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A SURVEY OF THE BRÉZIS-NIRENBERG PROBLEM

AND RELATED THEOREMS

By

Edward Huynh

Bachelor of Science - Mathematics
University of Nevada, Las Vegas

2018

A thesis submitted in partial fulfillment
of the requirements for the

Master of Science - Mathematical Sciences

Department of Mathematical Sciences
College of Sciences

The Graduate College

University of Nevada, Las Vegas
May 2022



 

ii 
 

  

  

 

Thesis Approval 

The Graduate College 

The University of Nevada, Las Vegas 

        

March 30, 2022

This thesis prepared by  

Edward Huynh 

entitled  

A Survey of the Br´Ezis-Nirenberg Problem and Related Theorems 

is approved in partial fulfillment of the requirements for the degree of 

Master of Science - Mathematical Sciences 

Department of Mathematical Sciences  

David Costa, Ph.D.                                                   Kathryn Hausbeck Korgan, Ph.D. 
Examination Committee Chair                                                    Vice Provost for Graduate Education &  

                                                                             Dean of the Graduate College 
Le Chen, Ph.D.                                                   
Examination Committee Member 

        

Zhijian Wu, Ph.D.                                                   
Examination Committee Member 

 

Amei Amei, Ph.D.                                                   
Examination Committee Member 

 

Zhaohuan Zhu, Ph.D.                                                   
Graduate College Faculty Representative 

 



ABSTRACT

A Survey of the Brézis-Nirenberg Problem and Related Theorems

By

Edward Huynh

Dr. David Costa, Examination Committee Chair

Professor of Mathematical Sciences

University of Nevada, Las Vegas

Dr. Le Chen, Examination Committee Co-Chair

Assistant Professor of Mathematical and Statistics

Auburn University

Nonlinear elliptic partial differential equations on bounded domains arise in several different

areas of mathematics that include geometry, mathematical physics, and the calculus of variations.

The Brézis-Nirenberg problem is concerned with a boundary-value problem that is intimately con-

nected to the existence of positive solutions of the Yamabe problem, of non-minimal solutions to

Yang-Mills functionals, and of extremal functions to several important inequalities. Results on

existence and uniqueness have been obtained in cases when the exponent is sub-critical, but such

results have not been obtained when the exponent is critical due to a lack of compactness. The

earliest results obtained in this direction were obtained by Brézis and Nirenberg. The goal of this

thesis is to serve as a survey of the various results regarding this variational problem.
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CHAPTER 1

Introduction

1.1 Overview of the Brézis-Nirenberg Problem

We will study the problem

−∆u = up + f(x, u) on Ω

u = 0 on ∂Ω.

(1.1)

where Ω is a bounded domain in Rn, p = (n + 2)/(n − 2), and f is a lower-order perturbation,

i.e. lim
u→∞

f(x, u)/up = 0. This problem appears in various parts of mathematics including analysis,

differential geometry (Aubin, 1998), and mathematical physics (Taubes, 1982). In particular, when

f(x, u) = λu, λ ∈ R, and one is looking for positive solutions, i.e. u > 0 in Ω, then (1.1) becomes

a special case of the Yamabe problem.

(1.1) has been studied previously in cases when p < (n + 2)/(n − 2), i.e. the exponent is sub-

critical. There, the existence and uniqueness of solutions was exhibited for various non-linear f .

However, when the exponent is critical, the corresponding variational problem lacks a compactness

that was previously assumed. As a consequence, the existence and uniqueness of solutions becomes

a non-trivial issue. In fact, when one is looking for positive solutions to (1.1), it can be shown

that if Ω is star-shaped, then the problem does not admit a solution for n ≥ 3. The approach of

this thesis is to explain the results made in this area based on the original paper by Brézis and

Nirenberg (Brézis, 1983), as well as an approach to show existence of infinitely many sign-changing
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solutions by Schecter and Zou (Schechter, 2010) when f(x, u) = λu, λ ∈ R. To this end, we sketch

the proofs and ideas found in these papers.

This thesis will be divided into the following chapters: Chapter 2 will introduce the origins

of the Brézis-Nirenberg problem — from the Poincare conjecture to the Yamabe problem and its

derivation. To this end, basic differential-geometric definitions will be presented. Chapter 3 will

cover the original paper of Brézis and Nirenberg, presented in 1983, which deals with a version

of the boundary value problem given by Yamabe in the case when the manifold is Rn, n ≥ 3.

Here, the variational approach will be introduced. While Chapter 3 covers the case of positive

solutions, Chapter 4 will cover the existence of sign-changing solutions through an application of

Morse theory. Finally, Chapter 5 will conclude this thesis with a reflection on the implications and

consequences of the Yamabe problem and the work of Brézis and Nirenberg.
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CHAPTER 2

Basic Differential-Geometric Concepts and Introduction to the Yamabe

Problem

One of the origins of the Brézis-Nirenberg problem come from geometry. In particular, from

an approach to solving one of the seven millennium problems – the Poincaré Conjecture. The

statement of the theorem is:

The Poincaré Conjecture.

A compact simply-connected Riemannian manifold (M, g) of dimension n = 3 is diffeomorphic to

S3.

The proof for this result would require tools (e.g. Ricci flow) developed by Richard Hamilton and

later expanded on by Grigori Perelmann. Using new techniques, Perelman proved the conjecture

in the affirmative. For this achievement, Perelman was awarded the Fields medal in 2006.

Prior to its proof exhibited by Russian mathematician Grigori Perelman, mathematicians were

eager to solve this problem. Among these mathematicians was Japanese mathematician Hide-

hiko Yamabe. Before going through Yamabe’s approach, we introduce preliminary definitions in

differential geometry.
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2.1 Preliminaries

Definition 1. A topological manifold is a Hausdorff, second countable, locally Euclidean topolog-

ical space. A C∞ manifold is a pair consisting of a topological manifold M and a C∞ maximal

atlas {Uα, ϕα} on M .

To define a notion of distance and angles, one can endow the manifold with a special metric

called the Riemannian metric.

Definition 2. Let M be a C∞-manifold and p ∈M . A bilinear function g : Tp(M)× Tp(M) → R

is called a Riemannian metric on M if it satisfies the following properties:

1. g(Xp, Xp) ≥ 0 and g(Xp, Xp) = 0 iff Xp ≡ 0.

2. g(Xp, Yp) = g(Yp, Xp).

Furthermore, one is interested in being able to define derivatives on a manifold that generalize

the directional derivative in Rn. Let X(M) denote the set of C∞ vector fields on a smooth manifold

M and F denote the ring C∞(M) of C∞ functions on M . A function F : X(M) → X(M)

is called F-linear if it is linear map and preserves scalar multiplication with respect to F , i.e.

F (fX + gY ) = fF (X) + gF (Y ), ∀f, g ∈ F and X,Y ∈ X(M).

Definition 3. An affine connection on a manifold M is an R-bilinear map

∇ : X(M)× X(M) → X(M)

written ∇XY = ∇(X,Y ) satisfying the following two properties:

1. ∇XY is F-linear in X,
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2. ∇XY satisfies the Leibniz rule: for f ∈ F

∇X(fY ) = (Xf)Y + f∇XY

Definition 4. Given two smooth vector fields X,Y on U and p ∈ U , the Lie bracket [X,Y ] at p is

defined to be

[X,Y ]pf = (XpY − YpX)f

for every C∞ function f at p.

Using the Lie bracket, a canonical connection on a Riemannian manifold that is frequently used

is the Levi-Cevita connection which has zero torsion and is compatible with the metric. Moreover,

this connection is the ordinary directional derivative in Rn.

Two fundamental structures of analysis that appear frequently in differential geometry are the

torsion and curvature tensors.

Definition 5. Suppose ∇ is an affine connection on a manifold M . Then the torsion T of the

connection is defined by

T (X,Y ) = ∇XY −∇YX − [X,Y ].

Definition 6. Suppose ∇ is an affine connection on a manifold M . Then the curvature R of the

5



connection is defined by

R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ]

= ∇X∇Y −∇Y ∇X −∇[X,Y ].

Special quantities are associated with any connection defined on a manifold, and these frequently

appear in the torsion and curvature tensors when considering them in local coordinates.

Definition 7. Let ∇ be an affine connection on a manifold M and let (U, x1, x2, ..., xn) denote a

coordinate open set in M . Let ∂i :=
∂

∂xi
. Then ∇∂i∂j can be written as a linear combination of

{∂1, ..., ∂n}, thus there exist Γk
ij such that

∇∂i∂j =
n∑

k=1

Γk
ij∂k := Γk

ij∂k, 1 ≤ i, j ≤ n.

The coefficients Γk
ij are called the Christoffel symbols of the connection ∇ on the coordinate set

(U, x1, ..., xn).

From the definition of the curvature tensor, one can define a (3, 1) (or (4, 0) if contracted with

the metric) tensor from which one can analyze various aspects of curvature:

Definition 8. Let ∇ be a connection on a manifold M and R(X,Y ) the curvature. The Riemann

curvature tensor Rm is defined such that

Rm(X,Y, Z,W ) = ⟨R(X,Y )Z,W ⟩, ∀X,Y, Z,W ∈ X(M).

6



Note that in local coordinates, a component of the tensor can be written as

Rmabcd = Rabcd.

From the Riemann tensor, we may also define new summaries of curvature:

Definition 9. Suppose Rm is the Riemann curvature tensor on M . Then the Ricci curvature

Ric(X,Y ) is defined to be the contraction of Rm over the first and fourth components:

Ric(X,Y ) = trgRm.

In local coordinates, the components are written as

Rab = gijRiabj .

From this quantity, we may define the scalar curvature S as the trace of the Ricci curvature, i.e.

S = trgRic.

Since the Yamabe problem is a question of finding a conformal metric of constant scalar curva-

ture, we state the definition here:

Definition 10. Let (M, g) be a Riemannian manifold. We say that g′ is a conformal metric of g

if there exists a function f such that

g′ = e2fg.

7



Note that g′ defines a Riemannian metric over M .

2.2 Derivation of the Yamabe Problem

Yamabe (Yamabe, 1960) was interested in solving the Poincaré conjecture, and he believed the

first step was to find a metric of constant scalar curvature that is conformal to the given Riemannian

metric g. Formally, the question is

The Yamabe Problem.

Let (Mn, g) be a compact C∞ Riemannian manifold of dimension n ≥ 3 and R its respective

scalar curvature. Yamabe attempts to answer the following question: Does there exist a metric g′

conformal to g, such that the scalar curvature R′ of the metric g′ is constant?

We follow the derivation in (Aubin, 1998). Let (Mn, g) be a compact C∞ Riemannian manifold

with dimension n ≥ 3 and let R denote the scalar curvature. To begin with, let g′ = efg, where

f ∈ C∞. Using the conformal relationship between g and g′, the scalar curvatures are related by

R′ = ef
(
R− (n− 1)∇ν∇νf − (n− 1)(n− 2)

4
∇νf∇νf

)
. (2.1)

We will now compute these expressions locally. If we now suppose that g′ = φ4/(n−2)g such that

ef = φ4/(n−2), then f = ln
(
φ4/(n−2)

)
, and so

∇f =
4

n− 2

∇φ
φ

∇2f = ∇∇f =
4

n− 2

∇2φ

φ
− 4

n− 2

∇φ⊗∇φ
φ2

8



Substituting these expressions into (2.1) yields

e−fR′ = φ−4/(n−2)R′ = R− (n− 1)

(
4

n− 2

−∆φ

φ
− 4

n− 2

|∇φ|2

φ2

)
− (n− 1)(n− 2)

4

(
4

n− 2

|∇φ|
φ

)2

= R+ 4
n− 1

n− 2
∆φ.

Multiplying each side by φ, we finally obtain the equation

4
n− 1

n− 2
∆φ+Rφ = R′φ

n+2
n−2 , (2.2)

where φ ∈ C∞, φ > 0, and ∆φ = −∇ν∇νφ denotes the Laplace-Beltrami operator with respect to

g. Thus, since the problem is to find a metric of constant scalar curvature, we have R′ = λ where

λ is a constant. Rewriting, we obtain the following differential equation:

−4
n− 1

n− 2
∆φ+Rφ = λφ

n+2
n−2 .

Note that in the case of bounded domains Ω ⊂ Rn, then from the above we have

−∆u = u
n+2
n−2

u|∂Ω = 0.

Note also that the value
n+ 2

n− 2
is special due to the fact that for exponents less than this value, the

equation readily admits a solution; in contrast, if the exponent is greater than this exponent, then

the resulting equation may be unsolvable.

9



CHAPTER 3

The Brézis-Nirenberg Problem: Positive Solutions

Yamabe’s problem is interesting for many reasons — both geometrically and analytically. Brézis

and Nirenberg focus on the case when the domain is bounded in Rn — the Brézis-Nirenberg problem.

It appears the problem is clearly inspired from (2.2).

3.1 Preliminary Definitions and Theorems

The method for solving this problem is built on the variational formulation for differential equa-

tions. The approach is based on techniques developed from the calculus of variations. We start by

providing several definitions for this approach. The following definitions are due to Chang (Chang,

2005) and Brézis (Brézis, 2010). First, let X and Y denote Banach spaces with corresponding

norms || · ||X and || · ||Y . We now give a definition for differentiability of functionals.

Definition 11. Let φ : X → Y . We say that φ is Gatêaux-differentiable at u0 ∈ X if for all h ∈ X

the limit

lim
ϵ→0

φ(u0 + ϵh)− φ(u0)

ϵ

exists in Y with u0+ ϵh ∈ X for all ϵ suitably small and is a linear function of h. Let us denote this

limit as φ′(u0;h). We could equivalently reformulate this as saying that there exists φ′(u0;h) ∈ Y

10



such that

lim
ϵ→0

||φ(u0 + ϵh)− φ(u0)− ϵφ′(u0;h)||Y
ϵ

= 0

The definition of differentiability given by Definition 1. is similar to the directional derivative

on Rn. In parallel to this, there exists an analogue to the gradient.

Definition 12. Let φ : X → R. We say that φ is Fréchet-differentiable at u0 ∈ X if there exists a

linear operator A : X → Y such that

lim
n→∞

||φ(un)− φ(u0)−A(un − u0)||Y
||un − u0||X

= 0.

For such a linear operator, which depends on u0, we let A := ∇φ(u0). If φ is Fréchet-differentiable

for every u ∈ X and ∇φ(u) is continuous for every u, then we say φ ∈ C1(X;R).

It is a well-known fact that if a functional is Fréchet-differentiable at u, then it is also Gatêaux-

differentiable at u. The key fact to the variational method is that functionals on certain function

spaces behave similarly to functions on Rn, namely if u0 is a minimizer for φ on X, then

∇φ(u0) = 0.

As a result, the methods of the calculus of variations can be applied to such problems.

We define derivatives for a function in Lp(Ω) through the weak sense, i.e. using integration by

parts.

Definition 13. Let Ω ⊂ Rn be bounded and u ∈ Lp(Ω). We say v is a weak derivative of u if for

11



any h ∈ C∞(Ω)

∫
Ω
u∇h dx = −

∫
Ω
vh dx.

Higher order derivatives are defined inductively.

We want to discuss the appropriate space to work with for the Brézis-Nirenberg problem. Recall

the definition of the Sobolev space Wm,p(Ω):

Definition 14. Let Ω be a bounded domain in Rn and let p > 0. The Sobolev space Wm,p(Ω) is

defined as

Wm,p(Ω) =

{
f ∈ Lp(Ω) :

∂kf

∂xα1
1 ∂xα2

2 ...∂xαn
n

∈ Lp(Ω), 1 ≤ k ≤ m,
∑
i

αi = k, αi ∈ N ∪ {0}

}
.

In other words, Wm,p(Ω) contains all Lp integrable functions on Ω and such that their weak

derivatives up to order m are in Lp.

In the special case when p = 2 and m = 1, then we have W 1,2(Ω) is a Hilbert space and we let

W 1,2
0 (Ω) := H1

0 (Ω). It is equipped with the inner product ⟨·, ·⟩ : H1
0 ×H1

0 → R defined by

⟨u, v⟩H1
0 (Ω) = ⟨u, v⟩L2(Ω) + ⟨∇u,∇v⟩L2(Ω).

We have the following result due to Poincaré:

Theorem 1. (Poincaré’s Inequality)

Suppose u ∈ H1
0 (Ω). Then there exists C > 0 such that

||u||L2(Ω) ≤ C||∇u||L2(Ω), ∀u ∈ H1
0 (Ω).

12



By Poincaré’s inequality, the inner product ⟨u, v⟩H1
0 (Ω) is equivalent to the inner product

⟨∇u,∇v⟩L2(Ω). The latter inner product is more useful to work with compared to the original

one. From here on, we consider the inner product on H1
0 (Ω) to be the one such that for all

u, v ∈ H1
0 (Ω), we have

⟨u, v⟩H1
0 (Ω) := ⟨∇u,∇v⟩L2(Ω).

Poincaré’s inequality is a consequence of the Sobolev Embedding Theorem (Brézis, 2010):

Theorem 2. (Sobolev Embedding Theorem)

Let 1 ≤ p ≤ ∞ and assume Ω ⊂ Rn is bounded. We have

W 1,p(Ω) ⊂ Lp∗(Ω), where
1

p∗
=

1

p
− 1

n
, if p < n

W 1,p(Ω) ⊂ Lq(Ω), ∀q ∈ [p,∞), if p = n

W 1,p(Ω) ⊂ L∞(Ω), if p > n

where these injections are continuous. Moreover, if Ω is of class C1, then the following are compactly

embedded

W 1,p(Ω) ⊂ Lq(Ω), ∀q ∈ [1, p∗), where
1

p∗
=

1

p
− 1

n
, if p < n

W 1,p(Ω) ⊂ Lq(Ω), ∀q ∈ [p,∞), if p = n

W 1,p(Ω) ⊂ C(Ω̄), if p > n.

Due to the infinite-dimensional nature of Sobolev spaces, compactness cannot be characterized

by closed and bounded sets. Instead, we require a certain compactness condition to hold for
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functionals. We now define the Palais-Smale condition.

Definition 15. Let φ be a C1(X,R). φ is said to satisfy the Palais-Smale condition at level c,

denoted (PS)c, if for any sequence {un} ⊂ X such that φ(un) → c and ∇φ(un) → 0, then there

exists a convergent subsequence {unk
} such that unk

→ u ∈ X.

3.2 Existence of Positive Solutions

Let n ≥ 3 and Ω ⊂ Rn be bounded. We study

−∆u = up + f(x, u) on Ω

u > 0 on Ω (3.1)

u = 0 on ∂Ω

with p = (n + 2)/(n − 2) and f(x, u) is a lower-order perturbation. Such a p is called the critical

Sobolev exponent. We study this problem in the context of (Brézis, 1983). The weak solutions to

this problem are critical points to the functional

φ(u) =
1

2

∫
Ω
|∇u|2 dx− 1

p+ 1

∫
Ω
|u|p+1 dx−

∫
Ω
F (x, u) dx

where F (x, u) =

∫ u

0
f(x, t) dt. Since p + 1 =

2n

n− 2
, then by the Sobolev Embedding Theorem

[See (Brézis, 2010)] H1
0 (Ω) is not compactly embedded in Lp+1(Ω). As a consequence, the (PS)

condition does not hold for this functional. As a result, they rely on a mountain pass theorem

without the (PS) condition:

Theorem 3. (Brézis, 1983) Let Φ be a C1 function on a Banach space E. Suppose there exists a

neighborhood U of 0 in E and a constant ρ such that Φ(u) ≥ ρ for every u in the boundary of U

14



with

Φ(0) < ρ and Φ(v) < ρ for some v /∈ U.

Set

c = inf
A∈A

max
a∈A

Φ(a) ≥ ρ,

where A denotes the class of paths from 0 to v.

Then there exists a sequence {un}∞n=1 ⊂ E such that Φ(un) → c and Φ′(un) → 0 in E∗.

Along with this theorem, they also analyze a family of constants that proves pivotal in exhibiting

existence of a solution for (3.1). Let

Sλ := inf
u∈H1

0 (Ω)
||u||p+1=1

{||∇u||2 − λ||u||2}, λ ∈ R,

with

S0 = S = inf
u∈H1

0 (Ω)
||u||p+1=1

||∇u||2.

Note that S is the best constant in the Sobolev embedding of H1
0 (Ω) ⊂ Lp+1(Ω). Brézis and

Nirenberg consider several facts concerning S:

(i) S only depends on n, i.e. it is independent of Ω;

(ii) S is never achieved when Ω is a bounded domain;
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(iii) When Ω = Rn, then S is achieved by

U(x) = C(1 + |x|2)−(n−2)/2

or by

Uϵ(x) = Cϵ(1 + |x|2)−(n−2)/2, ϵ > 0,

where C and Cϵ are normalization constants.

3.2.1 A Related Problem

To study (3.1), Brézis and Nirenberg began with studying the positive solutions of

−∆u = up + λu on Ω

u > 0 on Ω (3.2)

u = 0 on ∂Ω

with λ ∈ R. They subsequently analyze the cases when n = 3 and n ≥ 4. These two cases give

different results. They prove the following theorems.

Theorem 4. (Brézis, 1983) Assume n ≥ 4. Then for every λ ∈ (0, λ1) there exists a solution of

(3.2).

Here, λ1 is the first eigenvalue of −∆ with zero Dirichlet boundary conditions.

Theorem 5. (Brézis, 1983) Assume n = 3 and Ω is a ball. Then there exists a solution of (3.2) if

and only if λ ∈
(
1

4
λ1, λ1

)
.
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To begin, there is no solution to (3.2) (for n ≥ 3) if λ ≥ λ1. To show this, Brézis and Nirenberg

(Brézis, 1983) let φ1 denote the eigenfunction corresponding to λ1, the first eigenvalue of −∆ with

φ1 > 0 on Ω. Then if u is a solution to (3.2), we have

λ1

∫
Ω
u · φ1 dx = −

∫
Ω
∆u · φ1 dx =

∫
Ω
up · φ1 dx+ λ

∫
Ω
u · φ1 dx > λ

∫
Ω
u · φ1 dx.

This above expression only holds if λ < λ1.

Recall Pohozaev’s Identity:

Theorem 6. Pohozaev’s Identity (Pokhozhaev, 1965) Suppose u is a smooth function such that

−∆u = g(u) on Ω

u = 0 on ∂Ω,

where g is a continuous function on R. Then

(
1− 1

2
n

)∫
Ω
g(u) · u dx+ n

∫
Ω
G(u) dx =

1

2

∫
∂Ω

(x · ν)
(
∂u

∂ν

)2

dσ,

where G(u) =

∫ u

0
g(s) ds and ν is the outward normal vector to ∂Ω.

Using Theorem 6, (Brézis, 1983) show that for λ ≤ 0 and Ω starshaped, then there is no solution

to (3.2). Letting g(u) = up+λu, then G(u) =
1

p+ 1
up+1+

λ

2
u2, and so applying Pohozaev’s Identity

yields

(
1− 1

2
n

)∫
Ω
up+1 + λu2 dx+ n

∫
Ω

1

p+ 1
up+1 +

λ

2
u2 dx = λ

∫
Ω
u2 dx

=
1

2

∫
∂Ω

(x · ν)
(
∂u

∂ν

)2

dσ.
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Recall that under a change of coordinates, we can assume that Ω is star-shaped with respect to

the origin. As a consequence, we have x · ν > 0 for a.e. x ∈ ∂Ω. If λ < 0, then this implies that

u ≡ 0 for the above expression to make sense. Next, if λ = 0, then the above expression implies

that
∂u

∂ν
= 0 on ∂Ω. Using (3.2) and integrating both sides of the equation over Ω, we have

∫
Ω
up dx = −

∫
Ω
∆u dx.

Using Green’s identity on the right-hand side of this equation yields

∫
Ω
up dx = 0

which implies u ≡ 0.

Brézis and Nirenberg prove a key lemma

Lemma 7. (Brézis, 1983)

Sλ < S, ∀λ > 0.

Proof: We assume that 0 ∈ Ω; otherwise, one may perform a change of coordinates so that this

holds. We will estimate the ratio

Qλ(u) =
||∇u||22 − λ||u||22

||u||2p+1

.

To prove the lemma, we use the family of functions given by

uϵ(x) =
φϵ(x)

(1 + |x|2)(n−2)/2
, ϵ > 0,
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with φ(x) a fixed, smooth (infinitely differentiable) function on Ω such φ(x) = 1 in a neighborhood

of 0 that contains Ω. Brézis and Nirenberg show the following as ϵ→ 0:

(i) ||∇uϵ||22 =
K1

ϵ(n−2)/2
+O(1);

(ii) ||uϵ||2p+1 =
K2

ϵ(n−2)/2
+O(ϵ);

(iii)

||uϵ||22 =


K3

ϵ(n−4)/2
+O(1) n ≥ 5

K3| log(ϵ)|+O(1) n = 4,

with K1, K2, and K3 denoting positive constants that depend on the dimension n and such

that K1/K2 = S.

Firstly, we have that ∇uϵ(x) =
∇φϵ(x)

(1 + |x|2)(n−2)/2
− (n− 2)φϵ(x)x

(1 + |x|2)n/2
. For x ∈ Ω, we have φ(x) = 1

so that

∫
Ω
|∇uϵ|2 dx = (n− 2)2

∫
Ω

|x|2

(1 + |x|2)n
dx+O(1)

= (n− 2)2
∫
Rn

|x|2

(1 + |x|2)n
dx+O(1)

=
K1

ϵ(n−2)/2
+O(1),

where the last equality comes from using the dilation invariance property of the Lebesgue integral.

Here, we have K1 = (n− 2)2
∫
Rn

|x|2

(1 + |x|2)n
dx. This shows (i).
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Next, we have

∫
Ω
|uϵ|p+1 dx =

∫
Ω

φp+1
ϵ (x)

(1 + |x|2)n
dx =

∫
Ω

(φp+1
ϵ (x)− 1)

(1 + |x|2)n
dx+

∫
Ω

1

(1 + |x|2)n
dx

= O(1) +

∫
Rn

1

(1 + |x|2)n
dx =

K ′
2

ϵn/2
+O(1),

with K ′
2 =

∫
Rn

1

(1 + |x|2)n
dx. If we let K2 = (K ′

2)
2/(p+1), then we have K1/K2 = S. Thus, (ii) is

verified.

We note

∫
Ω
|uϵ|2 dx =

∫
Ω

(φ2
ϵ (x)− 1)

(1 + |x|2)n−2
dx+

∫
Ω

1

(1 + |x|2)n−2
dx = O(1) +

∫
Ω

1

(1 + |x|2)n−2
dx.

If n ≥ 5, then

∫
Ω

1

(1 + |x|2)n−2
dx =

∫
Rn

1

(1 + |x|2)n−2
dx+O(1)

=
K3

ϵ(n−4)/2
+O(1)

where K3 =

∫
Rn

1

(1 + |x|2)n−2
dx.

On the other hand, if n = 4, there exist constants R1 and R2 such that

∫
|x|≤R1

1

(1 + |x|2)2
dx ≤

∫
Ω

1

(1 + |x|2)2
dx ≤

∫
|x|≤R2

1

(1 + |x|2)2
dx

and using polar coordinates, we have

∫
|x|≤R

1

(1 + |x|2)2
dx = ω

∫ R

0

r3

(1 + r2)2
dr =

1

2
ω| log(ϵ)|+O(1),
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where ω is the surface area of S3. Letting K3 =
1

2
ω yields (iii).

In any case, combining (i), (ii), and (iii) together shows

Qλ(uϵ) =


S +O(ϵ(n−2)/2)− λ

K3

K2
ϵ n ≥ 5

S +O(ϵ)− λ
K3

K2
ϵ| log(ϵ)| n = 4.

We have Qλ(uϵ) < S for ϵ sufficiently small.

■

Due to Lieb along with the authors, they also obtain the following result:

Lemma 8. If Sλ < S, then the infimum in Sλ is achieved.

These two lemmas allow Brézis and Nirenberg prove Theorem 4.

Proof of Theorem 3: Let u ∈ H1
0 (Ω) be such that u satisfies the conclusion of Lemma 8, i.e.

Sλ = ||∇u||22 − λ||u||22 with ||u||p+1 = 1. We assume u > 0 on Ω (if not, use u1 = |u|). Now since u

is where the constrained infimum is achieved, then there exists a Lagrange multiplier µ ∈ R such

that

−∆u− λu = µup, for x ∈ Ω.

In particular, if we multiply each side by u and integrate over Ω, we have

Sλ =

∫
Ω
||∇u||2 − λ|u|2 dx = µ

∫
Ω
|u|p+1 dx = µ.

Hence, Sλ = µ. We also note that since λ < λ1, then Sλ > 0. From this, we observe that a solution
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to (3.2) is v = Cu for a special choice of C. In particular, if C = S
1/(p−1)
λ , then

vp =
(
S
1/(p−1)
λ u

)p
= S

p/(p−1)
λ up = S

1/(p−1)
λ µup

= S
1/(p−1)
λ (−∆u− λu) = −∆(Cu)− λ(Cu) = −∆v − λv.

The proof is finished by invoking the strong maximum principle to show that u > 0 on Ω. ■

To prove Theorem 4, we remark that the proof relies on the observation made earlier using

Pohozaev’s Identity, i.e. there is no solution when λ > λ1 nor for λ ≤ 0. Under the hypotheses of

the theorem, we have Ω = {x ∈ R3 : |x| < 1}. Similar to Lemma 6, Brézis and Nirenberg prove

Lemma 9.

Sλ < S, for all λ >
1

4
λ1.

The proof for this result is done similarly to the proof of Lemma 6 using asymptotics and the

family of functions given by

uϵ(r) =
φϵ(r)

(1 + r2)1/2
, r = |x|, ϵ > 0,

where φ is some smooth function such that φ(0) = 1, φ′(0) = 0, and φ(1) = 0.

Further, they prove another lemma:

Lemma 10. There is no solution of (3.2) if λ ≤ 1

4
λ1.

Firstly, it is observed that there is no solution for λ ≤ 0 using the arguments given through

Pohozaev’s identity. The proof for this lemma relies on the fact that u is spherically symmetric

using a result from Gidas-Ni-Nirenberg (Gidas, 1979). Using this property, they rewrite (3.2) with
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n = 3 as

−u′′ − 2

r
u′ = u5 + λu, r ∈ (0, 1),

subject to

u′(0) = u(1) = 0.

Brézis and Nirenberg then prove the identity

∫ 1

0
u2(λψ′ +

1

4
ψ′′′)r2 dr =

2

3

∫ 1

0
u6(rψ − r2ψ′) dr +

1

2
|u′(1)|2ψ(1)

holds for every smooth function ψ with ψ(0) = 0. Now, if λ ∈ (0,
1

4
λ1], then by using a special ψ,

one can show that λψ′ +
1

4
ψ′′′ = 0, ψ(1) ≥ 0, and rψ − r2ψ′ > 0 on (0, 1]. By the proved identity,

this leads to a contradiction.

By using these two lemmas, the proof of Theorem 4 is completed similarly to Theorem 3 by

using a ”stretching” argument.

3.2.2 Existence of Solutions for (3.1)

Brézis and Nirenberg turn to finding sufficient conditions for existence of a solution to (3.1). Let

Ω ⊂ Rn, n ≥ 3, be bounded. We assume f(x, u) : Ω × [0,∞) → R is measurable in x, continuous

in u, and sup
x∈Ω, 0≤u≤M

|f(x, u)| < ∞ for every M > 0. Let p =
n+ 2

n− 2
and assume that f(x, 0) = 0
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and f is a lower-order perturbation, i.e

lim
u→∞

f(x, u)

up
= 0.

They further put the following extra assumptions on f :

f(x, u) = a(x)u+ g(x, u) (3.3)

and

a(x) ∈ L∞(Ω) (3.4)

g(x, u) = o(u) as u→ 0+, uniformly in x, (3.5)

g(x, u) = o(up) as u→ ∞, uniformly in x. (3.6)

They also assume that the operator −∆− a(x) has a positive first eigenvalue. This means

∫
Ω
|∇v|2 − av2 dx ≥ α

∫
Ω
v2 dx, ∀v ∈ H1

0 (Ω), α > 0. (3.7)

It does not matter what the value of f is when u < 0, so we set

f(x, u) = 0 for x ∈ Ω, u ≤ 0.

They let

F (x, u) =

∫ u

0
f(x, t) dt for x ∈ Ω, u ∈ R
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and

Ψ(u) =

∫
Ω

1

2
|∇u|2 − 1

p+ 1
|u|p+1 − F (x, u) dx, for u ∈ H1

0 .

They then prove

Theorem 11. (Brézis, 1983) Assume (3.3) - (3.7) hold. Suppose that there exists some v0 ∈ H1
0 (Ω),

v0 ≥ 0 on Ω, v0 ̸= 0, such that

sup
t≥0

Ψ(tv0) <
1

n
Sn/2.

Then there exists a solution to (3.1).

In fact, this theorem generalizes Theorems 4 and 5 when f(x, u) = λu. Moreover, the proof of

this result requires Theorem 3.

Sketch of Proof of Lemma 10: Using (3.3) - (3.7), we fix a constant µ ≥ 0 sufficiently large such

that

−f(x, u) ≤ µu+ up for a.e. x ∈ Ω, and for all u ≥ 0. (3.8)

Define on E = H1
0 a functional

Φ(u) =

∫ (
1

2
|∇u|2 + 1

2
µu2 − 1

p+ 1
(u+)p+1 − F (x, u+)− 1

2
µ(u+)2

)

This functional is C1, so Brézis and Nirenberg show that this also satisfies the hypotheses of

Theorem 3. Once this is done, one may apply the theorem to obtain a sequence {un} ⊂ H1
0 such

that Φ(un) → c and Φ′(un) → 0 in H−1, where c <
1

n
Sn/2 by assumption. In particular, this allows
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them to write

−∆un + µun − (u+n )
p − f(x, u+n )− µu+n = ζn (3.9)

where ζn → 0 in H−1. Next, they claim that

||un||H1
0
≤ C.

Once this has been shown, this implies that there exists a subsequence which we denote by uj such

that

uj ⇀ u weakly in H1
0

uj → u strongly in Lq for all q < p+ 1

uj → u a.e. in Ω

(u+j )
p ⇀ (u+)p weakly in (Lp+1)∗

f(x, u+j )⇀ f(x, u+) weakly in (Lp+1)∗.

Using these, we can pass the limit to the expression (3.9) to obtain

−∆u+ µu = (u+)p + f(x, u+) + µu+ in H−1.

Using (3.8), we may deduce the right-hand side is greater than zero. By Stampacchia’s maximum
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principle, we have either u ≡ 0 in Ω or u > 0 in Ω and

−∆u = up + f(x, u)

holds. Brézis and Nirenberg proceed to show that u ̸≡ 0. They do this using a proof by contradiction

such that they eventually show the c from Theorem 3 satisfies

c ≥ 1

n
Sn/2.

This proves Theorem 11.

Finally, Brézis and Nirenberg prove a sufficient condition for the hypotheses of Theorem 11:

Lemma 12. Assume f(x, u) satisfies (3.3)-(3.7). Suppose also that there is a function f(u) such

that

f(x, u) ≥ f(u) ≥ 0 for a.e. x ∈ ω, and for all u ≥ 0,

where ω is some nonempty open set in Ω and the primitive F (u) =

∫ u

0
f(t) dt satisfies

lim
ϵ→0

∫ ϵ−1/2

0
F

( ϵ−1/2

1 + s2

)n−2/2
 sn−1 ds = ∞

then the hypotheses of Theorem 11 hold.

Using this lemma in conjunction with Theorem 11 allows Brézis and Nirenberg to prove theorems

for existence of solutions to (3.1) for different conditions imposed on f and for different dimensions.

In particular, they prove separate cases for n ≥ 5, n = 4, and n = 3.
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CHAPTER 4

The Brézis-Nirenberg Problem: Sign-Changing Solutions

In addition to searching for positive solutions, mathematicians were also interested in finding

sign-changing solutions. Generally speaking, the Brézis-Nirenberg problem is emblematic of a

semilinear elliptic problem on bounded domains which admit very strong geometric and topological

content. As a result, topological methods have been popular in this field, such as fixed point

theorems, Ljusternik-Schnirelmann theory, degree theory, etc. For Schechter and Zou, they develop

a topological theorem and combine it with analysis of the critical points to exhibit infinitely many

sign-changing solutions for the Brézis-Nirenberg problem for dimensions n ≥ 7, i.e. for

−∆u = λu+ up, u ∈ H1
0 (Ω), (4.1)

where p =
n+ 2

n− 2
. We follow their work in (Schechter, 2010).

4.1 Preliminaries

The following definitions and theorems may be found in (Mawhin, 1989) and (Chang, 2005).

Definition 16. Let φ ∈ C2(X). We define the Morse index at a critical point u to be the dimension

of the maximal subspace where D2φ (the Hessian matrix) is negative definite.

Note that this definition holds whether u is either non-degenerate or otherwise. In fact, the

Hessian matrix is symmetric, so it can be represented as a bilinear form. Thus, it admits a spectral
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decomposition of E+, E−, and E0 such that

D2φ(u) = E+
⊕

E0
⊕

E−.

Here, we have Morse(u) = dim(E−). The nullity of a critical point u is defined to be nullity(u) =

dim(E0). A critical point u is degenerate if dim(E0) > 0. We may define the augmented Morse

index of a critical point u as Morse(u) + nullity(u).

Theorem 3 is a generalization of a variational theorem due to Ambrosetti and Rabinowitz called

the Mountain Pass Theorem (see (Costa, 2007)), which is a special case of a so-called linking.

Definition 17. Let X be a Banach space. Let Q ⊂ X be a compact manifold with boundary ∂Q

and let S ⊂ X be a closed subset of X. ∂Q is said to be linking with S if

• ∂Q ∩ S = ∅,

• ∀φ : Q→ X continuous with φ|∂Q = id|∂Q, we have φ(Q) ∩ S ̸= ∅.

Linkings are helpful in proving minimax theorems like the more general Saddle Point Theorem

of Rabinowitz (see (Costa, 2007)). On the other hand, some well-known topological theorems are

needed to prove important results such as

Theorem 13. (The Borsuk-Ulam Theorem) For every odd continuous map f : Sn → Rn, there

exists x ∈ Sn such that f(x) = 0.

One of the hallmarks of Morse theory that is useful for analysis is the Morse lemma (see

(Mawhin, 1989)):

Theorem 14. Let M be a Riemannian manifold, f ∈ C2(M,R), and p ∈ M is a non-degenerate

critical point; then there exists a neighborhood U of p and a local diffeomorphism Φ : U → Tp(M)
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with Φ(p) = 0, such that

f ◦ Φ−1(ξ) = f(p) +
1

2
⟨f ′′(p)ξ, ξ⟩p, ∀ξ ∈ Φ(U)

where ⟨·, ·⟩p is the Riemannian metric at p.

Moreover, this means that in a neighborhood of p, the function behaves like a quadratic function.

So if p is a non-degenerate critical point such that f(p) = c, then in some neighborhood of p:

f(x) = c+
1

2
(||x+||2 − ||x−||2),

where x = x+ + x−, dim H− =Morse(p), Rn = H+

⊕
H−, and dim M = n.

4.2 Existence of Sign-Changing Solutions

In contrast to the previous section, we will consider sign-changing solutions to 3.2. Much work

has been done in this area with many results proven for various cases of n and domains Ω. We

will focus mainly on the approach of (Schechter, 2010) which uses algebraic topological arguments

to show there exist infinitely many sign-changing solutions. For more about this approach, see

(Mawhin, 1989). In particular, Schechter and Zou prove

Theorem 15. (Schechter, 2010) If n ≥ 7, then (4.1) has infinitely many sign-changing solutions

for λ > 0.

To prove Theorem 15, they prove a key theorem based on linkage which bounds the Morse index

of solutions from below. To faciliate the proof of this theorem, we must introduce some notations

and assumptions found in (Schechter, 2010):
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Let E = ∪∞
k=1Ek be a Hilbert space equipped with the inner product ⟨·, ·⟩ with norm || · || such

that dim Ek = k, Ek ⊂ Ek+1. Let G ∈ C2((E, || · ||),R) be an even functional which maps bounded

sets to bounded sets in terms of the norm || · ||. Assume that G′′(u0) is Fredholm for any critical

point u0 of G. The gradient G
′ is of the form G′(u) = u−KG(u), where KG : E → E is a continuous

operator. Let K := {u ∈ E : G′(u) = 0} and Ē := E \ K, K[a, b] := {u ∈ K : G(u) ∈ [a, b]}. Let

P be the positive cone of E that is closed convex and weakly closed. Any element outside ±P is

called sign-changing. Assume that ±P ∩ (E⊥
k \ {0}) = ∅ for all k ≥ 2, that is, any nonzero element

of E⊥
k is sign-changing. For each µ > 0, define D := {u ∈ E : dist(u,P) < µ}. Then, D(µ) is an

open convex set containing the positive cone P in its interior. Set D∗ = D∗(µ) = D(µ) ∪ (−D(µ)),

S∗ = E \D∗(µ). We also consider the following assumptions:

(A0) There is another norm || · ||∗ of E such that ||u||∗ ≤ C0||u|| for all u ∈ E, where C0 > 0 is a

constant. Moreover, we assume that ||un − u∗||∗ → 0 whenever un ⇀ u∗ weakly in (E, || · ||).

(A1) For any µ0 > 0 small enough, we have that KG(±D(µ0)) ⊂ ±D(µ) ⊂ ±D(µ0) for some

µ ∈ (0, µ0). Moreover, ±D(µ0) ∩ K ⊂ ±P.

(A2) For each k, lim
||u||→∞,u∈Ek

G(u) = −∞.

(A3) Assume that for any α1, α2 > 0 there exists an α3 depending on α1 and α2 such that ||u|| ≤ α3

for all u ∈ Gα1 ∩ {u ∈ E : ||u||∗ ≤ α2}, where Gα1 = {u ∈ E : G(u) ≤ α1}.

Define C∗∗
k+1 := sup

Ek+1

G. This is well-defined in light of (A2). Next, we write E = Ek

⊕
E⊥

k

and consider the function

β∗(u) =


||u||||u||∗

||u||+ ||u||∗
, u ̸= 0

0, u = 0.
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We note that β∗ : E → E is continuous, so we set S0(k) := {u ∈ E⊥
k : β∗(u) = 1}. Note that for

u ∈ S0(k), then

β∗(u) = 1 ⇒ ||u||∗ = 1 +
||u||∗
||u||

≤ 1 + C0 := α4.

by (A0).

Define S(k) := S0(k) ∩GC∗∗
k+1 . One can then prove the following lemma:

Lemma 16. By assumption (A3), we have a constant α5 = α(α4, C
∗∗
k+1) > 0 such that ||u|| ≤ α5

for all u ∈ S(k). Hence, there is a Λ0 = Λ0(α5) > 0 such that inf
u∈S(k)

G ≥ −Λ0.

To prove the second statement, we have for u ∈ S(k)

|G| ≤ C||u|| ≤ Cα5 := Λ0.

This implies

G ≥ −Λ0 ⇒ inf
u∈S(k)

G ≥ −Λ0.

Next, Schechter and Zou prove another lemma:

Lemma 17. There is a constant δ > 0 such that dist(S(k),±P) = δ > 0.

To show this, we consider two sequences {un} ⊂ S(k) and {pn} ⊂ P such that ||un − pn|| → 0.

By Lemma 16, we know that {un} is bounded under both || · || and || · ||∗ by assumption (A0).

Given ϵ > 0, there exists N0 such that for all n > N0:

||un − pn|| ≤ ϵ.
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This implies

||pn|| ≤ ϵ+ ||un|| ≤ ϵ+ α5.

Then taking C := max{p1, p2, ..., pN0−1, ϵ + α5}, we have that {pn} is bounded in both norms as

well. As a result, there exist weak limits u∗ and p∗ ∈ P such that un ⇀ u∗ and pn ⇀ p∗. weakly

under || · ||. By assumption (A0), this means strong convergence under || · ||∗. By closure and the

strong convergence under || · ||∗, we have u∗ ∈ E⊥
k and u∗ ̸= 0 since

||u||||u||∗
||u||+ ||u||∗

= 1. However,

since u∗ = p∗, p∗ ∈ P, and P ∩ E⊥
k = {0}, then there is a contradiction, as this would imply P

contains a sign-changing element.

As a consequence of || · || and || · ||∗ being equivalent in Ek+1, there exists a constant, say ρk+1

such that ||u|| ≤ ρk+1||u||∗ for all u ∈ Ek+1. Next define Γ∗
k+1 = {h : h ∈ C(Θk+1, E), h|∂Θk+1

=

I, h is odd}, where Θk+1 := {u ∈ Ek+1 : ||u|| ≤ Rk+1} and I is the identity operator. By Lemma

16 and (A2), we may choose Rk+1 such that

∂Θk+1 ∩ S(k) = ∅, sup
∂Θk+1

G << −Λ0 ≤ inf
S(k)

G, Rk+1 ≥ ρk+1 + 2.

We may assume that Rk+1 > Rk for each k. We may now prove another lemma:

Lemma 18. h(Θk+1 ∩ S0(k)) ̸= ∅, ∀h ∈ Γ∗
k+1.

Proof. Let h ∈ Γ∗
k+1. Define U := {u ∈ Ek+1 : β∗(h(u)) < 1} ∩ {u ∈ Ek+1 : ||u|| < Rk+1}. It

is clear that U is a symmetric neighborhood of zero in Ek+1. Consider the orthogonal projection

P : E → Ek and the composition P ◦ h : ∂U → Ek which is odd and continuous. By the

Borsuk-Ulam theorem (Theorem 13), there exists u ∈ ∂U such that P ◦ h(u) = 0. Consequently,

h(u) ∈ E⊥
k . Next, Schechter and Zou prove that u /∈ ∂{u ∈ Ek+1 : ||u|| < Rk+1}. The proof then
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proceeds by contradiction: otherwise ||u|| = Rk+1 and h(u) = u with P (u) = 0. Since we know

||h(u)||||h(u)||∗
||h(u)||+ ||h(u)||∗

≤ 1, we have Rk+1 = ||u|| ≤ 1 +
||u||
||u||∗

≤ 1 + ρk+1. This is a contradiction to

the fact that Rk+1 was chosen to be greater than 2+ ρk+1. Hence, u cannot be in the boundary of

the aforementioned set. Consequently: u ∈ ∂{u ∈ Ek+1 : β∗(h(u)) < 1}, ||u|| ≤ Rk+1, u ∈ Ek+1.

This implies h(u) ∈ E⊥
k ,

||h(u)||||h(u)||∗
||h(u)||+ ||h(u)||∗

= 1. This means h(u) ∈ S0(k). Hence, it is in

h(Θk+1) ∩ S0(k).

By using Lemma 18 and the definition S∗, then we may choose µ0 by (A1) so that S(k) ⊂ S∗ =

E \ D∗(µ0). Next, Schechter and Zou use another definition of linkage to prove their theorem:

Definition 18. A compact symmetric subset A of E with ∂Θk+1 ⊂ A is said to be linked to S0(k)

if, for any continuous mapping h ∈ C([0, 1]×A,E) satisfying

• h(t, u) is odd in u ∈ A

• h(t, u) = u for all u ∈ ∂Θk+1,

there holds h(1, A) ∩ S0(k) ̸= ∅.

Define the set L := {A ⊂ GC∗∗
k+1 : A is linked to S0(k)}. Then Lemma 18 and the fact that

Θk+1 ∈ L shows that L is nonempty. We can now prove the following key theorem:

Theorem 19. (Schechter, 2010) Suppose that G satisfies the (PS) condition and assumptions

(A1)-(A3). Define

C∗ = inf
A∈L

sup
A∩S∗

G(u). (4.2)

Then C∗ ∈ [−Λ0, C
∗∗
k+1] and G has a sign-changing critical point u∗ ∈ S∗ (u∗ ̸= 0) at level C∗ and

the augmented Morse index m∗(u∗) of u∗ is greater than or equal to k.
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This theorem is the most important part of (Schechter, 2010) and allows them to prove Theorem

15. The proof is also somewhat long, so we will provide an abbreviated sketch.

Sketch of Proof. Firstly, for A ∈ L, then A links with S0(k). This implies that A ∩ S0(k) ̸= ∅.

Since S(k) = GC∗∗
k+1 ∩ S0(k), then also A∩ S(k) ̸= ∅. This implies A∩ S∗ ̸= ∅ and hence C∗ is well

defined. Furthermore, since A ∩ S∗ ⊃ A ∩ S(k) and A ∩ S(k) ⊂ S(k), then we have the following

inequalities:

sup
A∩S(k)

G ≤ sup
A∩S∗

G

inf
S(k)

G ≤ inf
A∩S(k)

G

which combined with our previous result yields

sup
∂Θk+1

G << −Λ0 ≤ inf
S(k)

G ≤ sup
A∩S∗

G.

We also have C∗ ≤ supG(A) ≤ C∗∗
k+1. From here, the proof is divided into 6 steps, which we

summarize briefly:

Step 1. Exhibiting the existence of a sign-changing critical point u∗ ∈ S∗ with u∗ ̸= 0 and

G(u∗) = C∗. To show this is equivalent to showing K[C∗ − ϵ, C∗ + ϵ] ∩ S∗ ̸= ∅ for all small enough

ϵ > 0. The proof then proceeds by contradiction by exhibiting a set in L that is contained in

GC∗−ϵ1/4. This would contradict the definition of C∗ as a result.

Steps 2-5 will assume that KC∗ ∩S∗ has finitely many nondegenerate critical points. Step 6 will

address the case of degeneracy.

Step 2. The next step is to prove that any u ∈ KC∗ ∩ S∗ with a Morse index m∗, then one

can find a closed neighborhood N1(u) of u such that N1(u) ∩ ∂Θk+1 = ∅ and a subset N2(u) such
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that N2(u) ⊂ N1(u) ⊂ S∗ with N2(u) being homeomorphic to a ball Bm∗ of Rm∗
. To do this, they

write

KC∗ ∩ S∗ = {u1, ..., um} ∪ {−u1, ...,−um}.

From here, they choose δ > 0 such that Bδ(±ui) ∩ ∂Θk+1 = ∅ for all i = 1, ...,m. Next, for each

ui or −ui, one can find closed subspaces of E — denoted by E− and E+ with E+ = (E−)⊥ —

that are invariant under G′′(ui). Here, G′′(ui) is negative definite on E− and positive definite on

E+. By applying the Morse lemma (Theorem 14), then for z = z+ + z− with z ∈ E and z± ∈ E±,

then one can find a Lipschitz homeomorphism Hi from a a neighborhood Ui(0) of 0 in E onto a

neighborhood of U(ui) of ui in E with Hi(0) = ui and

G(Hi(z)) = G(ui) + ||z+||2 − ||z−||2, ∀z ∈ Ui(0).

Afterwards, we choose radii r−i , r
+
i > 0 such that B−

i and B+
i denote respective balls centered at

the origin in E− and E+ respectively. Thus, we set N1(ui) = Hi(B
−
i

⊕
B+

i ) and this is a closed

neighborhood that is disjoint with ∂Θk+1. Schechter and Zou also define a special function h(t, z)

inspired by Lazer and Solimini (Lazer, 1988) such that h(t, z) is odd in z ∈ E and continuous on

a set dependent on B−
i and B+

i . Using this, they set N2(ui) = h(1, GC∗+ϵ ∩ Hi(
1

3
B−

i

⊕ 1

3
B+

i ))

for i = 1, 2, , ...,m. It is clear that N2(ui) ⊂ N1(ui), so all that is left to prove is that N2 is

homeomorphic to the ball in Rm∗ with radius equal to the Morse index. This is done by using

topological arguments.
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Steps 3-4 will be about finding a set A∗ such that

sup
A∗∩S∗

G = C∗ (4.3)

and

G(u) < C∗, ∀u ∈ (A∗ \ KC∗) ∩ S∗. (4.4)

In other words, there exists u ∈ KC∗ ∩ S∗ ∩A∗.

Step 3. This step will focus on finding the particular set A∗ ∈ L. This is done by constructing

a flow η0 : [0, 1] × E → E from any two open sets O1 ⊂ O in KC∗ . This flow in particular is odd

and continuous and can be constructed such that

η0(1, G
C∗+ϵ \ O) ⊂ GC∗−ϵ.

Then by using the special function h(t, z) used in Step 2, then by choosing A ∈ L such that

sup
A∩S∗

G ≤ C∗ + ϵ, then let

A∗ = η0(1, h(1, A)).

One can then proceed to show that A∗ ∈ L. This completes Step 3.

Step 4. Next, the set obtained in Step 3 will be shown to satisfy (4.3) and (4.4). The proof

for this step requires using the definition of the flow and considering the flow of v ∈ S∗ into

u ∈ A∗ ∩ S∗ under the flow, i.e. u = η0(1, v), with v = h(1, a), a ∈ S∗ ∩ A. Then by using set-

theoretic arguments, one can show that, for any u ∈ (A∗ \KC∗)∩S∗, (4.4) must hold. Furthermore,
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it can be shown otherwise that v must obtain the supremum in (4.3) and that u ≡ v. As a result,

this exhibits the existence of a sign-changing critical point u ∈ A∗ ∩ S∗ at level C∗.

Step 5. In this step, one can find a lower bound k on the Morse index of the sign-changing

critical point u ∈ KC∗ ∩ S∗ ∩A∗ such that Morse(u) ≥ k. To see this, note that

KC∗ ∩ S∗ = {u1, u2, ..., um} ∪ {−u1,−u2, ...,−um}.

The proof then proceeds by contradiction by assuming that Morse(±ui) < k for i = 1, 2, ...,m. To

get the contradiction, they construct a set that is based off of several of the sets in constructed

in Step 1 and show that it is in L. By the construction, this would contradict (4.3) and (4.4).

Consequently, they show this set is in L by another argument by contradiction. This proof proceeds

using topological and critical point theory methods. At this point, the proof is finished for the case

when the critical points are non-degenerate.

Step 6. It is important to note that Steps 2-5 prove the theorem in the case of nondegenerate

critical points. It is therefore important to show that the result holds if there are degenerate critical

points. The proof requires assuming the augmented Morse index of the set of critical points is less

than k and using the Morse lemma to obtain a decomposition of the set of critical points at level

C∗. Using techniques inspired by Marino and Prodi (Marino, 1975), as well as Lazer and Solimini

(Lazer, 1988), they show that G in fact admits a sign-changing critical point and the set of critical

points are non-degenerate. Therefore, they apply Steps 2-5 to obtain a critical point with Morse

index not less than k. This contradicts with the fact that the augmented Morse index is less than

k and so the proof holds for degnerate critical points.

Schechter and Zou proceed to applying Theorem 19 to prove Theorem 15.

Proof of Theorem 15: We must first define the norms and functionals so that we are in the
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setting of Theorem 19. Fix p0 ∈ (2, 2∗), with 2∗ =
2N

N − 2
, and next we choose a sequence {pn}n∈N

in (p0, 2
∗) such that pn → 2∗. Next, we shall consider the functional given by

Gn,λ(u) =
1

2
||u||2 − λ

2

∫
Ω
|u|2 dx− 1

pn

∫
Ω
|u|pn dx, u ∈ H1

0 (Ω),

with H1
0 (Ω) denoting the Hilbert space consisting of functions and their weak derivatives (both

L2-integrable) equipped with the inner product ⟨u, v⟩ =

∫
Ω
∇u · ∇v dx. Note that for each n,

Gn,λ satisfies (PS). By the usual theory, we let 0 < λ1 < λ2 ≤ ... ≤ λk ≤ ... be the eigenvalues

for −∆ on Ω. We also let ϕk(x) denote the respective eigenfunctions for λk, k ≥ 1. Let Ek :=

span{ϕ1, ϕ2, ..., ϕk}. Next, for each pn, we let || · ||∗ = || · ||pn . We note that G′
n,λ(u) = u−Kn,λ(u),

where Kn,λ : E → E is a continuous operator. We let Let P := {u ∈ H1
0 (Ω) : u ≥ 0} and for

each µ > 0, we define D(µ) := {u ∈ E : dist(u,P) < µ}. Therefore, we let D∗ = D∗(µ) :=

D(µ) ∪ (−D(µ)) and S∗ = E \ D∗. Thus, assumptions (A0)-(A3) are satisfied.

Next, define

C∗∗
k+1(n, λ) := sup

Ek+1

Gn,λ.

Schechter and Zou proceed to show that this value is bounded by the corresponding eigenvalue

multiplied by a constant independent of both k and n.

Lemma 20. There exists a constant T1 > 0 independent of k and n such that

C∗∗
k+1(n, λ) ≤ T1λ

p0
2(p0−2)

k+1 .
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Proof. By definition of Ek+1, we have

||u||2 ≤ λk+1||u||22

For any pn > p0, we have that there exists D1 > 0 independent of n and k such that ||u||p0 ≤

D1||u||pn . Thus, we have

Gn,λ(u) ≤
1

2
||u||2 −D2

∫
Ω
|u|p0 dx+D3

where D2, D3 > 0 are constant and independent of either k and n.

There also exists a constant D4 > 0 such that ||u||2 ≤ D4||u||p0 , thus we have

||u||2 ≤ λk+1||u||22 ≤ D2
4λk+1||u||2p0 , ∀u ∈ Ek+1.

This suggests that there exists D5 > 0 such that

||u||p0 ≤ D5λ
p0/2
k+1 ||u||

p0
p0 , ∀u ∈ Ek+1.

Combining these inequalities together, we have

Gn,λ(u) ≤
1

2
||u||2 −D6λ

−p0/2
k+1 ||u||p0 +D3

≤ D7λ
p0

2(p0−2)

k+1 +D3

≤ T1λ
p0

2(p0−2)

k+1 ,

with Di (i = 1, ..., 7) and T1 are positive constants that are independent of k and n.
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We apply Theorem 19 to exhibit the existence of a sign-changing critical point u∗(n, λ, k) ̸= 0

of Gn,λ that satisfies

Gn,λ(u
∗) = C∗(n, λ, k) ≤ C∗∗

k+1 ≤ T1λ
p0

2(p0−2)

k+1

and the augmented Morse index m∗(u∗(n, λ, k)) ≥ k. The next thing is to show that there exists a

lower bound of C∗ that is independent of n. This is done by applying the definitions given in the

notations following Lemma 16. Thus,

C∗(n, λ, k) ∈ [−Λ0, T1λ
p0

2(p0−2)

k+1 ].

Hence, for every fixed λ and k, {u∗(n, λ, k)}n∈N is a sequence of solutions that satisfy

−∆u = λu+ |u|pn−2u, ∀u ∈ H1
0 (Ω),

with pn in [p0, 2
∗]. Furthermore, the sequence is bounded in H1

0 (Ω) as a consequence of Lemma 20.

We now cite a theorem due to Devillanova and Solimini (Devillanova, 2002):

Theorem 21. Let n ≥ 7 and U be a bounded set in H1
0 (Ω) whose elements are solutions, for a

fixed λ > 0, to the problem

−∆u = λu+ |u|p−2u, u ∈ H1
0 (Ω),

for p varying in [2, 2∗]. Then U is uniformly bounded, that is, there exists a constant C > 0 such
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that

sup
u∈U

sup
x∈Ω

|u(x)| ≤ C.

Using this theorem, then the set of solutions {u∗(n, λ, k}n∈N is uniformly bounded. We may

apply standard compactness arguments to obtain a convergent subsequence with limit u∗(λ, k) that

solves

−∆u = λu+ |u|2∗−2u, u ∈ H1
0 (Ω)

at level C∗. We know that this problem does not have a solution with negative energy, therefore

C∗(λ, k) ≥ 0. Hence,

0 ≤ lim
n→∞

C∗(n, λ, k) = C∗(λ, k) ≤ T1λ
p0

2(p0−2)

k+1 .

The next thing is to show that u∗(λ, k) is sign-changing. Since {u∗(n, λ, k)} is a sequence of sign-

changing solutions, then we let

u∗(n, λ, k)± := max{±u∗(n, λ, k), 0}.

Thus, we have from G′
n,λ(u):

||u∗(n, λ, k)±||2 = λ||u∗(n, λ, k)±||22 + ||u∗(n, λ, k)±||pnpn .

This implies that there exists ϵ0 > 0 and independent of n such that ||u∗(n, λ, k)±||2 ≤ ϵ0||u∗(n, λ, k)±||pnpn .
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Moreover, this means there exists a constant s0 independent of n such that ||u∗(n, λ, k)±|| ≥ s0 > 0.

This implies the limit u∗(λ, k) satisfies these inequalities, and hence is sign-changing. To see this,

note that the above inequality implies u∗(λ, k)± ̸= 0 almost everywhere. Hence, ±u∗(λ, k) ̸= 0

almost everywhere. This of course leads to the existence of positive and negative parts that are

non-zero, and hence u∗ is sign-changing. The final part of the proof is to show that C∗(λ, k) → ∞

as k → ∞. The proof proceeds by contradiction. If not, then {C∗(λ, k)}k∈N is bounded and so

lim
k→∞

C∗(λ, k) = c′ <∞. For each k ∈ N, there exists an nk > k such that |C∗(nk, λ, k)−C∗(λ, k)| <

1/k. Of course, this means lim
k→∞

C∗(nk, λ, k) = c′. By assumption, we know that each u∗(nk, λ, k)

are sign-changing critical points of Gnk,λ with augmented Morse indices m∗(u∗(nk, λ, k)) ≥ k.

Similar to before, one can show that {u∗(nk, λ, k)} are bounded in H1
0 (Ω) using the fact that

c′ is independent of k. By Theorem 21, u∗(nk, λ, k)k∈N is uniformly bounded. By the results

of Bahri and Lion (Bahri, 1992), this is equivalent to the Morse indices of u∗(nk, λ, k)k∈N being

bounded. However, this is a contradiction since we know that the Morse index is increasing for

each u∗(nk, λ, k) over k. Thus, C
∗(λ, k) → ∞. This of course implies infinitely many sign-changing

solutions corresponding to distinct critical levels C∗.
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CHAPTER 5

Conclusions

5.1 Conclusion

The Brézis-Nirenberg problem appeared as an interesting analytical problem that arose from

various problems in mathematics, including geometry. The method used by Yamabe to obtain a

solution would later inspire the approach of Brézis and Nirenberg (Brézis, 1983). Originally, the

proof of existence of a solution by Yamabe (Yamabe, 1960) had a flaw which would not be redressed

until later by Schoen, Yau, and Aubin (Schoen, 1979) (Aubin, 1976).

After the landmark paper by Brézis and Nirenberg (Brézis, 1983), it was clear that the topology

of the domain made a difference in understanding the qualitative characteristics of the problem.

For example, Cerami et al. (Cerami, 1986) found that when n ≥ 6, then (3.2) has two pairs of

solutions on any smooth bounded domain, whereas Atkinson et al. (Atkinson, 1990) proves that for

4 ≤ n ≤ 6 and Ω is a ball, then for certain values of λ, (3.2) has no sign-changing radial solutions.

Thus, the field has seen many proofs that approach this problem using topological methods. A

survey of some of these techniques may be found in (Chang, 2005).

In addition, the problem is interesting due to the fact that it lacks compactness. The boundary

value problem (3.2) loses a compactness property that would make exhibiting a solution much

easier — a consequence of the exponent being critical. This observation opened the field of PDEs

to consider boundary value problems which did not satisfy the (PS) condition and hence nice

compactness properties – especially when working at the critical exponents. Similar problems
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include working with

−∆u = λueαnu2
, x ∈ Ω ⊂ R2

u = 0, x ∈ ∂Ω,

which has been explored by Adimurthi (Adimurthi, 1990) and Figueredo et al. (de Figueiredo,

2011). It is related to an analogue to the Sobolev Embedding Theorem in R2 by Moser (Moser,

1971) and Trudinger (Trudinger, 1967). Here, αn is considered the critical exponent where αn =

n

[
2πn/2

Γ(n/2)

]1/(n−1)

.
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