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ABSTRACT 

Time-Dependent Behavior of Aged Reinforced Concrete Columns Subjected to High 

Sustained Loads 

 

By 

 

Wenchen Ma 

Dr. Ying Tian, Examination Committee Chair, Professor 

Department of Civil and Environmental Engineering and Construction 

University of Nevada, Las Vegas 

 

Columns are critical components resisting the collapse of a reinforced concrete (RC) 

frame structure subjected to high sustained loads. Research on columns under sustained high 

stresses is very limited. At material level, past creep tests were focused either on concrete with 

ages less than 90 days or under a sustained stress less than 70% of short-time strength. At 

structural component scale, virtually no experimental data can be found for the response of 

axially loaded RC columns subjected to high sustained loads exceeding 75% of column short-

time strength with loading age greater than 200 days. Even if a few experiments were conducted 

to examine the sustained eccentrically loaded columns under high sustained loads, the 

experiments were conducted predominantly within three months of concrete casting. The goals 

of this research were to (1) understand the behavior of aged reinforced concrete frame columns 

with ages greater than 200 days and under high sustained loads no less than 75% of short-time 

loading capacity caused by sustained concentric and eccentric loading, (2) examine the effects of 
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transverse reinforcement ratio on the creep behavior of RC columns, (3) examine and explore a 

numerical method based on an existing nonlinear creep model for aged concentrically loaded 

concrete columns under high sustained stresses.  

To achieve the research goals, thirteen columns were tested after 209 to 629 days of 

concrete casting. The sustained loading lasted 2 to 120 days. Test variables included sustained 

load level, eccentricity ratio, and transverse reinforcement ratio. Eight of the thirteen columns 

were subjected to concentric loads. Among them, one plain concrete and one RC column, as 

control specimens, were tested to failure in a short time; two plain concrete and four RC columns 

were subjected to sustained concentric loads ranging from 76% to 98% of code-defined nominal 

short-time strength. No concentrically loaded column failed even the sustained load was as high 

as 98% of column short-time strength. Five RC columns were tested under sustained eccentric 

loading. These columns were initially loaded to cause the bending moment at the column mid-

height to reach 77% to 100% of nominal flexural capacity after considering axial force-moment 

interactions. The columns showed high resistance to large sustained loads, and only one 

eccentrically loaded column failed during sustained eccentric loading. For concentrically loaded 

columns subjected to 98% code-defined nominal short-time strength, higher transverse 

reinforcement ratio decreased concrete creep during the early stage of sustained concentric 

loading but diminished over time. For eccentrically loaded columns, higher transverse 

reinforcement ratio increased flexural stiffness and resulted in lower creep deformation, thereby 

reducing failure risk due to second order effects.  

A numerical method for predicting concrete column creep under high axial sustained 

stresses and older loading ages is explored based on existing creep models. The experimental 

results of short column tests were compared with the predictions. 
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CHAPTER 1 

INTRODUCTION 

1.1 Collapse of Reinforced Concrete Buildings under Sustained Load 

Building collapse can be initiated by the loss of loading capacity in a primary structural 

component, resulting in the failure of surrounding elements, which in turn cause a failure 

propagation. Globally, a total of 38,363 people lost their lives due to collapse of structures 

between 2001 and 2015 (Factly News, 2019). In the U.S., 172 structural failures occurred in low-

rise and multistory buildings from 1989 to 2000 (Wardhana and Hadipriono, 2003). Of these, 94% 

of the failures ended up with partial or total collapse and 45% were attributed to design or 

construction error, overloading, or material deficiency. Most collapses happened under sustained 

load rather than due to earthquake or wind load. Another study (Eldukair and Ayyub, 1991) 

reported 604 failures in the U.S. from 1975 to 1989, excluding those due to natural hazard. Of 

those, 78% were caused by technical errors and 86% were related to reinforced concrete (RC) 

structures. The failures resulted in 416 deaths. In contrast, according to United States Geological 

Survey (USGS), earthquakes only led to 68 deaths in the U.S. since 1990. These data highlight 

the likelihood of structural failure under sustained load in the U.S., where building design and 

construction have been rigorous.  

Well-engineered RC buildings generally have a good performance under normal loading 

conditions. However, faulty design, construction errors, material deterioration, and overloading 

can occur. Additionally, abnormal loading such as impact, flood, and blast may also happen. 

Either case of human error or abnormal loading can lead to sustained high stresses and failure of 

key structural components. The initial local failure may not result in an immediate failure 

propagation. The building is able to find an alternative load path; however, elements along that 
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path may be under sustained high stresses due to load redistribution. This causes the building to 

exhibit early warning signs such as concrete cracking or large deformation. If the warning signs 

are ignored, collapse may occur.  

Figure 1.1 shows the collapse of the Sampoong Department Store in South Korea in 1995. 

The building was a 5-story RC flat-plate building (Park, 2012). Due to under-designed slab 

thickness and overload, a punching failure was initiated from an interior slab-column connection 

at the roof, resulting in a progressive collapse of the building that killed 501 people. Several days 

before the collapse, civil engineers who examined the building realized that the building was at 

risk of collapse. Cracks radiated from one column to the slab on the fifth floor due to the 

vibration from air conditioning unit on the roof. The cracks were further widened five hours prior 

to the collapse. Eventually, all floors in the south wing progressively collapsed in less than 25 

seconds (Wearne, 2000). 

  

 

Figure 1.1 Collapse of Sampoong Department Store (Park, 2012). 

 

Hotel New World in Singapore, a six-story RC frame building, collapsed on March 15, 

1986, as shown in Figure 1.2. The collapse trapped 50 people beneath the rubble; 17 people were 
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rescued, whereas 33 people were killed (The New York Times, 1986). Investigations revealed 

that the structural engineer had considered the building’s live load in the design but the building's 

dead load was completely neglected. What is more, the building owner added a total of 100 tons 

load throughout the years not considered in the original design (Thean et al., 1987). The extra 

loads included a strong room for a bank in the building, 3 air-conditioned towers, and heavy duty 

glazed ceramic tiles on building surface. Sixteen hours before the building collapse, a nightclub 

hostess observed persistent cracking in one of the supporting columns, an early sign of incoming 

failure.  

 

  

before collapse (MustShare News, 2016) after collapse (Asiaone News, 2016) 

Figure 1.2 Collapse of Hotel New World in Singapore. 

 

Two RC buildings collapsed under sustained loads in Turkey. The Diyarbakir Hicret 

Apartment experienced a total collapse in 1983, causing 93 death. The Konya Zumrut Apartment 

collapsed in 2004 (Figure 1.3), causing 92 death. Both buildings suffered initiating column 

failures believed to be due to concrete creep under sustained gravity loads. Two similar cases of 

column failure due to concrete creep were found in Konya, Turkey (Kaltakci et al., 2007), as 

shown in Figure 1.4. 
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before collapse  after collapse 

Figure 1.3 Collapse of Zumrut apartment building (Kaltakci et al., 2013). 

 

  

Altinbasak apartment building  Sirinyurt apartment building   

Figure 1.4 Column damage in Konya caused by creep effect (Kaltakci et al., 2007). 

 

1.2 Concrete Creep under Sustained Load 

The failure of a RC structural component under sustained loads is most likely related to 

concrete creep, a long-term deformation under sustained loading. Water within the hardened 

cement paste is forced to move as a result of the applied load (Theconstructor.org). This moisture 

movement is the primary cause of creep deformation. Creep is affected by many parameters, 

including stress level, short-time strength, loading age, temperature, aggregate type and size, 

water-cement ratio, geometry, and relative humidity (Bažant, 1975; Bažant and Chern, 1985; 

Iravani and MacGregor, 1998; Mazzotti and Savoia, 2002). Concrete creep is fundamentally 
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caused by progressive propagation of internal microcracks (Shah and Chandra, 1970). Stress 

level is the most crucial parameter governing concrete creep behavior. If the sustained stress 
c  

is less than 0.4fc' (fc' = short-time cylinder compressive strength of concrete), creep strain is 

linear with respect to stress. Nonlinearity presents at higher stresses. When the sustained stress is 

less than 0.7fc', microcracks grow slowly. Nonlinear creep presents at higher stresses when the 

applied stress is greater than 0.70fc'. When the stress is greater than 0.8fc', concrete experiences 

failure in a short time, preceded by a rapid microcrack growth and a sharp increase in volume 

expansion. Of importance to the structural behavior of a RC component is the stress-strain 

response of concrete. As an example, Figure 1.5 shows the response of concrete strain versus 

time of failure at different stress levels (Rüsch 1960). The short-time concrete compressive 

strength was fc' = 5000 psi and the sustained loads were applied at a concrete age of 56 days. It is 

seen that higher stress level leads to shorter failure time.  

 

 
Figure 1.5 Concrete strength and strain under creep effect (reproduced from Rüsch, 1960). 
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It is also known that concrete strength under a sustained load is less than that tested under 

a load monotonically increased in a short time. This is of fundamental importance in the design 

of RC structures since it means a reduction in safety margin with regard to short-time concrete 

strength. This situation can be illustrated by Figure 1.6 (Rüsch, 1960), which shows a 

relationship between the ratio of stress 
c to fc' and total strain after loading at an age of 56 days. 

The leftmost curve shows normalized stress-strain response of concrete loaded for 20 minutes 

until failure. The lower right line indicates the creep deformation of concrete experiencing an 

extremely low loading rate. The two other curves correspond to a loading time between 20 

minutes to infinity. The top dashed line shows decreasing strength with increasing load duration, 

which demonstrates a reduction in concrete strength due to reduced loading rates. It can be 

extrapolated from the failure stress under the very low loading rate that concrete compressive 

strength under sustained loading could be around 80% of its short-time loading capacity. 

 

 
Figure 1.6 Loading rate effects to concrete strain (reproduced from Rüsch, 1960). 
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1.3 Research Justification   

Building resistance to progressive collapse was a major research thrust in structural 

engineering community especially after the collapse of the World Trade Center in 2001. To 

evaluate the robustness of a structure against progressive collapse, one well-accepted approach is 

to examine whether the structure can develop an alternative load path to continue carrying 

gravity loads after the local failure of one or more critical components. This threat-independent 

approach formed the basis of past research and is adopted in the existing guidelines for 

progressive collapse analysis (DoD, 2013; GSA, 2003). Accordingly, research on the collapse 

resistance of RC frame buildings (e.g. Sasani et al., 2007; Yi et al., 2008; Su et al., 2009; Qian 

and Li, 2012; Orton and Kirby, 2013; Dat and Hai, 2013; Xiao et al. 2015) has focused primarily 

on the capability of beams and slabs in bridging over one or more failed columns. However, no 

effort was found to understand the near-collapse response of RC frame buildings under high 

sustained loads.  

In many actual RC building collapse cases, as described previously, the gravity loads 

should have changed little prior to the final large-scale failure. Therefore, the collapse happened 

under sustained loads and the evolution from local damage to global collapse was time-

dependent. It can be hypothesized that under sustained loading, nonlinear creep of concrete 

under high stresses as well as the resulting load redistribution can lead to local failure of 

members and then a partial or complete collapse of the structure.  

Columns are critical components resisting collapse of a RC frame structure subjected to 

extreme loading conditions. As stated previously, construction faults, design mistakes, and over 

loading all can cause sustained high stresses in a column. Moreover, the load redistribution after 

the loss of a column also can lead to high stresses in the neighboring columns. It is not clear how 
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sustained high stresses lead to a local column failure nor how the local failure evolves into a 

collapse. Research on columns under sustained high stresses is very limited, likely because of the 

long-lasting belief that creep is mainly a serviceability issue. At material scale, although decades 

of research efforts have been made on creep of concrete material, they focused either on the 

properties of concrete in early ages (normally less than 60 days) or concrete under a sustained 

stress less than 70% of short-time compressive strength. At structural component level, virtually 

no experimental data can be found for the response of axially load RC columns subjected to high 

sustained loads exceeding 70% of short-time strength with loading age greater than 200 days. 

Even if a few experiments were conducted to examine the sustained eccentrically loaded 

columns under high sustained loads, such test data remain rare. The lack of knowledge of RC 

columns under sustained high stresses, the critical role of column, and the high consequence of 

building collapse necessitate this research. 

 

1.4 Research Goal, Approach, and Objectives  

This study is a portion of a joint research effort to explore the near-collapse behavior of 

RC frame and flat-plate buildings under sustained gravity loads, involving the University of 

Nevada, Las Vegas and the University of Missouri – Columbia. The overall goal is to understand 

the behavior of RC frame columns under high sustained stresses caused by sustained axial loads 

no less than 75% of column short-time loading capacity.  

The understanding of experimental data generated from this fundamental research would 

permit developing reliable predictive models used for understanding the complex, system-scale 

damage evolution process in a near-collapse RC frame structure under high sustained gravity 

loads. To achieve the goal, a series of experiments were design and conducted with the following 
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objectives: 

▪ Characterize the behavior of RC columns under high sustained axial loading. 

▪ Examine the effects of column transverse reinforcement on creep behavior and examine 

the existing constitutive models for concrete with nonlinear creep. 

▪ Characterize the behavior of RC columns under high sustained eccentric loading. 

 

1.5 Research Contribution 

Research on axial loading response of RC columns under high sustained stresses is very 

limited on both material and structural component scales. Past studies of concrete creep effects 

on structural performance focused mainly on serviceability. Almost no experimental data can be 

found for the response of either plain concrete or RC columns subjected to sustained loads 

exceeding 0.7fc' and with a loading age greater than 100 days. Data for eccentrically loaded RC 

columns under high sustained stress are also rare. Very few nonlinear creep models have been 

developed and they were not extensively validated. Moreover, the effects of confinement 

provided by transverse reinforcement on concrete nonlinear creep are largely unknown.  

The experimental data generated by this study will help understand RC structures’ 

behavior near collapse and improve the existing model to predict concrete creep under high 

sustained loads. The findings obtained from the project would (1) permit a better understanding 

of column failures under sustained high stresses caused by various abnormal conditions and the 

possibility of progressive collapse of the whole structure, (2) enable more reliable methods to 

evaluate the structural reliability under abnormal events such as component failures due to 

human errors, and (3) identify critical damage in buildings and thus permit more prudent 

evacuation, rescue, and stabilization decisions by interpreting the early warning signs. 
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1.6 Literature Review 

1.6.1 Parameters Affecting Concrete Creep 

Concrete creep is affected by many parameters. Among them, sustained applied stress 

level, loading age, concrete short-time compressive strength, temperature, relative humidity, 

loading history, and  aggregate type and size have the greatest influence on the concrete creep. 

Sustained stress level applied — If the sustained stress 
c  is less than 0.4fc', creep strain 

is in general linear with respect to stress (ACI Committee 209, 2008). Nonlinearity presents at 

higher stresses. Once the stress is greater 0.75fc', the material suffers tertiary creep, characterized 

by an accelerated strain rate ( 0  ) (Zhou, 1992). When the stress is greater than 0.8fc', concrete 

experiences a rapid microcrack growth and a sharp increase in volume expansion (Shah and 

Chandra, 1970). When sustained stress attains to approximately 0.85fc', stress-strain curve of 

concrete bifurcates (Challamel et al., 2005). Concrete will experience a high strain rate prior to 

failure when 0.85 'c cf  . 

Loading age — Greater loading age reduces both total and creep strains at failure and 

elongates failure time.  Because gel quality in concrete improves with time, creep is greater when 

concrete with a young gel is loaded. Two types of concrete aging, including short-term chemical 

aging and long-term non-chemical aging, decreases concrete creep rate (Bažant et al., 2004). 

Short-term chemical aging is caused by the slow process, in which new solids are produced 

during the chemical reactions of cement hydration and deposited on the walls of capillary pores. 

Short-term chemical aging ceases at room temperatures after about one year. Long-term non-

chemical aging can be demonstrated by decreased creep rate with increased loading age, even if 

the creep caused by cement hydration is nearly ceased. This phenomenon was explained by 

microprestress relaxation (Bažant et al., 1997), although a long-term increase of bonding 
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between cement paste and aggregate due to “polymerization” in calcium silicate hydrates (C-S-H) 

may also play a role (Bažant and Prasannan, 1989).   

Short-time compressive strength (fc') — If / ' 0.4c cf  , creep strain decreases with 

increasing fc' for at least 60 days (Smadi et al., 1985). However, if 0.9 'c cf  , total strain 

becomes greater with increasing fc' (Smadi et al., 1986). In general, the ratio of sustained load 

strength to fc' increases as fc' increases. High-strength concrete (fc' > 60 MPa) has a higher creep-

stress proportionality limit (about 0.65fc') than low- and medium- strength concretes (0.45fc'). 

This means that high-strength concrete may be loaded up to 0.65fc' without causing significant 

crack formation. On the other hand, the period of sustained loading up to failure is generally 

longer for high-strength concrete than that for low- and medium-strength concretes. Iravani and 

MacGregor (1998) reported that, for concrete with fc' = 65 MPa, the sustained strength can be 0.7 

to 0.75 fc'; for fc' = 95 MPa concrete, the sustained strength can be 0.75 to 0.8 fc'; for concrete 

with fc' higher than 105 MPa, the sustained strength can be 0.85 to 0.9 fc'. 

Temperature — Temperature-induced creep is unrecoverable. Creep rate is increased 

under temperature increase, because it accelerates bond breakage and affects bond restoration. 

However, once temperature reaches a certain value, higher temperature accelerates the chemical 

process of cement hydration, thereby increasing concrete aging and reducing creep rate (Bažant 

et al., 2004). Overall, the former effect prevails. For instance, Geymayer (1970) stated that a 

temperature increase from 0 °C to at least up to 50 °C increases creep by more than 100%. 

Nevertheless, creep may not increase when the temperature is increased from 50°C to 100 °C.  

Relative humidity — Change in humidity induces free hygrometric strain, which is 

caused by the changes in capillary tension, surface tension, and disjoining pressure (Bažant et al., 

2004). Hygrometric strain is reduced by moisture movement into and out of cement gel pores 
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(Deryagin, 1963). Environmental humidity variations lead to a non-uniform stress distribution on 

concrete, causing crack diffusion and affecting concrete pore humidity (Bažant and Oh, 1983). 

The pore humidity plays a similar role in concrete aging. Both the hydration and creep processes 

are slowed down by decreased pore humidity.  

Loading history — Shah (1970) stated that sustained stress has a strengthening effect on 

concrete creep. This phenomenon is probably caused by increased van der Waals' force, which 

intensifies attraction among the particles of hydrated cement paste. Because of this beneficial 

effect, sustained loading was found to be less damaging than cyclic loading. 

Aggregate type and size  —According to Carlos et al. (2010), the modulus of elasticity of 

aggregate significantly affects concrete creep. Aggregate with higher elasticity modulus offers 

higher creep resistance. Both the strength and elastic modulus of concrete increase as the 

proportion of limestone aggregate in concrete increases. Additionally, well-graded, coarser 

aggregate with low-void content decreases creep deformation. 

  

1.6.2 Tests of Concrete Material under High Sustained Load 

The collapse of a RC building under sustained loads is most likely caused by concrete 

material failure due to nonlinear creep increasing continuously. Assessments of concrete creep 

require experimental results at high stresses. Nevertheless, these results are very scarce so that 

the relationship between nonlinear creep and damage as well as failure mechanism cannot be 

effectively clarified. For instance, in a well-cited concrete creep experimental database produced 

by Northwestern University (Wendner et al., 2015), only 50 out of 1439 data sets exist for 

concrete subjected to sustained stresses σc greater than or equal to 75% of short-time strength 

'cf . Figure 1.7 shows the applied stress level versus loading time of the test data given in this 
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database as well as those provided in four literature to be reviewed in this section. Overall, only 

111 of 1500 tests considered a stress ratio greater than 0.75 and only 84 of the 1500 specimens 

were loaded after 200 days of concrete casting. It is noteworthy that no experiment shown in 

Figure 1.7 was performed both under a stress ratio greater than 0.75 and after a concrete age of 

200 days. 

 

 
Figure 1.7 Summary of creep data from Northwestern University's database and four literature. 

 

Tests by Shah and Chandra (1970) 

Shah and Chandra tested six 2 in. x 2 in. x 6 in. concrete prismatic specimens subjected to 

sustained concentric stresses of 60, 70, 80, and 90% of 28-day cylinder compressive strength 

(average strength = 4580 psi). The concrete age of loading was between 28 and 30 days. 

Concrete failure process under sustained loading was studied. Both longitudinal and lateral 

strains were measured. Figure 1.8 summarizes the creep deformation data obtained in this study. 

All the four specimens subjected to / 'c cf ≥  0.80 failed within 100 minutes during the 
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sustained loading. The other two specimens subjected to lower sustained stresses were loaded up 

to 4 hours. It was concluded that crack growth under sustained stress results from stress 

corrosion. Stress corrosion is influenced significantly by free moisture presence and allows crack 

tip to be corroded faster due to concrete material deterioration. Additionally, sustained stress has 

a strengthening effect on concrete creep when comparing with cyclic loading. This phenomenon 

is because concrete under sustained load intensifies attraction among the particles of hydrated 

cement paste so that creep strain under sustained load is less than under cyclic loading. 

 

 
Figure 1.8 Concrete creep under high sustained stresses measured by Shah and Chandra (1970). 

 

Tests by Awad and Hilsdorf (1971) 

Thirty 4x4x12 in. concrete prismatic specimens were tested to investigate strength and 

deformation characteristics of plain concrete subjected to high sustained concentric compressive 

stresses. Deformations were recorded in both longitudinal and transverse directions. The 

specimens were divided into three groups based on loading age. In each group, three sustained 

load levels were considered: / 'c cf = 0.85, 0.9 and 0.95, where 'cf  is concrete short-time 
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strength at the start of sustained loading. Eight specimens, with an average 'cf of 2330 psi were 

loaded after 7 days of concrete pouring. Twelve specimens were loaded at an age of 28 days 

when the average 'cf was 3690 psi. Ten specimens were loaded at an age of 90 day when the 

average 'cf was 4522 psi. Figure 1.9 shows the measured creep failure strain data, all specimens 

were failed within 4 days. It was found that, when the sustained stress was lower, the failure 

strain under sustained loads was higher. Moreover, if concrete was loaded at an older age, the 

longitudinal strain at failure for / ' 0.9c cf   was higher.  

 

 

Figure 1.9 Concrete creep under high sustained stresses measured by Awad and Hilsdorf (1971).  

 

Tests by Smadi et al. (1985 and 1986) 

Smadi et al. (1985 and 1986) conducted sustained concentric loading tests of forty-four 4 

x 8 in. cylinder specimens. The objective was to determine the effects of concrete strength and 

applied stress level on total deformation, creep deformation, normalized creep, and creep 

recovery. Based on 28-day compressive strength, three groups of specimens were tested, 

including high strength concrete (fc' = 8,000 to 10,000 psi), medium strength concrete (fc' = 5,000 
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to 6,000 psi), and low strength concrete (fc' = 3,000 to 4,000 psi). The sustained stresses were of 

40, 60, 70, 75, 80, 85, 90 and 95% of concrete ultimate strength. The age of loading ranged from 

28 to 30 days. Figure 1.10 shows the measured creep deformation data. For specimens with 

/ ' 0.85c cf  , the measurements were taken up to 4 hours; for / ' 0.85c cf  , the specimens 

were loaded up to 60 days. Under the same / 'c cf , the creep strain of high-strength concrete 

was lower than that of medium- and low-strength concrete. At very early ages after loading (i.e., 

within one day), the total strain at the same stress level was greater when concrete fc' was higher; 

however, at later ages this was not the case anymore, as shown in Figure 1.11. Additionally, the 

total strain recovery was approximately proportional to the previously applied stress and was 

greater if concrete fc' was higher. 

 

 
Figure 1.10 Concrete creep under high sustained stresses measured by Smadi et al (1985 

and1986). 

 



17 
 

  

(a) (b) 

Figure 1.11 Concrete creep and creep recovery of high-, medium-, and low-strength concrete 

under sustained compressive stress: (a) / ' 0.7c cf =  and (b) / ' 0.4c cf =  (Smadi et al., 1985 

and1986). 

 

Tests by Iravani and MacGregor (1998) 

Sustained loading tests were carried out on twenty-nine 100 x 200 mm concrete cylinders 

to study compressive strength under high sustained stresses. The specimens were subjected to 

sustained stresses for 3 months if no failure occurred. Two groups of concrete cylinders were 

tested under long-term loading: 20 tests were loaded under concentric loading and 9 tests were 

loaded under eccentric loading with an eccentricity of 10% of diameter. The loading age was 56 

days, when concrete short-time strength was measured as fc' = 65 to 120 MPa (9,425 to 17,400 

psi). Sustained stresses ranged from 70 to 95% of the short-time strength. The tests examined 

whether strength reduction is as great for high-strength concrete as for normal-strength concrete. 

Figure 1.12 summarizes measured extreme fiber creep strain data. The following observations 

were made: (1) The ratio of sustained load strength to short-time strength of high-strength 
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concrete increased as the compressive strength increased; (2) as shown in Figure 1.13, small 

eccentricity slightly improved the sustained load strength ratios of high-strength concrete by 

approximately 5%; (3) during the initial loading to the sustained stress in a short time, 

nonlinearity in stress-strain response appears at a greater ratio of stress to the short-time strength.  

  

 

Figure 1.12 Concrete creep data under high sustained stresses measured by Iravani and 

MacGregor (1998). 

 

  
(a) Concentric loading  (b) Eccentric loading 

Figure 1.13 Concrete creep data under high sustained stresses (Iravani and MacGregor, 1998). 
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1.6.3 Existing Concrete Creep Models 

1.6.3.1 Models for Linear Creep 

Four linear creep models are frequently cited to predict the long-term creep strain of 

concrete under low level of sustained stresses (0 to 40% of concrete ultimate stress), including 

ACI 209 model (ACI Committee 209,  1992), B3 model (Bažant and Baweja, 1995 and 2000), 

CEB MC90-99 model (Muller and Hillsdorf, 1990; CEB, 1999) and GL2000 model (Gardner 

and Lockman, 2001). These models were calibrated with typical composition concretes, 

excluding concrete containing silica fume, fly ash contents greater than 30%, or natural 

pozzolans. The individual model’s applicable range for different input variables are listed in 

Table 1.1, where fcm28 is concrete mean compressive cylinder strength at 28 days, a/c is 

aggregate-cement ratio, tc is age of concrete (in days) when drying starts at end of moist curing, 

and t0 is age of concrete at loading (in days). Five basic assumptions were normally adopted: (1) 

shrinkage and creep are additive; (2) creep may be considered approximately proportional to 

stress; (3) creep can be separated into basic creep and drying creep; (4) differential shrinkage and 

creep or shrinkage and creep gradients can be neglected; and (5) Restrained stresses caused by 

concrete swelling and autogenous shrinkage during curing phase are negligible. Basic creep, 

measured on specimens sealed condition, is considered a material constitutive property and 

independent of the specimen size and shape. Drying creep is the remaining strain after removing 

shrinkage, elastic and basic creep strains from the total strain of identical specimens in a drying 

condition.  
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Table 1.1 Parameter range for four linear creep models 

Input variables ACI 209 B3 CEB MC90 GL2000 

fcm28 (psi) — 2,500 to 10,000 2,175 to 17,400 2,320 to 11,900 

a/c — 2.5 to 13.5 — — 

Cement content (lb/yd3) 479 to 752 270 to 1215 — — 

w/c — 0.35 to 0.85 — 0.4 to 0.6 

Relative humidity, % 40 to 100 40 to 100 40 to 100 20 to 100 

Type of cement I or III I, II, III I, II, III I, II, III 

tc (moist cured) ≥ 1 day ≥ 1 day ＜ 14 days ≥ 1 day 

tc (steam cured) 1 to 3 days — — — 

t0 ≥ 7 days t0 ≥ tc ＞ 1 day t0 ≥ tc ≥ 1 day 

 

 

ACI 209 model (ACI, 1992) 

The ACI 209 model (1992) predicts total concrete strain, including creep and shrinkage 

strains. Only the formulation of creep strain in this model is described herein. This model defines 

a compliance function J(t,t0) that represents the total stress-dependent strain caused by a unit 

stress, as shown in Equation (1.1). 
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where 0cmtE  is concrete modulus of elasticity at the time of loading (t0, in days); and 
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creep coefficient defined in Equation (1.2) as the ratio of the creep strain at t (concrete age, in 

days) to elastic strain at the start of loading at the age of t0 (in day).   
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B3 model (Bazant and Baweja, 2000) 

B3 model is the most updated method developed at Northwestern University for 

predicting concrete shrinkage and creep. The B3 model is simpler and is better theoretically 

justified than the previous models (Bazant and Baweja, 2000). The model has some restrictions, 

as shown in Table 1.1. Additionally, B3 model is restricted to service stresses (no more than 

0.45fcm28. An average compliance function J(t,t0) is expressed using Equation (1.3). J(t,t0), 

evaluated at concrete age t and caused by an uniaxial constant stress applied at age t0, includes 

instantaneous deformation and drying creep. 

0 1 0 0 0( , ) ( , ) ( , , )d cJ t t q C t t C t t t= + +  (1.3) 

where q1 is an instantaneous strain due to unit stress (at a time of about 10-9 second); 
0 0( , )C t t is a 

compliance function for basic creep; 
0( , , )d cC t t t is additional compliance function for drying 

creep.  

 

CEB MC90 model (1999) 

CEB MC90 model (Muller and Hilsdorf, 1990; CEB, 1999) involves similar concepts to 

the ACI 209 model. The CEB MC90 model gives a hyperbolic change with time for creep and 

shrinkage. The model also uses an ultimate value corrected according mixture proportioning and 

environment conditions. The CEB model does not require any input regarding curing duration 

and condition; however, it considers average relative humidity and member size. The compliance 

function J(t,t0) in this model is expressed as Equations (1.4) and (1.5). 
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 0.5

0 28 0exp[ 1 (28 / ) ]
2

cmt cm

s
E E t=  −  (1.5) 

where Ecm28 is mean modulus of elasticity of concrete when loading starts at age t0; 28 0( , )t t  is 

28-day creep coefficient (dimensionless) expressed using Equations (1.6) through (1.10); 

coefficient s should be taken from Table 1.2. 

 

Table 1.2 Values of coefficient s  

fcm28  Type of cement s 

≤ 60MPa  

III (rapid hardening high-strength cement) 0.2 

I (normal or rapid hardening cements) 0.25 

II (slowly-hardening cement) 0.38 

≥ 60MPa  All types 0.2 
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0.2

0 0 1( ) 1/ [0.1 ( / ) ]t t t = +  (1.10) 

where h is relative humidity of the ambient environment expressed as a decimal; h0 = 1; V/S is 

volume-surface ratio; (V/S)0 = 2 in.; fcm0 = 1450 psi; t1 = 1 day. 

 

GL2000 model (2004) 

The latest GL2000 model (Gardner 2004) was minorly modified from the original model 

developed by Gardner and Lockman (2001). The modifications include some coefficients and 

strength development with time. The model presents a design procedure for calculating the creep 
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of normal-strength concretes. The 28-day specified concrete strength, concrete strength at 

loading, element size, and relative humidity are needed for this model. The effects of element 

size, represented by V/S ratio, are reflected in Equations (1.11) and (1.12). Aggregate stiffness is 

taken into account. The compliance expression is based on the modulus of elasticity at 28 days 

instead of the modulus elasticity at the age of loading. This model includes a term for drying 

before loading, which is applied to both basic and drying creeps. The compliance function J(t,t0) 

is identical to that of the MC90 model (Equation (1.4)); however, the expression of 28 0( , )t t  is 

modified as Equation (1.11). The GL2000 can be used regardless of chemical admixtures or 

mineral by-products in concrete, casting temperature, or curing regime. 
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 (1.11) 

where ( )ct is the correction term for the effect of drying before loading and expressed as 

Equation (1.12). 
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(1.12) 

where tc is concrete age when drying starts or end of moist curing (in days).  

 

1.6.3.2 Models for Nonlinear Creep 

The damaging effect of high sustained stress on concrete compressive strength has been 

recognized and studied since the 1950s. The methods for modeling concrete nonlinear creep and 

associated damage can be categorized into three types. The first type was developed based on 

material damage development (Hellesland and Green, 1972; Carol and Murcia, 1989; Mazzotti 

and Savoia, 2003; Bockhold and Stangenberg, 2004; El-Kashif and Maekawa, 2004; Challamel 
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et al., 2005; Ruiz et al., 2007; Tasevski et al., 2018 and 2019). The second type was based on 

fracture mechanics (Whittmann and Zaitsev, 1972; Zhou, 1992; Zijl et al., 2001; Barpi and 

Valente, 2002; Luzio G. Di, 2009). The third type theory had a physical basis in micromechanics 

of aging process, which amalgamates a microplane model and a modified solidification-

microprestress theory and considering the temperature and humidity effects on concrete creep. 

This category of modeling method was originated from Bažant et al. (2004) and further modified 

by Luzio and Cusatis (2012) and Wei et al. (2016). Four prominent models, developed by 

Tasevski et al. (2018 and 2019), Mazzotti and Savoia (2003), Luzio and Cusatis (2012), and Wei 

et al. (2016), are described herein. Because the model proposed by Tasevski et al. (2018 and 

2019) is employed in this study, more details are given in the description.   

 

Tasevski et al. (2018 and 2019) 

In this nonlinear creep model, the total strains of concrete loaded at time t0 is described as 

0 0 0 0, , ( , ) , ,c c c
c c cs cc

c c c

t t t t t t
f f f

       
 =  +  +      
     

 (1.13) 

where fc is uniaxial compressive strength of concrete at the age of loading; the first term on the 

right-hand of the equation is an instantaneous pre-peak strain, which is indicated by the short-

time stress-strain response shown in Figure 1.14; the second term corresponds to shrinkage strain 

defined using Equation 1.14; the third term is creep strain, which is divided into primary creep 

(εcc1), secondary creep (εcc2), and tertiary creeps (εcc3), as shown in Equation (1.15). 

4
5 0.2 6.99 10

( , ) 3.64 10 (1 )
224
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t t e

t t

−
− − 

 = −  − −

+
−

 
(1.14) 

where ts is concrete age at demoulding (in days); after concrete has been loaded, ts in Equation 
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(1.14) shall be replaced by t0 to calculate the change in shrinkage strain. 

 

 
Figure 1.14 Response of concrete under uniaxial compressive stresses: short- and long-term 

stress-longitudinal strain diagram according to Rüsch (1960). 
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c c c in av

t t t t t t t t
f f f

   
 =  +  + 


 (1.15) 

The primary creep strain, εcc1, is calculated by Equation (1.16), where
0c is an 

instantaneous prepeak strain, as shown in Figure 1.15, and 
lin  is a linear creep coefficient

lin  

(not associated to material damage) defined using Equation (1.17). 

 

 
Figure 1.15 Instantaneous pre- and post-peak longitudinal strains’ inelastic strain capacity 
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(Tasevski et al., 2019). 

The secondary creep strain, εcc2, is associated with material damage due to micro-

cracking and evaluated by Equation (1.18). The coefficient   in this equation is expressed using 

Equation (1.19) (Ruiz et al. 2007), where the coefficient
 takes into account nonlinear creep 

strains developed with time and is defined using Equation (1.20). 

where constant values of tm = 100 days and n = 0.75 can be assumed. Noted that, 
 approaches 

unity as t approaches infinity. Consequently, Equation (1.19) takes the form originally suggested 

by Ruiz et al. (2007) for nonlinear creep strains after a long time. 

Tertiary creep strain, εcc3, is associated with micro-crack coalescence and material 

damage. εcc3 is evaluated by Equation (1.21), which considers the ratio of developed-to-available 

inelastic strains ( ,cc in / , ,cc in av ) and stress level. , ,cc in av  is total inelastic strain capacity indicated 

in Figure 1.15. ,cc in  is nonlinear creep strain, which is equal to total strain minus shrinkage, 

instantaneous and linear creep strains.  

,1 0 0 0( , ) ( , )cc lin ct t t t =    (1.16) 
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For low ratios of ,cc in / , ,cc in av , tertiary creep strain is a negligible; however, tertiary creep 

strain increases at a growing rate when failure is approached. When / ( ) 0.75c cf t  , the 

parameter  in Equation (1.21) is calculated as 

According to this assumption,  is zero for stress levels below an assumed threshold of 

/ 0.75c cf = for possible tertiary creep. The parameter  , taken as 4, governs the shape of the 

tertiary creep curve. At failure, , , ,cc in cc in av =  , resulting in ,3 ,20.5cc cc =  . This relationship is 

consistent with the hypothesis of ,2 , ,(2 / 3)cc cc in av =   and ,3 , ,(1/ 3)cc cc in av =   (Ruiz et al., 2007), 

as shown in Figure 1.16. 

 

 
Figure 1.16 Three stages of creep: primary (I), secondary (II), and tertiary (III) (Tasevski et al., 

2019). 
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Mazzotti and Savoia (2003) 

Claudio and Marco (2003) proposed a model for concrete creep damage, which considers 

the effects of both nonlinear viscous strain evolution and crack nucleation and propagation at 

high stresses. The effect of concrete strength variation with time is also considered. Based on 

strain splitting assumption for creep and damage contributions, concrete creep is modeled by a 

modified version of solidification theory as shown in Figure 1.17. The model covers the entire 

range of creep behavior, including viscoelastic behavior under low stresses, nonlinear creep not 

accompanied by significant concrete damage under medium-level stresses, and tertiary creep 

leading eventually to a failure under high stresses.  

 

  
                        Mechanical model            Maxwell chain 

Figure 1.17 Illustration of solidification theory employed by Mazzotti and Savoia (2003). 

 

To implement this model, an iterative exponential algorithm was provided to numerically 

perform time integration of nonlinear equations. This algorithm is an efficient time step 

numerical integration algorithm first developed by Bažant and Chern (1985). The stability and 

accuracy of the proposed algorithm was verified by experiments. As indicated by the numerical 

results, this algorithm is nearly insensitive to time discretization and equal time intervals in the 

log scale can be used to cover the full time range from early to late ages after loading.  
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Luzio and Cusatis (2012) 

This nonlinear creep model, entitled solidification-microprestress-microplane (SMM) 

model, was developed based on the constitutive model initially proposed by Bažant (2004) and 

formulated using a strain rate format shown in Equation (1.23). The model combines a 

microplane model and a solidification-microprestress theory. Included in the model are nearly all 

crucial concrete behaviors, such as creep, shrinkage, thermal deformation, and cracking from the 

initial curing to several years of age. The creep strain is taken primarily as two portions. The first 

portion is age-dependent viscoelastic behavior under variable hygro-thermal conditions and 

described based on a solidification-microprestress theory. The second portion is cracking/damage 

behavior defined by an age-dependent microplane model, in which the model parameters are 

assumed to depend on variables including temperature, humidity and concrete aging caused by 

the progress of nano- and micro-sclae chemical reactions. Concrete aging effects are mainly 

reflected in concrete stiffness, concrete strength in both tension and compression, and fracture 

energy. The fracture energy increases with concrete age, whereas concrete creep decreases with 

concrete age. Concrete age also affects concrete behavior relevant to heat transfer and moisture 

diffusion. Figure 1.18 schematically shows the proposed model.  

i= v f d s t      + + + + +  (1.23) 

where
i  is instantaneous strain rate, 

v is viscoelastic strain rate, 
f is purely viscous strain rate,

d is inelastic strain rate due to cracking and damage, 
s and

t are hygral and thermal strains 

due to variations of relative humidity and temperature, respectively. 
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Figure 1.18 Schematic of concrete nonlinear creep model proposed by Luzio and Cusatis 

(2012). 

 

Wei et al. (2016) 

This model is a modified version of Bažant’s model (2004). The model combines 
v and 

d  in Equation (1.23) into a single term 
eV , as shown in Equation (1.24). Moreover, this model 

introduces an adjusting factor to account for the effects of temperature and humidity on 

microprestress relaxation rate. At last, revisions are made in the numerical approach of 

simulating concrete creep. Figure 1.19 shows major concept of the model. The solidification part 

of microprestress-solidification theory explains creep aging effect, which leads to an increasing 

volume fraction of non-aging hydration products as shown in Figure 1.19 (a). Temperature and 

humidity changes result in unbalanced chemical potential, and hence microprestress and creep 

rate change.  

i= eV f sh T+ + + +       (1.24) 

 
Figure 1.19 Schematic illustration of nonlinear creep model proposed by Wei et al. (2016). 
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1.6.4 Experimental Studies for RC Columns under Sustained Concentric Loading  

Very limited experimental studies have been conducted on RC columns under sustained 

axial (concentric) loading especially for columns with square cross sections. However, the 

existing data indicate high sustained concentric load can fail RC columns. Two series of axial 

loading experiments, one on columns with circular cross sections and the other one on columns 

with square cross sections, are described as follows. 

 

Richart and Brown (1934) 

Totally 66 circular columns, including 60 RC and 6 plain concrete columns, were tested 

under sustained loads for one year. Each column has an 8.25-in. diameter and was 60-in. long. 

Three levels of target 28-day concrete strength (2000, 3500 and 5000 psi) were considered in the 

RC columns. However, the actual concrete strength at the time of testing was not reported. 

Longitudinal reinforcement ratios were approximately ρ = 1.5, 4 and 6%. Transverse 

reinforcement ratios of spirals were ρt = 1.2 and 2%. The yield strengths of longitudinal 

reinforcement and spirals were 45.6 and 49.4 ksi, respectively. All the columns were first 

moisture-cured for 56 days and then loaded in air of laboratory or moist room. The sustained 

loads ranged from 0.24 to 0.42P0, where P0 is the axial loading capacity of columns calculated 

by Equation (1.25). 

'

0 0.85 ( )c g st st yP f A A A f= − +  (1.25) 

where Ag is gross sectional area of column; Ast is total area of longitudinal reinforcement; fc' is 

28-day concrete strength; and fy is yield strength of steel reinforcement. 

Figure 1.20 shows the testing device for applying loads on the columns. Two companion 

columns with identical design were confined between bearing plates by four 1-in. diameter steel 



32 
 

rods. The target tension force in these rods was maintained by four calibrated coil springs. The 

load was applied to the columns by tightening nuts on the four rods until a pre-determined 

compressive deformation of each spring was reached. Spring deformation was measured so that 

the compression force in the springs was adjusted after load release due to column creep.   

 

 
Figure 1.20 Sustained loading approach for columns (Richart and Brown, 1934). 

 

No specimen was failed during the one-year sustained loading. Some of the columns 

were then tested under axial compression to failure in a short time. The following findings were 

made: (1) Column long-term deformation was a function of longitudinal reinforcement ratio. 

Both the deformation and change in steel stress were the least for columns with ρ = 6% but were 

greatest for the columns with ρ = 1.5%. (2) Environmental condition had a strong influence of 

column sustained loading response. The creep deformations for air-stored columns were large, 

causing the secant modulus of elasticity to reduce by 75%; however, for moist-stored columns, 

the modulus reduction was only 20%. (3) The initial strains in the columns had no effect upon 

the ultimate load. (4) Concrete stress at the ultimate load was on average 85% of cylinder 

strength for air-stored columns and 64% for moist-stored columns.  
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Jenkins (2015) 

Two 6.125 in. x 6.125 in. x 24 in. square columns were tested. One of them was plain 

concrete column. The other one was a RC column reinforced by four No. 3 bars (fy = 72.9 ksi) 

with a longitudinal reinforcement ratio of ρ = 1.2%. Figure 1.21 shows reinforcement details of 

the RC column. These specimens had identical concrete strength of fc' = 5980 psi at the time of 

loading (50 days after concrete curing). The two short columns were subjected to sustained 

loading for 365 days. The load level was 0.55P0 calculated by Equation (1.25) for the plain 

concrete column and 0.48P0 for the RC column.  

 

 

 
Figure 1.21 Reinforcement details for a short RC column tested by Jenkins (2015). 

 

Figure 1.22 shows the loading frame, by which the specimens were horizontally situated 

and tested. Note that what the figure shows is associated with eccentric loading tests (described 

in the next section) performed by the same researcher. However, identical loading approach was 

used for axial loading, except that the columns were positioned at the center. The test setup 

consisted of three steel plates and four high-strength post-tensioning bars (d = 1.25 in). A roller 
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plate was attached to the frame plate and the end plate attached to specimen had the same bevel. 

Hydraulic loading rams were used to apply loads to the columns up to the predetermined level. 

Once the load was applied, hex nuts were then tightened to resist the post-tensioning force in the 

rods. The force applied to the column was increased periodically to consider time-dependent 

losses resulting from concrete creep. Neither of the two columns subjected to one-year sustained 

loading failed. Figure 1.23 shows measured axial strain time history. Compared with the plain 

concrete column, the RC column had significantly decreased creep rates due to the presence of 

longitudinal reinforcement.  

 

 

Figure 1.22 Test setup for sustained loading of short columns (Jenkins, 2015). 

 

 
Figure 1.23 Comparison of measured creep in plain and reinforced concrete columns under 

sustained axial loading (Jenkins, 2015). 
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Eom et al. (2018)  

Two RC columns were tested under sustained axial loading. Figure 1.24 shows specimen 

configuration and reinforcing details. Fabricated together with a pedestal, the RC column had a 

950-mm height and a 200 mm x 300 mm cross section. Each column was longitudinally 

reinforced by six 17.5-mm diameter bars with a yield strength of fy = 400 MPa. Tie hoops made 

of 10.4-mm diameter bars were placed at a spacing of 100 mm. The longitudinal and transverse 

reinforcement ratios were ρ = 2.4 and ρt = 1.27%, respectively. The 28-day concrete strength was 

fc' = 47.3 MPa. 

 

  

Figure 1.24 Configuration and reinforcement details of RC columns subjected to sustained 

loading (Eom et al., 2018). 

 

Two sustained load levels based on Equation (1.25), 0.15P0 and 0.30 P0, were applied to 

the columns at an age of 37 days after concrete placement and lasted for 64 days. As shown in 

Figure 1.25, sustained load was applied by two post-tensioning high-strength steel rods (d = 38 

mm) and a steel beam placed on column top. No failure occurred in the two columns during the 
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sustained loading. As shown by the blue color lines in Figure 1.25, it was found that the 

increasing rates of long-term deformations rapidly decreased with loading time.  

 

 

Figure 1.25 Axial deformation time-history of two RC columns under sustained concentric 

loading (Eom et al. 2018). 

 

1.6.5 Experiments of RC Columns under Sustained Eccentric Loading  

Experimental investigations of RC columns under sustained eccentric loading were more 

common than columns under sustained concentric loading. Representative experimental studies 

are selected and described as follows. 

 

Viest et al. (1956) 

 Viest et al. (1956) reported sustained eccentric loading tests of 19 RC columns. Test 

variables include eccentricity, concrete strength, and sustained load level. The columns had the 

same size and were identically reinforced.  Each specimen was 20 in. long and 5 in. x 5 in. in 

cross section. The corresponding height-to-depth ratio (H/h) was 4. A 10-in. capital was used at 

each end to accommodate the applied loads, as shown in Figure 1.26. The reinforcement 

contained four No. 4 bars (fy = 43.3 ksi) and seven 3/16-in. ties spaced at 4 in. The longitudinal 

reinforcement ratio and transverse reinforcement ratio were ρ = 3.2% and ρt = 0.44%, 

respectively. Extra reinforcement was provided in the capitals. The concrete cover thickness for 
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the longitudinal reinforcement was 0.5 in. Eccentricity, e, was defined as the distance from 

section center to the line of load. Small and moderate initial eccentricity, with eccentricity ratios 

of e/h ranging from 0.25 to 0.73, were considered, where h is section depth in the plane of 

bending. Load was applied to the columns through two 1/2 in. rollers. Each roller was placed in a 

triangular groove of a steel plate attached to column top and bottom. The sustained loads were 

maintained by coil springs as shown in Figure 1.27. The sustained loads ranged from 82 to 95% 

of the estimated ultimate load under short-time loading. 

 

 
Figure 1.26 Details of specimens tested by Viest et al. (1956). 

 

 
Figure 1.27 Loading frames for sustained load tests by Viest et al. (1956). 
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Table 1.3 summarizes the test data. Six columns, indicated by SU in Table 1.3, were 

failed by sustained loading in a period of 1.5 hr to 151 days. The remaining columns, indicated 

by SU+FA in Table 1.3, were subjected to sustained loads for 217 to 933 days. It was thought 

that these columns would never fail under the sustained loads. They were then loaded to failure 

in a short time.  On average, the tested columns had a sustained loading capacity of about 90% of 

the ultimate load for short-time loading, regardless of concrete strength and eccentricity. The 

lowest and highest failure sustained loads were 82.6% and 94% of short-time failure loads, 

respectively. 

 

Table 1.3 Summary of sustained loading tests by Viest et al. (1956) 

Col. 

No. 

Concrete 

strength 

(psi) 

Initial 

eccentricity, 

e 

(in.) 

Age (days) at At failure 

Type of 

loading Loading  Failure 
Load 

(kips) 

Steel 

strain 

(10-6) 

Concrete 

strain 

(10-6) 

Columns with moderate eccentricities 

20B3a 2350 3.63 35 540 25 2850 6300 SU+FA 

20B4a 2660 3.63 34 547 24.3 3130 7500 SU+FA 

20B4b 1800 3.81 83 541 22 2700 4500 SU+FA 

35B3a 4610 2.5 47 75 43.7 4000 6250 SU 

35B4a 4640 2.5 48 199 43.4 3100 6500 SU 

35B3b 4710 2.25 274 274 43.1   SU 

35B4b 4760 2.25 271 936 47.3 2080 4200 SU+FA 

50B3a 5420 2.25 40 592 57 2800 5350 SU+FA 

50B4a 5680 2.25 41 589 51 5070 6780 SU+FA 

50B3b 4740 2.5 52 490 49.5 3140 5880 SU+FA 

50B4b 5320 2.5 52 124 41.3 3800 5760 SU 

Columns with small eccentricities 

20C3a 3470 1.25 40 98 52.5 1100 6300 SU 

20C4a 2900 1.25 34 602 53 1960 8720 SU+FA 

20C3b 1820 1.75 43 48 32.4 1540 5420 SU 

20C4b 1770 1.75 43 479 32 2850  SU+FA 

20C3c 2380 1.25 50 948 51.2 1330 5940 SU+FA 

20C4c 2810 1.25 82 1052 48.4 1600 6600 SU+FA 

35C3b 4330 1.75 90 601 47.4 2400 7250 SU+FA 

35C4b 4120 1.75 87 545 57 2450 6970 SU+FA 
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Green and Breen (1969) 

Sustained loading responses of 10 eccentrically loaded RC columns were experimentally 

investigated. Figure 1.28(a) shows the details of a typical specimen. The stem portion of a 

column had a height-to-depth (H/h) ratio of 13. The 6 in. x 4 in. sections were longitudinally 

reinforced by four No. 3 bars (ρ = 1.8%) and transversely by 12 gage wire (d = 0.081 in) at a 

spacing of 4 in (ρt = 0.1%). The yielding strength of No. 3 bars were about 60 ksi. The average 

concrete strength at initial loading was 4190 psi. Eccentricity and sustained load level were the 

major test variables. The loading system consisted of a pair of coil springs, knife edges, ram, and 

strands.  

 

 
 

(a) (b) 

Figure 1.28 Columns tested by Green and Breen (1969) under sustained eccentric loading: (a) 

specimen dimension, and (b) axial load versus moment at the beginning of sustained loading. 

 

The average specimen age at initial loading was 49 days with a maximum deviation of 7 

days. The specimens were initially loaded to a predetermined level. The load was then 

maintained using coil springs and regulated to within 3% of the desired level. Table 1.4 gives the 

major test results, including the values of sustained axial load (P), sustained load level (P/P0), 

end eccentricity ratio (e/h),  and moments at column end (Mend) and mid-height (MCL). In this 
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table, ts is loading duration. Figure 1.28(b) shows normalized axial force-moment interaction 

diagrams, where the initially applied axial load, end moment, and moment at column mid-height 

(considering 2nd order effects) are indicated. The combination of sustained axial load and end 

moments induced failure in two columns (S4 and S6) within 2 months of loading. These columns 

were loaded to P/P0 = 0.38 and had e/h ratios greater than 0.15. Additionally, the specimens 

continued deforming with time even if no failure occurred within 1.5 years. For the columns with 

P/P0 > 0.25, the curvature after 1.5 years typically exceeded four times the initial curvature.  

 

Table 1.4 Major test results of columns under sustained eccentric loading (Green and Breen, 

1969) 

Specimen 

No. 

P 

(kips) 
P/P0 e/h 

Mend 

(kip-in.) 

 MCL/Mend 

(at ts = 0) 

MCL/Mend  

(at ts = 500 days) 

S1 53 0.47 0.038 7.9 1.49 4.95 

S2 27.5 0.19 0.246 27.5 1.23 1.8 

S3 42.5 0.29 0.038 6.4 1.23 1.86 

S4 42 0.38 0.178 30.4 1.45 3* 

S5 41.5 0.38 0.106 17.2 1.45 2.88 

S6 36.5 0.36 0.156 23.3 1.38 43* 

S7 29 0.26 0.148 17.4 1.15 1.51 

S8 30 0.26 0.269 33 1.18 2.02 

S9 30 0.26 0.42 51 1.55 NA* 

S10 18 0.175 0.42 30.6 1.36 1.62 
*: at time of last reading prior to failure (days) 

 

Furlong and Ferguson (1966) 

As shown in Figure 1.29, a rectangular frame was symmetrically loaded to examine the 

sustained loading response of RC columns. The columns had a cross section 4 in. x 6 in. and a 

clear height of H = 60 in., leading to a height-to-depth ratio of H/h = 15. Each column was 

reinforced with four No. 3 bars (ρ = 1.8%) with a yield strength of 50.7 ksi. The concrete 

compressive strength was 4800 psi. Loads were applied simultaneously to the columns and the 

beam, causing a single curvature in the columns. The ratio α between the forces applied to the 
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columns and the beams was 0.0244. The eccentricity ratio was e/h = 0.141. The frame was 

loaded to 60% of its estimated capacity at an age of 32 days. The loads were maintained for 102 

days. No failure occurred. The frame was then loaded to failure in about 3 hours. The failure load 

was 78.5 kips. The test indicated that the ultimate strength of the frame was not altered by the 

previously applied sustained load.  

 

 
Figure 1.29 Sustained loading test of a RC frame by Furlong and Ferguson (1966). 

 

Jenkins (2015) 

Four short columns and twelve slender columns having an identical cross section were 

tested under sustained eccentric loading for 375 days. The four short columns had a dimension of 

6.125'' x 6.125'' x 24'' (H/h = 3.92) and tested using the loading frame shown in Figure 1.22. Two 

of them were plain concrete columns. One was loaded with an eccentricity ratio of e/h = 0.1 to 

0.35P0, while another one was loaded with e/h = 0.25 to 0.21P0. The two RC short columns were 

loaded to 0.30P0 and 0.18P0 with eccentricity ratios of 0.10 and 0.25, respectively. The material 

properties, longitudinal and transverse reinforcement layout, loading age, loading duration and 

test setup were the same as those described in Section 1.6.4 for concentric sustained loading tests 

performed by Jenkins (2015). None of the short columns failed by the end of sustained loading. 

Figure 1.30 shows the measured concrete compressive strain at column mid-height. It was 
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believed that eccentricity ratio did not influence column creep rate because it is affected only by 

the stress at the extreme compressive fiber.   

 

  
(a) 10% eccentricity (b) 25% eccentricity 

Figure 1.30 Concrete compressive strain in short columns subjected to sustained eccentric 

loading (Jenkins, 2015). 

 

For the slender RC columns, six of them were 6-ft. long (H/h = 11.8) and six were 10.5-ft. 

long (H/h = 20.6). Reinforcement ratio, slenderness ratio, eccentricity, and axial load level were 

test variables. Each column was longitudinally reinforced by four No. 3 bars (ρ = 1.2%) or four 

No. 5 bars (ρ = 3.3%). The middle portion of each column was reinforced in the transverse 

direction by 0.25-in diameter ties at a spacing of 6 in. (ρt = 0.4%). The steel reinforcement 

property was the same as that described in Section 1.6.4 for the concentric sustained loading tests 

conducted by Jenkins (2015). 

The slender columns were tested at a concrete age of 50 days and loaded for 100 days 

using the test setup shown in Figure 1.31. If no failure occurred by then, the columns were 

subject to short-time loading until failure. Table 1.5 shows the slender column properties. Two 

columns, R3-40-25-LT(2) and R3-70-10-LT(2) marked by an asterisk, failed under sustained load 

within 100 days. Figure 1.32 shows the sustained loading responses in terms of axial force, 
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moment, and center deflection for the six columns reinforced by four No. 3 bars. The tests 

indicated that longitudinal reinforcement aided the long-term stability of the columns. None of 

the columns with No. 5 bars failed under sustained loading. Additionally, most columns 

presented a ductile failure mode, even for the columns with the lower eccentricity of e/h = 0.10.  

 

 
Figure 1.31 Test setup for sustained eccentric loading of slender columns (Jenkins, 2015). 

 

Table 1.5 Properties of slender columns tested by Jenkins (2015) under sustained eccentric 

loading 

Column ID Reinforcement 

Height-to-

depth ratio, 

H/h 

Eccentricity 

ratio, e/h 

Sustained 

load, P/P0 
f'

c at initial 

loading 

R3-40-10-LT 

4 No. 3 

11.75 

10% 36.5% 6630 

R3-40-25-LT(1) 
25% 

32% 6630 

R3-40-25-LT(2)* 31% 5710 

R3-70-10-LT(1) 

20.6 
10% 

27.4% 6630 

R3-70-10-LT(2)* 31% 5710 

R3-70-25-LT 25% 13.7% 6630 

R5-40-10-LT 

4 No. 5 

11.75 

10% 36.5% 5710 

R5-40-25-LT(1) 
25% 

32% 5710 

R5-40-25-LT(2) 34.5% 5930 

R5-70-10-LT(1) 

20.6 
10% 

27.4% 5710 

R5-70-10-LT(2) 30% 5800 

R5-70-25-LT 25% 13.7% 5710 
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(a) (b) 

 
(c) 

Figure 1.32 Sustained eccentric loading response of slender columns tested by Jenkins (2015): 

(a) axial load vs. center deflection, (b) center deflection time history, and (c) axial force vs. 

moment. 

 

1.7 Research Tasks 

The present research follows the six stages shown in Figure 1.33. In the first stage, 

relevant papers related to concrete creep, creep model, and columns under sustained concentric 

and eccentric loads were reviewed. The second stage focused on experimental design. This stage 

mainly includes three steps: (1) prototype structure design, (2) specimen design based on the 

prototype structure design, (3) and test setup design for both concentric and eccentric loading 

tests. The specimens and test setup were then fabricated in Stage 3. In stage 4, eight concentric 

axial loading short column experiments and five eccentrically loaded longer columns were tested. 



45 
 

The test results were analyzed and interpreted in Stage 5. In stage 6, a nonlinear creep model was 

be examined based on the experimental results of short column tests obtained in Stage 5 are 

compared with the creep predicted in Stage 6. 

 

 

Figure 1.33 Research procedure. 
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 CHAPTER 2 

PROTOTYPE STRUCTURE DESIGN AND ANALYSES 

2.1 Prototype Building Design  

2.1.1 Objectives 

A four-story building, shown in Figure 2.1, was designed following ASCE 7-16 (2016) 

and ACI 318-19 (2019). The building, assumed with office occupancy, was located in a non-

seismic region and gravity loads governed structural design. It had five bays in each direction 

with a 28 ft center-to-center span length.  The story height was 14 ft at the first floor and 12 ft at 

all other floors.  

 

 
 

(a) (b) 

Figure 2.1 Prototype RC frame building: (a) 3D view and (b) floor plan. 

 

The structural system of this building was cast in place two-way slabs with beams 

spanning between supports on all sides. It was assumed that moment can be fully transferred 

between the slabs and the beams. The purposes of designing this prototype structure were to: (1) 
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Determine the dimension and the distribution of longitudinal and transverse reinforcement of RC 

column specimens to be tested in the experiments described in Chapters 3, 4, and 5. The 

dimension of the column specimens was reduced proportionally using a scale factor of 0.5 in 

both structural level and material level (concrete aggregate size was reduced with the same scale) 

according to the prototype structure. (2) Determine the load eccentricity ratio (e/h) for the 

eccentrically loaded column specimens based on the simulation results of the whole prototype 

structure after one interior column loses load-bearing capacity, as described in Section 2.4.  

 

2.1.2 Elastic Analysis of Prototype Structure  

For design purpose, elastic analyses of the prototype structure were performed using 

software SAP2000 (2014). The design was governed by a vertical load combination of 1.2 x dead 

load + 1.6 x live load based on IBC (2018). The dead load included a 112.5 psf self-weight of 9-

in. thick RC slab for all floors and a superimposed dead load of 17 psf for the roof and 20 psf for 

the floor. The superimposed dead loads accounted for partition walls, floor finishes, tiles, water 

proofing, cable wires, plumbing pipes, etc. The live loads were 20 psf for the roof and 50 psf for 

the floor according to ASCE 7-16 (2016). All members were assumed to be constructed with 

Grade 60 steel reinforcement and concrete with a cylinder compressive strength 5500 psi. The 

maximum size of concrete aggregate was assumed to be 0.75 in. The load combinations 

considered dead load plus different kinds of live load patterns. The internal force (moment, shear 

force, and axial force) envelopes were determined from the elastic analyses, as shown in Figures 

2.2. Moment existed in the concrete slab with respect to both x- and y- directions because of the 

fixed connections between the slabs and beams. Because the structure was symmetric, the 

moment intensity distribution was symmetric as well. Therefore, only the envelope of slab 
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bending moment intensity in x-axis is shown in Figure 2.3. 

 

  
(a) Moment (b) Shear 

 
(c) Axial force 

Figure 2.2 Internal force envelopes of the prototype structure. 

 

  

 
(a) Floor levels (b) Roof level 

Figure 2.3 Slab moment intensity distribution about x-axis (units: kip-in/in). 
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2.1.3 Structural Design Results 

2.1.3.1 Beam Design  

The governing positive and negative moments for the interior floor beams were 1187 kip-

in and 2396 kip-in, respectively. The maximum shear appeared in the interior beam was 45.2 

kips. For simplicity, all the interior floor beams were designed with the same dimension and steel 

reinforcement layout. The beam design based on the highest moment and shear demands in the 

floor level is shown in Figure 2.4. The concrete cover of the beam cross section was 1.5 in. for 

all sides. No.3 ties with a diameter of 0.375 in. were chosen. The spacing of ties was 20 in. in the 

middle portion of the beams (within a length of 24 ft). At both ends of a beam within a length of 

15 in., the spacing of ties was changed to 7.5 in. The interior beam design based on the 

maximum moment and maximum shear in the floor levels is shown in Figure 2.4. 

 

 

Figure 2.4 Interior floor beam design (unit of dimension: in.). 

 

Because both the dead and live loads applied on the roof were lower than those at the 

floor levels, the interior beam design for the roof was adjusted and is shown in Figure 2.5. The 
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maximum positive and negative moments for the roof beams were 850 kip-in and 1903 kip-in. 

The maximum shear existed in the roof beams was 29.1 kips. For simplicity, all the interior roof 

beams were designed with the same dimension as that of the floor beams. Both the longitudinal 

and shear reinforcement layout were slightly modified based on the moment and shear envelopes 

of the roof beams and their clear span length.   

 

 
Figure 2.5 Roof beam design (unit of dimension: in.). 

 

2.1.3.2 Column Design 

 

Two column sizes were used in the prototype structure. The columns at the top and third 

floors were 12 in. square, whereas those at the 1st and 2nd floors were 18 in. square. Based on 

the elastic analysis, the maximum shear force (Vu) in the 1st and 2nd interior floor columns was 

12 kips, appearing at the exterior column of the top floor in Frame 3. For the columns at the first 

and second floors, the maximum shear force was 28.5 kips, appearing at the exterior column in 

the second floor. According to ACI 318-19 (2019) for RC columns subjected to both axial load 

and shear force, the nominal shear strength (Vn) provided by concrete was 10.5 kips for the 
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columns in the top and 3rd floors, and 28.1 kips for the columns in the 1st and 2nd floors. The 

nominal shear strength provided by concrete were close to the maximum shear force existing in 

the prototype structure. Therefore, the maximum shear reinforcement spacing permitted by ACI 

318-19 (2019) was chosen. For the roof and 3rd floor columns, No.3 ties with 12 in. spacing 

were used. For the 1st and 2nd floor columns, No.3 ties with 16 in. spacing were used. The axial 

load and moment envelopes for the columns of Frame 3 are shown in Figures 2.6 and 2.7, 

respectively. For the columns at the roof and 3rd floor, the column with maximum axial load was 

appeared at 3B on the 3rd floor. The maximum axial load was 359 kips, and the maximum 

moment for this column was 95.7 kip-in. Column 3A on the 3rd floor had the maximum moment 

of 182 kip-in, the axial load for this column was 286 kips. 

 

 
Figure 2.6 Axial force envelope of Frame 3. 

 

 
Figure 2.7 Moment envelope of Frame 3. 
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For the 1st and the 2nd floor, the column with maximum axial load was located at 3B on 

the first floor. The maximum axial load was 751 kips, and the moment for this column was 120 

kip-in. The column with maximum moment was located at 3A on the 2nd floor. The maximum 

moment was 612 kip-in, and the axial force for this column was 440 kips. Based on the elastic 

analysis results, the columns at the 3rd and roof floor were designed with 4 No.6 bars with a 

reinforcement ratio of ρ = 1.22%. The columns at the 1st and 2nd floor were designed with 4 

No.8 bars with ρ = 0.98%, as shown in Figure 2.8.  

 

 
 

(a) (b) 

Figure 2.8 Column cross section: (a) top and 3rd floor and (b) 1st and 2nd floor (unit of 

dimension: in.). 

 

2.1.3.3 Slab Design 

Based on ACI 318-19 (2019), the minimum thickness of non-prestressed two-way slabs 

with beams spanning between supports on all sides in this prototype structure was 8.91 in; thus, a 

9-in. slab thickness was considered. The thickness of slab concrete cover was chosen as 0.75 in. 

The slab was divided into a 7-ft wide column strip and a 14-ft wide middle strip. ACI 318-19 

(2019) specifies the minimum reinforcement for concrete slab as As,min = 0.0018Ag, where Ag is 

gross area of concrete slab section. The equivalent steel reinforcement distribution is 0.194 in2/ft 

(No.4 @ 12 in). The slab reinforcement design was performed for an interior slab panel shown in 
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the shade region in Figure 2.9. The maximum positive moment intensity of this slab was Mmax+ = 

7.07 kip-in/in for the roof and Mmax+ = 8.78 kip-in/in for the floors. The maximum negative 

moment intensity was Mmax- = 8.06 kip-in/in for the roof and Mmax- = 9.26 kip-in/in for the floors. 

For simplicity, all the interior slab panels in the prototype structure were designed with the same 

reinforcement distribution. Reinforcement using No.5 @ 12 in. was designed for the whole slab. 

The curtailment of slab reinforcing bars shown in Figure 2.9 was determined based on the 

detailing rules specified by ACI 318-19 (2019). 

 

 

  
(a) (b) 

Figure 2.9 Reinforcement distribution of slab: (a) top reinforcement and (b) bottom 

reinforcement. (unit of dimension: in.). 
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2.2 Nonlinear Analysis of Prototype Structure  

The Alternate Load Path Method recommended by the DoD guideline (2009) was an easy 

method to estimate the redundancy of a structure. For buildings classified in Occupancy 

Category II, the DoD guideline (2009) specifies several load-bearing elements to be removed 

when using this method, including the removals of (1) an interior column (Column C3 in Figure 

2.1 (b)), (2) an exterior column (Column C1 in Figure 2.1(b)), and (3) a corner column (Column 

A1 in Figure 2.1(b)) at the first story. This study investigates the internal force redistribution of 

the prototype structure after the interior Column C3 was removed at the first level. The load 

conditions and boundary conditions were the same as the elastic analysis of the prototype 

structure: (1) the dead loads were applied on all spans and slab panels of the whole structure, (2) 

live load patterns were considered, and (3) all supports and all connections between structural 

members were fixed. 

 

2.2.1 Analysis Procedure 

To simulate the effects of removing a column, the analyses were conducted using an 

equivalent approach shown in Figure 2.10. All the load applied to the prototype structure were 

unchanged. The interior column was deleted from the original model, and the previous 

determined column axial load was applied as reaction forces in the opposite direction at the 

location of the removed column, as shown in the middle part of Figure 2.10. In this way, the 

structure without this column had load conditions identical to that in the original prototype 

structure. Finally, the loss of Column C3 was modeled by applying column end forces to cancel 

the axial load of Column C3, as shown in the bottom part of Figure 2.10. 
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= 

 
+ 

 
Figure 2.10 Analysis procedure (unit of dimension: ft). 

 

2.2.2 Element Type and Material Property 

After removing Column C3, the beams connected to the removed column and the slab 

panels around the removed column behave inelastically. For nonlinear analysis of the structure 

with RC floor slabs, ABAQUS (2014) was chosen as a modeling platform. Due to the high 

computational cost of system-level nonlinear analysis of the whole structure, solid elements are 

excluded in this study. The slabs were modeled using shell elements. Both the beams and 

columns were modeled using beam elements to reduce the cost of analyses. 

Concrete short-time strength was assumed to be fc' = 5500 psi, and the elastic modulus of 

concrete was 4030 ksi. Concrete Poisson’s ratio was assumed to be equal to 0.2. The concrete 
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damaged plasticity parameters were defined, as shown in Table 2.1. Figure 2.11 shows the 

assumed stress-strain curve of concrete under uniaxial loading. The strain went up to around 

0.00244 when the maximum stress was reached, then decrease linearly to 0.00324. The tensile 

strength of concrete (ft = 110 psi) was assumed to be 2% of concrete compressive strength.    

 

Table 2.1 Concrete Damage Plasticity parameters 

Dilation 

Angle 
Eccentricity fb0/fc0 K 

Viscosity 

Parameter 

30 0.1 1.16 0.667 0 

 

 
Figure 2.11 Stress-strain relationship of concrete (fc' = 5500 psi). 

 

Grade 60 steel reinforcement was used in finite element analysis. The elastic modulus of 

steel reinforcement was 29000 ksi, and steel Poisson's ratio was assumed to equal 0.3. Figure 

2.12 shows the assumed bilinear stress-strain relationship of steel reinforcement (Grade 60). The 

strain hardening begins at about 0.00207, and the ultimate strain reaches to 0.122. The strain 

hardening ratio for Grade 60 reinforcement was assumed to be equal to 0.86%. 
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Figure 2.12 Stress-strain relationship of steel reinforcement (fy = 60000 psi). 

 

For all the columns, the concrete material was assumed to be elastic because, following 

the removal of Column C3, the remaining columns are unlikely to yield. For the slabs in the 

prototype structure, the material property of concrete and steel reinforcement were defined based 

on the stress-strain relationship shown in Figures 2.11 and 2.12. Because the concrete property 

can only be defined by the stress-strain relationship in ABAQUS, the material properties for the 

interior beams were modeled with an equivalent method. The method was based on the 

calculated curvature and moment from the beam cross-section, as shown in Figures 2.4 and 2.5. 

The cracking moment (Mcr), yield moment (My), and ultimate moment (Mu) were calculated by a 

trilinear moment-curvature relationship based on the conventional approach for RC beams 

recommended by Park and Paulay (1975). The cracking strain ( cr ), yield strain ( y ), and 

ultimate strain ( u ) were then calculated by the cracking curvature 
cr , yield curvature 

y , and 

ultimate curvature 
u . The equivalent stresses were assumed to be proportional to the calculated 

cracking moment (Mcr), yield moment (My), ultimate moment (Mu). The interior beam stress-

strain relationship defined in the finite element model were summarized in Tables 2.2 and 2.3.   
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Table 2.2 Calculated equivalent stress-strain relationship for roof beams  

 Roof (+) 

M (kip-

in) 

Equivalent 

Stress 

(psi) 

Equivalent 

strain 

Roof (-) 

M (kip-

in) 

Equivalent 

Stress 

(psi) 

Equivalent 

Strain 

Cracking moment  538 556 0.000132 538 556 0.000132 

Yield moment 973 1005 0.000485 2349 2427 0.000835 

Ultimate moment  1002 1035 0.003000 2435 2516 0.003000 

 

Table 2.3 Calculated equivalent stress-strain relationship for floor beams 

 Floor (+) 

M (kip-

in) 

Equivalent 

Stress  

(psi) 

Equivalent 

Strain 

Floor (-) 

M (kip-

in) 

Equivalent 

Stress  

(psi) 

Equivalent 

Stress  

(psi) 

Cracking moment  538 556 0.000132 538 556 0.000132 

Yield moment 1184 1223 0.000568 2720 2810 0.000905 

Ultimate moment  1193 1232 0.003000 2822 2915 0.003000 

   

 

2.2.3 Analysis Results of the Intact Prototype Structure Without Column Loss  

After the material properties of all structural members were determined, the finite 

element (FE) analysis of the whole prototype building was performed to determine the axial load 

in the supporting Column C3. The material properties of beams were assigned, as shown in 

Figure 2.13. The red parts indicate that the stress-strain curve of beams was equivalently defined 

based on the calculated flexural response of beams under negative moment. The blue parts 

indicate the stress-strain curve of beams was equivalently defined based on the flexural response 

of beams under positive moment. The slab reinforcement distribution was assigned in rebar 

layers in the modeling in the same way as the steel reinforcement layout shown in Figure 2.9. 

The axial load of the prototype structure determined from the analysis is shown in Figure 2.13. 

Based on the analysis result, the axial load of the Column C3 at the first floor before its removal 

was 595 kips.  
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Figure 2.13 Beam material property assignment (unit of dimension: ft). 

 

 
Figure 2.14 Axial force in prototype structure without column loss (unit: lb).  

 

2.3 Nonlinear Analysis of Prototype Structure with an Interior Column Loss  

After Column C3 at the first floor was removed, loads on the prototype structure were 

redistributed. The behavior of beams connected to the removed column and the slab panels 

around the removed column entered inelastic stage. The material property assigned to the beams 

connected to the removed column is shown in Figure 2.15. The definition of red and blue parts in 

Figure 2.15 was the same as in Figure 2.13. The material property of all other members was 

defined the same as in Section 2.4.3. Then, the analysis of the prototype structure following the 
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removal of Column C3 at the first floor was performed. Figure 2.16 shows the axial load 

diagrams of the prototype structure with the loss of Column C3. 

 

 

Figure 2.15 Beam material property assignment after column loss (unit of dimension: ft). 

 

 
Figure 2.16 Axial load in prototype structure after the loss of Column C3 (unit: lb). 

 

According to the analysis result shown in Figure 2.16, the maximum moment of columns 

appeared at the top end of Column D3 in the top floor, as shown in Figure 2.17. The maximum 

moment of Column D3 was 957.9 kip-in., and the corresponding axial load was 186.1 kips, 
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leading to an eccentricity of e = 5.14 in. and an eccentricity ratio of e/h = 0.428. For the top floor 

Column B3 situated on the left side of the removed column, the maximum moment and axial 

load were 762 kip-in and 193.7 kips, respectively; the corresponding eccentricity was e = 3.93 in., 

and the eccentricity ratio was e/h = 0.328. The column specimens described in Chapter 5 were 

eccentrically loaded with a single curvature, and the height to depth ratio for these specimens 

was H/h = 10.8. However, the height to depth ratios of Column B3 and Column D3 in the single 

curvature portion (between the top end and zero moment section) were 8.7 and 8.6 for Columns 

B3 and D3, respectively. Based on the column eccentricity ratio determined from the prototype 

structure and the column length-to-depth ratio in single curvature, the largest eccentricity ratio 

employed in the experiments was chosen as 0.25.  

 

 

Figure 2.17 Moment and axial load of top floor columns next to Column C3 (unit of 

dimension: in.).  
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CHAPTER 3  

EXPERIMENTAL PROGRAM  

 

3.1 Introduction 

The experimental program was designed to investigate the behavior of columns made of 

normal strength concrete and under high sustained stresses. As stated previously in Chapter 1, the 

major objectives of the experiments were to: (1) characterize the behavior of RC columns under 

different levels of high sustained concentric loading, (2) characterize the behavior of RC 

columns under different levels of high sustained eccentric loading, and (3) identify the effects of 

confinement on concrete creep and sustained loading response of RC columns. 

A total of 13 column specimens were tested. For concentric loading, the experiments 

were conducted on 3 plain concrete and 5 RC square short columns with a length-to-width ratio 

of H/h = 3.6. For eccentric loading, the experiments were carried out on 5 slender (H/h = 10.8) 

RC columns. This chapter describes the test matrix, setup, loading approach, and instrumentation. 

 

3.2 Test Matrix  

3.2.1 Test Variables and Matrix for Concentric Loading  

Sustained load level and transverse reinforcement ratio were the two major test variables. 

Two load levels (about 76% and 98% of column short-time loading capacity) and two transverse 

reinforcement ratios (ρt = 0.26% and 0.78%) were considered. According to the literature 

described in Chapter 1, nonlinear creep, the focus of this study, presents when the sustained 

compressive stress in concrete exceeds 60% of its short-time strength. The 76%- and 98%- levels 

of sustained loading were used to obtain test data needed for examining an existing nonlinear 
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concrete model suggested by Tasevski et al. (2019). The 98%-level loading was also used to 

detect the possible failure of RC columns under high sustained long-term loads. Even if 

maximum tie spacing for the test specimens per ACI 318-19 (2019) was 6 in., the ACI spacing 

requirement is not based on the need of maintaining column long-term loading capacity.  

Eight short square columns, with a length-to-width ratio of H/h = 3.6 (H is column height 

and h is cross section size), were constructed and tested under sustained concentric loading in the 

Structural Engineering Laboratory at the University of Nevada, Las Vegas. The specimens 

included 3 plain concrete columns, which provided the information about fundamental material 

behavior under high sustained stresses needed to interpret the test results of reinforced concrete 

columns. Table 3.1 shows a test matrix. In the specimen designations, P and RC stand for plain 

concrete and reinforced concrete, respectively. The following number (e.g. 77) represents the 

percentage sustained load ratio α to indicate the level of sustained load. For the plain concrete 

columns, α is defined as the ratio of average sustained load Nsus to the short-time axial loading 

capacity determined based on the test result of Specimen PS; for the RC columns under 

concentric loading, α is the ratio of Nsus to the nominal axial strength defined by ACI 318 (2019). 

The letters A and B following the number denote specimens with transverse reinforcement at a 

spacing of 6 and 2 in., respectively. Specimens PS and CS, serving as control specimens, were 

subjected to short-time loading to failure without experiencing sustained loads. Table 3.1 

provides the loading condition, reinforcing pattern, age at loading (days), duration of sustained 

load td (days), and concrete cylinder compressive strength measured at the beginning and end of 

each test. The concrete cylinder compressive strength was determined by testing at least three 

cylinders at different concrete ages. fc' was constant between 219 and 318 days and then slightly 

decreased by 7.9% after 474 days of concrete casting. 
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Table 3.1 Testing matrix of columns under concentric loading 

Specimen 
Loading 

condition 
Column property 

Age at 

loading 

(days) 

Duration of 

sustained load 

td (days) 

fc' (psi) 

at t0 

fc' (psi) 

at t0 + td 

PS short-time Plain concrete 209 — 4316 4316 

P77 sustained  Plain concrete 238 22 4316 4316 

P90 sustained  Plain concrete 317 22 4316 4198 

C76A sustained trans. reinf. @ 6 in.  268 47 4316 4316 

C76B sustained trans. reinf. @ 2 in.  268 47 4316 4316 

C98A sustained trans. reinf. @ 6 in.  348 120 4198 3974 

C98B sustained trans. reinf. @ 2 in.  354 120 4198 3974 

CS short-time trans. reinf. @ 6 in.  478  — 3978 3978 

 

3.2.2 Test Variables and Matrix for Eccentric Loading 

Five longer RC columns with a length-to-width ratio of H/h = 10.8 were tested under 

eccentric sustained loading. The sustained load level, eccentricity, and transverse reinforcement 

ratio were the test variables. These specimens had a cross section size and longitudinal 

reinforcement layout identical to those of the eight short columns tested under concentric loading. 

As shown in Table 3.2, the specimens included four RC columns with a lower transverse 

reinforcement ratio of ρt = 0.26% and one RC column with a higher transverse reinforcement 

ratio of ρt = 0.78%. Three of the specimens were loaded with an eccentricity of e = 1 in., 

resulting in an eccentricity ratio of e/h = 0.17; the remaining two columns were loaded with an 

eccentricity of e = 1.5 in. (e/h = 0.25). In the specimen designations, E stands for eccentric 

loading. The subsequent number (e.g. 98) represents the percentage ratio of column mid-height 

moment at the end of initial short-time loading to the unfactored nominal short-time moment 

capacity, Mu,ACI, defined after considering axial force-moment interaction based on the ACI 318-

19 (2019). The letters A and B following the number denote specimens with transverse 

reinforcement at a spacing of 6 and 2 in., respectively. The last number (e.g. 17) represents the 

percentage eccentricity ratio. Table 3.2 provides the eccentricity, reinforcing pattern, age at 
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loading (days), duration of sustained load td (days), and concrete cylinder compressive strength 

measured at the beginning and end of each test. Beyond t = 468 days, the average cylinder 

strength varied in a narrow range; thus, fc' was considered as constant until t = 657 days when the 

last column test was finished. 

 

Table 3.2 Testing matrix of columns under eccentric loading 

Specimen Eccentricity 
Transverse 

Reinforcement 

Age at 

loading 

(days) 

Duration of 

sustained 

load td (days) 

fc' (psi) 

at t0 

fc' (psi) 

at end of 

loading 

E98A17 1 in. trans. reinf. @ 6 in. 547 22 3978 3978 

E99A17 1 in.  trans. reinf. @ 6 in. 604 3 3978 3978 

E100B17 1 in.  trans. reinf. @ 2 in. 603 11 3978 3978 

E77A25 1.5 in. trans. reinf. @ 6 in.  628 28 3978 3978 

E92A25 1.5 in. trans. reinf. @ 6 in.  629 11/17 3978 3978 

 

3.3 Specimen Geometry and Reinforcing Details 

Large-scale structural tests are preferred due to the possible size effect: concrete creep 

may increase with the decrease of specimen size expressed as a volume/surface (V/S) ratio 

(Bažant, 1975). Large-scale experiments also reduce the impact of geometric imperfectness in 

either specimen dimension or loading position. However, large-scale tests are difficult to perform, 

especially when a high sustain stress in columns needs to be maintained. Thus, the specimens 

were constructed at a 1/2-scale in this study, which still required maintaining a sustained load of 

nearly 150 kips over 120 days in some tests. The test scale was identical to that considered by 

Jenkins (2015) at Purdue University but greater than that by Viest et al. (1956) and Green and 

Breen (1969). 

The columns in the top floor of a building contain less longitudinal reinforcement than 

the lower floors and thus more vulnerable to excessive creep deformation and failure induced by 

high sustained loads. For this reason, the top floor columns were experimentally simulated. As 
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described in Chapter 2, the cross section of top floor columns in the prototype building was 12 in. 

square. Based on the chosen scale factor, the cross section of the test specimens was 6 in. square. 

The length of the short columns under concentric loading was chosen as 21 in. After measuring 

the size of formwork (described later), the actual cross section size was 5.91 in. (150 mm) square 

and the length was 21.26 in. (540 mm). The length of the slender columns subjected to sustained 

eccentric loading was chosen as 64 in., which was based on the considered scale factor, the 

column length of 12 ft. at the top floor of the prototype building, and the actual formwork size.  

All the short and longer RC column specimens were identically reinforced by four No.3 

bars in the longitudinal direction to simulate a reinforcement ratio of ρ = 1.26% in the prototype 

columns. Because the actual bar diameter was measured as d = 9 mm, D9 rather than No. 3 was 

used in the following discussions to denote the size of longitudinal bars. The actual longitudinal 

reinforcement ratio, evaluated using the entire gross sectional area, was 1.13%. Figure 3.1 shows 

the cross-sectional property of the column specimens. The center distance between the 

longitudinal reinforcements was 3.55 in. in each direction.  

 

 

 

Figure 3.1 Column cross section. (unit of dimension: in.). 

 

It is desirable if the failure of a column can occur in the middle portion of a specimen, 

where concrete and steel strains were measured. To avoid failure in the column end regions, they 
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were strengthened by four 6-in. long D16 (d = 16 mm, nominally No. 5) reinforcements tied with 

the four D9 longitudinal bars. Because the concrete cover, as opposed to the core, was expected 

to reach failure first, no extra transverse reinforcement was used for the strengthening purpose. 

A706 Grade 60 deformed carbon-steel, conforming to ASTM A615 (2012), was used for the 

longitudinal reinforcement. The reinforcing bars for each size were obtained from the same heat 

of steel. As shown in Figure 3.1, closed hoops were used as column transverse reinforcement. 

The hoops were made of 0.20-in. (5-mm) diameter carbon steel wires and bent into a 4.625 in. 

square shape. The hoops had 135 degrees, 1.5-in. long standard hooks designed according to ACI 

318-19 (2019). The nominal clear concrete cover for the transverse reinforcement was 0.64 in. 

All the ties were fastened to the longitudinal reinforcement and spaced with a tolerance of 0.25 

in. Figures 3.2 and 3.3 show the typical reinforcement layout for the short column specimens 

subjected to concentric loading and longer columns subjected to eccentric loading, respectively. 

 

  
 (a)  (b) 

Figure 3.2 Reinforcement layout for (a) Specimens C76A, C98A, and CS and (b) Speicmens 

C76B and C98B. 
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(a) 

 
(b) 

Figure 3.3 Reinforcement layout for (a) Specimens E98A17, E99A17, E77A25, and E92A25, 

and (b) Speicmens E100B17. 

 

Tie spacing of transverse reinforcement was 6 in. for concentrically loaded specimens 

C76A, C98A, and PS, and all eccentrically loaded specimens except for E100B17. For 

concentrically loaded Specimens C76B and C98B and eccentrically loaded Specimen E100B17, 

the transverse reinforcement spacing was 2 in. The corresponding volumetric transverse 

reinforcement ratios were ρt = 0.26% and ρt = 0.78%. Totally four and ten ties were used for the 

columns subjected to sustained concentric loading with lower and higher transverse 

reinforcement ratios, respectively. For the eccentrically loaded columns, totally twelve ties were 
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used for E98A17, E99A17, E77A25, and E92A25 and thirty ties for E100B17.  

 

3.4 Specimen Fabrication 

3.4.1 Formwork  

Commercially available plastic molds, with a dimension of 5.91 in. x 5.91 in. x 21.3 in. 

(150 mm x 150 mm x 540 mm), were used as formworks for the short column specimens. The 

formworks, together with the steel cages, are shown in Figure 3.2 for the columns subjected to 

sustained concentric loading. Such plastic molds were chosen because they have better precision 

in dimension than timber formworks fabricated in the laboratory. Moreover, the plastic molds are 

lightweight and easy to strip, clean, and assemble. As shown in Figure 3.3, three formworks with 

the same dimension of 5.91 in. x 5.91 in. x 21.3 in., were connected together by screwing 1/4 in. 

diameter bolts through the holes punched at the ribbed interlocking part of the formwork to 

obtain the formworks for the slender columns. In order to avoid formwork expansion in the 

transverse direction caused by the lateral pressure from concrete during its pouring, two 12-in. 

long steel strap-ties were mounted on the top of the formwork. 

Prior to placing steel cage into a formwork, its small gaps were sealed with the quick 

drying silica gel to prevent water leakage. The formwork was then brushed with an oil-based 

release agent. The longitudinal reinforcements were supported in the form by steel spacers, 

which had a length of 2 in. and a cross-section of 0.5 in. by 1 in. The spacers were placed at the 

two sides and bottom of the concrete mold, as shown in Figures 3.2 and 3.3. In this way, the clear 

distance between the D9 longitudinal bars to the nearest outer surface of a specimen was 

maintained as 1 in. 

Due to the type of formworks employed in this study, concrete was poured horizontally. It 
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can be expected that the upper portion of concrete may be slightly weaker than the lower portion. 

For typical cast-in-place columns, concrete was cast vertically; due to the gravity effects, the 

concrete strength in the top will be a little lower than the bottom (Ferguson et al., 1988). Because 

of the reduced scale of the tests, the difference in behavior between horizontally and vertically 

cast columns was assumed herein to be insignificant.   

 

3.4.2 Concrete Mix 

The specimens were cast using the same batch of ready mixed concrete provided by a 

local supplier. The concrete mix was designed to achieve a 28-day compressive strength of 4000 

psi. Based on the role of aggregate in size effect on creep (Bažant and Wittmann, 1983) and to 

limit this effect in the experiments, the maximum aggregate size was also at 0.5 scale and 

specified as 3/8 in. for all the tests performed in this study. Table 3.3 summarizes the mix design. 

The coarse aggregate was gravel and fine aggregate was sand. The concrete mix contained 517 lb 

of Type V cement per cubic yard with a designed water-cement ratio of 0.64. Details about 

concrete mix design and properties are shown in Appendix A.  

 

Table 3.3 Concrete mix proportions 

Material Design quantity per cubic yard (lbs) 

Coarse aggregate  1310  

Fine aggregate 1938  

Type V Cement 517  

Water 331  

 

3.4.3 Specimen Pouring and Curing 

Concrete slump was measured as 5.5 in. when the ready-mixed concrete was delivered to 

the laboratory. In addition to the eight short column specimens and five longer column 
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specimens, a total of forty-five concrete cylinders with a dimension of 6 in. x 12 in. were also 

prepared at the time of concrete pouring. The concrete cylinders were used to measure actual 

concrete compressive strength immediately before and after the structural testing of specimens. 

Because of the dry local environment and the low relative humidity inside the laboratory, proper 

concrete curing was needed. After approximately 5 hours of concrete pouring, cotton fabrics 

were used to cover all exposed concrete and saturated by water when the concrete was set and 

hardened. Two layers of plastic sheets were then placed all around the specimens to limit 

moisture evaporation. The cotton fabrics were kept wet by spraying water daily as necessary. The 

concrete test cylinders were sprayed with water each and covered by lids.  

The daily temperature and humidity inside the air-conditioned laboratory normally 

changed within a narrow range. The temperature was maintained between 68 and 75°F and 

relative humidity between 18 to 25%. After 21 days of wet curing, the column specimens and the 

concrete cylinders were demolded and stored in the laboratory.  

 

3.5 Material Mechanical Properties 

3.5.1 Steel Reinforcing Bars 

The uniaxial tensile properties of D5 transverse reinforcement and D9 longitudinal bars 

were tested. Two samples for each size of reinforcement were tested with a gauge length of 1.97 

in. Figure 3.4 shows the measured stress-strain response of the tested samples. Because yielding 

and fracture of one D5 bar occurred outside the gauged region, the ultimate strain of this bar was 

much lower than that of the other one. However, the discrepancy is not critical because the D5 

bars were used as transverse reinforcement and did not yield during the structural tests.  
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Figure 3.4 Tensile stress-strain response of steel reinforcement. 

 

Table 3.4 summarizes the tensile properties of reinforcing bars. The modulus of elasticity 

(Es) was determined based on test data at stresses of 0 and 65 ksi. The average Es for the D9 and 

D5 bars was 30189 and 31367 ksi, respectively. As shown in Figure 3.4, the D9 bars had well-

defined yield plateaus, making it easy to interpret structural test data. The yield strength (fy) of 

each D9 bar sample was determined as the average stress when the strain ranges from 0.0028 to 

0.01. The average fy of the two samples was accordingly determined as 69.5 ksi. The D5 bars 

presented a gradual change in stiffness when yielding was approached. Thus, the 2% offset 

method in accordance with ASTM A370 (2018) was used to determine fy. The average fy for the 

D5 bars defined in this way was 104 ksi. The D16 bars used for strengthening purposes at each 

end of a specimen were not tested because they should not yield during the structural tests. 

 

Table 3.4 Summary of tensile test results for steel reinforcing bars  

Bar size Sample fy (ksi) Es (ksi) fu (ksi) Ultimate elongation (%) 

D9 
1 69.1 32826 89.0 18.6 

2 69.9 27552 90.1 17.9 

D5 
1 106 31241 107 0.7 

2 101 31493 103 3.18 
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3.5.2 Concrete Compressive Strength 

The concrete cylinder compressive strength fc' was tested in accordance with ASTM C39 

(2018) using a concentric loading test machine. In general, the concrete compressive strength 

was tested by loading three concrete cylinders to failure immediately before or after the start and 

end of the sustained loading tests. Table 3.5 shows a summary of the measured concrete 

compressive strengths as a function of concrete age. 

 

Table 3.5 Concrete cylinder compressive strength over time  

Concrete age (days) fc' (psi) Test duration (mins) Average fc' (psi) 

209 

4272 6 

4311 4343 5 

4318 6 

238 

4248 4 

4322 4329 5 

4389 4 

268 

4386 5 

4336 4223 9 

4400 4 

317 

4379 5 

4315 4308 5 

4258 4 

348 

4177 5 

4198 4131 5 

4287 4 

468 

4110 7 

4010 3915 5 

4004 5 

481 

3975 2 

3895 3770 2 

3940 2 

546 

3933 2 

3850 3823 2 

3795 2 

627 

4110 2 

4069 4057 2 

4039 2 

657 

3999 2 

4036 3922 2 

4188 2 
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The values of fc' defined for each specimen at the beginning and end of testing were 

plotted in Figure 3.5. The dashed line in the figure was the average concrete strength acquired by 

the concrete cylinder tests. No strength gain due to age was found. Instead, it was seen that the 

average concrete strength was fairly stabilized between the age of 219 days and 318 days at 

around fc' = 4316 psi. The maximum fc' was achieved as 4336 psi at 264 days. After 319 days, the 

concrete compressive strength experienced a slight decrease by 7.9% until t = 468 days. At 468 

days, the average fc' was reduced to 4010 psi. Beyond t = 468 days, the average cylinder strength 

varied in a narrow range. Thus, the average value of fc' was again considered a constant (fc' = 

3958 psi) until t = 657 days when the last column test was finished. The decrease of concrete 

strength over a long term was also observed in the sustained loading experiments carried out by 

Jenkins (2015) and Kosmatka et al. (2002). The reason for concrete strength decrease over long 

term was mainly because of different concrete curing method. 

 

 

 
Figure 3.5 Concrete compressive strength versus age. 
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Figure 3.6 shows the measured compressive stress-strain response of three concrete 

cylinders after 481 days of concrete casting following the completion of concentric axial loading 

tests of 8 short columns. These cylinders were tested using the concrete compressive strength test 

machine, and the strain was measured by strain gauges attached at the mid-height of the 

cylinders. The average Young’s modulus determined at 40% of the peak load was 4054 ksi. The 

average strain at the peak stress was 0.00197.  

  

 
Figure 3.6 Compressive stress-strain relationship for three concrete cylinders at an age of 481 

days. 

 

3.6 Test Setup and Instrumentation for Concentric Loading Tests 

3.6.1 Test Setup 

Figure 3.7 shows the test setup designed and fabricated to allow both short-time and 

long- sustained concentric loading. Overall, the sustained loads were applied by post-tensioning 

four high strength steel rods distributed around the four sides of a test specimen. The load-

applying and maintaining approaches were conceptually identical to those shown in Figures 1.30 

and 1.31 in Section 1.5.5 and employed by Viest et al. (1956) and Green and Breen (1969). 
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However, in order to apply much greater sustained loads and accommodate load-maintaining 

devices, a more complex test setup was considered in this study. 

 

 
                                      (a) Front view                                           (b) Side view 

Figure 3.7 Test setup for concentric loading (unit: in.). 

 

Figure 3.8 provides the detailed design of loading frames. To support two specimens 

simultaneously, a 6 ft. long steel pedestal beam made of two C10x25 channel sections was 

anchored to the strong lab floor using four 1-in. diameter high-strength threaded steel rods. For 

each specimen, a 30-in. long steel beam, oriented in the perpendicular direction and made of two 

C15x40 channel sections, was bolt-connected with the pedestal beam to support the specimen. 

As shown in Figure 3.8, the load-carrying components installed on the top of specimens were 
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symmetrically arranged relative to the specimen bottom. The aforementioned steel beams, 

directly transferring load to the specimen, are termed herein as primary loading beams for 

convenience. 

 

 
                (a) Front view                          (b) Side view 

Figure 3.8 Loading frame for columns under concentric loading.  

 

To evenly spread the concentric load to column section, a 1.5-in thick steel end plate was 

attached to each end of the column. High-strength gypsum cement (hydro-stone) with a 

minimum compressive strength of 8000 psi was used between the steel plate and specimen end 

to fill unavoidable voids at the contact. The end plate assemblies used in this experiment were 

shown in Figure 3.9. To better achieve concentric loading with minimized accidental eccentricity, 

the specimen was bearing against the steel beam through a steel strip, which was 1-in. wide, 0.5-

in. thick, and 6-in. long. The steel strip was situated at the center of specimen top (Figure 3.9), 
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and bottom ends. To accommodate this steel strip, a 1 in.-wide and 0.25 in.-deep rectangular 

groove was milled into the center of steel end plate. The groove’s middle line was aligned with 

the centerline of the specimen to ensure that the load can be applied concentrically. The steel 

strip was seated in the groove at one side and welded to the center of a 6 x 9 x 1 in. steel plate, 

which was mounted to the primary loading beam.  

 

   

  

 
Figure 3.9 Column end regions for concentric loading tests. 

 

Except for Specimens PS and CS, all other six short column specimens were subject to 

sustained loads. As mentioned previously, the sustained load was applied by tightening the hex 

nuts situated on the top end of the high-strength post-tensioning rods. These rods had a nominal 

diameter of 1 in., with a minimum yield strength of 120 ksi, and were fully threaded. The spacing 

between the post-tensioning rods was 22 in. in one direction and 18 in. in the other direction. As 

shown in Figure 3.7, to transfer the sustained loads from the four post-tensioning rods to a 

specimen, they were connected to a total of four 26-in. long steel beams (two on the upper side 
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and two on the lower side) made of two C9x20 channel sections. These beams, termed as 

secondary loading beams for convenience, were bolt-connected with the two primary loading 

beams. To avoid excessive flange local bending and web buckling during loading, the pedestal 

beam and the primary and secondary loading beams were strengthened by 0.5-in. thick stiffeners 

at locations where concentrate loads were transferred. All the steel beams and plates were made 

of A36 steel.  

Time-dependent concrete creep, especially due to high compressive stresses introduced 

into the columns, can significantly decreased posttensioning forces. The sustained loads were 

maintained by four stackable Belleville disk springs. Viest et al. (1956) and Green and Breen 

(1969) employed heavy duty coil springs to maintain the applied sustained loads. The springs 

need to have both enough strength and flexibility. In these experiments, the maximum sustained 

load at each posttensioning rod was only 28.5 kips. However, in this study, the maximum load 

experienced by posttensioning rod was estimated as 40 kips prior to the tests. Due to the much 

higher sustained loads to be applied, disk springs, rather than coil springs, were employed. Based 

on this strength (40 kips) requirement, disk springs with a 4.75-in. outside diameter, 2.063-in. 

inner diameter and 0.356-in. thickness was chosen. Each spring had a 0.46-in. overall height, 

0.104-in. maximum deflection, and a 58.8 kips maximum allowable load. To easily maintain the 

applied sustained load during concrete creep, the effective stiffness of the spring assemblies was 

chosen as approximately 1/8 of the initial axial stiffness of a column specimen, which was 

estimated as 4500 kips/in. Accordingly, a total of four disk springs aligned in series, as shown in 

Figure 3.10, were used at a posttensioning rod. Different from coil springs, disk springs are 

nonlinear elastic. The overall stiffness provided by all springs at the four posttensioning rods was 

565 kips/in. when the four disk springs at a rod was compressed to 0.416 in.  
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Figure 3.10 Disk spring details. 

 

As shown in Figure 3.8, a steel plate was placed underneath the upper secondary loading 

beams and hold by a nut on a post-tensioning rod. The plate was used to carry the secondary 

beams when the testing frame was assembled. The plate was lowered down prior to loading the 

specimen to allow the application of post-tensioning forces and prevent the steel beams on the 

specimen top from falling down once the specimen was failed. Figure 3.11 shows a picture of the 

entire test setup after two specimens were installed and ready for testing.  

 

 

Figure 3.11 Two specimens installed prior to concentric loading tests.  
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3.6.2 Loading Approach and Procedure 

Specimens PS and CS ‒ The plain concrete control specimen, PS, was loaded to failure 

in a short time (about 10 minutes) at an age of t0 = 209 days. For this purpose, a double-acting 

general-purpose hydraulic cylinder jack, mounted to the beam of the reaction frame shown in 

Figures 3.7 and 3.11, was installed. With a 338-kips loading capacity and a 6.63 in. stroke, the 

loading jack was used to apply a downward force to the upper primary loading beam seated on 

the top of PS until it failed under compression. The reinforced concrete control specimen, CS, 

was loaded to failure in a short time (about 91 minutes) at an age of t0 = 478 days. However, the 

loading was carried out purely by applying post-tensioning forces.  

Specimens P77 and P90 ‒ The plain concrete specimens, P77 and P90, were loaded at a 

concrete age of t0 = 238 and 317 days. The initial short-time loading was first applied up to 

approximately 80% of the target sustained load (76.3 kips for P77 and 89.3 kips for P90) by 

tightening the hex nuts on the top of post-tensioning rods; the remaining 20% of the target load 

was by the hydraulic jack. It took 99 minutes and 96 minutes to complete the initial loading of 

Specimens P77 and P90. These specimens resisted the sustained loads for 22 days without 

presenting any sign of failure. They were then unloaded completely for one day to measure the 

irreversible concrete strains. After that, they were loaded to failure in a short time. During this 

reloading process, the specimens were first loaded by applying post-tensioning the threaded rod 

up to the previously applied sustained load and then further loaded to failure by the hydraulic 

jack. 

Specimens C76A, C76B, C98A and C98B ‒ The initial loading of these specimens to the 

target sustained load was also applied only by tightening hex nuts. The age of concrete at the 

initial loading was t0 = 268, 268, 348, and 354 days and the target sustained load was 117 kips 



82 
 

for Specimens C76A and C76B, and 148 kips for Specimens C98A and C98B. The time spent in 

the initial loading was 93, 106, 94, and 68 minutes for Specimens C76A, C76B, C98A, and 

C98B, respectively. Knowing that the sustained loads applied to C76A and C76B would never 

cause a failure, the sustained loading was stopped after 47 days, when the rate of concrete creep 

became low, which was indicated by a flattened axial strain versus time response. The sustained 

load applied to C98A and C98B was maintained for 120 days without causing a failure. After the 

sustained loading has been completed for Specimens C76A, C76B, C98A, and C98B, they were 

not unloaded; instead, they were loaded in a short time to failure using the hydraulic jack. 

 

3.6.3 Instrumentation 

Room temperature and relative humidity ‒ A digital temperature humidity monitor 

recorded environmental humidity and temperature inside the laboratory during the tests. The data, 

however, were manually recorded and cannot be transferred or stored in the data acquisition 

system used for collecting other measurements. 

Measurement of deformation ‒ Concrete deformations were measured using strain 

gauges attached to the column face at mid-height. The concrete strain gauges were applicable for 

temperatures between -4 to 176°F and had an average resistance of 121 Ohm. The length and 

width of the strain gauge were 3.15 and 0.12 in., respectively. For each specimen, the axial strain 

of concrete was measured at all four vertical faces. In addition, for the RC column specimens, 

the concrete transverse strain was measured at the mid-height of one column face. To obtain a 

relatively symmetric strain distribution among the four sides of a column specimen, the 

measured longitudinal concrete strains were used to guide the tightening force applied to the 

post-tensioning rods during the initial loading to the target sustained loading as well as during 
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the sustaining loading. During these processes, the longitudinal strains were monitored so that 

more tightening force was applied to the rods closer to the sides with lower longitudinal strains. 

For example, if the concrete strain on the right side was smaller than the other three strains, the 

hex nuts on the two threaded rods on the right side should be adjusted. If the concrete strain in 

both right and front sides were lower than the other sides of the concrete specimen, the nut on the 

threaded rod in the front right corner was adjusted. 

In each RC column specimen, four steel strain gauges were attached on the steel 

reinforcement around the column mid-height. Two were attached on longitudinal bars, and the 

other two on transverse reinforcement. The steel strain gauges had an average resistance of 120.3 

Ohm, and the applicable temperature was -103 to 392 °F. The total length and width of strain 

gauges for steel reinforcement were 0.307 and 0.15 in., respectively. For long-term loading tests, 

the electrical drift of the sensors could be a concern. However, when the weather outside the 

laboratory changed during data acquisition, such as the occurrence of rain or sharp decreased in 

temperature, both the concrete strain gauges and steel reinforcement strain gauges drifted 

approximately 30 microstrains over time. Due to the relatively small drift, the strain gauge 

measurements were not adjusted. 

Measurement of load ‒ Two 100-kips capacity load cells were placed between the upper 

primary and secondary loading beams, as shown in Figures 3.7. 3.8, and 3.11. These load cells 

were used to measure the total post-tensioning force at the front and back sides of a specimen. 

Load cells can experience creep under sustained loading as well. However, this would cause at 

most 3% measurement change (Mohamed et al., 2009). To measure the load applied by the 

hydraulic jack, a 200-kips capacity load cell was placed between the jack and the upper primary 

loading beam, as shown in Figure 3.7. The measured sustained load was checked at least daily. 
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To compensate the load drop caused by concrete creep, the sustained load was adjusted by 

tightening the hex nuts at the top of the post-tensioning rods. This load adjustment was 

performed daily in the initial days of sustained loading when most of the creep occurred. After 

that, the time interval for load adjustment was longer. The electrical drift of signal acquired by 

the load cell due to lab environmental change was small, around 0.1 to 0.2 kips. This amount of 

change minorly affects the sustained stress level. Therefore, the data recorded by the load cells 

were not adjusted. 

Data collection ‒ All the measured strains and loads were acquired by a National 

Instruments (NI) data acquisition system together with software LabVIEW.  The signals from the 

load cells and the strain gauges were acquired by NI9219 universal analog input modules 

inserted into a CompactDAQ chassis. Each module had four channels and permitted a maximum 

data recording rate of 100 signals/second(s)/channel. The test data were collected at a rate of 1 

data/second per channel whenever short-time loading was applied. This sampling rate was also 

applied to the first 24 hours of sustained loading. After that, the data recording rate during 

sustained loading was changed to 1 data/20 seconds per channel due to the significantly reduced 

creep rates. 

 

3.7 Test Setup and Instrumentation for Eccentric Loading Tests 

3.7.1 Test Setup 

Figure 3.12 shows the test setup used to test the longer columns under eccentric loading. 

The sustained loads were still applied by mean of four 1-in. diameter fully threaded post-

tensioning rods distributed around the four sides of a specimen and spaced at distances identical 

to those in the concentric loading tests. The mechanism of load transfer was the same as 
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described previously. The pedestal beam, primary loading beams, and secondary loading beams 

used in the concentric tests were also employed. However, the test setup for concentrically 

loaded specimens was modified to apply and maintain eccentric loads and provide extra lateral 

stability.  

 
     (a) Front view                         (b) Side view 

Figure 3.12 Test setup for eccentric loading (unit: in.). 

 

During the short column tests, the sustained loads were applied by tightening the hex nuts 

at the top of the post-tensioning rods. However, because of the 64-in. length of the longer 

specimens (the distance between the two loading pins was 67.5 in.), the hex nuts at the upper 
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ends of the post-tensioning rods were located at a too high position (approximately 11.5 ft) to be 

easily tightened. Therefore, each rod in the test setup for short column specimens was replaced 

by two rods, each having a 1-in. diameter and 120 ksi yield strength. The upper rod had right-

hand threads and was 94-in. long, whereas the lower rod had left-hand threads and was 48-in. 

long. The two rods were connected by a 7-in. hex thread adapter in the middle, where tightening 

force was applied during both short-time loading and sustained loading.  

Figure 3.13 provides the detailed design of one set of loading frames. The load-carrying 

components installed on the specimen top were symmetrically arranged relative to the specimen 

bottom. High strength gypsum cement was used between the steel plate and the end of specimen 

to fill unavoidable voids at the contact in all slender column tests. The eccentrically loaded 

column tests were very sensitive to actual eccentricity. Therefore, some changes were made for 

the end plate assemblies, as shown in Figure 3.14. The sustained load was transferred by a 1-in. 

diameter and 6-in. long steel pin instead of the steel strip used in the short column tests. This 

change allowed the column ends to rotate freely and achieved a pinned-pinned supporting 

condition. The diameter of steel pins was chosen as 1 in. based on the maximum possible axial 

load of 100 kips to be applied to the columns. If a smaller diameter was considered, the load 

capacity of the steel pins may not suffice and there was not enough space for rotation between 

the end plate and assembly plate. On the other hand, to better achieve an eccentric loading with 

minimized accidental eccentricity, the steel pin with greater diameter was not a good choice. The 

steel pin was situated at chosen eccentricity of 1 in. or 1.5 in. away from the center of specimen 

top (Figure 3.14) and bottom ends. To accommodate this steel pin, a 1 in-diameter and 0.25 in-

deep circular groove was milled into the center of steel assembly plate and 1 in. or 1.5 in. apart 

from the center of steel end plate. The groove centerline was 1 in. or 1.5 in. apart from the 
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specimen centerline to ensure that the load can be applied eccentrically. The steel pin was seated 

in the groove at both sides of the steel plates. The assembly plate was mounted to the primary 

loading beam.  

 

 
      (a) Front view          (b) Side view 

Figure 3.13 Loading frame for columns under sustained eccentric loading. 

 

 

Figure 3.14 End region of columns under sustained eccentric loading. 
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To prevent relative sliding between the end plate and column end and avoid premature 

concrete failure, the column ends were confined by two C6x13 steel channel sections, as shown 

in Figure 3.15. The confinement was fabricated and assembled to each column end region before 

loading using six 0.25 in. diameter threaded steel rods. Two 10-ft long 2'' x 2'' x 1/4'' steel angles 

were fixed at both front and back sides of the specimen top end and bolted with the steel reaction 

frame columns, as shown in Figure 3.12. Two 0.5-in. diameter fully threaded rods with a 

minimum yield strength of 120 ksi were fixed to each steel angle with bolts along perpendicular 

direction. A cap nut was screwed at one tip of threaded rod, as shown in Figure 3.16. The two 

steel angles and the rods with cap nuts were used to reduce sidesway movement caused by 

accidental eccentricity and allow the rotation of column end during loading.   

 

 

Figure 3.15 Confinement provided at column ends. 

 

 

Figure 3.16 Lateral support at column upper end. 
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All the five longer specimens were subject to sustained loads only. Instead of tightening 

the hex nuts situated on the top of the high-strength post-tensioning rods during the sustained 

concentric loading, the sustained load during eccentric loading was applied and maintained by 

screwing the thread adapter located at approximately 4 ft from the ground during the tests. The 

adapter was 3.25-in. long threads at both ends. The sustained loads were also maintained by four 

stackable Belleville disk springs, as described previously and shown in Figure 3.10. In all five 

longer column experiments, the maximum sustained load at each post-tensioning rod was around 

24 kips. The effective stiffness of spring assembly was approximately 1/5 of the initial axial 

stiffness of the longer column specimens, estimated as 2882 kips/in. Figure 3.17 shows a picture 

of the entire test setup after two specimens was installed and ready for testing. 

   

 

Figure 3.17 Two specimens installed prior to sustained eccentric loading test. 
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3.7.2 Loading Procedure 

Specimens E98A17, E100B17, and E92A25 ‒ Specimens E98A17, E100B17, and 

E92A25 underwent three loading stages: (1) the initial loading to the target sustained load, (2) 

sustained loading for 22, 11, and 28 days without any sign of failure, and (3) reloading to failure 

in a short time. The age of concrete at the initial loading was t0 = 547, 603, and 629 days, and the 

target sustained load was 86.1, 86.3, and 60.6 kips for Specimens E98A17, E100B17, and 

E92A25, respectively. The time spent in the initial loading to the target sustained load was 112, 

182, and 47 minutes for Specimens E98A17, E100B17, and E92A25. 

Specimens E99A17 ‒ Specimen E99A17 underwent only two loading stages: (1) initial 

short-time loading to 80.5 kips within 59 minutes at the age of t0 = 604 days, and (2) sustained 

loading for two days because it failed during a load adjustment. 

Specimens E77A25 ‒ Specimen E77A25 underwent four loading stages, (1) initial short-

time loading to 55 kips within 42 minutes at the age of t0 = 628 days, (2) sustained loading for 

eleven days, (3) sustained loading for 17 days after increasing the sustained load to that applied 

to Specimen E92A25 (60.6 kips) on the 12th, and (4) reloading to failure in a short time. 

 

3.7.3 Instrumentation 

The load, room temperature, and relative humidity were measured using the same 

methods as in the concentric loading tests.  

Measurement of deformation ‒ Concrete axial deformations were measured using four 

strain gauges attached to each column face at mid-height. Two strain gauges measured concrete 

transverse strain at column mid-height, one at compression face and the other one at tension face. 

One strain gauge was attached to a concrete cylinder during the sustained loading tests to 
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measure the variation of concrete strain caused by room temperature change. The maximum 

variation of strain measured by this strain gauge was only 16 microstrains during the sustained 

load tests. Two strain gauges were attached to the tensile bars at column mid-height. Two 

additional strain gauges were attached to transverse reinforcement nearest to column mid-height. 

Moreover, one strain gauge was attached on a D9 reinforcement embedded into a concrete 

cylinder to measure strain variation of reinforcement inside stress-free concrete. The maximum 

strain variation in this gauge was only 9 microstrains during the sustained load tests.  

Measurement of deflection ‒ Totally four high-accuracy direct current voltage output 

LVDTs were used to measure column deflections at different locations. As shown in Figure 3.12, 

two 10-ft long 2'' x 2'' x 1/4'' steel angles were installed with the loading frame at both the front 

and back sides of the specimen mid-height. These steel angles were used to fix two LVDTs 

measuring column center deflection at the front and back sides. Another two LVDTs measured 

column deflection at the top and bottom ends.  

Data collection - All the strain and load data were obtained in the same manner as in the 

concentric loading tests. One NI 9205, a 16-channel universal analog input module, was used to 

collect displacement data obtained from LVDTs. The test data were recorded at 1 data/second per 

channel when the specimen was loaded in a short time. Subsequently, the data recording rate 

changed to 1 data/20 seconds per channel during the sustained loading. 
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CHAPTER 4 

EXPERIMENTAL RESULTS OF COLUMNS SUBJECTED TO CONCENTRIC 

SUSTAINED LOADING 

4.1 Introduction 

Eight short square columns, including three plain concrete and five RC columns, with the 

same slenderness ratio of H/h = 3.6, were tested under concentric loading. The tests started at 

concrete ages greater than 200 days to ensure that the specimens had stabilized concrete strength 

and shrinkage. Loading duration was chosen based on the test observations and time restraint. 

This chapter presents the test data of the eight specimens in terms of loading history, axial strain 

history and creep coefficient, load-strain response and failure mode, and transverse strain history 

and Poisson’s ratio history. 

 

4.2 Behavior of Plain Concrete Columns 

4.2.1 Plain Concrete Specimen under Short-Term Loading  

The control specimen PS was loaded to failure in approximately 10 minutes at an age of 

t0 = 209 days. Figure 4.1 shows the load-strain relationship. The load resisted by this specimen 

and other specimens described in this chapter include a gravity load of 0.85 kips caused by the 

self-weight of all components sitting on the top of the specimens, such as the primary loading 

beam, secondary loading beams, load cells, disk springs, and some steel plates. The peak failure 

load of Specimen PS was 124 kips and very close to 128 kips calculated using Equation (1.25) 

given in ACI 318-19 (2019) after setting the area of steel reinforcement as zero. The peak stress 

of PS was 3553 psi, equivalent to 0.83fc’. The corresponding axial strain at the peak load was 

0.00198. Based on this test, the short-time prism concrete compressive strength, fcp, for the plain 
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concrete specimens in this study is defined hereafter as  

 fcp = 0.83fc’    Equation (4.1) 

where fc’ is the cylinder concrete compressive strength on the day t = t0 when a column test was 

started. 

 

 
Figure 4.1 Load-strain relationship of Specimen PS during short-time loading test. 

 

4.2.2 Plain Concrete Specimens under Sustained Loading 

4.2.2.1 Loading History  

In sequence, the plain concrete specimens P77 and P90 underwent the following loading 

stages: (1) initial short-time loading, (2) sustained loading, (3) complete unloading, and (4) short-

time reloading to failure. Figure 4.2 shows the loading history. At t0 = 238 and 317 days, P77 and 

P90 were loaded to 96.5 and 111 kips within 99 and 96 minutes, respectively. The initial loading 

caused an axial compressive stress of σc = 2768 psi = 0.77 fcp in P77 and σc = 3183 psi = 0.90fcp 

in P90. The loads were then kept for 22 days. As summarized in Table 4.1, during this sustained 

loading stage, the average load was 95.5 kips for Specimen P77, causing an average sustained 

stress of 0.77fcp. The minimum and maximum sustained loads were 92.6 and 96.6 kips, leading to 
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a percentage load variation from the average load of -3.0% to 1.2%. The average sustained load 

for P90 was 111 kips, resulting in an average sustained stress of 0.90fcp. The maximum and 

minimum loads were 101.7 and 112.7 kips. The percentage variation from the average load was -

8.4% to 1.5%. Thus, the sustained load level was 77% and 90% of the short-time loading 

capacity for Specimens P77 and P90, respectively. Note that, for each specimen, the largest load 

drop occurred only during the first day following the initial application of sustained loads. After 

that, the sustained load was well maintained, as indicated in Figure 4.2. At t – t0 = 22 days, the 

applied load was released to measure the irreversible concrete strain. After a rest for one day, the 

specimens were loaded to failure in a short time. The peak load prior to the final failure was 132 

kips for Specimen P77 and 133.6 kips for P90.  

Table 4.1 Specific loading details for Specimens P77 and P90 

Specimen 

Duration of 

loading to 

target load 

(mins) 

Average 

sustained 

load 

(kips) 

Maximum 

sustained load 

(kips)  

and % change 

Minimum 

sustained load 

(kips)  

and % change 

Peak load 

(kips) 

P77 99 95.5 96.6 (+1.2%) 92.6 (-3.0%) 132 

P90 96 111 112.7 (+1.5%) 101.7 (-8.4%) 133.6 

 

  
Figure 4.2 Loading history of plain concrete Specimens P77 and P90. 
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4.2.2.2 Axial Strain History and Creep Coefficient  

Figure 4.3 plots the axial compressive strain history for the two tests. Unfortunately, the 

strain data were lost when Specimen P90 was reloaded to failure after sustained loading. The 

initial axial strain at the beginning of sustained loading (i.e., the end of initial short-time loading) 

was 0.000857 for P77 and 0.000985 for P90. During the first day of sustained loading, the 

concrete axial strain increased rapidly by 35.9% in Specimen P77 and 30.2% in Specimen P90. 

As the time of sustained loading increased, the rate of strain increase decreased. After 20 days, 

the strain became stable. Thus, sustained loading was stopped at t – t0 = 22 days, when the axial 

strain reached 0.00171 and 0.00196 in Specimens P77 and P90, respectively. The ratio of axial 

strain at the end of sustained loading to that at the start of sustained loading was 2.00 for 

Specimen P77 and 1.99 for Specimen P90. Because the ratio of axial strain at the end of 

sustained loading to that at the start of sustained loading of two specimens was almost the same, 

the effects of sustained load level on the concrete creep in this experiment cannot be noticed. 

Table 4.2 summarizes the axial strains measured at characteristic loading stages. 

 

 

 

Figure 4.3 Strain history of plain concrete Specimens P77 and P90. 
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Table 4.2 Characteristic concrete strains of Specimens P77 and P90 

Specimen 

Strain at the 

beginning of 

sustained load 

Strain at the 

end of 

sustained load 

Irreversible 

strain 

Strain change 

during the 

unloading 

Failure strain 

at the peak 

load 

P77 0.000857 0.00171 0.000103 0.000076 0.00198 

P90 0.000985 0.00196 0.000139 0.000101 — 

 

Figure 4.4 plots the creep coefficient during the sustained loading for Specimens P77 and 

P90. The creep coefficient was calculated as the ratio of creep strain during the sustained loading 

to the initial strain at the beginning of the sustained load. Even though the sustained load ratio of 

P90 was 17% higher than that of Specimen P77, the creep coefficient of P90 was lower than P77 

until t - t0 = 178 hours and became similar thereafter. The creep coefficient of P90 was lower 

than P77 during the first 178 hours because the 79 days difference in loading age (t0) affected the 

creep coefficient. After t - t0 = 22 days, the creep coefficient was equal to 1.00 for P77 and 0.99 

for P90. 

 

 

Figure 4.4 Creep coefficient during sustained concentric loading for Specimens P77 and P90. 
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4.2.2.3 Stress-Strain Response and Failure Mode  

Figure 4.5 shows the stress-strain relationship of Specimens P77 and P90. The red color 

dashed lines indicate fcp, the short-time prism concrete strength determined using Equation (4.1). 

fcp was 3582 psi for Specimens P77 for P90. As indicated in Figure 4.5, the peak stress during 

reloading was 3789 psi, resulting in a 5.8% increase compared to fcp. The peak reloading stress of 

Specimen P90 is not shown in Figure 4.5 due to the loss of strain data; however, based on the 

measured peak load shown in Figure 4.2, the peak reloading stress for P90 was determined as 

3855 psi, which is 7.5% higher than the short-time strength of fcp = 3582 psi. The strength 

increase in both specimens may be explained by concrete consolidation during sustained loading 

(Shah and Chandra, 1970). Moreover, based on the test results shown in Figure 4.5, it was found 

that both the unloading and reloading stiffness were similar to that during the initial loading.  

 

  

Figure 4.5 Stress-strain relationship of plain concrete specimens P77 and P90 under 

concentric loading. 
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and P90, the failure was dominated by shear, a failure mode that can also be observed in testing 

plain concrete (ASTM, 2018), as shown in Figure 4.6. This strength increase in P77 and P90 

after sustained loading may be associated with the shift in failure mode.  

 

 
(a) PS (b) P77 (c) P90 

Figure 4.6 Plain concrete specimens after failure. 

 

4.3 Experimental Results of Reinforced Concrete Columns  

4.3.1 RC Specimen under Short-Term Loading  

The control Specimen CS was loaded to failure in approximately 90 minutes after 478 

days of concrete pouring. Figure 4.7 shows the force-axial strain and force-volumetric strain 

relationships. Figure 4.7 provides the axial strains measured at all four forces. It is seen that the 

variation among these strains was low, indicating that a relatively symmetric strain response was 

achieved under the concentric loading. The black color solid line shows load versus average axial 

strain response. Only the average axial strain will be reported for all other concentric loading 
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tests.  

 

  
Figure 4.7 Load strain response of CS. 
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specimen had the maximum value thereafter. At the failure (immediately prior to a sudden load 

drop), the average axial strain was 0.00225. 

The concrete volumetric strain εvol was evaluated based on test data using the following 

equation.  

 εvol = εaxial + εt1 + εt2 Equation (4.2) 

where εaxial is concrete axial strain, εt1 and εt2 are concrete transverse strain in two orthogonal 

directions and assumed to be equal. Because the transverse strain was measured at only one side 

of the column, the measured axial strain at this side was used to calculate the volumetric strain. It 

is seen from Figure 4.7 that, once the applied load has exceeded 149 kips, the volumetric strain 

kept decreasing, indicating an imminent compressive failure of concrete cover. 

Another parameter that can be used to indicate concrete damage condition is Poisson’s 

ratio. Figure 4.8 plots load versus Poisson's ratio of Specimen CS. The value of Poisson’s ratios 

at different loads were determined from the same concrete axial and traverse strains used to 

evaluate the volumetric strains previously. The measured axial strain was low and fluctuated 

when the applied load was lower than 40 kips. Accordingly, the values of Poisson’s ratio also 

fluctuated. Therefore, the Poisson's ratio for the applied load lower than 40 kips is not shown in 

Figure 4.8. In general, the value of Poisson’s ratio increased with the applied load. When the load 

was less than 80 kips, the Poisson’s ratio was less than 0.20; when the load reached to 150 kips, 

the Poisson’s ratio was nearly 0.30. At failure, Poisson’s ratio measured at the concrete surface 

reached to approximately 0.4. According to Park and Paulay (1974), the volumetric strain can be 

a negative value, and the Poisson’s ratio may reach 0.5 when concrete fails in compression. 
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Figure 4.8 Load versus Poisson’s ratio response of Specimen CS.  
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Figure 4.9 Loading history of Specimens C76A, C76B, C98A, and C98B. 

 

Table 4.3 Loading details for Specimens C76A, C76B, C98A, and C98B 

Specimen 

Duration of 

loading to 

target load 

(mins) 

Average 

sustained 

load 

(kips) 

Maximum 

sustained load 

(kips) and % 

change 

Minimum 

sustained load 

(kips) and % 

change 

Peak load 

(kips) 

C76A 93 117 119 (+1.7%) 115 (-1.7%) 172 

C76B 106 117 120 (+2.6%) 115 (-1.7%) 179 

C98A 94 148 150 (+1.4%) 143 (-3.4%) 180 

C98B 86 147 150 (+2%) 144 (-2.0%) 170 
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At t0 = 268 days, Specimens C76A and C76B were loaded to 116 and 117 kips within 93 

and 106 minutes, respectively. The sustained loading of these columns was ended at t - t0 = 47 

days because the axial strain became stable. The average sustained load was 117 kips for both 

Specimens. The average sustained loads were about 76% of the nominal short-time loading 

capacity evaluated based on ACI 318 (2019), donated as Nu,ACI and indicated by the dashed lines 

in Figure 4.12. The Nu,ACI is calculated by Equation (4.3), where fc’ is determined based on the 

concrete cylinder compressive strength at the start of sustained loading. 

, 0.85 'u ACI c c y sN f A f A= +  Equation (4.3) 

At t0 = 348 and 354 days, Specimens C98A and C98B were loaded to 146 and 147 kips 

within 94 and 68 minutes, respectively. Due to the high sustained load, the measured axial strain 

kept increasing. However, because of time restraint, the sustained loading for these specimens 

was stopped after t - t0 = 120 days. The average sustained loads were 148 kips and 147 kips for 

Specimens C98A and C98B respectively, and about 98% of their short-time loading capacity 

Nu,ACI, estimated in the same manner for Specimens C76A and C76B.  

For each RC column specimen, the largest load drop occurred only during the first day 

after the application of sustained loads, as indicated in Figure 4.9. The percentage of load drop 

for all RC specimens were smaller than the plain concrete specimens, indicating that the RC 

columns could sustain loads better than the plain concrete columns. Moreover, as shown in Table 

4.3, the variation of sustained load from the average value was at most 3.4% for each specimen. 

 

4.3.2.2 Axial Strain History and Creep Coefficient 

Figure 4.10 plots the concrete average axial strain history for the four tests. Table 4.4 

summarizes the concrete strains, including both axial and transverse strains, measured at 
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characteristic loading stages.  The initial axial strain at the beginning of sustained loading was 

0.000742, 0.00122, 0.00130, and 0.00148 for Specimens C76A, C76B, C98A, and C98B, 

respectively. During the first day of sustained loading, the concrete axial strain increased rapidly 

by 25%, 25%, 36%, and 17% in C76A, C76B, C98A, and C98B. As the loading time increased, 

the rate of strain increase was reduced. By the end of the sustained loading, the axial strain 

reached 0.00138, 0.00227, 0.00277 and 0.00315 in C76A, C76B, C98A, and C98B, respectively. 

 

  

  
Figure 4.10 Strain history of Specimens C76A, C76B, C98A, and C98B. 
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Table 4.4 Characteristic concrete strains for Specimens C76A, C76B, C98A and C98B 

Test 
Axial strain 

at t0 

Axial strain 

at end of 

sustained 

load 

Transverse 

strain at t0 

Transverse 

strain at end of 

sustained load 

Axial failure 

strain at peak 

load 

Transverse 

failure strain 

at peak load 

C76A 0.000742 0.00138 0.000170 0.000111 0.00221 0.000216 

C76B 0.00122 0.00227 0.000277 0.000326 0.00335 0.000767 

C98A 0.00138 0.00295 0.000531 0.00169 0.00326 0.00227 

C98B 0.00142 0.00323 0.000432 0.00183 0.00355 0.00227 

 

The measured axial strains during the sustained loading contains both creep and 

shrinkage strains. However, because the specimens were loaded at an age greater than 250 days, 

most ultimate shrinkage strain of concrete has already been completed prior to the testing. 

Accordingly, the change in shrinkage strain according to ACI 209 (2008) was negligible 

compared with the creep strain. More detailed discussions regarding the estimation of shrinkage 

strains is presented in Section 6.1. Due to the small shrinkage strain increase during sustained 

loading, a creep coefficient is defined herein as the ratio of measured creep strains during the 

sustained loading to the axial strain at the beginning of sustained loading.  

Figure 4.11 plots the variation of creep coefficient during the sustained loading for 

Specimens C76A, C76B, C98A, and C98B. For Specimens C76A and C76B, the creep 

coefficients were nearly the same during the whole sustained concentric loading. At the end of 

sustained loading (t – t0 = 47 days), the creep coefficient was equal to 0.86 for both columns, 

even if they had different transverse reinforcement ratios. Thus, the effect of transverse 

reinforcement ratio on creep coefficient was not obvious for the sustained load level of 

Psus/Nu,ACI = 0.76. However, for Specimens C98A and C98B, the effects of column transverse 

reinforcement on creep coefficient was notable, as shown in Figure 4.11. Transverse 

reinforcement is engaged in confining concrete when concrete axial strain becomes greater than 
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0.0015 (Sheikh and Uzumeri, 1980). At t – t0 = 1 hour, 1 day, and 7 days, the creep coefficient of 

C98B (ρt = 0.78%), the creep coefficient of C98B was 77%, 51%, and 28% less than the creep 

coefficient of C98A (ρt = 0.26%). Because the sustained loading of C98B started only 6 days 

later than C98A, the loading age difference should not contribute to the difference in creep 

coefficient. The creep coefficient discrepancy decreased with time. At the end of sustained 

loading (t – t0 = 120 days), the creep coefficients were similar: 1.14 for Specimen C98A and 1.13 

for Specimen C98B. Moreover, at t – t0 = 47 days (the sustained loading duration of Specimen 

C76A and C76B), the creep coefficient was 0.88 and 0.82 for C98A and C98B, which is close to 

the creep coefficient of 0.86 for C76A and C76B. Although the sustained load level for 

Specimens C98A and C98B was greater than Specimens C76A and C76B, the 80-days difference 

in loading age (t0) affected the creep coefficient. The greater loading age caused lower creep 

strains. However, the greater sustained load level caused greater creep strains. Overall, the creep 

coefficient for Specimens C98A and C98B was almost the same as Specimens C76A and C76B 

after experienced the same sustained loading duration (t - t0). On the other hand, Specimens 

C76A and C76B had different initial axial strain at the end of initial short-time loading but did 

not cause a significant difference in creep coefficient.   

 



107 
 

 

 

Figure 4.11 Creep coefficient during sustained loading for Specimens C76A, C76B, C98A, 

and C98B. 
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4.3.2.3 Load-Strain Response and Failure Mode 

Figure 4.12 plots the load-axial concrete strain and load-volumetric concrete strain 

responses. The blue dashed lines indicate Nu,ACI, the nominal short-term strength of RC columns, 

determined based on the cylinder concrete compressive strength at the time of initial loading. 

The nominal short-term strength was estimated as Nu,ACI = 154 kips for C76A and C76B, and 

Nu,ACI = 151 kips for C98A and C98B. 

Due to the greater loads applied to Specimens C98A and C98B, they demonstrated an 

obvious nonlinear load - axial strain response during the initial short-time loading. The load 

plateau in Figure 4.12 corresponds to the sustained loading stage. The third portion of a load-

strain response corresponds to the final short-time loading to failure after 47 days of sustained 

loading for Specimen C76A and C76B and 120 days for C98A and C98B. For all RC specimens, 

the reloading stiffness was slightly greater than the initial loading stiffness. The peak load 

achieved in this loading stage was 172 kips (1.12Nu,ACI), 178 kips (1.16Nu,ACI), 180 kips 

(1.19Nu,ACI), and 170 kips (1.13Nu,ACI) for C76A, C76B, C98A, and C98B, respectively. The 

results showed that the previously experienced sustained loading did not negatively affect the 

subsequent axial loading capacity of the RC columns. Instead, on average, the load capacity was 

increased by 15% due to the sustained loading. This type of strength gain is consistent with the 

findings made from the tests of plain concrete columns and can be explained by concrete 

consolidation during the sustained loading. As described in Section 4.2.2.3, sustain loading of 22 

days increased the axial strength by 5.8% and 7.5% for Specimens P77 and P90. 
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Figure 4.12 Load-strain response of Specimens C76A, C76B, C98A, and C98B. 
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ε0(t) = 0.002+0.00085log10(t+1), for t ≤ 730  Equation (4.4) 

where t is time under sustained loading (in days). 

Concrete volumetric strain in the RC columns was computed in the same way as plain 

concrete specimens and shown in Figure 4.12. For Specimens C76A and C76B, the volumetric 

strain consistently increased with the increased axial strains measured along the time of sustained 

loading. For Specimens C98A and C98B, the volumetric strain initially increased with loads 

during the initial short-time loading. When the load was approaching the target sustained load, 

the volumetric strain started decreasing and kept being reduced during the following sustained 

loading. Thus, the change of volumetric strain depends on the sustained stress level Psus/Nu,ACI, 

where Psus is applied sustained load. The trend of volumetric strain bifurcates between 0.76 < 

Psus/Nu,ACI < 0.98. If Psus/Nu,ACI < 0.76, the volumetric strain increases as the axial strain increases 

with time; if Psus/Nu,ACI > 0.98, the volumetric strain decreases as the axial strain increases with 

time.  

Figure 4.13 shows the five RC specimens after failure. The application of sustained 

loading has no impact on the failure mode, which was the same as that observed in the short-time 

concentric loading tests of RC columns with various transverse reinforcement ratios performed 

by Sheikh and Uzumeri (1980).  
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Figure 4.13 RC column specimens after failure. 

 

4.3.2.4 Transverse Strain and Poisson's Ratio History 

Figure 4.14 shows the history of transverse strain of concrete cover measured at column 

mid-height (εct) during sustained concentric loading with the starting time at (t - t0 = 0.01 days). 

εct changed little in Specimen C76B and slightly decreased in Specimen C76A during the 
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sustained loading. This explains that although the two specimens had different transverse 

reinforcement ratios, the transverse strain creep response of two specimens was almost the same. 

In contrast, for Specimen C98A and C98B, the transverse strain εct increased over time during 

the sustained loading. When the time of sustained loading increased (t - t0), the difference 

between the two creep coefficients was reduced. This phenomenon was consistent with the creep 

coefficient response shown in Figure 4.11. It is not clear why the transverse reinforcement in 

Specimen C98B became less effective in restraining the transverse strain of concrete cover as the 

sustained loading time increased. In addition, the distinctively different transverse strain history 

under two different levels of sustained load affected the transverse failure strain at the peak load 

during the following reloading stage, as shown in Table 4.4. The transverse failure strains at the 

peak load in Specimens C76A and C76B were smaller than in Specimens C98A and C98B.  

 

 
Figure 4.14 Transverse strain history of concrete cover during sustained concentric loading for 

Specimens C76A, C76B, C98A, and C98B. 
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Figure 4.15 shows the history of Poisson's ratio (v) measured at the concrete cover during 

sustained loading of the four RC specimens with the starting time at (t - t0 = 0.01 days). The 

Poisson’s ratio of concrete cover was calculated based on the ratio of measured transverse strain 

shown in Figure 4.14 to the measured average axial strain shown in Figure 4.10. The variation 

trend of Poisson's ratio was similar to that of concrete transverse strain shown in Figure 4.14. For 

Specimens C76A and C76B, v was equal to 0.23 at the beginning of sustained loading t0 and 

decreased during the sustained loading. For Specimens C98A and C98B, v was equal to 0.29 and 

0.21 at t0. After one day of sustained loading, the Poisson's ratio reached 0.37 in Specimen C98A 

and 0.28 in Specimen C98B. The difference in Poisson's ratio between Specimens C98A and 

C98B decreased as the sustained loading time increased. Poisson's ratio reached 0.45 in C98A 

and 0.42 in Specimen C98B at the end of sustained loading after 120 days. The variation trend of 

v was consistent with the conclusions made from the tests of young concrete material (Shah and 

Chandra, 1970; Mazzotti and Savoia, 2002). When the sustained stress level ( / 'c cf ) was 

greater than 0.8, the Poisson's ratio of concrete increased over time. In contrast, the Poisson's 

ratio of concrete remained unchanged or even decreased when the sustained load stress level was 

moderate. 
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Figure 4.15 Poisson's ratio history during sustained loading for Specimens C76A, C76B, 

C98A, and C98B. 
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CHAPTER 5 

EXPERIMENTAL RESULTS OF COLUMNS SUBJECTED TO SUSTAINED 

ECCENTRIC LOADING 

5.1 Introduction 

Five square columns with the same heigh-to-width ratio of H/h = 10.8 were tested. The 

tests started at concrete ages greater than 540 days. The sustained loading durations were chosen 

based on test observations and time restraint. This chapter presents the test data of the five 

specimens, including loading history, load-strain response, axial and transverse strains, deflection 

at column mid-height, load-deflection relationship, moment-axial load response, moment-

curvature response, creeps for deflection and curvature, concrete transverse strain history, 

Poisson’s ratio history, and failure modes. 

 

5.2 Loading History  

Specimens E98A17, E100B17, E77A25, and E92A25 did not fail during the sustained 

eccentric loading tests. Only one specimen, E99A17, failed during sustained loading. In the 

specimen designations, E stands for eccentric loading. The number (e.g. 98) represents a 

percentage ratio of column mid-height moment at the beginning of sustained loading to the 

unfactored nominal short-time flexural capacity, Mu,ACI, defined based on the ACI 318-19 (2019) 

after considering axial force-moment interaction. Specimens E98A17, E100B17, and E92A25 

underwent three loading stages: (1) initial short-time loading, (2) sustained loading, and (3) 

loading to failure in a short time. Specimen E99A17 only experienced the first two loading 

stages because it failed during a load adjustment after two days of sustained loading. Specimen 

E77A25 was first loaded to approximately 55.5 kips, which caused a mid-height moment of 0.77 
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Mu,ACI and was maintained for 11 days. The sustained load applied to E77A25 was then adjusted 

to the same sustained load as in Specimen E92A25 on the 12th day of the sustained loading; the 

increased sustained loading in this specimen lasted for 17 days.  

Table 5.1 shows loading details of the five RC columns subjected to sustained eccentric 

loading. Figure 5.1 shows loading history. At t0 = 547, 603, 604, 628, and 629 days, E98A17, 

E100B17, E99A17, E77A25, and E92A25 were loaded to 86.9, 86.0, 81.3, 81.4, 55.6, and 60.6 

kips within 112, 182, 59, 42.2, and 46.6 minutes, respectively. The initial loading caused a 

column midspan moment M of 104 kip-in (0.98Mu,ACI), 108 kip-in (Mu,ACI), 109 kip-in (0.99 

Mu,ACI), 95.4 kip-in (0.77Mu,ACI), 111 kip-in (0.92Mu,ACI) in E98A17, E100B17, E99A17, 

E77A25, and E92A25, respectively. During the sustained loading, the average load was 86.1, 86, 

80.5, and 60.8 kips for E98A17, E100B17, E99A17, and E92A25. For Specimen E77A25, the 

average load was 55.9 kips for the first 11 days and 61.8 kips for the remaining 17 days during 

the second sustained loading stage. For each specimen, the largest load drop occurred during the 

first day following the initial application of sustained loads. After that, the sustained load was 

well maintained, as indicated in Figure 5.1. During reloading, the peak load was 92.2, 91.9, 73.0, 

and 65.4 kips or Specimens E98A17, E100B17, E77A25, and E92A25, respectively. 

Table 5.1 Loading details for Specimen E98A17, E100B17, E99A17, E77A25, and E92A25. 

Specimen 

Time of 

initial 

loading 

(mins) 

Average sustained 

load (kips) 

Maximum 

sustained load 

(kips) and % 

change 

Minimum 

sustained load 

(kips) and % 

change 

Peak 

load 

(kips) 

E98A17 112 86.1 87.7 (1.9%) 84.2 (-2.2%) 92.2 

E100B17 182 86.0 87.5 (1.7%) 84.8 (-1.4%) 91.9 

E99A17 59 80.5 81.6 (1.4%) 78.6 (-2.4%) 81.2 

E92A25 46.6 60.8 62.6 (3%) 58.5 (-3.8%) 65.4 

E77A25 42.2 

55.9 (in the first 11 

days) 
57.5 (2.9%) 54.6 (-2.3%) 

73.0 
61.8 (for remaining 

17days) 
62.6 (1.3%) 60.9 (-1.5%) 
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Figure 5.1 Loading history of column specimens subjected to sustained eccentric loading. 
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5.3 Load-Strain Relationship and Strain History  

The axial concrete strain at compression face of Specimen E98A17 and the tensile bar 

strain in Specimen E77A25 could not be obtained due to strain gauge malfunction. Figure 5.2 

shows load versus column mid-height axial strains measured in Specimens E99A17, E100B17, 

E77A25, and E92A25 at four locations, including tension face, tensile reinforcement, section 

mid-depth at side faces, and compression face. Positive sign in Figure 5.2 stands for compressive 

strain. Except for Specimen E77A25, the concrete strain at mid-depth of the side faces was 

approximately equal to the average of  the concrete strains measured at the compression and the 

tension faces. The measured axial strains indicate that plane section assumption was 

approximately held during the short-time loading. Moreover, the resultant force of bearing stress 

at the pin supports was aligned with pin center; otherwise, the measured strain at the tension 

surface would deviate from the nominal strain calculated by Equation (5.1) for the columns with 

an elastic response. In Equation (5.1), P is the load measured by the load cell; e is the 

eccentricity of load; Ec is elastic modulus of concrete; h is the depth of cross section. The strain 

measurements were used to partially validate the eccentricity ratios defined for the specimens. 

For Specimens E99A17, and E100B17, the eccentricity ratio was e/h = 0.17. When the load was 

low, columns behaved elastically, and the second order effect of column was negligible. The 

concrete tensile strain calculated by Equation (5.1) should approximately equal to zero at the 

beginning of short-time loading when the load P was less than 25 kips. When the load increased, 

the deflection at the mid-height of the columns increased, making the eccentricity ratio e/h > 

0.17. The tensile strain was not equal to zero and increased as the load increase. For Specimen 

E77A25 and E92A25, the initial eccentricity ratio was e/h = 0.25. According to Equation (5.1), 

the initial strain at the tension face should be less than zero. However, based on the plane section 
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assumption, the axial strain in the tensile reinforcement of columns shall be approximately equal 

to zero. This was achieved in Specimen E92A25, as shown in Figure 5.2.  

2
(1 6 )t

c

P e

E h h
 = −          (5.1) 

 

  

  

Figure 5.2 Load-strain relationship of Specimens E100B17, E99A17, E77A25, and E92A25. 
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Figure 5.3 plots the history of concrete strain on the compression face of Specimens 

E100B17, E99A17, E77A25, and E99A25. Due to concrete cracking, the strain gauges attached 

to the tension face were broken at 2117, 214.7, 60.6, 42.2, and 31.3 minutes after the load has 

been applied to Specimens E98A17, E100B17, E99A17, E77A25, and E92A25, respectively.  

 

 
 

  

Figure 5.3 Strain history at compression face of Specimens E100B17, E99A17, E77A25, and 

E92A25. 
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Table 5.2 summarizes the concrete strains, including both axial and transverse strains, on 

the compression face of the specimens. The initial axial strain at the beginning of sustained 

loading was 0.00264, 0.00273, 0.00164, and 0.00208 in Specimens E100B17, E99A17, E77A25, 

and E92A25, respectively. During the first day of sustained loading, the concrete axial strain 

increased rapidly by 20.3%, 37.4%, 15.6%, and 29.9% in E100B17, E99A17, E77A25, and 

E92A25. As the sustained loading time increased, the rate of strain increase was reduced. By the 

end of the sustained loading, the axial strain reached 0.00368, 0.00242 and 0.00329 in 

Specimens E100B17, E77A25, and E92A25. At failure, the axial compressive strain reached 

0.00482, 0.00417, 0.00454, and 0.00394 for Specimens E100B17, E99A17, E77A25, and 

E92A25. The axial failure strain of all specimens was close to or exceeded 0.004, which were 

greater than the failure strains (ranging from 0.00223 to 0.00360 as shown in Table 4.4) of the 

RC short columns subject to sustained concentric loading. 

 

Table 5.2 Concrete strain at characteristic loading stages of eccentrically loaded columns. 

Specimen 

Axial strain 

at beginning 

of sustained 

load 

Axial strain 

at end of 

sustained 

load 

Transverse 

strain at 

beginning of 

sustained load 

Transverse 

strain at end 

of sustained 

load 

Axial 

failure 

strain  

Transverse 

failure 

strain 

E98A17 — — 0.000719 0.00225 — 0.00323 

E100B17 0.00264 0.00368 0.00117 0.00183 0.00482 0.00283 

E99A17 0.00273 — 0.00137 — 0.00417 0.00359 

E77A25 0.00164 0.00242 0.000306 0.00122 0.00454 0.00208 

E92A25 0.00208 0.00329 0.000806 0.00137 0.00394 0.00202 

 

The measured axial strain during sustained loading contains both creep and shrinkage 

strains. However, because the specimens were loaded at ages greater than 547 days, most 

ultimate shrinkage strain of concrete was completed prior to the loading. Thus, compared with 

creep strain, the change in shrinkage strain was negligible according to ACI 209 (2008).  
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When the peak load was reached, the strains in tensile reinforcement were 0.000381, 

0.000259, 0.000321, 0.00468, 0.0017 for Specimens E98A17, E100B17, E99A17, E77A25, and 

E92A25. Except for Specimen E77A25, all the tensile reinforcements did not yielded ( y  = 

0.00230). Therefore, the failure of Specimens E98A17, E100B17, E99A17, and E92A25 was 

governed by concrete crushing. Viest el al. (1956) observed that the ultimate concrete strain after 

experiencing sustained loading may be approximately by superimposing the concrete ultimate 

strain under short-time loading with the creep strain under sustained loading. This conclusion, 

however, was made from 12 column tests with only one column loaded at an age greater than 90 

days (t0 > 90 days) and thus examined by the test data obtained from this study. For Specimens 

E100B17, E77A25, and E92A25, after subtracting the creep strains from the ultimate strain after 

experiencing the sustained loading, the concrete ultimate strain becomes 0.00378, 0.00376, and 

0.00273, with an average ultimate strain of 0.00342, which is close to the typical concrete 

ultimate strains under short-time loading. 

 

5.4 Deflection at Column Mid-height and Load-Deflection Relationship 

Figure 5.4 plots the history of mid-height deflection. The deflection at the beginning of 

sustained loading was 0.198, 0.252, 0.343, 0.216, and 0.322 in. for Specimens E98A17, 

E100B17, E99A17, E77A25, and E92A25, respectively. During the first day of sustained loading, 

the deflection increased rapidly by 33.6%, 36.3%, 37.4%, 15.6%, and 29.9% in E98A17, 

E100B17, E99A17, E77A25, and E92A25. From t - t0 = 18 days for E98A17, 6 days for 

E100B17, 17 days for E77A25, and 20 days for E92A25, the daily deflection increase become 

less than 0.002 in. The deflections at the end of sustained loading were 0.425, 0.392, 0.520, 

0.326, and 0.503 in. for Specimens E98A17, E100B17, E99A17, E77A25, and E92A25.  
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Figure 5.4 Mid-height deflection history of column specimens subjected to sustained eccentric 

loading. 
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The percentage increase in mid-height deflection during sustained loading was 115% in 

22 days for Specimen E98A17, 55.2% in 11 days for Specimen E100B17, 51.6% in 2 days for 

Specimen E99A17, 50.9% in 28 days for Specimen E77A25, and 56.2% in 28 days for Specimen 

E92A25. The mid-height deflection at the peak load was 0.452, 0.413, 0.520, 0.524, and 0.528 in. 

for Specimens E98A17, E100B17, E99A17, E77A25, and E92A25, respectively.  

Figure 5.5 plots the load-deflection relationship for Specimen E98A17, E100B17, 

E99A17, E77A25, and E92A25. For Specimen E77A25, the sustained load with an average of 

55.9 kips was maintained for 11 days, over which the mid-height deflection was increased by 

0.047 in. The sustained load was then adjusted to 61.6 kips on the 12th day. The increase in mid-

height deflection for the remaining 17 days of sustained loading was 0.0420 in. For Specimen 

E92A25 with an average sustained load of 60.8 kips, the increase in mid-height deflection for the 

last 17 days of sustained loading was 0.0389 in., which was approximately equal to the mid-

height deflection increase in Specimen E77A25 from the 12th day to the end of sustained loading. 

 

 

 

 

 

 



125 
 

  

 

  

Figure 5.5 Load-deflection relationship of column specimens subjected to sustained eccentric 

loading. 
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5.5 Axial Load – Mid-Height Moment Response 

Figure 5.6 plots the axial load - moment response at column mid-height for the column 

specimens subjected to sustained eccentric loading. For comparison purpose, the short-time axial 

load-interaction diagram (nominal strength) calculated according to ACI 318-19 (2019) was also 

plotted in Figure 5.6. Table 5.3 summarizes the column mid-height moment at characteristic 

loading stages. 
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Figure 5.6 Axial load-moment response of column specimens subjected to sustained eccentric 

loading. 
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Table 5.3 Mid-height moment at characteristic loading stages of eccentrically loaded columns. 

Specimen 

M at 

beginning of 

sustained 

load 

(kip-in.) 

M at end of 

sustained 

load (kip-

in.) 

M increase 

(%) during 

sustained 

load  

 M at 

peak 

load 

(kip-in.) 

Nominal 

strength (M) 

calculated by 

ACI 318 

Ultimate 

moment 

capacity 

increase (%)  

E98A17 103 122 19% 133 100 33% 

E100B17 107 118 10% 129 101 28% 

E99A17 108 — — 122 109 12% 

E77A25 94 111 18% 149 111 34% 

E92A25 109 121 11% 131 117 12% 

 

Specimens E98A17 and E100B17 were subjected to similar average sustained loads (86.1 

and 86 kips) and both loaded after 540 days of concrete casting. The average concrete cylinder 

strength varied in a narrow range after 540 days. The only difference was that Specimens 

E98A17 and E100B17 were subjected to sustained loading for 22 and 11 days. The column mid-

height moment at the peak axial load, Mu = 1.33Mu,ACI and 1.28Mu,ACI for Specimens E98A17 

and E100B17. The different sustained loading durations may explain the similar flexural capacity 

of the two specimens although they had different transverse reinforcement ratios. As described in 

Chapter 4, for the concentrically loaded RC column CS, the confinement effect enhanced its 

short-time strength by approximately 10%. However, this effect should be less pronounced in the 

flexural strength of an eccentrically loaded column. The extra strength of E98A17 and E100B17 

beyond Mu,ACI can be partially attributed to the strength increase due to the previously applied 

sustained loads. Specimen E99A17 endured the sustained load for only 53 hours and failed with 

Mu = 1.12Mu,ACI when a load adjustment was made. The extent of strength increase from Mu,ACI 

was the lowest among three columns with an eccentricity ratio of 0.17 due to the short sustained 

loading period. 

Specimen E77A25 with e/h = 0.25 was initially loaded to 55.5 kips, resulting in a mid-

height moment of M = 0.77Mu,ACI. At t - t0 = 11 days, the mid-height moment increased by 5.5%. 
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The load was then increased to 61.6 kips at the 12th day, causing M = 0.91Mu,ACI. During the 

second sustained loading of 17 days, the mid-height moment increased by only 2.5%. The low 

deflection increase in both loading stages made the sustained loading effect almost indiscernible 

in Figure 5.6. When reloaded, Specimen E77A25 failed at Mu = 1.34Mu,ACI. Specimen E92A25 

was initially loaded to 60.7 kips, resulting in a mid-height moment of M = 0.92Mu,ACI. The mid-

height moment in E92A25 increased by 8.7% at t - t0 = 11 days and 11% after 28 days of 

sustained loading. During the subsequent reloading, Specimen E92A25 failed at Mu = 1.12Mu,ACI. 

Overall, the flexural capacity of all the columns exceeded the computed nominal moment 

strength, as shown in Table 5.3.  

 

5.6 Moment - Curvature Response  

Figure 5.7 plots the moment-curvature relationship of the column specimens. Based on 

the plane section assumption, the axial strains measured at the mid-depth and compression face 

were used to calculate column mid-height curvature. The curvature was calculated by Equation 

(5.2), where c  is concrete strain at column compression surface, m  is strain at section mid-

depth, and h is the depth of column cross section. For Specimen E98A17, because the strain 

gauge was broken at the compression face, its curvature was determined from the axial strains 

measured in the tensile reinforcement and the strain at section mid-depth, as shown in Equation 

(5.3). In Equation (5.3), st is the strain of tensile reinforcement and ls/2 is the distance between 

tensile reinforcement to section mid-depth. 

/ 2

c m

h

 −
 =          (5.2) 

/ 2

m st

sl

 −
 =          (5.3) 
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Figure 5.7 Moment-curvature relationship of column specimens subjected to sustained eccentric 

loading. 
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The curvature at characteristics loading stages for Specimen E98A17, E100B17, E99A17, 

E77A25, and E92A25 were summarized in Table 5.4. The curvature at peak load for specimens 

with eccentricity ratio e/h = 0.25 was greater than the specimens with e/h = 0.17. The failure 

curvature of the specimen with a higher transverse reinforcement ratio (E100B17) was greater 

than that of Specimens E98A17 and E99A17. The sustained loads applied to Specimen E98A17 

and E100B17 were the same. For Specimen E98A17, the percentage curvature increase after 11 

days of sustained loading was 162%; however, for Specimen E100B17, the increase of curvature 

after 11 days of sustained loading was only 71.3%. Thus, higher transverse reinforcement ratio 

can reduce the curvature of specimens during sustained loading.  

 

Table 5.4 Curvature at characteristic loading stages of eccentrically loaded columns 

Specimen 

Curvature at beginning 

of sustained load 

(1/in.) 

Curvature at end of 

sustained load 

(1/in.) 

Curvature at peak 

load (1/in.)  

E98A17 0.000303 0.000799 0.00110 

E100B17 0.000566 0.000817 0.00114 

E99A17 0.000619 — 0.000983 

E77A25 
0.000465 

0.000605 

0.000554 

0.000681 
0.00143 

E92A25 0.000547 0.000892 0.00110 

 

Specimen E98A17 had the greatest flexural stiffness during the initial loading. However, 

the stiffness of Specimen E100B17 and E99A17 was similar. During the sustained loading, the 

column stiffness was approximately constant even though concrete creep softened the columns. 

A secant flexural stiffness during sustained loading was calculated based on the moments and 

curvatures at the start and end of sustained loading. This stiffness was nearly identical for 

Specimens E98A17 and E99A17 during sustained loading. For Specimen E100B17, the reduced 

transverse reinforcement spacing caused the 21% higher stiffness, which contributed to the lower 
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creep effects discussed in Section 5.7.  

For Specimen E77A25, the percentage curvature increase after 11 days of sustained 

loading was 19.1%. The percentage curvature increase from the 12th day to the end of the 

sustained loading was 12.6%. For Specimen E92A25, the curvature increase was 49.7% after the 

first 11 days of sustained loading and 12.7% for the remaining 17 days of sustained loading. 

Comparing the results of Specimen E77A25 and E92A25 indicate that different sustained load 

levels greatly affected column curvature in the first 11 days of sustained loading. However, after 

the sustained load of Specimen E77A25 was adjusted to approximately the same as that of 

Specimen E92A25, the percentage curvature increase of the two specimens was almost the same. 

The curvature at peak load was comparable among E98A17, E99A17, E100B17, and E92A25. 

Specimen E77A25 achieved higher flexural strength and deformation capacity than E92A25, 

which may be explained by the different sustained loading histories. 

 

5.7 Creep for Deflection and Curvature   

Two types of creep were examined: creep of column mid-height deflection representing 

global deformation and creep of mid-height curvature representing local deformation. The 

variation of creep coefficient,  , during sustained loading is shown in Figure 5.8 for the 

specimens with e/h = 0.17, and Figure 5.9 for the specimens with e/h = 0.25. Even if E98A17 

was loaded 57 days earlier than E99A17, they had similar   during the first two days of 

sustained loading, as shown in Figure 5.8. This indicates that the difference in loading age was 

not influential for the eccentrically loaded columns, which were already more than 500-days old 

at the start of testing. E100B17 had the lowest   among the three specimens with e/h = 0.17; 

however, E99A17 quickly failed within three days of loading. On the other hand, after 10 days of 
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sustained loading, the   for E100B17 was 45% lower for deflection and 67% lower for curvature 

than E98A17. Thus, for eccentrically loaded columns carrying a high sustained load, increasing 

transverse reinforcement ratio can reduce creep deformations.  

 

 
(a) Deflection 

 
(b) Curvature 

Figure 5.8 Creep coefficient of columns with e/h = 0.17. 
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       (a) Deflection 

 
(b) Curvature 

Figure 5.9 Creep coefficient of columns with e/h = 0.25. 
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histories for the two sustained loading stages are shown separately in Figure 5.9. Due to the 

lower sustained load,   during the first sustained loading of 11 days was less than 50% of that 

for Specimen E92A25 loaded with nearly the same duration. For the second sustained loading, 

even if the load applied to E77A25 resulted in an initial mid-height moment comparable to that 

of E92A25, the   in terms of both deflection and curvature for E77A25 was lower than in the 

first sustained loading and much less than that of E92A25. Therefore, the test result of E77A25 

indicated that the loading history affect the creep behavior of RC columns ‒ the lower sustained 

load applied previously reduced the creep deformation caused by the higher sustained load 

applied later. 

 

5.8 Concrete Transverse Strain History  

Figure 5.10 plots concrete transverse strain (
ct ) history at compression face of column 

mid-height for the column specimens subjected to sustained eccentric loading. Higher level of 

sustained load caused greater transverse strain. After the initial loading, 
ct  = 0.00072, 0.00137, 

0.00117, 0.00031, and 0.00081 in Specimens E98A17, E99A17, E100B17, E77A25, and 

E92A25, respectively. For Specimen E99A17, 
ct  quickly increased to 0.00259 at the end of first 

day of sustained loading, and 
ct  = 0.00359 when this specimen failed during the third day of 

sustained loading. When E98A17, E100B17, E92A25, and E77A25 failed during reloading, 
ct  

= 0.00323, 0.00283, 0.00202, and 0.00208, respectively. 
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Figure 5.10 Concrete transverse strain history of column specimens subjected to sustained 

eccentric loading. 
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5.9 Poisson’s Ratio  

Poisson’s ratio, based on the measured transverse and longitudinal strains at the concrete 

compression face, was evaluated for four specimens because the axial strain at compression face 

could not be obtained in Specimen E98A17 due to strain gauge malfunction. Figure 5.10 plots 

the time history of Poisson’s ratio for Specimens E100B17, E99A17, E77A25, and E92A25. 

After the initial short-time loading, Poisson’s ratio v = 0.5, 0.45, and 0.39 in Specimens E99A17, 

E100B17, and E92A25, respectively. Similar to the concentric loading tests described in Chapter 

4, the evolution of Poisson’s ratio during sustained loading was impacted mainly by transverse 

strain. After the columns have been subjected to sustained loading for one day, v increased to 

0.48, and 0.42 in E100B17 and E92A25; after 3 days, v became stabilized at around 0.5 in 

E100B17, whereas v in E92A25 varied in a narrow range of 0.4 to 0.44. In contrast, v quickly 

increased to 0.69 for Specimen E99A17 after being subjected to sustained loading for one day 

and kept increasing thereafter. The Poisson’s ratio reached 0.86 (v = 0.86) when Specimen 

E99A17 failed during the third day of sustained loading. For Specimen E77A25, v = 0.19 after 

the initial loading and slightly reduced to 0.14 after 11 days of sustained loading. Even if the 

sustained load was then increased in the second sustained loading stage, v showed little change 

and was equal to 0.17 by the end of sustained loading. When E100B17, E92A25, and E77A25 

failed during reloading, v = 0.59, 0.51, and 0.46, respectively. Table 5.5 summarizes the Poisson's 

ratio at characteristic loading stages of eccentrically loaded columns. 
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Figure 5.11 Time history of Poisson’s ratio in Specimens E100B17, E99A17, E77A25, and 

E92A25. 

 

 

Table 5.5 Poisson's ratio at characteristic loading stages of eccentrically loaded columns.  

Specimen 

at beginning of 

sustained load 

(1/in.) 

at end of 

sustained load 

(1/in.) 

at failure (1/in.)  

E100B17 0.445 0.496 0.59 

E99A17 0.500 — 0.86 

E77A25 
0.186 

0.147 

0.140 

0.167 
0.46 

E92A25 0.388 0.415 0.51 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15

P
o

is
s
o

n
 r

a
ti
o

t - t0  (days)

E100B17
t0 = 603 days

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3

P
o

is
s
o

n
 r

a
ti
o

t - t0  (days)

E99A17
t0 = 604 days

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30

P
o

is
s
o

n
 r

a
ti
o

t - t0  (days)

E77A25
t0 = 628 days

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30

P
o

is
s
o

n
 r

a
ti
o

t - t0  (days)

E92A25
t0 = 629 days



139 
 

It can be concluded from the test results that the change of Poisson’s ratio depends on the 

sustained load level. The trend of Poisson’s ratio bifurcates between 0.77 < Msus/M0 < 0.92, 

where Msus is the moment at the beginning of sustained loading, M0 is the nominal moment 

capacity of RC columns. If Msus/M0 < 0.77, the Poisson’s ratio decreased as the axial strain 

increased with time; if Msus/M0 > 0.92, the Poisson’s ratio increased as the axial strain increased 

with time.  

 

 5.10 Damage and Failure Modes 

Figure 5.12 shows the crack pattern and failure mode of the five eccentrically loaded 

columns. Flexural cracks were not visible during the initial loading and the first day of sustained 

loading of columns with e/h = 0.17. For the columns with e/h = 0.25, cracks were noticed in the 

column mid-height region immediately after the initial loading. The buckling of the column 

longitudinal bars at mid-height caused the failure of the Specimens E98A17, E99A17, E77A25, 

and E92A25. However, rebar buckling did not occur for the failure of Specimen E100B17, where 

the transverse reinforcement spacing was reduced to one third of the other four specimens. The 

most obvious crack appeared at the mid-height of all five slender columns. Most cracks at the 

tension face were developed along the location of transverse reinforcements. The failures caused 

the concrete cover to spall at the compressive zone at the mid-height and the failure zone 

extended to the mid-depth of the specimens. No columns failed farther from the center region. 

Specimen E100B17 exhibited an excessive spalling area of the concrete on compression face of 

the specimen. However, the depth of damaged concrete in the compressive zone was shallow, 

and the concrete core was well maintained.   
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Figure 5.12 Failure modes of column specimens subjected to eccentric loading. 
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CHAPTER 6  

NUMERICAL SIMULATIONS OF COLUMN NONLINEAR CREEP DUE TO 

SUSTAINED CONCENTRIC LOADING 

6.1 Introduction  

A numerical method for predicting concrete column creep under high axial sustained 

stresses and at older loading ages is explored. The method is based on a theoretical framework 

suggested by Tasevski et al. (2018) for plain concrete, which extended the prediction of linear 

concrete creep to that of nonlinear concrete creep. For plain concrete, the linear concrete creep is 

estimated by the GL2000 model. For RC specimens, the linear concrete creep is predicted using 

an age-adjusted effective modulus method. The experimental results of short column tests 

described in Chapter 4 are compared with the predictions.  

 

6.2 Strains of Concrete and Reinforcing Bars Due to Shrinkage 

Concrete shrinkage is the contraction of hardened concrete mixture due to losing 

capillary water. Concrete shrinkage begins after concrete pouring and continues during the life of 

concrete no matter it is loaded or not. In order to acquire the concrete creep strain under 

sustained load, concrete shrinkage strain should be eliminated from the total strain measured 

during the sustained loading process. Concrete shrinkage properties were not measured in the 

experiments. Four models can be used to estimate concrete shrinkage, including ACI 209 (2008), 

B3 (Bažant and Baweja, 1995, 2000), CEB MC90 (CEB 1999) and GL2000 (Gardner and 

Lockman, 2001) models. The ACI 209 model, which in general predicts greater shrinkage, is 

defined in Equations (6.1) through (6.11), where ( , )sh ct t  is shrinkage strain at concrete age of t 
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(in days) measured from the start of drying at tc (in days). The ACI 209 model is employed to 

estimate the shrinkage strains of the test specimens subjected to concentric loading. 

( )
( , )

( )
sh shu

c
c

c

t t
t t

f t t
 =

−

+ −
 (6.1) 

where f is a parameter defined using Equation (6.2) to address the effect of volume-surface ratio 

V/S, and εshu is ultimate shrinkage strain evaluated using Equation (6.3). 

0.36( / )
26

V S
f e=  (6.2) 

6
780 10

shu sh
 

−
=  (6.3) 

where γsh is defined in Equation (6.4) as the products of γsh,tc, γsh,RH, γsh,vs, γsh,s, γsh,ψ, γsh,c, and γsh,α. 

In Equation (6.4), γsh,tc is a parameter related to curing times different from 7 days for 

moist-cured concrete and calculated by Equation (6.5). γsh,RH is calculated by Equation (6.6), 

where h is environmental relative humidity in decimals. γsh,vs allowing for the effects of V/S-ratio 

is defined using Equation (6.7). γsh,s is calculated by Equation (6.8), where s is the slump of fresh 

concrete in inch. γsh,ψ is calculated by Equation (6.9) for ψ >50%, where ψ is the ratio of fine 

aggregate to total aggregate by weight expressed as percentage. γsh,c is calculated by Equation 

(6.10), where c is the cement content in lb/yd3. γsh,α is evaluated using Equation (6.11), where α 

is percentage air content. 

γsh,tc = γsh,tc γsh,RH γsh,vs γsh,s γsh,ψ γsh,c γsh,α (6.4) 

γsh,tc = 1.202 - 0.2337log10(tc) (6.5) 

γsh,RH = 1.4 - 1.02h (6.6) 

γsh,vs = 1.2e-0.12(V/S) (6.7) 

γsh,s = 0.89 + 0.0041s (6.8) 
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Based on the actual properties of the specimens (e.g. V/S ratio, mix design, and measured 

slump), curing approach and time, and the average humidity in the laboratory of 21%, the 

unrestrained concrete shrinkage strain of each test specimen at the start and end of sustained 

concentric loading is evaluated and given in Table 6.1. It is seen that, the change in concrete 

shrinkage during the period of sustained loading is less than 3%. Given that creep deformation 

was far greater than the change in shrinkage strain, concrete shrinkage effect is neglected when 

predicting the long-term deformations of the test specimens. 

 

Table 6.1 Concrete and reinforcement strains due to shrinkage 

Specimen P77 P90 C76A C76B C98A C98B 

εsh at start of sustained loading (x10-3) 0.709 0.742 0.723 0.723 0.751 0.753 

εsh at end of sustained loading (x10-3) 0.720 0.749 0.741 0.741 0.776 0.777 

Ec at start of sustained loading (ksi) 5503 4860 6483 3187 5302 3185 

concrete tensile strain 
0,c t  (x10-3) — — 0.037 0.071 0.046 0.074 

steel compressive strain 
0,s t  (x10-3) — — 0.686 0.652 0.705 0.679 

 

Concrete shrinkage in the RC columns is restrained by the longitudinal reinforcing bars. 

Accordingly, tensile strain 
0,c t  is developed in concrete and compressive strain 

0,s t  in steel at t = 

t0 when sustained loading starts. 
0,c t  and 

0,s t  can be evaluated based on the concept shown in 

Figure 6.1. If no reinforcement exists, concrete should have an unrestrained shrinkage of sh  in 

the 
−

 direction. However, the concrete shrinkage is restrained by the reinforcement and the 

γsh,ψ = 0.9 + 0.002 ψ (6.9) 

γsh,c = 0.75 + 0.00036c (6.10) 

γsh,α = 0.95 + 0.008 α  ≥ 1 (6.11) 
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shrinkage of concrete is pulled back a little bit in the  + direction. 
0,c t  shall be equal to 

0,sh s t − . 

Assuming elastic behavior for both concrete and steel during this process and applying 

equilibrium, 
0,c t and 

0,s t  satisfy  

0 0, ,s t s s c t c cE A E A =  (6.12) 

where Es = 30189 ksi is the Young’s modulus of D9 column longitudinal reinforcement, and Ec 

is the Young’s modulus of concrete at the age of loading, which is calculated based on the 

concrete stress 
c  and the average concrete longitudinal strain 

c  of RC specimens at a load of 

30 kips during the initial short-time loading and shown in Table 6.1. The concrete stress is 

calculated by Equation (6.13), where P is the measured force, 
c  is measured average concrete 

longitudinal strain. The strain of steel reinforcement is assumed to be equal to the measured 

concrete strain.  

 s c s
c

c

P E A

A




−
=  (6.13) 

Based on Equation (6.12), εc,t0 and εs,t0 are calculated using Equations (6.14) to (6.16) for 

each RC short column and given in Table 6.1.   

 

 
Figure 6.1 Conceptual view of restrained shrinkage behavior of a RC component. 
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6.3 Short-Time Loading Capacity of RC Columns Subjected to Concentric Loading 

Because hoops meeting seismic detailing requirements were used in the RC column 

specimens as transverse reinforcement, the confinement effect is considered. Transverse 

reinforcement of RC columns confines the lateral expansion of core concrete. Thus, both the 

compressive strength of concrete core and ductility can be increased, especially under high loads. 

This is because the confinement effect of transverse reinforcement is more obvious under higher 

stresses. The degree of confinement effect is influenced mainly by two factors: (1) the amount 

and shape of transverse reinforcement, and (2) the strength ratio of transverse reinforcement to 

concrete fyt/fc', where fyt is the yield strength of transverse reinforcement and fc' is concrete 

cylinder strength at the time of loading. The stress of concrete core and the ultimate load 

capacity of short reinforced concrete columns are estimated using the model for concrete under 

low strain rates suggested by Scott et al. (1982), as shown in the following. 

 
2 ( '' '')

'' ''

sh
t

A b h

b h s

+
 =  (6.17) 

 1
'

yt

t

c

f
K

f
= +  (6.18) 
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 0 0.002K =  (6.19) 

where Ash is the area of transverse reinforcement, b'' and h'' are the width and height of core area, 

s is the clear spacing of the transverse reinforcement, ρt is the ratio of the volume of transverse 

reinforcement to the volume of confined core. For Specimen C76A and C76B, fc' = 4,316 psi 

over entire sustained loading period; for Specimen C98A and C98B, fc' = 4,316 psi at the start of 

sustained loading and fc' = 4,200 psi at the end of sustained loading. Then, the concrete core 

stress 
core  can be calculated by Equations (6.20) to (6.24), where 0 0.002 =  is used in 

Equations (6.20) and (6.21).     

2

0 0

' 2 c c
core cKf

   
  = − 

    

          for       00 c     (6.20) 

0'[1 ( )]core c m cKf Z = −  −           for       0c    (6.21) 

50 50 0

0.5
m

u h
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 +  − 

 (6.22) 

50

3 0.002 '

' 1000

c
u

c

f

f

+
 =

−
           (6.23) 

50

''
0.75h t

b

s
 =            (6.24) 

Figure 6.2 shows an example of the stress-strain curve for the confined and unconfined 

concrete in Specimen C76B. The stress-strain diagram for unconfined concrete descends rapidly 

along a straight line after passing the peak load point (
c , fc'). The unconfined concrete is 

presumed to have no compressive resistance beyond the point at which the descending branch 

drops to 0.2fc'. For confined concrete, the shape of stress-strain curve is similar to that of the 

unconfined concrete in the rising part. The peak stress Kfc' is slightly higher than fc'. The concrete 

strain at the peak stress equals to 
0  for the unconfined concrete. However, the stress-strain 
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diagram for confined concrete descends smoothly along a straight line after passing from the 

peak load point (
0 , Kfc') through the point (

20c , 0.2Kfc'), where 
20c  is confined concrete strain 

when 0.2 'cKf = . The confined concrete is assumed to maintain 0.2 'cKf =  for all strains in 

excess of the point at which the descending branch reaches 0.2Kfc'. Due to the slope difference 

between the confined concrete and unconfined concrete at the descending part of the stress-strain 

curve, the concrete cover loses load capacity quickly when the concrete strain exceeds 0.002. 

Once the concrete cover fails, the whole RC column should fail very soon because the area of 

concrete cover accounts for about 50% of the cross section area. Therefore, the strain of 

0.002c =  at the peak stress fc' of the unconfined concrete cover is used in Equation (6.20) to 

estimate the concrete core stress.   

 

 

Figure 6.2 Stress-strain relationship for confined and unconfined concrete for Specimen C76B. 
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After the concrete core stress at 0.002c =  has been determined, the short-time ultimate 

loading capacity of RC columns, Pu,cal, is estimated by Equation (6.25). An average concrete 

ultimate stress 
,u cal  is then calculated by Equation (6.26). The measured average concrete peak 

stress u  is estimated using Equation (6.27) based on the measured peak load Pu shown in Table 

6.2, the force carried by steel reinforcement, and the net concrete area. 

, 0.85 '( )u cal core core c c core y sP A f A A f A=  + − +  (6.25) 

 ,

0.85 '( )

0.85( )

core core c c core
u cal

core c core

A f A A

A A A

 + −
 =

+ −
 (6.26) 

 
0.85( )

u y s

u

c core core

P f A

A A A

−
 =

− +
 (6.27) 

where Ac is the net concrete area of column’s cross section; Acore is the area of concrete core; As 

is total area of column D9 longitudinal reinforcement. 

Based on Equations (6.17) to (6.25), the calculated short-time loading capacity of 

Specimen CS is Pu,cal = 160.9 kips, only 2.4% greater than the peak load of Pu = 157.2 kips 

measured during the short-time loading. Table 6.2 summarizes the concrete core stress 
core  at 

c = 0.002, the calculated average concrete ultimate stress ,u cal  at c = 0.002, the calculated 

ultimate loading capacity Pu,cal, the average measured concrete peak stress u  at the measured 

peak load Pu, and the measured peak load Pu after experiencing sustained load for Specimens 

C76A, C76B, C98A, and C98B. The purpose of calculating an average concrete stress at failure 

is to determine the difference between the estimated average ultimate stress ,u cal  under short-

time load and the concrete peak stress u  after experience the sustained load of the RC 

specimens. The average concrete stress is important to determine the stress ratio used to predict 
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nonlinear concrete creep, which is discussed later in Section 6.4.2. It is seen that the average 

peak stress u  is 0.1%, 3.1%, and 7.4% lower than 
,u cal  for Specimens C76A, C76B, and C98B, 

respectively. However, for Specimen C98A, u  is 6.9% greater than 
,u cal . In general, compared 

with the short-term loading capacity of RC specimens, the change in capacity after experiencing 

sustained load is small.  

 

Table 6.2 Calculated and measured loading capacity of RC specimens  

Specimen C76A C76B C98A C98B 

u  (ksi) 4.552 4.766 4.750 4.464 

Pu (kips) 172.3 179.1 178.6 169.5 

core  (ksi) 4.774 5.450 4.657 5.326 

,u cal  (ksi) 4.558 4.916 4.442 4.795 

Pu,cal  (kips) 172.5 183.9 168.8 180.0 

 

 

6.4 Simulations of Column Creep under High Sustained Concentric Loading 

6.4.1 Simulating Creep of Plain Concrete Columns   

Constitutive models capable of describing the behavior of RC components subjected to 

high-level sustained loads are needed to reliably predict the near-collapse response of RC frame 

structures overstressed by excessive gravity loads. As described previously, research on concrete 

creep under high sustained stresses was very limited because concrete creep was considered 

mainly as a serviceability issue. As a result, most concrete creep prediction models concentrated 

on linear concrete creep. A few existing models for predicting nonlinear creep of concrete under 

high sustained load are reviewed in Section 1.6.3.2. Among them, the model developed by 

Tasevski et al. (2018) provides a theoretical framework allowing to predict nonlinear concrete 

creep more conveniently than the other models. This model was verified by the results of the 
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authors’ own experiments and those performed by Rüsch (1960), Awad (1971), Smadi et al. 

(1982), and Iravani et al. (1998).  

The theoretical framework developed by Tasevski et al. (2018) was based on the 

experimental observations and a set of hypotheses, extending the prediction of linear concrete 

creep to that of nonlinear concrete creep. However, the method used to calculate the linear 

concrete creep can be defined by the users. Three existing methods (ACI 209 model, CEB 

MC90-99 model, and GL2000 model) for predicting linear concrete creep are chosen in this 

section. Concrete creep is predicted based on the framework suggested by Tasevski et al. (2018) 

described in Equation (1.15) in Section 1.6.3.2, with some modifications.  

In the experiments of this study, concrete stress varied during the sustained loading due 

to stress redistribution between steel and concrete, load drop, and load adjustment. Thus, as 

shown in Equation (6.28), a term of 
0, , 1( ) /c i c i cmtE  −−  is added to the formulations suggested 

by Tasevski et al. (2018) to explain the instantaneous concrete strain change at a time step, i, in 

the numerical simulations.  

0

, , 1 , , 1

0 0 0 0 0

1 , , 1

( ) 1 ( , ) 1 ( , )
n

c i c i c i c i

c i i

i c i c i cmt

t t t t t
f f E

   
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= −
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        −
+ + − + +                     
  (6.28) 

where ε0 is concrete strain at the beginning of sustained load measured by the concrete strain 

gauges along column axial direction; i indicates the ith step; ,c i is concrete stress at the ith step, 

determined based on the measured load, the force carried by the longitudinal reinforcement, and 

the area of concrete cross section Ac; t0 is concrete age at the beginning of sustained load (in 

days); Ecmt0 is mean modulus of elasticity of concrete when sustained loading started at age t0; 
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, ,/c i c if is the sustained stress ratio at the ith step; η is a parameter defining the effects of 

sustained load level, which is described later.  

Based on the stress-strain relationship of Specimens P77 and P90 shown in Figure 4.4, 

the elastic modulus of concrete during sustained loading almost did not change. For simplicity, 

the change in instantaneous concrete strain during a time step is calculated by the ratio of change 

in sustained stress during this time step to the elastic modulus of concrete (Ec) at the start of 

sustained loading (t0), which is provided in Table 6.1. 

The total number of time steps shown in Equation (6.28), n, is consistent with the number 

of time steps collecting data during the experiments and at least 2,000 time steps for each 

specimen. After experiencing sustained loading, the peak load of the plain concrete Specimens 

P77 and P90 increased by 6.6% and 8.6%, as compared with the short-time peak failure load of 

Specimen PS. In Equation (6.28), fc,i is concrete cylinder strength at the ith step and was assumed 

to increase linearly proportional to the sustained loading time. Coutinho (1977) found that (1) 

sustained loading increased concrete compressive strength by 2% to 14% with different loading 

ages and sustained load levels, (2) higher sustained loads caused a higher concrete strength 

increase, (3) higher loading age t0 caused faster concrete strength increase, and (4) concrete 

strength increase was usually completed within three days if the loading age t0 was greater than 

three months.  

In Equation (6.28), , ,/c i c if  means the ratio of sustained stress ,c i  to the short-time 

concrete compressive strength ,c if . The sustained stress ratio , ,/c i c if  affects the nonlinear 

concrete creep. All the specimens tested in this study were square columns rather than concrete 

cylinders. According to ACI 318 design code (2019), the ultimate concrete stress should be 

0.85fc' rather than fc' for plain concrete columns, where fc' is concrete cylinder strength. Figure 
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6.3 shows a comparison of creep prediction results of using 0.85fc' and fc' to define the concrete 

short-time strength in stress ratio.  

 

 

 
Figure 6.3 Comparison of predicted and measured creep strains with two different methods 

defining sustained stress ratio for Specimens P77 and P90. 
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The red dashed line is the creep prediction using 
,c i /(0.85fc,i) as the sustained stress ratio 

and GL2000 model to calculate linear creep coefficient. The blue dashed line is the creep 

prediction using 
,c i /fc,i as the sustained stress ratio. The reason for using GL2000 model to 

calculate the linear creep coefficient is explained later. For Specimen P77, the concrete creep 

strain difference between the predicted and experimental results at the end of sustained loading is 

-6.1% and 17.2% for using 
,c i /fc,i and 

,c i /(0.85fc,i) as the sustained stress level to calculate 

concrete creep strain. For Specimen PC90, the concrete creep strain difference between the 

predicted and experimental results at the end of sustained loading is -1.6% and 33.6% for using 

,c i /fc,i  and ,c i /(0.85fc,i) as the sustained stress level to calculate concrete creep strain. 

Therefore, the predicted creep strain results using the  ,c i /fc,i  as the sustained stress level show 

better agreements with the experimental results.  

For the ACI 209 model, the linear concrete creep coefficient 0( , )it t  in Equation (6.28) 

can be calculated directly by Equation (1.2) in Section 1.6.3.1. However, for GL2000 and CEB 

MC90 model, the linear concrete creep coefficient 0( , )it t  in Equation (6.28) can be calculated 

by a 28-day linear creep coefficient 28 0( , )it t  as shown in Equation (6.29) given in GL2000 

model or Equation (1.6) given in the CEB MC90 model. ( )ct  in Equation (6.29) is calculated 

by Equation (6.30). For concrete specimens loaded after 28 days of concrete pouring, the linear 

creep coefficient 0( , )it t  at the beginning of sustained load (t0) and the ith time step in Equation 

(6.28) can be calculated by Equation (6.31) in order to apply the GL2000 and CEB MC90 

models. The ratio of 
0 28/cmt cmE E  is calculated by Equation (6.32), as recommended by CEB 

Bulletins (1999). Ecm28 is the mean elastic modulus of concrete at 28 days, which was not 
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measured in the experiments of this study. 
0cmtE is the elastic modulus of concrete at t0, the value 

of 
0cmtE  is the same as the Ec shown in Table 6.1.  
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where the value of s is the same as that in Table 1.2; tc is the age of concrete when drying starts 

at the end of moist curing (days); V/S is volume-surface ratio; h is relative humidity expressed as 

a decimal. 

As shown in Equation (6.28), nonlinear creep is calculated by applying an amplification 

factor ( ), ,/c i c if  to the linear concrete creep 0( , )it t . This factor is evaluated using Equations 

(6.33) and (6.34). 
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After experiencing sustained loading, the strength of plain concrete specimens P77 and 

P90 was increased by 6.6% and 8.6% from the expected short-time axial loading capacity P0, 
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respectively. P0 is estimated using Equation (6.35), where fc' is the concrete cylinder strength and 

Ac is the cross section of a plain concrete specimen. 

0P  = 0.85fc'Ac (6.35) 

It is assumed that the peak load of a plain concrete specimen after experience sustained 

loading can still be calculated by Equation (6.35); however, concrete cylinder strength (fc') 

increased due to sustained loading over time. Three existing models described in Section 1.6.3.1, 

including GL2000, ACI 209, and CEB MC90, are used to calculate the linear creep coefficient 

0( , )it t  in Equation (6.28). Then, Equations (6.28) through (6.34) are applied to simulate the 

creep strains of two plain concrete specimens subjected to sustained concentric loading. The 

simulation result for Specimen P77 is plotted in Figure 6.4.  

 

 
Figure 6.4 Comparison of predicted and measured creep strains for Specimen P77. 

 

 

0

0.0005

0.001

0.0015

0.002

0.0025

0 5 10 15 20 25

C
re

e
p

 s
tr

a
in

t - t0 (days)

Experiment
GL2000
ACI 209
CEB MC90

P77
t0 = 238 days



156 
 

In the first 10 days of sustained loading, the creep strain predicted by using ACI 209 

model to calculate 0( , )it t is better than using the GL2000 model. However, by the end of 

sustained loading, the difference of concrete creep between the predicted and experimental 

results at the end of sustained loading is -6.1%, 13.8%, and 135% for using the GL2000, ACI 

209, and CEB MC90 model to calculate 0( , )it t , respectively. 

The axial creep strain of Specimen PC90 during the sustained loading is also predicted by 

Equation (6.28) as shown in Figure 6.5. This time, the simulation result using the GL2000 model 

to calculate the linear creep coefficient 0( , )it t  is better than using the other two models during 

the entire sustained loading.  

 

 
Figure 6.5 Comparison of predicted and measured creep strains for Specimen P90. 
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MC90 models to calculate 0( , )it t , respectively. Overall, applying the GL2000 model to 

calculate 0( , )it t  better predicts the concrete creep strain for the plain concrete columns tested in 

this study. Therefore, the GL2000 model is chosen to calculate the linear creep coefficient 

0( , )it t  for the RC column specimens, as described in Section 6.4.2.  

 

6.4.2 Simulating Creep of Reinforced Concrete Columns  

Very limited research has been conducted on simulating the creep behavior of RC 

columns under high sustained loads. Concrete creep strain in the longitudinal direction is 

assumed to be the same as the strain in longitudinal reinforcement. The elastic modulus of steel 

reinforcement (Es) is generally five to ten times greater than that of concrete (Ec). Concrete creep 

causes extra compressive strains in the longitudinal bars. Under the same creep strain increment, 

the stress increase in longitudinal bars is much higher than in concrete. For the four short RC 

column experiments in this study, the load was well maintained during the sustained loading. 

Stress was reduced in concrete and increased in the longitudinal bars until they yielded. As a 

result, a portion of the elastic strain in concrete was recovered under the sustained loads. 

Therefore, under the same level of sustained load (Psus/P0), the stress redistribution between 

concrete and reinforcement in a RC column caused the concrete creep strain to be smaller than in 

a plain concrete column. The stress redistribution between concrete and longitudinal 

reinforcement in Specimens C76A, C76B, C98A, and C98B is shown in Figure 6.6. No yielding 

occurred in the longitudinal reinforcement by the end of sustained loading for Specimen C76A. 

For Specimens C76B, C98A, and C98B, the longitudinal reinforcement yielded 2.8 days, 4.8 

hours, and 5.3 hours after the beginning of sustained loading. The maximum and minimum axial 
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forces carried by concrete during sustained loading were 100 and 90.8 kips in C76A, 95 and 86.2 

kips in C76B, 122 and 117 kips in C98A, 123 and 117 kips in C98B.   

 

  

  
Figure 6.6 Variation of axial forces resisted by concrete and longitudinal reinforcement during 

sustained loading of Specimens C76A, C76B, C98A, and C98B.  
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study indicated that the shapes of the creep coefficient time-history curves for the RC column 

specimens and the plain concrete column specimens were similar, as shown in Figures 4.4 and 

4.12. The variation of creep coefficient of the RC specimens was almost proportional to the 

variation of creep coefficient of plain concrete specimens after experiencing the same duration of 

sustained loading. Therefore, it is assumed that the creep strain of a RC column under high 

sustained load can be calculated by extending linear creep to nonlinear creep for a RC column 

following the concept proposed by Tasevski et al. (2018) as well.  

In the linear creep model for RC columns developed by Neville (1996), two coefficients 

were introduced in addition to linear concrete creep prediction. One coefficient was the ratio of a 

transformed area, Atr, to an age-adjusted transformed area, Atraa. Atr at the start of sustained 

loading was defined by Equation (6.36), in which n, the modular ratio between longitudinal 

reinforcement and concrete at t0, is defined by Equation (6.37). The effect of force redistribution 

between concrete and longitudinal reinforcement during sustained loading was reflected using an 

age-adjusted effective modulus 
0( , )caaE t t  calculated by Equation (6.38) and an age-adjusted 

transformed area Atraa calculated by Equation (6.39). The age-adjusted elastic modular ratio of 

longitudinal steel reinforcement to concrete, naa, in Equation (6.39) can be calculated by 

Equation (6.40). The second coefficient was aging coefficient 0( )t  addressing the reduction of 

compression force in concrete due to creep and calculated by Equation (6.41).   

 ( 1)tr c sA A n A= + −  (6.36) 

 

0

s

cmt

E
n

E
=  (6.37) 
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After the coefficients in the linear creep model for reinforced concrete have been 

determined, the nonlinear creep under high sustained loads is calculated by applying the 

theoretical framework developed by Tasevski et al. (2018), as shown in Equation (6.42). The 

GL2000 model (Gardner 2004) is chosen to calculate the linear creep coefficient 
0( , )it t . The 

definitions of coefficients of ε0, ( ), ,/c i cavg if  , 
0cmtE , and 

0, , 1( ) /c i c i cmtE− − are the same as 

those in Equation (6.28); however, the definition of concrete strength, fc,i, in Equation (6.28) is 

modified as fcavg,i to define the sustained stress ratio, as shown in Equation (6.42). The initial 

value of fcavg,i at t = t0 used in Equation (6.42) is the same as ,u cal  in Table 6.2. The loading age 

t0 in the experiments was greater than three months and the average concrete strength increased 

by 7.5% for Specimens P77 and P90; therefore, concrete short-time compressive strength is 

assumed to increase linearly with respect to sustained loading time during the first three days of 

loading when the 7.5% strength increased was achieved. After 3-days loading, due to the lack of 

experimental data, the short-time strength is assumed to be unchanged. In Equation (6.42), 
0cmtE  

is modulus of elasticity of concrete when sustained loading started at age t0. For RC specimens, 

0cmtE  is calculated by Equation (6.43), where P is the measured total load, Es is the elastic 
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modulus of longitudinal reinforcement, εc is measured average concrete longitudinal strain, As is 

the total area of column D9 longitudinal reinforcement, and Ac is the net concrete area. The value 

of Ecmt0 was the same as Ec shown in Table 6.1. 

0

, , 1 , , 1

0 0 0 0 0 0

1 , , 1

( ) 1 ( , ) 1 ( , ) ( )
n

c i c i c i c itr
c i i

i cavg i cavg i traa cmt

t
A

t t t t t
f f A E

− −

= −

=

          − 
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
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−
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The predicted creep strains based on Equation (6.42) for Specimens C76A and C76B are 

plotted in Figure 6.7. The predicted creep strains are close to the experimental results over the 

entire sustained loading period for both specimens. At the end of 47 days sustained loading, the 

predicted creep is 5.6% and 4.4% lower than the creep measured in the experiment of C76A and 

C76B, respectively. The predicted creep strain calculated by Equation (6.42) for Specimens 

C98A and C98B are plotted in Figure 6.8. The predicted creep strain results are greater than the 

experimental results from the beginning of sustained load for both specimens. The possible 

reason is that the transverse reinforcement affects concrete creep earlier under the higher 

sustained load level. According to Sheikh and Uzumeri (1980), the transverse reinforcement was 

engaged in confining concrete when concrete axial strain became greater than 0.0015. The axial 

strain of Specimen C98A and C98B was 0.00130 and 0.00148 at the beginning of sustained 

loading, but exceeded 0.0015 after 1 and 0.15 hour of sustained load in Specimen C98A and 

C98B. For Specimen C76A, the axial strain was less than 0.0015 even at the end of sustained 

load. For Specimen C76B, although the axial strain exceeded 0.0015 after 0.8 days of sustained 

load, the axial strain at the end of sustained loading was 0.00228, which was only 52% greater 

than 0.0015. The strain at the end of sustained loading was not exceeded 0.0015 a lot. Therefore, 
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the predicted strain of Specimen C76B was close to the measured strain as well, even though the 

confinement effect due to transverse reinforcement engaged in Specimen C76B.  

 

 

 
Figure 6.7 Comparison of predicted and measured creep strains for Specimens C76A and C76B. 
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Figure 6.8 Comparison of predicted and measured creep strains for Specimens C98A and C98B. 
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C98B. Among the four RC column specimens, the average measured concrete stress u  at the 

peak load Pu is greater than the calculated average concrete ultimate stress ,u cal  for Specimen 

C98A, as shown in Table 6.2. The red dashed line in Figure 6.8 shows the predicted strain, which 

uses 
,u cal  as the initial value to calculate the stress ratio , 1 , 1/c i cavg if− −  in Equation (6.42). The 

blue dashed line is the predicted strain using u  as the initial value to calculate the stress ratio 

, 1 , 1/c i cavg if− −  in Equation (6.42). For Specimen C98A, the predicted creep is 26% and 13.9% 

greater than the measured creep strain at the end of sustained load using ,u cal  and u  as the 

initial value to calculate sustained stress ratio , 1 , 1/c i cavg if− − , respectively. For Specimen C98B, 

the predicted creep strain is 18.2% greater than the measured creep strain at the end of sustained 

load. Based on the creep prediction results for the four RC specimens, the possible reasons for 

the predicted strain greater than the measured strain were, (1) column transverse reinforcement 

can restrain concrete creep growth under high sustained stresses, especially in the early stage of 

sustained loading, (2) the longer sustained loading duration (t - t0) was, the greater concrete 

strength (fc') enhancement.   
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CHAPTER 7  

SUMMARY AND CONCLUSIONS 

7.1 Summary 

The overall goal of this research was to identify the behavior of aged reinforced concrete 

(RC) columns under high sustained loads no less than 75% of nominal short-time loading 

capacity. Four tasks were fulfilled: (1) characterizing the behavior of RC columns under high 

sustained concentric loads, (2) characterizing the behavior of RC columns under high sustained 

eccentric loads, (3) examining the effects of column transverse reinforcement on creep, and (4) 

examining the use of a nonlinear creep model for concentrically loaded columns under sustained 

high stresses. 

For the first task, eight square columns with a height-to-width ratio of 3.6 were tested 

under concentric axial loading after 209 to 478 days of concrete casting. The specimens included 

three plain concrete columns used to provide fundamental material behavior under sustained high 

stresses and to interpret the test results of five RC columns. Two control specimens, including 

one plain concrete column and one RC column, were loaded to failure in a short time. The other 

six specimens underwent three loading stages: (1) initial short-time loading, (2) sustained 

loading, and (3) reloading to failure in a short time. Two plain concrete specimens were 

subjected to 22-days sustained loads at 77% and 90% of column short-time strength. Two RC 

specimens with different transverse reinforcement ratios, 0.26% and 0.78%, were subjected to 

sustained loading for 47 days; the sustained loads for both specimens were equal to 76% of 

column short-time strength. Another two RC specimens with different transverse reinforcement 

ratios, 0.26% and 0.78%, were subjected to sustained loading for 120 days; the sustained loads 

for both specimens were equal to 98% of column nominal short-time strength. Test data of the 
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eight specimens were analyzed in terms of load-strain response, transverse strain history, 

Poisson’s ratio history, and failure modes. 

For the second task, five longer RC columns with a height-to-width ratio of 10.8 were 

tested under sustained loading with two eccentricity ratios of 0.17 and 0.25 after 547 to 629 days 

of concrete casting. The specimens included four RC columns with a lower transverse 

reinforcement ratio of 0.26% and one with a higher transverse reinforcement ratio of 0.78%. 

Among them, three specimens underwent three loading stages: (1) initial short-time loading, (2) 

sustained loading, and (3) reloading to failure in a short time. The initial short-time loading 

caused the column mid-height moment to reach to 92% to 100% of short-time moment capacity 

and the sustained loading lasted for 11 to 28 days. One specimen underwent two loading stages 

because it failed after two days of sustained loading. The column mid-height moment at the 

beginning of sustained loading reached 99% of nominal short-time moment capacity. The last 

specimen was initially loaded to approximately 77% of short-time moment capacity for 11 days; 

then the sustained load was increased and maintained for 17 days. The experimental data of the 

five RC columns were examined in terms of strain history, deflection at column mid-height, 

load-deflection relationship, load-moment relationship, moment-curvature response, creeps for 

deflection and curvature, Poisson’s ratio evolution, and failure modes. 

For the third task, the effects of column transverse reinforcement on creep were examined 

by comparing the experimental results between the specimens with comparable sustained load 

level, loading age, and eccentricity ratio but different transverse reinforcement ratios. The test 

data regarding peak load, creep coefficient, and Poisson’s ratio were used to determine the 

effects of column transverse reinforcement on the behavior of columns under sustained eccentric 

loading. The test data about the increase in column mid-height moment, creep coefficients for 
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deflection and curvature, concrete transverse strain, and flexural stiffness were used to examine 

the effects of the transverse reinforcement. 

For the fourth task, a numerical method for predicting the nonlinear creep of aged 

concrete columns under sustained high axial stresses was explored. The method was based on an 

existing theoretical framework for plain concrete, which extended the prediction of linear 

concrete creep to that of nonlinear concrete creep. The linear creep model most suitable for using 

this framework was calibrated based on the test data of plain concrete columns obtained in this 

study. The calibrated concrete creep model for plain concrete was then combined with an age-

adjusted effective modulus method to predict the nonlinear creep of RC columns.  

 

7.2 Conclusions 

7.2.1 Concentric Loading  

The following observations and conclusions were made from the tests of concentrically 

loaded columns: 

▪ Aged concrete columns demonstrated quite strength to carry high sustained loads. None of 

the concentrically loaded columns failed under the high sustained loads as high as 98% of 

nominal short-time strength.  

▪ For all concentrically loaded RC specimens, the reloading stiffness after being subjected to 

sustained loading was slightly greater than the initial loading stiffness. 

▪ A higher column transverse reinforcement ratio resulted in reduced creep deformation. Under 

concentric loading, the beneficial effect of transverse reinforcement was prominent during 

the early sustained loading stage but diminished over time. 
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▪ The Poisson’s ratio of concrete increased over time when the sustained stress was higher than 

90% of short-time strength, but remained unchanged or even decreased when the sustained 

load level was moderate. Same trend was found for concrete transverse strain response. For 

two specimens loaded with 76% of column short-time strength, although they had different 

transverse reinforcement ratios, the concrete transverse strain response remained unchanged 

or even decreased. However, for specimens loaded with 98% of column short-time strength, 

the transverse strain increased over time during the sustained loading. 

▪ Previously applied sustained loading increased the residual short-time loading capacity of 

columns on average by 6.6%. The combined effects of sustained loading and transverse 

reinforcement confinement increased the axial strength of concentrically loaded RC columns 

by 12% to 19%. 

 

7.2.2 Eccentric Loading 

The following observations and conclusions were made from the tests of eccentrically 

loaded columns: 

▪ No column failed during eccentric loading if the moment at column mid-height after initial 

loading was no more than 92% of short-time flexural strength. 

▪ The combined effects of sustained loading and transverse reinforcement confinement 

increased the flexural strength of eccentrically loaded columns by 11% to 33%, as compared 

with the column short-time moment capacity defined by ACI 318 design code after 

considering axial force-moment interactions. The moment at the peak axial load increased by 

33% and 28% for the specimens loaded with the same eccentricity ratio but different 

transverse reinforcement ratios of 0.26% and 0.78%. 
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▪ The variation rate of concrete Poisson’s ratio can be taken as an indicator of column safety 

condition under sustained loads. No failure occurred during either concentric or eccentric 

loading if the Poisson’s ratio of concrete cover increased only slightly or decreased. In 

contrast, the column that failed during sustained eccentric loading experienced a fast increase 

in Poisson’s ratio when the failure was approaching. 

▪ Due to concrete creep, the flexural stiffness at column critical section during sustained 

eccentric loading was much lower than that prior to application of sustained loading. The 

flexural stiffness during sustained loading was approximately constant for all RC columns. 

For the column with higher transverse reinforcement ratio, the flexural stiffness was about 20% 

higher than the columns with lower transverse reinforcement ratio.  

▪ The test of an eccentrically loaded column experiencing two sustained load levels indicated 

that the previously applied lower sustained load reduced creep under the higher sustained 

load applied later.  

▪ Even though RC columns experienced different loading histories, the compressive strain of 

concrete at failure was approximately equal to the sum of creep-induced strain during 

sustained loading and the ultimate strain of concrete under short-time loading. 

 

7.2.3 Numerical Simulations of Column Nonlinear Creep 

The following conclusions were made from the numerical simulations:  

▪ The creep strain under high sustained concentric loading can be predicted by the combination 

of a theoretical framework suggested by Tasevski et al. and the linear concrete creep 

prediction model GL2000. By the end of sustained loading, the difference of concrete creep 
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between the predicted and experimental results was less than 7% for the plain concrete 

specimens subjected to sustained loads of 77% and 90% of their short-time strength. 

▪ For RC columns specimens, the creep strain under concentric loading was predicted by 

considering an age-adjusted effective modulus. For the two RC columns loaded to 76% of 

their short-time strength, the difference between the measured and predicted creeps at the end 

of sustained loading was less than 6%. For the two specimens loaded with 98% of column 

short-time strength, the predicted creep was 26% and 18% greater than the measured creep at 

the end of sustained loading. 

▪ The predicted creep being greater than the measured one under the highest sustained loads 

was likely because (1) transverse reinforcement can restrain concrete creep under high 

sustained stresses, especially in the early stage of sustained loading, and (2) the longer 

sustained loading duration, the greater concrete short-time strength enhancement, thereby 

causing a decreased sustained stress ratio. 

 

7.3 Suggestions for Future Research 

 The following topics are suggested for future research: 

▪ More experiments are needed to further examine the effects of transverse reinforcement 

on concrete creep of aged RC columns, especially for concentrically and eccentrically 

loaded columns subjected to sustained loads greater than 90% of short-time load-carrying 

capacity. 

▪ The experimental results obtained in this study indicated that concrete creep is restrained 

by column transverse reinforcement under high sustained loads. This restrained effect is 
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suggested to be explicitly considered in the future modeling approach for the creep of RC 

columns.  

▪ System-level numerical simulations using nonlinear creep models extensively validated 

by experiments are suggested to understand the complicated damage evolution process in 

a near-collapse RC structure under high sustained loads. 
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APPENDIX A 

COMPRESSIVE STRENGTH OF CYLINDRICAL CONCRETE SPECIMENS  
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APPENDIX B 

CONCRETE MIX DETAILS 
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