
UNLV Theses, Dissertations, Professional Papers, and Capstones 

8-1-2021 

Defining Problematic School Absenteeism: Identifying Youth at Defining Problematic School Absenteeism: Identifying Youth at 

Risk Risk 

Mirae J. Fornander 

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations 

 Part of the Clinical Psychology Commons 

Repository Citation Repository Citation 
Fornander, Mirae J., "Defining Problematic School Absenteeism: Identifying Youth at Risk" (2021). UNLV 
Theses, Dissertations, Professional Papers, and Capstones. 4242. 
http://dx.doi.org/10.34917/26341175 

This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital 
Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that 
is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to 
obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons 
license in the record and/or on the work itself. 
 
This Dissertation has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and 
Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact 
digitalscholarship@unlv.edu. 

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F4242&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/406?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F4242&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.34917/26341175
mailto:digitalscholarship@unlv.edu


 

DEFINING PROBLEMATIC SCHOOL ABSENTEEISM: IDENTIFYING YOUTH AT RISK 

 
 
 

By 
 
 
 

Mirae J. Fornander 
 

 
 

Bachelor of Arts – Psychology 
Hastings College 

2015 
 
 
 

Master of Arts in Psychology 
University of Nevada, Las Vegas 

2018 
 
 
 

A dissertation submitted in partial fulfillment 
of the requirements for the 

 
 
 

Doctorate of Philosophy - Psychology 
 
 
 

Department of Psychology 
College of Liberal Arts 
The Graduate College 

 
 
 
 

University of Nevada, Las Vegas 
May 2021 

 
 

  



 

 
 
 
 
 
 
 
 
 
 

Copyright by Mirae J. Fornander, 2021 
All Rights Reserved 



ii 

  

 

Dissertation Approval 

The Graduate College 

The University of Nevada, Las Vegas 

        

May 13, 2020

This dissertation prepared by  

Mirae J. Fornander  

entitled  

Defining Problematic School Absenteeism: Identifying Youth at Risk  

is approved in partial fulfillment of the requirements for the degree of 

Doctorate of Philosophy - Psychology 
Department of Psychology 

 
                
Christopher Kearney, Ph.D.       Kathryn Hausbeck Korgan, Ph.D. 
Examination Committee Chair      Graduate College Dean 

 

Bradley Donohue, Ph.D. 
Examination Committee Member 

        

Michelle G. Paul, Ph.D. 
Examination Committee Member 

 

Courtney Coughenour, Ph.D. 
Graduate College Faculty Representative 

 



 iii 

ABSTRACT 
 

Defining Problematic School Absenteeism: Identifying Youth at Risk 
 

by 
 

 
Mirae J. Fornander, M.A. 

Dr. Christopher Kearney, Examination Committee Chair 
Distinguished Professor of Psychology 

University of Nevada, Las Vegas 
 

Study 1: School attendance is an important foundational competency for children and 

adolescents, and school absenteeism has been linked to myriad short- and long-term negative 

consequences, even into adulthood. Many efforts have been made to conceptualize and address 

this population across various categories and dimensions of functioning and across multiple 

disciplines, resulting in both a rich literature base and a splintered view regarding this 

population. This article (Part 1 of 2) reviews and critiques key categorical and dimensional 

approaches to conceptualizing school attendance and school absenteeism, with an eye toward 

reconciling these approaches (Part 2 of 2) to develop a roadmap for preventative and intervention 

strategies, early warning systems and nimble response, global policy review, dissemination and 

implementation, and adaptations to future changes in education and technology. This article sets 

the stage for a discussion of a multidimensional, multi-tiered system of supports pyramid model 

as a heuristic framework for conceptualizing the manifold aspects of school attendance and 

school absenteeism. 

 

Study 2: School attendance problems, including school absenteeism, are common to many 

students worldwide, and frameworks to better understand these heterogeneous students include 

multiple classes or tiers of intertwined risk factors as well as interventions. Recent studies have 
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thus examined risk factors at varying levels of absenteeism severity to demarcate distinctions 

among these tiers. Prior studies in this regard have focused more on demographic and academic 

variables and less on family environment risk factors that are endemic to this population. The 

present study utilized ensemble and classification and regression tree analysis to identify 

potential family environment risk factors among youth (i.e., children and adolescents) at 

different levels of school absenteeism severity (i.e., 1 + %, 3 + %, 5 + %, 10 + %). Higher levels 

of absenteeism were also examined on an exploratory basis. Participants included 341 youth 

aged 5–17 years (M = 12.2; SD = 3.3) and their families from an outpatient therapy clinic 

(68.3%) and community (31.7%) setting, the latter from a family court and truancy diversion 

program cohort. Family environment risk factors tended to be more circumscribed and 

informative at higher levels of absenteeism, with greater diversity at lower levels. Higher levels 

of absenteeism appear more closely related to lower achievement orientation, active-recreational 

orientation, cohesion, and expressiveness, though several nuanced results were found as well. 

Absenteeism severity levels of 10–15% may be associated more with qualitative changes in 

family functioning. These data may support a Tier 2-Tier 3 distinction in this regard and may 

indicate the need for specific family-based intervention goals at higher levels of absenteeism 

severity. 

 

Study 3: School attendance problems are highly prevalent worldwide, leading researchers to 

investigate many different risk factors for this population. Of considerable controversy is how 

internalizing behavior problems might help to distinguish different types of youth with school 

attendance problems. In addition, efforts are ongoing to identify the point at which children and 

adolescents move from appropriate school attendance to problematic school absenteeism. The 
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present study utilized ensemble and classification and regression tree analysis to identify 

potential internalizing behavior risk factors among youth at different levels of school 

absenteeism severity (i.e., 1+%, 3+%, 5+%, 10+%). Higher levels of absenteeism were also 

examined on an exploratory basis. Participants included 160 youth aged 6–19 years (M = 13.7; 

SD = 2.9) and their families from an outpatient therapy clinic (39.4%) and community (60.6%) 

setting, the latter from a family court and truancy diversion program cohort. One particular item 

relating to lack of enjoyment was most predictive of absenteeism severity at different levels, 

though not among the highest levels. Other internalizing items were also predictive of various 

levels of absenteeism severity, but only in a negatively endorsed fashion. Internalizing symptoms 

of worry and fatigue tended to be endorsed higher across less severe and more severe 

absenteeism severity levels. A general expectation that predictors would tend to be more 

homogeneous at higher than lower levels of absenteeism severity was not generally supported. 

The results help confirm the difficulty of conceptualizing this population based on forms of 

behavior but may support the need for early warning sign screening for youth at risk for school 

attendance problems.  
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CHAPTER 1 

INTRODUCTION 

School absenteeism 

School absenteeism is an educational crisis; eight million American students in the 2013-

2014 school year missed more than three weeks of school (National Center for Education 

Statistics, 2016). National rates of school absenteeism have been increasing in recent years, up 

from 6.8 million students in the 2014-2015 school year (Bauer, Liu, Schanzenbach, & 

Shambaugh, 2018). Of the students who display school absenteeism, about 50% do so for 

multiple school years and 25% miss at least two months of school (Balfanz & Byrnes, 2012; 

Kearney, 2016). School absenteeism is also a problem in Nevada. Over the last 15 years, 1,323 

to 5,210 of Nevada students were identified as chronically absent per year (Nevada Department 

of Education, 2018).  

The highest rates of school absenteeism occur in high school (20%; Department of 

Education, 2016) and high poverty urban and rural schools (33% & 25% respectively; Balfanz & 

Byrnes, 2012). In comparison, partial absences are defined as tardiness and skipping or missing 

certain classes. As many as 54.6% of high school students endorsed “sometimes” skipping a 

class, and 13.1% endorsed “often” skipping a class (Guare & Cooper, 2003). The prevalence 

rates of morning tardiness range from 4.5-9.5% (Kearney, 2001). Nationally, tardiness and 

skipping classes result in 45% of all disciplinary referrals at school (24%, and 21% respectively; 

Spaulding et al., 2010).  

The increase in school absenteeism across the country has led to multiple federal and 

state initiatives to address this problem. President Obama launched the My Brother’s Keeper 

initiative (Office of the Press Secretary, 2014) and the U.S. Department of Education published a 
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joint effort among multiple agencies stating the nature of attendance problems (U.S. Department 

of Education, 2015b). President Obama also released the Community Toolkit to Address and 

Eliminate Chronic Absenteeism (U.S. Department of Education, 2016) and held a national 

summit (U.S. Department of Education, 2016). These initiatives led to revisions to the Every 

Student Succeeds Act (ESSA) in 2015 (U.S. Department of Education, 2015a) and to an update 

in 2017 (U.S. Department of Education, 2017). At the state level, Nevada legislatures enacted a 

definition of truancy (NRS 392.130, 2007; NRS 392.210, 2013) and administrative sanctions for 

absenteeism (NRS 392.144, 2013). Similarly, Clark County School District (CCSD) began the 

Reclaim Your Future Initiative (Clark County School District, 2011) and employed the Truancy 

Diversion Program in 2002 (Clark County School District, 2018) and the Student Attendance 

Review Board (SARB; Clark County School District, n.d.) in 2013.  

School absenteeism is a multidisciplinary problem that refers to any absence from school 

by school aged-youth (Kearney, 2008). School absences can either be problematic or 

nonproblematic. The majority of absences are nonproblematic as they are brief, do not impact 

functioning, and are self-corrected (Kearney, 2008). Examples of nonproblematic absenteeism 

include situations that are verified by parents or school officials such as emergencies, illnesses, 

holidays, or any other unexpected circumstances (Kearney & Albano, 2007). On the other hand, 

problematic school absenteeism impairs youth or family functioning. Currently, there are no 

consistent defining cutoffs for problematic school absenteeism in research or school districts 

(Jimerson, Burns, & VanDerHeyden, 2016; Lyon & Cotler, 2007; Spruyt, Keppens, Kemper, & 

Bradt, 2016). Currently utilized definitions in the literature lack utility for school personnel and 

are not used by school districts (Attendance Works, 2016; National Center for School 
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Engagement, 2005; Schanzenbach, Bauer, & Mumford, 2016; Spruyt et al., 2016; U.S. 

Department of Education Office of Safe and Drug-Free Schools, 2007). 

The current, multifaceted study aimed to address this gap in the literature by supporting a 

precise definition of problematic school absenteeism. The study also aimed to identify specific 

subgroups of youth at various levels of risk for displaying problematic school absenteeism based 

upon family environment and youth psychopathology. Findings of the current study provide 

school officials with specific guidelines for assessing problematic school absenteeism, 

categorizing students into tiers based on their level of severity, and employing specific 

interventions. Identifying a specific definition of problematic school absenteeism that resonates 

with and is utilized by school districts and researchers alike is vital. Doing so, will also lead to an 

accurate identification of the severity of the problem and encourage the identification and 

utilization of feasible solutions (David, Cristea, & Hofmann, 2018; Maynard et al., 2015). 

Definitions of problematic school absenteeism used in the literature and by school districts are 

reviewed below. 

Terminology 

Various terms have been used to describe attendance difficulties in school-age youth 

(Kearney, 2016; Table 1). Early researchers conceptualized attendance difficulties as delinquent 

behavior and youth who lacked morals, respect, and ambition (Kline & Hall, 1898). Conduct-

based conceptualizations, such as delinquency or truancy, dominated the field until the 

introduction of an anxiety-based conceptualization in the early 1930s. Broadwin (1932) proposed 

that conduct-based explanations do not adequately describe attendance difficulties and instead 

should address the role of anxieties or fears. This shift in the field is reflected in the move from a 
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primarily conduct-based conceptualization to the inclusion of anxiety-based conceptualizations 

(Kearney, 2008).  

 

 

Table 1 

 Key Definitions Related to Problematic School Absenteeism  

 

Term              Definition 

 

Delinquency  Akin to conduct disorder refers to rule-breaking behaviors and status 

offenses such as stealing, physical and verbal aggression, property 

destruction, underage alcohol or tobacco use, and violations of curfew and 

expectations for school attendance (Frick & Dickens 2006; McCluskey, 

Bynum, & Patchin, 2004) 

 

Truancy Illegal, unexcused absence from school; the term may also be applied to 

youth absenteeism marked by surreptitiousness, lack of parental 

knowledge or youth anxiety, criminal behavior and academic problems, 

intense family conflict or disorganization, or social conditions such as 

poverty (Fantuzzo, Grim, & Hazan, 2005; Fremont, 2003; Reid, 2003) 
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School phobia Fear-based absenteeism, as when a youth refuses school due to fear of 

some specific stimulus such as a classroom animal or fire alarm (Tyrell, 

2005) 

 

Separation  Excessive worry about detachment from primary caregivers and anxiety

 reluctance to attend school (Hanna, Fischer, & Fluent, 2006) 

 

School refusal  A broader term referring to anxiety-based absenteeism, including panic 

and social anxiety, and general emotional distress or worry while in school 

(Suveg, Aschenbrand, & Kendall, 2005) 

 

School refusal   An even broader term referring to any youth-motivated refusal to  

behavior attend school or difficulty remaining in classes for an entire day, whether 

anxiety-related or not (Kearney & Silverman, 1996) 

 

Note. Adapted from “An Interdisciplinary Model of School Absenteeism in Youth to Inform 

Professional Practice and Public Policy,” by C.A. Kearney, 2008, Educational Psychology 

Review, 20, p. 259. Copyright 2008 by Springer Science + Business Media, LLC. Adapted with 

permission.  

 

 

The term school refusal behavior was first proposed by Kearney and Silverman (1996) as 

a continuum encompassing youth aged 5-17 years with self-motivated difficulty staying in 
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school or refusal to attend school (Figure 1). School refusal behavior thus includes many 

historical definitions or conceptualizations of youth school attendance difficulties. Youth on the 

continuum all share the desire to miss school.  

 

 

 

Figure 1. Continuum of school refusal behavior based on attendance. Adapted from School 

Refusal Behavior in Youth: A Functional Approach to Assessment and Treatment (p. 7), by C. A. 

Kearney, 2000, Washington, D.C.: American Psychological Association. Copyright 2000 by the 

American Psychological Association. Adapted with permission.  

 

 

Definitions of problematic school absenteeism in the literature range from 1% to 40% of 

full school days missed (Berg et al., 1993; Egger, Costello, & Angold, 2003) and may include 

functional criteria such as impact to the student’s individual, family, or academic functioning 

(Kearney, 2008). Various terms also describe problematic school absenteeism in the literature 

including persistent school non-attendance, school attendance problems, school nonattendance, 

persistent absenteeism, school absenteeism, school refusal, and school refusal behavior. The 

following definitions have been utilized in the literature. 

 

 

School 
attendance 
with stress 

and pleas for 
nonattendanc

e

Repeated 
misbehavior

s in the 
morning to 

avoid 
school

Repeated 
tardiness 

in the 
morning 
followed 

by 
attendance

Periodic 
absences 

or 
skipping 
of classes

Repeated 
absences or 
skipping of 

classes 
mixed with 
attendance

Completed 
absence 

from 
school 

during a 
certain 

period of 
time

Complete 
absence 

form 
school 
for an 

extended 
period of 

time
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Table 2 

Definitions of Problematic School Absenteeism in the Literature. 

 

Author 

 

Year 

 

Definition  

 

Functional Criteria 

Berg et al.  1993 ≥40% of school days in a semester (36 

full school days) 

n/a 

Thornton, 

Darmody & 

McCoy 

2013 ≥11% of school days (20 full school 

days) 

n/a 

Melvin et al.  2017 ≥50% of school days in the past 4-

weeks (10 full school days) 

n/a 

McKay-Brown et 

al.  

2018 ≥50% of school days (15 full school 

days) or frequently leaving school early 

in the past 6-weeks  

Or severe difficulty 

attending classes for at 

least 6-weeks  

Kearney 2008 ≥25% of school during the last two 

weeks (2.5 school days) 

Or severe difficulty 

attending classes that 

impaired one’s 

individual or family 

functioning 

Knollmann, 

Reissner, & 

Hebebrand 

2018 ≥25% of school during the last two 

weeks (2.5 school days) or ≥13% of 

school during the last 15 weeks (10 

school days) 

n/a 
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Honjo et al.  2001 ≥17% of school days per year (30 full 

school days) 

n/a 

Department of 

Education 

2016 ≥10% of school days (15 full school 

days) 

n/a 

Walter et al.  2010 ≥8% of school days (14 full school 

days) or ≥50 classes skipped on the 

most recent report card 

n/a 

Last & Strauss 1990 1 missed day in 2-weeks (mild), 1 day 

missed per week (moderate), missed 

several days per week (severe), missed 

weeks of school (extreme) 

n/a 

King & Bernstein 2001 n/a Difficulty attending 

school with emotional 

distress (i.e., anxiety 

and depression) 

Egger et al.  2003 ≥1% of school days (at least ½ day)  n/a 

Flannery, Frank & 

McGrath Kato 

2012 ≥1% of school days (at least one day 

without permission) 

n/a 

    

Pflug & Schneider 2016 Any school days missed during the 

previous seven school days 

n/a 

Reissner et al.  2018 Unexcused attendance for at least 

several hours 

n/a 
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Current definitions of problematic school absenteeism in the literature are not useful to 

school districts and, therefore, are not used (Spruyt et al., 2016). The theoretical nature of many 

definitions coupled with the lack of consensus among researchers leads school districts to 

identify their own, individualized, definitions. Definitions of problematic school absenteeism 

used by school districts range from 3% to 10% (Chu, Guarino, Mele, O’Connell, & Coto, 2018; 

Department for Education, 2016) and often do not include the functional criteria used in the 

literature. School personnel also use various terms to describe problematic school absenteeism 

including chronic absenteeism, school refusal behavior, school attendance problems, habitual 

truant, and truant. The range of definitions and terms used to describe problematic school 

absenteeism creates barriers to comparing data across districts, applying data-based decision-

making models, and employing appropriate interventions. School districts and states have used 

the following definitions.   

 

 

Table 3 

 

Definitions of Problematic School Absenteeism in State Law 

 

State 

 

Definition  

 

Law 

Alabama HT= 5 school days in a year Alabama Code 16-28-1, et 

seq. 

Alaska 10% or more of full school days AS 14.30.010 

Arizona 10% of full school days Ariz. Rec. Stat. § 15-803 



 10 

Arkansas 10% of full school days Ark. Code. § 6-18-222 

California T= 3 full school days or tardy/absent more 

than 30 minutes in 3 full school days; HT= 

identified as truant 3 or more times in a year 

Cal. Educ. Code § 48260 & 

48262 

Colorado 4 full school days in a month or 10full 

school days in a year  

Colo. Rev. Stat. § 22-33-107 

Connecticut 20 unexcused absences in a year Conn. Gen. Stat. § 10-200 

Delaware 3 full school days in a school year Del. St. Ti. 14, § 2721  

Florida 15 unexcused absences in 90 days  Fla. Rev. Stat. § 1003.01 

Georgia 5 or more full school days in a year O.C.G.A. § 20-2-735 

Hawaii 15 or more full school days in a year Hawaii Rev. Stat. §302A-

1132 

Idaho 10 or more full school days in a grading 

period 

School District 272: Policy 

522 

Illinois 10% or more of the previous 180 school 

days  

Ill. Rev. Stat. Cj. 105, 

PARA. 5/262A 

Indiana T= 3 full school days or 3 or more tardies; 

HT= identified as truant 2 or more times in a 

year 

Ky. Rev. Stat. Ann. § 

159.150  

Iowa 8 or more unexcused absences Iowa Code Chapter 299 

Kansas 3 consecutive full school days, 5 full school 

days in a semester, or 7 full school days in a 

school year 

KS Stat § 72-3120 (2017) 
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Kentucky 6 full or partial days of school Ken. Educ. Code 159.010, et 

seq. 

Louisiana 5 full school days or 5 tardies in a month La. Rev. Stat. Ann. § 17:233  

Maine 10 full school days Me. Rev. Stat. Ann TIT. 20-

A, 3272  

Maryland 8 full school days in a quarter, 15 full school 

days in a semester, or 20 full school days in 

a year 

Md. Code, Education § 7–

302.2 

Massachusetts 5 or more unexcused absences in a school 

year, 5 or more tardies, or 2 or more missed 

classes/periods  

Mass. Gen. Law Chapter 76, 

section 1 

Michigan 10 unexcused absences in a year Mich. S.B. 103 

Minnesota 7 full school days in a year Minn. Rev. Stat. § 260C.007  

Mississippi 10% or more of full school days MS Code § 37-13-91 

Missouri 8 school days or partial school days during a 

year 

Mo. Rev. Stat. 167.031 

Montana 9 or more full school days or 54 or more 

parts of a day in a year 

Montana Code 41-5-103 

Nebraska 20 full school days per year or the hourly 

equivalent 

Neb. 644, 843 N.W.2d 665 

(2014) 

Nevada T= 1 or more unexcused absences; HT= 

identified as truant 3 or more times in a year 

Nev. Rev. Stat. Ann. § 392. 

130 & 392.140 
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New 

Hampshire 

10 half school days NH General Court RSA 189 

New Jersey 10% or more of full school days N.J.A.C. 6A:32-8.3 

New Mexico T= 5 absences in a 20-day period; HT= 10 or 

more unexcused absences in a year 

N.M. Stat. Ann § 22-12-9 

New York 10 consecutive full school days or 20 full 

school days in a 4-month period 

NYCRR §104.1(i)(2)(iii) 

North Carolina 10 or more unexcused absences G.S. 115C-381 

North Dakota 3 consecutive school days during either the 

first half or the second half of a year, 6 half 

days during either the first half or the second 

half of a school or school district's calendar, 

or 21 class periods 

NDCC 15.1-20-02.1 

Ohio HT= when a student misses more than 5 

consecutive school days, 7 or more school 

days in a month, 12 or more school days in a 

year. CT= 7 or more consecutive full school 

days, 10 or more full school days in a 

month, or 15 or more full school days in a 

year 

Ohio Rev. Code 2151.011 

Oklahoma 10% of full school days Ord. No. 24028, § 1, 3-2-10 

Oregon 8 unexcused one-half days or 4 full school 

days in any 4-week period 

Oregon Revised Statute 

339.065 
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Pennsylvania 3 or more full school days  Pa. Stat. Ann. TIT. 24, § 13-

1333 

Rhode Island 10 unexcused absences, tardies, or early 

dismissals 

Rhode Island S.L. 16-19-1 

South Carolina 3 consecutive unlawful absences or 5 

unlawful absences in a year 

SC Code of Reg. Ch. 43-274 

South Dakota T= any unauthorized absence for a full or 

part of a school day 

Code Section 13-27-1, et 

seq. 

Tennessee 5 unexcused absences in a year Tennessee Code Annotated 

49-6-3007 

Texas 10 or more days within a 6-month period or 

3 or more days in a 4-week period 

Tex. Educ. Code Ann. § 

25.094 

Utah T= any unexcused absence; HT= more than 

2 truancy citations in a school year or 8 

absences in a year  

Utah Code Ann. § 53A-11-

101 

Vermont 10 or more full school days in a year 16 V.S.A. §1121, Act 44, 

Section 46 

Virginia 10 or more unexcused absences in a year Code of Virginia § 46.2-323 

Washington 7 unexcused absences per month or 10 in a 

year 

RCW 28A.225.035 

West Virginia 10 or more unexcused absences in a year West Virginia Code 18.8.1 

Wisconsin 5 or more full school days Wis. Rev. Stat. § 118.16 

Wyoming 5 or more unexcused full school days Wyo. Stat. Ann. § 21-4-101  
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Note. HT= Habitual truant; T= truant; CT= Chronic truancy.  

 

 

Despite the extensive absenteeism literature base, a lack of an agreed-upon definition of 

problematic school absenteeism exists (Jimerson et al., 2016; Lyon & Cotler, 2007) leading to 

complicated, and often counteracting, early identification systems and an inability to access 

effective treatments or interventions (David et al., 2018; Maynard et al., 2015). Current 

definitions in the literature lack utility for school personnel and are not used by school districts 

(Attendance Works, 2016; National Center for School Engagement, 2005; Schanzenbach et al., 

2016; Spruyt et al., 2016; U.S. Department of Education Office of Safe and Drug-Free Schools, 

2007). Further, procedures used to report absences have been found to vary among teachers, 

schools, districts, and states (U.S. Department of Education Office of Safe and Drug-Free 

Schools, 2007). Specific and measurable definitions of problems and levels of severity are 

crucial to the utility of data-based decision making commonly used in modern education. The 

identification of a specific definition of problematic school absenteeism that resonates with and 

is utilized by school districts is vital.  

The current, multifaceted study aimed to address this gap in the literature by supporting a 

precise definition of problematic school absenteeism. The study also aimed to identify specific 

subgroups of youth at various levels of risk for displaying problematic school absenteeism based 

upon family environment and youth psychopathology. Multi-tiered systems of support (MTSS) 

models provide a theoretical framework to identify more pristine distinctions of problematic 

school absenteeism among the tiers. Doing so, provides school-based personnel with specific 

guidelines for assessing problematic school absenteeism, categorizing students into tiers based 
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on their level of severity, and employing interventions specific to each tier. The following 

section defines MTSS and distinguishes this model from similar models.  

Multi-tiered systems of support 

 MTSS is a form of data-based program modification (DBPM) used to make formula-

based decisions about student needs to increase their academic and general functioning (Jimerson 

et al., 2016). DBPM includes data collection, evaluation, collaboration, consultation, 

interventions, and progress monitoring (Deno, 2016). DBPM has five assumptions, (1) 

hypotheses are the outcome of an intervention for a student, (2) intervention hypotheses are well 

tested by single-case designs with repeated data, (3) modifications of general education programs 

for a student require empirical testing, (4) crucial signs of education functioning require 

identification and data support, and (5) well-trained professionals are capable of drawing 

conclusions from data (Deno, 2016). DPBM’s ability to assess, screen, and assign interventions 

is dependent on empirically measured and clearly defined variables (Jimerson et al., 2016). Table 

4 describes the practical implications of DPBM. 

 

 

Table 4 

Implications of Data-Based Decision-Making for Practice. 

1. Establish common goals and the data that will be used by all to determine whether the 

goals are being met 

 

2. Choose long-range goals on which progress can be measured for at least an entire school 

year so that interventions can be evaluated using the data 
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3. Treat interventions as hypotheses whose effects will be revealed in the data and be 

prepared to try alternatives when interventions are not leading to goal attainment 

 

4. Continually work at improving the reliability and validity of the data and the criteria you 

are using to decide whether students should continue in their current intervention levels or 

should be moved to different levels 

 

5. Create regular in-service training procedures to assure that all those collecting and using 

data to make decisions understand how to collect the data, why the data are being 

collected, how to interpret the data, and how to make the decisions 

 

6. Increase the frequency with which student progress is measured and the responsiveness of 

the intervention system as the students move to more intense levels of intervention 

 

7. Recognize that even evidence-based interventions do not work for every student and 

design your program in such a way as to enable teachers to find or create and test 

alternative interventions when evidence-based interventions have not been effective 

Note. Reprinted from “Data-Based Decision Making.” In S. R. Jimerson, M. K. Burns, & A. M. 

VanDerHeyden (Eds.), Handbook of Response to Intervention: The Science and Practice of 

Multi-Tiered Systems of Support (2nd ed.), p. 26. Copyright 2016 by Springer. 

 

 



 17 

 Multiple forms of DBPM exist. The most common forms include response to intervention 

(RTI), positive behavior intervention supports (PBIS) or program-wide positive behavior support 

(PWPBS), and, more recently, multi-tiered systems of support (MTSS). Figure 2 depicts the 

similarities and differences between these models, with MTSS represented by the intersecting 

characteristics.  

 

 

 

Figure 2. Similarities and differences between academic RTI and PBIS. Reprinted from 

“Integrated multi-tiered systems of support: Blending RTI and PBIS.” By K. McIntosh and S. 

Goodman, 2016, New York: The Guilford Press. Copyright 2016 by The Guilford Press. 

Reprinted with permission.  
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RTI aims to inform interventions for individual students using formative assessment, 

tiered interventions, collaboration, and decision making based on data (National Professional 

Development Center on Inclusion, 2012). RTI began as a reading assessment theory in the 1980s 

and is now considered to be a service delivery approach (Barnes & Harlacher, 2008). RTI was 

applied to all academic areas and replaced the ability-achievement model of assessment  

(Schulte, 2016). The utilization and expansion of RTI introduced universal screening to 

education (Fuchs & Vaughn, 2012).  

On the other hand, PBIS or PWPBS, is RTI methods applied to behavior and social 

difficulties (McIntosh & Goodman, 2016). PBIS aims to prevent problem behavior and increase 

social competence through specific interventions (Stanton-Chapman, Walker, Voorhees, & Snell, 

2016). PBIS interventions are based on a three-tier model with intervention intensity increasing 

from Tier 1 to Tier 3 (Stanton-Chapman et al., 2016). PBIS focuses on instructional and 

environmental changes to influence behavior and utilizes applied behavior analysis techniques 

(McIntosh & Goodman, 2016).  

MTSS weaves the academic focus of RTI and the behavior and social focus of PBIS into 

one cohesive model to best address all student needs (Figure 3). MTSS aims to provide high-

quality, individualized instruction and intervention, informed by frequent progress monitoring, 

for all aspects of student education (McIntosh & Goodman, 2016). Data-based decision making 

and evidence-based practice provide the foundation for MTSS (Forman & Crystal, 2015; Stoiber 

& Gettinger, 2015). This model addresses education in abroad, and all-encompassing, context 

(McIntosh & Goodman, 2016).  
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Figure 3. Multi-tiered systems of support (MTSS) model.  

 

 

This approach does not merely apply RTI and PBIS assessment and intervention methods 

simultaneously, and instead carefully and systematically integrates these methods in the most 

efficient (McIntosh & Goodman, 2016) and practical (Stewart, Benner, Martella, & Marchand-

Martella, 2007) manner. MTSS does so by applying a problem-solving process that includes 

identifying a problem, gathering data, assessing functioning, applying interventions, and 

assessing the effectiveness of the interventions (Lexia Learning, 2018). The utility of MTSS is 

dependent upon the identification of specific and measurable definitions of a problem (Colorado 

Department of Education, 2016). The problems also must be matched to a desired outcome or 

performance and decision rules signaling the need for more focused interventions (Colorado 

Department of Education, 2016).  
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MTSS asserts that prevention for all is more effective and efficient than individualized 

interventions (McIntosh & Goodman, 2016). Tier 1, the universal support tier, aims to maximize 

student success in all areas (McIntosh & Goodman, 2016). Tier 1 interventions include the 

following six principles: (1) focus on big ideas, (2) use obvious strategies, (3) include 

scaffolding, (4) strategically integrate content, (5) link new information to previously learned 

information, and (6) review student skills and understanding (Coyne, 2007). For example, all 

students are taught the meaning of respect and how to use this skill in various scenarios by 

reading books, discussing situations, and by reminders through teacher prompts (e.g., “That was 

not a respectful way to speak to your classmate, next time ask them to please speak quiet 

down”). Tier 2, the group intervention tier, aims to provide efficient support with cross-content 

interventions to groups of students (McIntosh & Goodman, 2016). Often student groups are 

formed by academic needs and behavior/social interventions are added as needed (McIntosh & 

Goodman, 2016). For example, a group of students is formed who are behind grade-level in 

reading and multiple students are engaging in avoidant behavior during reading time. This group 

was then taught additional reading interventions and strategies to use when becoming frustrated 

or embarrassed by their reading difficulties to decrease avoidant behavior. Finally, Tier 3, the 

individual intervention tier, aims to provide individualized and intensive interventions if 

interventions in the other tiers are not sufficient (McIntosh & Goodman, 2016). The importance 

of integrating academic and behavior/social interventions is most crucial in Tier 3 because 

separating academic and behavior/social interventions can cause action plans not to consider all 

of the student's needs and deny the student access to necessary interventions (McIntosh & 

Goodman, 2016).   
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The inclusion and integration of multiple system-level approaches, including school-

family partnerships (Haines et al., 2017), wraparound support (Coffey et al., 2018), parent 

management training (August, Piehler, & Miller, 2018), mental health support (Orlando et al., 

2018), and school drop-out prevention (Chu et al., 2018) has improved student educational and 

behavior outcomes. The nature of MTSS optimizes school resources and increases the 

sustainability of interventions leading to increased or maintained funding (McIntosh, Bohanon, 

& Goodman, 2010; McIntosh, Horner, & Sugai, 2009). 

MTSS’ comprehensive, evidence-based, and efficient nature has led to its widespread 

adoption in school settings (August et al., 2018). Contemporary classification models of school 

absenteeism are, primarily, comprehensive and multitiered to include numerous relevant 

contextual factors (Kearney, 2016). Recently, MTSS has been applied to school absenteeism. 

The following section describes the application of MTSS to school absenteeism. 

MTSS and school absenteeism. Multiple comprehensive models of school absenteeism 

have paved the way for the application of MTSS. Reid (2003, 2005, 2012) worked on specifying 

the individual and instructional factors related to school absenteeism in a comprehensive 

preventative model. This model categorizes students into groups based on their risk of displaying 

attendance problems (i.e., none, some, minor, and persistent) and assigns school personnel to 

each group (Reid, 2003). Similarly, Chu and colleagues (2018) identified students at risk of 

displaying absenteeism and assigned school counselors to track their attendance and report 

factors placing them at increased risk. Kearney (2008) proposed an interdisciplinary model that 

categorizes students into increasingly complex groups based on specific youth psychopathology, 

family, peer, and school risk factors and assigns interventions to each group. Lyon and Cotler 

(2009) proposed a multitiered model that categorizes students into levels based on microsystem, 
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mesosystem, and exosystem influences and assigns interventions to each level. Similarly, 

Rodríguez and Conchas (2009) proposed a community-based model aimed at interventions that 

address school-community involvement. These comprehensive models improved the 

conceptualization of school absenteeism but continued to lack utility due to their abstract and 

theoretical nature (Kearney, 2016).  

Kearney and Graczyk (2014) were the first to apply MTSS principles to models of school 

absenteeism. This model aimed to organize evidence-based assessment and intervention 

strategies into three tiers (Figure 4). Each tier has a specific focus based on the severity of one’s 

school absenteeism: (1) Tier 1 focuses on the enhancement of individual functioning and 

prevention of absenteeism difficulties for all students, (2) Tier 2 focuses on emerging difficulties 

for students with mild to moderate school absenteeism, and (3) Tier 3 focuses on addressing 

difficulties of students with severe school absenteeism (Kearney, 2016). Specific interventions 

are matched to each tier to decrease the burden of identifying interventions for each student for 

school personnel. 

 Tier 1 interventions focus on improving school climate, safety, health, parent-school 

involvement, or student-school involvement (Kearney, 2016). Tier 1 interventions may include 

informing students and their families about specific attendance policies, resources aimed to 

decrease absences, and guidelines for keeping a student home when they are ill. Interventions 

may also ensure attendance is monitored regularly, provide parents access to up to date 

attendance reporting, notify parents immediately if a student is marked absent, and assign school 

personnel to monitor areas where students often leave school or skip class.  

Tier 2 interventions include peer or teacher mentoring programs, individual or group 

therapy addressing anxiety symptoms, or psychologically treating non-anxiety-based 
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absenteeism (Kearney, 2016). Tier 2 interventions may include encouraging parents to engage in 

regular contact with school officials, monitoring attendance at each class period, beginning 

school reintegration, referring to medical professionals, implementing morning schedules to 

decrease barriers to timely attendance, supervising transitions throughout the day to decrease 

skipping, utilizing established resources, or assigning a student mentor.  

Finally, Tier 3 interventions include alternative schools, case management, or special 

education programs (Kearney, 2016). Tier 3 interventions may include addressing difficulties 

within the family, improving communication and problem-solving skills, addressing 

psychological or medical needs, pursuing routes to preserve academic progress, or providing 

social skills aimed at decreasing negative behaviors.  

 

 

 

Figure 4. A multitier model for problematic school absenteeism. Reprinted from "Managing 

school absenteeism as multiple tiers: An evidence-based and practical guide for professionals" 
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by C. A. Kearney, 2016, New York: Oxford University Press. Copyright 2016 by the Oxford 

University Press. Reprinted with permission.  

 

 

Recent research has continued to demonstrate the value of applying MTSS models to 

school absenteeism. Specifically, schools that implement MTSS with greater fidelity have lower 

levels of school absenteeism than schools with less fidelity (Freeman et al., 2016). School 

districts are also beginning to include attendance measures in MTSS models. For example, one 

school district explicitly included attendance monitoring in the application of MTSS to improve 

student attendance, behavior, and academic performance (Coffey et al., 2018). Ingul, Havik, and 

Heyne (2018) aimed to identify early signs and risk factors of emerging school attendance 

difficulties and pair identified signs and/factors with interventions applied in tiers one or two. 

Similarly, Chu and colleagues (2018) developed an early identification system for schools that 

identify youth who miss more than five days of school or who are at risk of developing school 

absenteeism based on a range of risk factors.   

 MTSS has been well applied to common academic and behavioral problems but lacks 

empirical support of application to problematic school absenteeism. School districts need 

specific guidelines for applying MTSS to school absenteeism. Even more so, due to recent 

changes to federal and state laws that encourage the utilization of attendance monitoring systems 

to require districts to work toward decreasing school absenteeism (Department of Education, 

2016). The identification of a specific and measurable definition of problematic school 

absenteeism and specific demarcations of severity level among the tiers is necessary to apply 

MTSS to problematic school absenteeism successfully.  
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MTSS has been well applied to common academic and behavioral problems but lacks 

empirical support of application to problematic school absenteeism. School districts need 

specific guidelines for applying MTSS to school absenteeism. Even more so, due to recent 

changes to federal and state laws that encourage the utilization of attendance monitoring systems 

to require districts to work toward decreasing school absenteeism (Department of Education, 

2016). The identification of a specific and measurable definition of problematic school 

absenteeism and specific demarcations of severity level among the tiers is necessary to apply 

MTSS to problematic school absenteeism successfully.  

The current study aimed to address this need by supporting a more precise definition of 

problematic school absenteeism and identifying specific subgroups of youth at various levels of 

risk for displaying problematic school absenteeism based upon family environment and youth 

psychopathology. This study utilized MTSS as a theoretical framework. Study one utilized 

MTSS to identify more pristine distinctions of problematic school absenteeism among the tiers. 

In studies two and three, family environment and youth psychopathology risk factors are 

analyzed to distinguish youth with problematic school absenteeism in each of the MTSS tiers. 

Results have important implications for increasing the clarity and utility of early assessment and 

intervention methods for youth with problematic school absenteeism, particularly methods that 

utilize the MTSS framework. Doing so, will provide school-based personnel with specific 

guidelines for assessing problematic school absenteeism, categorizing students into tiers based 

on their level of severity, and employing interventions specific to each tier.  

The following section reviews relevant problematic school absenteeism risk factors with 

a focus on family environment and youth psychopathology variables that are most pertinent to 

the current study.  
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Risk factors 

Problematic school absenteeism is related to many risk factors specific to the individual, 

family, community, peers, and school environment. Youth with problematic school absenteeism 

commonly display multiple risk factors leading to an increase in severity and complexity in 

treatment (Kearney, 2016). An extensive, though not comprehensive, list of related risk factors is 

in Table 5. Youth psychopathology and family environment risk factors most relevant to the 

current study are described in detail below.  

 

 

Table 5 

 Proximal and Distal Factors Related to Problematic School Absenteeism  

 

Factors   

Key child factors Extensive work hours outside of school  

Externalizing symptoms/psychopathology  

Grade retention 

History of absenteeism  

Internalizing symptoms/psychopathology 

Learning-based reinforcers of absenteeism/functions 

Low self-esteem and school commitment 

Personality traits and attributional styles 

Poor health or academic proficiency 

Pregnancy 
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Problematic relationships with authority figures 

Race and age 

Trauma 

Underdeveloped social and academic skills 

Key parent factors Inadequate parenting skills 

Low expectations of school performance/attendance 

Maltreatment 

Problematic parenting styles (permissive, authoritarian) 

Poor communication with school officials 

Poor involvement and supervision 

Psychopathology 

School dropout in parents and among relatives 

School withdrawal 

Single parent  

Key family factors Enmeshment 

Ethnic differences from school personnel 

Homelessness 

Intense conflict and chaos 

Large family size 

Poor access to educational aids 

Poor cohesion and expressiveness 

Poverty 

Resistance to acculturation 
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Stressful family transitions (divorce, illness, unemployment, 

moving) 

Transportation problems  

Key peer factors Participation in gangs and gang-related activity 

Poor participation in extracurricular activities 

Pressure to conform to group demands for absenteeism or other   

    delinquent acts 

Proximity to deviant peers 

Support for alluring activities outside of school such as drug use 

Victimization from bullies or otherwise  

Key school factors Dangerousness/poor school climate 

Frequent teacher absences 

High systemic levels of grade retention 

Highly punitive or legal means to address all cases of 

problematic  

    absenteeism 

Inadequate, irrelevant, or tedious curricula 

Inadequate praise for student achievement and attendance 

Inadequate responsiveness to diversity issues  

Inconsistent or minimal consequences for absenteeism  

Poor monitoring of attendance 

Poor student-teacher relationships 

School-based racism and discrimination  
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Key community factors Disorganized/unsafe neighborhood 

Economic pull factors (e.g., plentiful, well-paying jobs 

requiring little 

    formal education) 

Geographical cultural and subcultural values 

High gang-related activity 

Intense interracial tension  

Lack of social and educational support services 

School district policies and legal statutes regarding absenteeism  

 

Note. Reprinted from “An Interdisciplinary Model of School Absenteeism in Youth to Inform 

Professional Practice and Public Policy,” by C.A. Kearney, 2008, Educational Psychology 

Review, 20, p. 259. Copyright 2008 by Springer Science + Business Media, LLC. Reprinted with 

permission.  

 

 

Youth psychopathology. Twenty percent of school-aged youth have mental 

health difficulties that impact their academic achievement (Macklem, 2014), with some districts 

reporting rates as high as 50% (Duchnowski, Kutash, & Friedman, 2002). The negative impact of 

mental health difficulties on youth academic achievement has been identified in students as 

young as the first grade (Guzman et al., 2011). Lack of access to community-based mental health 

services has caused the mental health care of school-aged youth to fall on their school (Kathleen 

Ries Merikangas et al., 2011). To address increasing mental health concerns some schools have 
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slowly begun to implement voluntary mental health screenings (Stiffler & Dever, 2015). 

Approximately one-third of mental health concerns identified by these screenings have been 

previously unidentified (Husky, Kaplan, et al., 2011). The implementation of MTSS and its 

comprehensive approach to addressing student needs has drawn attention to the need for early 

assessment of student mental health difficulties (Garzona et al., 2018).  

Despite the adoption of MTSS, schools are slow to implement universal mental health 

screenings due to concerns about their ability to meet student needs and the lack of clearly 

identified treatment, referral, and follow-up protocols (Garzona et al., 2018; Husky, Sheridan, 

McGuire, & Olfson, 2011). Further, schools do not have specific guidelines for youth 

psychopathology as related to the MTSS tiers and therefore lack the ability to appropriately 

categorize student mental health difficulties and provide interventions (August et al., 2018). 

Study three of the current study aimed to address this problem by identifying the most relevant 

youth psychopathology risk factors among youth with problematic school absenteeism and 

categorizing students into the MTSS tiers based on their level of severity.  

Results of the current study provide school-based personnel with specific guidelines for 

the interpretation of early absenteeism and youth mental health screening data, thereby allowing 

students to efficiently be categorized into one of the MTSS tiers for intervention. Youth 

psychopathology variables commonly included in school-based screeners (Stiffler & Dever, 

2015), often endorsed by youth with problematic school absenteeism, and most relevant to the 

current study are detailed below.  

Common internalizing and externalizing symptoms and disorders are present in youth with 

problematic school absenteeism. More youth with school absenteeism (80%) endorse at least one 

somatic symptom than youth with only an anxiety disorder (50%; Crawley et al., 2014; Honjo et 
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al., 2001). Common somatic symptoms endorsed by youth with school absenteeism include 

stomach, head, back, joint, or muscle pain as well as sweating, nausea, blurred vision, breathing 

difficulties, inability to speak, and difficulty swallowing (Ek & Eriksson, 2013; Kearney, 2001). 

Internalizing disorders often diagnosed in youth with problematic school absenteeism 

include anxiety, depression, somatic, and social withdrawal symptoms (Merrell, 2008). Youth 

with school absenteeism have higher rates (52-54%; McShane, Walter, & Rey, 2001) of 

internalizing disorders than the worldwide prevalence rate (3-7%; Finning et al., 2017). Common 

internalizing diagnoses in youth with school absenteeism include major depressive disorder, 

social anxiety disorder, generalized anxiety disorder, and separation anxiety disorder (Egger et 

al., 2003; Maynard et al., 2015; Wimmer & Milwaukee, 2010; Wood et al., 2012). Youth with 

school absenteeism also have high rates of comorbidity among internalizing diagnoses (Essau, 

2003; Hankin et al., 2016). The presence of comorbid diagnoses and increased somatic 

symptoms complicates treatment leading to decreased treatment outcomes (Maynard et al., 

2015).  

Externalizing disorders include lack of control of one’s emotions, cognitions, or 

behaviors and include aggression, hyperactivity, and antisocial symptoms (Merrell, 2008). 

Common externalizing symptoms endorsed by youth with school absenteeism include verbal and 

physical aggression, noncompliance, tantrums, lying, refusal to move, clinging, or hiding 

symptoms (Kearney, 2001). Externalizing symptoms are a more salient predictor of youth 

problematic school absenteeism behavior than internalizing symptoms (Ingul, Klöckner, 

Silverman, & Nordahl, 2012).  

Youth with school absenteeism have higher rates of externalizing disorders (8-80%; 

Kearney & Albano, 2004; Maynard et al., 2015) than the worldwide prevalence rate (3-6%; 
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Merikangas, Nakamura, & Kessler, 2009). Common externalizing diagnoses in youth with 

school absenteeism include oppositional defiant disorder, conduct disorder, and attention deficit 

hyperactivity disorder (Kearney & Albano, 2004; Wood et al., 2012).  

Family environment. Family environment have been found to impact youth cognitive 

development, behavioral problems, and health throughout their lives, including as they transition 

to academic environments and adulthood (Lee & McLanahan, 2015; Magnuson & Berger, 2009; 

Morrongiello & Corbett, 2013; Osborne & McLanahan, 2007; Sturge-Apple, Davies, & 

Cummings, 2010). Further, school-based interventions, particularly mental health interventions, 

are the most effective when the entire family is included (Shucksmith, Jones, & Summerbell, 

2010).  

The comprehensive approach of MTSS calls for the inclusion of entire families at all 

three tiers to improve academic and behavior/social interventions (Kelly, Rossen, & Cowan, 

2018; McCart, Wolf, Sweeney, & Choi, 2009). Tier 1 interventions directed at the entire family 

may include informing families about the services available, introducing school personnel and 

their role in student education or health, decreasing cultural and language barriers, and increasing 

communication (Kelly et al., 2018). Tier 2 interventions may include structuring daily or weekly 

communication between families and relevant school personnel, clearly informing parents of the 

services their child is receiving, their progress, and the formal special education referral process, 

or engaging families in networks of support with other families, school-based groups, or 

community groups (Kelly et al., 2018). Finally, Tier 3 interventions should work to further 

involve the family in daily communication, ensure they are connected to community mental 

health providers, involve them in school-based therapeutic services, and encourage families to 

include outside providers or trusted individuals who can assist them (Kelly et al., 2018). The 
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inclusion of families in MTSS is not just beneficial for the efficacy of interventions, but it is also 

beneficial for the MTSS problem-solving process. In order to adequately define and identify a 

problem in the MTSS problem-solving process the function of the behavior must be identified. 

Understanding a youth’s family environment and the impact of that environment to one’s 

academic, behavioral, or social functioning is crucial for the efficacy of MTSS interventions.  

Despite the well-documented impact family environment has on youth functioning and 

academic achievement (Morrongiello & Corbett, 2013), schools often do not involve families in 

the MTSS process unless involvement is legally required due to a lack of resources and concerns 

about their ability to meet family needs (Kelly et al., 2018). Further, there is a lack of research 

directly linking the family environment to problematic school absenteeism. Study two of the 

current study aimed to address these problems by identifying the most relevant family 

environment risk factors among youth with problematic school absenteeism and categorizing 

students into the MTSS tiers based on their level of severity. Results of the current study provide 

school-based personnel with specific guidelines for the interpretation of early absenteeism and 

family environment screening data, thereby allowing students to efficiently be categorized into 

one of the MTSS tiers for intervention. Results of the current study also add to the relatively 

small literature base linking family environment to problematic school absenteeism and provide 

family-based mental health providers with profiles of families at high risk of having a youth with 

problematic school absenteeism. Common risk factors among the family environments of youth 

with problematic school absenteeism are reviewed below.  

Families are conceptualized as dynamic systems in which all relationships and 

subsystems influence one another (Lindblom et al., 2017). Several types of family dynamics 

have been linked to school attendance problems. First, enmeshed families display extreme 
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closeness, emotional dependency, over-involvement, and loyalty to the family with a lack of 

developmentally appropriate autonomy (Berryhill, Hayes, & Lloyd, 2018). Enmeshed families 

often have high levels of family dysfunction and lack appropriate boundaries, communication, 

roles, and flexibility (Berryhill et al., 2018; Waldron, Shrier, Stone, & Tobin, 1975). 

Relationships in enmeshed families are likely to be insecure and marked by internalizing and 

externalizing symptoms (Davies, Cummings, & Winter, 2004). Youth in enmeshed families are 

more likely to display internalizing symptoms than youth in other types of families (Barber & 

Buehler, 2006; Yahav, 2002). Youth in these families have been thought to display problematic 

school absenteeism due to over dependency, overprotection, or hostility (Kearney & Silverman, 

1995). Higher levels of internalizing symptoms among youth in enmeshed families may also 

impact youth problematic school absenteeism. For example, one in an enmeshed family may not 

attend school due to increased anxiety associated with separating from their family or an inability 

to manage daily tasks without the assistance of their family.  

Second, conflictive families display a lack of intimacy and emotional expression in 

addition to high rates of conflict and hostility among family members (Chen, Wu, & Wei, 2017; 

Makihara, Nagaya, & Nakajima, 1985). Youth in families with high levels of conflict are more 

likely to have adjustment difficulties particularly for female youth (Jaycox & Repetti, 1993). 

High conflict families living in violent communities are at increased risks youth to display 

symptoms of depression and anxiety and engage in risk-taking behaviors particularly for male 

youth (Bradley et al., 2010). Youth in these families display absenteeism due to continued 

conflict (Kearney & Silverman, 1995). High levels of conflict, risk-taking behaviors, adjustment 

difficulties, hostility, and depression and anxiety among youth in conflictive families may also 

impact youth problematic school absenteeism. For example, one in a conflictive family may not 
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attend school due to concerns for conflict in the home when they are not present, prioritizing 

risk-taking behaviors like skipping school, or an inability to manage their anger, depression, or 

anxiety.  

Third, detached families display a lack of involvement with or attention to the needs of 

family members (Weiss & Cain, 1964). Detached families are characterized by high levels of 

interparent withdrawal and parental invasiveness couples with low levels of hostility, emotional 

availability, cooperation, cohesiveness, competition, and ability to relate to children in the family 

(Sturge-Apple et al., 2010). Youth in detached families are most likely to display externalizing 

symptoms than youth in other types of families and were at an increased risk for displaying 

internalizing symptoms (Lindblom et al., 2017; Sturge-Apple et al., 2010; Yahav, 2002). 

Detached families also endorse low family cohesion, often lack emotion regulation skills, and 

report insecure relationships with their family members (Davies et al., 2004; Lindblom et al., 

2017; Yahav, 2002). Youth in these families display absenteeism due to a lack of vigilance about 

youth activities or problems (Kearney & Silverman, 1995). High levels of externalizing 

symptoms, internalizing symptoms, insecure relationships, withdrawal and low levels of 

cooperation, cohesiveness, and emotional regulation skills may also impact youth problematic 

school absenteeism. For example, one in a detached family may not attend school due to 

concerns lack of concern for family consequences, behavioral problems at school leading to 

noncompliant behaviors like skipping school, or a lack of cooperation with school rules.  

Fourth, isolated families are characterized by minimal, if any, contact with people outside 

of the family (Wahler, 1980). These families are unlikely to seek help from anyone outside of the 

immediate family (Garbarino, 1977). Isolated families are at increased risk for child 

maltreatment particularly when there are high levels of stress and increased family dysfunction 
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(Gracia & Musitu, 2003; Tucker & Rodriguez, 2014). Youth in these families display 

absenteeism due to a lack of integration in their community and lack of engagement outside of 

the family (Kearney & Silverman, 1995). Low levels of social interaction and support coupled 

with high levels of stress, dysfunction, and child maltreatment may also impact youth 

problematic school absenteeism. For example, one in an isolated family may not attend school 

due to lack of support or encouragement outside of the family, concerns for stress or dysfunction 

in the home when they are not present, or to conceal child maltreatment.  

Fifth, healthy families are characterized by demonstrating healthy and adaptive 

functioning and lacking the common themes found in the previous family types (Kearney & 

Silverman, 1995). Health families often have adequate or high levels of cohesion that is 

associated with a decreased risk for internalizing and externalizing problems particularly for 

adolescents (Barber & Buehler, 2006). Despite a family being healthy youth may still display 

absenteeism (Kearney & Silverman, 1995). For example, one in a healthy family may not attend 

school due to youth mental health, avoidance of social situations or schoolwork, or succumbing 

to peer pressure.  

There is overlap in the distinctions between the family types and the common 

characteristics within each type. This overlap creates mixed families who display characteristics 

of two or more of the previous family types leading to various causes of a youth's absenteeism 

(Kearney & Silverman, 1995). Mixed families may display a primary characteristic of a 

particular family type while still displaying characteristics of one or more additional types. 

Families of youth with problematic school absenteeism often are categorized as mixed families 

(Kearney & Silverman, 1995). One in a mixed family may not attend school due to enmeshment 

with their family and increased conflict due to a lack of clear boundaries or social isolation from 
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the outside world and detachment from one another within the family (Kearney & Silverman, 

1995).  

Current study 

 The current problematic school absenteeism literature has many limitations. First, and 

foremost, there is a lack of an agreed-upon definition of problematic school absenteeism in 

research or school districts (Jimerson, Burns, & VanDerHeyden, 2016; Lyon & Cotler, 2007).  

Currently used definitions range from 1% to 40% of full school days missed (Berg et al., 1993; 

Egger et al., 2003) and may include functional criteria such as impact to the student’s individual, 

family, or academic functioning (Kearney, 2008). Inconsistent definitions of problematic school 

absenteeism have led to problems within the literature including complicated or counteracting 

interpretations of findings, difficulty identifying the severity of the problem, and problems 

identifying solutions (David et al., 2018; Kearney & Graczyk, 2014; Maynard et al., 2015). Lack 

of consistent definitions has also led to problems with the utility of problematic school 

absenteeism research for mental health professionals including complicated, and often 

counteracting, early identification systems and an inability to access effective treatments or 

interventions (David et al., 2018; Maynard et al., 2015). Further, current definitions of 

problematic school absenteeism in the literature lack utility for school personnel and are not used 

by school districts (Attendance Works, 2016; National Center for School Engagement, 2005; 

Schanzenbach et al., 2016; Spruyt et al., 2016; U.S. Department of Education Office of Safe and 

Drug-Free Schools, 2007). MTSS and other data-based program modification models require 

specific and measurable definitions of problems and levels of severity.  

Second, the current school absenteeism research lacks attention to the impact of family 

environment and youth psychopathology factors on school absenteeism. Despite the well-
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documented impact family environment has on youth functioning and academic achievement 

(Morrongiello & Corbett, 2013), schools often do not involve families in the MTSS process 

unless involvement is legally required due to a lack of resources and concerns about the school’s 

ability to meet family needs (Kelly et al., 2018). Further, there is a lack of research directly 

linking the family environment to problematic school absenteeism. Available research has 

utilized only clinical populations (Bahali, Tahiroglu, Avci, & Seydaoglu, 2011) and worked to 

identify family process variables (G. Melvin, Carless, Melvin, Tonge, & Newman, 2015), 

subtypes of families of youth who refuse school (Kearney & Silverman, 1995), or the function of 

one’s school refusal behavior (Kearney & Silverman, 1996). Similarly, youth with problematic 

school absenteeism often display internalizing and externalizing symptoms (Crawley et al., 2014; 

Park et al., 2015) and diagnoses (Kearney, 2016). Research has well-documented the negative 

impact of mental health difficulties to academic achievement (Macklem, 2014), the lack of 

access to mental health services, the increased need for mental health care in school (Kathleen 

Ries Merikangas et al., 2011), and the efficacy of school-based universal mental health 

screenings (Stiffler & Dever, 2015). Despite this, schools are slow to implement universal mental 

health screenings due to concerns about their ability to meet student needs and the lack of clearly 

identified treatment, referral, and follow-up protocols (Garzona et al., 2018; Husky, Sheridan, et 

al., 2011). 

Third, populations and sample sizes limit current school absenteeism research. The 

majority of the research in this area focuses on clinical populations with small sample sizes and 

lack the inclusion of minority groups (Gill & Redwood, 2013; Haight, Kearney, Hendron, & 

Schafer, 2011; Kearney & Albano, 2004; Low, Cui, & Merikangas, 2008). This limitation is 



 39 

problematic for the generalization of findings, selection bias, and potential for false-positive 

findings (Low et al., 2008).  

Finally, traditional parametric statistical approaches limit the findings of school 

absenteeism research. Traditional parametric approaches lack the ability to simultaneously 

analyze the role of multiple risk factors or different types of risk factors (Rizzo, Chen, Fang, 

Ziganshin, & Elefteriades, 2014; H. Zhang & Singer, 2010), efficiently address missing data 

(Kang, 2013), and decrease the adverse effects of multicollinearity (Yoo et al., 2014). These 

traditional approaches have been utilized to identify relevant risk factors but have been unable to 

reveal the interactions between these risk factors (Kiernan, Kraemer, Winkleby, King, & Taylor, 

2001). The identification of high-risk groups or individuals is essential for the application of 

MTSS and may decrease the treatment costs associated with long-term symptoms (Bates, Saria, 

Ohno-Machado, Shah, & Escobar, 2014). 

The current study aimed to address this need by supporting a precise definition of 

problematic school absenteeism and identifying specific levels of severity based on family 

environment and youth psychopathology risk factors to inform multi-tiered systems of support 

(MTSS). MTSS provided the theoretical framework to identify more pristine distinctions of 

problematic school absenteeism among the tiers.  

Study one reviewed the current literature and utilized MTSS as a theoretical framework 

to identify more pristine distinctions of problematic school absenteeism among the tiers. Results 

have important implications for increasing the clarity and utility of early assessment and 

intervention methods for youth with problematic school absenteeism, particularly methods that 

utilize the MTSS framework. Results provide school-based personnel with specific guidelines for 
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assessing problematic school absenteeism, categorizing students into tiers based on their level of 

severity, and employing interventions specific to each tier. 

Study two of the current study aimed to address these problems by identifying the most 

relevant family environment risk factors among youth with problematic school absenteeism and 

categorizing students into the MTSS tiers based on their level of severity. Results of the current 

study provide school-based personnel with specific guidelines for the interpretation of early 

absenteeism and family environment screening data, thereby allowing students to efficiently be 

categorized into one of the MTSS tiers for intervention. Results of the current study also add to 

the relatively small literature base linking family environment to problematic school absenteeism 

and provide family-based mental health providers with profiles of families at high risk of having 

a youth with problematic school absenteeism. 

Study three of the current study aimed to address this problem by identifying the most 

relevant youth psychopathology risk factors among youth with problematic school absenteeism 

and categorizing students into the MTSS tiers based on their level of severity. Results of the 

current study provide school-based personnel with specific guidelines for the interpretation of 

early absenteeism and youth mental health screening data, thereby allowing students to 

efficiently be categorized into one of the MTSS tiers for intervention. 

Studies two and three utilized ensemble analysis to identify youth at the highest risk of 

problematic school absenteeism (i.e., dependent variable) based on youth psychopathology and 

family environment risk factors (i.e., independent variables). The following section outlines 

ensemble analysis.  

Analyses.  
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Ensemble analysis. Ensemble analysis is the combination of multiple algorithmic models 

(i.e., classifiers) to produce one model that has been applied to the data in many different ways 

(Berk, 2006). These nonparametric methods are often referred to as algorithmic and were based 

on data mining, machine learning, and statistical learning techniques (Berk, 2006; Breiman, 

2001). Algorithmic models do not depend on a statistical model and, instead, aim to solve a 

problem directly by searching a designated dataset to identify the single best model (Dietterich, 

2007). For example, if the goal is to identify which high school students are most likely to drop 

out of school, algorithmic models will solve this problem by classifying high school students and 

identifying the highest risk subgroup. There is mounting evidence that these models outperform 

standard parametric methods, primarily due to the automation of identifying interactions and 

non-linearities and the reduction of overestimating the model’s predictive ability (Rosellini, 

Dussaillant, Zubizarreta, Kessler, & Rose, 2018). 

 Despite growing evidence supporting the performance of algorithmic models (Breiman, 

2001), there are noted weaknesses. First, large amounts of data are needed to identify the best 

model (Dietterich, 2007). Algorithmic models applied to insufficient data would produce many 

different models with the same accuracy clouding the algorithms ability to identify the best 

model (Dietterich, 2007). Second, algorithmic models are preprogrammed to solve specific 

problems within a specific dataset but are unable to make adjustments to the algorithm causing it 

to become stuck in local optima and inaccurately identify a best-fitting model (Dietterich, 2007). 

Finally, these models are preprogrammed to identify a model in a training sample and will stop 

searching when a model that fits the data has been identified likely leading the algorithm to 

ignore other potential better models (Dietterich, 2007). 
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 Ensemble analysis advances algorithmic models in many ways including the reduction or 

elimination of the three main problems described above. Primarily, ensemble analysis addresses 

these problems by averaging the models of many different algorithmic models (i.e., classifiers) to 

identify one model that best fits the sample (Berk, 2006; Dietterich, 2007). Each of the 

algorithmic models (i.e., classifiers) are also employed at many different starting points in the 

data to decrease bias in their application and avoid becoming stuck in local optima (Dietterich, 

2007). Instead of identifying one model and stopping the search, ensemble analysis continues to 

identify all possible models that fit the training sample (Dietterich, 2007). Overall, ensemble 

analysis employs many different algorithmic models (i.e., classifiers) simultaneously to identify 

one model that best fits the data.  

Ensemble analysis is strikingly similar to everyday decision making in that before 

making significant decisions consultation with others often occurs (Polikar, 2012). For example, 

if one was asked to choose a hotel for their vacation, it is likely that they will ask people whom 

they know traveled to the area or read the reviews of other travelers and take into account all of 

this information before making a final decision. One would not only take the advice of one 

person without checking other information sources. The goal of ensemble analysis is similar in 

that one final model is selected by evaluating the models of multiple algorithmic methods (i.e., 

classifiers) with similar bias and averaging the responses to reduce variance (Breiman, 1998; 

Kuncheva, 2002; Polikar, 2012; Woods, Philip Kegelmeyer, & Bowyer, 1997; Zhou, 2009).  

Classifier fusion is the method in which classifiers are combined (Polikar, 2012). In 

general, classifier fusion assumes each classifier (i.e., algorithm) is equally experienced and, 

therefore, is given equal weight (Kuncheva, 2002). Classifiers are considered to be competitive 

as only one model will be selected from one classifier (Kuncheva, 2002). There are many 
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different classifier fusion methods including random forests, bagging, boosting, and stacking 

approaches that are commonly used in ensemble analysis (Polikar, 2012; Zhou, 2009; Figure 5). 

Each of these methods is reviewed below.   

 

 

 

Figure 5. Components of ensemble analysis.   

 

 

Bagging. Bootstrap Aggregation or bagging is the first and most simple ensemble method 

(Breiman, 2004; Zhang & Ma, 2012). Bagging is a simple algorithm aimed to decrease variance 

in the model and overfitting (DeFilippi, 2018). Bagging follows these steps, (1) select a random 

sample of n (number of observations) with replacement data, (2) employ a large number of 

classification trees from bootstrap samples, (3) do not prune the trees, (4) total the number of 

times each case is classified in each category, and (5) assign each case to the category with the 

largest total (Berk, 2006). In other words, each case is assigned to the category it most frequently 

appears in (i.e., majority voting) among the unpruned classification trees (Zhou, 2009; Figure 6).  
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Figure 6. Bagging steps.    

 

 

Bagging solves classification methods’ (i.e., classification and regression tree) overfitting issues, 

but the final output does not provide a tree model to allow for interpretations of individual 

predictors as is provided by classification and regression trees (Berk, 2006). Instead, bagging is 

an algorithmic model (Breiman, 2001) in that bagging is not a causal model and instead, the 

model identifies the link between one or more inputs (Berk, 2006).  

Random Forests is an algorithmic modeling procedure based on bagging algorithms.  

Breiman (2001) defined random forests as “a classifier consisting of a collection of tree-

structured classifiers {h(x,Qk), k = 1,...} where the {Qk} are independent identically distributed 

random vectors, and each tree casts a unit vote for the most popular class at input x.” (p. 6). In 

other words, random forests are based upon a random sample of predictors differentiating this 

procedure from bagging which uses all predictors. Random forests follow these steps (1) employ 

a large number of trees from bootstrap samples, (2) before splitting each node, select a random 

sample of predictors, (3) split the node from the random sample of predictors only, (4) repeat 

until stopping criteria is met, (5) do not prune the trees, (6) total the number of times each case is 
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classified in each category, and (7) assign each case to the category with the largest total (Berk, 

2006).  

 Boosting. Boosting refers to a group of algorithms including AdaBoost, the most famous 

boosting algorithm, that aims to decrease bias in the model (DeFilippi, 2018; Freund & Schapire, 

1997). Similar to other methods, boosting is a forward stage wise additive model but it expands 

upon this process by using the entire data set at each stage or split (Berk, 2006). In general, 

boosting takes a weak algorithm, “boosts” its performance, and creates a strong algorithm (Berk, 

2006; Freund & Schapire, 1997). Boosting follows these steps (1) all training examples are 

assigned equal weight, (2) a base learner is generated from the base learning algorithm, (3) all 

models are tested using the training examples, (4) the incorrectly classified examples are 

weighted at an increasing level, (5) another base learner is generated from the training data set 

using the base learning algorithm, (6) the process is completed for multiple rounds, (7) the final 

learner is selected by a weighted vote of the base learners (Zhou, 2009; Figure 7). Boosting 

outputs are similar to bagging outputs and include confusing tables, error rates, and predicted 

classifications (Berk, 2006). In other words, boosting combines inadequate algorithms to create 

an accurate prediction (Freund & Schapire, 1997).  
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Figure 7. Schematic of AdaBoost. Classifiers are trained on weighted versions of the dataset, and 

then combined to produce a final prediction. Reprinted from “The elements of statistical 

learning: Data mining, inference, and prediction” by T. Hastie, R. Tibshirani, & J. Friedman, 

2009, New York: Springer Series in Statistics. Copyright 2009 by the Springer Series in 

Statistics. Reprinted with permission.  

 

 

 Stacking. Stacked generalization or stacking aims to improve the predictive ability of the 

classifier by blending all predictions into one final prediction (DeFilippi, 2018). Stacking is an 

improved, and more sophisticated, form of cross-validation (Wolpert, 1992). Stacking differs 

from bagging and boosting in that it weights nonconforming models differently based on the 

models performance in reference data instead of relying on agreement (i.e., voting) and it 

combines different types of classifiers that are likely, not correlated instead of combining similar 

classifiers (Healey et al., 2018; Priore, Ponte, Puente, & Gómez, 2018).  
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Figure 8. Stacking steps.    

 

 

Stacking occurs in the following steps (1) individual learners are created from the 

training data with different algorithms, (2) each learner identifies a prediction, (3) the predictions 

are combined in a new dataset, the meta-learner, and (4) the final model is fit to the new dataset 

(DeFilippi, 2018; Ting & Witten, 1997; Zhou, 2009; Figure 8).  

Analyses Included in Ensemble Analysis. Ensemble analysis can include many different 

statistical methods based upon the aim of the study or the needs of the researcher. The present 

study will utilize Chi-square adjusted interaction detection (CHAID), support vector machines, 

and neural network analyses. Each of these analyses are described in detail below.  

Chi-Square Automatic Interaction Detection. Chi-square automatic interaction detection 

(CHAID), a type of automatic interaction detection (Fielding & O’Muircheartaigh, 1977), is a 

parametric recursive partitioning method (Lin, Noe, & He, 2006). CHAID narrows a population 

into homogenous subgroups based on a common categorical characteristic (i.e., risk factor; Kass, 

1980). CHAID can be thought of as describing or depicting interactions among multiple risk 

factors by producing a multilevel output resembling a tree (Figure 9; Lin et al., 2006).  
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Figure 9. Key terms for classification tree analysis. Reprinted from “The relation of student 

behavior, peer status, race, and gender to decisions about school discipline using CHAID 

decision trees and regression modeling.” By S. Horer, G. Fireman, & E. Wang, 2010, Journal of 

School Psychology. Copyright 2010 by the Society for the Study of School Psychology. 

Reprinted with permission.  

 

 

CHAID’s algorithm requires a categorical dependent variable in order to begin the 

process (Song & Lu, 2015). Groups and subgroups are referred to as a “node” (Figure 9; Lemon, 

Roy, Clark, Friedmann, & Rakowski, 2003). The tree starts with the entire sample in a “parent 

node” and is split into branches forming new “child nodes” (Byeon, 2018). Independent 

variables are referred to as a “splitting variable” or “input variable” and can be either categorical 

or continuous (Lemon et al., 2003; Song & Lu, 2015). The CHAID algorithm utilizes chi-

squared tests as the “splitting criterion” to determine the most accurate division at each split 

without restricting the number of branches (Horner, Fireman, & Wang, 2010). Branches are 

formed to create homogenous nodes that are exhaustive and differ significantly from other nodes 

in the branch based on the chi-square statistic (Kass, 1980; Merkle & Shaffer, 2011). The process 

continues until stopping rules are met. Stopping rules ensure the tree does not become too large 

or continue to split despite lack of statistical interpretability (Lemon et al., 2003). CHAID’s 
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algorithm employs four stopping rules (1) the p-value of the split must not exceed the identified 

maximum (i.e., 5%); (2) the number of levels must not exceed the identified maximum; (3) the 

minimum number of cases included in a parent node must be met; (4) the minimum number of 

cases to be included in a child node must be met (Ritschard, 2010). CHAID is able to efficiently 

handle missing data by classifying missing values as a distinct category that can be analyzed in 

the same way as other categories (Song & Lu, 2015).  

Neural Networks. Neural networks is a classification technique that utilizes a set of 

algorithms to recognize patterns in data (Biem, 2014; Skymind, 2019). The goal of neural 

networks are to efficiently cluster and classify unlabeled data for interpretation (Skymind, 2019). 

Neural networks are based upon connectionist models that model parts of human perception, 

cognition, behavior, learning processes, and memory (Hong, 1988). Neural networks are 

categorized by the following four concepts (1) neuron model describes how one unit in the 

network causes an output and describes the units role in the larger network, (2) architecture maps 

the connection between units, (3) data encoding policy describes how input data are represented 

in the network, (4) training algorithm estimates the optimal weights of each unit (Biem, 2014). 

Neural networks is best used for (1) modeling nonlinear systems, (2) data that will continue to be 

available, (3) models that constantly need updated, (4) unexpected changes in input data, and (5) 

situations that do not prioritize models that are easily interpretable (MathWorks, 2016).  
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Figure 10. Neural network steps in a single node.     

 

 

Neural networks’ algorithms use the following steps (Figure 10), (1) inputs are weighted 

to increase or decrease the importance of each input, (2) a node combines data from the weighted 

inputs and assigns significance to each input, (3) the algorithm determines if the node should 

progress by either activating or not activating the node (4) if the node is activated, a final output 

is identified (Skymind, 2019). Each node can be compared to a neuron in that they are either 

activated or not based on the relevance of the node to overall data (Skymind, 2019).  

 

 

 

Figure 11. Neural network row.   
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Each node is then compared to other nodes in the layer based upon the combined weight 

and a final output is selected (Figure 11; Skymind, 2019). One row’s output becomes the next 

row’s input and the process continues until all rows have been presented to the algorithm 

(Skymind, 2019). Each row of nodes includes an input layer, hidden layer, and output layer 

(Shah, 2017). Neural networks can include up to three layers of nodes. 

Support Vector Machines. Support vector machines (SVM) is a learning machine that 

generalizes information learned from training data to make predictions for novel data (Campbell 

& Ying, 2011). To classify data, SVM finds the hyperplane that separates two classes of data 

with the best hyperplane being one with the largest margin between the classes (MathWorks, 

2016). SVM relies on the principle of structural risk minimization that states “for any given 

classification task, with a certain amount of training data, generalization performance is solely 

achieved if the accuracy on the particular training set and the capacity of the machine to pursue 

learning on any other training set without error have a good balance” (Preuss, 2014b, pg. 2). 

SVM is best used with data that (1) has only two classes, (2) is nonlinearly separable and high-

dimensional, and (3) requires an accurate and easy to interpret classifier (MathWorks, 2016).  
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Figure 12. The classifier learns the associations between the training samples and their 

corresponding classes and is then calibrated on the validation samples. The resulting inference 

engine is subsequently used to classify new test data. The validation process can be omitted, 

especially for relatively small data sets. The process is subject to cross-validation, in order to 

estimate the practical prediction accuracy. Reprinted from “Introduction.” By C. Stoean & R. 

Stoean, 2014, in “Support vector machines and evolutionary algorithms for classification: Single 

or together?”. Copyright 2014 by Springer International Publishing. Reprinted with permission.  

 

 

SVM uses the following steps (Figure 12), (1) during the training phase, an identified 

classifier (e.g., algorithm) learns with associations the training data and the output, (2) during the 

testing phase, the obtained inference engine uses each test sample to predict its class, (3) the 

accuracy of the prediction is calculated by identifying the percent of cases that were labeled 

correctly, (4) cross-validation estimates the predictive accuracy of the model, and (5) the 

generalization ability of the model is identified by averaging the test prediction accuracy over 

cross-validation rounds (Preuss, 2014a).  
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Application of Ensemble Analysis. Ensemble and similar analysis has been primarily 

used in hard sciences (Berk, 2006). For example, ensemble analysis has been used to predict 

traffic volume (Xiao et al., 2019) and examine the security of a power system (Zhukov et al., 

2019). Similarly, ensemble analysis is beginning to be applied to social science research. 

Ensemble analysis has been applied to improving the accuracy of tweet translations into Arabic 

(Abdelaal, Elmahdy, Halawa, & Youness, 2018), predicting romantic desire among individuals 

participating in speed-dating (Joel, Eastwick, & Finkel, 2017), and modeling student satisfaction 

with humanities courses (Corduas & Piscitelli, 2017). Ensemble analysis is also gaining 

popularity in medical and behavioral health research. For example, ensemble analysis was used 

to predict the incidence of post-traumatic stress disorder diagnoses after a hurricane (Rosellini et 

al., 2018), predict neuroblastoma patient outcomes (Cornero et al., 2012), and model ICD-10 

diagnosis from clinical data records (G. Zhang et al., 2015).  

 The current study used ensemble analysis to identify the best fitting model to predict 

specific levels of problematic school absenteeism severity based on family environment and 

youth psychopathology risk factors. The nonparametric nature of ensemble analysis is meant to 

generate hypotheses and not to test hypotheses. Therefore, the available literature addressing 

youth psychopathology and family environment risk factors of problematic school absenteeism 

informed hypotheses of study two and study three. 

Hypotheses. Study one reviewed the current literature to identify more pristine 

distinctions of problematic school absenteeism among the MTSS tiers. Hypothesis one is that 1% 

of full school days missed (e.g., 1.8 school days) will be the best cutoff for Tier 1 interventions. 

Previous research has demonstrated the importance of preventative interventions (Olson, 2013), 

in part, due to the adverse effects of relatively few days missed (Ingul et al., 2012; Skedgell & 
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Kearney, 2016). Hypothesis two is that 3% of full school days missed (e.g., 5.4 school days) will 

be the best cutoff for Tier 2 interventions. There is a lack of research on the 3% cutoff as only 

one study utilized this cutoff (Fornander, 2018). Hypothesis three is that 10% of full school days 

missed (e.g., 18 school days) will be the best cutoff for Tier 3 interventions. Previous research 

has identified the 10% cutoff as an appropriate definition for Tier 3 (Balfanz & Byrnes, 2012; 

National Center for Education Statistics, 2016). 

Study two aimed to address these problems by identifying the most relevant family 

environment risk factors among youth with problematic school absenteeism and categorizing 

students into the MTSS tiers based on their level of severity. Hypothesis four is that level of 

organization will be the most relevant family environment risk factor for youth at the highest risk 

of displaying problematic school absenteeism. Research addressing the association between 

family environment and problematic school absenteeism is lacking. Of the available research, 

families defined as structure-oriented or with increased level of organization were associated 

with an increased risk of youth eating disorders and trichotillomania and are overrepresented in 

mental health clinics and the juvenile justice system (Felker & Stivers, 1994; Keuthen, Fama, 

Altenburger, Allen, & Pauls, 2013; Moos & Moos, 1976; Scoresby & Christensen, 1976). 

Study three aimed to address this problem by identifying the most relevant youth 

psychopathology risk factors among youth with problematic school absenteeism and categorizing 

students into the MTSS tiers based on their level of severity. Hypothesis five is that major 

depression will be the most relevant internalizing symptom for youth at the highest risk of 

displaying problematic school absenteeism, and separation anxiety symptoms will be the second 

most relevant internalizing symptom. Previous research has found youth with problematic school 

absenteeism display symptoms of major depression (Ek & Eriksson, 2013; Haight et al., 2011; 
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Wood et al., 2012) and separation anxiety (Hughes, Gullone, Dudley, & Tonge, 2010; Maynard 

et al., 2015).  
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Abstract 

School attendance is an important foundational competency for children and adolescents, and 

school absenteeism has been linked to myriad short- and long-term negative consequences, even 

into adulthood.  Many efforts have been made to conceptualize and address this population 

across various categories and dimensions of functioning and across multiple disciplines, resulting 

in both a rich literature base and a splintered view regarding this population.  This article (Part 1 

of 2) reviews and critiques key categorical and dimensional approaches to conceptualizing 

school attendance and school absenteeism, with an eye toward reconciling these approaches (Part 

2 of 2) to develop a roadmap for preventative and intervention strategies, early warning systems 

and nimble response, global policy review, dissemination and implementation, and adaptations to 
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future changes in education and technology.  This article sets the stage for a discussion of a 

multidimensional, multi-tiered system of supports pyramid model as a heuristic framework for 

conceptualizing the manifold aspects of school attendance and school absenteeism. 

Introduction 

School attendance and successful graduation from high school or its equivalent have long 

been recognized as crucial foundational competencies for children and adolescents.  Strong 

school attendance and successful graduation are closely linked to broad, positive outcome 

variables such as enhanced lifetime earning potential and economic empowerment (Balfanz, 

2016; Balfanz et al., 2014), opportunities for higher education and other avenues of adult and 

career readiness (Darling-Hammond, Wilhoit, & Pittenger, 2014), improved health and reduced 

death rates (Allison & Attisha, 2019; Freudenberg & Ruglis, 2007), better civic engagement and 

outcomes (DePaoli, Balfanz, Atwell, & Bridgeland, 2018; Zaff et al., 2017), and critical 

thinking, risk aversion, and life skills that impact positive economic and health-based choices 

(Brunello & De Paola, 2014).  In related fashion, strong school attendance and successful 

graduation may enhance quality of life and buffer against negative mental and physical health 

outcomes (Lee et al., 2016; Rumberger, 2011; US Census Bureau, 2012). 

Conversely, school attendance problems, including school absenteeism, have long been 

recognized as a critical developmental challenge and limiting factor for children and adolescents 

(Kearney, 2016).  School attendance problems in various forms have been linked to a wide array 

of academic deficiencies such as reduced educational performance, lower reading and 

mathematics test scores, fewer literacy skills, grade retention, and school dropout (Bridgeland, 

Dilulio, & Morison, 2006; Burton, Marshal, & Chisolm, 2014; Smerillo, Reynolds, Temple, & 

Ou, 2018).  School attendance problems are closely linked as well to internalizing behavior 
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problems such as anxiety, depression (including issues of suicidal behavior and bereavement), 

and social isolation (Ek & Eriksson, 2013; Finning et al., 2019; Knollman, Reissner, & 

Hebebrand, 2019; Miller, Esposito-Smythers, & Leichtweis, 2015; Pompili et al., 2013) as well 

as externalizing behavior problems such as elevated alcohol, tobacco, marijuana, and other drug 

use (Henry & Huizinga, 2007; Holtes et al., 2015), risky sexual behaviors (Allison & Attisha, 

2019), oppositional defiant and conduct problems (Wood et al., 2012), impaired social 

functioning and poor relationships with peers (Gonzálvez et al., 2019; Havik, Bru, & Ertesvag, 

2015), and involvement with the juvenile justice system (Anderson et al., 2016).  School 

attendance problems are connected to myriad adverse childhood experiences such as trauma, 

school violence and victimization, and medical problems as well (Berendes, Andujar, Barrios, & 

Hill, 2019; Emerson et al., 2016; Hsu, Qin, Beavers, & Mirabelli, 2016; Hutzell & Payne, 2012; 

McLean, Peterson, King, Meece, & Belongia, 2017; Ramirez et al., 2012; Stempel, Cox-Martin, 

Bronsert, Dickinson, & Allison, 2017). 

School attendance problems have long-lasting effects even into adulthood, including 

enhanced risk for marital and psychiatric problems (Hibbett & Fogelman, 1990), non-violent 

crime and substance use (Henry, Knight, & Thornberry, 2012; Rocque, Jennings, Piquero, 

Ozkan, & Farrington, 2017), and occupational problems and economic deprivation (Bridgeland 

et al., 2006; Christenson & Thurlow, 2004).  Students who drop out of high school are 24 times 

more likely than graduates to experience 4 or more negative life outcomes (Lansford, Dodge, 

Pettit, & Bates, 2016).  The societal outlays for school dropout are substantial as well, including 

elevated economic costs due to increased crime, incarceration, public assistance, unemployment, 

and medical coverage as well as reduced mobility, tax revenues, earnings, entrepreneurship, and 

productivity (Latif, Choudhary, & Hammayun, 2015; Levin, 2017; Marchbanks et al., 2014). 



 59 

School attendance problems have no consensus definition (see later section) but lack of 

school attendance as well as permanent school dropout have been identified as widespread global 

phenomena with substantial prevalence rates, especially among developing areas such as sub-

Saharan and northern Africa and southern and western Asia. Nearly one of five children and 

adolescents worldwide (17.8%) are out of school, a rate more than doubled among upper 

secondary school-age youth (36.3%) and elevated among girls and those in low-income 

countries. Even in Europe and North America, the out-of-school rate is 4.3% (UNESCO, 2018).  

In the United States, the high school graduation rate is 84.1%, the status dropout rate is 6.1%, 

and the chronic absenteeism rate (federally defined as missing 15+ (8.3%) days of school in one 

academic year) is 16.0%, a rate elevated among diverse youth, students with disabilities, and 

high school students (21.1%) (DePaoli et al., 2018; National Center for Education Statistics, 

2018; US Department of Education, 2019).  As such, school attendance is often viewed as a key 

linchpin for prevention science and for curbing mental health and other problems in children and 

adolescents worldwide (Catalano et al., 2012; Kieling et al., 2011). 

The substantial impact and prevalence of school attendance and school absenteeism 

(SA/A) has led researchers across many disciplines to study these phenomena, including those in 

psychology, education, criminal and juvenile justice, social work, medicine, psychiatry, nursing, 

epidemiology, public and educational policy, program evaluation, leadership, child development, 

and sociology, among other professions (Birioukov, 2016; Elliot, 1999; Kearney, 2003).  

Research in this area has been conducted for over a century, making SA/A among the longest-

investigated issues among children and adolescents (Kearney, 2001).  This lengthy period of 

study has led to a plethora of terms and approaches to describe this population, which has led 

simultaneously to a rich literature base but also to considerable splintering across disciplines and 
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thus a lack of consensus with respect to defining, conceptualizing, classifying, assessing, and 

addressing SA/A (Kearney, 2016, 2019).  Such splintering has likely led to dissemination and 

implementation barriers regarding empirically-based strategies for SA/A (Arora et al., 2016). 

Evolution of Concepts in SA/A 

The purpose of this article is to draw upon this rich and disparate literature base to begin 

to reconcile various contemporary approaches to SA/A and to develop a heuristic framework for 

conceptualizing this population moving forward.  Such a framework is necessary given several 

needs: to promote school attendance as much as to reduce absenteeism, to respond nimbly to 

emerging school attendance problems, to inform policy review, to provide general applicability 

to various jurisdictions and cultures, and to adapt to future and rapid changes in education and 

technology.  As such, a contemporary framework for SA/A will need to be inclusive, flexible, 

applicable, educational, and pliable. 

Efforts to conceptualize SA/A are manifold, in part because of the heterogeneous nature 

of the constructs and because risk factors for these problems are multilayered and myriad (van 

der Woude, van der Stouwe, & Stams, 2017).  However, these conceptualization efforts can be 

grouped generally into categorical and dimensional approaches.  Historical efforts to 

conceptualize SA/A began with categorical terms, dichotomies, and distinctions to try to sort 

youth with school attendance problems into defined groups in an effort to better understand the 

mechanisms underlying such behaviors (Kearney, 2001).  Categorical approaches broadly aim 

for within-category homogeneity and between-category qualitative differences (De Boeck, 

Wilson, & Acton, 2005), goals that have been somewhat elusive for SA/A (DiBartolo & Braun, 

2017). 
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Other efforts to conceptualize SA/A have focused more on dimensional approaches to 

better reflect the heterogeneity, fluidity, scalability, and complexity of these constructs (Kearney 

& Silverman, 1996).  Such approaches, described in more detail in later sections, focus on fluid 

or latent constructs such as attendance profiles, absenteeism severity, risk factors, functions, and 

interventions that can be arranged along various spectra or continua (Maynard, Salas-Wright, 

Vaughn, & Peters, 2012).  Dimensional approaches generally aim for within-category 

heterogeneity and between-category quantitative differences (De Boeck, Wilson, & Acton, 

2005), goals that can also be challenging for SA/A (Heyne, Gren-Landell, Melvin, & Gentle-

Genitty, 2019). 

The juxtaposition of categorical and dimensional approaches to mental health and related 

challenges has led historically to strong debates about which approach best characterizes a given 

phenomenon or set of phenomena such as mental disorders (Widiger & Samuel, 2005).  Such 

debate is intensified by the fact that specific taxa for personality and psychopathology are 

difficult to distinguish even though clinicians and educational and mental health agencies often 

rely on categorical approaches (Haslam, Holland, & Kuppens, 2012).  In addition, mental 

disorders and psychopathological constructs can be categorically different from normal function 

in some cases (e.g., psychotic or eating disorder) but not in other cases (e.g., personality disorder, 

worry), further muddying the classification waters (Ruscio & Ruscio, 2008). 

Coghill and Sonuga-Barke (2012) described several avenues for reconciling this debate 

with respect to mental health and other challenges in children and adolescents.  These avenues 

include replacing categorical with dimensional approaches at various levels or utilizing a mixed 

approach whereby categories and dimensions are considered alongside one another.  With 

respect to the latter avenue, this could include allowing some phenomena to be described 
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categorically (e.g., autism, endogenous depression) and other phenomena to be described 

dimensionally (e.g., psychopathy, exogenous depression).  Or, in a mixed approach, both 

categorical and dimensional approaches could be used together within the same class of disorder 

(e.g., the category of attention-deficit/hyperactivity disorder with dimensions of inattentiveness 

and hyperactivity/impulsivity).  Coghill and Sonuga-Barke (2012) maintained that systems based 

on both categorical and dimensional approaches can coexist within a single problem by serving 

different but equally useful purposes.   

The next sections of this article (Part 1 of the review) contain brief descriptions of 

common categorical terms and distinctions as well as dimensional approaches to the study of 

SA/A.  These sections also briefly describe the advantages and disadvantages of each method.  In 

Part 2 of this review, we adopt Coghill and Sonuga-Barke’s (2012) premise that both categorical 

and dimensional approaches can be applied to a given heterogeneous construct such as SA/A 

and, indeed, that these approaches are wholly compatible with one another with respect to SA/A.  

In addition, such compatibilities may be helpful for developing a roadmap for researchers, 

clinicians, and educators to follow as they work to develop preventiative and nimble responses to 

SA/A, disseminate research work, and adapt to future changes in education and technology. 

Terminology 

As mentioned, school attendance problems have no consensus definition, in part because 

of the various terms used to describe this population from different disciplines.  This section 

provides general descriptions of common categorical terms utilized in the field, with the strong 

caveat that considerable controversy and heterogeneity remain even with respect to these 

characterizations (Kiani, Otero, Taufique, & Ivanov, 2018).  Most broadly, school attendance 

has traditionally referred to a student’s complete in-class physical presence during an academic 
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day and school absenteeism has traditionally referred to a student’s complete in-class physical 

absence during an academic day (Kearney, 2019).  School absenteeism is sometimes categorized 

as excused or unexcused (or authorized or unauthorized) in nature, referring to absence due to 

some legitimate reason such as illness or absence due to some illegitimate reason such as peer 

association outside of school (Gottfried, 2009).  School attendance problems, which can include 

school absenteeism, refer generally to either a collection of different kinds of absences (e.g., late 

to school/tardiness; skipped class or missed time of day) or to general difficulties attending or 

getting to school that can involve a wide array of individual and contextual factors (Kearney, 

2016).  School attendance problems can lead eventually to school stopout, which refers to 

temporary departure from school prior to graduation, and/or school dropout/stayout, which refers 

to permanent, premature departure from school prior to graduation (Boylan & Renzulli, 2017). 

Several terms in the literature refer generally, though not always, to youth-based school 

attendance problems, or absences initiated primarily by a child or adolescent, with the caveat that 

many different risk factor levels (e.g., parent, peer, school) apply to this population.  Truancy is 

one of the oldest terms for school attendance problems and refers generally to illegal, unexcused 

(see later section) school absenteeism.  Truancy is a term often utilized by school districts and/or 

larger entities to construct policies and definitions, such as 10 unexcused absences in a given 

semester or 15-week period, that trigger some legal, punitive, or administrative consequence 

(Sutphen, Ford, & Flaherty, 2010).  From a research perspective, truancy is often associated as 

well with delinquency, externalizing behavior problems, and social conditions such as poverty 

(Zhang et al., 2010). 

School refusal refers broadly to school attendance problems due to emotional difficulties 

such as general and social and separation anxiety, worry, distress, and sadness (Elliot & Place, 
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2019).  A related but archaic term, school phobia, refers more specifically to fear-based school 

attendance problems such as avoidance of a specific object at school or related to school (e.g., 

alarm, animal, bus) that leads to absenteeism (Inglés, Gonzalvez-Macia, Garcia-Fernandez, 

Vicent, & Martínez-Monteagudo, 2015).  School refusal behavior refers to a child-motivated 

refusal to attend school or difficulties remaining in classes for an entire day (Kearney & 

Silverman, 1990, 1996).  School refusal behavior may or may not be related to emotional distress 

about school, and thus serves as an umbrella term for constructs such as truancy and school 

refusal. 

Other terms in the literature refer to school attendance problems initiated primarily by 

entities other than the child, again with the caveat that multiple risk factor levels apply to each.  

School withdrawal refers generally to parent-initiated school absenteeism (Kahn & Nursten, 

1962; Kearney, & Fornander, 2018).  Parents or other caregivers may deliberately keep a child 

home from school for employment or child care purposes, to conceal maltreatment, to protect a 

child from perceived harm (e.g., school violence or victimization, kidnapping by an ex-spouse), 

to punish a child, or to mitigate a parent’s separation anxiety or psychopathology due to anxiety, 

depression, substance use, or other problem, among other reasons (Kearney, 2001).   

In addition, school exclusion refers generally to school-initiated absenteeism.  Such 

exclusion may involve lawful exclusionary disciplinary practices such as suspension or 

expulsion for behavior problems or for, ironically, school absenteeism (Maag, 2012).  School 

exclusion practices are often associated with zero tolerance policies regarding certain student 

behaviors, particularly those related to violence and other dangerous behavior (Theriot, Craun, & 

Dupper, 2010).  School exclusion may also involve unlawful, unclear, or more nefarious reasons 
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such as sending students (in particular special needs students) home or restricting their ability to 

attend school without official documentation (McCluskey, Riddell, Weedon, & Fordyce, 2016).   

Categorical Distinctions 

Related to these historical terms have been various broad-band and etiologically-based 

categorical dichotomies and distinctions for SA/A.  These dichotomies and distinctions have 

been generally designed to carve out groups of youth with different school attendance problems 

to help identify causal factors as well as basic treatment direction and scope (Reid, 2013). 

School refusal-truancy 

An enduring categorical dichotomy has involved school refusal-truancy, which has been 

historically based on an internalizing-externalizing behavior problem distinction (Young, Brasic, 

Kisnadwala, & Leven, 1990).  School refusal is often linked to internalizing difficulties such as 

anxiety and depression, whereas truancy is often linked to externalizing difficulties such as 

oppositional and conduct problems (Dembo, Wareham, Schmeidler, & Winters, 2016).  In 

addition, school refusal is sometimes associated with parental knowledge of a child’s 

absenteeism, whereas truancy is often tied to lack of parental knowledge (Bobakova, Geckova, 

Klein, van Dijk, & Reijneveld, 2015).  School refusal may be more associated with primary or 

early secondary grades, whereas truancy may be more associated with later secondary grades 

(Melvin et al., 2017; Pengpid & Peltzer, 2017).  School refusal may be more associated with 

certain family dynamics such as enmeshment, whereas truancy may be more associated with 

certain family dynamics such as conflict (McConnell & Kubina, 2014; Richardson, 2016). 

A main advantage of a school refusal-truancy distinction is its face validity, as some 

children are clearly anxious and thus avoidant of school whereas some adolescents refuse or 

decline to attend school without emotional difficulty and with perhaps more delinquency (Berg, 
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1997; Evans, 2000).  The dichotomy carries a significant number of disadvantages, however.  

First, numerous studies and reviews have demonstrated considerable heterogeneity within each 

construct (Inglés, Gonzalvez-Macia, Garcia-Fernandez, Vicent, & Martínez-Monteagudo, 2015).  

School refusal is linked to a wide variety of anxiety- and mood-based conditions in addition to 

fairly broad terms such as emotional distress, avoidance, malingering, dread, worry, fear, somatic 

complaints, and negative affectivity (e.g., Sibeoni et al., 2018).  In addition, truancy is a highly 

heterogeneous construct with multiple dimensions related to academic status, disability profile, 

location, race/ethnicity, activities in and out of school, individual-group-orientation, 

premediated-spontaneous, parental academic involvement, and type and number of classes 

skipped, among many other variables (Chen, Culhane, Metraux, Park, & Venable, 2016; Dahl, 

2016; Keppens & Spruyt, 2017; Maynard et al., 2017; Reid, 1999; Salzer & Heine, 2016).  

Truancy as a legal construct is also highly variably defined across many jurisdictions (Gentle-

Genitty et al. 2015).   

Second, many researchers have demonstrated substantial heterogeneity across the two 

constructs.  Both school refusal and truancy have been associated, for example, with learning and 

health difficulties, effects from bullying, social interaction problems, maltreatment, chronic 

illness, and, of course, missing school (Katz, Leith, & Paliokosta, 2016; Lum et al., 2017).  In 

addition, both constructs can be similarly influenced by broader classes of contextual factors 

related to peers, schools, and communities (Baier, 2016; Burdick-Will, Stein, & Grigg, 2019; 

Sugrue, Zuel, & LaLiberte, 2016).  Many historical and statistical studies have also demonstrated 

either considerable overlap of school refusal and truancy and/or other, large unclassified 

categories (Atkinson, Quarrington, Cyr, & Atkinson, 1989; Berg et al., 1985; Bools, Foster, 

Brown, & Berg, 1990; Cooper, 1986; Dube & Orpinas, 2009; Torma & Halsti, 1975).  Many 
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researchers historically have gravitated toward conclusions of dimensionality to describe this 

population (e.g., Hersov, 1985; Kolvin et al., 1984; Rubenstein & Hastings, 1980). 

More specifically, meta-analytic and large-scale studies reveal broad, extensive overlap 

of internalizing and externalizing symptoms, absence types, and interventions for school refusal 

and truancy (Egger, Costello, & Angold, 2003; Finning et al., 2018, 2019; Maynard et al., 2012, 

2018).  Neither pathognomonic nor reliable assident factors associated with the constructs have 

been identified, which often leads to interchangeable use of the terms in research and clinical 

practice (Brandibas, Jeunier, Clanet, & Fourasté, 2004).  Contemporary notions of school refusal 

and truancy address these concerns to a degree (Heyne, Gren-Landell et al., 2019), though 

commonalities remain, such as tantrums, physical symptoms, reluctance or refusal to attend 

school, depression, sleep problems, variability in school attendance, and parental desire to have a 

child back in school. 

Third, in related fashion, a school-refusal truancy distinction tends to erode in value at the 

point of clinical presentation.  In the modern technological age, many parents are informed 

immediately of a child’s school absence, diminishing the value of distinguishing absenteeism 

based simply on parental knowledge or even consent (Smythe-Leistico & Page, 2018).  Some 

parents are also skilled at securing medical notes or other methods to induce schools to record 

absences as excused in nature (Chang et al., 2016).  In addition, many children initially miss 

school due to anxiety but are later drawn to the amenities of staying home, and many adolescents 

who have been out of school for some time experience spikes in anxiety upon initial 

reintegration to school.  Indeed, many youth described with school refusal or truancy traverse 

frequently between these groups (Birioukov, 2016).  Clinicians are thus often faced with the 
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challenge of choosing the best intervention for a child’s school attendance problems that appear 

to be of various types (Kearney & Albano, 2018; Maynard et al., 2013). 

Finally, the concept of truancy carries with it many negative connotations that are not 

necessarily ascribed to concepts such as school refusal.  Truancy is often used as a legal or 

institutional term, whereas school refusal is not, which may create stigmatization problems 

(Campbell & Wright, 2005; Strand, 2014).  Indeed, anxiety-related school refusal may be viewed 

more sympathetically by school staff than truancy (Finning et al., 2019) and the label of truancy 

is often associated with willful, deliberate, deviant behavior (Birioukov, 2016; Lyon & Cotler, 

2007).  Educational and mental health agencies often emphasize the concept of truancy (in some 

form) in their definitions and discussions of problematic school absenteeism, but rarely that of 

school refusal or related terms (Gleich-Bope, 2014).   

In related fashion, the overall concept of truancy has been criticized as representing more 

of a punitive paradigm that disproportionately affects vulnerable and at-risk youth and that 

contributes to the school-to-prison pipeline (Mallett, 2016; Nauer, 2016).  The concept of truancy 

also tends to be associated with lower socioeconomic youth who experience barriers to attending 

school such as domestic and neighborhood violence, unstable housing conditions, lack of school 

supplies, housing and transportation problems, and safety concerns coming to school (Flaherty, 

Sutphen, & Ely, 2012; Gottfried, 2017).  Others view truancy less as an aberrant behavior than as 

a form of systemic discrimination that reflects the uneven distribution of social goods and 

opportunities within a larger society (Yang & Ham, 2017); others see truancy as deliberate 

student resistance against an unfair academic system (McIntyre-Bhatty, 2008). 
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Excused-unexcused absences 

Many school districts and some researchers also utilize an excused-unexcused absences 

dichotomy to categorize school attendance problems (Hough, 2019).  Key advantages of this 

approach include its administrative practicality and simplicity, linkage to district and state 

policies regarding excessive absenteeism, historical connection (unexcused absences) to truancy, 

and utility in examining ratios of excused to unexcused absences (Gottfried, 2009).  In addition, 

some have found that students absent without permission display approximately twice the odds 

of engaging in risky behaviors (e.g., unintentional injuries and violence, substance use, sexual 

behaviors) than students absent with permission (Eaton, Brener, & Kann, 2008).  Others have 

found that anxiety and depression symptoms are good predictors of unexcused absences in 

sexual minority youth (Burton, Marshal, & Chisolm, 2014). 

An excused-unexcused absence dichotomy has several disadvantages, however.  

Numerous studies have illustrated ancillary problems associated with school absenteeism 

whether excused or unexcused, combine these absences when evaluating outcomes, or have 

found few differences based on this absence typology (Baker & Jansen, 2000; Morrissey, 

Hutchison, & Winsler, 2013; Redmond & Hosp, 2008; Spencer, 2009; Wood et al., 2012).  For 

example, Gottfried (2009) found that excused and unexcused absences were both significantly 

related to various demographic, academic, and behavioral variables.  Dube and Orpinas (2009) 

similarly found no difference between excused and unexcused absences across various profiles 

of youth with school attendance problems.  The fidelity of data collected by school districts in 

this regard remains problematic as well, particularly because the arbiter of whether an absence is 

excused or unexcused is typically a family member and sometimes not a parent (Birioukov, 

2016; Conry & Richards, 2018).  In addition, excused absences may include legitimate reasons 
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such as illness but also institutional or questionable reasons such as court dates, school 

suspensions, family vacations, or minor health conditions accommodated by physician notes 

(Outhouse, 2012; Reid, 2007). 

In addition, reliance on an excused-unexcused absence dichotomy, particularly within 

school districts, often delays intervention until some legal tripwire is triggered (e.g., 10 

unexcused absences in a semester).  Some have criticized this approach as a “wait to fail” 

process that can enhance risk for school dropout (Cramer, Gonzalez, & Pellegrini-Lafont, 2014; 

Kearney & Graczyk, 2014).  Indeed, the importance of early intervention for school attendance 

problems is quite clear in the literature (McCluskey, Bynum, & Patchin, 2004; Sutphen et al., 

2010).  From a clinical perspective, evaluating total amount of time missed from school for any 

reason for a particular case may be advisable (Kearney & Albano, 2018). 

School withdrawal and school exclusion 

As mentioned earlier, other categorical distinctions for school absenteeism have focused 

on parent-initiated (school withdrawal) and school-initiated (school exclusion) reasons.  Potential 

explanations for parent-initiated school withdrawal were noted earlier.  School exclusion can 

refer to disciplinary practices administered for absenteeism and other behavioral infractions, 

which usually means a child is not allowed to attend classes for a set period of time (Parker et al., 

2015).  Suspension can be in-school, meaning a child is physically in the school building but not 

in class, or out-of-school, meaning a child is not allowed on the school campus until certain 

requirements (e.g., parent conference, time away) are met.  In related fashion, expulsion refers to 

permanent, administrative separation from a particular school, which sometimes applies to very 

severe infractions and possibly absenteeism and sometimes in response to zero tolerance policies 

(Allman & Slate, 2011).  Other exclusionary practices such as detention may be utilized as well.  
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In addition, as noted earlier, others have focused on school exclusion as school-initiated absence 

that is unlawful or that represents lack of appropriate accommodations (Reid, 2010). 

A key advantage of identifying school withdrawal and school exclusion in cases of 

absenteeism involves rapid identification of non-child-based reasons for nonattendance and thus 

alternative assignment of treatment resources (e.g., toward parents or working with school 

officials) (e.g., Daniels & Cole, 2010).  However, school district policies that emphasize 

suspension and expulsion to address school attendance problems lead paradoxically to more 

dropout, delinquency, lag in academic achievement, and student involvement with the juvenile 

justice system (Monahan, VanDerhei, Bechtold, & Cauffman, 2014; Stone & Stone, 2011; Suh, 

Suh, & Houston, 2007).  In addition, school exclusion does not appear to differ among various 

clusters of youth with school absenteeism (Gallé-Tessonneau, Johnsen, & Keppens, 2019).  

Unlawful school exclusion is also vaguely defined, difficult to track, and easily reframed as 

lawful school exclusion (McCluskey et al., 2016). 

School exclusion policies also tend to be disproportionately assigned to low-income and 

diverse students (Shabazian, 2015).  As such, exclusionary disciplinary policies have come under 

harsh criticism and are increasingly being reviewed and de-emphasized in many districts 

(Curran, 2016; Perry & Morris, 2014).  Alternative responses that include greater proximity to 

school could involve sanctions such as in-school suspension and school-based community 

service as well as restorative practices such as mentoring and remediation of academic 

difficulties (Gregory, Huang, Anyon, Greer, & Downing, 2018; Haight, Chapman, Hendron, 

Loftis, & Kearney, 2014; McNeill, Friedman, & Chavez, 2016).   
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Acute-chronic 

Another common historical dichotomy has been to distinguish acute from chronic school 

absenteeism.  Though variously defined, acute cases of absenteeism often refer to those lasting 

less than one calendar year, whereas chronic cases of absenteeism often refer to those lasting 

more than one calendar year, or at least across two or more academic years (Baker & Wills, 

1978; Berg et al., 1985).  Some also distinguish between self-corrective problems lasting less 

than two weeks and acute problems lasting 2-52 weeks (Kearney & Silverman, 1996; Mauro & 

Machell, 2019).  An acute-chronic distinction has been linked as well to more immediate onset 

involving emotional distress, akin to school refusal, and more insidious onset involving conduct 

problems, akin to truancy (Pellegrini, 2007).  As such, an acute-chronic distinction is sometimes 

associated with other historical dichotomies such as Type 1-Type 2, common-induced, and 

neurotic-characterological (Kearney, 2001).   

A key advantage of an acute-chronic distinction is a quick delineation of length of an 

absenteeism problem, which can be generally associated with breadth of intervention needed to 

resolve the problem.  In general, more lengthy cases of absenteeism require more complex 

intervention and with multiple parties than less lengthy cases (Thambirajah, Grandison, & De-

Hayes, 2008).  Prognostic outcomes for youth with more lengthy absenteeism tend to be poorer 

than those with less lengthy absenteeism (Kearney, Turner, & Gauger, 2010).  An understanding 

of a child’s developmental history regarding his or her school attendance problems has 

substantial clinical value as well (Veenstra, Lindenberg, Tinga, & Ormel, 2010).  Disadvantages 

to an acute-chronic distinction include variable timelines posed by researchers and the need for 

more empirical data to support a particular timeline distinction (Balfanz & Byrnes, 2012; 

Kearney, 2003). 
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Diagnostic categories 

Other categorical distinctions with respect to school absenteeism have involved attempts 

at diagnostic groupings.  Such groupings often involve anxiety, mood, and disruptive behavior 

disorders, including some combination of these (Bernstein & Garfinkel, 1986; Kearney & 

Albano, 2004; Last & Strauss, 1990; McShane, Walter, & Rey, 2001).  Anxiety- and mood-based 

categories are sometimes clustered in some youth with school attendance problems, as are 

oppositional defiant and conduct problems (King, Heyne, Tonge, Gullone, & Ollendick, 2001).  

As such, these distinctions are sometimes applied or related to school refusal-truancy or acute-

chronic distinctions (Ek & Eriksson, 2013).  Prognosis may relate to a degree to specific 

diagnostic type in this population as well (Layne, Bernstein, Egan, & Kushner, 2003; McShane, 

Walter, & Rey, 2004). 

Diagnostic groupings are appealing to many researchers and clinicians, but considerable 

diagnostic heterogeneity is a hallmark of youth with school attendance problems (Kearney, 2007; 

Nayak, Sangoi, & Nachane, 2018).  In addition, several studies indicate that many youth with 

school attendance problems have no psychiatric diagnosis at all (Egger et al., 2003; Kearney & 

Albano, 2004).  School attendance problems are not formally listed as psychiatric disorders in 

most nomenclatures, though aspects of these problems are represented in separation anxiety 

disorder and conduct disorder (American Psychiatric Association, 2013).  As such, diagnostic 

profiles in this population have not been linked extensively to intervention recommendations. 

Summary 

Categorical and dichotomous approaches to school attendance problems have a rich 

scholarly history and have contributed substantially to the conceptualization of this population.  

In addition, such approaches are well inculcated into many legal statutes, school-based policies, 
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and research frameworks regarding school absenteeism.  Key challenges for categorical and 

dichotomous approaches to school attendance problems include the need to better account for the 

considerable heterogeneity of this population and to link specific intervention strategies to 

specific constructs.  In addition, these traditional characterizations are becoming challenged in an 

era of virtual learning, distance-based classrooms, hybrid education, blended education (e.g., 

high school with community college or vocational training), and other forms of alternative 

approaches toward graduation or career/adult readiness (see also Part 2 of this review).  

Categorical and dichotomous approaches to school attendance problems also do not generally 

focus on promoting school attendance, instead adopting more of a tertiary approach. 

Dimensional Approaches 

As mentioned earlier, researchers and others have also examined dimensional approaches 

to SA/A to try to better account for the fluidity, scalability, and complexity of these constructs.  

These dimensional approaches include a focus on conceptualizing various aspects of SA/A along 

continua or spectra to more fully capture the heterogeneity, variability, diversity, and mutability 

of this population.  General dimensions to be discussed over the next sections include definition, 

tiers of prevention/intervention, risk and contextual factors, absenteeism severity, developmental 

and school levels, and functional profiles. 

School attendance and its problems on a definitional continuum 

One of the most fundamental dimensional approaches to SA/A involves definition itself.  

This approach involves viewing school attendance and its various associated problems along a 

spectrum of panels ranging from full presence to complete absence (Figure 13).  School 

attendance, with or without challenges or problems, generally represents the left side of the 

spectrum and can include attendance with little to no difficulty, early warning signs that may 
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signal later absenteeism, school attendance under considerable distress, and morning 

misbehaviors designed to induce parental acquiescence or other responses that may eventually 

lead to absence from school (Kearney, 2019).  Common early warning signs that may signal later 

absenteeism include frequent requests to leave the classroom or to contact parents, difficulties 

attending specialized sections of a school building (e.g., gymnasium, cafeteria), difficulties 

transitioning from class to class, persistent distress, and sudden changes in grades, completed 

work, or behavior, among others (Kearney & Graczyk, 2014).   

The middle of the spectrum generally represents school attendance mixed with school 

absenteeism in some form, such as arriving late to school, missing some classes or times of day 

but not others, and periodic absences during a particular week, including early departures from 

school (Boylan & Renzulli, 2017).  The right side of the spectrum represents complete school 

absenteeism, typically for an extended period of time in the form of school stayout (including 

school disengagement) or permanently in the form of school dropout (Iachini, Petiwala, & 

DeHart, 2016).  The latter features of the spectrum account as well for the observation from 

many researchers that leaving school permanently is more of a process than an event (e.g., 

Ananga, 2011; Dupéré et al., 2015; Wang & Fredricks, 2014). 

A key advantage of a dimensional approach to defining SA/A is that it includes the 

construct of school attendance and captures the full range of possible school attendance problems 

along a spectrum (Tobias, 2019).  The spectrum allows for peri-attendance phenomena that are 

often fluid and change for a particular child over a certain time period (Chu, Guarino, Mele, 

O’Connell, & Coto, 2019; Kearney, 2019; Knollmann, Reissner, & Hebebrand, 2019).  For 

example, Pflug and Schneider (2016) found, among students with absenteeism in the past 7 days, 

that 35.0% missed a single class or part of a school day, 31.3% missed an entire day, and 33.7% 
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missed 2+ days.  In addition, the spectrum can account for the developmental history often 

surrounding SA/A in particular student, which can deteriorate over time in stages from full 

attendance to full absence (Henry, Knight, & Thornberry, 2012).  The spectrum is also largely 

atheoretical and may apply to various pathways to school dropout across countries (Lamb, 

Markussen, Teese, Sandberg, & Polesel, 2011). 

Such a dimension or spectrum allows for nimble, rapid, and real-time assessment of type 

of school attendance problem, which must be a priority for implementation models (see Part 2 of 

this review; Green et al., 2015).  The dimension can also apply to variability in absenteeism that 

can exist between children in a given classroom, between classrooms in the same school, and 

between schools (Gee, 2019).  The dimension also avoids pitfalls often associated with excused 

and unexcused absences by focusing more on type of school attendance problems and less on the 

need to establish the validity of an absence (Kearney & Albano, 2018).  The dimension can apply 

as well to various tiers of SA/A (see next section).   

Key drawbacks of the definitional spectrum include its lack of current utility in school 

districts and research studies, inability to provide information about the etiology or function of a 

school attendance problem, and lack of association with prevention or intervention protocols for 

this population (Balfanz, & Byrnes, 2018; Schildkamp, Poortman, & Handelzalts, 2016).  

Specific, operational definitions for each panel of the spectrum remain needed as well (Kearney, 

2016).  Others contend that collecting even very basic absenteeism data is challenging enough 

for many schools, and that basic data may be sufficient for at least determining which students 

are missing a substantial amount of school (Birioukov, 2016).  Still, researchers commonly 

examine school attendance problems other than full absenteeism, clinicians and others must 

initially grapple with the exterior complexity of this population, and the spectrum can be a useful 
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heuristic for understanding the full scope of school attendance and its problems across 

jurisdictions (Kearney, 2019; Keppens & Spruyt, 2017; Wegmann, & Smith, 2019). 

 

 

Figure 13.  Spectrum of school attendance and its problems 

 

 

Multi-tiered system of supports 

As noted earlier, the sheer number of disciplines associated with the study of SA/A has 

led to a plethora of intervention approaches to address this complicated population.  Such 

approaches range from (1) systemic prevention strategies developed by educators and criminal 

justice experts to promote school attendance and curb dropout, (2) clinical approaches developed 

by health professionals to address mental health and other challenges during emerging school 

absenteeism, (including aspects described in the previous section) and (3) intensive strategies 

developed by professionals in multiple disciplines to address chronic and severe absenteeism and 

potential dropout often mixed with substantial, broad contextual factors related to extreme 

psychopathology, family crises, and school and community variables (Freeman & Simonsen, 

2015; Wilson, Tanner-Smith, Lipsey, Steinka-Fry, & Morrison, 2011).  An advantage of these 

varied set of approaches is as much a focus on promoting school attendance and preventing 
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school attendance problems as on ameliorating existing cases of school absenteeism (Ekstrand, 

2015). 

Kearney and Graczyk (2014; see also Kearney, 2016) advocated the use of multi-tiered 

system of support principles to arrange extant strategies to boost school attendance and to 

address school absenteeism at different severity and risk/contextual factor levels.  Multi-tiered 

system of support (MTSS) models have been utilized in education for many years and typically 

weave the academic focus of Response to Intervention (RtI) models and the behavioral and 

social focus of positive behavior intervention supports (PBIS) or program-wide positive behavior 

supports (PWPBS) into one cohesive model to best address all student needs (Sugai & Horner, 

2009).  An overarching principle of MTSS is to eschew a “wait to fail” mentality and to instead 

emphasize active monitoring and more immediate intervention (McIntosh & Goodman, 2016).  

MTSS models thus accentuate prevention, frequent progress monitoring, data-based decision-

making and problem-solving, evidence-based interventions, individualized instruction and 

intervention, and implementation fidelity (Eagle, Dowd-Eagle, Snyder, & Holtzman, 2015).  The 

comprehensive, empirical, sustainable, and efficient nature of MTSS is designed to optimize 

limited resources and is thus becoming widely adopted in school settings (August, Piehler, & 

Miller, 2018; McIntosh, Bohanon, & Goodman, 2010).  

MTSS models commonly arrange prevention and intervention strategies for a particular 

problem (or non-problem) into three tiers: primary or universal (Tier 1), secondary or targeted 

(Tier 2), and tertiary or intensive (Tier 3) (Stephan, Sugai, Lever, & Connors, 2015; Stoiber & 

Gettinger, 2016).  Tier 1 strategies involve delivering support to all students and are generally 

designed to promote a positive school culture and prosocial behavior and academic competence 

and to prevent difficulties in these areas.  Tier 2 strategies involve delivering support to a 
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percentage of students who do not respond in some way to Tier 1 strategies but who have less 

complex concerns.  Tier 3 and more individualized strategies involve delivering support to a 

lesser percentage of students who do not respond in some way to Tier 2 strategies and who have 

more complex concerns (Rodriguez, Loman, & Borgmeier, 2016).  The tiers represent a 

continuum of evidence-based practices implemented by various teams (Cook, Lyon, Kubergovic, 

Wright, & Zhang, 2015; Weist et al., 2018). 

 

 

Figure 14.  A multi-tiered system of supports model for SA/A. 
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Kearney and Graczyk (2014) initially focused on RtI descriptives for arranging strategies 

that promote school attendance and address school absenteeism, and Kearney (2016) later 

expanded this line of thinking to broader MTSS descriptives.  The essential aspects of each are 

similar for this population: Tier 1 approaches focus on enhancing functioning and schoolwide 

attendance and on preventing absenteeism for all students, Tier 2  approaches focus on 

addressing students with emerging, acute, or mild to moderate school absenteeism, and Tier 3 

approaches focus on addressing students with chronic and severe school absenteeism (Kearney, 

2016; 2019; Fornander & Kearney, 2019a).  Tiers 2 and 3 would thus include the definitional 

spectrum discussed in the previous section.  Specific preventative-based and clinical and 

systemic interventions are matched to each tier to help school personnel and others conceptualize 

approaches to SA/A.  Figure 14 illustrates a sample MTSS model for SA/A 

prevention/intervention.   

An MTSS model for SA/A includes several dimensions designed to enhance inclusivity, 

flexibility, and adaptability to various disciplines, educational and health structures, and 

jurisdictions and possibly cultures.  These dimensions include severity of absenteeism (e.g., 

percentage days missed in a given year, length of problem; see previous section), degree of risk 

or contextual factors present in a particular case (i.e., child, parent, family, peer, school, 

community), target of prevention/intervention (i.e., all students, some percentage of students, 

fewer percentage of students), and intensity and breadth level of interventions (e.g., less 

intense/broad for acute or mild to moderate absenteeism, more intense/broad for chronic and 

severe absenteeism).  At the same time, however, an MTSS model for SA/A is designed to be 

fairly simple in scope to be more easily adapted to various individual cases and settings.  The 
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model is thus, essentially, a signpost or roadmap to chart available intervention strategies for 

SA/A. 

A full description of preventative and intervention approaches to SA/A is beyond the 

scope of this article.  In general, however, Tier 1 approaches for SA/A can include system-, 

district-, school-, or even community-wide or state/national approaches to promote school 

attendance and prevent school absenteeism, often in tandem (e.g., full service community 

schools; Coffey et al., 2018).  These approaches are generally aimed at all students and may 

include methods to improve school climate and safety, to enhance mental and physical health 

and social-emotional functioning, to boost parent and family involvement, to reduce school 

violence and bullying, to review policies that may exacerbate attendance problems, and to 

implement orientation and readiness programs, among others (see comprehensive summaries by 

Kearney, 2016; Maynard, Heyne, Brendel, Bulanda, Thompson, & Pigott, 2018; Maynard, 

McCrea, Pigott, & Kelly, 2013; Sutphen, Ford, & Flaherty, 2010).  Similarly, school dropout 

prevention efforts typically focus on schoolwide academic enhancement, mentoring and 

supportive relationships, psychosocial skill development, and effective classroom behavior 

management (Ecker-Lyster & Niileksela, 2016).  Many of these Tier 1 approaches have been 

shown to improve school attendance rates, and reduce school dropout rates, either directly or 

indirectly (e.g., Freeman et al., 2016; Havik et al., 2015; Taylor, Oberle, Durlak, & Weissberg, 

2017). 

Tier 2 approaches for SA/A can include child-, parent-, and family-based interventions 

for cases of emerging, acute, or mild to moderate school absenteeism severity.  These approaches 

are generally aimed at the percentage of all students/families who display these problems and 

may include the many psychological and psychiatric interventions designed for this population as 
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well as approaches to enhance individual student engagement and school connectedness (Estell 

& Perdue, 2013; Kearney, 2019; Maynard et al., 2013, 2018).  Mentoring and monitoring 

approaches may be relevant in this regard as well (Guryan et al., 2017; Kern, Harrison, Custer, & 

Mehta, 2018).  Many of these Tier 2 approaches can be and have been adapted as well for more 

severe cases of school absenteeism (i.e., Tier 3) (Heyne et al., 2002), but many Tier 2 approaches 

tend to work better for cases of less severe absenteeism with fewer complicating factors 

(Kearney, 2016). 

Tier 3 approaches for SA/A can include various system-wide school-community 

partnerships as well as individual approaches to address cases of chronic and severe absenteeism 

(Kim & Streeter, 2016).  These partnerships and approaches are generally aimed at the smaller 

percentage of all students/families who display these problems and may include alternative 

educational placements and opportunities, individualized efforts to re-engage parents and family 

members in the educational/attendance process, and specialized programs for youth with extreme 

psychopathology (Flower, McDaniel, & Jolivette, 2011; Kearney, 2016; Hahn et al., 2015).  A 

key aspect of many Tier 3 approaches to SA/A for secondary students is to focus not so much on 

traditional in-seat class time and formal credit accrual as much as on flexible avenues that blur 

the end of high school and the beginning of adult or career readiness paths such as community 

college, vocational training, or technical certification (Dougherty & Lombardi, 2016).  As such, 

many approaches for this population focus more on demonstration of competencies than on 

traditional metrics such as grades (Castellano, Ewart Sundell, & Richardson, 2017). 

An MTSS approach to SA/A remains in development and will likely need to evolve in 

conjunction with related progressions in the field.  For example, some have advocated for 

moving beyond one-dimensional triangle representations of MTSS to more multifaceted 
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pyramids, with each side of the pyramid addressing a different type of student (Dulaney, Hallam, 

& Wall, 2013) (see Part 2 of this review).  Kearney (2016) also discussed the idea of a “Tier 4” 

for youth with extreme psychopathology and the need for inpatient/residential treatment mixed 

with education.  How an MTSS approach for SA/A fits with related approaches focused on 

academic, behavioral, and social constructs also remains to be seen, especially given that 

absenteeism rates in some schools (and thus entry into Tiers 2 and 3) are overwhelming (Balfanz 

et al., 2014). 

Still, schools that implement MTSS with higher fidelity have less school absenteeism 

than schools that implement with less fidelity (Freeman et al., 2016).  School districts may also 

include attendance measures in MTSS models (Coffey et al., 2018).  Others have also begun to 

utilize a general tiered framework to place their studies and interventions in this context (e.g., 

Brouwer-Borghuis, Heyne, Vogelaar, & Sauter, 2019; Elliott & Place, 2019; Ingul, Havik, & 

Heyne, 2019; Skedgell & Kearney, 2018).  For example, Cook and colleagues (2017) evaluated a 

comprehensive program to reduce school attendance problems that included components of each 

tier of intervention.  Tier 1 involved facilitating communication between teachers and parents via 

home visits and mobile telephone contact, Tier 2 involved attendance data monitoring and 

teacher intervention with students beginning to accrue excessive absences, and Tier 3 involved 

referrals to specialists for students with chronic absenteeism.  A multidimensional MTSS 

framework will comprise a key piece for reconciling SA/A approaches in Part 2 of this review. 

Risk/contextual factors, absenteeism severity, and developmental level 

As mentioned, key dimensions of an MTSS model of SA/A involve risk and contextual 

factors, which are generally expected to accrue by tier in conjunction with greater absenteeism 

severity.  Researchers commonly group risk or contextual (and, conversely, protective) factors 
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for SA/A into various categories that include child-, parent-, family-, peer-, school-, and 

community-based variables (Gubbels, van der Put, & Assink, 2019; Kearney, 2008b; Zaff et al., 

2017).  Others have argued that broader societal or cultural variables also impact school 

attendance problems, including zero tolerance-based legal statutes, assimilation and language 

barriers, and immigration issues, among others (Casoli-Reardon, Rappaport, Kulick, & Reinfeld, 

2012).  Categories of risk and contextual factors for SA/A are sometimes studied singularly (e.g., 

Hendron & Kearney, 2016), though many recent approaches have utilized more sophisticated 

multilevel modeling and related statistical procedures to examine these categories collectively 

(Dembo et al., 2016; Ramberg, Laftman, Fransson, & Modin, 2018; Van Eck, Johnson, 

Bettencourt, & Johnson, 2017).  An accumulation of risk/contextual factors appears to 

exacerbate risk of school attendance problems (Catalano et al., 2012; Ingul et al., 2012) and thus 

may be more evident in Tier 3 than Tier 2 cases (Vaughn, Maynard, Salas-Wright, Perron, & 

Abdon, 2013). 

Similarly, absenteeism severity is an important dimension of an MTSS model of SA/A 

and can be generally measured as percentage days missed from school in a given academic year 

(Fornander & Kearney, 2019).  However, this dimension can also be more broadly 

conceptualized as developmental history of a child’s SA/A across multiple academic years 

(Veenstra et al., 2010).  Risk and contextual factors as well as absenteeism severity can also 

change along a continuum of developmental and school levels (Skedgell & Kearney, 2018).  

Risk factors for school absenteeism can manifest quite differently across primary, early 

secondary, and later secondary grades (Suh & Suh, 2007).  In addition, absenteeism severity 

rates in schools tend to spike in kindergarten and first grade, decline during elementary school 
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years, spike again in middle school, and continue to increase through high school, peaking at 

twelfth grade (Balfanz & Byrnes, 2012).            

Functional profiles of school attendance problems 

Many schools and school-based professionals that utilize tiered frameworks for 

academic, behavioral, and social issues also rely heavily on functional analysis and functional 

behavioral assessment practices to provide individualized student support (McCurdy et al., 2016; 

Simonsen & Sugai, 2013).  At Tier 1, this may include a focus on school-wide antecedents or 

predictors of problem behavior, delineating appropriate and nuanced consequences for a 

behavior depending on its function and severity, and adjusting expectations across contexts and 

personnel (Crone, Hawken, & Horner, 2015).  At Tier 2, this may include selecting and 

monitoring social and behavioral interventions for students on the basis of the function of their 

behavior (Reinke, Stormont, Clare, Latimore, & Herman, 2013).  At Tier 3, this may include a 

more detailed assessment of multiple functions and replacement behaviors as well as more 

complex environmental change (Scott & Cooper, 2013). 

Kearney and colleagues (e.g., Gonzálvez et al., 2019; Kearney & Graczyk, 2014; 

Kearney & Silverman, 1996) developed various aspects of a functional model of school 

attendance problems designed to apply particularly to school refusal behavior (i.e., child-initiated 

school attendance problems).  This model focuses on key variables or functions that serve to 

maintain or reinforce school attendance problems and was designed primarily as a clinical 

approach for Tier 2-type school attendance problems.  The postulated primary functions in the 

model include refusal to attend school to (1) avoid school-based stimuli that provoke a general 

sense of negative affectivity (i.e., aspects of both anxiety and depression), (2) escape aversive 
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social and/or evaluative situations at school, (3) seek attention from significant others such as 

parents, and/or (4) pursue tangible rewards outside of school such as time with friends.   

The first two functions refer to school refusal behavior maintained by negative 

reinforcement, whereas the latter two functions refer to school refusal behavior maintained by 

positive reinforcement.  A profile of the relative strength of each functional condition is 

generally recommended during case analysis (Kearney, 2019).  A key advantage of the 

functional model is its clear linkage to specific prescriptive treatment packages that include 

child-, parent-, and family-based interventions as well as Tier 3 interventions as needed (Kearney 

& Albano, 2018).  The treatment packages are also designed to be flexible enough to be adapted 

to a variety of cases and locations, and indeed have been across educational, mental health, and 

medical settings (e.g., Hannan, Davis, Morrison, Gueorguieva, Tolin, 2019; Rohrig & Puliafico, 

2018; Thastum, Johnsen, Silverman, Jeppesen, Heyne, & Lomholt, 2019; Tolin et al., 2009). 

Another key aspect of the functional model is its amenability to support the study of 

various dimensions or profiles of youth with school attendance problems.  Researchers have 

demonstrated across numerous studies that functions of school refusal behavior relate to different 

patterns of depression, anticipatory and school-based performance anxiety, stress, 

positive/negative affect, sleep problems, and social functioning (e.g., Fernández-Sogorb, Inglés, 

Sanmartín, Gonzálvez, & Vicent, 2018; Gonzálvez et al., 2018, 2019; Hochadel, Frölich, Wiater, 

Lehmkuhl, & Fricke-Oerkermann, 2014; Kearney, 2002; Richards & Hadwin, 2011; Sanmartín 

et al., 2018).  Others have related the functions to clusters of absentee youth (Gallé-Tessonneau 

et al., 2019) and family environment types (Kearney & Silverman, 1995).  In addition, functions 

of school refusal behavior may be superior to forms of behavior in predicting absenteeism 

severity (Kearney, 2007). 
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A functional model of school refusal behavior does carry limitations, however.  As noted, 

the model is meant to apply primarily to Tier 2 (and perhaps to early warning signs evident in 

Tier 1) school refusal behavior and thus less to more chronic and severe school absenteeism or to 

cases primarily initiated by other entities (Kearney, 2016).  In addition, the model is not 

necessarily applicable to all countries and cultures, though many have found analogous features 

in their locales (e.g., Brandibas et al., 2004; Kim, 2010; Seçer, 2014).  In addition, some 

erroneously conflate specific assessment devices constructed to assist the functional model with 

the broader model itself, which is supposed to be based on a comprehensive analysis of 

maintaining variables (Kearney & Tillotson, 1998). 

Summary 

Dimensionally-oriented approaches to SA/A may help account for the considerable 

heterogeneity of this population by capturing a wide range of attendance/absenteeism 

expressions, prevention and intervention strategies, risk/contextual factors, absenteeism severity 

and developmental levels, and functional profiles of key maintaining factors.  Dimensional 

approaches do consider school attendance as much as absenteeism and are helpful in informing 

treatment approaches for SA/A.  As with categorical approaches, however, considerable barriers 

exist to implementing dimensional approaches in schools and other pertinent settings.  In 

addition, dimensional approaches to SA/A will also have to adapt to rapid advancements in 

education and technology in future years. 

General Summary 

The plethora of conceptual approaches to SA/A is certainly a phenomenon worth 

celebrating.  Researchers, educators, clinicians, and stakeholders such as parents have 

contributed immensely to the study and understanding of this complex population.  Such study 
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has involved definitions, classification systems, assessment protocols, and intervention strategies 

designed, in the end, to help children and adolescents attend school and to achieve better 

outcomes in adulthood.  We salute all of those who have dedicated their time and careers to 

improving the lives of these students. 

Part 1 of this two-part review concentrated on a broad classification and description of 

contemporary approaches to SA/A along categorical and dimensional orientations.  Each 

orientation carries distinct advantages and disadvantages, a not uncommon circumstance across 

various problems and disorders that affect youth.  Though meant to be comprehensive, this 

review focused on the primary methods of differentiating school attendance problems.  Many 

nuanced distinctions based on multilevel and other statistical modeling should be noted, and 

many special circumstances such as intense school violence or extreme poverty likely override 

the distinctions mentioned here.  In addition, prevention and intervention were not a primary 

focus of this part of the review, but are explored in greater depth in the second part of this 

review. 

As suggested by several scholars, adopting both categorical and dimensional approaches 

to the study of complex and heterogeneous phenomena may be advisable.  Such a juxtaposition 

has the potential advantage of identifying general categorical rules and cut-points for 

distinguishing broad groups of behavior as well as specific dimensions that are useful for 

providing data to adjust these cut-points along various spectra.  Part 2 of this two-part review 

thus focuses on a possible pathway toward reconciling contemporary categorical and 

dimensional approaches to SA/A in this manner.  This pathway also represents a heuristic 

framework as the field of SA/A grapples with challenges to dissemination and implementation as 

well as future changes in education and technology. 



 89 

Reconciling Contemporary Approaches to School Attendance and School 
Absenteeism: Toward Promotion and Nimble Response, Global Policy Review and 

Implementation, and Future Adaptability (Part 2) 
 

Christopher A. Kearney1, Carolina Gonzálvez2, Patricia Graczyk3, and Mirae J. 
Fornander1 
1University of Nevada, Las Vegas, Las Vegas, NV, United States  
2Universidad de Alicante, San Vincente del Raspeig, Alicante, Spain 
3University of Illinois at Chicago, Chicago, IL, United States 
 
* Correspondence:  
Correspondence concerning this article should be addressed to Christopher A. Kearney, 
Department of Psychology, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las 
Vegas, NV 89154-5030, USA, e-mail: chris.kearney@unlv.edu 
 
Keywords: School attendance1, school absenteeism2, chronic absenteeism3, truancy4, school 
refusal5, school withdrawal6, school exclusion7, multi-tiered system of supports8, 
multidimensional multi-tiered system of supports pyramid model9, early warning10, 
dissemination and implementation11, future adaptability12. 
 

Abstract 

As noted in Part 1 of this two-part review, school attendance is an important foundational 

competency for children and adolescents, and school absenteeism has been linked to myriad 

short- and long-term negative consequences, even into adulthood.  Categorical and dimensional 

approaches for this population have been developed.  This article (Part 2 of a two-part review) 

discusses compatibilities of categorical and dimensional approaches for school attendance and 

school absenteeism and how these approaches can inform one another.  The article also poses a 

multidimensional multi-tiered system of supports pyramid model as a mechanism for reconciling 

these approaches, promoting school attendance (and/or prevention of school absenteeism), 

establishing early warning systems for nimble response to school attendance problems, assisting 

with global policy review and dissemination and implementation, and adapting to future changes 

in education and technology. 
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Introduction 

The field of school attendance and absenteeism (SA/A) remains, as it has always been, at 

various crossroads.  Categorical and dimensional approaches to conceptualizing SA/A are 

manifold, and each approach has its own validity for defining, classifying, and providing 

assessment and prevention/intervention recommendations for this population (see Part 1 of this 

two-part review; Kearney, Gonzálvez, Graczyk, & Fornander, 2019).  Categories generally refer 

to dichotomies and distinctions to identify groups, whereas dimensions generally refer to fluid or 

latent constructs arranged along various spectra or continua.  Key categorical dichotomies and 

distinctions of SA/A include school refusal-truancy, excused-unexcused absences, school 

withdrawal and school exclusion, acute-chronic duration, and diagnostic categories.  Key 

dimensional aspects of SA/A include defining school attendance and its problems along a 

continuum, multi-tiered system of supports for preventative and intervention strategies arranged 

according to student need, risk/contextual factors, absenteeism severity, developmental level, and 

functional profiles of school attendance problems. 

The development of categorical and dimensional approaches to better understand a 

particular phenomenon is not unique to the field of SA/A; indeed, such bifurcation is a common 

aspect of the study of many different child behavior problems such as anxiety and mood 

disorders, developmental disorders, and attention-deficit/hyperactivity and conduct disorders 

(Elton, Di Martino, Hazlett, & Gao, 2016; Ghio et al., 2015; Hankin et al., 2017; Sprafkin, 

Steinberg, Gadow, & Drabick, 2016; Wakschlag et al., 2015).  A key task moving forward will 

be to draw from the validity of all approaches to design a framework for SA/A that can facilitate 

the promotion of school attendance, nimble responses to emerging school absenteeism, effective 
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policy review across jurisdictions, wide dissemination to various locations and settings, and 

adaptation to future, rapid changes in education and technology. 

As noted in Part 1 of this review, Coghill and Sonuga-Barke (2012) stated that both 

categorical and dimensional approaches can coexist within a given phenomenon by serving 

different but equally useful purposes.  Both categorical and dimensional approaches can be 

applied to a given heterogeneous construct.  Categories are useful for providing general rules and 

cut-points for distinguishing broad groups of behavior, and dimensions are useful for providing 

data to adjust these cut-points along various spectra such as age, gender, temperament/behavior, 

developmental level, and setting to improve the categorical rules.  Categorical distinctions can be 

useful descriptors of a particular current state, and dimensional profiles can be used to determine 

if that categorical state changes in degree of intensity (e.g., to nonproblematic or to more 

problematic) over time to inform treatment, longitudinal, and prognostic analyses.  Categories 

and dimensions together can thus form a synergistic and breathable system that allows for 

considerable adaptation to future scientific and other advances (Hudziak, Achenbach, Althoff, & 

Pine, 2007).   

Over the next sections of this article (Part 2 of a two-part review), we discuss a possible 

pathway toward reconciling contemporary categorical and dimensional approaches to SA/A.  

This discussion initially involves sample compatibilities across extant categories and dimensions 

of SA/A and how these constructs might be blended or matched with one another.  This section 

focuses on pertinent or prominent examples and is not an exhaustive review of all possible 

affinities.  This discussion then includes a multidimensional, multi-tiered system of supports 

(MTSS) pyramid model that may be used as a framework to include various categorical-

dimensional aspects of SA/A.  Finally, as mentioned, we explore how such a model could 
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enhance promotion of school attendance and/or prevention of school absenteeism, expedite 

nimble clinical and other responses to emerging absenteeism via early warning system 

development, assist in policy review and dissemination across jurisdictions and disciplines, and 

adapt to future and rapid changes in education and technology.  We emphasize that the 

framework presented here is a heuristic one, not meant to be necessarily optimal or capstone in 

nature, but rather one designed to help spur the field toward reconciliation, common language, 

and advancement.  We fully expect and hope that the framework will evolve over time. 

Compatibilities of Categories and Dimensions of SA/A 

Compatibilities of categories and dimensions of SA/A (described in Part 1 of this two-

part review) can be described in two main ways.  First, many categorical approaches for SA/A 

actually have many dimensional features, and many dimensional approaches for SA/A actually 

have many categorical features.  Second, many categorical and dimensional approaches for SA/A 

have striking similarities that may indicate general agreement about a particular construct, and 

refer to that construct from somewhat different perspectives.  The examples provided next 

include both ways of describing compatibilities among categories and dimensions of SA/A. 

Categories of SA/A with dimensional features 

As mentioned in Part 1 of this review (p. 3), truancy is one of the most venerable 

constructs in the field of SA/A.  From a categorical perspective, truancy may refer to illegal, 

unexcused school absence without parental knowledge or sanction (Gentle-Genitty et al., 2015).  

From a dimensional perspective, as noted in Part 1 of this review (p. 4), researchers have found 

many profiles of truancy along academic status, disability, location, race/ethnicity, in- and out-

of-school activities, individual-group-orientation, premediated-spontaneous initiation, and 

parental academic involvement, among many other variables.  Gentle-Genitty and colleagues 
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(2015) noted as well that categorical definitions of truancy often involve dimensions of 

absenteeism along time such as arriving late to school, missing a class, and missing a full school 

day, similar to the definitional spectrum of SA/A presented in Part 1 (p. 7). 

Truancy as a category and truancy as a multidimensional construct are compatible 

notions.  A categorical premise of lack of parental knowledge and sanction in truancy, for 

example, can be informed by various dimensional subtypes to boost its validity and enhance a 

greater intricacy to this distinction.  For example, Keppens and Spruyt (2017) found that parental 

knowledge of a truant event was a highly nuanced construct that reflected lack of parental 

knowledge with expectation of parent distress (41.7%), lack of parental knowledge without 

expectation of parent distress (5.7%), parental knowledge with approval (34.5%), and parental 

knowledge without approval (18.1%).  Truancy as a categorical and dimensional construct is also 

represented in research regarding forms and functions of SA/A.  Researchers who study SA/A 

categorically generally examine forms of truant behavior such as externalizing problems, 

whereas researchers who study SA/A dimensionally generally examine functions or factors that 

maintain school refusal behavior such as pursuit of tangible rewards outside of school (Haight, 

Kearney, Hendron, & Schafer, 2011; Iverson, French, Strand, Gotch, & McCurley, 2016; Walter, 

von Bialy, von Wirth, & Doepfner, 2017).  Both research avenues, however, gravitate toward 

older youth with less school-based anxiety (Dembo, Wareham, Schmeidler, & Winters, 2016). 

As mentioned in Part 1 of this review (p. 3), school refusal often refers to another child-

initiated form of school absenteeism.  From a categorical perspective, school refusal may refer to 

emotional distress and reluctance to attend school (Elliot & Place, 2019).  From a dimensional 

perspective, as noted in Part 1 (p. 4), researchers have found many profiles of school refusal 

along various spectra (e.g., Finning et al., 2018, 2019).  Gallé-Tessonneau and Gana (2018), for 
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example, found several main clusters of youth with school refusal involving anxiety and fear of 

confrontation, adolescent-parent relationships, interpersonal relationship difficulties, and coping 

difficulties that associated closely with functional dimensions or profiles.  Researchers who 

study SA/A categorically generally examine forms of behavior such as anxiety, depression, and 

somatic complaints (Jones, West, & Suveg, 2019).  Researchers who study SA/A dimensionally 

generally examine functions or factors that maintain school refusal behavior such as avoidance 

of negative affectivity and escape from aversive social and/or evaluative situations (Haight et al., 

2011; Richards & Hadwin, 2011).  Both research avenues, however, gravitate toward youth with 

more school-based distress (Havik, Bru, & Ertesvåg, 2015). 

Other categorical constructs for SA/A also have dimensional features.  For example, the 

construct of school withdrawal, or parent-initiated school absenteeism, includes a spectrum of 

parent behaviors such as knowledge, acquiescence, consent, approval, and accommodation, or 

more passive to more active responses (Kearney & Albano, 2018; Marin, Anderson, Lebowitz, & 

Silverman, 2019).  Similarly, school exclusion or school-initiated absenteeism can involve a 

spectrum of lawful or unlawful administrative responses such as loss of privileges, early school 

departure, detention, in-school suspension, out-of-school suspension, restorative or other 

interventions in another location, alternative educational placement, and expulsion as well as 

duration of the exclusion (Valdebenito, Eisner, Farrington, Ttofi, & Sutherland, 2018).  In 

addition, Birioukov (2016) sought to reframe the categorical dichotomy of excused-unexcused 

absences along broader distinctions (i.e., voluntary and involuntary) with varying explanations.  

Voluntary absence, for example, might encompass more student agency involving spectra along 

motivation to attend school and perceptions of school as a hostile environment.  Involuntary 

absence might encompass more contextual influences that affect a student’s ability to attend 
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school and include spectra along life conditions, opportunities for academic advancement, and 

access to education (see also Part 1 of this two-part review, p. 5). 

Dimensions of SA/A with categorical features 

As mentioned in Part 1 of this review (p. 10), a functional model of school refusal 

behavior focuses on dimensions or profiles of the relative strength of maintaining factors for 

school refusal behavior.  The model was originally designed as a clinical strategy to help mental 

health professionals utilize descriptive and experimental functional analyses to identify a 

particular prescriptive treatment tailored to these maintaining factors (Kearney & Silverman, 

1990).  Youth may refuse to attend school to (1) avoid school-based stimuli that provoke a sense 

of negative affectivity (anxiety and depression), escape from aversive social and/or evaluative 

situations at school, (3) pursue attention from significant others, and/or (4) pursue tangible 

rewards outside of school.  The functions were based on wide parameters of negative and 

positive reinforcement (Kearney, 2001). 

In this functional model, a dimensional profile of maintaining factors is derived via a 

comprehensive assessment that includes descriptive measures, rating systems, behavioral 

observations, and formal hypothesis testing, among other means.  Some erroneously equate one 

descriptive instrument with the broader functional model, but the functional distinctions can be 

measured in many ways to derive detailed and nuanced clinical profiles of each (Kearney & 

Tillotson, 1998).  Indeed, the functional model was specifically designed to be flexibly applied to 

different clinical and educational settings to account for differences in local practices as well as 

the heterogeneity of school attendance problems and to enhance the treatment utility of 

assessment (Nelson-Gray, 2003).  With respect to the latter, a primary function based on relative 

strength to the others may be categorically chosen as a starting point for prescriptive intervention 
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(Kearney & Silverman, 1999).  A categorical nature of the functional model is further reflected 

in research work examining differences between the functions (e.g., Haight et al., 2011).  As 

such, the model is a flexible, prototypical categorical-dimensional approach for SA/A and has 

been generally utilized and studied in this manner (e.g., Elsherbiny, 2017; Gresham, Vance, 

Chenier, & Hunter, 2013; Lyon & Cotler, 2009; Nuttall, & Woods, 2013). 

Similarly, a multi-tiered system of supports (MTSS) model of SA/A (see Part 1 of this 

review, pp. 7-9) involves several dimensional continua with respect to absenteeism chronicity 

and severity as well as degree of risk and contextual factors generally associated with 

increasingly higher levels of absenteeism.  An MTSS model of SA/A also assumes a spectrum of 

needed supports for youth and their families ranging from (1) system-wide or universal 

preventative approaches to (2) targeted interventions for mild to moderate school attendance 

problems to (3) intensive interventions for chronic and severe absenteeism (Kearney, 2016).  The 

spectrum-based nature of MTSS is designed in part to enhance feasibility for, and thus 

applicability to, various educational and other settings (Stoiber & Gettinger, 2016). 

A key component of MTSS models, however, is a categorical tier-based structure with 

ostensibly clear demarcations between each level of supports.  Specific demarcations are 

important for understanding when to shift the focus of intervention to a higher (or lower) tier.  

Within a reading context, for example, standardized assessment protocols may be utilized to 

identify students with specific comprehension or word decoding problems that warrant Tier 2 or 

Tier 3 intervention (Leonard, Coyne, Oldham, Burns, & Gillis, 2019).  In addition, teacher-based 

screening and office disciplinary referrals for behavior may indicate a failed intervention and 

thus a marker for movement to a different tier (Naser, Brown, & Verlenden, 2018).  As such, 

assessment profiles inform movement from one categorical tier to another.  With respect to an 
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MTSS model for SA/A, identifying when a child could move from one tier to another will 

involve expanded research into tier-based demarcations that may help inform intervention 

assignment (Fornander & Kearney, 2019a, b) (see also later sections). 

Other dimensions of SA/A, including those within an MTSS model, have been examined 

categorically as well.  Risk and contextual factors of SA/A, for example, are commonly studied 

or grouped into child-, parent, family-, peer-, school-, community-, cultural-, and even 

government-based distinctions, as well as how these distinctions change across locations 

(Correia & Marques-Pinto, 2016; Kearney, 2008; Lamb, Markussen, Teese, Sandberg, & Polesel, 

2010; Sahin, Arseven, & Kilic, 2016).  Researchers examine these risk factors via spectra of 

accumulated risk as well as via statistical modeling to compare the contributed risk of each group 

(Chen, Culhane, Metraux, Park, & Venable, 2016; Chung & Lee, 2019; Goodrich, Castellano, & 

Stefos, 2017; Sansone, 2019).  Similarly, researchers have examined absenteeism severity both 

as dimensional ranges and as categorical distinctions (Skedgell & Kearney, 2016, 2018; Stempel 

et al., 2017). 

Categories and dimensions of SA/A: Informing one another 

Categorical and dimensional approaches to SA/A have many compatibilities as well as 

overlapping qualities and purposes.  As noted earlier, categorical distinctions of SA/A, which 

have traditionally suffered from considerable ambiguity and limited construct validity (Part 1 of 

this review, p. 6), may be better informed by common and empirically-based higher-order 

dimensions.  Such dimensions may help identify functional analytic and temporal aspects to 

improve the practical nature of different categories in clinical and educational practice (Brown & 

Barlow, 2009).  For example, identifying risk or behavioral marker profiles would help improve 

a distinction between Tier 1 prevention and Tier 2 early intervention (Mitchell, Stormont, & 
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Gage, 2011).  In addition, identifying specific pathognomonic or at least assident features of 

various SA/A categories may ultimately come from examining ranges or profiles of constructs 

such as avoidance, emotion regulation, cognitive features, temperament, parent responses, family 

environment dynamics, association with deviant peers, school climate, and perhaps even 

biopsychosocial or bioecological aspects (Caron, Weiss, Harris, & Catron, 2006; Gottfried & 

Gee, 2017; Rothbart, & Posner, 2015).  In the next section, we posit a multidimensional multi-

tiered system of supports pyramid model of SA/A that allows space to explore these research 

avenues while simultaneously charting preventative and intervention processes for immediate 

dissemination and implementation. 

A Multidimensional Multi-Tiered System of Supports Pyramid 

Multi-tiered system of support (MTSS) models, including Response to Intervention and 

Positive Behavioral Interventions and Supports/School-wide Positive Behavior Support, are 

often represented via one-dimensional triangles as illustrated in Part 1 of this review (p. 8).  As 

discussed, these approaches represent multiple tiers of preventative and intervention strategies 

for various academic, social, and behavioral issues.  These tiers are arranged along a continuum 

of needs of support targeted toward all students (prevention), some percentage of students (early 

intervention), and some lesser percentage of students (intensive intervention).  Kearney and 

Graczyk (2014) were the first to apply these principles to SA/A (see Part 1 of this review for 

greater detail, pp. 7-9). 

A key constraint of the one-dimensional triangle representation of MTSS is that it 

assumes considerable homogeneity among the population at hand, such as all children in a 

particular elementary school who are learning to read or all adolescents in a particular high 

school with a disruptive behavior resulting in an office disciplinary referral (Sugai & Horner, 
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2009).  As such, preventative and intervention strategies are usually geared in similar fashion, 

albeit with some flexibility based on nuanced factors such as the function of misbehavior, 

intensity of punitive response, and responding administrator (e.g., teacher, dean) (Crone, 

Hawken, & Horner, 2015).  Such an approach appears reasonable at Tier 1 where the focus is on 

promoting a certain phenomenon (e.g., ability to read) and/or preventing a certain phenomenon 

(e.g., classroom disruption) for all (and generally similar) students in a given setting.  The use of 

communal approaches at Tier 2 and Tier 3, however, may be less efficacious for as 

heterogeneous and complex a population as students with school attendance problems.  

A progressive conceptual framework for an MTSS approach is to emphasize the notion of 

a multi-dimensional (and thus multi-sided) pyramid to account for greater heterogeneity as well 

as clinical and research avenues for a certain population (Dulaney, Hallam, & Wall, 2013).  An 

example is a multi-tiered, multi-domain system of supports (MTMDSS) model (Hatch, Duarte, 

& De Gregorio, 2018).  In an MTMDSS model, various tiers of support are associated with 

multiple domains such as school counselor efforts to address, simultaneously and yet differently, 

the academic, career readiness, and social/ emotional needs of their students (Hatch, Triplett, 

Duarte, & Gomez, 2019).  These tiers of support remain similar to the 3 levels of an MTSS 

model but the presence of multiple sides means the tiers can apply variously and flexibly to 

different domains. 

The basic conceptual structure of a multi-dimensional pyramid may fit well with the 

multifaceted nature of SA/A.  In this structure (Figure 15), different sides of a multi-dimensional 

pyramid could reflect different sets of key categorical-dimensional domains of SA/A.  Such 

domains, among many others, could involve (1) child-, parent-, or school-initiated/oriented 

school attendance problems, (2) different dimensions of categories such as truancy, (3) 
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functional or risk and protective factor profiles or clusters, (4) school attendance problems in 

preschool, elementary, middle, and high school students, and (5) schools at low, medium, and 

high risk for absenteeism.  In addition, multi-dimensional pyramids could be developed and 

tailored to individual jurisdictions with different set points for movement across the tiers.  Such 

pyramids would also allow for better cross-disciplinary work and enhance creativity and 

innovation about how this population is conceptualized.  A multi-dimensional pyramid could 

vary according to the number of domains desired (e.g., 4, 6 sides) as well.  Most importantly, this 

approach mandates the development of preventative and intervention strategies for each tier no 

matter what domains are used. 

 

 

Figure 15. Illustration of a sample multidimensional multi-tiered system of supports pyramid 

model for school attendance and school absenteeism. 
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As an example, Lyon and Cotler (2009) juxtaposed functional dimensions along 

microsystem, mesosystem, and exosystem levels of intervention for school refusal behavior.  

Microsystem interventions address more direct, proximal, or immediate influences on school 

attendance problems, and specific aspects within the microsystem can be linked to specific 

functional dimensions.  In this framework, (1) peer microsystem interventions (e.g., mentoring, 

social skills) might best be linked to avoidance of social/evaluative situations and pursuit of 

tangible reinforcement; (2) family microsystem interventions (e.g., contingency management, 

contracting) might best be linked to avoidance of social/evaluative situations, pursuit of parental 

attention, and pursuit of tangible reinforcement; and (3) school microsystem interventions (e.g., 

incentive programs, academic support) might best be linked to avoidance of negative affectivity, 

avoidance of social/evaluative situations, and pursuit of tangible reinforcement.   

Mesosystem interventions address connections between settings most relevant to a child 

such as parent-school official contacts.  In this framework, mesosystem interventions (e.g., 

school engagement and parental involvement initiatives) might best be linked to pursuit of 

parental attention and pursuit of tangible reinforcement.  Exosystem interventions (e.g., policy 

changes, statutes) address more distal social structures or settings that have an indirect influence 

on school attendance problems, and may best be linked to all functions of school refusal 

behavior.  The authors also discussed macrosystem influences, or societal or cultural/subcultural 

influences that envelop other levels (in this case, those involving school absenteeism).  Such 

influences may include, for example, shifts in economic opportunities, globalization, 

migration/immigration, and labor markets that impact school dropout rates (Brewer & McEwan, 

2010; Coxhead & Shrestha, 2017). 
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Lyon and Cotler’s (2009) approach, a key prelude to the multi-tiered frameworks 

discussed here and in other articles (see also Lyon & Bruns, 2019), emphasized the notion of 

multifaceted tiers that each reflected multiple domains related to school attendance such as 

functional profiles, contextual factors, and intervention types and levels.  In addition, the authors 

worked to supersede traditional notions of school refusal and truancy, emphasize how multi-

systemic interventions can augment personalized clinical treatment approaches, and encourage 

the expansion of tailored strategies to best serve different ethnic and cultural groups, a process 

that remains largely underdeveloped in the SA/A field even today.  One omission of Lyon and 

Cotler’s (2009) approach was the notion of preventative practices to proactively address multi-

system factors leading to school attendance problems, a topic we turn to next.  

Base of the pyramid: Promoting school attendance 

The notion of a multidimensional MTSS/MTMDSS pyramid model carries some 

potential advantages as a heuristic for SA/A.  First, the notion of a multidimensional pyramid 

implies a common base involving children and adolescents who are attending school without 

difficulty.  The base of a pyramid is necessarily broad and strong and critical for the support of 

the upper tiers.  As such, the base of the pyramid is the most fundamental aspect of the structure, 

and must be well maintained.  The notion of a pyramidal base thus means that all stakeholders in 

the field of SA/A begin with the common premise that school attendance is valued and that 

promoting school attendance (and/or preventing school absenteeism) must be the foundation for 

all other efforts in this area. 

Second, the notion of a strong (and larger) pyramidal base means that most efforts in this 

area will need to focus on promoting school attendance and not simply on reducing absenteeism.  

With respect to SA/A, this means that school districts, health and mental health professionals, 
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and lay persons must invest significant resources and efforts into Tier 1 practices to prevent 

youth from entering Tiers 2 and 3.  All too often, stakeholders in this field concentrate on 

policies, procedures, sanctions, treatments, and other methods to react to student absenteeism as 

opposed to engaging in measures to proactively maintain and boost school attendance.  The 

notion of a multidimensional base means that proactive, preventative efforts must be emphasized 

and can be tailored to individual schools, jurisdictions, and cultures. 

Third, the notion of a strong pyramidal base means that researchers must focus as much 

on protective and promotional factors toward high school completion (or its equivalent) as on 

risk factors and other aspects of school absenteeism.  Some continue to invest heavily in 

incremental distinctions of youth with school absenteeism with little investment toward 

identifying those who do complete school.  Indeed, the absence of risk is not the same as the 

presence of growth.  In addition, many researchers tend to focus on the negative consequences of 

school absenteeism and dropout and less so on the benefits of graduation.  A better 

understanding of such protective factors would greatly inform prevention science in this and 

related areas (Kieling et al., 2011; Lösel & Farrington, 2012). 

Zaff and colleagues (2017) reviewed literature on factors that promote high school 

graduation, with a particular focus on dimensions of positive youth development as well as 

proximal and distal influences within a student’s ecology.  Such protective and promotive factors 

included malleable assets, or those potentially sensitive to intervention, and upstream factors, or 

those more systemic and likely more difficult to modify.  The authors made an astute point that 

simple lack of risk factors in a particular child does not necessarily imply that the child is 

thriving or that development is optimized.  Instead, researchers and others must focus on 
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variables that actively promote educational attainment, not simply on those that predict school 

absenteeism and dropout. 

Individual student factors found most to predict high school graduation or continued 

school enrollment included intrinsic motivation to achieve positive educational outcomes, 

enhanced school engagement, student expectations for academic attainment, and internal locus of 

control.  School engagement can come in many forms, and the authors found that high levels of 

behavioral (e.g., attending school, completing assignments), emotional (e.g., connection with 

school, enjoying school), and cognitive (e.g., strategic learning, intellectual curiosity) were most 

related to academic success and graduation.  Of these variables, particularly salient predictors 

included attendance, social and academic engagement, and arts and athletic participation.  

Expectations for, and perceived control of, positive academic outcomes were potent predictors as 

well.  Effect sizes were small to moderate. 

Parent factors found most to predict high school graduation or continued school 

enrollment included parental academic involvement and parent-child connection.  The former 

may be associated with attending school-based meetings and conferences, participating in 

school-based organizations, communicating regularly with school officials, assisting with 

homework, and setting clear rules about homework and maintaining a good grade point average.  

Many of these effects remained even after controlling for demographic and school composition 

variables.  Parental social support and regular parent-child communication comprised the parent-

child connection construct.  Effect sizes for parent influences were generally small.  Peer-related 

factors were more limited and included positive peer norms, or expectations of what behaviors 

are valued within a particular group of friends.  This may include enhanced expectations for 
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maintaining grade point average and for valuing education.  Effect sizes for peer influences were 

generally small. 

School-related factors found most to predict high school graduation or continued school 

enrollment included positive student-teacher relationships, smaller schools, participation in 

school-based extracurricular activities, and career and technical education.  Positive student-

teacher relationships can include respectful interactions, teacher interest in students, and student 

belief in teacher competence.  This may relate to smaller schools as well, where teachers and 

students may be more knowledgeable of one another.  Extracurricular activities, including 

community service participation, may relate specifically to social competence, educational 

aspirations, and sense of agency among students.  Career and technical education opportunities 

positively impact continued school enrollment in particular.  Effects sizes for school variables 

ranged from small to large.   

Finally, the primary community-related factor found most to predict high school 

graduation or continued school enrollment was participation in out-of-school time programs, or 

those collection of programs focused on community service, social-emotional learning, and 

academic enrichment.  The authors concluded that more research is needed on how all of these 

protective factors interact with one another to enhance the trajectory toward graduation, how the 

factors operate differently across students and contexts, and how risk and demographic factors 

moderate the effect of assets to promote graduation (Zaff et al., 2017). 

Zaff and colleagues’ (2017) efforts also reveal the value and utility of examining various 

key dimensions or domains of functioning to inform categorical distinctions between 

nonproblematic (Tier 1) school attendance and problematic (Tier 2) school absenteeism, and thus 

preventative targets.  Indeed, effective school dropout prevention programs are often based on 
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dimensions of student engagement with school, parental involvement, and school climate 

(Wilson, Tanner-Smith, Lipsey, Steinka-Fry, & Morrison, 2011).  In addition, effective 

components of programs designed to increase school completion are often arranged in 

dimensional levels of support that involve students (e.g., academic tutoring, social skills 

instruction, character development, leadership training, work experience, attendance incentives), 

schools (e.g., smaller class sizes, anti-bullying, wider access to mental health support), and 

policy changes (e.g., reduced stigmatization and use of exclusionary discipline for absenteeism, 

support for Tier 1 approaches) (Balu & Ehrlich, 2018; Freeman & Simonsen, 2015; Freudenberg 

& Ruglis, 2007).  Utilizing dimensions or domains of functioning to inform categorical 

distinctions between nonproblematic (Tier 1) school attendance and problematic (Tier 2) school 

absenteeism also has implications for early warning systems and nimble clinical and other 

responses to emerging school attendance problems, discussed next. 

Second tier of the pyramid: Early warning and nimble response 

The notion of a multidimensional MTSS/MTMDSS pyramid model also implies that 

screening and immediate, nimble response to early warning signs or Tier 2 cases of emerging 

school absenteeism must be a priority no matter the domain structure utilized on the sides of a 

pyramid.  For example, domains of school attendance problems across elementary, middle, and 

high school levels must juxtapose with individualized, tailored strategies to identify these 

problems within the resources and logistical constraints of each domain.  This may mean an 

attendance officer in an elementary school who can call parents immediately each day upon 

learning of a student absence, a school attendance team (e.g., guidance counselor, dean, school-

based social worker) in a middle school that regularly reviews attendance data and intervenes 

with a family prior to a legal tripwire for truancy, and an integrated first period teacher-
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attendance team in high school that coordinates information about attendance, disciplinary 

referrals, and course grades (Kearney, 2016; Rumberger et al., 2017).  The ability to nimbly 

respond to these problems, particularly in school settings, depends heavily on valid early 

screening methods for SA/A in children and adolescents.   

Screening for school attendance problems has occurred in various ways that include both 

ancillary and direct approaches.  With respect to the former, for example, Gall and colleagues 

(2000) described a screening process at a school-based health center that included school 

absence as well as a number of psychosocial and academic variables.  Students identified with 

emotional and behavioral problems and referred for mental health services decreased their school 

absences nearly 50%, and tardiness instances 25%.  Mechanisms of action for this effect may 

include enhanced resilience and health status and behaviors (Walker, Kerns, Lyon, Bruns, & 

Cosgrove, 2010).  Others have screened for ancillary variables such as office disciplinary 

referrals or health problems such as asthma as markers for attendance problems (Caldarella, 

Young, Richardson, Young, Young, 2008; Moricca et al., 2013; Weismuller, Grasska, 

Alexander, White, & Kramer, 2007).   

Recent endeavors have focused more on direct screening approaches for school 

attendance problems that include both categorical and dimensional aspects.  Early warning 

systems that focus specifically on attendance, behavioral data/suspensions, and course grades 

have been found to consistently identify 50-75% of future school dropouts before the event 

occurred.  These categories have been further informed by dimensional data indicating that 

attendance rates under 85-90%, two or more suspensions, and two or more semester course 

failures in any subject are particularly pertinent indicators and should be part of a customized 

multi-tiered response system (Balfanz & Byrnes, 2019; Thomas, 2017).  Such data could be 
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collated via an online monitoring system, and many school districts utilize software applications 

to immediately inform parents of an absence as well as course assignments and grades (e.g., 

https://www.infinitecampus.com/audience/parents-students).  Researchers have also utilized text 

and mobile telephone communications to immediately identify and mitigate school absences 

(Cook, Dodge, Gifford, & Schulting, 2017; Smythe-Leistico & Page, 2018) within a dimensional 

multi-tiered intervention framework.  

Other direct screening approaches for school attendance problems focus on spreadsheets 

listing student demographics, attendance status, behavior, course performance, and interventions 

(Rumberger et al., 2017), brief pediatric consultations (Katz, Leith, & Paliokosta, 2016), online 

self-report methods (Pflug & Schneider, 2016), and checklist methods for categories of absences 

mixed with level of absenteeism severity (Heyne, Gren-Landell, et al., 2019; Kearney, 2008).  A 

nimble response to a child’s absence from school would benefit from immediate knowledge of 

whether the absence was due to school exclusion such as suspension or alternative educational 

placement or home instruction, school-based threat such as bullying, parent-based school 

withdrawal, legitimate reason such as illness or poor weather, or a child-based anxiety, mood, or 

conduct problem (Ingul, Havik, & Heyne, 2019).  Basic screening approaches have advantages 

for limiting the burden on school officials, though early warning systems that are too 

parsimonious may have limited validity (O’Cummings & Therriault, 2015; Sansone, 2019).   

More nuanced early warning systems have thus been developed.  Chu and colleagues 

(2019) developed an online early detection system for school attendance problems, with a 

particular focus on teachers, administrative assistants, and school counselors as attendance 

monitors and trackers.  The authors utilized a categorical cutoff of 5 absences (or 2.78% in a 

180-day school year) that included dimensions of absenteeism severity ranging from full days 
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missed to instances of tardiness to early departures from school.  School attendance problems 

were assessed at the end of each of four marking periods throughout the academic year.  Yearly 

absences were more closely associated with an accommodation plan and having a sibling with 

similar attendance problems.  Instances of tardiness were more closely associated with higher 

grade level, divorced or separated parents, and having a sibling with similar attendance 

problems.  Early departures were more closely associated with male gender, newness to a school, 

and having a sibling with similar attendance problems. 

Several researchers have also recommended machine learning and related predictive 

modeling methods to study large SA/A-based data sets to help inform such algorithms and early 

warning systems (do Nascimento, das Neves Junior, de Almeida Neto, & de Araújo Fagundes, 

2018).  Chung and Lee (2019), for example, utilized random forests in machine learning to 

predict student dropout among 165,715 Korean students.  Key indicators included unauthorized 

absence, early leave, class absence, and lateness as well as various test scores and school 

experiences.  School dropout was predicted most by several risk factors that included all forms of 

unauthorized school attendance problems.  In addition, several protective factors were identified 

that included self-regulated activity, career development, club activity, and volunteer work.  The 

authors recommended that homeroom teachers utilize such markers to mitigate risk and enhance 

protective factors via appropriate supports and interventions.  Indeed, some have advocated for 

restructuring the role of the homeroom or first-period teacher to quickly identify an absent and 

transmit the information to a school attendance team member who immediately contacts parents 

(Lever et al., 2004). 

Sansone (2019) also advocated for machine learning approaches to provide algorithms 

for predicting school dropout among 21,440 ninth-grade students.  Key predictors selected by the 
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statistical methods used included age, lack of important math and science courses, grade point 

average, and whether a student had ever been suspended or expelled from school.  Other more 

secondary predictors included lack of plan to later enroll in college, parent contacted by school 

about poor attendance, and parent belief that the child will at best attain high school only.  The 

author recommended identifying at-risk students based on these variables to identify effective 

academic and vocational approaches as well as informing parents of a particular student’s risk 

level.  The author concluded as well that early warning systems that are too parsimonious may 

lack reliability, and that identifying students at less risk for dropout may be as useful as 

identifying those at high risk. 

More specific to school absenteeism, Kearney and colleagues (Fornander & Kearney, 

2019a, b; Kearney, 2018; Skedgell & Kearney, 2018) conducted several studies utilizing 

ensemble and classification and regression tree (CART) analyses to identify demographic, 

academic, behavioral, and family factors that best differentiated school absenteeism at various 

severity levels.  Skedgell and Kearney (2018) examined records from 316,004 students across 

elementary, middle, and high schools to identify academic and demographic variables that best 

predicted distinctions between <1% and 1+% absenteeism, <10% and 10+% absenteeism, and 

<15% and 15+% absenteeism based on differentiations sometimes recommended in the 

literature.   

Four predictors that best differentiated youth at <1% and 1+% absenteeism severity 

levels included ethnicity (Hispanic, African American, Caucasian, biracial, American Indian, or 

Pacific Islander), grade point average (0.00-2.00), grade level (1, 2, 9, 10, 11, or 12), and 

Individualized Education Plan (IEP) eligibility.  Three predictors that best differentiated youth at 

<10% and 10+% absenteeism severity levels included age (>15.5 years), ethnicity, and low grade 
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point average.  Four predictors that best differentiated youth at <15% and 15+% absenteeism 

severity levels included age (>16.5 years), ethnicity, low grade point average, and grade level (1, 

6, 7, 8, 10, 11, or 12).  Post hoc analyses were also conducted for developmental school levels.  

At the elementary school level, ethnicity and grades 1 and 2 were most predictive of all 

absenteeism severities.  At the middle school level, ethnicity and IEP eligibility were most 

predictive of <1% and 1+% absenteeism, whereas ethnicity was most predictive of the other 

absenteeism severity levels.  At the high school level, low GPA was most predictive of all 

absenteeism severity levels. 

Fornander and Kearney (2019a, b) further used ensemble and CART analyses to examine 

predictors of various absenteeism severity levels (1+%, 3+%, 5+%, 10+%, 15+%, 20+%, 30+%, 

40+%) in youth with school attendance problems referred for clinical services or to a truancy or 

family court.  As with the demographic and academic variables described in the previous study, 

predictive risk factors tended to be more homogeneous at higher levels of absenteeism severity.  

These studies included analyses of family environment variables as well as internalizing 

symptoms of anxiety and depression. 

With respect to family environment, higher levels of absenteeism (i.e., 15+%) were more 

closely related to lower achievement orientation, active-recreational orientation, cohesion, and 

expressiveness.  Many findings were quite nuanced, however.  For example, lower 

expressiveness was evident at less severe (3%, 5%) and more severe (20%, 30%) levels of 

absenteeism, though elevated expressiveness was predictive of 10+% absenteeism.  In addition, 

family cohesion was not predictive at 1+% and 3+% absenteeism but less cohesion was more 

predictive of higher levels of absenteeism.  Elevated conflict was more predictive of 5+% 

absenteeism severity, whereas lower conflict was more predictive of 10+% absenteeism severity.  
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In addition, less family control was more predictive of higher levels of absenteeism severity 

(20+%, 30+%).   

With respect to internalizing symptoms, one consistent item that distinguished levels of 

higher from lower absenteeism severity was a depression item related to lack of enjoyment.  

Predictive items at 1% and 3% absenteeism were less informative than items at higher 

absenteeism levels.  For example, endorsement of less anxiety was more predictive of higher 

levels of absenteeism severity, a finding similar to Skedgell and Kearney (2016) who found that 

very high levels of absenteeism were generally marked by less anxiety.  This could mean that 

extensive absence from school mitigates anxiety at the time of assessment.   

The nascent development of valid early warning systems of SA/A (as well as continuous 

screening devices) has tremendous potential for informing more nimble responses on the part of 

school officials.  This is especially critical now that schools are a primary site of mental health 

care for most youth (Green et al., 2013; Lyon et al., 2019).  Screening devices with set 

algorithms or rules would allow for nearly simultaneous assessment and intervention, such as 

quicker use of informed clinical, referral, and other strategies to mitigate emerging school 

attendance problems.  Such devices may also help school officials triage or narrow the focus of 

these nimble responses, such as toward child, parent, and peer microsystems (Kearney, 2019; 

Lyon & Cotler, 2009).  The studies also reveal a fine line between parsimony and validity, 

however, meaning that researchers must thread the needle of identifying informative early 

warning systems that are acceptable and not burdensome to school-based professionals. 

Clusters of variables are likely more useful for deriving an algorithm to inform an early 

warning system for school attendance problems, including for categories of absences,  than 

singular factors such as child internalizing behavior.  Indeed, researchers in child 
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psychopathology increasingly use item response theory and signal detection approaches to 

identify multiple dimensional spectra of normal and abnormal functioning (Wakschlag et al., 

2019; White et al., 2017).  These approaches would be particularly useful for identifying cutoffs 

and criteria, transdiagnostic constructs, and multi-system responses (Nigg, 2017) for school 

attendance problems most pertinent to a specific jurisdiction or culture.  Such approaches could 

also help inform global policy review and dissemination and implementation practices for SA/A, 

discussed next. 

Global Policy Review and Dissemination and Implementation 

One of the most significant challenges for researchers of SA/A has been effective 

dissemination and implementation of conceptualization, assessment, and intervention approaches 

into schools, physical and mental health agencies, and the corridors of policy makers.  Reasons 

for this are myriad and may include lack of consensus among scholars, the complexity and 

heterogeneity of this population, disconnect between disciplines, school resistance, and 

substantial administrative, logistical, legal, and other restrictions uniquely faced by school 

officials (Graeff-Martins et al., 2006; Kearney, 2003; Keppens & Spruyt, 2017).  With respect to 

the latter, for example, many schools have been restricted by zero tolerance laws that mandate 

specific sanctions for absenteeism that may displace clinical and other approaches (Gage, Sugai, 

Lunde, & DeLoreto, 2013).  Exclusionary discipline policies, reporting guidelines, legal 

definitions of truancy, and disincentives for early school response likely play a role in this 

process as well (Brouwer-Borghuis, Heyne, Vogelaar, & Sauter, 2019; Marchbanks et al., 2015).  

Of course, many jurisdictions and countries have no legal or other policy regarding school 

absenteeism whatsoever (UNESCO, 2012).  Furthermore, statewide truancy policies appear 

unrelated to chronic absenteeism levels, and may actually be pernicious in that diverse students 
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are subjected to more restrictive policies (Conry & Richards, 2018).  Such policies also 

institutionalize the concept of truancy and thus color approaches taken for the problem (Spruyt, 

Keppens, Kemper, & Bradt, 2017). 

Markussen and Sandberg (2011) noted that policy measures to address school 

absenteeism and dropout vary widely across countries, range from considerable to little impact, 

and are often affected more by economic shifts and labor markets.  Still, the authors identified 

several policy measures across various countries that may have some impact on school 

absenteeism and dropout at system-wide levels, such as career guidance and counseling, income 

support for students, and vocational education and alternative educational programs.  Markussen 

and Sandberg (2011) noted that these and other policy measures must be based on a deep 

understanding of local conditions, including the unique attributes of those with school 

absenteeism and dropout, as well as on a common commitment to developing better theory for 

addressing these issues within the context of each country.  Global policy review with respect to 

school absenteeism must therefore focus on pruning counterproductive measures in addition to 

disseminating and implementing theoretical models that can be uniquely tailored to cross-

cultural settings.  

A multidimensional multi-tiered system of supports pyramid model of SA/A could be one 

such vehicle for policy review and dissemination.  The model is consistent with whole-school 

reform models of education, and eschews policies and practices that focus on exclusionary 

discipline (and unlawful school exclusion), immediate referrals to legal and other outside 

agencies, tacit acceptance of low-performing students who leave school, inflexible curricula, and 

rigid standardized testing (Kearney, 2016).  In addition, the model and associated algorithms can 

be flexibly and practically tailored to idiosyncratic differences related to local norms, calendars, 
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and educational practices.  The model is designed to be inclusive, simple, and easily adaptable to 

extant modes of service delivery in schools, which are key parameters of successful 

dissemination and implementation (Lyon & Bruns, 2019).  In addition, the multidimensional 

model may be well positioned because it can dovetail with (1) already existing school-based 

multi-tier frameworks devoted to academic performance, school climate/positive school culture, 

social and emotional competencies, and career readiness, and (2) functional behavioral 

assessment practices, both of which are already understood and utilized by many school officials 

(Eklund et al., 2019; Freeman & Simonsen, 2015). 

Lyon and colleagues (Cook, Locke, Waltz, & Powell, 2019; Lyon, Cook, Locke, Davis, 

Powell, & Waltz, 2019) iteratively adapted implementation strategies and recommendations from 

the healthcare sector to create a common nomenclature for such strategies that would be relevant 

to the educational sector.  A total of 75 unique implementation strategies were compiled into 

several larger conceptual categories, which could apply generally to programs designed to 

promote school attendance and/or curb absenteeism (Lyon & Cotler, 2009).  A full explication of 

these categories is beyond the scope of this article, but especially pertinent categories are briefly 

summarized next vis-à-vis a multidimensional model of SA/A. 

One set of adaptations, “use evaluative and iterative strategies,” referred in part to 

understanding the unique aspects of a given school context to identify potential barriers to 

implementation (and which school officials can best facilitate implementation), execute changes 

incrementally, establish clear goals and outcomes, develop monitoring systems with fidelity, 

obtain student and family feedback, and adjust practices as needed.  Perhaps the most common 

school-based barriers to MTSS-based models include lack of daily and consistent use as well as 

poor linkage of data with action (Leonard et al., 2019).  A multidimensional multi-tiered system 
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of supports pyramid model of SA/A can be, however, amenable to simple feedback mechanisms, 

reliance on data-based decision-making, incremental employment within each tier, multiple 

stakeholder involvement, and consultation practices that may erode such barriers (Forman, & 

Crystal, 2015; Scott, Gage, Hirn, Lingo, & Burt, 2019).  In addition, many clinical procedures to 

address school absenteeism at Tier 2 can be adaptively administered by school-based social 

workers, psychologists, and guidance counselors (Kearney, 2018, 2019).   

Other sets of adaptations, “provide interactive assistance” and “adapt and tailor to 

context,” referred in part to using a centralized system within a district to assist in 

implementation, pair school personnel together, identify ways a new practice can best be adapted 

to a given school context, utilize experts to inform implementation efforts, and integrate 

educational and administrative data across schools.  A key advantage of a multidimensional 

multi-tiered system of supports pyramid model of SA/A is that many schools already utilize 

MTSS or related tier-based principles as a centralized system and may thus be more equipped 

and willing to absorb school attendance/absenteeism into their frameworks.  Use of student 

review boards, district-wide task forces, and similar existing mechanisms at the system level for 

truancy may be helpful in this regard as well (Bye, Alvarez, Haynes, & Sweigart, 2010).  In 

addition, MTSS models of SA/A rely on attendance teams involving multiple school officials 

that can be informed by research-based findings (e.g., early warning systems, tier demarcations) 

described in this review (Kearney, 2016).  Others have also appealed for better sharing of 

attendance and graduation rates across schools in a given district to identify which contexts have 

been more successful with respect to school completion and how certain practices can be 

extrapolated (DePaoli et al., 2015). 
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Other sets of adaptations, “develop stakeholder interrelationships,” “support clinicians,” 

and “engage consumers” referred in part to developing partnerships internal and external to a 

school (e.g., university, school board) for training purposes, adding different disciplines as 

needed, providing real-time data regarding student outcomes, constructing educational materials 

regarding new practices, engaging with families to become active participants, and utilizing 

media to reach large numbers of people.  MTSS models commonly employ school-

community/research partnerships involving varied professionals from mental health and youth-

serving systems (Weist et al., 2018).  In addition, Chu and colleagues (2019) recommended the 

use of researcher-designed, publically available platforms for deriving real-time attendance and 

related data that could be available to districts nationally and internationally.  Many schools are 

also moving toward more standardized data collection systems with respect to basic performance 

outcomes (e.g., attendance, office disciplinary referrals, course grades) in conjunction with new 

federal mandates (Egalite, Fusarelli, Fusarelli, 2017).  As noted earlier, MTSS models also rely 

heavily on family and student engagement practices as well as educating parents about relevant 

school district policies regarding attendance and available resources (Kearney & Graczyk, 2014; 

Kearney, 2016). 

Successful dissemination and implementation strategies for SA/A will likely have to 

include some level of absorption into what schools are already doing to address social, 

emotional, and behavioral competencies.  Many/most schools already emphasize measurement, 

functional behavioral assessment, feasible multi-tiered approaches, and performance and student 

outcomes related to attendance, discipline, and academic progression (Lyon & Bruns, 2019).  

Schools are often motivated as well in an era of linked funding and mandates to improve 

attendance and graduation rates (DePaoli, Balfanz, Atwell, & Bridgeland, 2018).  In addition, 
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school-based professionals often coordinate efforts with mental health, medical, legal, social 

service, and other outside agencies to help implement wide-ranging approaches for SA/A 

(Kearney, 2016).  Successful dissemination and implementation strategies for SA/A will also 

have to involve adaptation to future changes in education and technology, a topic discussed next. 

Adaptability to the Future of Education and Technology 

One of the biggest challenges for educators, researchers, clinicians, and others who study 

and address SA/A will be massive and rapid changes in education and technology over the next 

several decades.  Any SA/A model will thus need to be pliable enough to be adapted not only to 

different cultures and countries but also to broad, systemic trends.  This section discusses expected 

future trends in education and technology and then how a multidimensional, multi-tiered systems 

of support model for SA/A could be adapted.  For brevity purposes, we group these trends into two 

broad categories: competency-based education and virtual learning (Kearney, 2016). 

Competency-based education refers generally to mastery of academic and related material 

based on key benchmarks, and at a variable pace and timeline, rather than a strict focus on formal 

in-seat class time, examination scores, and credit accrual (Colby, 2017).  Many schools in different 

countries have moved, or are moving toward, more holistic models of education that emphasize 

comprehension, innovation, conceptual connections, and critical thinking skills rather than simple 

recall and procedural steps (Jukes & Schaaf, 2019).  In these authentic or ubiquitous learning 

environments, students are more apt to engage in project-, portfolio-, experiential-, and service-

based activities to solve real-world problems, conduct experiments, interpret findings and 

literature, and make recommendations and presentations rather than simply taking multiple-choice 

tests, for example (Virtanen, Haavisto, Liikanen, & Kääriäinen, 2018).  Many such environments 

also emphasize personalized, customized learning and curricula, including core social and 
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behavioral competencies, for preparing individualized adult and career readiness plans (Ekstrand, 

2015; Taylor, Oberle, Durlak, & Weissberg, 2017). 

Virtual learning generally refers to online programming to deliver academic coursework 

and content (Brinson, 2015).  Virtual learning environments are increasingly common at high 

school and postsecondary levels of education, but all future learning environments are expected to 

have at least some virtual component over the next several decades (Miron & Gulosino, 2016).  

Virtual learning environments can range in scope from adjunctive to hybrid to immersive in nature.  

An adjunctive scope may involve the introduction of greater technology into traditional classroom 

settings (e.g., game-based student-teacher interactions via tablets or smartphones; a hybrid or 

blended scope may combine online learning with direct (in-person) instructor contact; an 

immersive scope may involve a wholly digital network rather than a physical space that includes 

students from many different locations (Boelens, De Wever, & Voet, 2017; Hainey, Connolly, 

Boyle, Wilson, & Razak, 2016; Xie, Chu, Hwang, & Wang, 2019).  Virtual learning environments, 

particularly immersive ones, can also vary with respect to time of individual and group work and 

perhaps be modified more quickly via learning analytics than traditional classrooms (Williamson, 

2017).   

Future trends in education and technology have serious ramifications for contemporary 

SA/A models.  Researchers’ traditional focus on outcomes such as percentage time missed from 

school as well as on concepts such as truancy or reluctance to attend school will need to be 

reconfigured in light of increasingly decentralized approaches to learning.  In related fashion, 

researchers and others will likely need to reconsider traditional grade-level systems and academic 

calendars as schools increasingly modify the pace at which individual students learn, accrue credits 

(if relevant), and graduate. 
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A multidimensional multi-tiered system of supports model may be adaptable to these 

changes in education and technology.  Indeed, various Tier 3 approaches for students largely 

disconnected or disengaged from school often focus on virtual, hybrid, project-based, and credit 

recovery and personalized learning approaches to provide alternative or blended pathways to adult 

and career readiness.  In addition, many dimensional constructs associated with SA/A can dovetail 

with more dimensional aspects of the educational experience, including those linked to 

competencies, progression, completion, skill, and readiness for career paths.  Finally, the model 

posed in this review is atheoretical, independent of academic timeline, and dexterous and 

malleable enough to accommodate rapid growth and immediate level change.  Perhaps most 

importantly, the model emphasizes the promotion of school attendance and education in some 

form, an ever-present goal for all in this field.   

Conclusion 

School attendance and school absenteeism remain important avenues of focus for many 

different professionals across education, mental health, public policy, and myriad other areas.  

As noted in Part 1 of this two-part review, though meant to be comprehensive, this article 

focused on the primary methods of differentiating school attendance problems.  Many nuanced 

distinctions based on multilevel and other statistical modeling should be noted, and many special 

circumstances such as intense school violence, extreme poverty, and geopolitical factors likely 

override the distinctions mentioned here.  However, the main goal was to provide a heuristic 

model to help spur the field toward reconciliation, common language, and advancement while 

considering important aspects of prevention and intervention, particularly within schools. 

Also as noted in Part 1 of this two-part review, we offer deep appreciation to all those 

who have dedicated their time and careers to helping youth succeed in school and move to a 
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more productive and healthy adulthood.  The frameworks presented in this review are designed 

as looking glasses both into the past and future of SA/A and thus represent only a snapshot of the 

present state of affairs in this rapidly changing field.  We look forward to learning about new and 

innovative developments in this field and hope that the ideas posed here offer some assistance. 
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Abstract 

School attendance problems, including school absenteeism, are common to many 

students worldwide, and frameworks to better understand these heterogeneous students include 

multiple classes or tiers of intertwined risk factors as well as interventions.  Recent studies have 

thus examined risk factors at varying levels of absenteeism severity to demarcate distinctions 

among these tiers.  Prior studies in this regard have focused more on demographic and academic 

variables and less on family environment risk factors that are endemic to this population.  The 

present study utilized ensemble and classification and regression tree analysis to identify 

potential family environment risk factors among youth (i.e., children and adolescents) at 

different levels of school absenteeism severity (i.e., 1+%, 3+%, 5+%, 10+%).  Higher levels of 

absenteeism were also examined on an exploratory basis.  Participants included 341 youth aged 

5-17 years (M = 12.2; SD = 3.3) and their families from an outpatient therapy clinic (68.3%) and 

community (31.7%) setting, the latter from a family court and truancy diversion program cohort.  

Family environment risk factors tended to be more circumscribed and informative at higher 
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levels of absenteeism, with greater diversity at lower levels.  Higher levels of absenteeism appear 

more closely related to lower achievement orientation, active-recreational orientation, cohesion, 

and expressiveness, though several nuanced results were found as well.  Absenteeism severity 

levels of 10-15% may be associated more with qualitative changes in family functioning.  These 

data may support a Tier 2-Tier 3 distinction in this regard and may indicate the need for specific 

family-based intervention goals at higher levels of absenteeism severity. 

Introduction 

School attendance problems, including school absenteeism, are common to many 

students worldwide (UNESCO, 2012).  School absenteeism has been linked to academic 

performance and achievement deficiencies, various mental health and social problems, and later 

school dropout (Attwood & Croll, 2015; Bridgeland, Dilulio, & Morison, 2006; Burton, Marshal, 

& Chisolm, 2014).  School attendance problems leading to dropout can have lingering effects 

into adulthood as well, including increased risk for eventual economic, marital, occupational, and 

psychiatric problems (Christenson & Thurlow, 2004; Mazerolle et al., 2018; Rocque, Jennings, 

Piquero, Ozkan, & Farrington, 2017). 

Recent theoretical frameworks of school attendance problems have focused on multiple 

classes or tiers of intertwined risk factors as well as interventions to fully capture the complexity 

of this heterogeneous population (Ingul, Havik, & Heyne, 2019; Kearney & Graczyk, 2014; 

Kearney, 2008; Skedgell & Kearney, 2018).  Researchers have identified general classes of 

factors, such as child, parent, family, peer, school, and community variables, that enhance risk 

for school attendance problems (Burrus, & Roberts, 2012; Havik, Bru, & Ertesvåg, 2015; Ingul, 

Klöckner, Silverman, & Nordahl, 2012; Maxwell, 2016; McKee & Caldarella, 2016; Ready, 
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2010).  These classes of risk factors often work in tandem, particularly with respect to chronic 

and severe school attendance problems and school dropout (Freeman & Simonsen, 2015).  

Family environment type may be one such risk factor that directly impacts school 

attendance and academic achievement in youth (Epstein & Sheldon, 2002; Hill & Taylor, 2004).  

Bernstein and colleagues (1990; 1996; 1999), for example, identified several family variables 

associated with anxiety-based school refusal.  These variables included lack of agreement among 

family members with respect to roles, inconsistency of family rules, and greater communication 

difficulties, rigidity, and disengagement.  Lagana (2004) found that low family cohesion was 

more characteristic of students at medium to high risk of school dropout than those at low risk.   

Family structure and culture relate closely to school dropout as well (De Witte, Cabus, Thyssen, 

Groot, & van Den Brink, 2013). 

Kearney and Silverman (1995) identified various dynamic subtypes among families of 

youth with broader school refusal behavior: enmeshed, detached, isolated, conflictive, healthy, 

and mixed.  Enmeshed families display extreme closeness, emotional dependency, over-

involvement, and loyalty but lack developmentally appropriate autonomy, leading some youth to 

feel insecure and display internalizing and externalizing symptoms (Barber & Buehler, 2006; 

Berryhill, Hayes, & Lloyd, 2018; Davies, Cummings, & Winter, 2004).  Detached family 

members are relatively uninvolved or inattentive to one another, leading some youth to display 

internalizing and externalizing symptoms, poor emotional regulation, and insecure relationships 

with family members (Davies et al., 2004; Lindblom, Peltola, et al., 2017; Weiss & Cain, 1964). 

Conflictive families display a lack of intimacy and emotional expression in addition to 

high rates of struggle and hostility among family members, leading some youth to display 

internalizing symptoms and risk-taking behaviors (Bradley et al., 2010; Chen, Wu, & Wei, 2017; 
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Jaycox & Repetti, 1993; Makihara, Nagaya, & Nakajima, 1985).  Isolated families are 

characterized by minimal, if any, contact with people outside of the family, leading some youth 

to experience stress and social withdrawal (Tucker & Rodriguez, 2014; Wahler, 1980).  Healthy 

families are characterized by adaptive functioning and good communication and problem-solving 

skills.  Mixed families display characteristics of several of these patterns (Barber & Buehler, 

2006; Kearney & Silverman, 1995). 

In addition, researchers have begun to focus on the concept of multi-tiered systems of 

support (MTSS) and related models to conceptualize different layers of intervention for school 

attendance problems (Elliott & Place, 2019; Freeman et al., 2016; Kearney, 2016).  MTSS aims 

to provide high-quality, individualized instruction and intervention, informed by frequent 

progress monitoring, for all aspects of student education (McIntosh & Goodman, 2016).  MTSS 

models are often arranged in 3 tiers that focus on prevention (Tier 1), early intervention for 

emerging, acute problems (Tier 2), and intensive intervention for chronic and severe problems 

(Tier 3; Eagle, Dowd-Eagle, Snyder, & Holtzman, 2015).  MTSS models have been applied to 

academic, social, and behavioral problems and skills across various age ranges and school 

settings (August, Piehler, & Miller, 2018). 

Kearney and Graczyk (2014) were the first to apply MTSS principles to a model of 

school absenteeism directly.  Each MTSS tier has a specific focus based on the severity of school 

absenteeism: (1) Tier 1 focuses on enhancing functioning and schoolwide attendance and 

preventing absenteeism for all students, (2) Tier 2 focuses on addressing students with emerging, 

acute, or mild to moderate school absenteeism, and (3) Tier 3 focuses on addressing students 

with chronic and severe school absenteeism (Kearney, 2016).  Specific interventions are matched 

to each tier to help school personnel identify individualized responses.  Recent research has 



 126 

demonstrated the value of applying MTSS models to school absenteeism.  For example, schools 

that implement MTSS with higher fidelity have lower levels of school absenteeism than schools 

with less fidelity (Freeman et al., 2016). School districts may also include attendance measures 

in MTSS models (Coffey et al., 2018). 

A key task for researchers utilizing MTSS models for school absenteeism has been to 

identify demarcations between the tiers.  A distinction between Tiers 1 and 2 essentially means a 

distinction between nonproblematic and problematic behavior, such as between appropriate 

school attendance and school absenteeism in need of intervention (Pullen & Kennedy, 2019).  

However, no consistent, consensus definition for problematic school absenteeism exists across 

research disciplines or school districts (Gentle-Genitty, Karikari, Chen, Wilka, & Kim, 2015; 

Spruyt, Keppens, Kemper, & Bradt, 2016).  Greater consensus can be found with respect to 

distinguishing Tiers 2 and 3, or identifying at what point school absenteeism is chronic and 

severe (DePaoli, Fox, Ingram, Maushard, Bridgeland, & Balfanz, 2015).  Researchers, school 

districts, and other agencies sometimes utilize a 10% absenteeism cutoff to identify chronic 

absenteeism, though this is somewhat arbitrary and not universal (Conry & Richards, 2018). 

Specific data-based demarcations between these tiers remain sparse, despite the fact that 

such distinctions would help inform early warning systems and intervention assignments for 

student absenteeism (Chu, Guarino, Mele, O’Connell, & Coto, 2018).  Skedgell and Kearney 

(2016; 2018) found that risk factors for levels of absenteeism at 10% or higher tended to be more 

restricted than risk factors at lower levels of absenteeism.  These studies focused primarily on 

academic and demographic variables, however, without examining family factors that have been 

identified as a key correlate of school attendance problems (Dahl, 2016).   
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The present study aimed to identify potential family environment risk factors among 

youth at different levels of school absenteeism severity (i.e., 1+%, 3+%, 5+%, 10+%).  

Participants included students referred for services due to substantial school absenteeism, which 

allowed for analysis of varying levels of severity.  In accordance with recent calls to employ 

machine learning-based methods to examine risk factors for school absenteeism (Chung & Lee, 

2019; Sansone, 2019), two sets of statistical approaches were utilized.  Ensemble analysis, 

including chi-square adjusted interaction detection (CHAID), support vector machines, and 

neural network analyses, is a nonparametric method that combines multiple algorithmic models 

or classifiers to produce a single best model for a given data set (Berk, 2006).  In addition, 

classification and regression tree analysis (CART) is a nonparametric method that identifies 

comprehensive subgroups based on interactions among multiple risk or predictor variables 

(Lemon, Roy, Clark, Friedmann, & Rakowski, 2003).  Nonparametric methods are increasingly 

used for academic variables denoted by categorical levels (e.g., Cordero, Santín, & Simancas, 

2017; Lahti, Evans, Goodman, Schmidt, & LeCroy, 2019).  Various levels of school absenteeism 

were examined, with a general expectation that risk factors at higher levels of absenteeism would 

be more restricted than risk factors at lower levels of absenteeism. 

Materials and Methods 

Participants 

Participants included 341 youth (i.e., children and adolescents) aged 5-17 years (M = 

12.2; SD = 3.3) and their families from an outpatient therapy clinic (68.3%) and community 

(31.7%) setting, the latter from a family court and truancy diversion program cohort.  For the 

clinic sample, age range was 5-16 years (M = 11.0; SD = 3.2).  Participants were primarily male 

(62.9%) and were European-American (78.2%), Asian (11.6%), Hispanic (5.8%), African 
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American (2.2%), multiracial or biracial (1.3%), and other (0.4%).  For the community sample, 

age range was 11-17 years (M = 14.8; SD = 1.5).  Participants were primarily female (53.7%) 

and were Hispanic (75.0%), African American (10.2%), other (5.6%), multiracial or biracial 

(3.7%), Asian (2.8%), and European-American (2.8%).  Across both groups, most parents were 

married (50.0%); others were divorced (17.1%), separated (16.7%), never married (15.2%), or 

had another status (1.0%).  Most fathers (57.0%) and mothers (63.3%) had graduated high 

school.  Participants missed an average of 19.0% days of school (SD = 17.2) at time of 

assessment.  Some youths were referred for treatment for school refusal behaviors (e.g., distress 

at school, morning misbehaviors designed to miss school, skipped classes, tardiness) that did not 

include formal full-day absences. 

Measures 

The Family Environment Scale: Form R (FES; Moos & Moos, 2009) is a 90-item 

true/false measure of current family relationships, personal growth, and family system 

maintenance. The FES comprises 10 subscales based on standard scores (mean, 50): cohesion 

(family member support of one another; COH), expressiveness (encouraging expression of 

feelings; EXP), conflict (open anger and hostility; CON), independence (self-sufficient, assertive 

members; IND), achievement orientation (activities cast in a competitive framework; ACH), 

intellectual-cultural orientation (family interest in intellectual and cultural issues; ICO), active-

recreational orientation (participation in recreational/social activities; ARO), moral-religious 

emphasis (emphasis on ethical and religious values; MRE), organization (clear structure in 

activities; ORG), and control (set rules and procedures to structure family life; CTL).  Internal 

consistency (Cronbach’s alpha) ranges between 0.61-0.78.  Cronbach’s alpha for the items in the 

present study was 0.72.  Two- and 4- month test-retest reliabilities range between 0.70-0.91 
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(Moos, 1990).  FES item and subscale standard scores (M = 50.0) were utilized as the primary 

unit of analysis in the present study. 

School staff or parents provided absenteeism severity data in the form of number of full 

school days missed.  Percentage of full school days missed was calculated by dividing a 

student’s total number of full school days missed by the number of days of school in that 

academic year, at the time of assessment, and then multiplying that number by 100.  

Procedure and data analyses 

Participants were recruited from a specialized outpatient therapy clinic or community setting.  

Participants in the community setting were referred to family court or a truancy diversion 

program by their school or parent(s)/guardian(s) based on prior school absences.  Measures that 

included the FES were administered to youth and their parent(s)/guardian(s) independently and 

in the presence of a research assistant.  Spanish versions of the measures were available.  Study 

procedures, including parent consent and child assent, were approved by a university institutional 

review board. 

 Ensemble analysis was utilized to identify potential family environment risk factors 

among youth with school attendance problems across different levels of school absenteeism.  

Ensemble analysis is the combination of multiple algorithmic models or classifiers to produce 

one, best model that can be applied to the data (Berk, 2006).  These models have been shown to 

outperform standard parametric methods, primarily due to the automation of identifying 

interactions and non-linearities and reducing overestimations of a model’s predictive ability 

(Rosellini, Dussaillant, Zubizarreta, Kessler, & Rose, 2018).  Ensemble analysis can include 

many different statistical methods; the present study utilized chi-square adjusted interaction 

detection (CHAID) decision trees, support vector machines, and neural network analyses.  
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Predictors were examined collectively and independently.  A multiple imputation method was 

utilized; different plausible imputed data sets were examined, and combined results were 

obtained and reported here.  Confusion matrices supported the use of CHAID decision trees as 

the best approach.  In addition, CART analyses were utilized to more specifically examine 

clusters of FES items associated with enhanced risk for a particular level of absenteeism severity 

(i.e., 1+%, 3+%, 5+%, 10+%).  Other absenteeism levels were examined on an exploratory basis 

(i.e., 15+%, 20+%, 30+%, 40+%).  For brevity, significant results are reported. 

Results 

Absenteeism: 1+% 

For the CHAID analysis, the final collective tree-model that best differentiated youth 

with 1+% absenteeism from youth with <1% absenteeism correctly identified 99.4% of 

participants and identified two main risk factors: FES items 1 and 44.  Youth with items 1 

(members help and support one another; COH) and 44 (little privacy in our family; IND) 

endorsed as true were at higher risk for 1+% absenteeism (66.5%); youth with items 1 and 44 

endorsed as false were at lower risk (27.6%).  The tree-model demonstrated higher sensitivity 

than specificity.  Independent analysis of the predictors revealed that ARO scores significantly 

predicted 1+% absenteeism (p < .02, F = 9.58).  ARO scores of <=53.0 indicated higher risk for 

1+% absenteeism (80.1%); ARO scores of >53.0 indicated lower risk (19.9%).  IND scores also 

significantly predicted 1+% absenteeism (p < .05, F = 7.39).  IND scores of >37.0 indicated 

higher risk for 1+% absenteeism (67.7%); IND scores of <=37.0 indicated lower risk (32.3%). 

CART item analysis identified three subgroups at highest risk for 1+% absenteeism (each 

node at 100.0%): (1) items 28 (true; talk about religious meaning; MRE) and 40 (true; set ways 

of doing things; CTL); (2) items 28 (true; talk about religious meaning; MRE), 39 (true; on time 
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is very important; ORG), 40 (false; set ways of doing things; CTL), and 62 (true; money/bills 

openly talked about; EXP); and (3) items 28 (false; talk about religious meaning; MRE), 29 

(true; hard to find things; ORG), and 44 (true; very little privacy in family; IND).  The tree-

model’s accuracy in predicting 1+% absenteeism was approximately 91.3%. 

Absenteeism: 3+% 

For the CHAID analysis, the final collective tree-model that best differentiated youth 

with 3+% absenteeism from youth with <3% absenteeism correctly identified 83.2% of 

participants and identified several items (2, 25, 31, 42, 62, 89) and subscale scores as risk factors 

(Table 6).  The tree-model demonstrated higher sensitivity than specificity.  The final node 

representing highest overall risk of 3+% absenteeism (.968) included items 2 (true; members 

keep feelings to self; EXP), 25 (true), and 42 (true; doing things spur of the moment; EXP).  

Independent analysis of the predictors revealed that ARO scores significantly predicted 3+% 

absenteeism (p < .01, F = 12.62). ARO scores of <=53.0 indicated higher risk for 3+% 

absenteeism (80.1%); ARO scores of >53.0 indicated lower risk (19.9%). 

 

Table 6 

FES Subscale Standard Scores Predictive of 3+% Absenteeism 

 Higher risk Lower risk 

Expressiveness 34.0-51.5 (8.6%) 59.0-60.0 (3.2%) 

Achievement orientation >47.0 (4.3%) <=47.0 (4.2%) 

Moral-religious emphasis <=61.0 (5.0%) >61.0 (2.7%) 

Independence <=37.0 (2.4%) >37.0 (2.3%) 

Note: Subscales presented in descending order of impact. 
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CART item analysis identified four subgroups at highest risk for 3+% absenteeism (each 

node at 100.0%): (1) items 25 (true; money not very important to us; ACH) and 31 (true; feeling 

of family togetherness; COH); (2) items 25 (false; money not very important to us; ACH), 31 

(false; feeling of family togetherness; COH), and 89 (true; dishes done immediately after eating; 

ORG); (3) items 2 (true; members keep feelings to self; EXP), 5 (true; important to be best; 

ACO), 25 (true; money not very important to us; ACH), and 53 (false; members sometimes hit; 

CON); and (4) items 2 (false; members keep feelings to self; EXP), 14 (false; encouraged to be 

independent; IND), 25 (true; money not very important to us; ACH), 86 (true; like art and music; 

ICO), and 90 (false; can’t get away with much; CTL).  The tree-model’s accuracy in predicting 

3+% absenteeism was approximately 85.7%. 

Absenteeism: 5+% 

For the CHAID analysis, the final collective tree-model that best differentiated youth 

with 5+% absenteeism from youth with <5% absenteeism correctly identified 76.3% of 

participants and identified several items (2, 29, 35, 40, 50, 62, 71) and subscale scores as risk 

factors (Table 7).  The tree-model demonstrated higher sensitivity than specificity.  The final 

node representing highest overall risk of 5+% absenteeism (.986) included items 2 and 29 (true) 

and IND scores of <=37.  Independent analysis of the predictors revealed that ARO scores 

significantly predicted 5+% absenteeism (p <.02, F = 9.57, predicted .760).  ARO scores of 

<=53.0 indicated higher risk for 3+% absenteeism (80.1%); ARO scores of >53.0 indicated 

lower risk (19.9%).   
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Table 7 

FES Subscale Standard Scores Predictive of 5+% Absenteeism 

 Higher risk Lower risk 

Expressiveness 40.8-51.5 (10.0%) 59.0-60.0 (3.7%) 

Cohesion >32.7 (10.2%) <=32.7 (3.1%) 

Independence >37.0 (4.9%) <=37.0 (3.0%) 

Moral-religious emphasis <=61.0 (3.5%) >61.0 (2.3%) 

Conflict >43.0 (7.8%) <=43.0 (2.2%) 

Note: Subscales presented in descending order of impact. 

 

 

CART item analysis identified three subgroups at highest risk for 5+% absenteeism (each 

node at 100.0%): (1) items 51 (true; members back each other; COH), 56 (false; someone plays a 

musical instrument; ICO), and 77 (true; members go out a lot; ARO); (2) items 34 (false; we 

come and go as we want; IND), 45 (true; strive to do things better; ACO), 74 (true; hard to be by 

self without hurting feelings; IND), and 77 (false; members go out a lot; ARO); and (3) items 16 

(true; rarely go to plays/concerts; ICO), 17 (false; friends often come over; ARO), 29 (false; hard 

to find things; ORG), 74 (false; hard to be by self without hurting feelings; IND), and 77 (false; 

members go out a lot; ARO).  The tree-model’s accuracy in predicting 5+% absenteeism was 

approximately 74.5%. 

Absenteeism: 10+% 

For the CHAID analysis, the final collective tree-model that best differentiated youth 

with 10+% absenteeism from youth with <10% absenteeism correctly identified 58.3% of 
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participants and identified several items (4, 11, 16, 17, 44, 49, 68, 79, 87) and subscale scores as 

risk factors (Table 8).  The tree-model demonstrated higher sensitivity than specificity.  The final 

node representing highest overall risk of 10+% absenteeism (1.000) included ORG scores of 

53.0-58.0, ICO scores of 35.9-41.0, and item 17 (true; friends come over; ARO).  Independent 

analysis of the predictors revealed that COH scores significantly predicted 10+% of days missed.  

COH scores of <=52.0 indicated higher risk of 10+% absenteeism (54.8%); COH scores of >52.0 

indicated lower risk (45.2%).  CART item analysis identified one main subgroup at elevated risk 

for 10+% absenteeism (node at 87.5% probability): (1) items 74 (true; hard to be by self without 

hurting feelings; IND) and 77 (false; members go out a lot; ARO).  The tree-model’s accuracy in 

predicting 10+% absenteeism was approximately 78.3%. 

 

 

Table 8 

FES Subscale Standard Scores Predictive of 10+% Absenteeism 

 Higher risk Lower risk 

Organization 53.0-58.0 (23.4%) 48.0-53.0 (2.5%) 

Moral-religious emphasis <=61.0 (5.2%) 61.0-65.9 (2.1%) 

Expressiveness >51.5 (7.3%) 46.8-51.5 (2.1%) 

Intellectual-cultural orientation 47.0-58.0 (6.2%) <35.9 (3.1%) 

Achievement orientation >53.0 (3.7%) 46.8-51.5 (2.6%) 

Conflict <=44.0 (2.2%) >44.0 (2.1%) 

Note: Subscales presented in descending order of impact. 
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 Absenteeism: Higher levels 

CHAID analyses were also conducted on an exploratory basis for absenteeism levels of 

15+%, 20+%, 30+%, and 40+%.  The final collective tree-model that best differentiated youth 

with 15+% absenteeism from youth with <15% absenteeism correctly identified 52.9% of 

participants and identified several items (14, 28, 42, 61, 71, 75) and subscale scores as risk 

factors.  The tree-model demonstrated higher specificity than sensitivity.  MRE scores of >61.0 

indicated higher risk of 15+% absenteeism (17.0%); MRE scores of <= 43.9 indicated lower risk 

(10.9%).  ACH scores of <=47 indicated higher risk of 15+% absenteeism (16.6%); ACH scores 

of >59.0 indicated lower risk (5.4%).  CTL scores of >47.2 indicated higher risk of 15+% 

absenteeism (6.2%); CTL scores of 42.9-47.2 indicated lower risk (2.3%).  IND scores of 51-53 

indicated higher risk of 15+% absenteeism (4.7%); IND scores of >53.0 indicated lower risk 

(2.6%).  ARO scores of <=48.0 indicated higher risk of 15+% absenteeism (3.3%); ARO scores 

of >48.0 indicated lower risk (2.6%).  The final node representing highest overall risk of 15+% 

absenteeism (.867) included MRE scores of 56.0-61.0, item 42 (true; doing things spur of the 

moment; EXP), and item 75 (true; work before play is the rule; ICO).  Independent analysis of 

predictors revealed that ACH scores significantly predicted 15+% of days missed (p < .04, F = 

8.16, predicted = 0.47).  ACH scores of <=47.0 indicated higher risk of 15+% absenteeism 

(52.2%); ACH scores of >47.0 indicated lower risk (47.8%).   

The final collective tree-model that best differentiated youth with 20+% absenteeism 

from youth with <20% absenteeism correctly identified 61.4% of participants and identified 

several items (4, 49, 79) and subscale scores as risk factors.  The tree-model demonstrated higher 

specificity than sensitivity.  COH scores of 23.0-45.9 indicated higher risk of 20+% absenteeism 

(27.9%); COH scores of >65.0 indicated lower risk (9.8%).  CTL scores of 23.0-45.9 indicated 
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higher risk of 20+% absenteeism (27.9%); CTL scores of >65.0 indicated lower risk (9.8%).  

EXP scores of 34.0-47.0 indicated higher risk of 20+% absenteeism (10.0%); EXP scores of <= 

34.0 indicated lower risk (4.9%).  MRE scores of >61 indicated higher risk of 20+% absenteeism 

(5.1%); MRE scores of 43.9-51.0 indicated lower risk (2.4%).  

The final collective tree-model that best differentiated youth with 30+% absenteeism 

from youth with <30% absenteeism correctly identified 75.0% of participants and identified 

several items (18, 20, 30, 43, 85) and subscale scores as risk factors.  The tree-model 

demonstrated higher specificity than sensitivity.  COH scores of 23.0-45.9 indicated higher risk 

of 30+% absenteeism (27.9%); COH scores of 52-52.6 indicated lower risk (6.5%).  MRE scores 

of 36.0-46.0 indicated higher risk of 30+% absenteeism (4.0%); MRE scores of <=36 indicated 

lower risk (3.1%).  EXP scores of 34.0-47.0 indicated higher risk of 30+% absenteeism (10.0%); 

EXP scores of <= 34.0 indicated lower risk (4.9%).  IND scores of >37.0 indicated higher risk of 

30+% absenteeism (7.2%); IND scores of <= 37.0 indicated lower risk (4.2%).  CTL scores of 

<=43.0 indicated higher risk of 30+% absenteeism (3.9%); CTL scores of >53.3 indicated lower 

risk (3.7%).  CON scores of 44.0-54.3 indicated higher risk of 30+% absenteeism (6.9%); CON 

scores of 38.5-43.0 indicated lower risk (2.4%).  Independent analysis of the predictors revealed 

that ACH scores significantly predicted 30+% of days missed (p < .05, F = 7.87).  ACH scores 

of <=51.0 indicated higher risk of 30+% absenteeism (52.5%); ACH scores of >51.0 indicated 

lower risk (47.5%).   

 The final collective tree-model that best differentiated youth with 40+% absenteeism 

from youth with <40% absenteeism correctly identified 85.0% of participants and identified 

several items (10, 49, 55) and subscale scores as risk factors.  The tree-model demonstrated 

higher specificity than sensitivity.  COH scores of 23.0-45.9 indicated higher risk of 40+% 
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absenteeism (10.2%); COH scores of 52.6-59 indicated lower risk (3.2%).  MRE scores of 46.0-

61.0 indicated higher risk of 40+% absenteeism (38.8%); MRE scores of <=36 indicated lower 

risk (7.5%).  ORG scores of <=53.0 indicated higher risk of 40+% absenteeism (16.2%); ORG 

scores of >53.0 indicated lower risk (6.6%).  IND scores of <=51 indicated higher risk of 40+% 

absenteeism (5.2%); IND scores of >51.0 indicated lower risk (5.0%).  ARO scores of <=61.0 

indicated higher risk of 40+% absenteeism (5.4%); ARO scores of >61.0 indicated lower risk 

(25.0%). 

Discussion 

The present study examined family environment variables as potential predictors of 

various absenteeism severity levels.  The findings reveal that several family environment 

variables are indeed related to different severity levels in both broad and more nuanced ways.  

Broadly, as expected, family environment risk factors tended to be more circumscribed and 

informative at higher levels of absenteeism, with much greater diversity at lower levels.  Higher 

levels of absenteeism (i.e., 15+%) appear more closely related to lower achievement orientation, 

active-recreational orientation, cohesion, and expressiveness.  Lower levels of absenteeism (i.e., 

1%, 3%, 5%) were generally associated with a wider array of family environment variables. 

Active-recreational standard scores were generally suppressed across absenteeism 

severity levels, a result that parallels Hansen and colleagues’ (1998) finding that less active 

families were associated with greater levels of school absenteeism among youth with anxiety-

based conditions.  These authors speculated that a low emphasis on social and physical activities 

and greater time spent at home may mean that some children may be more apt to spend school 

time at home.  In addition, these children may be more predisposed to have difficulties with 

social skills and peer interactions that could also interfere with school attendance.  Some have 
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also found that school absenteeism is related to less participation in school sports (Hunt & 

Hopko, 2009), though others have not (Skedgell & Kearney, 2018).  Lower active-recreational 

scores were evident as well in Kearney and Silverman’s (1995) study that led those authors to 

conclude that some families of youth with absentee problems are isolated in nature.  

A number of nuanced findings were also revealed in the present study, however, that 

deserve detailed description.  With respect to achievement orientation, for example, elevated 

standard scores were associated with less absenteeism severity but lower standard scores were 

associated with greater absenteeism severity.  Higher school performance is generally associated 

with higher competition (Harrison & Rouse, 2014), though effects can depend on gender and age 

(Little & Garber, 2004; Wang & Holcombe, 2010).  At the family level, achievement orientation 

could translate into specific activities such as modeling academic advancement, reading 

frequently, encouraging a strong work ethic, and providing enrichment opportunities that distally 

affect school attendance (Dubow, Boxer, & Huesmann, 2009). 

In addition, lower standard scores for expressiveness were evident at less severe (3%, 

5%) and more severe (20%, 30%) levels of absenteeism, though elevated standard scores were 

predictive of 10+% absenteeism.  As noted earlier, Bernstein and Borchardt (1996) found that 

families of youth with school refusal displayed significant problems with respect to role 

performance and communication.  Findings from the present study indicate that such difficulties 

may be less evident during periods when families are working together to solve an absentee 

problem and during periods when frustration over long-term absenteeism has led to greater 

disengagement and less opportunities for direct expression (Kearney & Silverman, 1995).   

Family cohesion represented another nuanced finding.  Cohesion was not predictive at 

1+% and 3+% absenteeism but lower standard scores were more predictive of higher levels of 
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absenteeism.  This result parallels Bernstein and colleagues’ (1999) finding that adolescents with 

school attendance problems and their parents viewed their families as particularly rigid and 

disengaged on a cohesion dimension.  In addition, several researchers have found, broadly 

speaking, that parent and family involvement and support are crucial variables with respect to 

school attendance, performance, and dropout (Parr & Bonitz, 2015; Sheldon, 2007; Topor, 

Keane, Shelton, & Calkins, 2010).  Cohesion in the form of help with homework, support for 

academic progress, and commitment to education may be key in this regard (Wilder, 2014). 

Family conflict was expected to be an important predictor of absenteeism severity in the 

present study.  Elevated conflict standard scores were more predictive of 5+% absenteeism 

severity, whereas lower conflict standard scores were more predictive of 10+% absenteeism 

severity.  Some have found family conflict to be elevated in this population in general, and 

advocate for the problem to be resolved clinically in this population (Kearney & Albano, 2018; 

Kearney & Silverman, 1995), though others have found family conflict to be unrelated to school 

attendance problems (McShane, Walter, & Rey, 2001).  As with expressiveness, some families 

may display increased conflict at a point of urgency when trying to resolve a school attendance 

problem but later become frustrated and disengaged from the process (Kearney, 2019). 

Finally, control was a family environment variable that did not appear until higher levels 

of absenteeism severity.  Lower levels of control were more predictive at higher levels of 

absenteeism severity, particularly at the 20+% and 30+% levels.  A less structured home 

environment has been associated with school absenteeism in other studies (Hunt & Hopko, 

2009).  In addition, as mentioned earlier, Bernstein and colleagues (1990) found that 

inconsistency of family rules related to some youth with school attendance problems.  
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Conversely, family rules are part of a parent involvement process often associated with academic 

success (Catsambis, 2001). 

Analyses of individual FES items also revealed interesting findings.  First, items were 

sometimes endorsed differently in different nodes, indicating a high level of variability in these 

groups.  This applied particularly to lower levels of absenteeism.  Second, fewer items were 

predictive of 10+% absenteeism than at lower levels, mirroring the subscale finding that 

predictors tended to be more restricted at higher absenteeism severity levels.  Overall, however, 

examining subscale scores appeared to be more useful than examining item scores.   

The present study may thus have some applicability to MTSS models of school 

absenteeism and how tiers within these models may be demarcated.  In particular, absenteeism 

severity levels of 10-15% appear to be associated with more defined sets of risk factors, which 

may indicate more qualitative changes in family functioning at these levels.  More intense drops 

in achievement orientation, active-recreational orientation, cohesion, and expressiveness, in 

addition to less conflict, may indicate that families become substantially more disengaged at 

these levels.  Such disengagement could come in the form of sharply reduced parent-school 

official contact, consequences for school absenteeism, academic assistance, attendance 

monitoring, and parent supervision (Kearney & Albano, 2018). 

The results may also have implications for MTSS development in educational settings.  

Many local educational agencies, for example, are moving toward systemic, evidence-based 

systems of academic and behavioral supports to meet the unique needs of diverse students 

(McIntosh & Goodman, 2016).  A better understanding of how these needs intersect with family-

based challenges is essential in this respect.  Parental involvement, for example, has been found 

to be a key element of success in MTSS programs, and such programs often benefit from a wider 
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array of stakeholders that include parents (August, Piehler, & Miller, 2018).  In addition, MTSS 

models are increasingly moving toward a “whole child” approach that more fully considers 

ecological levels outside of school, such as family factors (Sailor, McCart, & Choi, 2018).  

Results of the present study and related studies may thus help inform such an approach. 

Results of the present study also have implications for further research work in this area, 

particularly with respect to how these findings intersect with other family-based risk factors for 

school absenteeism.  Gubbels and colleagues (2019), for example, conducted a meta-analytic 

review of such factors for school absenteeism and dropout and found several pertinent family 

domains.  These included low parental school involvement,  lack of nuclear family structure, and 

low parental control, among others.  An understanding of how the family environment dynamics 

identified in the present study intersect with these broader domains, particularly with respect to 

specific levels of school absenteeism, would be quite instructive for subtyping and demarcation 

purposes.  Such information may also help inform family-based treatment for this population.  

For example, Tobias (2019) found that family-based intervention for persistent school 

absenteeism was often hindered by an insecure home environment.  The latter construct could be 

investigated in greater detail in future work to identify whether the dynamics noted in the present 

study would apply. 

Limitations of the present study should be noted.  First, the sample was a diverse one 

ranging from having no formal school absences to having many school absences.  Second, 

more detailed analyses of absenteeism type or of demographic or developmental differences 

were not examined in accordance with sample constraints and diversity of settings.  Third, the 

primary dependent measure was based on parent-report.  Future researchers should endeavor to 

explore a more wide-ranging assessment of family functioning in this population. 
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Conclusion 

Despite these limitations, findings from the present study may have some clinical 

implications.  Educators, mental health professionals, and others who address these families, 

particularly at higher levels of absenteeism severity, will likely need to prioritize certain goals 

given the problematic family dynamics involved.  With respect to school attendance, such goals 

may include repairing parent-school official communications, educating family members about 

creative educational options, and establishing contracts or agreements to improve problem-

solving ability and increase incentives for attending school (Kearney, 2019).  More broadly, such 

goals may include interventions to enhance family engagement and communication as well as 

contacts with outside sources of support (Kelly, Rossen, & Cowan, 2018). 
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Abstract 

School attendance problems are highly prevalent worldwide, leading researchers to 

investigate many different risk factors for this population.  Of considerable controversy is how 

internalizing behavior problems might help to distinguish different types of youth with school 

attendance problems.  In addition, efforts are ongoing to identify the point at which children and 

adolescents move from appropriate school attendance to problematic school absenteeism.  The 

present study utilized ensemble and classification and regression tree analysis to identify 

potential internalizing behavior risk factors among youth at different levels of school 

absenteeism severity (i.e., 1+%, 3+%, 5+%, 10+%).  Higher levels of absenteeism were also 

examined on an exploratory basis.  Participants included 160 youth aged 6-19 years (M = 13.7; 

SD = 2.9) and their families from an outpatient therapy clinic (39.4%) and community (60.6%) 

setting, the latter from a family court and truancy diversion program cohort.  One particular item 

relating to lack of enjoyment was most predictive of absenteeism severity at different levels, 

though not among the highest levels.  Other internalizing items were also predictive of various 
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levels of absenteeism severity, but only in a negatively endorsed fashion.  Internalizing 

symptoms of worry and fatigue tended to be endorsed higher across less severe and more severe 

absenteeism severity levels.  A general expectation that predictors would tend to be more 

homogeneous at higher than lower levels of absenteeism severity was not generally supported.  

The results help confirm the difficulty of conceptualizing this population based on forms of 

behavior but may support the need for early warning sign screening for youth at risk for school 

attendance problems. 

Introduction 

School attendance problems are a worldwide phenomenon linked to a plethora of 

academic, social, and physical and mental health problems in children and adolescents (Kearney, 

Gonzálvez, Graczyk, & Fornander, 2019a, b).  Factors that elevate risk of school attendance 

problems are myriad as well and are often grouped into child-, parent-, family-, peer-, school-, 

and community-based variables (e.g., Havik, Bru, & Ertesvåg, 2015).  Child-based risk factors of 

school attendance problems include extensive work hours outside of school, grade retention, 

office disciplinary referrals, low school commitment and engagement, poor health or academic 

proficiency, problematic interpersonal relationships, substance use, and underdeveloped social 

and academic skills, among others (Ekstrand, 2015; Gubbels, van der Put, & Assink, 2019; 

Kearney, 2008).  Other child-based risk factors of school attendance and academic achievement 

problems, as well as later school dropout, have involved various psychopathological conditions 

and symptoms (Kearney, 2016; Macklem, 2014; Parr & Bonitz, 2015). 

School attendance problems have been linked historically to a variety of internalizing and 

externalizing behavior problems and disorders, most notably anxiety and mood disorders and 

disruptive behavior disorders (Jones, West, & Suveg, 2019; Kearney & Albano, 2004).  
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Internalizing problems common to this population include general, social, and separation anxiety 

as well as worry, fear, depression, somatic complaints, fatigue, social withdrawal, sleep 

disturbance, and self-consciousness (Egger, Angold, & Costello, 2003; Gonzalvez et al., 2019; 

Maynard et al., 2015).  Externalizing problems common to this population include 

noncompliance, defiance, verbal and physical aggression, temper tantrums, refusal to move, 

running away from school or home, and antisocial and disruptive behavior at school and 

elsewhere (Ingul, Klöckner, Silverman, & Nordahl, 2012; Kearney, 2019).  In addition, 

internalizing and externalizing problems are highly comorbid within and across each set in this 

population (Finning et al., 2019; Hankin et al., 2016). 

In recent years, researchers have endeavored to move toward more detailed, nuanced, and 

sophisticated profiles of psychopathology in youth with school attendance problems, particularly 

with respect to internalizing behaviors and their treatment (Crawley et al., 2014; Ek & Eriksson, 

2013; Fiorilli, De Stasio, Di Chiacchio, Pepe, & Salmela-Aro, 2017; Maynard et al., 2018).  For 

example, researchers have found that depression and less prosocial behaviors are often primary 

features of anxious youth with school attendance problems (Pflug & Schneider; 2016; Sibeoni et 

al., 2018;  Tekin, Erden, Ayva, & Büyüköksüz, 2018).  In addition, others have associated school 

attendance problems linked with internalizing behaviors to key profiles surrounding 

optimism/pessimism, positive/negative affect, social functioning, and anxiety severity 

(Fernández-Sogorb, Inglés, Sanmartín, Gonzálvez, & Vicent, 2018; Gonzálvez et al., 2016, 

2019; Sanmartín et al., 2018). 

Researchers have also endeavored to link specific psychopathological symptoms to 

various levels of school absenteeism severity.  For example, Lawrence and colleagues (2019) 

found that students with a mental disorder displayed less school attendance than students without 
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a mental disorder, missing 11.8 school days in years 1-6, 23.1 days in years 7-10, and 25.8 days 

in years 11-12.  In addition, for those students with a mental disorder, absences due to a 

particular disorder accounted for 13.4% of all days absent from school (rising to 16.6% in years 

11-12).  Skedgell and Kearney (2016) also examined internalizing symptoms among youth with 

0-14% and 15-100% absenteeism severity, finding the latter group (and particularly those at 20-

39%) to display significantly more general and separation anxiety and depression.  Stempel and 

colleagues (2017) similarly compared youth who had missed less than versus more than 15 days 

of school, finding that more chronic absenteeism was associated with more adverse childhood 

experiences such as financial hardship, divorce, parental incarceration, domestic or 

neighborhood violence, and family mental disorder or substance use. 

A link between specific psychopathological symptoms and other risk factors with various 

levels of school absenteeism severity has important potential implications beyond basic research 

and classification.  Certainly such a link can inform medical and mental health professionals who 

address youth with school attendance problems, and assessment and intervention protocols can 

be variously adapted to cases of mild/moderate versus chronic/severe absenteeism (Heyne et al., 

2002; Kearney & Albano, 2018).  Many school-based professionals and districts also distinguish 

between students with less severe and more severe academic and behavioral problems as they 

work to optimize limited intervention resources (August, Piehler, & Miller, 2018; McIntosh, 

Bohanon, & Goodman, 2010).  Indeed, many schools have been forced to take on the role of 

mental health care and have thus sought out ways to screen for various mental health problems 

(Merikangas et al., 2011; Stiffler & Dever, 2015).  Suggestions for what mental health symptoms 

relate to various levels of absenteeism severity would, for example, be helpful in this regard 

(Dowdy et al., 2015). 



 147 

The need for more informed mental health screening in schools dovetails nicely with 

recent theoretical frameworks of school attendance problems that focus in part on multi-tiered 

interventions.  Many school districts have adopted multi-tiered systems of support (MTSS) 

models for prevention and intervention of mental health concerns (Splett et al., 2018).  MTSS 

models typically focus on prevention (Tier 1), early intervention for emerging, acute, or mild to 

moderate problems (Tier 2), and intensive intervention for chronic and severe problems (Tier 3) 

(Eagle, Dowd-Eagle, Snyder, & Holtzman, 2015).  MTSS models can apply to a wide variety of 

academic, social, and behavioral problems, including those with internalizing behavior problems 

(Weist et al., 2018). 

Kearney and Graczyk (2014; Kearney, 2016) were the first to apply MTSS principles to 

school attendance problems.  In this model, Tier 1 strategies focus on enhancing functioning and 

schoolwide attendance and on preventing school attendance problems for all students, Tier 2 

strategies focus on students with emerging, acute, or mild to moderate school attendance 

problems, often to reintegrate them to school, and Tier 3 strategies focus on students with 

chronic and severe school attendance problems, often to provide alternative pathways to 

graduation.  Specific interventions may be matched to each tier based on absenteeism severity 

and degree of risk and contextual factors to help school personnel and others identify 

individualized responses (Elliott & Place, 2019; Freeman et al., 2016; Kearney, 2016).   

As mentioned, MTSS models are increasingly adapted to a wide variety of academic, 

social, and behavioral problems, including now school attendance problems.  A particular 

challenge for advocates of these models, however, has been to demarcate tiers within the system.  

A distinction between Tier 1 and Tier 2, for example, indicates a distinction between less 

problematic and more problematic behavior such as school absenteeism (Pullen & Kennedy, 



 148 

2019).  Unfortunately, no consensus distinction currently exists in this regard (Chu, Guarino, 

Mele, O’Connell, & Coto, 2018; Lyon & Cotler, 2007; Spruyt, Keppens, Kemper, & Bradt, 

2016).  In addition, distinctions between Tier 2 and Tier 3 remain variable.  School attendance 

problems are sometimes considered to be chronic and severe (Tier 3) at a 10% threshold 

(DePaoli, Fox, Ingram, Maushard, Bridgeland, & Balfanz, 2015).  Skedgell and Kearney (2016; 

2018) found that risk factors for higher severity levels of absenteeism tended to be more 

homogeneous than risk factors at lower levels of absenteeism.  However, data to support a Tier 

2-Tier 3 distinction remain needed (Conry & Richards, 2018). 

The present study aimed to identify potential internalizing symptom risk factors among 

youth at different levels of school absenteeism severity (i.e., 1+%, 3+%, 5+%, 10+%).  Such 

differentiations might help inform distinctions between tiers in an MTSS model of school 

absenteeism.  In accordance with recent calls to employ machine learning-based methods to 

examine risk factors for school absenteeism (Chung & Lee, 2019; Sansone, 2019), two sets of 

statistical approaches were utilized.  Ensemble analysis, including chi-square adjusted 

interaction detection (CHAID), support vector machines, and neural network analyses, is a 

nonparametric method that combines multiple algorithmic models or classifiers to produce a 

single best model for a given data set (Berk, 2006).  In addition, classification and regression 

tree analysis (CART) is a nonparametric method that identifies comprehensive subgroups 

based on interactions among multiple risk factors or predictor variables (Lemon, Roy, Clark, 

Friedmann, & Rakowski, 2003).  These analyses are aimed to generate and not test hypotheses 

(Markham et al., 2013).  Various levels of school absenteeism were examined, with a general 

expectation that risk factors at higher levels of absenteeism would be more homogeneous than 

risk factors at lower levels of absenteeism. 
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Materials and Methods 

Participants 

Participants included 160 youth aged 6-19 years (M = 13.7; SD = 2.9) and their families 

from an outpatient therapy clinic (39.4%) and community (60.6%) setting in southern Nevada, 

the latter from a family court and truancy diversion program cohort.  The clinic cohort involved 

students referred to therapy services for absenteeism; the community cohort involved students 

given a truancy citation by school police for absenteeism and referred to an 8-week diversion 

program.  Participants were primarily male (51.2%) and diverse with respect to ethnicity: 

Hispanic (51.0%), European-American (26.1%), Asian (8.9%), African American (6.4%), 

multiracial or biracial (4.5%), and other (2.5%).  Most parents were married (44.6%); others 

were divorced (22.3%), separated (18.5%), never married (12.7%), or had another status (1.9%).  

Most fathers (48.0%) and mothers (59.9%) graduated high school.  Participants missed a mean of 

19.0% days of school (SD = 16.9) at time of assessment.  Some youths were referred for 

treatment for school refusal behaviors (e.g., distress at school, morning misbehaviors designed to 

miss school, skipped classes, tardiness) that did not include formal absences. 

Measures 

The Revised Children’s Anxiety and Depression Scale (RCADS; Chorpita et al., 2000) is 

a 47-item self-report or parent-report measure of child internalizing behavior disorders with the 

following subscales and number of items: separation anxiety (7), social phobia (9), generalized 

anxiety(6), obsessive-compulsive(6), panic disorder (9), and major depression (10).  Items are 

scored on a Likert-type 0-3 scale of agreement (never = 0, sometimes = 1, often = 2, always = 3).  

Internal consistency is good for each subscale, with Cronbach’s alpha between 0.78-0.88 

(Chorpita, Moffitt, & Gray, 2005).  Cronbach’s alpha for RCADS items in the present study was 
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0.86.  Confirmatory factor analysis indicated the 6-factor model is an adequate fit, with loadings 

from 0.51-0.79 (Chorpita et al., 2005).  

School staff or parents provided absenteeism severity data in the form of number of full 

school days missed. Percentage of full school days missed was calculated by dividing the 

student’s total number of full school days missed by the number of days of school in that 

academic year, at the time of assessment, and then multiplying that number by 100.  Assessments 

were conducted at different points throughout the academic year. 

Procedure and data analyses 

Participants were recruited from a specialized outpatient therapy clinic or community 

setting.  Participants in the community setting were referred to family court or a truancy 

diversion program by their school or parent(s)/guardian(s) based on prior school absences.  

Following parent consent and child assent, measures that included the RCADS were 

administered to youth and their parent(s)/guardian(s) independently and in the presence of a 

research assistant.  Spanish versions of the measures were available. 

 Ensemble analysis was utilized to identify potential family environment risk factors 

among youth with school attendance problems across different levels of school absenteeism.  

Ensemble analysis is the combination of multiple algorithmic models or classifiers to produce 

one, best model that can be applied to the data (Berk, 2006).  These models have been shown to 

outperform standard parametric methods, primarily due to the automation of identifying 

interactions and non-linearities and the reduction of overestimations of a model’s predictive 

ability (Rosellini, Dussaillant, Zubizarreta, Kessler, & Rose, 2018).  Ensemble analysis can 

include many different statistical methods; the present study utilized chi-square adjusted 

interaction detection (CHAID) decision trees, support vector machines, and neural network 
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analyses.  Predictors were examined collectively and independently.  A multiple imputation 

method was utilized; different plausible imputed data sets were examined and combined results 

were obtained and reported here.  Confusion matrices supported the use of CHAID decision 

trees.  In addition, CART analyses were utilized to more specifically examine clusters of 

RCADS items associated with enhanced risk for a particular level of absenteeism severity (i.e., 

1+%, 3+%, 5+%, 10+%).  Other absenteeism levels were examined on an exploratory basis (i.e., 

15+%, 20+%, 30+%, 40+%), as was latent class analysis for 0-10% and 10+% absenteeism.  For 

brevity, significant results are reported.  No gender differences were found with respect to 

RCADS Anxiety and Depression T-scores.  

Results 

Absenteeism: 1+% 

For the CHAID analysis, the final collective tree-model that best differentiated youth 

with 1+% absenteeism from youth with <1% absenteeism correctly identified 99.6% of 

participants and identified one main risk factor: item 6 (nothing fun anymore; DEP).  Item 6 

scores of >0.0 indicated higher risk of 1+% absenteeism (69.3%); item 6 scores of 0.0 indicated 

lower risk (30.7%).  The tree-model demonstrated higher sensitivity than specificity.  

Independent analysis revealed no significant predictors.  CART item analysis similarly identified 

one subgroup at highest risk for 1+% absenteeism (node at 100.0%): endorsement of sometimes, 

often, or always on item 6 and endorsement of never on item 46 (scared if away from home 

overnight; SEP).  The overall tree-model’s accuracy in predicting 1+% absenteeism was 

approximately 95.7%. 
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Absenteeism: 3+% 

For the CHAID analysis, the final collective tree-model that best differentiated youth 

with 3+% absenteeism from youth with <3% absenteeism correctly identified 83.7% of 

participants and identified one main risk factor: item 6 (nothing fun anymore; DEP).  Item 6 

scores of >0.0 indicated higher risk of 3+% absenteeism (53.4%); item 6 scores of 0.0 indicated 

lower risk (46.6%).  The tree-model demonstrated higher sensitivity than specificity.  

Independent analysis of the predictors revealed that item 6 (p < 0.01, F = 12.19) and item 35 

scores (p < 0.01, F = 7.81) significantly predicted 3+% absenteeism.  With respect to item 35 

(worry about what will happen; GAD), scores of 0.0 indicated higher risk (59.0%); scores of 

>0.0 indicated lower risk (41.0%).  CART item analysis identified one main subgroup at highest 

risk for 3+% absenteeism (node at 100.0%): endorsement of sometimes, often, or always on 

items 6 (nothing fun anymore; DEP) and 38 (afraid to talk in front of class; SOP) as well as 

endorsement of never or sometimes on item 46 (scared if away from home overnight; SEP).  The 

overall tree-model’s accuracy in predicting 3+% absenteeism was approximately 92.1%. 

Absenteeism: 5+% 

For the CHAID analysis, the final collective tree-model that best differentiated youth 

with 5+% absenteeism from youth with <5% absenteeism correctly identified 76.7% of 

participants and identified one main risk factor: item 6 (nothing fun anymore; DEP).  Item 6 

scores of >0.0 indicated higher risk of 5+% absenteeism (53.4%); item 6 scores of 0.0 indicated 

lower risk (46.6%).  The tree-model demonstrated higher sensitivity than specificity.  

Independent analysis of the predictors revealed that item 6 (p < 0.01, F = 12.19), 35 (p < 0.05, F 

= 6.30) and 38 scores (p < 0.05, F = 6.81) significantly predicted 5+% absenteeism.  With 

respect to item 35 (worry about what will happen; GAD), scores of 0.0 indicated higher risk 
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(59.0%); scores of >0.0 indicated lower risk (41.0%).  With respect to item 38 (afraid to talk in 

front of class; SOP), scores of 0.0 indicated higher risk (61.3%); scores of >0.0 indicated lower 

risk (38.7%).   

CART item analysis identified one main subgroup at highest risk for 5+% absenteeism 

(node at 100.0%): endorsement of never on item 17 (scared to sleep on own; SEP) and often or 

always on item 24 (with a problem, heart beats fast; PAN).  The overall tree-model’s accuracy in 

predicting 5+% absenteeism was approximately 84.9%.  Latent class analysis of <10% 

absenteeism revealed a primary cluster that contained 41% of cases.  In this cluster, RCADS 

items 1-4, 7, 12, 13, 21, 25, and 30 (3 DEP, 2 GAD, 2 SOP, 1 PAN) were primarily endorsed as 

sometimes; all other items in this cluster were endorsed as never. 

Absenteeism: 10+% 

For the CHAID analysis, the final collective tree-model that best differentiated youth 

with 10+% absenteeism from youth with <10% absenteeism correctly identified 58.5% of 

participants and identified one main risk factor: item 6 (nothing fun anymore; DEP).  Item 6 

scores of >0.0 indicated higher risk of 1+% absenteeism (52.3%); item 6 scores of 0.0 indicated 

lower risk (47.7%).  The tree-model demonstrated higher sensitivity than specificity.  

Independent analysis of the predictors revealed that obsession/compulsions T-scores 

significantly predicted 10% of days missed (p < 0.01, F = 12.38).  Obsession/compulsions T-

scores of <=48.0 indicated higher risk of 10+% absenteeism (57.8%); obsession/compulsions T-

scores of >48.0 indicated lower risk (42.2%).  In addition, endorsement of never on several items 

was also predictive of 10+% absenteeism: items 8 (worried when someone angry at me; SOP; 

65.3%/34.7%), 9 (worry about being away from parents; SEP; 68.4%/31.6%), 29 (feel worthless; 

DEP; 66.7%/33.3%), 30 (worry about making mistakes; SOP; 67.6%/32.4%), 42 (have to do 
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things over and over; OCD; 61.5%/38.5%), and 44 (have to do things in just the right way; 

54.9%/46.1%).   

CART item analysis identified one main subgroup at highest risk for 10+% absenteeism 

(node at 85.6%): endorsement of never on item 17 (scared to sleep on own; SEP).  The overall 

tree-model’s accuracy in predicting 10+% absenteeism was approximately 84.2%.  Latent class 

analysis of 10+% absenteeism revealed a primary cluster that contained 34% of cases.  In this 

cluster, RCADS items 1, 4, 8, 21, and 30 (3 SOP, 1 DEP, 1 GAD) were primarily endorsed as 

sometimes; all other items in this cluster were endorsed as never. 

Absenteeism: Higher levels 

CHAID analyses were also conducted on an exploratory basis for absenteeism levels of 

15+%, 20+%, 30+%, and 40+%.  The final collective tree-model that best differentiated youth 

with 15+% absenteeism from youth with <15% absenteeism correctly identified 52.9% of 

participants and identified one main risk factor: item 6 (nothing fun anymore; DEP).  Item 6 

scores of >0.0 indicated higher risk of 15+% absenteeism (52.3%); item 6 scores of 0.0 indicated 

lower risk (47.7%).  The tree-model demonstrated higher specificity than sensitivity.  

Independent analysis revealed no subscale scores to be significant predictors of 15+% 

absenteeism.  In addition, endorsement of never on several items was also predictive of 15+% 

absenteeism: items 1 (worry about things; GAD; 60.9%/39.1%), 8 (worried when someone angry 

at me; SOP; 65.3%/34.7%), 9 (worry about being away from parents; SEP; 68.4%/31.5%), 25 

(cannot think clearly; DEP; 66.9%/33.1%), and 29 (feel worthless; DEP;  66.7%/33.3%). 

The final collective tree-model that best differentiated youth with 20+% absenteeism 

from youth with <20% absenteeism correctly identified 61.4% of participants and identified one 

main risk factor: item 6 (nothing fun anymore; DEP).  Item 6 scores of >0.0 indicated higher risk 
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of 1+% absenteeism (52.3%); item 6 scores of 0.0 indicated lower risk (47.7%).  The tree-model 

demonstrated higher specificity than sensitivity.  Independent analysis of the predictors revealed 

that item 42 significantly predicted 20+% absenteeism (p < 0.05, F = 6.58).  Item 42 (have to do 

things over and over; OCD) scores of 0.0 indicated higher risk for 20+% absenteeism (61.5%); 

item 42 scores of >0.0 indicated lower risk (38.5%). 

The final collective tree-model that best differentiated youth with 30+% absenteeism 

from youth with <30% absenteeism correctly identified 75.3% of participants and identified two 

main risk factors: item 8 (worried when someone angry at me; SOP) and separation anxiety 

subscale scores.  Item 8 scores of >0.0 indicated higher risk of 30+% absenteeism (64.9%); item 

8 scores of 0.0 indicated lower risk (35.1%).  Separation anxiety T-scores of <=61.0 indicated 

higher risk of 30+% absenteeism (53.1%); separation anxiety T-scores of >61.0 indicated lower 

risk (46.9%).  The tree-model demonstrated higher specificity than sensitivity. 

 The final collective tree-model that best differentiated youth with 40+% absenteeism 

from youth with <40% absenteeism correctly identified 83.9% of participants and identified one 

main risk factor: item 28 (with a problem, feel shaky; PAN).  Item 28 scores of 0.0 indicated 

higher risk of 40+% absenteeism (50.6%); item 28 scores of >0.0 indicated lower risk (49.4%).  

The tree-model demonstrated higher specificity than sensitivity. 

Discussion 

The present study examined internalizing behaviors as potential predictors of various 

absenteeism severity levels.  The findings revealed that one particular depression item (nothing 

much fun anymore) helped most to demarcate different severity levels, up to a point.  In addition, 

a number of other internalizing items were predictive of various levels of absenteeism severity, 

but only in a negatively endorsed fashion.  Overall, internalizing items that tended to be endorsed 
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higher across less severe and more severe absenteeism severity levels included those relating to 

worry and fatigue.  A general expectation that predictors would tend to be more homogeneous at 

higher than lower levels of absenteeism severity was not generally supported. 

One particular item was found to consistently distinguish lower and higher levels of 

absenteeism severity at different benchmarks: item 6 (nothing is much fun anymore), which is an 

item on the RCADS depression subscale.  Two general possibilities may exist for this finding.  

First, school attendance problems are indeed commonly associated with symptoms of depression, 

one of the rare consistent findings over several decades with respect to internalizing 

psychopathology in this population (Egger et al., 2003; Gallé-Tessonneau, Johnsen, & Keppens, 

2019; Kearney, 1993).  Depression is also commonly associated or comorbid with anxiety 

disorders in this population, making attempts at diagnostic classification difficult (Jones & 

Suveg, 2015).  Antidepressant medication is recommended for many adolescents with school 

attendance problems, and cognitive-behavioral therapies for this population often focus on 

depression symptoms (Londono Tobon, Reed, Taylor, & Bloch, 2018; Maynard, Brendel, 

Bulanda, Heyne, Thompson, & Pigott, 2015; Melvin & Gordon, 2019). 

Finning and colleagues (2019), in their meta-analysis of depression and school attendance 

problems, concluded that symptoms of depression are indeed common to many different types of 

school attendance problems.  The authors also postulated several possible mechanisms for this 

association, such as social withdrawal, sleep disturbance, and low energy.  Youth with school 

refusal behavior do tend to have social functioning problems and withdraw from friends and 

other peers at school (Gonzálvez et al., 2019; Havik, Bru, & Ertesvåg, 2015).  Others indeed 

show difficulties with sleep (including going to bed very late), energy, and physical activity (Ek 

& Eriksson, 2013; Hochadel, Frölich, Wiater, Lehmkuhl, & Fricke-Oerkermann, 2014; Mannino 
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et al., 2019).  However, each set of behaviors - social and sleep problems and school attendance 

problems - may precede the other in different cases (Kearney, 2019). 

Second, the depression item noted above may also indicate a relative amount of boredom, 

frustration, burnout, or lack of self-efficacy with respect to the school environment or academic 

performance (Fiorilli et al., 2017; Reid, 2012).  Finning and colleagues (2019) noted that another 

mechanism explaining depression and school attendance problems might be loss of motivation.  

Surveys of youth with school attendance problems or who have dropped out of school regularly 

reveal boredom with classes and the school environment as a key reason for leaving (Attwood & 

Croll, 2015; Kearney, 2016; Strand, 2014).  Others have noted as well that youth with learning 

disorders can become frustrated and eventually miss school (Redmond & Hosp, 2008).  Poor 

school climate or school-based curricula perceived as tedious or inflexible by students are 

associated with school attendance problems as well (Hendron & Kearney, 2016; Maxwell, 2016; 

Wang, & Degol, 2016).  Interestingly, the finding regarding item 6 disappeared at particularly 

high levels of absenteeism severity (i.e., 30+% and 40+%), possibly suggesting that some youth 

discovered outside-of-school avenues to boost enjoyment (Kearney & Albano, 2018).   

A key finding of the present study was that lack of endorsement of several anxiety 

items was what most predicted higher absenteeism severity levels.  The findings also indicated 

substantial variability with respect to individual items.  One possibility is that higher 

absenteeism severity levels are associated more with externalizing than internalizing symptoms 

(Maynard, Salas-Wright, Vaughn, & Peters, 2012).  In addition, youth in the present study 

were examined at different points of the academic year, but anxiety levels may be more 

pronounced at the beginning of a year (Ingul & Nordahl, 2013).  Higher levels of absenteeism 

severity also mean more time out of school and thus relief from school-based anxiety 
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symptoms (Skedgell & Kearney, 2018).  Other variables such as family or school environment 

may thus be better predictors of absenteeism severity (Fornander & Kearney, 2019). 

The lack of endorsement and variability shown in the present study may also help 

confirm that reliance on various forms of specific behavior to identify classes of school 

attendance problems is quite difficult (Inglés, Gonzálvez , Garcia-Fernandez, Vicent, & 

Martínez-Monteagudo, 2015).  Kearney (2002) advocated for the term negative affectivity 

rather than specific symptoms of anxiety or depression among youth with school attendance 

problems to account for the vagaries of internalizing symptoms characteristic of this 

population.  Indeed, historically, many researchers have focused on broad descriptors of 

emotional distress (e.g., dread, upset, misery) to describe youth who are reluctant to attend 

school (Kearney, 2001).  Perhaps not surprisingly, the items that tended to be elevated more in 

the current study were those related to broader concepts such as worry and fatigue.  Others 

have found considerable heterogeneity within and across classes of behavior among children 

with school attendance problems, and Kearney (2007) found that functions of school refusal 

behavior were superior to forms of behavior in predicting absenteeism severity.   

Limitations of the present study should be noted.  First, the sample was an eclectic one 

that ranged from having no formal school absences to having many school absences.  Second, 

sample size constraints did not permit more nuanced analyses of absenteeism type, setting, or 

demographic or developmental differences, though studies generally indicate emotional 

distress across many absence types in this population (Finning, Ford, Moore, & Ukoumunne, 

2019).  Third, the primary dependent measure was based on self-report, though these kinds of 

measures are commonly used for youth with internalizing symptoms (Chorpita et al., 2000).  In 

related fashion, broader measures such as diagnostic interviews, behavioral observations, and 
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parent and teacher reports were not used and may have provided more sophisticated 

information about participants’ internalizing symptoms. 

Conclusion 

Despite these limitations, the present study may have some applicability to MTSS models 

of school absenteeism and how tiers within these models may be demarcated.  Psychosocial 

screenings for anxiety and depression at early warning sign stages for problematic absenteeism 

may be advisable, and may help distinguish Tier 1 school attendance from emerging Tier 2 

school attendance problems (Ingul, Havik, & Heyne, 2019).  Findings from the present study 

may further support the need for preventative practices in this population as well, particularly for 

targeted practices aimed toward those with depressive symptoms (Werner-Seidler, Perry, Calear, 

Newby, & Christensen, 2017). 
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CHAPTER 5 

DISCUSSION 

The current study aimed to support a precise definition of problematic school 

absenteeism, inform the MTSS approach, and identify specific subgroups of youth at various 

levels of risk for displaying problematic school absenteeism based upon family environment and 

youth psychopathology. The identification of a precise definition of problematic school 

absenteeism is crucial to identify the severity of the problem accurately and to increase the 

clarity and utility of early assessment and intervention methods for youth with problematic 

school absenteeism, particularly methods that utilize the MTSS framework. Similarly, the 

identification of high-risk subgroups, provides school-based personnel with specific guidelines 

for the interpretation of early absenteeism and family environment screening data, thereby 

allowing students to be categorized efficiently into one of the MTSS tiers for intervention. The 

current study extends the literature in multiple ways. First, study one extends the literature by 

providing a review of the extensive school absenteeism literature focusing specifically on 

differentiating school attendance problems and providing a heuristic model that includes 

common language and advances the field. Second, study two adds to the relatively small 

literature base linking the family environment to problematic school absenteeism and provides 

family-based mental health providers with profiles of families at high risk of having a youth with 

problematic school absenteeism. Third, study three extends the available literature base linking 

youth psychopathology to problematic school absenteeism and provides school-based personnel 

with specific guidelines for the interpretation of early absenteeism and youth mental health 

screening data, thereby allowing students to efficiently be categorized into one of the MTSS tiers 

for intervention. Fourth, studies two and three extend the literature by utilizing nonparametric 
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ensemble analysis to produce one model of problematic school absenteeism that has been applied 

to the data in many different ways.  

Clinical implications 

The current study has potential clinical and school implications. The primary goal of 

study one was to provide a heuristic model to encourage the field to focus on common language 

and advancement with an important consideration for prevention and intervention, particularly 

interventions within the school setting. The multidimensional multi-tiered system of supports 

model proposed by study one is beneficial for clinicians and educators as it is (1) adaptable to 

advances in education and technology, (2) able to merge with dimensional aspects of education 

such as competency, progression, completion, skill, and readiness benchmarks, (3) atheoretical, 

(4) independent of an academic timeline, and (5) able to accommodate rapid growth and change. 

Study two has clinical implications for educators and clinicians as they work with students with 

problematic absenteeism and complicated family dynamics that are often involved. The current 

study supports goals focused on repairing parent-school official communications, educating 

family members about creative educational options, and establishing contracts or agreements to 

improve problem-solving ability and increase incentives for attending school. Findings also 

support interventions aimed at enhancing family engagement, communication, and interaction 

with outside sources of support. Study three has clinical implications for clinicians and educators 

working with students with problematic school absenteeism. The current study may help to 

demarcate the tiers within the MTSS model and provide more specific guidelines for educators 

and clinicians. Findings support psychosocial screenings for anxiety and depression at early 

warning stages to differentiate between tier 1 and tier 2 attendance problems and to ensure early 
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intervention for at-risk students. The current study also supported the need for preventative 

practices specifically aimed at students with depressive symptoms (Werner-Seidler et al., 2017). 

Limitations 

Limitations of the current study should be noted. Study one aimed to review the past and 

potential future of the school absenteeism literature but is only a snapshot of the current state of 

this rapidly evolving field. Further, the distinctions made in study one are likely superseded by a 

multitude of exceptional circumstances, including intense school violence, extreme poverty, and 

geopolitical factors. Study two and study three share specific limitations. First, the sample was 

diverse and included students with a wide range of school absences. Second, sample size 

constraints did not allow for further evaluation of absenteeism type, setting, demographic, or 

developmental differences. Specific to study two, the primary dependent measure was based on 

parent-report. On the other hand, the primary dependent measure in study three was based on 

self-report. Finally, study three did not utilize diagnostic interviews, behavioral observations, and 

parent and teacher reports that may have provided more insight into student internalizing 

symptoms.  

Recommendations for future research 

Future research is warranted to extend the findings of the current study and address 

identified limitations. Research should continue to study appropriate definitions of problematic 

school absenteeism and the MTSS tiers to further support a unified definition within the field. 

The role of future changes in education and technology and the potential impacts on school 

absenteeism behavior and presentation should be investigated. The findings of study two could 

be extended by including other family-based risk factors for school absenteeism. A better 

understanding of how family environment dynamics intersect with broader domains would be 



 163 

beneficial for subtyping and further differentiating the MTSS tiers. The role of an insecure home 

environment should be further investigated to identify whether the dynamics in the current study 

would apply. Future research should consider including a more wide-range assessment of family 

functioning among students with problematic school absenteeism. The findings of study two 

could be extended by evaluating the role of externalizing difficulties in higher absenteeism 

severity levels. Given that study three did not support the assumption that predictors would be 

more homogenous at higher, rather than lower, levels of absenteeism, future research should 

explore whether there are specific factors that do increase the homogeneity of the high-risk 

groups. Finally, there are a multitude of additional risk factors that should be assessed utilizing 

reports from various sources (e.g., parent, self, teacher) and settings (e.g., home, school, 

community). 

  



 164 

APPENDIX A 

CCSD IRB Approval 

   

Assessment, Accountability, Research,  

and School Improvement  

4212 Eucalyptus Avenue  y Las Vegas, Nevada  89121  y (702) 799-1041  y FAX (702) 799-5067 

 

 
May 12, 2017 
 
 
Mirae Fornander 
University of Nevada, Las Vegas 
4505 S. Maryland Parkway 
Las Vegas, NV 89154 
  
 
Dear Mirae: 
 
The Research Review Committee of the Clark County School District has reviewed your requested amendment to 
your request entitled: School Refusal Behavior: Las Vegas Truancy Diversion Program & Application #35 
(formerly # RRC-17-2015). The committee is pleased to inform you that your proposal has been approved 
with the following provisos: 
 

1. Participation is strictly and solely on a voluntary basis. 
2. Provide letter of acceptance from any additional principals who agree to be involved with the 

study. 
3. The project is approved to take place at Desert Pines High School. 

 
This research protocol is approved for a period of one year from the approval date. The expiration of this 
protocol is 8/15/2018.  If the use of human subjects described in the referenced protocol will continue 
beyond the expiration date, you must provide a letter requesting an extension one month prior to the date 
of expiration. The letter must indicate whether there will be any modifications to the original protocol. If 
there is any change to the protocol it will be necessary to request additional approval for such change(s) in 
writing to the Research Review Committee.  
 
Please provide a copy of your research findings to this office upon completion. We look forward to 
the results. If you have any questions or require assistance please do not hesitate to contact this office at 
(702) 799-1041 Ext. 5269 or e-mail at kretzl@interact.ccsd.net. 
 
 
Sincerely, 
 

 
Kenneth Retzl     
Coordinator III 
Department of Accountability & Research  
Co-Chair, Research Review Committee 

 

 
    



 165 

APPENDIX B 

UNLV IRB Approval  

 



 166 

 



 167 

 

 

- 1 - Generated on IRBNet

� �

�����	
���������
����������������������
��������
����

�
���� �����	
���	�
� �
�! ��������������������������
"�!# ���������� ��������!���"�������#�$���%�&'����
� �
$�!�!%!������� (	�

��	)� �*��+�����,�����-���
� �
�%��!� �./. 0!12/!�1��3�.4.0�/�%/2/5%
�&�#$������ �����	
���	�
�����'�%���(!�) .6�$����������"����7�


�

/���8����������������&$����������1�+����'����$������,������������������,��/����$�$����-�$����������������
����������������,����������-��&�*������&������*��+�-������-�����-����3�-���,���"�,��������������

9�3 
:�		;&<���-�-��$�-��6�$���

=��+�,,��������������������������������-�����+�������������-��

$���	���!�� 
5��������,�-����$������������6�$���������������������������$������������&,���������-�����"�������������
��������-���������6�$������,����������*��+�-�&������� !���#%���->�������! ?�+��������,,����,�-������"����
$����������,����&$����-�!����$�-��������>2������3��$��;!����$������%����<���-��������$����$������,��

!����������'������*�,*��������"����������������������������������$$��-�-�������������������%��������� !
���"��$�����-����������;@�<��A9��@A
�������������$�,������+����������,��������!������*�������#�$��
 ��������%�&'�����

��������"�������������,��������$���������������������,������B�������-���������,�*�,����! ?���*��+��%���,-
��������"������-����&��$�-����,�������&$�����#
*�+����
,�"
����=���������&�*�����������-��������,
����&������$�,���-���,�������&$�����%
,��,-�,.��������$�
.��//�%
������
,����
�������������� !��
#%���������,������

!��������*��B�����������,��������������������������� ��������!���"�������#�$���%�&'��������! ?C��,*��-�
�����,,�@���A9��@A
���,��������,�-��������������,����,����-�! ?1���!������,,����������-�����

�

���������� ��������!���"�������#�$���%�&'����

99�0���,��-����8+�����?�6�
9	
@���D���E�"����1�*�-���A	9
�	
@

;@�<��A9��@A
���324F�;@�<��A9��9���! ?C��,*��-�



 168 

REFERENCES 

Abdelaal, H.M., Elmahdy, A.N., Halawa, A.A., & Youness, H.A. (2018). Improve the automatic 

classification accuracy for Arabic tweets using ensemble methods. Journal of Electrical 

Systems and Information Technology, 5(3), 363–370. 

https://doi.org/10.1016/j.jesit.2018.03.001 

Attendance Works. (2016). Reporting on Chronic Absence. https://www.attendanceworks.org/wp 

-content/uploads/2017/06/Reporting-on-Chronic-Absence-1-pager4.28.16.pdf 

August, G.J., Piehler, T.F., & Miller, F.G. (2018). Getting “SMART” about implementing multi-

tiered systems of support to promote school mental health. Journal of School Psychology, 

66, 85–96. https://doi.org/10.1016/j.jsp.2017.10.001 

Bahali, K., Tahiroglu, A.Y., Avci, A., & Seydaoglu, G. (2011). Parental psychological symptoms 

and familial risk factors of children and adolescents who exhibit school refusal. East Asian 

Archives of Psychiatry, 21(4), 164–169. 

Balfanz, R., & Byrnes, V. (2012). The importance of being In school: A report on absenteeism in 

the nation’s public schools. Education Digest, 78(2), 4. 

Barber, B.K., & Buehler, C. (2006). Family cohesion and enmeshment: Different constructs, 

different effects. Journal of Marriage and the Family, 58(2), 433. 

https://doi.org/10.2307/353507 

Barnes, A.C., & Harlacher, J.E. (2008). Clearing the confusion: Response-to-intervention set of 

principles. Education and Treatment of Children, 31, 416–431. 

https://doi.org/https://doi.org/10.1353/etc.0.0000 

Bates, D.W., Saria, S., Ohno-Machado, L., Shah, A., & Escobar, G. (2014). Big data in health 

care: Using analytics to identify and manage high-risk and high-cost patients. Health 



 169 

Affairs, 33(7), 1123–1131. https://doi.org/10.1377/hlthaff.2014.0041 

Bauer, L., Liu, P., Schanzenbach, D.W., & Shambaugh, J. (2018). Reducing chronic absenteeism 

under the every student succeeds act. https://www.attendanceworks.org/wp-

content/uploads/2018/04/Hamilton_project_reducing_chronic_absenteeism_under_the_ever

y_student_succeeds_act.pdf 

Berg, I., Butler, A., Franklin, J., Hayes, H., Lucas, C., & Sims, R. (1993). DSM‐III‐R disorders, 

social factors and management of school attendance problems in the normal population. 

Journal of Child Psychology and Psychiatry, 34(7), 1187-1203. 

https://doi.org/10.1111/j.1469-7610.1993.tb01782.x 

Berk, R.A. (2006). An introduction to ensemble methods for data analysis. Sociological Methods 

and Research, 34(3), 263–295. https://doi.org/10.1177/0049124105283119 

Berryhill, M.B., Hayes, A., & Lloyd, K. (2018). Chaotic-enmeshment and anxiety: The 

mediating role of psychological flexibility and self-compassion. Contemporary Family 

Therapy, 40(4), 326–337. https://doi.org/10.1007/s10591-018-9461-2 

Biem, A. (2014). Neural networks: A review. In C. C. Aggarwal (Ed.), Data classification: 

Algorithms and applications (pp. 205–244). New york: CRC Press. 

Bradley, R.H., Barrett, K.W., Conners-Burrow, N.A., McKelvey, L.M., Whiteside-Mansell, L., 

& Casey, P.H. (2010). Growing up in violent communities: Do family conflict and gender 

moderate impacts on adolescents’ psychosocial development? Journal of Abnormal Child 

Psychology, 39(1), 95–107. https://doi.org/10.1007/s10802-010-9448-4 

Breiman, L. (1998). Arcing classifiers. The Annals of Statistics, 26(3), 801–849. 

Breiman, L. (2001). Statistical modeling: The two cultures. Statistical Science, 16(3), 199–231. 

doi:10.1214/ss/1009213726 



 170 

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. 

https://doi.org/10.1023/A:1010933404324 

Breiman, L. (2004). Bagging predictors. Machine Learning, 24(2), 123–140. 

https://doi.org/10.1007/bf00058655 

Broadwin, I.T. (1932). A contribution to the study of truancy. American Journal of 

Orthopsychiatry, 2(3), 253–259. https://doi.org/10.1111/j.1939-0025.1932.tb05183.x 

Byeon, H. (2018). Chi-square automatic interaction detection modeling for predicting depression 

in multicultural female students. International Journal of Advanced Computer Science and 

Applications, 8(12), 179–183. https://doi.org/10.14569/ijacsa.2017.081222 

Campbell, C., & Ying, Y. (2011). Learning with support vector machines. Synthesis Lectures on 

Artificial Intelligence and Machine Learning, 5(1), 1-95. 

https://doi.org/10.2200/s00324ed1v01y201102aim010 

Chen, I. J., Wu, Y., & Wei, B.S. (2017). Effects of anxious emotions on the behavioral problems 

of Chinese children with learning difficulties. Quality and Quantity, 51(3), 1147–1165. 

https://doi.org/10.1007/s11135-016-0322-5 

Chorpita, B.F., Yim, L., Moffitt, C., Umemoto, L.A., & Francis, S.E. (2000). Assessment of 

symptoms of DSM-IV anxiety and depression in children: A revised child anxiety and 

depression scale. Behaviour Research and Therapy, 38(8), 835–855. 

https://doi.org/10.1016/S0005-7967(99)00130-8 

Chu, B.C., Guarino, D., Mele, C., O’Connell, J., & Coto, P. (2018). Developing an online early 

detection system for school attendance problems: Results from a research-community 

partnership. Cognitive and Behavioral Practice, 26(1), 35-45. 

https://doi.org/10.1016/j.cbpra.2018.09.001 



 171 

Clark County School District. (n.d.). Education Services Division. Las Vegas, NV. 

https://ccsd.net/divisions/education-services-division 

Clark County School District. (2008). Excerpts and summaries of Nevada laws on attendance 

Nevada revised statutes. Las Vegas, NV. 

http://www.fertittams.com/pdf/Nevada_Attendance_Laws.pdf 

Clark County School District. (2011). School-community partnership program. Las Vegas, NV. 

https://ccsd.net/community/partnership/ 

Clark County School District. (2018). Wraparound services. Las Vegas, NV. 

http://ccsd.net/resources/student-support-services-division/wraparound-1-pager.pdf 

Coffey, S.E., Stallworth, L., Majors, T., Higgs, K., Gloster, L., Carter, Y., & Ekhator, K. (2018). 

Using the cluster support team and multi-tiered systems of support to provide wraparound 

services in a large urban school district [Conference presentation]. National Youth At-Risk 

Conference, Savannah, GA. https://digitalcommons.georgiasouthern.edu/nyar 

_savannah/2018/2018/18/ 

Colorado Department of Education. (2016). MTSS problem solving considerations. 

https://www.cde.state.co.us/mtss 

Corduas, M., & Piscitelli, A. (2017). Modeling university student satisfaction: the case of the 

humanities and social studies degree programs. Quality and Quantity, 51(2), 617–628. 

https://doi.org/10.1007/s11135-016-0428-9 

Cornero, A., Acquaviva, M., Fardin, P., Versteeg, R., Schramm, A., Eva, A., … Varesio, L. 

(2012). Design of a multi-signature ensemble classifier predicting neuroblastoma patients’ 

outcome. BMC Bioinformatics, 13(S4), S13. https://doi.org/10.1186/1471-2105-13-S4-S13 

Coyne, M. D. (2007). Effective teaching strategies that accommodate diverse learners (3rd ed.). 



 172 

Upper Saddle River, N.J.: Pearson Merrill Prentice Hall. 

Crawley, S.A., Caporino, N.E., Birmaher, B., Ginsburg, G., Piacentini, J., Albano, A.M., … 

Kendall, P.C. (2014). Somatic complaints in anxious youth. Child Psychiatry and Human 

Development, 45(4), 398–407. https://doi.org/10.1007/s10578-013-0410-x 

David, D., Cristea, I., & Hofmann, S.G. (2018). Why cognitive behavioral therapy is the current 

gold standard of psychotherapy. Frontiers in Psychiatry, 9. 

https://doi.org/10.3389/fpsyt.2018.00004 

Davies, P.T., Cummings, E.M., & Winter, M.A. (2004). Pathways between profiles of family 

functioning, child security in the interparental subsystem, and child psychological problems. 

Development and Psychopathology, 16(3), 525–550. 

https://doi.org/10.1017/S0954579404004651 

DeFilippi, R.R.F. (2018). Boosting, bagging, and stacking — Ensemble methods with sklearn 

and mlens. https://medium.com/@rrfd/boosting-bagging-and-stacking-ensemble-methods-

with-sklearn-and-mlens-a455c0c982de 

Deno, S. (2016). Data-based decision making. In S.R. Jimerson, M.K. Burns, & A.M. 

VanDerHeyden (Eds.), Handbook of response to intervention: The science and practice of 

multi-tiered systems of support (2nd ed., pp. 9–28). New York: Springer. 

https://doi.org/10.1007/978-1-4899-7568-3 

Department for Education. (2016). Pupil absence in schools in England: Autumn term 2015. 

https://www.gov.uk/government/statistics/pupil-absence-in-schools-in-england-autumn-

term-2015 

Department of Education. (2016). Chronic absenteeism in the nation’s schools: An 

unprecedented look at a hidden educational crisis. Washington, D.C. 



 173 

https://www2.ed.gov/datastory/chronicabsenteeism.html 

Dietterich T.G. (2000) Ensemble methods in machine learning. In: Multiple Classifier Systems. 

MCS 2000. Lecture Notes in Computer Science, vol 1857. Springer, Berlin, Heidelberg 

https://doi.org/10.1007/3-540-45014-9_1 

Dube, S.R., & Orpinas, P. (2009). Understanding excessive school absenteeism as school refusal 

behavior. Children & Schools, 31(2), 87–95. https://doi.org/10.1093/cs/31.2.87 

Duchnowski, A.J., Kutash, K., & Friedman, R.M. (2002). Community-based interventions in a 

system of care and outcomes framework. Community Treatment for Youth, 16–39. 

doi:10.1093/acprof:oso/9780195134575.003.0002  

Egger, H.L., Costello, E.J., & Angold, A. (2003). School refusal and psychiatric disorders: A 

community study. Journal of the American Academy of Child and Adolescent Psychiatry, 

24(5), 389. https://doi.org/10.1097/01.CHI.0000046865.56865.79 

Ek, H., & Eriksson, R. (2013). Psychological factors behind truancy, school phobia, and school 

refusal: A literature study. Child and Family Behavior Therapy, 35(3), 228–248. 

https://doi.org/10.1080/07317107.2013.818899 

Essau, C.A. (2003). Comorbidity of anxiety disorders in adolescents. Depression and Anxiety, 

18(1), 1–6. https://doi.org/10.1002/da.10107 

Felker, K.R., & Stivers, C. (1994). The relationship of gender and family environment to eating 

disorder risk in adolescents. Adolescence, 29(116), 821. 

https://doi.org/10.1016/i.bandc.2008.07.009 

Fielding, A., & O’Muircheartaigh, C.A. (1977). Binary segmentation in survey analysis with 

particular reference to AID. The Statistician, 26(1), 17–28. doi:10.2307/2988216 

Flannery, K.B., Frank, J.L., & Kato, M.M.G. (2012). School disciplinary responses to truancy: 



 174 

current practice and future directions. Journal of School Violence, 11(2), 118–137. 

https://doi.org/10.1080/15388220.2011.653433 

Forman, S.G., & Crystal, C.D. (2015). Systems consultation for multitiered systems of supports 

(MTSS): Implementation issues. Journal of Educational and Psychological Consultation, 

25(2–3), 276–285. https://doi.org/10.1080/10474412.2014.963226 

Fornander, M.J. (2018). Identifying youth at risk for problematic absenteeism using 

nonparametric modeling: The impact of youth psychopathology and family environment risk 

factors [Unpublished masters thesis]. University of Nevada, Las Vegas. 

Freeman, J., Simonsen, B., McCoach, D. B., Sugai, G., Lombardi, A., & Horner, R. (2016). 

Relationship between school-wide positive behavior interventions and supports and 

academic, attendance, and behavior outcomes in high schools. Journal of Positive Behavior 

Interventions, 18(1), 41–51. https://doi.org/10.1177/1098300715580992 

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and 

an application to boosting. Journal of Computer and System Sciences, 55(1), 119–139. 

doi:10.1006/jcss.1997.1504 

Fuchs, L. S., & Vaughn, S. (2012). Responsiveness-to-intervention: A decade later. Journal of 

Learning Disabilities, 45(3), 195–203. https://doi.org/10.1177/0022219412442150 

Garbarino, J. (1977). The price of privacy in the social dynamics of child abuse. Child Welfare, 

56(9), 565–575. 

Garzona, M.E., Splett, J.W., Raborn, A., Halliday-Boykins, C.A., Weist, M.D., Dongo, M.D., & 

Trainor, K.M. (2018). Comparison of universal mental health screening to students already 

receiving intervention in a multitiered system of support. Behavioral Disorders, 43(3), 344–

356. https://doi.org/10.1177/0198742918761339 



 175 

Gill, P.S., & Redwood, S. (2013). Editorials: Under-representation of minority ethnic groups in 

research-call for action. British Journal of General Practice, 63(612), 342–343. 

https://doi.org/10.3399/bjgp13X668456 

Gracia, E., & Musitu, G. (2003). Social isolation from communities and child maltreatment: A 

cross-cultural comparison. Child Abuse & Neglect, 27(2), 153–168. doi:10.1016/s0145-

2134(02)00538-0 

Guare, R.E., & Cooper, B.S. (2003). Truancy revisited: Students as school consumers. Lanham, 

MD: Scarecrow. 

Guzman, M.P., Jellinek, M., George, M., Hartley, M., Squicciarini, A.M., Canenguez, K.M., … 

Murphy, J.M. (2011). Mental health matters in elementary school: First-grade screening 

predicts fourth grade achievement test scores. European Child and Adolescent Psychiatry, 

20(8), 401–411. https://doi.org/10.1007/s00787-011-0191-3 

Haight, C., Kearney, C.A., Hendron, M., & Schafer, R. (2011). Confirmatory analyses of the 

school refusal assessment scale-revised: Replication and extension to a truancy sample. 

Journal of Psychopathology and Behavioral Assessment, 33(2), 196–204. 

https://doi.org/10.1007/s10862-011-9218-9 

Haines, S.J., Francis, G.L., Mueller, T.G., Chiu, C.Y., Burke, M.M., Kyzar, K., … Turnbull, A. 

P. (2017). Reconceptualizing family-professional partnership for inclusive schools: A call to 

action. Inclusion, 5(4), 234–247. doi:10.1352/2326-6988-5.4.234 

Hankin, B.L., Snyder, H.R., Gulley, L.D., Schweizer, T.H., Bijttebier, P., Nelis, S., … Vasey, 

M.W. (2016). Understanding comorbidity among internalizing problems: Integrating latent 

structural models of psychopathology and risk mechanisms. Development and 

Psychopathology, 28(4), 987–1012. https://doi.org/10.1017/S0954579416000663 



 176 

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data 

mining, inference, and prediction (2nd ed.). New York: Springer Series in Statistics. 

Healey, S.P., Cohen, W.B., Yang, Z., Kenneth Brewer, C., Brooks, E.B., Gorelick, N., … Zhu, 

Z. (2018). Mapping forest change using stacked generalization: An ensemble approach. 

Remote Sensing of Environment, 204, 717–728. https://doi.org/10.1016/j.rse.2017.09.029 

Hinz, E., Kapp, L., & Snapp, S. (2003). Student attendance and mobility in Minneapolis Public 

Schools. Journal of Negro Education, 141–149. 

Hong, J. (1988). On connectionist models. Communications on Pure and Applied Mathematics, 

41(8), 1039–1050. https://doi.org/10.1002/cpa.3160410804 

Honjo, S., Nishide, T., Niwa, S., Sasaki, Y., Kaneko, H., Inoko, K., & Nishide, Y. (2001). 

School refusal and depression with school inattendance in children and adolescents: 

Comparative assessment between the children’s depression inventory and somatic 

complaints. Psychiatry and Clinical Neurosciences, 55(6), 629–634. doi:10.1046/j.1440-

1819.2001.00916.x 

Horner, S.B., Fireman, G.D., & Wang, E.W. (2010). The relation of student behavior, peer 

status, race, and gender to decisions about school discipline using CHAID decision trees 

and regression modeling. Journal of School Psychology, 48(2), 135–161. 

https://doi.org/10.1016/j.jsp.2009.12.001 

Hughes, E.K., Gullone, E., Dudley, A., & Tonge, B. (2010). A case-control study of emotion 

regulation and school refusal in children and adolescents. Journal of Early Adolescence, 

30(5), 691–706. https://doi.org/10.1177/0272431609341049 

Husky, M.M., Kaplan, A., McGuire, L., Flynn, L., Chrostowski, C., & Olfson, M. (2011). 

Identifying adolescents at risk through voluntary school-based mental health screening. 



 177 

Journal of Adolescence, 34(3), 505–511. https://doi.org/10.1016/j.adolescence.2010.05.018 

Husky, M.M., Sheridan, M., McGuire, L., & Olfson, M. (2011). Mental health screening and 

follow-up care in public high schools. Journal of the American Academy of Child and 

Adolescent Psychiatry, 50(9), 881–891. https://doi.org/10.1016/j.jaac.2011.05.013 

Ingul, J.M., Havik, T., & Heyne, D. (2018). Emerging school refusal: A school-based framework 

for identifying early signs and risk factors. Cognitive and Behavioral Practice, 26(1), 46-62 

https://doi.org/10.1016/j.cbpra.2018.03.005 

Ingul, J.M., Klöckner, C.A., Silverman, W.K., & Nordahl, H.M. (2012). Adolescent school 

absenteeism: Modelling social and individual risk factors. Child and Adolescent Mental 

Health, 17(2), 93-100. https://doi.org/10.1111/j.1475-3588.2011.00615.x 

Jaycox, L.H., & Repetti, R.L. (1993). Conflict in families and the psychological adjustment of 

preadolescent children. Journal of Family Psychology, 7(3), 344–355. 

https://doi.org/10.1037/0893-3200.7.3.344 

Jimerson, S.R., Burns, M.J., & VanDerHeyden, A.M. (Eds.). (2016). Handbook of response to 

intervention: The science and practice of multi-tiered systems of support (Second ed.). New 

York: Springer. 

Joel, S., Eastwick, P.W., & Finkel, E.J. (2017). Is romantic desire predictable? Machine learning 

applied to initial romantic attraction. Psychological Science, 28(10), 1478–1489. 

https://doi.org/10.1177/0956797617714580 

Kang, H. (2013). The prevention and handling of the missing data. Korean Journal of 

Anesthesiology, 64(5), 402. doi:10.4097/kjae.2013.64.5.402 

Kass G.V. (1980). An exploratory technique for investigating large quantities of categorical data. 

Applied Statistics, 29(2), 119. doi:10.2307/2986296 



 178 

Kearney, C.A. (2016). Managing school absenteeism at multiple tiers: An evidence-based and 

practical guide for professionals. Oxford University Press. 

doi:10.1093/med:psych/9780199985296.001.0001 

Kearney, C.A. (2001). School refusal behavior in youth: A fundamental approach to assessment 

and treatment. Washington, D.C.: American Psychological Association. 

Kearney, C.A. (2008). An interdisciplinary model of school absenteeism in youth to inform 

professional practice and public policy. Educational Psychology Review, 20(3), 257–282. 

https://doi.org/10.1007/s10648-008-9078-3 

Kearney, C.A., & Albano, A.M. (2007). When children refuse school: A cognitive-behavioral 

therapy approach: Therapist guide (2nd ed.). New York, NY: Oxford. 

doi:10.1093/med:psych/9780195308303.001.0001 

Kearney, C.A., & Albano, A.M. (2004). The functional profiles of school refusal behavior. 

Behavior Modification, 28(1), 147–161. https://doi.org/10.1177/0145445503259263 

Kearney, C.A., & Graczyk, P. (2014). A response to intervention model to promote school 

attendance and decrease school absenteeism. Child and Youth Care Forum, 43(1), 1–25. 

https://doi.org/10.1007/s10566-013-9222-1 

Kearney, C.A., & Silverman, W.K. (1995). Family environment of youngsters with school 

refusal behavior: A synopsis with implications for assessment and treatment. American 

Journal of Family Therapy, 23(1), 59–72. https://doi.org/10.1080/01926189508251336 

Kearney, C.A., & Silverman, W.K. (1996). The evolution and reconciliation of taxonomic 

strategies for school refusal behavior. Clinical Psychology-Science and Practice, 3(4), 339–

354. doi:10.1111/j.1468-2850.1996.tb00087.x 

Kelly, J., Rossen, E., & Cowan, K.C. (2018). Supporting families to support students. 



 179 

Educational Leadership, 75(4), 62–69. 

https://pdfs.semanticscholar.org/540d/70a1ed51f2012e754e61371a20a95073bcfb.pdf 

Keuthen, N.J., Fama, J., Altenburger, E.M., Allen, A., & Pauls, D. (2013). Family environment 

in adolescent trichotillomania. Journal of Obsessive-Compulsive and Related Disorders, 

2(4), 366–374. https://doi.org/10.1016/j.jocrd.2013.07.001 

Kiernan, M., Kraemer, H.C., Winkleby, M.A., King, A.C., & Taylor, C.B. (2001). Do logistic 

regression and signal detection identify different subgroups at risk? Implications for the 

design of tailored interventions. Psychological Methods, 6(1), 35–48. 

https://doi.org/10.1037/1082-989X.6.1.35 

King, N.J., & Bernstein, G.A. (2001). School refusal in children and adolescents: A review of the 

past 10 years. Journal of the American Academy of Child and Adolescent Psychiatry, 40(2), 

197–205. https://doi.org/10.1097/00004583-200102000-00014 

Kline, L.W., & Hall, G.S. (1898). Truancy as related to the migrating instinct. The Pedagogical 

Seminary, 5(3), 381–420. https://doi.org/10.1080/08919402.1898.10534025 

Knollmann, M., Reissner, V., & Hebebrand, J. (2018). Towards a comprehensive assessment of 

school absenteeism: Development and initial validation of the inventory of school 

attendance problems. European Child & Adolescent Psychiatry, 28(3), 399–414. 

doi:10.1007/s00787-018-1204-2  

Kuncheva, L.I. (2002). Switching between selection and fusion in combining classifiers: an 

experiment. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 

32(2), 146–156. doi:10.1109/3477.990871 

Last, C.G., & Strauss, C.C. (1990). School refusal in anxiety-disordered children and 

adolescents. Journal of the American Academy of Child & Adolescent Psychiatry, 29(1), 



 180 

31–35. https://doi.org/10.1097/00004583-199001000-00006 

Lee, D., & McLanahan, S. (2015). Family structure transitions and child development: 

Instability, selection, and population heterogeneity. American Sociological Review, 80(4), 

738–763. https://doi.org/10.1177/0003122415592129 

Lemon, S., Roy, J., Clark, M., Friedmann, P., & Rakowski, W. (2003). Classification and 

regression tree analysis in public health: Methodological review and comparison with 

logistic regression. Annals of Behavioral Medicine, 26, 172–181. 

https://doi.org/10.1207/s15324796abm2603_02 

Lenhoff, S.W., & Pogodzinski, B. (2018). School organizational effectiveness and chronic 

absenteeism: Implications for accountability. Journal of Education for Students Placed at 

Risk, 23(1–2), 153–169. https://doi.org/10.1080/10824669.2018.1434656 

Lexia Learning. (2018). Understanding the MTSS problem-solving process: What you need to 

know. https://www.lexialearning.com/blog/understanding-mtss-problem-solving-process-

what-you-need-know 

Lin, N., Noe, D., & He, X. (2006). Tree-based methods and their applications. In Pham (Ed.), 

Springer Handbook of Engineering Statistics (pp. 551–570). London: Springer Handbooks. 

Lindblom, J., Vanska, M., Flykt, M., Tolvanen, A., Tiitinen, A., Tulppala, M., & Punamaki, R.-

L. (2017). From early family systems to internalizing symptoms: The role of emotion 

regulation and peer relations. Journal of Family Psychology, 31(3), 316–326. 

https://doi.org/http://dx.doi.org/10.1037/fam0000260 

Low, N.C.P., Cui, L., & Merikangas, K.R. (2008). Community versus clinic sampling: Effect on 

the familial aggregation of anxiety disorders. Biological Psychiatry, 63(9), 884–890. 

https://doi.org/10.1016/j.biopsych.2007.08.011 



 181 

Lyon, A.R., & Cotler, S. (2007). Toward reduced bias and increased utility in the assessment of 

school refusal behavior: The case for diverse samples and evaluations of context. 

Psychology in the Schools, 44(6), 551–565. doi:10.1002/pits.20247 

Lyon, A.R., & Cotler, S. (2009). Multi-systemic intervention for school refusal behavior: 

Integrating approaches across disciplines. Advances in School Mental Health Promotion, 

2(1), 20–34. https://doi.org/10.1080/1754730X.2009.9715695 

Macklem, G.L. (2014). Preventive mental health at school: Evidence-based services for students. 

New York: Springer-Verlag. https://doi.org/10.1007/978-1-4614-8609-1 

Magnuson, K., & Berger, L.M. (2009). Family structure states and transitions: Associations with 

children’s well-being during middle childhood. Journal of Marriage and Family, 71(3), 

575–591. https://doi.org/10.1111/j.1741-3737.2009.00620.x 

Makihara, H., Nagaya, M., & Nakajima, M. (1985). An investigation of neurotic school refusal 

in one-parent families. Japanese Journal of Child and Adolescent Psychiatry, 26(5), 303–

315. 

MathWorks. (2016). Applying supervised learning. MathWorks. https://in.mathworks.co 

m/content/dam/mathworks/tag-team/Objects/i/90221_80827v00_machine_learning_s 

ection4_ebook_v03.pdf 

Maynard, B.R., Brendel, K.E., Bulanda, J.J., Heyne, D., Thompson, A.M., Pigott, T.D., … 

Therese, D. (2015). Psychosocial interventions for school refusal with primary and 

secondary school students. American Journal of Family Therapy, 23(May), 59–72. 

https://doi.org/10.4073/csr.2015.12 

McCart, A., Wolf, N., Sweeney, H.M., & Choi, J.H. (2009). The application of a family-based 

multi-tiered system of support. NHSA DIALOG, 12(2), 122–132. 



 182 

doi:10.1080/15240750902774692 

McIntosh, K., Bohanon, H., & Goodman, S. (2010). Toward true integration of response to 

intervention systems in academic and behavior support: Part three: Tier 3 support. 

Communiqué, 39(4), 30–31. https://ecommons.luc.edu/education_facpubs/23/ 

McIntosh, K., & Goodman, S. (2016). Integrated multi-tiered systems of support: Blending RTI 

and PBIS. Foundations. New York: The Guilford Press. 

Mcintosh, K., Horner, R.H., & Sugai, G. (2009). Sustainability of systems-level evidence-based 

practices in schools: Current knowledge and future directions. In W. Sailor, G. Dunlap, G. 

Sugai, & R. Horner (Eds.), Handbook of positive behavior support (pp. 327–352). Springer. 

https://doi.org/10.1007/978-0-387-09632-2 

McKay-Brown, L., McGrath, R., Dalton, L., Graham, L., Smith, A., Ring, J., & Eyre, K. (2018). 

Reengagement with education: A multidisciplinary home-school-clinic approach developed 

in australia for school-refusing youth. Cognitive and Behavioral Practice, 26(1), 92–106. 

https://doi.org/10.1016/j.cbpra.2018.08.003 

McShane, G., Walter, G., & Rey, J.M. (2001). Characteristics of adolescents with school refusal. 

The Australian and New Zealand Journal of Psychiatry, 35(6), 822–826. 

https://doi.org/10.1046/J.1440-1614.2001.00955.X 

Melvin, G.A., Dudley, A.L., Gordon, M.S., Klimkeit, E., Gullone, E., Taffe, J., & Tonge, B.J. 

(2017). Augmenting cognitive behavior therapy for school refusal with fluoxetine: a 

randomized controlled trial. Child Psychiatry and Human Development. 

https://doi.org/10.1007/s10578-016-0675-y 

Melvin, G., Carless, B., Melvin, G.A., Tonge, B.J., & Newman, L.K. (2015). The role of parental 

self-efficacy in adolescent school-refusal. Journal of Family Psychology, 29(2), 162–170. 



 183 

doi:10.1037/fam0000050 

Merikangas, K.R., Nakamura, E.F., & Kessler, R.C. (2009). Epidemiology of mental disorders in 

children and adolescents. Dialogues in Clinical Neuroscience, 11(1), 769–775. 

https://doi.org/10.1001/jamapediatrics.2013.192 

Merikangas, K.R., He, J., Burstein, M., Swendsen, J., Avenevoli, S., Case, B., … Olfson, M. 

(2011). Service utilization for lifetime mental disorders in US adolescents: results of the 

National Comorbidity Survey–Adolescent Supplement (NCS-A). Journal of the American 

Academy of Child & Adolescent Psychiatry, 50(1), 32–45. doi:10.1016/j.jaac.2010.10.006 

Merkle, E.C., & Shaffer, V.A. (2011). Binary recursive partitioning: Background, methods, and 

application to psychology. British Journal of Mathematical and Statistical Psychology, 

64(1), 161–181. https://doi.org/10.1348/000711010X503129 

Merrell, K.W. (2008). Understanding internalizing problems: Depression and anxiety in children 

and adolescents. In helping students overcome depression and anxiety: A practical guide 

(2nd ed.). Guilford Press. 

Moos, R.H., & Moos, B.S. (1976). A typology of family social environments. Family Process, 

15(4), 357–371. https://doi.org/10.1111/j.1545-5300.1976.00357.x 

Morrongiello, B.A., & Corbett, M. (2013). Families influence on children’s mental and physical 

health: Some contributions of and challenges to the emotional security theory. In N. S. 

Landale, A. Booth, & S. M. McHaleAlan (Eds.), Families and child health. (pp. 75–86). 

New York, NY: Springer. https://doi.org/10.1007/978-1-4614-6194-4 

National Center for Education Statistics. (2016). The Condition of Education 2016. United States 

Department of Education. https://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2016144 

National Center for School Engagement. (2005). School attendance tracking: challenging and 



 184 

effective practices. http://www.davenportschools.org/wpcontent/uploads/2012/08/Scho 

olAttendanceEffectivePractices.pdf 

National Professional Development Center on Inclusion. (2012). Response to intervention (RTI) 

in early childhood: Building consensus on the defining features. National Professional 

Development Center on Inclusion. https://npdci.fpg.unc.edu/sites/npdci.fpg.unc. 

edu/files/resources/NPDCI-RTI-Concept-Paper-FINAL-2-2012.pdf 

Nevada Department of Education. (2018). Nevada Accountability Portal. 

NRS 392.130 (2007). 

NRS 392.144 (2013). 

NRS 392.210 (2013). 

Office of the Press Secretary. (2014). Fact sheet: Opportunity for all: President Obama launches 

my brother’s keeper initiative to build ladders of opportunity for boys and young men of 

color. https://doi.org/10.1111/j.1741-5705.2009.03698.x 

Olson, L.S. (2013). Why september matters: Improving student attendance. Baltimore, MD. 

https://doi.org/10.1177/0022146514547328 

Orlando, C.M., Bradley, W., Collier, T.A., Ulie-wells, J., Miller, E., & Weist, M. (2018). What 

works in school-based mental health service delivery? In A. W. Leschied, D. H. Saklofske, 

& G. L. Flett (Eds.), Handbook of school-based mental health promotion. (pp. 33–49). 

Springer International Publishing. https://doi.org/10.1007/978-3-319-89842-1 

Osborne, C., & McLanahan, S. (2007). Partnership Instability and Child Well-Being. Journal of 

Marriage and Family, 69(4), 1065–1083. doi:10.1111/j.1741-3737.2007.00431.x 

Park, M.H., Yim, H.W., Park, S., Lee, C., Lee, C.U., Hong, S.C., … Choi, J. (2015). School 

refusal behavior in South Korean first graders: A prospective observational community-



 185 

based study. Psychiatry Research, 227(2–3), 160–165. 

https://doi.org/10.1016/j.psychres.2015.04.011 

Pflug, V., & Schneider, S. (2016). School absenteeism: An online survey via social networks. 

Child Psychiatry and Human Development, 47(3), 417–429. 

https://doi.org/10.1007/s10578-015-0576-5 

Polikar, R. (2012). Ensemble Learning. In C. Zhang & Y. Ma (Eds.), Ensemble machine learning 

(pp. 1–34). New York: Springer. https://doi.org/10.1007/978-1-4419-9326-7 

Preuss, M. (2014a). Introduction. In C. Stoean & R. Stoean (Eds.), Support vector machines and 

evolutionary algorithms for classification (pp. 3–6). Switzerland: Springer International 

Publishing. https://doi.org/10.1007/978-3-319-06941-8 

Preuss, M. (2014b). Support vector learning and optimization. In C. Stoean & R. Stoean (Eds.), 

Support Vector Machines and Evolutionary Algorithms for Classification (pp. 7–25). 

Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-06941-8 

Priore, P., Ponte, B., Puente, J., & Gómez, A. (2018). Learning-based scheduling of flexible 

manufacturing systems using ensemble methods. Computers and Industrial Engineering, 

126, 282–291. https://doi.org/10.1016/j.cie.2018.09.034 

Reid, K. (2003). A strategic approach to tackling school absenteeism and truancy: The PSCC 

scheme. Educational Studies, 29(4), 351–371. 

https://doi.org/10.1080/0305569032000159660 

Reid, K. (2005). The causes, views and traits of school absenteeism and truancy. Research in 

Education, 74(1), 59–82. https://doi.org/10.7227/RIE.74.6 

Reid, K. (2012). The strategic management of truancy and school absenteeism: Finding solutions 

from a national perspective. Educational Review, 64(2), 211–222. 



 186 

https://doi.org/10.1080/00131911.2011.598918 

Reissner, V., Knollmann, M., Spie, S., Jost, D., Neumann, A., & Hebebrand, J. (2018). Modular 

treatment for children and adolescents with problematic school absenteeism: development 

and description of a program in Germany. Cognitive and Behavioral Practice, 26(1), 63–74. 

https://doi.org/10.1016/j.cbpra.2018.07.001 

Ritschard, G. (2010). CHAID and earlier supervised tree methods. Contemporary Issues in 

Exploratory Data Mining in the Behavioral Sciences, 48–74. 

https://doi.org/10.4324/9780203403020 

Rizzo, J.A., Chen, J., Fang, H., Ziganshin, B.A., & Elefteriades, J.A. (2014). Statistical 

challenges in identifying risk factors for aortic disease. AORTA, 2(2), 45–55. 

doi:10.12945/j.aorta.2014.14-019 

Rodríguez, L.F., & Conchas, G.Q. (2009). Preventing truancy and dropout among urban middle 

school youth: Understanding community-based action from the student’s perspective. 

Education and Urban Society, 41(2), 216–247. 

Rosellini, A.J., Dussaillant, F., Zubizarreta, J.R., Kessler, R. C., & Rose, S. (2018). Predicting 

posttraumatic stress disorder following a natural disaster. Journal of Psychiatric Research, 

96, 15–22. https://doi.org/10.1016/j.jpsychires.2017.09.010 

Schanzenbach, D.W., Bauer, L., & Mumford, M. (2016). Lessons for broadening school 

accountability under the Every Student Succeeds Act, (October). 

Schulte, A.C. (2016). Prevention and response to intervention: Past, present, and future. In S.R. 

Jimerson, M.K. Burns, & A.M. VanDerHeyden (Eds.), Handbook of response to 

intervention: The science and practice of assessment and intervention. (2nd ed., pp. 59–71). 

New York: Springer. https://doi.org/10.1007/978-1-4899-7568-3_5 



 187 

Scoresby, A.L., & Christensen, B. (1976). Differences in interaction and environmental 

conditions of clinic and non-clinic families: Implications for counselors. Journal of Marital 

and Family Therapy, 2(1), 63–71. https://doi.org/10.1111/j.1752-0606.1976.tb00398.x 

Shah, J. (2017). Neural networks for beginners: popular types and applications. 

https://blog.statsbot.co/neural-networks-for-beginners-d99f2235efca 

Shucksmith, J., Jones, S., & Summerbell, C. (2010). The role of parental involvement in school-

based mental health interventions at primary (elementary) school level. Advances in School 

Mental Health Promotion, 3(1), 18–29. 

Skedgell, K.K., & Kearney, C.A. (2016). Predictors of absenteeism severity in truant youth: A 

dimensional and categorical analysis. American Secondary Education, 45(1), 46–58. 

Skymind. (2019). A beginner’s guide to neural networks and deep learning. 

https://skymind.ai/wiki/neural-network 

Song, Y.Y., & Lu, Y. (2015). Decision tree methods: applications for classification and 

prediction. Shanghai Archives of Psychiatry, 27(2), 130–135. 

Spaulding, S.A., Irvin, L.K., Horner, R.H., May, S.L., Tobin, T.J., & Sugai, G. (2010). Empirical 

patterns from 1 , 510 schools nationwide. Journal of Positive Behavior Interventions, 69–

86. https://doi.org/10.1177/1098300708329011 

Spruyt, B., Keppens, G., Kemper, R., & Bradt, L. (2016). ‘If only they had a file on every pupil’: 

on the mismatch between truancy policy and practice in Flanders. International Studies in 

Sociology of Education, 26(2), 171–189. https://doi.org/10.1080/09620214.2016.1191965 

Stanton-Chapman, T.L., Walker, V.L., Voorhees, M.D., & Snell, M.E. (2016). The evaluation of 

a three-tier model of positive behavior interventions and supports for preschoolers in head 

start. Remedial and Special Education, 37(6), 333–344. 



 188 

https://doi.org/10.1177/0741932516629650 

Stewart, R.M., Benner, G.J., Martella, R.C., & Marchand-Martella, N.E. (2007). Three-tier 

models of reading and behavior: A research review. Journal of Positive Behavior 

Interventions, 9(4), 239–253. https://doi.org/10.1177/10983007070090040601 

Stiffler, M.C., & Dever, B.V. (2015). Mental health screening at school. mental health screening 

at school. https://doi.org/10.1007/978-3-319-19171-3 

Stoiber, K.C., & Gettinger, M. (2015). Multi-tiered systems of support and evidence-based 

practices. In Shane R Jimerson, M. K. Burns, & A. M. VanDerHeyden (Eds.), Handbook of 

response to intervention: The science and practice of multi-tiered systems of support (pp. 

121–141). Springer. https://doi.org/10.1007/978-1-4899-7568-3 

Sturge-Apple, M., Davies, P.T., & Cummings, E.M. (2010). Typologies of family functioning 

and children’s adjustment during the early school years. Child Development, 81(4), 1320–

1335. https://doi.org/10.1111/j.1467-8624.2010.01471.x 

Thornton, M., Darmody, M., & McCoy, S. (2013). Persistent absenteeism among Irish primary 

school pupils. Educational Review, 65(4), 488–501. doi:10.1080/00131911.2013.768599 

Ting, K.M., & Witten, I.H. (1997). Stacked generalization: When does it work? IJCAI 

International Joint Conference on Artificial Intelligence, 2, 866–871. 

Tucker, M.C., & Rodriguez, C.M. (2014). Family dysfunction and social isolation as moderators 

between stress and child physical abuse risk. Journal of Family Violence, 29(2), 175–186. 

U.S. Department of Education. (2015a). Every student succeeds act (ESSA). 

U.S. Department of Education. (2015b). Key policy letters signed by the education secretary or 

deputy secretary. 

U.S. Department of Education. (2016). Every student, every day: A national initiative to address 



 189 

and eliminate chronic absenteeism. 

U.S. Department of Education. (2017). Key policy letters signed by the education secretary or 

deputy secretary. 

U.S. Department of Education Office of Safe and Drug-Free Schools. (2007). Truancy rates. 

Wahler, R.G. (1980). The insular mother: Her problems in parent-child treatment. Journal of 

Applied Behavior Analysis, 13(2), 207–219. 

Waldron, S., Shrier, D.K., Stone, B., & Tobin, F. (1975). School phobia and other childhood 

neuroses: A systematic study of the children and their families. The American Journal of 

Psychiatry, 132(8), 802–808. 

Walter, D., Hautmann, C., Rizk, S., Petermann, M., Minkus, J., Sinzig, J., … Doepfner, M. 

(2010). Short term effects of inpatient cognitive behavioral treatment of adolescents with 

anxious-depressed school absenteeism: An observational study. European Child and 

Adolescent Psychiatry, 19(11), 835–844. https://doi.org/10.1007/s00787-010-0133-5 

Weiss, M., & Cain, B. (1964). The residential treatment of children and adolescents with school 

phobia. American Journal of Orthopsychiatry, 34(1), 103–114. 

Wimmer, B.Y.M., & Milwaukee, W. . (2010). School refusal: Information for educators. 

National Association for School Psychologists.  

Wolpert, D.H. (1992). Stacked generalization. Neural Networks, 5, 241–259. 

https://doi.org/10.1016/S0893-6080(05)80023-1 

Wood, J.J., Lynne-Landsman, S.D., Langer, D.A., Wood, P.A., Clark, S.L., Mark Eddy, J., & 

Ialongo, N. (2012). School attendance problems and youth psychopathology: Structural 

cross-lagged regression models in three longitudinal data sets. Child Development, 83(1), 

351–366. https://doi.org/10.1111/j.1467-8624.2011.01677.x 



 190 

Woods, K., Philip Kegelmeyer, W., & Bowyer, K. (1997). Combination of multiple classifiers 

using local accuracy estimates. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 19(4), 405–410. https://doi.org/10.1109/34.588027 

Xiao, J., Xiao, Z., Wang, D., Bai, J., Havyarimana, V., & Zeng, F. (2019). Short-term traffic 

volume prediction by ensemble learning in concept drifting environments. Knowledge-

Based Systems, 164, 213–225. https://doi.org/10.1016/j.knosys.2018.10.037 

Yahav, R. (2002). External and internal symptoms in children and characteristics of the family 

system: A comparison of the linear and circumplex models. American Journal of Family 

Therapy, 30(1), 39–56. https://doi.org/10.1080/019261802753455633 

Yoo, W., Mayberry, R., Bae, S., Singh, K., He, Q., & Lillard Jr, J.W. (2014). NIH public access. 

Journal of Applied Science Technology, 4(5), 9–19. https://doi.org/10.1002/nbm.3066.Non-

invasive 

Zhang, C., & Ma, Y. (Eds.). (2012). Ensemble Machine Learning. Ensemble Machine Learning. 

New York: Springer. 

Zhang, G., Huang, Y., Zhong, L., Ou, S., Zhang, Y., & Li, Z. (2015). An ensemble learning 

based framework for traditional chinese medicine data analysis with ICD-10 labels. 

Scientific World Journal, 2015. https://doi.org/10.1155/2015/507925 

Zhang, H., & Singer, B. H. (2010). Recursive partitioning and applications. New York, NY: 

Springer Series in Statistics. https://doi.org/10.1007/978-1-4419-6824-1 

Zhou, Z.-H. (2009). Ensemble Learning. Nanjing. 

Zhukov, A., Tomin, N., Kurbatsky, V., Sidorov, D., Panasetsky, D., & Foley, A. (2019). 

Ensemble methods of classification for power systems security assessment. Applied 

Computing and Informatics, 15(1), 45–53. https://doi.org/10.1016/j.aci.2017.09.007 



 191 

CURRICULUM VITAE 

4505 S. Maryland Pkwy. • Las Vegas, NV 89154 • mfornander@cmh.edu 

Mirae J. Fornander 
Formerly Mirae J. Nakouzi 

 
 

EDUCATION  
 
Internship  August 2020-Present 
     Children’s Mercy Kansas City (Kansas City, MO) 
     APA-Accredited Pediatric/Child Clinical Psychology Internship 
     Training Director: Anna Egan, Ph.D., ABPP 
   
Doctor of Philosophy  January 2019-Present 
     University of Nevada, Las Vegas (UNLV; Las Vegas, NV) 
     Doctoral Student in APA- Accredited Clinical Psychology Program 

 

     Dissertation: Defining Problematic School Absenteeism: Identifying Youth at Risk 
          Chair: Christopher A. Kearney, Ph.D. 
          Defended May 13, 2020 
  
Master of Arts 
     UNLV (Las Vegas, NV)     August 2015-December 2018 

   Masters Student in APA- Accredited Clinical Psychology Program 
     Thesis: Identifying Youth at Risk for Problematic Absenteeism Using Nonparametric Modeling: The         
     Impact of Youth Psychopathology and Family Risk Factors 
          Chair: Christopher A. Kearney, Ph.D. 
          Defended August 14, 2018 
 
Bachelor of Arts  August 2011-May 2015 
     Hastings College (Hastings, NE) 
     Bachelor of Arts in Psychology with a Political Science Minor    
 
HONORS AND AWARDS 
 
Lovinger Award UNLV 2019 & 2018 
Outstanding Graduate Student Teaching Award UNLV 2019 
Patricia Sastaunik Scholarship UNLV 2017, 2018, & 2019 
Outreach Undergraduate Mentoring Program 
(OUMP) Mentor Award 

UNLV 2018 

Summer Session Scholarship UNLV 2017 
Lorrie E. Bryant Psi Chi Award Hastings College 2014 

 
GRANTS AND FELLOWSHIPS 
 
Open Article Fund Grant UNLV $1,500 July & July 2019 
     Grant funded the publishing of two manuscripts in open-access journals.  
    
Summer Doctoral Research Fellowship UNLV $7,000 May 2019 



 192 

     Merit-based research fellowship for doctoral students who have demonstrated excellence in their 
field of study and provided summer support to decrease graduation time.   
    
Regent Service Program Grant UNLV ~$12,000 August 2018 & 2019  
     Grant funded two full-time undergraduate research assistants.  

 
PUBLICATIONS  
 
Peer Reviewed 
1. Fornander, M.J., & Kearney, C.A. (2020). Internalizing symptoms as predictors of school 

absenteeism severity at multiple levels: Ensemble and classification and regression tree analysis. 
Frontiers in Psychology, 10, 3079. https://doi.org/10.3389/fpsyg.2019.03079 
 

2. Fornander, M.J., & Kearney, C.A. (2019). Family environment variables as predictors of school 
absenteeism severity at multiple levels: Ensemble and classification and regression tree analysis. 
Frontiers in Psychology, 10, 1916. https://doi.org/10.3389/fpsyg.2019.02381 

 
3. Kearney, C.A., Gonzalvez, C., Graczyk, P., & Fornander, M.J. (2019). Reconciling contemporary 

approaches to school attendance and school absenteeism: Toward promotion and nimble response, 
global policy review and implementation, and future adaptability (Part 1). Frontiers in Psychology, 
10, 1916. https://doi.org/10.3389/ fpsyg.2019.02222 
 

4. Kearney, C.A., Gonzalvez, C., Graczyk, P., & Fornander, M.J. (2019). Reconciling contemporary 
approaches to school attendance and school absenteeism: Toward promotion and nimble response, 
global policy review and implementation, and future adaptability (Part 2). Frontiers in Psychology, 
10, 2605. https://doi.org/10.3389/fpsyg.2019.02605 
 

5. Skedgell, K.K., Fornander, M., & Kearney, C.A. (2017). Personalized individual and group therapy 
for multifaceted selective mutism. Clinical Case Studies, 16(2), 166–181. 
https://doi.org/10.1177/1534650116685619 

 
Book Chapters 
1. Fornander, M.J. (2020) Using YouTube in psychology. In W.Weiten. Psychology: Themes and 

Variations--Online Resources. Boston: Cengage. 
 

2. Kearney, C.A., & Fornander, M.J. (2018). School refusal behavior and absenteeism. In R.J.R. 
Levesque (Ed.), Encyclopedia of adolescence (2nd ed.) (pp. 3298-3303). New York: Springer. 

 
PUBLICATIONS IN PREPARATION: 
 
1. Fornander, M.J., Bates, C.R., Dreyer Gillette, M.L. (In preparation) The psychosocial predictors of 

treatment response in family-based weight management program.  
 

2. Bates, C., Pallotto, I., Fornander, M.J., & Dreyer Gillette, M. (In preparation). A mixed-methods 
examination of family rules, routines, and caregiver distress during the first year of pediatric cancer 
treatment. 

 
ORAL PRESENTATIONS  
 
International 



 193 

1. Kearney, C.A., Fornander, M.J., Howard, A., & Bacon, V. (2018, March).  The role of the School 
Refusal Assessment Scale in an evolving multi-tiered system of supports model. Oral paper presented 
at the meeting of the Lorentz Center conference on School absenteeism: Universal problem seeks 
gold standard solutions, Leiden, Netherlands. 

 
2. Kearney, C.A., Fornander, M.J., Howard, A., & Bacon, V. (2018, March). The short version of a 

long, troubled history of differentiating among school attendance problems. Oral paper presented at 
the meeting of the Lorentz Center conference on School absenteeism: Universal problem seeks gold 
standard solutions, Leiden, Netherlands. 

 
National 
1. Fornander, M.J., Bacon, V.R., Garcia, B., Sherwood, S., Rede, M., Kearney, C.A. (2019, October). 

Guidelines for in-school exposures. Oral presentation at the Selective Mutism Association (SMA) 
National Conference, Las Vegas, NV.  
 

2. Diliberto, R., Fornander, M.J., & Bacon, B. (2018, September). Selective mutism basics: A crash 
course. Oral presentation at the Selective Mutism Association (SMA) National Conference, Chicago, 
IL. 
 

3. Kearney, C.A., Fornander, M.J., & Howard, A.N. (2017, March). Assessment and intervention for 
problematic school absenteeism. Oral presentation at the School Social Work Association of America 
(SSWAA) Conference, San Diego, CA.  
 

4. +Burke, M., Delgado, J., Nakouzi, M., & Sharp, M. (2015, March). Does type of activity impact the 
positive effect of nature on students’ attention and mood? Oral presentation at the Great Plains 
Students’ Psychology Convention, Wichita, KS.  
+Great Plains Students’ Psychology Convention, 1st place outstanding presentation award.  
 

5. Nakouzi, M. (2014, April). Factors that impact terrorist recruitment. Oral presentation at Midwest 
Political Science Undergraduate Research Conference, Parkville, MO 

 
Local 
1. Fornander, M.J. (2018, April). Identifying youth at risk for problematic school absenteeism using 

nonparametric modeling: The impact of youth psychopathology and family environment risk factors. 
Oral presentation at the University of Nevada, Las Vegas Psychology Department Research Fair, Las 
Vegas, Nevada.  
 

2. Fornander, M.J., Sheldon, K.K., & Kearney, C. (2016, October). School refusal. Oral presentation at 
the Nevada Association of School Psychologists (NASP) Conference, Las Vegas, NV.  
 

3. Nakouzi, M., Wendland, M., Lee, R., Kemler, J., Gonzales-Hunter, T., & Easter, S. (2015, April) 
Forging global alliances: Practicing diplomacy at National Model United Nations. Oral presentation 
at Academic Showcase, Hastings, NE. 
 

4. Burke, M., Delgado, J., Nakouzi, M., & Sharp, M. (2015, April). Does type of activity impact the 
positive effect of nature on students’ attention and mood? Oral presentation at Academic Showcase, 
Hastings, NE.  
 

5. Burke, M., Delgado, J., Nakouzi, M., & Sharp, M. (2014, April). Does type of activity impact the 
positive effect of nature on students’ attention and mood? Oral presentation at Academic Showcase, 
Hastings, NE.  



 194 

 
6. Nakouzi, M., Wendland, M., Lee, R., Kemler, J., & Gonzales-Hunter, T. (2014, April) Exploring 

world politics through the National Model United Nations. Oral presentation at Academic Showcase, 
Hastings, NE. 

 
POSTER PRESENTATIONS  
 
National 
1. Roberts, T., Fornander, M.J., Egan, A.M., & Moser, C. (2021, April). Gender dysphoria, general 

well-being, BMI, and weight-related behaviors among adolescent transgender males. Poster 
submitted to the Pediatric Academic Societies Annual Conference (PAS), Virtual. 
 

2. Fornander, M.J., Egan, A.M., Roberts, T., & Moser, C. (2021, April). BMI and associated variables 
in a pediatric gender clinic sample. Poster submitted to the Pediatric Academic Societies Annual 
Conference (PAS), Virtual. 
 

3. Fornander, M.J., Bates, C.R., Dreyer Gillette, M.L. (2021, April). Impact of COVID-19 on families 
with a child in cancer treatment. Poster to be presented at the Society of Pediatric Psychology Annual 
Conference (SPPAC), Virtual.  
 

4. Fornander, M.J., Bacon, V.R., Rede, M., & Kearney, C.A. (2020, November). Identifying protective 
factors for school absenteeism. Poster presented at the Association for Behavioral and Cognitive 
Therapies (ABCT), Virtual. 
 

5. Bacon, V.R., Rede, M., Warhola, Z., Fornander, M.J., & Kearney, C.A. (2020, November). Student 
perceptions of school staff’s respect for diversity is related to bullying and feelings of safety. Poster 
presented at the Association for Behavioral and Cognitive Therapies (ABCT), Virtual. 
 

6. Bacon, V.R, Fornander, M.J., Kearney, C.A. (2019, October). Characteristics of 
communication behaviors in children with selective mutism. Poster presented at the Selective Mutism 
Association (SMA) National Conference, Las Vegas, NV. 
 

7. Howard, A.N., Fornander, M.J., Bacon, V., Rede, M., Burke, S., Constantine, M., Gerthoffer, A., 
Diliberto, R., Kearney, C.A. (2019, October). Somatic symptoms and internalizing problems as 
moderators of selective mutism severity. Poster presented at the Selective Mutism Association (SMA) 
National Conference, Las Vegas, NV.  
 

8. Fornander, M.J., Bacon, V., Rede, M., Constantine, M., Burke, S., Howard, A., Gerthoffer, A., 
Diliberto, R., Kearney, C.A. (2019, October). Selective mutism presentation in U.S. versus Non-US 
children. Poster presented at the Selective Mutism Association (SMA) National Conference, Las 
Vegas, NV.  
 

9. Bacon, V.R, Fornander, M.J., Rede, M., Constantine, M., Burke, S., Howard, A., Gerthoffer, 
A., Kearney, C.A. (2019, May). Bullying as a risk factor for school absenteeism. Poster presented at 
the Association for Psychological Science (APS), Washington, D.C. 
 

10. *Millette, K., Beltran, L., Fornander, M.J., Bacon, V., Kearney, C.A., (2019, April). Parent level of 
control & problematic school absenteeism. Poster presented at the Western Psychological 
Association conference (WPA), Pasadena, CA. 
 



 195 

11. *Silos, K., Bacon, V., Fornander, M.J., Kearney, C.A. (2019, April). Social anxiety and the 
functions of school refusal behavior. Poster presented at the Western Psychological Association 
conference (WPA), Pasadena, CA. 
 

12. Fornander, M.J., Bacon, V., Howard, A., Gerthoffer, A., & Kearney, C.A. (2018, November). 
Internalizing symptoms as predictors of problematic school absenteeism. Poster presented at the 
annual meeting of the Association of Behavioral and Cognitive Therapies, Washington, DC. 
 

13. Fornander, M.J., Bacon, V., Howard, A., Gerthoffer, A., & Kearney, C.A. (2018, November). 
Predicting school refusal behavior with youth report of school climate. Poster presented at the annual 
meeting of the Association of Behavioral and Cognitive Therapies, Washington, DC. 
 

14. Bacon, V., Fornander, M.J., Howard, A., Gerthoffer, A., Kearney, C.A. (2018, September). Boys 
will be boys? Gender differences in informant reports of symptoms in children with selective mutism. 
Poster presented at the Selective Mutism Association (SMA) National Conference, Chicago, IL. 
 

15. Fornander, M.J., Bacon, V., Diliberto, R., Howard, A., Kearney, C.A. (2018, September). 
Predicting symptoms severity in children with selective mutism. Poster presented at the Selective 
Mutism Association (SMA) National Conference, Chicago, IL. 
 

16. Howard, A.N., Velasco, V., Fornander, M.J., Gerthoffer, A., Bacon, V., & Kearney, C.A. (2018, 
August). Re-experiencing symptoms in childhood PTSD act as a protective factor against dissociative 
symptoms. Poster presented at the annual meeting of the American Psychological Association. San 
Francisco, CA. 
 

17. *Velasco, V., Howard, A., Fornander, M.J., Gerthoffer, A., Bacon, V., Kearney, C.A. (2018, 
April). PTSD symptom clusters predict dissociative symptoms in maltreated youth. Poster presented at 
the Western Psychological Association (WPA) Annual Conference, Portland, OR. 
 

18. Fornander, M.J., Howard, A.N., Gerthoffer, A., Skedgell, K.K., Bacon, V., & Kearney, C.A. (2017, 
November). Youth spoken language and ethnic identity are associated with important protective 
factors against school refusal behavior. Poster presented at the Association of Behavioral and 
Cognitive Therapies (ABCT) National Conference, San Diego, CA. 
 

19. Sheldon, K.K., Fornander, M.J., & Kearney, C.A. (2016, October). Selective mutism group 
treatment. Poster presented at the Selective Mutism Group (SMG) National Conference, Manhattan 
Beach, CA.  
 

20. Sheldon, K.K., Fornander, M.J., & Kearney, C.A. (2016, September). ADHD symptoms in youth 
who are truant. Poster presented at the Society for Police and Criminal Psychology (SPCP) National 
Conference, Austin, TX.  
 

21. Nakouzi, M. & Droege, T. (2013, December). Body image awareness week at Hastings College. 
Poster presented at Active Minds National Conference, Washington D.C. 

 
Local 
1. Fornander, M.J., Egan, A.M., Roberts, T., & Moser, C. (2021, April). BMI and associated variables 

in a pediatric gender clinic sample. Poster submitted to Children’s Mercy Research Days Annual 
Conference, Virtual 
 



 196 

2. Fornander, M.J., Bates, C.R., Dreyer Gillette, M.L. (2021, April). Impact of COVID-19 on families 
with a child in cancer treatment. Poster submitted to Children’s Mercy Research Days Annual 
Conference, Virtual 
 

3. *Arcaina, V.J., Fornander, M.J., Kearney, C.A. (2019, October). Presentation of internalizing 
symptoms in youth with selective mutism. Poster presented at the Diversity Research and Mentorship 
Reception, Las Vegas, NV. 
 

4. *Sweis, R., Kustura, M., Del Rosario S., Bacon, V.R., Fornander, M.J., Kearney, C.A. (2019, 
October). Family factors in children with selective mutism. Poster presented at the Diversity Research 
and Mentorship Reception, Las Vegas, NV. 
 

5. *Lyon, L.R., Fornander, M.J., & Kearney, C.A. (2018, October). Efficacy of exposure therapy on 
youth with selective mutism: Future approaches towards treatment. Poster presented at McNair 
Scholars Symposium, Las Vegas, NV.  
 

6. Fornander, M.J. & Kearney, C.A. (2019, February). Defining problematic school absenteeism: 
Identifying youth at risk. Poster presented at the Graduate & Professional Student Research Forum, 
Las Vegas, NV.  
 

7. *Velasco, V., Howard, A., Fornander, M.J., Gerthoffer, A., Bacon, V., Kearney, C.A. (2018, 
May). PTSD symptom clusters predict dissociative symptoms in maltreated youth. Poster presented at 
the Nevada Psychological Association (NPA) Annual Conference, Las Vegas, NV. 
 

8. Fornander, M.J., Lozano, A., Perez, F., Rodriguez, A., Bacon, V., Howard, A., Gerthoffer, A., & 
Kearney, C.A. (2018, May). School climate risk and protective factors of school refusal behavior. 
Poster presented at the annual meeting of the Nevada Psychological Association, Las Vegas, NV. 
 

9. Fornander, M.J., Howard, A.N., Gerthoffer, A., Skedgell, K.K., Bacon, V., & Kearney, C.A. (2017, 
May). Youth spoken language and ethnic identity are associated with important protective factors 
against school refusal behavior. Poster presented at the Diversity Research & Mentorship Reception, 
Las Vegas, NV. 
 

10. Fornander, M.J., Howard, A.N., Gerthoffer, A., Skedgell, K.K., Bacon, V., & Kearney, C.A. (2017, 
May). Youth spoken language and ethnic identity are associated with important protective factors 
against school refusal behavior. Poster presented at the Nevada Psychological Association (NPA) 
Annual Conference, Las Vegas, NV.  

 
Note: * indicate mentored students/trainees 
 
RESEARCH MENTORSHIP 
  
Undergraduate Honors Thesis Mentor & Committee Member February 2019- November 2019 
  
Undergraduate McNair Scholars Institute Student Mentor  March 2018-September 2019 
 
RESEARCH EXPERIENCE 
 
Division of Developmental and Behavioral Health 
Children’s Mercy Hospital  



 197 

Supervisor: Elizabeth Willen, Ph.D.  
 
Resident Researcher October 2020-Present 
Participating in the Cardiac Neurodevelopmental Outcome Collaborative (CNOC): Diversity and 
Inclusion Special Interest Group (SIG) to promote diversity by developing best-practice standards for 
clinical care and research to enhance health equity in children with congenital heart defects. Duties will 
include collecting data, preparing datasets for analyses, conducting analyses, and preparing manuscripts 
as part of the interdisciplinary team.  
 

 
Division of Developmental and Behavioral Health 
Children’s Mercy Hospital  
Supervisor: Carolyn Bates, Ph.D. & Meredith Dreyer Gillette, Ph.D. 
 
Resident Researcher August 2020-Present 
Participating in a research study aiming to identify the impact of a new pediatric cancer diagnosis and the 
COVID-19 pandemic on family functioning and coping. Duties include collecting data at in-clinic 
oncology appointments via parent interview and questionnaires, scoring measures, preparing datasets for 
analyses, conducting analyses, and preparing manuscripts.   
 

 
Child and Adolescent Research in Selective Mutism, Anxiety, and 
Absenteeism (CHARISMA) Lab- Selective Mutism August 2017-Present 

University of Nevada, Las Vegas   
Faculty Advisor: Christopher A. Kearney, Ph.D.  
 
Principal Investigator  

Communication and Behavior Factors in a Community Sample of Youth with Selective Mutism 
There is debate in the current selective mutism literature about the typology of youth with selective 
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tiers. Study 3 aims to test previous models of problematic school absenteeism, defined as 10% of full 
school days missed, and risk level based on family environment risk factors. Study 4 aims to test previous 
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