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Abstract

As an essential and powerful tool to observe living organisms, three-dimensional

fluorescence microscopy is widely used in biological research and diagnosis. The 4D

fluorescence microscopy data can be obtained using time-lapsed videos of 3D images.

To analyze and extract useful information from the increasingly large and complex

biological image dataset, efficient and effective computational tools are in need but

still lagging behind. In analyzing biological data, two major challenges are faced.

First, time-lapsed fluorescence microscopic images typically have a low SNR. Second,

biological objects often change their morphology and internal structure frequently. As

such, conventional image processing methods may not be suitable for analyzing

fluorescence microscopic images.

The dataset we used is the 4D microscopic images of developing drosophila

(fruit fly) embryos, in which three types of proteins (Myosin, Ajuba and E-cad) play

important roles. Located in the center part of the cells, Myosin contraction initiates

the physical tension. E-cad is the core component of intercellular adhesion complexes

located on cell membranes. Ajuba is the tensor sensor which is recruited by Myosin to

adhere junctions.

In our previous work, we proposed a multi-object tracking method with portion

matching to track those protein clusters. The goal of this research is to quantitatively

analyze the correlation between these proteins based on the tracking results. In this

thesis, the following tasks have been conducted.
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 Sort out effective objects according to their fusion and split actions and visualize

their development process clearly.

 Quantify the amount and intensity of another type of object in adjacent to the first

type of object.

 Analyze the correlation between two types of microscopic objects.
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Chapter 1: Introduction

Multidimensional fluorescence microscopes are widely used in biological

research and become an efficient tool to observe living organisms. The most

commonly used data sets are 2D and 3D fluorescence microscopy images. The 4D

dataset can be obtained from time-lapse video of 3D images. To analyze and extract

useful information from the increasingly large and complex biological image dataset,

efficient and effective computational tools are in need. However, existing image

processing tools are not suitable for analyzing microscopic objects and their relations,

such as tracking objects, object relation analysis and correlation analysis.

Open-source software tools such as Image J [1], Fiji [2] and CellProfiler [3],[4]

can perform basic operations, including projection, histogram, filtering and so on.

Generally, these software can process and analyze the entire image very well, but they

lack the capability in analyzing specific objects and customized analysis. For example,

it is not possible to quantify specific objects and do object tracking using these tools.

In our research, we aim to track, quantify, and analyze the correlation between

microscopic objects which can help researchers analyze biological data in-depth.

1.1 Challenges

In analyzing biological data, three major challenges are faced. The first challenge

is time-lapsed fluorescence microscopic images typically have a low signal-to-noise

ratio (SNR) [5]. The equipment physical size, imaging speeds and the number of
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pixels per image are decided by the temporal resolution. At the same time, the

temporal resolution depends on the time scale of the observed biological activities.

The SNR is a key factor in determining the quality of microscope images. The SNR of

the original image affects the image quality, a low SNR ratio will obscure the original

perfect modulation contrast and cause errors in the segmentation process. In

biological samples, the SNR is often low due to bleaching, and it further drops in the

process of acquiring time series [6],[7]. Photobleaching is a process that the

fluorophore loses its ability to fluoresce. It occurs when fluorescent molecules

accumulate chemically damaged electrons to excite fluorescence. Because fluorescent

proteins used for real-time imaging are particularly sensitive to photobleaching,

long-term imaging results in a severe reduction in fluorescence signal, resulting in a

low SNR ratio.

The second challenge is that biological objects often change their morphology

and internal structure frequently. Research on tracking living cells has been studied

for years, however, it is still a challenge to track subcellular structures, specific targets

such as proteins, or lipids. Unlike macro objects (e.g. cars), those protein complexes

always have continuous morphological changes, including split and merge. Because

cells may perform deformations such as expansion, shrinkage [8] and irregular.

Highly dynamic morphology already became the biggest challenge to analyze those

small size biological structures.

The third challenge is fluorescent molecules can only absorb light within a

limited wavelength range determined by the nature and range of delocalized electrons,
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ranging from about 340 to 700 nanometers. Each fluorescent pigment or fluorophore

has its own unique absorption and emission spectra (Citation of Table 1), which

depends on the internal structure of the fluorescent molecules, as well as the

environment in which they are located [9]. In practice, the spectral cross-talk can be

significant when using more than 3 fluorophores, which consequently limits the types

of objects that can be observed and studied simultaneously.

Wavelength Range (nm) Perceived Color

340-400 Ultraviolet
400-430 Violet
430-465 Blue
465-500 Cyan
500-550 Green
550-580 Yellow
580-620 Orange
620-700 Red
Over 700 Near-Infrared

Table 1 Fluorescent Spectral Colors versus Wavelength Band

1.2 Motivations

Unfortunately, conventional image processing methods may not be suitable for

analyzing fluorescence microscopic images. The dataset we used is the 4D

microscopic images of developing drosophila (fruit fly) embryos, in which three types

of proteins (Myosin, Ajuba and E-cad) play important roles. Located in the center part

of the cells, Myosin contraction initiates the physical tension. E-cad is the core

component of intercellular adhesion complexes located on cell membranes. Ajuba is
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the tensor sensor which is recruited by Myosin to adhere junctions. It is important to

quantify the correlation among those three kinds of proteins.

Due to the third challenge explained in Section 1.1, we can only obtain three

kinds of images: “Ajuba& Myosin”, “Ajuba & E-cad” and “E-cad & Myosin”.

Figure 1 (a) Ajuba & (b) Myosin

Figure 2 Heatmap of Ajuba Size
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Figure 3 Heatmap of Ajuba Average Intensity

Ajuba and E-cad can be segmented or tracked, but not Myosin due to its

dissolved morphology. In the previous work, we proposed a multi-object tracking

method with portion matching to track Ajuba/E-cad clusters. The object information

of one type of protein including size, intensity and location are available, as shown in

Figure 2 & Figure 3.

In those two figures, two types of problems exist. 1) There are a large amount of

objects with various shape, size and pixel intensity. 2) The relationship between

objects is not shown. Before we analyze the correlation between two kinds of proteins,

we need to sort out major objects of the first type of protein and derive their evolution

processes. Then mask out the second type of protein, and quantify it.
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1.3 Objectives

The goal of this thesis is to analyze the correlation between biological proteins

quantitatively based on the tracking results. In specific, we need to sort the tracked

Ajuba/E-cad clusters into different groups according to their development relation

through fusion and split process, then build the family tree (a tree containing the

following five generations of object information) of each specified object and

visualize their features (including size, intensity, etc.) clearly. We also aim to design a

common method to analyze correlation between biological objects, and overcome

existing difficulties including highly dynamic and irregular morphology.

 Our first task is to visualize the microscopic objects that have been tracked. Out

of the tracked objects (e.g. E-cad), some objects are either small or weak in

intensity. We will sort out the effective objects according to their fusion and split

actions and visualize their development process clearly.

 Our second task is to quantify the amount of another type of object in adjacent to

the first type of object. In specific, for each E-cad cluster, we need quantify the

amount and intensity of Myosin next to it in a 3D adjacency box. The same

method will be applied to quantify Myosin signals next to Ajuba clusters and

Ajuba signals next to E-cad clusters.

 Our third task is to analyze the correlation between two types of microscopic

objects. Specifically we will analyze the correlation between Myosin and Ajuba,

Myosin and E-cad, as well as Ajuba and E-cad in terms of their amount and

intensity.
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1.4 Outlines

The rest of thesis is organized as follows:

Chapter 2 presents the literature review. Our review is focused on existing

filtering and thresholding methods.

Chapter 3 describes the methods for sorting and visualizing the microscopic

objects.

Chapter 4 presents the method for quantifying another type of object adjacent to

one type of object.

Chapter 5 discusses the results of correlation analysis of different proteins.

Chapter 6 presents the summary and conclusion of this thesis. In addition, we

will list the future work.
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Chapter 2: Literature Review

In this thesis, we mainly study the methods of filtering and thresholding. These

two processes play important roles in our data analysis. The main function of filtering

is to remove the effects of photobleaching by normalizing the pixel value in the 4D

image data, which can help reduce the error in calculations. Thresholding can help

distinguish effective objects (foreground) from background in the picture. There are

already many types of 2D thresholding methods, but we want to find the right one for

processing our multi-dimensional image data. In this chapter, we will list the existing

filtering and thresholding methods and briefly describe their functions and effects.

2.1 Filter ing

There are many common filtering methods in image processing, such as average

filter, Gaussian Blur, median filter, and so on. Those filtering methods are widely

used in graphics software, usually used to reduce image noise and details. Both the

average filter and Gaussian blur are all smoothing linear filters. The average filter,

also known as the mean filter, takes the average of pixels in a neighborhood, which is

defined by the size of the mask. The important thing is to normalize the output value

by dividing by the sum of the values in the neighborhood. Gaussian blur [10], also

known as Gaussian smoothing, uses convolution and Gaussian functions for

smoothing [11]. Median filter is a smoothing non-linear filter, and it is perfect for

reducing impulse noise (salt-and-pepper noise) [12]. The main idea of the median

filter is to traverse the signal entries one by one, replacing each entry with the median
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value of adjacent entries. For small to medium-level Gaussian noise, the median filter

is significantly better than Gaussian blur in removing noise while retaining the edges

of a given fixed window size; For high-level noise, the median filter performance is

not much better than Gaussian blur [13]. Different filter methods have different

advantages, which need to be analyzed according to the image data.

2.2 Thresholding

Thresholding is another critical procedure in analyzing fluorescence microscopy

images. One of the simplest thresholding methods is to convert the gray-scale image

to binary [14]. If the image intensity is less than a certain fixed constant, each pixel in

the image is replaced with a black pixel, other pixels in the image are replaced with a

white pixel. This constant value is actually the threshold value we need to find. The

histogram shaped-based method is commonly used to obtain the threshold value, it

makes certain assumptions about the intensity probability distribution of the image

which has bimodal distribution. In [15], Prinyakupt et al. used morphological

processing and histogram to process biological cells. The histogram filter is an

approximate Bayes’ filter [16] based on the discretization of the state space. The main

concept of the algorithm shows in the article is to use the morphological properties of

biological cells and the size of real cells calibrated relative to the image resolution

[17].

Another efficient thresholding method is Otsu [18], this algorithm exhaustively

finds the threshold that minimizes the variance. However, Otsu is not suitable for
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thresholding image whose object area is smaller than the background area. If the

variance of the target and background intensity is greater than the mean difference,

the sharp valley of the gray scale histogram will be degraded, it will eventually lead to

wrong threshold result [19]. In [20], Jian Zhuang et al. compared the intensity value

of a given pixel with the average intensity of its neighboring areas to improve the

segmentation results. Khan et al. developed an improved method instead of estimating

object size and potential thresholds. Their method solves the problems of thresholding

large objects and inconsistent solutions [21]. Ma et al. improved Otsu's method and

drew a clear boundary between the categories of gray values [22].

According to the above literature reviews, the selection of the thresholding

method is mainly based on the distribution of histogram, noise interference and the

intensity of the target object. In this thesis, we will choose several different methods

to compare.
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Chapter 3: Sor ting and Visualization of Microscopic Objects

The focus of this chapter is how to sort different biological object clusters and

create corresponding family tree. As we mentioned earlier, we proposed a

multi-object tracking method with portion matching to track protein clusters in our

previous work. We recorded biology object events of protein clusters, including 1)

Bir th: a newborn object (New ID) which is not matched with any former time objects,

2) Death: a dead object which ID will never be assigned to other objects, 3) Split: at

least 2 objects split from one parent object if the intersection of unions of the

matching objects set is not empty, and 4) Merge: an object is merged with multiple

elements, shown in Figure 4.

Figure 4 Relationships (a) Birth, (b) Death, (c) Split, (d) Merge

The establishment of a family tree is mainly divided into 4 small parts: 1)
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confirm the cycle time, 2) find the relevant fusion and split process, 3) remove

unnecessary or unreasonable processes, 4) draw the family tree.

3.1 Cycle Time

The first step of our sorting algorithm is setting an initial value of one cycle time.

For example, there are about 5000 different IDs in one dataset, among those objects,

some tracked protein objects only appear at one or two time points, we assume that

those IDs are interfering signals with no practical meaning. After setting the cycle

time of one entire biological action (e.g. 5 time points), every objects which appears

less than the one cycle time will be ignored, shown in Figure 5.

Figure 5 Objects Existing Less than One Cycle Time will be Deleted

3.2 Fusion & Split

The second step is based on biological fusion and split relationship. Objects
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retained in the previous step will be reorganized. We will search for all proteins

directly or indirectly related to the target object ID based on the fusion changes. After

this operation, for each target object ID we will obtain the fusion information set

V = {V1,V2, ...,Vn }, n is the number of fusion events related to the target object.

Vi (Tv, A, B ) is a triple element structure, where TV is the time point of fusion, A is the

object to be fused with other object and B is the merged and retained object (which

absorbs another object).

Later, we will search for the split relationship of each target ID and obtain the

split information set S = {S1, S2, ..., Sn }, n is the number of split events related to

target ID. Si (Ts, C, D ) is a triple element structure, where Ts is the time point of split,

C is the object to be split and D is the split object.

Figure 6 Fusion & Split Relationship of Ajuba ID 31

Basically after this operation, we got a rough statistical family tree, shown in
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Figure 6. However, this generated family tree may have some logical and other

unreasonable problems, such as 1) some fusion processes appeared earlier than the

target ID; 2) the protein merged with the target ID has a split or fusion process with

other proteins before the fusion relationship occurs. 3) complex multi-generational

relationships may appear in the family tree, and it is necessary to carefully analyze

whether these logical relationships are reasonable.

3.3 Create “Fusion Button” & Multiple Inspections

The main reason for dividing proteins into family trees is to sort the effective

objects accurately. That means we must confirm that this process of splitting or

merging is truly related to our target ID. In this section, we propose the “Fusion

Button” algorithm to solve the problem in 3.2. This fusion button can keep objects for

two generations before and after the target ID, in specific, including 1) sons, 2)

parents, 3) grandsons, and 4) grandparents. As a switch, the fusion button can be

freely turned on or off. When we want to keep the subject part of the family tree, we

can activate the fusion button, which can keep all the information of the five

generations including the target ID (pseudo code shows in Table 2).
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Algor ithm 1: Fusion Button Algorithm
Input: Target object ID I, I’s fusion information set V(Tv, A, B)
Output: Obtain a final partition set Z
1. define i, j, C, P, n = 0 ;
2. for i = 1 to |V| do
3. find Aand B from Vi ;

/* trace fusions not directly related to target ID I */
4. if (A != I) && (B != I) then
5. C ← A;
6. for j = 1 to i do
7. find B from Vj ;

/* trace fusions not related to target ID I */
8. if (B == C) then
9. break ;
10. end
11. end
12. if (j == i) then
13. Pn ← i ;
14. n++ ;
15. end
16. end
17. end
18. for i = 1 to n do
19. VPi ←Ø ;
20. end
21. Z← V;

Table 2 “Fusion Button” Pseudo Code

In this loop, we have to make sure it starts from the first fusion case. We record

fusion information in chronological order, so objects that meet the requirements

before can be used as the basis for judging objects afterwards. The algorithm searches

from the target ID as the starting point, eliminating the impact of multiple generations

and multiple splits and fusions.

It should be noted that fusion button only excludes the impact of complex

relationships, the problem mentioned earlier of how to test whether the split operation
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is reasonable or not has not been solved. The solution we propose is to judge the time

point of the relationship, and only keep the split occurred after the fusion (Pseudo

code shows in Table 3).

Algor ithm 2: Test Splitting Progress Algorithm
Input: Target object ID I; I’s fusion information set V(TV,A,B);

ID I’s split information set S(TS,C,D)
Output: Obtain a final partition set Z
1. define i, j, k, F, P, n = 0 ;
2. for i = 1 to |V| do
3. find B from Vi ;
4. for j = 1 to |S| do
5. find C and D from Sj ;

/* find merged object B is also split object C */
6. if (B == C) then
7. find TV from Vi and TS from Sj ;

/* find fusion case happened after split case */
8. if (TV>TS) then
9. F ← D ;
10. for k = i to |V| do
11. find Afrom Vk ;

/* trace fusions happened not earlier than TV */
12. if (A== F) then
13. break ;
14. end
15. if (k == |V|) then
16. Pn ← j ;
17. n++ ;
18. end
19. end
20. end
21. end
22. end
23. end
22. for j =1 to n do
23. SPj ←Ø ;
24. end
24. Z← S ;

Table 3 “Test Splitting Process” Pseudo Code
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For example, in Figure 7, assume that IDa is our target ID, IDa and IDb merge

together at time point T1. IDb splits to IDc at time point T0 and splits to IDd at time

point T2 (T0<T1<T2). In this case, we only keep the relationship among IDa, IDb and

IDd. IDc has definite relationship with IDb, but it doesn’t have any direct or indirect

relationship with IDa. The reason is at time point T1, IDc is already split from IDb,

which means that it does not belong to the IDa’s cluster at all. If IDc is merged back to

IDb at time point T3 (T1<T3), in this case IDc has indirect relationship with IDa. We

also need to be aware of this kind of case where objects split off and then merger back

together.

Figure 7 Protein Fusion and Split Example

3.4 Drawing Family Tree

Our final step is drawing the family tree. We filter the sorted family tree of

Section 3.3 one last time, and retain IDs exist for more than one period (this operation
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deletes the single ID that appears for less than 5 time points, which is same as Section

3.1 operation).

Figure 8 Deleting Short-time IDs

Figure 9 Final Family Tree of ID 31

Figure 8 shows some of the IDs that are removed. It is important to note that we

are only deleting IDs that are no longer split or merged. We use blue lines to draw

their parent-son tracking relationships, use red lines to draw their fusion relationships,

and use green lines to draw their split relationships. We sort out the effective objects
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according to their fusion and split actions and visualize their development process

clearly in a family tree. Figure 9 is one example of our final results.
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Chapter 4: Quantification

Quantification is divided into five parts: removing photobleaching, masking

method, data size normalization, thresholding and opening. Removing photobleaching

can reduce the noise in the image and improve the SNR ratio. We will select suitable

filters to process the image data. In the masking method part, we will talk about how

to use thresholding method and quantify the amount of another type of object in

adjacent to the first type of object. In this part, we mainly deal with objects and

pictures that are not easy to track directly. The normalization of the data size is mainly

for the convenience of comparing data in different processing conditions, so we can

obtain relatively accurate information for correlation analysis. Thresholding method

can theoretically reduce the error of noise. We will find the suitable one and compare

it with the result without thresholding. Performing an opening operation on the picture

after thresholding can remove more noise. In these five steps, we must do the step of

data size normalization. The image filtering, thresholding and opening process may

not be necessary.

4.1 Removing Photobleaching

Under ideal conditions, there is no photobleaching in fluorescence images, but in

practice we need to consider its impact. This step is mainly to quantitatively analyze

the impact of photobleaching on the final correlation result under the control of

variables, and help us choose the most reasonable analysis method. The most

straightforward way for removing photobleaching is to use filters. In this thesis, we



21

choose three different image filters, including Gaussian blur, mean filter and median

filter. The major purpose of using filters is not to remove the noise in the picture, but

to get the average intensity of the background of the picture by blurring the

foreground (main object) of the picture. The Gaussian blur best fits our needs.

Gaussian blur (also known as Gaussian smoothing) is a type of image blurring filter

using Gaussian function [10]. Mathematically, using Gaussian blur to an image is the

same as convolving an image with a Gaussian function. Since the Fourier transform of

a Gaussian function is another Gaussian function, the use of Gaussian blur can reduce

the high-frequency components of the image, which means Gaussian filter is a low

pass filter [23].

The formula for the one-dimensional Gaussian function is: (“x” is the distance

from the origin on the x-axis, “σ” is the standard deviation of the Gaussian

distribution)

Equation 1

The fluorescence images we use are 4-dimensional. We apply Gaussian blur at

different time points, and we need to make a 3D Gaussian filter. In three dimensions,

it is the product of three such Gaussian functions, one in each dimension.

The formula for the three-dimensional Gaussian function is: (“y” is the distance
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from the origin on the y-axis, “z” is the distance from the origin on the z-axis)

Equation 2

Distribution values are used to build a convolution matrix, which is applied to

the original image. The new value of each pixel is set as the weighted average of the

neighborhood of that pixel. The weight of the original pixel value is the largest, and

the weight of the adjacent pixel decreases as the distance from the original pixel

increases [10]. When Gaussian Blur is used for three-dimensional images, it is

calculated as three independent one-dimensional calculations. In other words,

applying a series of one-dimensional Gaussian matrices in the x direction and then

repeating this process in the y and z directions can also achieve the effect of applying

a three-dimensional matrix.

We need adjust the value of “σ”- sigma. A higher sigma value will blur on a

larger radius, which will use a larger kernel matrix to capture enough function energy.

We want the kernel function to be large enough to cover most of the objects, but not

so large that it starts to overlap multiple adjacent objects. As shown in Figure 10, if

the sigma value is too small (σ = 0.5 or 1), the foreground blur degree is not enough,

and a large amount of foreground object information is still retained; if the sigma

value is too large (σ = 10), the foreground blur degree caused by overlapping objects
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is too large, and the whole picture becomes almost the same color. Through the above

comparison and analysis, we believe that sigma value equal to 5 is the best choice.

Gaussian blur under this condition has the best effect on blurring the foreground of

the Myosin image used in this thesis.

Figure 10 Gaussian Filter Using Different Sigma Values - Myosin, z=2, t=20
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Figure 11 Filters (a) Median Filter (b) Mean Filter - Myosin, z=2, t=20

We also test both median filter and mean filter. The “window” size we selected

is 3×3×3. It can be seen from Figure 11 that both filters can filter noise by varying

degrees, and the median filter has a better effect on impulse noise. But these two

filters are not suitable for our purpose of removing photobleaching, which is mainly to

remove the background color, rather than directly remove noises from the image,

because some of “noises” are actually the parts of Myosin.

After the filtering method and the coefficient value are determined, we can

calculate the average intensity through the filtered image. One thing to note is that we

have to calculate the data of the 3D picture according to the time points. According to

the previous results, photobleaching dynamics is fast at the beginning and slows down

later. The Gaussian filter method chosen is simple and easy to do. Instead of looking

for the constant area, the entire image is processed. The disadvantage of this method

is that it will include non-constant areas, and the result will be unreasonable.

The biological changes at the earlier time points are less. At a later time point,

the biological change begins, so the value of using Gaussian blurring to blur the

foreground while preserving the background becomes unreasonable. In our thesis, we
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use the value at the 20th time point to replace the value after the 20th time point, so as

to avoid including non-constant areas. Figure 12 (b) & (d) are final results of

removing photobleaching by subtracting background average value.

Figure 12 Comparisons (a) Original Image (b) Removing Photobleaching - Myosin,

z=2, t=20 (c)Original Image (d)Removing Photobleaching - Myosin, z=2, t=70

4.2 Masking Method

In this section, we will show how to use Object A (OA) to quantify Object B (OB).

The data of OA and OB are stored in two different pictures. Among them, OA can be

tracked well because it has a strong intensity, which can be well distinguished from

the background in the picture. In Chapter 3, the sorting method we proposed can help

us calculate the intensity value of OA easily. However, it is not easy to segment or

track OB directly because of its detection limit.
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Here we have to divide into two different cases.

 Case 1: If the positions and sizes of the two objects are same then we can directly

use OA’s location and shape information to mask out OB.

 Case 2: If the positions of two objects are relatively close but do not overlap,

which means we cannot directly use the size and position of OA to quantify OB.

We need to use a reasonably sized mask to do the quantification.

For Case 2, specifically, we want to expand the size of OA, and use this

expansion mask as OB’s mask. Firstly, we need to extract the position and size

information of OA according to the time point. Then convert the original 16-bit image

into binary image to obtain the original mask. Next we need to use binary dilation to

derive the expansion mask. Binary dilation is a shift-invariant operator, which is

equivalent to Minkowski addition [24]. If we explain dilation mathematically, let X

and Y be subsets in 2-D space, where X is image undergoing analysis, Y is the

structuring element.

The dilation of Xby Yis defined by: (Xy is the translation of Xby y.)

Equation 3

If Yhas a center at the origin, then Y’s expansion of X can be understood as the

trajectory of the point covered by Ywhen the center of Ymoves inside X. The dilation
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can also be obtained by

Equation 4

For example, if X is a disk with a radius of 3 (centered at the origin), and Y is a

square of size 10 (centered at the origin). The expansion result will be a square of side

16 (centered at the origin) with rounded corners (radius of round corners is 2).

The structuring element we use is a 10×10×6 cuboid in order to get a mask by

extending 10 pixels (5 pixels - left/up and 5 pixels - right/down) on the x and y axis,

respectively, and 6 pixels on the z axis (3 pixels - above and 3 pixels - below) , as

shown in Figure 13.

Figure 13 Mask Dilation Examples - Red: Original, Green: Dilation

This bounding box satisfies our quantify requirements. We expanded the mask
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while still retaining the shape of the original mask. We also tried to use a cuboid that

can frame the original object as the bounding box, but because the shape of the object

is usually irregular, blindly choosing a constant shape will cause errors, such as

fetching too many uncorrelated pixels at the corners, which leads to increased

intensity and ultimately affect data analysis.

4.3 Normalization

We have to consider that each fluorescence image may use different biological

stains, which also means that the final calculated intensity will be different due to the

difference in stains. This is something we can’t avoid. So it’s meaningless to compare

the final intensity directly. Therefore, we need to find a way to normalize the final

result, which can not only preserve the peak, valley and trend of the wave, but also

compare the data in a relatively fair situation.

In statistics, a moving average (also called rolling average) is a calculation that

analyzes data points by creating a series of averages of different subsets in a complete

data set [25]. It is a finite impulse response filter. Moving averages are usually used

for time series data to smooth short-term fluctuations and highlight long-term trends

or cycles [26].

After consulting relevant information, there are two commonly used moving

average methods in the financial industry: simple moving average (SMA) and

exponential moving average (EMA). The main difference between EMA and SMA is

their sensitivity to changes in the data used in the calculations. More specifically,
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EMA assigns higher weight to recent prices, while SMA assigns equal weight to all

values. Because the content of the biological data we use is different from financial

data, this means we don’t need to assign higher weight to recent value. We only need

to put the biological (protein) data in different pictures under the same situation for

comparative analysis. Here we choose SMA as our moving average method.

SMA adds the most recent data and divides the sum by the number of time

periods to calculate the average. If we use mathematical language to explain, suppose

there is a data set of n items, we want to find the mean value of last k items, denoted

as SMAk:

Equation 5

When calculating the new SMAk value, denoted as SMAnext :

Equation 6

The algorithm of SMA is clear and easy to use. The size of the selection window

should be changed according to the data used. In this experiment, we used window

sizes of 3 and 15. Specifically, we subtract the size 15 data curve from the size 3 data
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curve, shown in Figure 14.

Using a big window size to process data will ignore some of data. Here we use

data processed with a big window size as the new coordinate axis to observe the trend

of data processed with a small window size, which can well preserve the peaks and

valleys. The value of window size is selected according to the length of the data. The

length of the data we observe in this example is 45 time points. 3 is a small value

relative to 45, and 15 is a large value relative to 45.

Figure 14 SMA Example - Window Size 15 subtract from Window Size 3
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Figure 15 Comparisons (a) No thresholding (b) Mean

(c) Mean + Standard Deviation (d) Otsu

4.4 Thresholding

Before doing the thresholding step, we need to use the filtering in Section 4.1 to

remove photobleaching, because noise may affect the setting of thresholding

parameters. We compare three thresholding methods, including (b) mean, (c) mean +

standard deviation, and (d) Otsu, shown in Figure 15.

The details of each result are explained below.

(a) No thresholding: Original Myosin image.

(b) Mean: We use the 3D image at the first time point and calculate the average

value of all pixel intensity values. This average value is the thresholding value to be

used.

(c) Mean + standard deviation: This method is adding the value of standard
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deviations to the mean intensity value as the threshold.

(d) Otsu:

1. Calculate the histogram and probability of each intensity level

2. Set up initial probability ωi(0) and mean μi(0)

3. Step through all possible thresholds t = 1 ... maximum intensity

Update ωi(t) and μi(t) and compute variance σ2b(t)

4. The expected threshold corresponds to the maximum σ2b(t)

It can be seen from the results that these three threshold methods are all very

good. We want to use a constant threshold to segment all Myosin proteins in the 4D

image, but Otsu will reset the threshold according to the 3D image at each time point,

so this method does not meet our requirements.

Finally, “mean + standard deviation” is selected as the thresholding method

because this algorithm can change the thresholding level easily. Its advantage is that

when the image fluctuates too much, we can adjust the thresholding value by adding a

number of standard deviations to the mean value.

4.5 Opening

Opening removes small objects from the foreground of an image, and placing

them in the background [24]. In mathematical morphology, opening is the dilation of

the erosion of a structural element B on the set A:
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Equation 7

Result of opening is shown in the Figure 16.

Figure 16 Comparisons (a) No opening (b) Opening
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Chapter 5: Correlation Analysis

In this chapter, based on quantification results obtained in Chapter 4, we will

analyze the correlation results of between two types of proteins in several datasets

processed in different methods. Specifically, we will choose one or more methods to

process our new data set, including thresholding, masking method, and mathematical

morphology. We select and combine the above methods by controlling variables, not

a completely random combination. In the end, we will compare and analyze the

correlation analysis results. For example, we will analyze why some results have

strong correlation, but this strong correlation will become weaker after making

morphological changes. We will also comprehensively compare all situations and

select methods that are highly relevant and meet the actual biological significance.

5.1 Dataset

The dataset we selected is the 4D fluorescence microscopic images of three

proteins (Ajuba, E-cad & Myosin) in drosophila embryos. In our previous work, we

have already obtained the segmentation and tracking information of Ajuba. We use

the sorting method proposed in Chapter 3 to divide Ajuba into different family trees.

Then we can calculate the intensity of each Ajuba family tree in the image data.

As shown in the Figure 17, we have generated a heat map here to record time

and intensity information, which can intuitively observe the changing trend of Ajuba.

There will be many Ajuba clusters in total, and only a small part of them is shown in

the picture. We can see that the intensity of Ajuba is basically gradually increasing.
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Figure 17 Heat Map Example - Part of Ajuba Intensity

Figure 18 Quantification (a)Ajuba (b)Myosin

Next, we will use Ajuba’s size and location information to quantify E-cad and

Myosin. The size and position of E-cad and Ajuba are basically the same, so we can

directly calculate the intensity of E-cad. Because of detection limit, the molecular

proteins of Myosin cannot be fully detected, including the parts that exert force on the

Ajuba protein cluster but do not overlap with their positions. When quantifying

Myosin that does not overlap with Ajuba, we have to use the masking method
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mentioned in Chapter 4. Figure 18 is an example of using Ajuba to quantify Myosin.

In the quantification of Myosin, we mainly choose Ajuba objects which last

longer time, especially occurs in a later time point. We know that in biology process,

Ajuba is the tensor sensor which is recruited by Myosin to adhere junctions. Myosin

has not been formed at the beginning, and the intensity will be very low, so it is

meaningless to calculate the correlation between Myosin and Ajuba at that time.

5.2 Five Methods

After we get the processed dataset of Ajuba, E-cad and Myosin, we can start to

do correlation analysis. An E-cad object can be obtained using the Ajuba mask, so the

intensity value of E-cad can be directly compared with Ajuba. This part is mainly for

normalizing the intensity value of Myosin objects. We consider the following options:

1) Using the original Myosin image or applying the thresholding method

directly on Myosin image.

2) Using the original (Ajuba) mask when quantifying Myosin or an expanded

mask when quantifying Myosin.

3) Using Morphological operation (opening) on the image after thresholding.

Combining these options, we will have five different methods, shown in the

Table 4.
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# Name Thresholding Expanded Mask Opening

1 NT_NE No No No

2 T_NE Yes No No

3 NT_E No Yes No

4 T_E Yes Yes No

5 T_E_O Yes Yes Yes

Table 4 Five Methods

5.3 Method Compar ison and Analysis

First, we take out one of the correlation results (ID 2782) to analyze and verify

the rationality of our methods, shown in Figure 19 and Figure 20.

First of all, the reason why we chose ID 2782 is because its family tree has

existed for a long time, so that we can observe the changes in later time points. Figure

19 shows the changes of Ajuba and Myosin in the ID 2782 family tree from the 36th

time point to the 79th time point, a total of 45 time points. Figure 20 shows the results

obtained by using different methods to quantify Myosin. For the comparison, the

sample chosen here are mostly of good correlations and the peak patterns from

different myosin quantification approaches are similar. The big peaks produced by

moving average/smooth appear to be true peaks rather than due to pixel numbers. The

small peaks before smooth may be but the big peaks are not. It is consistent with

Myosin average pixel value (the bottom curve in Figure 20 is average pixel value)

showing a similar peak pattern. The average value does not change the patterns of the
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large peaks produced without thresholding. The thresholding approach actually

demonstrates worse correlation because it tends to remove the subtle increase in

Myosin - basically the subtle increases are treated as background. This suppresses the

peaks in early time point and reduces correlations. It also suppresses the ramping up

portion of peaks in later time points and as a result, it appears that Myosin increases

later than it actually does.

Figure 19 ID 2782 Quantification (Red - Ajuba, Green - Myosin)

Start from Time Point 36 to Time Point 79

Figure 20 Normalized Intensity Value (Blue - Ajuba, Red - Myosin) (1) NT_NE (2)

NT-E (3) T_NE (4) T_E (5) T_E_O (6) Average
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Considering that without thresholding, artificial peaks may be generated due to

fluctuations in the number of pixels, the following analysis is conducted.

1. Subtracting moving average with large window sizes is effectively a

thresholding itself and allows for identification of signal peaks.

2. The periods of the resulted peaks are similar to what previously reported for

Myosin pulses in this tissue: 90 sec.

3. The average pixel intensity gives the same peak patterns, indicating that the

pixel number does not influence the final pattern significantly - most likely this is

taken care of by the "smooth by 3” (this suppresses or smooths out the small

fluctuations due to pixel number).

4. The two non-thresholding methods end up giving rise to artificial peaks

because it leads to abrupt fluctuations in the total intensity value.

Overall the normalization by smooth function takes care of the thresholding

already and is better at preserving the subtle changes.

5.4 Correlation Results

In the following, the process of correlation analysis is explained before the

results are presented and analyzed. Considering the Ajuba/Myosin pair, we select

Ajuba object IDs that exist at least 9 time points from ID 2000 -3000 to quantify

Myosin and conduct correlation analysis. There are about 150 valid IDs. For each

Ajuba object and corresponding Myosin intensity, we used the xcorr function to

calculate the correlation coefficient:
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[r,lags] = xcorr(x,y,20,'coeff')

Equation 8

In this function, x and y are input arrays which are the total intensity of Ajuba

and Myosin respectively. And 20 is the maximum lag, specified as an integer scalar.

The returned cross-correlation sequence ranges from -20 to 20. 'coeff' is normalizing

the sequence so that the autocorrelation at zero lag is equal to 1. Its mathematical

formula is:

Equation 9

In output arguments, r is the autocorrelation result, lags is the lag indices. We

use the five methods described before to quantify Myosin, calculate the correlation

coefficient of Ajuba and Myosin, and derive the average result eventually.
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Figure 21 First Method (NT_NE)

Figure 22 Second Method (T_NE)
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Figure 23 Third Method (NT_E)

Figure 24 Fourth Method (T_E)
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Figure 25 Fifth Method (T_E_O)

The average of all valid ID corrlation results:

Method (Name) Ave Correlation Result

First Method (NT_NE) 0.82

Second Method (T_NE) 0.47

Third Method (NT_E) 0.81

Fourth Method (T_E) 0.51

Fifth Method (T_E_O) 0.44

Table 5 Correlation Results for Ajuba and Myosin

We choose to use NT_NE method to do the correlation analysis for “E-cad and

Ajuba”dataset. The average correlation result is 0.88.
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Figure 26 “Ecad & Ajuba” Correlation (NT_NE)

We use both NT_NE and NT_E methods for “E-cad & Myosin” dataset. The

average correlation result are 0.73 and 0.62, respectively.

Figure 27 “Ecad & Myosin” Correlation (NT_NE)
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Figure 28 “Ecad & Myosin” Correlation (NT_E)
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Chapter 6: Conclusions

In this thesis, we propose a framework to quantitatively analyze the correlation

between two types of proteins based on the tracking results. The framework consist of

three major steps: 1) sorting family trees of major objects by optimizing the

relationship (fusion and split) between objects, and eliminating the interference of

objects existed for a short time. 2) In the step of quantifying Myosin, Gaussian blur,

binary dilation and moving average methods are applied to remove photobleaching,

expanding masks, and smoothing the results, respectively. The correlation results of

five different methods show that thresholding and opening are not necessary. The

normalization by smooth function takes care of the thresholding already and is better

at preserving the subtle changes. In our future work, this framework can be

generalized and applied for quantification and analysis in other biological research.
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