroller circuit, while the VARs being generated or 

absorbed by the inverter would be recorded. 

Test Results: Shown in Figure 4.16 is the inverters response to a voltage change and the 

reactive power absorbed or supplied by the inverter, the voltage was raised to 1.065 pu, and the 

reactive power decreasing down to -3.7 kVARs. Then the voltage was lowered to 0.89 pu with 

the reactive power increasing to +2 kVARs and by removing the reactive power consumed by 

the transformer, the test results have an agreement between the programmed and measured 

values. As shown in Figure 4.17, the inverter VARs in reaction to a burst of over- and under-

voltages that last nearly 20 seconds, where the inverter responded almost instantaneously by 

injecting or absorbing reactive power to compensate for such voltage deviations. The above 

compensation did not affect the voltage in this particular setting since the impedance of the cable 

connecting the two sources is nearly zero. 
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Figure 4.16 Dynamic Volt/VAR Baseline Test with Gradual Voltage Changes [29]. 

 

 

 

Figure 4.17 Dynamic Volt/VAR Baseline Test with Fast and Temporary Voltage Changes [29]. 
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Chapter 5: Islanding Test of Advanced Inverter 

For safety considerations, grid-tied inverters are constantly looking for indications of grid 

disconnect because they are prohibited to generate power in an islanded condition and therefore 

must shut off immediately. To detect utility outage the inverter monitors the voltage (magnitude 

and frequency) at the inverter connections. During a utility outage, the voltage (magnitude and 

frequency) generally deviates up or down by several percent from the nominal values, depending 

on the conditions of local power generation and local load. According to IEEE Std. 1547-2018, 

inverters are mandated to shutoff within 10 cycles, or 160 milliseconds, if the voltage rises above 

120% or drops below 45% of its nominal value, as specified in Table 4.1 above. If the frequency 

goes above 62 Hz or goes below 57 Hz (refer to Table 4.2), the identical clearing time pertains. 

The expansion of the clearing time to 1 second is allowed if the voltage rises to a value between 

110% - 120% or drops within 45% - 60% of the rated value. Finally, the 2 second clearing time 

is for frequency variations between 60.5 Hz - 62 Hz or 57 Hz - 59.5 Hz, or if the voltage declines 

between 60% - 88% of the rated value. With an agreed upon contract between distributed 

generator owner and the local utility company, the 1 second and 2 second clearing times can be 

increased, specified in Table 4.1 and Table 4.2 of the updated interconnection standards. 

5.1: Potential Interference of Autonomous Functions with Islanding Detection Schemes 

Several active and passive methods are used to prevent islanding conditions [47]–[53]. There 

are the classical methods of OUF and OUV detection used by conventional inverters. Figure 5.1 

shows the microgrid with a load and PV system connected and to simplify the load, it is regarded 

as a constant impedance load, a parallel connected R-L-C circuit. To have the transformer shunt 

impedance as a portion of the parallel connected R-L-C load, the insignificance of the series 

impedance of the transformer and connection cables are ignored. Denoting the PV system active 



60 

and reactive powers produced as PDR and QDR, respectively, and PG and QG be the portions of 

PDR and QDR that are supplied to the grid. To represent the differences between local active and 

reactive power generation by the PV system and the local load demand, the following quantities 

can be represented by PG/PDR = α, and QG/QDR = β and can be expressed by 

 𝑃஽ோ(1 − 𝛼) =
𝑉௢௟ௗ

ଶ

𝑅
 (5.1) 

 𝑄஽ோ(1 − 𝛽) =
𝑉௢௟ௗ

ଶ

𝜔௢௟ௗ𝐿
(1 − 𝜔௢௟ௗ

ଶ 𝐿𝐶) (5.2) 

where Vold and ωold are the grid voltage and the grid angular frequency at the interconnection 

point before grid disconnect, simply shown by the switch closed and the grid is present. 

 

 

 

Figure 5.1 Circuit Block Diagram of the Utility Grid, PV System, and Local Load [33]. 

 

 

PG and QG will become zero after the utility separates, with the assumption that PV system 

generated powers will remain unvarying. The voltage and frequency will change and start 
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towards new steady state values (Vnew, ωnew), these new variables can be associated with the old 

ones as follows: 

 
𝑉௡௘௪

𝑉௢௟ௗ
=

1

√1 − 𝛼
= ඨ

𝑃஽ோ

𝑃௟௢௔ௗ
 (5.3) 

 
𝜔௡௘௪

𝜔௢௟ௗ
=

−𝑏 + √𝑏ଶ + 4𝑑

2𝑑
 (5.4) 

were  

 𝑃௟௢௔ௗ = 𝑃஽ோ − 𝑃  (5.5) 

And 

 𝑏 = (1 − 𝑑)
1 − 𝛼

1 − 𝛽
,        𝑑 = 𝜔௢௟ௗ

ଶ 𝐿𝐶 (5.6) 

The frequency relationship in Eqn. (5.4) shortens by ignoring the capacitive component of the 

load 

 
𝜔௡௘௪

𝜔௢௟ௗ
=

1 − 𝛽

1 − 𝛼
 (5.7) 

Four relays usually make up the standard passive islanding protection, which is the under-

frequency relay, over-frequency relay, under-voltage relay, and the over-voltage relay of a grid-

connected PV system under most circumstances, will usually prevent islanding. Frequency and 

voltage deviations depend on the overall power flow supplied/absorbed by the grid (magnitude 

and direction), as shown in the expressions above. When local demand nearly matches the local 
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generation, comparing a utility grid outage versus the typical fluctuations in the grid during 

normal operation of the grid will be difficult as frequency and/or voltage changes will be minor. 

This makes it difficult to distinguish between the two, they will have values that will be 

considered in the Non-Detection Zone (NDZ), and the trip levels cannot be set so small for the 4 

relays or nuisance trips will disconnect the PV system. Therefore, additional active or passive 

schemes are often needed to reduce the probability of an island to occur [47], [54]. 

The following popular passive schemes are undetectable in the current and voltage output 

waveforms and therefore are impossible to measure and study under regular operating 

conditions:  

 Phase Jump Detection (PJD), the inverter monitors the voltage at its terminals, specifically 

measuring the voltage’s phase, if a sudden change or ‘jump’ is detected the inverter will 

disconnect. 

 Voltage Harmonic Monitoring (VHM), the gird voltage is monitored at the inverter and if the 

total harmonic distortion is greater than the software setting, the inverter will disconnect.  

 Slide-Mode Frequency Shift (SMFS), where the grid’s frequency is a function of the current-

voltage phase angle. This function will report unstable, and the inverter will disconnect if the 

phase of the grid voltage at the inverter increases quicker than the phase of the inverter’s 

current.  

Some active schemes try to change the frequency or voltage from their nominal values to 

detect a utility disconnect by actively trying to change the frequency for voltage. These active 

processes will result in deviations of the voltage and current, thus make it possible to detect their 

use by recording specific power-quality values and below is a list of the two of the most frequent 

used schemes: 
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Impedance Measurement (IM) method: In this method, the inverter will agitate periodically the 

current supplied which will produce a change in the grid voltage which can be detected if the 

utility is disconnected, which will then shut down the inverter. The name of this method is 

derived due to the inverter changing the current to see a change in the voltage which is dv/di, and 

if the inverter is using this method, you will measure periodic waveform distortions in the output 

current. 

Active Frequency Drift (AFD) method: This method has the PV inverter generate a current 

that every half cycle will cause a chopping, or zero current for part of the voltage waveform. The 

current initiates at the voltage zero point and reaches zero before the next voltage zero point, 

remaining there until the voltage crosses zero again. This process will cause the frequency to 

drift down or up if there is a utility outage and therefore if it is being used, its detection can be 

accomplished by measuring the current’s waveform. 

The above active inverter schemes try to determine if the grid is connected or possibly 

disconnected by changing the voltage and/or frequency of the inverter and measuring how these 

values change. If minimal to no change is measured then the grid is “stiff”, not islanded, or if a 

significant change is measured then the grid is “movable”, possibly islanded. Each active scheme 

has its advantages and disadvantages in terms of cost, effectiveness, trip threshold, power 

quality, and ease of implementation. Manufacturers of commercial inverters do not have a 

standardized test for the detection and prevention of unintentional islands, and they rarely share 

how they accomplish this. 

In advanced inverters there are several grid support functions available, due to the ability to 

assist the energy company with local voltage management, the most popular is the Volt/VAR 

control. The Hz/Watt control function is the second most popular/important function because it 
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helps control the grid’s frequency, it has its limitation since PV power generation is not infinite 

and is limited to the solar panels and current climate conditions. To accomplish a power delivery 

above the maximum, systems can incorporation an energy storage system allowing the system to 

provide power above the current operating maximum. When the grid support functions are 

activated, the inverter measures the frequency and voltage deviations at the connections of the 

inverter. The inverter then modifies the real and reactive powers generated, PDR and QDR, to try 

and reduce irregular grid conditions. Changes in frequency and voltage will cause a response in 

the inverter proportional to the programmed voltage/reactive power (V-Q) and frequency/power 

(F-P) curves along with the responsiveness of the control circuity. Figure 5.2 shows a typical 

piece-wise linear curve that represents how the inverter will adjust the generation power, real and 

reactive, to voltage and/or frequency variations. 

To illustrate this point, the curves in Figure 5.2 show QDR as a function of voltage, g(V), and 

PDR as a function of frequency, h(f). A new voltage and frequency will occur after utility 

disconnect and as defined in (5.3) and (5.4) which will lead to a new real inverter power, 

QDR,new = g(Vnew), and a new reactive inverter power, PDR,new = h(fnew). This process will 

reiterate until a new steady state real and reactive power is reached. The inverter tested in this 

experiment lacks the functionality of the Frequency-Watt control and therefore it was excluded 

from the test procedure. Another method for the inverter to detect utility disconnect and therefore 

islanded operation is to use a method of active frequency drift (Sandia frequency shift) [55]. The 

frequency drift method constantly attempts frequency deviations to detect utility disconnect 

raising the concern that these grid support functions, when working, try and destabilize the grid 

and can result in a worse grid performance and possible unacceptable islanded operation.  
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Figure 5.2 Characteristic Volt/VAR and Watt/Hz Inverter Contour [32]. 

 

 

5.2: Experimental Setup 

The experimental setup contains the following major pieces of equipment that are connected 

as shown in Figure 5.1: 

 local grid supply rate at 120/208 V, 

 PV array rated at 12 kW (based on STC),  

 Transformer rated at 480V /208 V, 30 kVA (Z =4%, Iex = 2.5%), 

 Advanced 3-phase inverter rated at, 480 V, 12 kVA,  

 Adjustable load banks rated at (25 kW resistive, 9 kVAR inductive, and 1.8 kVAR 

capacitive) 

 A switch to connect/disconnect the load banks and PV system from the grid 

 To record active and reactive powers, two non-transient power monitors, one connected to 

measure supplied/absorbed by the utility (PG, QG) and the other connected to measure the PV 

systems generated powers (PDR, QDR). 
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 To record the current and voltage waveforms during transition, a transient power monitor. 

The non-transient power monitors have a sampling rate of 500 milliseconds or every 30 

cycles, and any type of abnormality will trigger the transient recorder automatically.  

The test entails the subsequent steps:  

1) To achieve the desired power flow discrepancy between PDR, QDR and PG, QG, change the 

local load demand,  

2) In the inverter software, enable and/or adjust the variables that control/set the desired 

function of grid support,  

3) Using the switch, disconnect the utility and  

4) Record the ride time (∆t) before the inverter shuts off due to utility disconnect. 

The time that allows for the smallest deviations by the PV system in respect to real power is 

near solar noon, on clear days. Since the individual elements of the load are not adjustable in a 

continuous fashion but can only be varied in discrete steps, the possibility of achieving zero 

mismatches, i.e., PG=0 and QG=0, extremely difficult. Therefore, every effort was made to trying 

to make PG and QG as close to zero as possible. 

5.3: Test Findings 

The differences in inverter operation/response to a grid disconnect are presented in this 

section with default settings and various inverter parameter modifications and were recorded 

after minimization of PG and QG. The parameters in the inverter include those associated with 

Dynamic Volt/Var Control, Non-Unity PF Operation, and UOV and OUF Ride Through. 

5.3.1: Operation at Unity PF  
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Case 1 Table 5.1 below, was used to build a baseline case, therefore the default settings of 

the inverter (refer to Table 4.1 and Table 4.2) were used in its operation of this case. With the 

inverter on and producing 4.7 kW and consuming 260 VARS, the transformer magnetizing and 

series reactances account for the reactive power as the inverter was set to unity PF. A resistive 

load bank and a capacitive load bank consumed/produced an equal but opposite amount of real 

and reactive power produced/consumed by the inverter. Case1 turned out to be unique, the test 

was able to achieve a situation where PG=0 and QG=0. When the grid disconnected, this matched 

load/generation situation led to no voltage and frequency changes, thereby forcing the inverter to 

cease operation by use of its active islanding detection scheme. This scheme is unknown and not 

listed in any documentation. 

Figure 5.3 shows Case 1 and displays a phase voltage during the time from grid separation 

(red arrow) to inverter cut off and shows a ride time of over just over 1 second. As can be seen, 

the voltage does not drop instantly due to PG and QG being near zero but drops near the end of 

the figure to nearly 70% of nominal value, in the final 8 milliseconds before the tripping the 

over-voltage relay, the voltage surged to 140% of its nominal value. 

To see if the result was repeatable, the experiment was reperformed after a few minutes, even 

though it was approximately the same solar time, conditions had changed. This proved that 

duplicating experiments on real life systems is difficult and can lead to significantly different 

outcomes. During this test, there was a slight reactive power mismatch as shown in Table 5.1, 

Case 2. The real power was balanced (PG=0W), but reactive power was being imported from the 

grid leading to a mismatch of reactive power (QG=130 Vars). The instantaneous phase voltage of 

this event is shown in Figure 5.4, and the mismatch of QG led to significant frequency deviations 
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within 65 milliseconds of grid disconnect (red arrow), which in turn triggered the under-

frequency relay and disconnected the inverter, shutting it off. 

 

 

Table 5.1 Parameter Values Used in Islanding Tests [32]. 
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Figure 5.3 Case 1 (PG=0, QG=0) Unity PF Operation of Inverter [32]. 

 

 

 

Figure 5.4 Case 2 (PG=0, QG=130) Unity PF Operation of Inverter [32]. 

 

 

5.3.2: Over- and Under-Voltage and Frequency Ride Through 
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Advanced inverters have additional features such as extend frequency -time and -voltage 

time ride through settings to minimize the number of needless PV system shut-offs and are 

specified in the amended interconnection standard. Case 3 of the testing is a modification of the 

setup for Case 1, by using the inverter software to change the trip set-points, voltage, and 

frequency, to the extreme permissible bounds as detailed in Table 4.1 and Table 4.2. Case 3’s 

main question is, what is the effect of changing the settings in the inverter to increase the ride 

through time. Table 5.1, Case 3 shows the local power generated as well as the 

imported/absorbed power by the grid with the resulting voltage waveform, Figure 5.5, of how the 

system performed to grid disconnect. As in before, the conditions in Cases 1 and 2 could not be 

duplicated due to the reasons stated above and the local power load can only be controlled in 

discrete increments. Even though the investigators tried to match local demand to local 

generation right before utility disconnect, at the time of utility disconnect the grid was supplying 

trivial quantities of active and reactive powers (PG=80 W and QG=30 VArs). Local generations’ 

small discrepancy when compared to local load caused deviations in both frequency and voltage 

but the inverter did stay active and only shut off after 715 milliseconds. While the inverter did 

not stay connected for the same amount of time as in Case 1, 70% less of the time but when 

compared to Case 2, it was an increase by a factor of 11. The results from Case 3 are non-

conclusive because Case 1 test conditions could not be duplicated. Even a slight difference in PG, 

QG can have a significant effect on ∆t. 
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Figure 5.5 Case 3 (Ride Through Activated of OUV and OUF Conditions) with the Inverter 

Operating at Unity PF [32]. 

 

 

5.3.3: Inverter Operation with a Setting of Non-unity PF 

For test Cases 4 and 5 in Table 5.1, the inverter software was changed to make the inverter 

function in the non-unity PF mode, to have a PF of 85.6% and 97% relative. The reason to allow 

a PV inverter to operate in this condition is to have the inverter absorb or inject reactive power to 

help control the local voltage and thereby compensate the overall feeder PF. To absorb the 

reactive power supplied by the inverter, an inductive load replaced the capacitive load and the 

OUV and OUF settings (Table 4.1 and Table 4.2) were unchanged from Case 3. Again, efforts 

were made to make PG and QG near zero but unsuccessful, and the measured quantities are 

shown in Table 5.1 at the time of utility disconnect. 

For Cases 4 and 5, Figure 5.6 and Figure 5.7 respectively show the phase voltage waveform 

of the tests during utility disconnect, showing ride times of 200 milliseconds and 114 
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milliseconds before inverter shut off. These tests were performed repeatedly with minor 

differences in PG and QG, always trying to minimize PG and QG but the ride time after utility 

disconnect never exceeded 220 milliseconds. With these tests showing the inverter shut off well 

before the 2-second default time limit, it is concluded from the results that using the advanced 

inverter OUV and OUF settings had no effect on a utility disconnect. Although with a lesser 

amount of confidence, since the inverter shut off the quickest in Case 4 and Case 5, it can be 

concluded that the inverter operating in a non-unity PF mode will lead to quick shutdown times. 

 

 

 

Figure 5.6 Case 4 Non-unity PF (85.6%) Operation of Inverter [32]. 
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Figure 5.7 Case 4 Non-unity PF (97%) Operation of Inverter [32]. 

 

 

5.3.4: Operation under Dynamic Volt/VAR Control 

For Case 6 of Table 5.1, inverter software variables would have to be changed to best 

represent the curve shown in Figure 5.2, the Volt/VAR curve. The variables needed to be set in a 

way where real power generation is unaffected, inverter software variables that set the Volt/VAR 

curve are as follows. The voltage dead band = ± 1% of nominal value, of available reactive 

power only use 50%, and the slope of the line segments (reactive power-to-voltage gradient) set 

to a 10 to 1 ratio. The 10 to 1 ratio is used outside of the dead band and states that for a 1% 

nominal change in voltage, the inverter will absorb or supply 10% of its available reactive 

power. With the inverter synchronized to the grid and producing a real power constant at 5.3 kW 

and the grid having a voltage 2.8% greater than the rated value, it produced - 1.7 VARs which is 

approximately 15% of the available reactive power. 
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Case 6 of the experiment had the longest recorded inverter ride time after utility disconnect. 

As in previous test cases, an effort was made to minimize PG and QG, but a zero value could 

never be reached. For over three seconds the inverter operated in Case 6 before shutting down 

and Figure 5.8 shows a single phase of the system and the related changes in both voltage and 

current after utility disconnect. Note due to the long period of time before inverter shut down, 

relative to previous test cases, RMS values are displayed rather than instantaneous values. The 

figure shows an oscillation of the current and voltage between +3% and -8% of their average 

output values, except for a noticeable momentary event, a dip in the voltage of nearly 50%, that 

occurred at 700 milliseconds mark after utility disconnect, this oscillation continued until the 

inverter eventually shut down. 

The long ride through time of Case 6 led to the belief that activating the Volt/VAR control 

functionality in the inverter software, had degraded the ability of the inverter to detect grid 

disconnect. To test this thought, several attempts were made to duplicate the long ride time after 

utility disconnect, each time minimizing PG and QG, but the inverter shutdown time was never 

recorded greater than 500 milliseconds. Therefore, the long ride time of Case 6 is most likely 

caused by several unknown factors that may include the frequency of the MPPT procedure and 

how it is implemented in the inverter, the processing time of Volt/VAR function, and the 

method(s) the inverter detects utility disconnect. 
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Figure 5.8 Islanding During Dynamic Volt/VAR Control [32]. 

 

 

A main concern over the dynamic operation of the Volt/VAR control of advanced inverter is 

the possibility that this function might interfere with the detection of an islanded situation. 

Attempts have been made to learn about the islanding detection schemes embedded in the 

inverter under test and to create an islanded operation. Many methods are well-known for grid-

tied PV inverters to detect utility grid disconnect, but the manufacturers of inverters believe these 

are trade secrets and therefore do not make literature available describing the methods used in 

the company’s products. 
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Chapter 6: Unintentional Islanding of Diesel Generator – PV Microgrid  

This chapter analyzes the microgrid operation dynamically, where the DG is working in 

combination with the PV system to serve the local load whilst on islanded mode while connected 

to the grid. Reference [56] conducted a similar study but only through computer simulations. In 

our case, experiments are conducted on a real system where the outcome desired is that the 

microgrid remains functioning after grid disconnection due to an outage. For simplicity, the 

islanding detection mechanism implanted in the synchronizing module was deactivated for the 

DG, and to reduce the nuisance produced by the continual tripping of the inverter, its ride 

through times were expanded for frequency and voltage deviations to the largest settings 

delineated per the revised interconnection standard [20]. In the grid-connected mode illustrated 

in Figure 6.1 below, the microgrid can either be importing or exporting real and reactive power. 

As indicated in Chapter 2, the generator is outfitted with a module capable of synchronization to 

the utility, load sharing and detection of grid disconnect. The microgrid is also compromised of a 

backup detection module, the SEL700G. This can measure electrical quantities for display and 

use in the time in and connection of the microgrid to the utility. If the SEL module detects 

undesirable conditions, it can control switches to disconnect the utility and shut down the DG set 

along with activating the appropriately distributed control system alarms. 

Two sections of the chapter: Section 1 details the response of the microgrid to an intentional 

utility disconnect (i.e., islanding) with the microgrid operating at different mismatched 

conditions in local generation and load, along with the inverter set to operate with different 

settings. Section 2 evaluates how the inverter responds in real time to rapid changes in load while 

isolated from the grid. 

 



77 

 

 

Figure 6.1 The Microgrid and its Components under Study. 

 

 

6.1: Unintentional Islanding of Operational Microgrid 

Describe in this section is the microgrid’s capability to continue function after intentional 

utility disconnect while operating at various microgrid power import levels. The inverter software 

settings were set up to a default value, as stated in IEEE 1547-2003, at the inverter the frequency, 

voltage, and power were recorded at the different mismatched conditions of local generation and 

local load demand. Similarly, a test was conducted, where the inverter software setting was 

altered to allow a longer voltage and frequency disturbance ride through voltage per Reference 

[20]. 

6.1.1: Inverter Operation under Default Settings 
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With the inverter software set per IEEE 1547-2003 and with the load was consuming 10 kW, 

under all power matched or mismatched conditions, whether importing or exporting, the inverter 

detached from the microgrid. Figure 6.2 illustrates the operation of the PV inverter’s voltage and 

power after utility disconnects, such as the one at 55 seconds with the utility grid supplying 1 kW 

or another at 135 seconds in which there was no flow of power between the utility and the 

microgrid. In the initial case, 3.75 kW is the output of the PV system which immediately turns off 

at utility disconnect. However, in the subsequent case, in an islanded mode and with the diesel 

generator providing the supply voltage for the inverter, the inverter operated for 25 seconds after 

utility disconnect. As projected, the generator was able to provide the supply voltage and the 

difference in power for the load, until the inverter shut down overloading the generator causing it 

to shut down. 
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Figure 6.2 Advanced Inverters Voltage and Power Response to Utility Disconnect, Utility 

Supplying 1 kW and 0 kW (250ms Sample Period) [29]. 

 

 

Due to the microgrid facility being located across the street from the electric power 

companies’ substation, the voltage is at the upper limit of the permissible value, and therefore 

when the utility disconnects the voltage instantaneously dropped from 286 V to 274 V, which is 

the voltage set point of the DG. The frequency changes corresponding to the tests described 

above are shown in Figure 6.3 and the frequency deviation immediately following utility 

disconnect, the frequency is severe when importing 1 kW of power and infinitesimal when the is 

zero power is imported and exported. With zero power imported/exported the inverter took some 

time to detect the utility disconnect using its active anti-islanding scheme. 

Captured in Figure 6.4 is the inverter current, which is noticeably distorted due to low solar 

irradiance, but it continued to produce power and stay on for thirty seconds following grid 

disconnect [57] with a rapid decline in voltage following the inverter shut down. 
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Figure 6.3 Advanced Inverters Voltage and Power Response to Utility Disconnect, Utility 

Supplying 1 kW and 0 kW (250ms Sample Period) [30]. 

 

 

6.1.2: Inverter Operation under Advanced Settings 

The deliberate utility disconnect was tested following the widening of the inverter software 

ride through times regarding frequency and voltage disturbances, the time was set to the 

maximum amount permissible per IEEE 1547a. In this scenario the PV system and DG set were 

producing a combined 20 kW, 8 kW PV, and 12 kW diesel, with a local load of 18 kW, and 

importation of 2 kW. Upon utility disconnect, Figure 6.5 shows how the system collapsed, by 

examining both the current and voltage supplied in the figure, it shows the inverter disconnected 
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immediately upon utility disconnect to which the synchronous generator was shut down due to the 

overload protection scheme. 

 

 

 

Figure 6.4 Advanced Inverters Current and Voltage Waveforms Response to Utility Disconnect 

[29]. 

 

 

To ascertain the microgrid stability in different conditions of import/export power after 

disconnect from the utility supply is the test shown in Figure 6.6. The figure displays the 

continual power generated by the PV inverter and the deviations in the microgrid voltage during 

utility disconnect with the conditions of 1 kW export (75 seconds), 0 kW (340 seconds), and 1 

kW import (630 seconds). Figure 6.7 depicts the corresponding frequency deviations for the 
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same test conditions and procedures as above. Easily seen in the figure is the stable 60 Hz 

frequency value while the microgrid is attached to the electric power grid, and the slight 

fluctuating frequency value during utility grid disconnection, this fluctuation is a condition that 

DG’s exhibit when operating in standalone mode, and as shown in both figures, the inverter did 

not diconnect during these disturbances but rode through as programed. 

 

 

 

Figure 6.5 Advanced Inverters Current (Red) and Voltage (Green) Response to Utility 

Disconnect, Utility Absorbing 2 kW. 
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Figure 6.6 Advanced Inverters Voltage and Power Response to Utility Disconnect, Utility 

Absorbing 1 kW and 0 kW (250ms Sample Period). 

 

 

The final portion of this test was comprised the same as the last test above, but with the 

change of setting the microgrid to import/export 2 kW during utility disconnect. The case where 

the microgrid was exporting power at utility disconnect resulted in an immediate collapse of the 

microgrid while in the case where the microgrid was importing power, the inverter ran for some 

time before shutoff. As shown in Figure 6.8 below, the inverter stayed connected through the 

utility disconnect deviations for almost 50 seconds until it disconnected, while Figure 6.9 shows 

the same test but displays the inverters instantaneous phase current and voltage during grid 

disconnect which occurred at the 97 second mark.  
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Figure 6.7 Advanced Inverters Frequency and Power Response to Utility Disconnect, Utility 

Absorbing 1 kW, 0 kW, and Utility Supplying 1 kW (250ms Sample Period) 

 

 

 

Figure 6.8 Advanced Inverters Voltage and Power Response to Utility Disconnect, Importing 2 

kW (250ms Sampling Period). 
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Figure 6.9 Advanced Inverters Current (Red) and Voltage (Green) Response to Utility 

Disconnect, Utility Supplying 2 kW. 

 

 

6.2: Microgrid Operation in Islanded Mode 

With the utility disconnected, islanded mode, and to keep the microgrid operational, the DG 

must provide the grid voltage to allow operation on the PV inverter. For a particular solar 

irradiance, a function of the sun’s position relative to the solar panels and attenuated by weather, 

the PV system will produce the maximum power possible. The DG must provide the difference 

in power to meet the current load with the load always being greater than the PV system power 

provided. The reason for this restriction is to stop the generator from disconnecting due to a 

reverse power condition, the diesel engine can only convert chemical energy to mechanical 

power and cannot convert mechanical power to chemical energy, if the generator disconnects, 

the microgrid will collapse in islanded mode. Figure 6.10 below shows the sharing of the load 
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between the PV system and DG by displaying the powers generated by each system for the fixed 

load, which in the particular test was 12.25 kW. The 12.25 kW load sharing test is with the PV 

inverters software programmed to replicate IEEE Std. 1547-2003, which is the inverters 

software’s default settings. The test starts with the DG servicing the entire load, as seen in the 

figure, and supplying the microgrid voltage to which allowed the microgrid to activate and start 

to provide power, shown at the 80-second mark. A partial overcast for the day of the test is 

responsible for the gradual power changes shown in the PV systems output and due to the DG’s 

frequency characters and power variations, the frequency deviated about the nominal 60 Hz by 

±50 milli-hertz, and the voltage fluctuated by ±1 volt. 

 

 

 

Figure 6.10 DG and PV System (Low Solar Irradiance) Load Sharing. 
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Figure 6.11 shows the powers generated by each system during sudden load changes and 

therefore the figure displays how the load is shared between the PV system and the DG during 

islanded operation. Initially, there was an 8 kW load and at the 80 second mark, an additional 2 

kW of load was added, then removed at the 90 second mark which was then followed by an 

adding of 4 kW of load at the 100 second mark and then removed at the 160 second mark. The 

final changes to the load were an increase of 4 kW to the load at the 220 second mark followed 

by an 8 kW reduction to the load at the 280 second mark, and the microgrids frequency and 

voltage changes caused by the sudden load changes are shown in Figure 6.12 and Figure 6.13. 

Initially, 3.5 kW was supplied to the 8 kW load by the PV system due to weather conditions 

limiting solar irradiance and with the sudden load change of 2 kW, Figure 6.12 shows that the 

voltage did not deviate from the nominal value by more than 3%. This deviation did not activate 

the under voltage or over voltage relays of the inverter as they are set to accept a voltage of 12% 

above nominal or 12% below nominal. Figure 6.13 shows frequency deviations of the microgrid 

did exceed the range of 60±0.5 Hz during sudden load changes of 4 kW or greater, this is why 

the inverter did not disconnect from the microgrid due to sudden load changes of 2 kW but shut-

off during the greater sudden load changes. 

From the above response of the inverter to frequency changes, it is apparent that the updated 

interconnection standard [20] that allows for an increased time of the OUF ride through function 

will allow advanced inverters the ability to help increase the stability of microgrids when 

experiencing sudden large load changes. To prove this, the next test on the islanded microgrid 

was with the advanced inverter’s software changed to increase the ride through time to frequency 

deviations, Figure 6.14 below shows the results of these tests. The test shows that the inverter did 
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not disconnect even with sudden load changes of 8 kW, in fact, no sudden load change affected 

the inverter as long the load was kept greater than the power generated by the inverter. 

 

 

 

Figure 6.11 Advanced Inverters Power Production Response to Rapid Changes in Load (Inverter 

Software - Default Values). 

 

 



89 

 

Figure 6.12 Disturbances in Voltage Due to Rapid Changes in Load Shown in Fig. 6.11. 

 

 

 

Figure 6.13 Disturbances in Frequency Due to Rapid Changes in Load Shown in Fig. 6.11 
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Figure 6.14 Advanced Inverters Power Production Response to Rapid Load Changes (Inverter 

Software - Modified Values). 
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Chapter 7: Pairing a Battery Energy Storage System (BESS) with PV 

Due to its unique flexibility, a BESS can provide over a dozen types of electricity services 

depending on its placement within an electrical grid [58]. On the customer side of the meter, by 

pairing a home BESS with a PV system in regions that offer ToU electricity rates, one can store 

solar energy when utility rates are low then use the stored energy when rates are highest, or in 

areas that provide incentives for maximizing self-consumption or reducing demand charges [59]. 

Several recent papers examined the influence of different parameters on the ability to generate 

revenue for the customer-sited PV+BES systems, such as optimal BES sizing [60]–[62], demand 

charge, and energy consumption cost reduction [63]–[65]. Others allowed the BESS to charge 

during nighttime when the electricity rates are lowest and discharge during on-peak hours [66], 

but such practice does not qualify for local and federal incentives. In Ref. [67], the net present 

value of a BES is evaluated for different grid interconnection rules, net-metering schemes, and 

PV and BESS sizes.  

In this investigation, a set of experimental tests allowed for an analysis of an actual BESS 

system integrated with a PV system, with the focus being on the BESS’s operation during steady 

state and transient conditions. The test on the BESS as a standby power source was to measure 

its dynamic response to a utility outage and the quality of voltage quality during islanded mode 

operation. A description of the experimental set-up is in Section 1 with a configuration of the 

associated hardware, where a presentation of the test results is in Section 2, which shows the 

BESS’s response in terms of its voltage quality to sudden load changes, to a utility outage and 

when operating in islanded mode. A case study is in Section 3 shows an evaluation of a BESS 

combined with a domestic PV system, the purpose of which is to show possibilities of improved 

management of electricity use thereby reducing costs. 



92 

7.1: Experimental Setup for BESS Testing 

The experimental analysis includes the following main components, a commercial BESS 

with its related hardware, a grid-tie inverter with its PV array, the utility supply, circuit breakers 

housed in an electrical panel, a load bank, and measuring instruments as shown in Figure 7.1. 

The BESS, which is the item under study, is an AC-coupled system that was described in Chapter 

2. Its characteristics are briefly repeated here for convenience. It contains an integrated 

bidirectional inverter and liquid cooling system and has a useable capacity of 13.5 kWh. The 

BESS has a continuous power charge/discharge limit of 5 kW with an efficiency of 90%, round-

trip, when in an environmental temperature of 77° F while at a 3.3 kW continuous power 

charge/discharge rate [35]. The Tesla Powerwall 2TM is a complete package that can detect a 

utility disconnect by the voltage and current of the device, activate its communication and 

control protocols to disconnect from the grid by use of a switch, and restore power to the local 

grid. All this can be accomplished in a fraction of a second but the Tesla Powerwall 2TM also 

assists utilities in stopping utility customers that own the system from recycling grid electricity 

by prohibiting its use as a revenue generator which would be possible by arbitraging grid 

electricity via TOU rates and NEM [68]. Via a software application, the full profile can be 

viewed of the power traversing the local grid including the battery system, the generated power 

of the PV system, the local load demand, and the SOC. Also, in the user interface of the software 

application, a user has access to temporal controls, solar self-use, and standby power [35]. 

The PV system contains 4 parallel strings of PV panels, with the panels rated for 270 W 

(STC) with each string containing 11 panels connected in series. It is ground mounted with a tilt 

angle of 25° facing south and this configuration makes it a 12-kW array and it is available for 

this experiment. In this study, only two strings of the PV array will be connected to build a 6 kW 
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PV array which is connected to a 6 kVA non-transformer, single phase, grid-tied inverter which 

operates at the 240 V grid supply. A resistive bank will represent the local load, it is adjustable in 

1kW steps to a maximum load of 10 kW. To record the desired grid quantities the following was 

used, Fluke-3 Model 1735 power analyzer (numerous quantities measured/recorded including 

harmonics), AEMC Power Meter Model 8220 (records waveforms of the current and voltage, 

including their steady state harmonic conditions), and a Reliable Power Meter (records current 

and voltage transients of sudden load changes). 

7.2: Test Results 

BESS test findings are listed in this section and include the voltage quality supplied by the 

BESS without the PV system operating and it in standby mode, and the dynamic response of the 

battery to utility outages and sudden changes in load while operating with different conditions of 

power mismatch.  
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Figure 7.1 Experimental Test Setup for PV + BESS. 

 

 

7.2.1: Power Quality Test  

The utility grid imposes the operational frequency and voltage at the junction box of the 

synched BESS and the PV system, given there is enough solar irradiance available. During a 

utility grid outage, the BESS will operate in islanded mode and if the solar irradiance available, 

the PV system will operate in conjunction with the BESS. Therefore, while the BESS and PV 

system works together, it is important to understand the voltage waveform, the current distortion, 

and the power flow of the combined systems. 

To create a baseline for the tests, hours of data was captured of the PV inverters current and 

the local grid voltage (240V) and then analyzed to which it was found that the utility voltage 

magnitude varied by 2.3%, while the 1.5% THD varied little, with the largest harmonic 

component being the 5th. The voltage and THD are within tolerance, voltage magnitude can vary 

by ± 5% from the rated voltage [ANSI C84.1] and the THD must be less than 8% [22]. 
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Recommended by the interconnection standards, the THD limit is 5% and the datasheet for the 

PV inverter indications that at rated conditions, the current THD is less than 4% but operating the 

inverter in sub-rated conditions, the THD of the current can exceed the manufacture stated values 

[57]. 

Below are data captures of the current and voltage waveforms at the terminals of the BESS 

while it was operating in an islanded mode, Figure 7.2 specifically shows the BESS operating 

alone as the only power source to supply a 2.2kW resistive load. In the figure, the BESS 

generates a voltage magnitude that is 1.3% under the rated value, 236.8 V, and the THD is below 

1%, which is obvious from the near a perfect sinusoid waveform. Since the BESS supplied a 

passive load, the current waveform is of the same quality, the only unexpected result was the 

current being 180° out of phase which was due to the probe being placed to measure current into 

the battery instead of out of the battery. Figure 7.3 shows the current and voltage waveforms for 

an islanded mode BESS and PV system operating simultaneously to supply a 7.4 kW load, with 

the PV system generating 4.6 kW of power and the BESS supplying 2.8 kW of power. This is 

possible due to the BESS operating in a mode that generates the voltage for the operation of the 

PV inverter, the BESS’s “grid forming mode”. In the figure, the combined system generates a 

voltage magnitude that is 1.25% above the rated value, 243 V, and the THD is below 1%, which 

is obvious from the near a perfect sinusoid waveform, but the current waveform has a noticeable 

distortion with a 3% THD approximately, caused exclusively by the operation of the PV inverter. 
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Figure 7.2 BESS Current and Voltage Waveforms When Load Sharing with the PV Inverter. 

 

 

7.2.2: Dynamic Response Test 

In this section, a recorder captured the current and voltage transients at the BESS’s terminals 

to examine its responses to sudden changes including a utility outage with and without the PV 

system operating. 

 

 



97 

 

Figure 7.3 BESS Current and Voltage Waveforms to Resistive Load, No PV Generation. 

 

 

 Without PV Present, the BESS’s Response to a Utility Outage: This test replicates a 

utility disconnect when the PV system is not operating due to the lack of solar irradiance, the 

initial state before utility disconnect was as follows, a 4.9 kW load supplied by the utility and the 

BESS in standby mode. Figure 7.4 and Figure 7.5 shows changes in both current and voltage 

RMS and instantaneous values of the BESS due to the transition from utility supply to the BESS 

supplying the load. Before the BESS could react and become the source of the load, a 2.5 cycle 

voltage collapse immediately followed by quarter cycle 30% over-voltage when the BESS 

started to provide power to the load. 

 With PV Present, the BESS’s Response to a Utility Outage: This test replicates a utility 

disconnect while the PV system was generating power and there is no power interchange with 
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the local grid. Initially, the PV system was simultaneously supplying 2.5 kW to the load and 

charging the battery at a rate of 2.3 kW. The battery immediately shut down at the instant the 

grid disconnected, shown by the red arrow in Figure 7.6. After this instant, the PV system 

continued to supply the load but with a higher voltage that reached 120% of the nominal value 

within 4 cycles, after which it shut off as required by interconnection standards. After nearly 50 

milliseconds, the battery switched back on to power the 2.5 kW load alone. Once the voltage 

stabilized after few dozen cycles (not shown in this Figure), the PV inverter resynched with the 

battery and started to deliver power. 

 

 

 

Figure 7.4 Battery Current and Voltage Response to Utility Disconnect, RMS Values, (No PV 

Generation). 
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Figure 7.5 Battery Current and Voltage Response to Utility Disconnect, Instantaneous Values, 

(No PV Generation). 

 

 

 

Figure 7.6 Battery Current and Voltage Response to Utility Disconnect, Instantaneous Values, 

(with PV Generation). 

 

 

7.3: Residential Application 
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As indicated earlier in this chapter, several studies indicate that adding a BESS to deliver a 

primary service to a customer with a PV system can achieve significant operational revenue. But 

the payback period is considered too long due to the high investment cost, even when taking 

government rebates into account. In this section, an additional stacked BESS service, namely 

energy arbitrage, is sought to increase the revenue stream. The following are assumed to be in 

place in this analysis: coordination between the utility and BES aggregators; communication 

between the utility and distributed BESs to ensure instructions are received and executed in a 

timely and reliable manner; and regulatory barriers to customer-sited energy storage market 

participation are removed.  

In areas where utility companies offer ToU rates, the cost of energy can be as much as one 

order of magnitude higher during the on-peak period than the off-peak period. Hence, shifting 

PV solar energy from morning to afternoon hours by means of a BES provides significant value. 

During off-peak periods, storing excess solar energy and shifting the stored energy so that it can 

be used during the night can add value in areas that either has no net metering or areas that 

provide incentives for self-consumption. In areas with net metering and with no incentives for 

self-consumption, however, performing such a shift is not encouraged as it results in loss of 

revenue. To generate additional revenue, this study examines the possibility to lease the BES to 

the local utility/aggregator in order to perform energy arbitrage in the regional EIM during the 

off-peak period. First, a mathematical formulation of the problem at hand is described, followed 

by a case study that analyzes a utility customer’s power use profile, the PV system and BES 

characteristics, local electricity rates and incentives, simulation results, and discussion. 

7.3.1: Solar Energy Shifting during Summer-on-Peak Period 
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In this primary application, the BES is to be charged in the morning hours from the PV 

generated power and then discharged in the afternoon hours. The grids supply/absorption of 

power and BES are monitored and recorded by utility-grade energy meters. In addition, some 

mechanism that does not allow the BES system to charge from the grid is assumed to be in place. 

When the BES is charging in the morning hours, the power balance can be formulated as 

follows: 

 𝑃௚௥௜ௗ,ା = (𝑃௕௔௧௧,ି + 𝑃௟௢௔ௗ) − 𝑃௣௩ (7.1) 

 𝑃௚௥௜ௗ,ି = 𝑃௣௩ − (𝑃௕௔௧௧,ି + 𝑃௟௢௔ௗ) (7.2) 

subject to the BES charging rate constraint, 

 𝑃௕௔௧௧,ି ≤ min {𝑃௣௩, 𝐶௕௔௧௧,ି} (7.3) 

where Pgrid, +, Pload, Ppv, and Pbatt,- respectively represent the power from the utility, power used 

by the residential load, PV system generated power, and power supplied to the BES (when 

charging). Furthermore, Cbatt-, and Pgrid, - represent the BES charge rate limit and power flow into 

the grid. 

Since the BES has limited capacity and incurs losses while charging,  an additional constraint 

is imposed in order for it not to exceed its maximum State-of-Charge (SoC). This is achieved by 

monitoring its energy content and estimating its SoC. While charging at time interval i, the 

energy stored in the BES Ei and its SoCi is determined by 

 𝐸௜ = 𝐸௜ିଵ + 𝜂௖𝑃௜
௕௔௧௧,ିΔ𝑡, 𝐸௜ ≤ 𝐸௥௔௧௘ௗ (7.4) 
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 𝑆𝑜𝐶௜ = 𝑆𝑜𝐶௜ିଵ + 100
𝜂௖𝑃௜

௕௔௧௧,ି

𝐸௥௔௧௘ௗ
Δ𝑡, 𝑆𝑜𝐶௜ ≤ 100% (7.5) 

where Δt is the sampling interval, Erated is the BES rated capacity (in kWh), and ηc is the BES 

charge efficiency. 

Similarly, when the BES is discharging in the afternoon hours, the balance equations are re-

written as follows: 

 𝑃௚௥௜ௗ,ା = (𝑃௕௔௧௧,ା + 𝑃௟௢௔ௗ) − 𝑃௣௩ (7.6) 

 𝑃௚௥௜ௗ,ା = 𝑃௣௩ − (𝑃௕௔௧௧,ା + 𝑃௟௢௔ௗ) (7.7) 

Subject to the BESS discharge rate constraint, 

 𝑃௕௔௧௧,ା ≤ min {𝐷௕௔௧௧.ା, (𝑃௟௢௔ௗ − 𝑃௣௩)} (7.8) 

where Pbatt, + and Dbatt,+ respectively represent the power supplied by the BES and its maximum 

discharge rate. Its energy content and SoC and updated while discharging is computed by 

 𝐸௜ = 𝐸௜ିଵ − ൬
1

𝜂ௗ
൰ 𝑃௜

௕௔௧௧,ାΔ𝑡, 𝐸௜ ≤ 𝐸௥௔௧௘ௗ (7.9) 

 𝑆𝑜𝐶௜ = 𝑆𝑜𝐶௜ିଵ − 100 ቆ
𝑃௜

௕௔௧௧,ି

𝜂ௗ𝐸௥௔௧௘ௗ
ቇ Δ𝑡, 𝑆𝑜𝐶௜ ≤ 𝑆𝑜𝐶୫୧୬ (7.10) 

where Emin and SoCmin are the desired minimum stored energy and corresponding SoC, and ηd is 

the efficiency during discharge.  
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The customer energy cost after the BES installation is simply calculated by integrating grid 

power, Pgrid, + and Pgrid,-, over a period and multiplying these by the local electric energy rates. 

Herein, it is assumed that the load varies at a sampling rate Δt = 1 hour, and the enforcement of 

ToU rate (as a pre-requisite for local BES rebate) which generally consists of 3 distinct time 

periods in a year: summer-on-peak, summer-off-peak, and rest-of-the-year, and a different 

electricity cost is assigned to each of these. Then the energy cost during for the entire year is 

determined by  

 ECtou=[(α1 ෍ Pi
grid,+

i∈T1

+α2 ෍ Pj
grid,+

j∈T2

+α3 ෍ Pk
grid,+

i∈T3

)-αn ෍ Pm
grid,-

8760

m=1

]∆t (7.11) 

where (α1, T1), (α2, T2), (α3, T3), represent the electricity cost and time period for summer-on-

peak, summer-off-peak, and rest-of-the-year, and αn is the net metering rate. 

7.3.2: Additional BESS Services  

This second service is applied in sequence during the rest of the year (outside the summer 

period). Note that unlike most studies that schedule stacked services simultaneously, the 

proposed scheme does not require complex co-optimization algorithms to implement. The real-

time EIM is updated every 5 or 15 minutes and it is characterized by low Locational Marginal 

Price (LMP), but with significant uncertainties which favor energy arbitrage revenues, compared 

to Day-Ahead energy trading.  In our case the local utility company which participates in this 

market is to purchase energy (charge a fleet of BTM batteries through aggregation) at a low price 

during the day where excess solar power occurs, then sell to its customers during the evening at 

the fixed rate schedule.  

For arbitrage to be profitable, the ratio of sell/buy price must satisfy the following inequality: 
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𝐹௥

𝐿𝑀𝑃௧
≥

1

𝜂
 (7.12) 

where Fr is the fixed energy cost offered by the utility to its customer base ($/kWh), LMPt is the 

average locational marginal price published in the market during the time period t, and η is the 

BES round-trip efficiency. During the energy arbitrage period, the BES state is evaluated by a 

discrete energy flow model that updates its SoC as follows: 

 𝑆𝑜𝐶௧ = 𝑆𝑜𝐶௧ିଵ +
ቀ𝜂𝑄𝐶௧ −

𝑄𝐷௧

𝜂
ቁ

𝐸௥௔௧௘ௗ
 (7.13) 

where SoCt is the state-of-charge at time t, QCt is the quantity of energy charged and QDt is the 

quantity of energy discharged. The yearly company profit from this energy arbitrage service is 

then determined by  

 𝐸𝐴௣௥௢௙௜௧ = 𝐹௥ ෍(𝑄𝐷)௜

ே

௜ୀଵ

− ෍ 𝐿𝑀𝑃௝(𝑄𝐶)௝

ெ

௝ୀଵ

 (7.14) 

where N and M are the number of discharges and charges made over the lease period. The BES 

owner will then be compensated either with a fixed amount or a variable amount that is based on 

performance. Depending on the contracted agreement, the payments can be made monthly or in 

one lump sum per year. The total yearly income generated by the BES installation is calculated 

by 

 𝐸𝐶௦௔௩௘ = 𝐸𝐶௡௕ − 𝐸𝐶௧௢௨,௪௕ + 𝐸𝐶௘௔ (7.15) 



105 

where ECnb is the customer’s yearly energy cost prior to battery installation, and ECtou,wb is the 

new yearly energy cost after battery installation (Eq. 7.11), and ECea is the yearly revenue 

generated from energy arbitrage. 

The net cost of the battery energy storage system BESScost is determined by subtracting the 

rebate received Crebate from its initial cost Cbattery, and Federal Investment Tax Credit that is 

specified by a percentage rate FITCrate, 

 𝐵𝐸𝑆𝑆௖௢௦௧ = (𝐶௕௔௧௧௘௥௬ − 𝐶௥௘௕௔௧௘)(1 − 𝐹𝐼𝑇𝐶௥௔௧௘) (7.16) 

Finally, the project’s economic feasibility can be generally assessed by its Net Present Value 

(NPV) that is computed by 

 𝑁𝑃𝑉 = ෍
𝐸𝐶௦௔௩௜௡௚௦

𝑛 (1 + 𝑘)𝑛

(1 + 𝑖)𝑛
− 𝐵𝐸𝑆𝑆𝑐𝑜𝑠𝑡

ே

௡ୀ଴

 (7.17) 

where i is the interest rate, n is the current year, N is the lifetime of the BES in years, and k is the 

yearly electric energy rate increase.  

7.4: Case Study 

The mathematical formulation above is now applied to a local residential customer who has a 

roof-mounted 5.6 kW PV system and would like to conduct an economic analysis of the 

placement of a BES for solar energy shifting during the summer period and energy arbitrage 

during the rest of the year (through a lease agreement with the utility). A description of the local 

electricity rates, residential load profile, expected power generation from the PV system, and the 

characteristics of the BESS being considered follows. 
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7.4.1: Local Energy Cost and Incentive Programs 

The State where the customer resides has an aggressive Renewable Portfolio Standard (RPS) 

that is among the highest in the US (50% by 2030). Due to concern over the future impact on 

grid operations, the local electric utility company now encourages customers with PV systems to 

install battery storage systems by providing a rebate which is recovered in electricity rates. The 

BESS incentive is capped at $3,000 [69][72]. Battery installations when paired with new or 

existing solar systems also qualify for the Federal Investment Tax Credit (ITC), currently 30%, 

but the BESS cannot be charged by the utility, the only allowed method for BESS charging is 

from the PV system. 

Two electricity rate choices are available for residential customers: flat (fixed) rate, and time-

of-use (ToU) rate as shown in Table 7.1 below along with the net metering rate [70]. Presently, 

the incentive structure requires customers who wish to install a BES to sign up for the ToU rate 

in order to reduce utility peak demand. 
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Table 7.1 Local Electricity Rates for Single-Family Homes. 

Rate Type Month Time of Day Time of Day 

Net Metering All year 1:00-24:00 -$0.09 

Flat rate All year 1:00-24:00 $0.11 

ToU Summer-on-peak June - Sept 
13:00-19:00 

(Weekdays Only) 
$0.44 

ToU Summer-off-peak June - Sept 
19:00-13:00 

+ Weekends 
$0.06 

ToU Rest-of-the-year. Oct - May All Day $0.05 

 

 

 

7.4.2: Residential Load  

The residential electrical load consists of two HVAC units, pool pump, lighting, electronic 

loads, occasional use of oven/microwave, dishwasher, clothes washer/dryer (house heating and 

cooktops use natural gas). The region is characterized by two seasons: hot season (June-

September) and cool season (November-April) with October and May being the transition (or 

shoulder) months. Consequently, the load demand is significantly higher during the hot season. 

Figures 7.7 and 7.8 show the hourly load and temperature variations of a typical cool day and a 

hot day. In the former, the average and peak powers are 1 kW and 3 kW (max temp. = 60°F), 

while in the latter, they rise to 4 kW and 9 kW, (max temp. = 100°F).  

The hourly house load data for an entire year was obtained from the customer online 

electricity portal, and it is displayed in Figure 7.9 below. The house’s total energy consumption is 
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17,290 kWh, with an  average power consumption is 1.97 kW. The base yearly electric energy 

consumption and associated cost (without PV or BES) are listed in the first 2 columns Table 7.2. 

Note the ToU rate is 2.8% higher than flat rate. 

 

 

 

Figure 7.7 Daily Load During Cool Period 

 

 

 

Figure 7.8 Daily Load During Hot Period 
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Figure 7.9 Hourly Residential Load Over One Year Period. 

 

 

7.4.3: PV System Addition 

The PV system that is installed on the rooftop of the home has a DC nameplate rating of 5.6 

kW, and it is made up of 2 parallel strings, each comprising 10 panels rated at 280 W (STC). A 

simulation tool (PVWatts) was used to estimate the hourly power production utilizing the 

following parameter values: local Latitude = 36° N, Longitude = -115° W, array tilt = 22° and 

azimuth = 180°, system losses = 12%, inverter efficiency = 96%. The resulting hourly power 

production produced by the PV system is shown in Figure 7.10 below. The total energy produced 

over one year is estimated at 10,342 kWh - nearly 60% of the house energy consumption. 

When combining the residential load profile and solar power production described above, 

one finds that 7,116 kWh of the solar energy produced was self-consumed (i.e., Self-

Consumption Ratio SCR = 69%). Hence, the yearly electric energy drawn from and supplied to 



110 

the grid is respectively equal to 10,174 kWh and 3,227 kWh. The modified customer yearly 

electric energy consumption and associated cost are listed in the middle two columns of Table 

7.2. Note that the ToU rate is now 9.3% higher than the flat rate after installing the PV system. 

 

 

 

Figure 7.10 Estimated Hourly PV Power Generation Over One Typical Year. 
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Table 7.2 Customer Energy Cost Breakdown with PV and BESS. 

Utility 
Rate 

E0 
(kWh) 

Co 
($) 

E1 
(kWh) 

C1 
($) 

E2 
(kWh) 

C2 
($) 

Flat rate 17,290 $1,902 10,174 $1,119   
Net-

Metering 
  -3,227 -$290 -2,919 -$263 

Total 17,290 $1,902  $829   
Summer-
on-peak 

2,626 $1,155 1,655 $728 543 239 

Summer-
off peak 

6,654 $399 4291 $257 5526 332 

Rest-of-
the-year 

8,010 $401 4228 $211 4228 211 

Total 17,290 $1,955 10,174 $906 10,297 $519 

 

 

7.4.4: BESS Addition 

The BESS that is considered in this study is Tesla Powerwall 2TM which can be programmed 

to operate in time-based control mode, thus allowing solar energy shift during the summer period 

as well as energy arbitrage during the rest of the year. The unit’s initial cost is $7,000, and after 

subtracting the utility rebate and Federal Investment Tax Credit, the net cost is reduced to 

$2,800. The BES comes with a 10-year warranty and its technical specifications are as follows: 

Total/Usable Capacity = 13.5 kWh, Round-trip Efficiency = 90%, Depth-of-Discharge = 100%, 

Maximum Continuous Discharge Power = 5 kW. 

The question now is whether installing a BESS will result in a sufficient amount of savings 

(from solar energy shift and energy arbitrage) that will justify such installation. During summer-

on-peak periods, it makes economic sense to store any additional energy generated in the 

morning hours and utilize it in the afternoon. Unfortunately, the excess energy during the 
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summer period is found to be limited to only 308 kWhs due to high load demand. The 10% 

losses that occur when storing and releasing this block of enegry results in 277 kWhs, which 

leads to a savings of only $94/year.  

Additional savings are achieved by storing PV energy in morning hours when the rates are 

low then utilizing it in afternoon hours when the rates are much higher. Ideally, the customer 

would want to eliminate the entire amount of energy imported during the summer-on-peak hours, 

i.e., 1,655 kWh. But the amount of energy shifting depends on a number of factors including PV 

energy available in the morning hours prior to 1:00 pm, net energy demand during peak hours 

(1:00 pm – 7:00 pm), battery capacity and its SoC just before requesting a charge command, and 

its maximum rate of charge and discharge. Figure 7.11 shows the daily PV energy that is 

produced in the morning hours and net energy demand during the summer-peak-hour period. 

While the total amount of PV energy available in the morning hours (1,456 kWh) can offset  

nearly 88% of the above imported amount, there are a number of days where the demand is 

higher than the available PV energy, and most importantly, the BESS’s capacity is limited to 13.5 

kWh (shown by the dotted green line). 
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Figure 7.11 Morning PV Energy Available and Net Energy Demand in Afternoon Hours During 

the Summer-On-Peak Period. 

 

 

Hourly simulations show that only 1,112 kWh, or 67% of the net energy demand, can be 

offset by the BES during the summer-on-peak period and this comes at the expense of storing 

10% more of this amount (1,235 kWh) due to system losses. The resulting energy consumption 

and associated cost breakdown after installing a BES are listed in the last 2 columns of Table 7.2. 

The yearly energy cost savings is estimated at $310/year, or 37.4%, of the cost without the 

energy storage system (using the fixed rate without BES as a base since it is more economical 

than the ToU rate).  

Finally, the added value can be obtained through a contract with the local utility to utilize the 

BES for energy arbitrage by participating in the EIM. Presently, there is insufficient data to 

estimate such revenue (which depends on the type of agreement where compensation can be 

either a fixed monthly fee or a performance-based fee). Assuming a simple case where the fixed 
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lease price $L/month for a period of 9 months, one can perform some preliminary calculations on 

the Net Present Value (NPV) of the BES. Using the current interest rate of around 3.5% and 

typical rate increase in electricity cost of 2%, the NPV is calculated as a function of the number 

of years after BES installation; the results are shown in Figure 7.12 for L = $0, $10, and $20 per 

month. Note that without this second service, the NPV crosses from negative to positive territory 

just after 10 years, in time when the BES warranty expires. Positive NPV respectively occurs 

after 7.5 and 6 years for leases of $10/month and $20/month. The latter value is considered 

aggressive given the current EIM environment. This latter value corresponds to fully cycling the 

BES on a daily basis 75% of the time, an average LMP = $20/MWh, and 2/3rd of the profit is 

transferred to the customer. 

 

 

 

Figure 7.12 BES Net Present Value as Function of Years After Installation. 
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Chapter 8: Conclusions 

This dissertation presented the design, fabrication, and testing of a microgrid facility which 

comprises adjustable resistive and inductive loads, a diesel-powered generator, an advanced 

inverter PV system, a BESS, monitoring, protection, and control devices, built for both research 

and education purposes. Various experiments explored the application of advanced inverters and 

their advanced functionalities. The various experiments and results are summarized below. 

To study operational challenges of a grid with a large percentage of power generated by PV 

inverters and how the autonomous functionalities found in advanced inverters can help alleviate 

some of the issues faced, experiments were performed at a facility with real power generation 

and a real PV system. These tests included the following functionalities, non-unity PF operation, 

dynamic Volt/VAr control, soft reconnect, OUV ride through, and OUV ride through. The 

recorded values produced by the experiments proved that the PV inverter functioned as 

programmed by the use of its software functions. Future interconnection requirements will 

undoubtedly require these advanced capabilities for all new distributed resources that are 

inverter-based. 

The experiments performed while the microgrid was experiencing different conditions of 

power import/export, measured the dynamic response of the advanced inverter’s performance 

due to intentional islanding of the microgrid. The results of the tests showed an advanced 

inverter and with an increased ride through times to anomalous frequency and voltages will 

provide reliability and power quality superior to a standard PV inverter, which lacks adjustability 

and has IEEE Std. 1547 defined tolerances. 

Regarding the advanced inverter’s impact on microgrid stability when comparing grid 

support functions and islanded detection functions, the data from the tests performed supported 
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no firm conclusions. This is due to inverter ride times varying inconsistently with conditions that 

were very similar but not exact and the unknown implementation of grid disconnect detection 

methods and grid support functions used in the inverter. These tests show that during a utility 

disconnect, it is difficult to project the disconnect time of the inverter. This is due to the absence 

of information with regards to the inverters power tracking methods, delay times of advanced 

functions commands, and how the inverters dynamic operation affects the active anti-islanding 

detection. However, analysis of the results from the test performed showed that where the utility 

disconnects within the 60 Hz cycle does have an impact disconnect time of the inverter. 

Below are the electrical and operational characteristics of a residential BESS operating in 

conjunction with a PV system. Some of the major conclusions from the results of the tests 

conducted are as follows:  

 The round-trip efficiency of the BESS that was calculated from several charge/discharge 

tests averaged nearly 90%, which is in line with the system specifications.  

 The quality of the voltage waveform produced by the BESS when operating off-grid has 

a THD of less than 1% - that is of higher quality than that provided by the local grid. 

 In the event of a power outage, the BESS backed up the load in less than 4 cycles of the 

60 Hz frequency, or 50 milliseconds. The BESS’s internal inverter also provided a reference 

voltage to the PV inverter, thus allowing it to generate power even under a grid outage. 

An economic analysis for adding a battery energy storage system to a local residential home 

that is equipped with a PV system for the purpose of shifting solar energy during periods during 

high ToU rates while taking advantage of current State and Federal incentives. To increase 

revenue, the BES is leased to the local utility company for energy arbitrage in a regional energy 

imbalance market. This second which is applied in a stacked manner outside the peak summer 
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period (energy arbitrage through aggregation by the local utility company) can generate 

additional revenue. Numerical simulations indicate the BES can reduce the homeowner’s energy 

bill by nearly 38%, but a most optimistic additional amount from this particular service will 

result in a positive NPV after no less than 6 years. The cost savings calculated in this study 

applies only to the local region and can differ significantly for other regions with different ToU 

rates, net metering rates, and local incentives for energy storage. 
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Appendix 

1. PV Module Technical Specs 
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2. Inverter Technical Specs 
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3. Diesel Generator Reactances and Time Constants 

 

 

 

3.1 Additional Diesel Generator Data 
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4. Diesel Generator Synchronizing Module Spec Sheet 

 

 

  



125 

5. Automatic Voltage Regulator (AVR) Spec Sheet 

 



126 

 

  



127 

6. Diesel Generator Governor Spec Sheet 
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7. Inductor Technical Specs 
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