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Abstract

POSITIVE SOLUTIONS TO SEMILINEAR ELLIPTIC EQUATIONS WITH

LOGISTIC-TYPE NONLINEARITIES AND HARVESTING

IN EXTERIOR DOMAINS

by

Eric Jameson

Dr. Hossein Tehrani, Examination Committee Chair
Professor of Mathematical Sciences

University of Nevada, Las Vegas, USA

Existing results provide the existence of positive solutions to a class of semilinear elliptic PDEs

with logistic-type nonlinearities and harvesting terms both in RN and in bounded domains U ⊂ RN

with N ≥ 3, when the carrying capacity of the environment is not constant. We consider these

same equations in the exterior domain Ω, defined as the complement of the closed unit ball in RN ,

N ≥ 3, now with a Dirichlet boundary condition. We first show that the existing techniques for

solving these equations in the whole space RN can be applied to the exterior domain with some

modifications. Then, as a second approach, we use the Kelvin transform to move the equation

inside the unit ball, solve it there, using the techniques for bounded domains, and then re-apply the

Kelvin transform to obtain a solution to the original equation. We are then confronted with the

natural question of whether the two different approaches provide a multiplicity result for positive

solutions in our exterior domain. As part of this work we prove a uniqueness result under further

assumptions on the data. Finally, we briefly show that the Kelvin transform method can also be

applied to the case of N = 2 with some slight adjustments, and that the solution obtained in this

case also satisfies a similar uniqueness property.
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Chapter 1

Introduction and Background

In this thesis we study the existence and uniqueness of positive solutions to the problem


−∆u = λa(x)u− b(x)g(u)− ch(x), x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.1)

where Ω = RN \B(0, 1) is the complement of the closed unit ball in RN . We will consider the cases

N ≥ 3 and N = 2 separately, and take note of the key differences therein. Both the functions a, b, h

and the parameters λ, c are nonnegative, and we impose additional assumptions on these functions

and parameters in each of our different approaches, that will be stated as they are needed.

This problem can be thought of as the steady state of the reaction-diffusion equation



∂u

∂t
= ∆u+ λa(x)u− b(x)g(u)− ch(x), x ∈ Ω,

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω× [0,∞).

In this sense, we can interpret this equation as the evolution equation arising from the population

biology of one species, with the function u representing the population density of the species.

Throughout, we assume that

lim
s→0

g(s)

s
= 0 and lim

s→∞

g(s)

s
=∞,

so that the nonlinearity λa(x)u − b(x)g(u) represents a so-called logistic-type growth condition.

The coefficient functions a(x) and b(x) depend on the spatial variable, indicating variable linear

growth and competition rates in the environment. The function h(x) is interpreted as the harvesting

distribution, and ch(x) is the harvesting rate. Such equations have been used to model fishery or

hunting management problems, see [17] for further historical background and references. Intuitively,
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survival of a species, i.e. existence of a positive solution, is only expected for small values of c.

With the presence of the harvesting term, the right-hand side of the equation is negative at u = 0,

and therefore the problem belongs to the class of so-called semi-positone problems (see [8]). This

prevents a direct application of the maximum principle.

The main inspiration for our work here is [14]. There the authors consider problem (1.1) in RN ,

as well as bounded domains U ⊂ RN for N ≥ 3. The approach presented in [14] is to relate the

equation (1.1) to an auxiliary equation of the form


−∆u = λa(x)u

[
1− k

(
u

`d(x)

)]
− ch(x), x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.2)

where the term b(x)g(u) is replaced by a(x) multiplied by a power of u (see Section 2.2).

We have also benefited from the works of [5] and [9], in which the authors employ a variational

approach, again working in the whole space RN , n ≥ 3. Equation (1.1) was also considered by Du

and Ma in [10] and [11] for g(u) = up in the absence of the harvesting term.

The main reason for our choice of the exterior domain Ω is to make use of results related to

the Kelvin transform presented in [4] for the case N = 2. There the authors show that there is

a one-to-one correspondence between solutions of our problem in the exterior domain Ω and the

solutions of the associated transformed problem in the bounded domain B. We will extend this idea

to the case of N ≥ 3 in Section 1.3 below.

In order to prove a relevant uniqueness result for the solution we obtain, we make use of the

work [19], where under certain stronger assumptions, the authors prove that equation (1.1) (with

g(u) = u2 and in a bounded domain U) has a unique positive solution in the absence of harvesting,

i.e. when c = 0.

1.1 Outline

In the remainder of Chapter 1, we present some background material which will be used throughout

our work here and also extend some of the results of [4] to the case of N ≥ 3. We show the
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relationship between solutions of exterior domain problems such as (1.1) and a transformed problem

in the bounded domain B for N ≥ 3 in Lemma 1.10. We additionally show that the Kelvin transform

is a still an order-preserving, isometric isomorphism between H1
0 (B) and D1,2(Ω) in this case (cf.

Theorem 1.11). Finally, we derive the Green’s functions for B and Ω for both N = 2 and N ≥ 3 in

Section 1.4 for later use.

In Chapter 2, we show that the technique applied in [14] to show the existence of positive

solutions to (1.1) in the whole space RN , N ≥ 3 can be adapted to our case to show existence of

positive solutions in the exterior domain Ω (still in the case of N ≥ 3). This method will be referred

to as the direct approach. Using the assumptions presented in Section 2.1, we first relate (1.1) to

the auxiliary problem (1.2), and find a positive weak solution to this auxiliary problem via a basic

minimization argument. Then, on a set bounded below by the weak solution to (1.2), we minimize

the corresponding functional to (1.1) to obtain what we show is a positive weak solution to (1.1).

This result is summarized in Theorem 2.7.

In Chapter 3, we show the existence of positive solutions to (1.1) for N ≥ 3 using what we call

the Kelvin transform approach. In this approach, we first transform (1.1) to the unit ball B, making

use of Lemma 1.10. Then, using the technique outlined in [14] for bounded domains (which requires

slightly different assumptions on the data), we find a positive weak solution to the transformed

equation in the ball. By Lemma 1.10, the Kelvin transform of this solution is then a positive weak

solution to (1.1). This result is summarized in Theorem 3.6.

The dual nature of our approaches to solve (1.1) for the case of N ≥ 3 raises the question

of whether the two solutions obtained through the direct approach of Chapter 2 and the Kelvin

transform approach of Chapter 3 are in fact the same. To answer this question, in Chapter 4, we

define the notion of a stable solution and show, using existing results (cf. [10, 11, 19, 20]), that the

transformed equation in the ball has a unique positive stable solution under some slightly stronger

assumptions on the data. We then show that the Kelvin transforms of both the solutions obtained

in Chapters 2 and 3 are indeed stable in the ball. In this way, if we have a set of assumptions

on the data satisfying the requirements for the direct approach as well as the Kelvin approach

simultaneously, then the two solutions coincide. This result is summarized in Theorem 4.11.

3



In a short Chapter 5, we consider the same equation (1.1) now in the case of N = 2. Although

the direct approach is not suitable in R2, we show that the Kelvin transform approach can in fact

be applied with minimal changes. The existence of a positive solution is summarized in Theorem

5.2. We then prove stability in the same way as in Chapter 4, showing under some slightly stronger

assumption on the data that the Kelvin transform of the solution given in Theorem 5.2 is the unique

positive stable solution of the transformed equation in the ball.

Finally, in Chapter 6, we give some concluding remarks and possible opportunities for future

work in this area. Specifically, some further applications of the Kelvin transform approach are

discussed, as well as other types of equations and some possible difficulties in dealing with those

equations.

1.2 Notation and Basic Results

We start by defining the spaces we will be working in throughout this thesis, in the whole space RN ,

the unit ball B := B(0, 1) and the exterior domain Ω := RN \B. Let C∞0 (U) denote the set of all

infinitely differentiable functions with compact support in the domain U , for any U ⊆ RN . For any

1 ≤ p <∞, we use the notation W k,p(U) to indicate the usual Sobolev space, i.e.

W k,p(U) := {u ∈ Lp(U) : Dαu ∈ Lp(U) for all |α| ≤ k}

where α is a multiindex, and the derivative Dαu is understood weakly. We additionally define

W k,p
0 (U) as the closure of C∞0 (U) in W k,p(U). In the case p = 2, we use the notation Hk(U) (or

Hk
0 (U)) instead. D1,p(U) is the Beppo-Levi space, defined as the completion of C∞0 (U) with respect

to the norm

‖u‖pD1,p(U)
=

∫
U
|∇u|p dx.

Some key inequalities related to Sobolev embeddings and basic results in the theory of elliptic

partial differential equations are also recorded here for later reference. The first of these is the

so-called Hardy Inequality. Proofs of the following results may be found in the listed references.

Lemma 1.1 (Hardy Inequality (cf. [2, 15])). Let N ≥ 3, and assume 1 < p < N . Then, if

4



u ∈W 1,p(RN ),

(i)
u

|x|
∈ Lp(RN ),

(ii)

∫
RN

|u|p

|x|p
dx ≤

(
p

N − p

)p ∫
RN
|∇u|p dx, and

(iii) The above constant is optimal.

In this thesis, we will be particularly interested in the case of p = 2, for which we have

∫
RN

u2

|x|2
dx ≤

(
2

N − 2

)2 ∫
RN
|∇u|2 dx

for all u ∈ H1(RN ).

Since we will often be working in the bounded domain B, we also use a version of the Hardy

inequality shown to hold for arbitary convex domains in RN , N ≥ 1 (cf. [16]):

Lemma 1.2 (Hardy Inequality for Bounded Domains (cf. [3, 16])). Let U be a convex domain in

RN , N ≥ 1 with smooth boundary. Assume 1 < p <∞, then if u ∈W 1,p
0 (U),

(i)
u

dist(x, ∂U)
∈ Lp(U), and

(ii)

∫
U

|u|p

|dist(x, ∂U)|p
dx ≤

(
p

p− 1

)p ∫
U
|∇u|p dx, and

(iii) This constant is optimal.

Again in the case of p = 2, if U = B ⊂ RN , N ≥ 2, then

∫
B

|u|2

(1− |x|)2
dx ≤ 4

∫
B
|∇u|2 dx

for all u ∈ H1
0 (B).

We also have the following result for exterior domains in RN where now N ≥ 2:

Lemma 1.3 (Hardy-Type Inequalities for Exterior Domains (cf. [4, 5, 21])). Let N ≥ 2, R > 0

and G := RN \B(0, 2R). Then for u ∈ D1,p(G),

5



(i) ∫
G

|u|p

|x|p
dx ≤

(
p

|N − p|

)p ∫
Ω
|∇u|p dx, for 1 < p <∞, p 6= N (1.3)

(ii) ∫
G

|u|N

|x|N
(

ln |x|R
)N dx ≤

(
N

N − 1

)N ∫
G
|∇u|N dx. (1.4)

For our exterior domain Ω ⊂ R2, we have that R = 1
2 and so (1.4) can be written as

∫
Ω

|u|2

|x|2(ln 2|x|)2
dx ≤ 4

∫
Ω
|∇u|2 dx. (1.5)

Next, we take a quick look at some key results from the theory of elliptic partial differential equations

(cf. [12]) to get a maximum principle related to the positive solutions of problems such as (1.1).

The first result is the Hopf lemma:

Lemma 1.4 (Hopf Lemma (cf. [12])). Let U be a bounded domain in RN and L be an elliptic

operator of the form

Lu = −
N∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

N∑
i=1

bi
∂u

∂xi
+ c(x)u, x ∈ U. (1.6)

Assume u ∈ C2(U) ∩ C1(U) and c ≡ 0 in U . Suppose further that Lu ≤ 0 in U and there exists a

point x0 ∈ ∂U such that

u(x0) > u(x) for all x ∈ U.

Assume finally that there exists an open ball Bx0 ⊂ U with x0 ∈ ∂Bx0 . Then:

(i)
∂u

∂ν
(x0) > 0, where ν is the outward unit normal to Bx0 at x0, and

(ii) If c ≥ 0 in U , the same conclusion holds provided u(x0) ≥ 0.

The Hopf lemma is a key component of the proof of the so-called strong maximum principle:

Lemma 1.5 (Strong Maximum Principle (cf. [12])). Let L be as in (1.6) and suppose that U is a

connected, open and bounded domain in RN . Assume u ∈ C2(U) ∩ C(U) and c ≡ 0 in U . Then:

6



(i) If Lu ≤ 0 in U and u attains its maximum over U at an interior point, then u is constant

within U .

(ii) Similarly, if Lu ≥ 0 in U and u attains its minimum over U at an interior point, then u is

constant within U .

1.3 Kelvin Transform in RN

The following results extend those from Carl et al. (cf. [4]) to the case N ≥ 3. Let B ⊂ RN , N ≥ 3.

The mapping x 7→ x

|x|2
=: x̂ is the inversion through the sphere ∂B, which provides a bijection from

RN \B onto B \ {0}, and vice versa, since ˆ̂x = x. The Kelvin transform is based on the inversion

mapping and defined as follows:

Definition 1.6. Let u : B \ {0} → R. The Kelvin transform of u, denoted by (Ku)(x) = û(x), is

defined by

(Ku)(x) =
1

|x|N−2
u
( x

|x|2
)
.

We now state (with proofs provided for completeness) some calculus results related to the inversion

mapping.

Lemma 1.7. Let x̂(x) =
x

|x|2
be the inversion mapping. Then the Fréchet derivative x 7→ Dx̂(x) is

given by

Dx̂(x) =
1

|x|2
I − 2

|x|4
T, (1.7)

where I is the N ×N identity matrix, T is the matrix

T = xxt =

[
x1 x2 x3 · · · xN

]


x1

x2

x3

...

xN


=



x2
1 x1x2 x1x3 · · · x1xN

x2x1 x2
2 x2x3 · · · x2xN

x3x1 x3x2 x2
3 · · · x3xN

...
...

. . . · · ·
...

xNx1 xNx2 xNx3 · · · x2
N


, (1.8)
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and the absolute value of the determinant of Dx̂, i.e. |det(Dx̂(x))|, is equal to

|det(Dx̂(x))| = 1

|x|2N
. (1.9)

Moreover, for any ξ, η ∈ RN , we get

〈Dx̂(x)ξ,Dx̂(x)η〉 =
1

|x|4
〈ξ, η〉, (1.10)

where 〈·, ·〉 is the standard inner product in RN .

Proof. Since the Fréchet derivative Dx̂(x) coincides with the Jacobian matrix, we need only compute

the partial derivatives of

x̂(x) =
x

|x|2
=

[
x1

x2
1 + x2

2 + · · ·+ x2
N

x2

x2
1 + x2

2 + · · ·+ x2
N

· · · xN
x2

1 + x2
2 + · · ·+ x2

N

]
.

When i 6= j, we have that

∂fi
∂xj

=
(x2

1 + x2
2 + · · ·+ x2

N ) · 0− xi(2xj)
(x2

1 + x2
2 + · · ·+ x2

n)2
= −2xixj

|x|4
.

Similarly, when i = j, we have

∂fi
∂xi

=
(x2

1 + x2
2 + · · ·+ x2

N ) · 1− xi(2xi)
(x2

1 + x2
2 + · · ·+ x2

N )2
=
|x|2 − 2x2

i

|x|4
=

1

|x|2
− 2x2

i

|x|4
.

Therefore [
Dx̂(x)

]
ij

=
δij
|x|2
− 2xixj
|x|4

, and so Dx̂(x) =
1

|x|2
I − 2

|x|4
T.

Note that Dx̂(x) is a symmetric matrix, and so

Dx̂(x)Dx̂(x) =
1

|x|4
I − 4

|x|6
T +

4

|x|8
T 2 =

1

|x|4
I,

8



since T 2 = |x|2T . Therefore we have that

| det(Dx̂(x))| =
√

det(Dx̂(x)Dx̂(x)) =

√
det
( 1

|x|4
I
)

=

√
1

|x|4N
=

1

|x|2N
.

Finally,

〈Dx̂(x)ξ,Dx̂(x)η〉 = 〈Dx̂(x)Dx̂(x)ξ, η〉 =
1

|x|4
〈ξ, η〉.

Equation (1.9) will be used extensively in the change-of-variables between the exterior domain

Ω and the ball B (or vice versa). In [4], for the case N = 2, there is shown to be a nice relationship

between |∇ϕ| and |∇ϕ̂| for ϕ ∈ C∞0 (B). However, the relationship is not as straightforward for the

case of N ≥ 3:

Lemma 1.8. Let ϕ ∈ C∞0 (B), N ≥ 2, and let ϕ̂(x) =
1

|x|N−2
ϕ
( x

|x|2
)

be its Kelvin transform.

Then the gradient of ϕ̂(x) can be calculated by

∇ϕ̂(x) =
1

|x|N
∇ϕ
( x

|x|2
)
− 2

|x|N+2

〈
∇ϕ
( x

|x|2
)
, x
〉
x− (N − 2)

|x|N
ϕ
( x

|x|2
)
x, for all x ∈ Ω. (1.11)

In particular,

|∇ϕ̂(x)| = 1

|x|N

∣∣∣∣∇ϕ( x

|x|2
)

+ (N − 2)ϕ
( x

|x|2
)
x

∣∣∣∣. (1.12)

Proof. Note that ϕ̂ ∈ C∞(Ω) and that ϕ̂ = 0 in a neighborhood of ∂B. Then, applying the product

rule for the gradient operator as well as the chain rule, we get

∇ϕ̂(x) = ∇
( 1

|x|N−2
ϕ(x̂(x))

)
=

1

|x|N−2
∇ϕ(x̂(x))Dx̂(x)− (N − 2)

|x|N
ϕ(x̂(x))x

=
1

|x|N−2
∇ϕ(x̂(x))

(
1

|x|2
I − 2

|x|4
T

)
− (N − 2)

|x|N
ϕ(x̂(x))x.

9



Note that

∇ϕ(x̂(x))T =

[
∂ϕ(x̂(x))

∂x1

∂ϕ(x̂(x))

∂x2
· · · ∂ϕ(x̂(x))

∂xN

]


x2
1 x1x2 x1x3 · · · x1xN

x2x1 x2
2 x2x3 · · · x2xN

x3x1 x3x2 x2
3 · · · x3xN

...
...

. . . · · ·
...

xNx1 xNx2 xNx3 · · · x2
N


=

[
ϕ1x

2
1 + · · ·+ ϕNxNx1 · · · ϕ1x1xN + · · ·+ ϕNx

2
N

]
=
(
ϕ1x1 + ϕ2x2 + · · ·+ ϕNxN

)[
x1 x2 · · · xN

]
= 〈∇ϕ(x̂(x)), x〉x,

where ϕi =
∂

∂xi
ϕ(x̂(x)), and so

∇ϕ̂(x) =
1

|x|N
∇ϕ(x̂(x))− 2

|x|N+2
〈∇ϕ(x̂(x)), x〉x− (n− 2)

|x|N
ϕ(x̂(x))x.

Therefore

|∇ϕ̂(x)|2 = 〈∇ϕ̂(x),∇ϕ̂(x)〉

=

〈
1

|x|N
∇ϕ(x̂(x))− 2

|x|N+2
〈∇ϕ(x̂(x)), x〉x− (N − 2)

|x|N
ϕ(x̂(x))x,

1

|x|N
∇ϕ(x̂(x))− 2

|x|N+2
〈∇ϕ(x̂(x)), x〉x− (N − 2)

|x|N
ϕ(x̂(x))x

〉
=

1

|x|2N
〈∇ϕ(x̂(x)),∇ϕ(x̂(x))〉 − 4

|x|2N+2
〈∇ϕ(x̂(x)), x〉2

+
4

|x|2N+4
〈∇ϕ(x̂(x)), x〉2〈x, x〉 − 2(N − 2)

|x|2N
〈∇ϕ(x̂(x)), ϕ(x̂(x))x〉

+
4(N − 2)

|x|2N+2
〈∇ϕ(x̂(x)), x〉〈ϕ(x̂(x))x, x〉+

(N − 2)2

|x|2N
〈ϕ(x̂(x))x, ϕ(x̂(x))x〉

=
1

|x|2N
〈∇ϕ(x̂(x)),∇ϕ(x̂(x))〉+

2N − 4

|x|2N
〈∇ϕ(x̂(x)), ϕ(x̂(x))x〉

+
(N − 2)2

|x|2N−2
〈ϕ(x̂(x))x, ϕ(x̂(x))x〉

=
1

|x|2N
〈∇ϕ(x̂(x)) + (N − 2)ϕ(x̂(x))x,∇ϕ(x̂(x)) + (N − 2)ϕ(x̂(x))x〉

10



=
1

|x|2N
∣∣∇ϕ(x̂(x)) + (N − 2)ϕ(x̂(x))x

∣∣2,
and so (1.12) follows.

Remark 1.9. As ˆ̂ϕ = ϕ ∈ C∞0 (B), we also have:

∇ϕ(x) =
1

|x|N
∇ϕ̂
( x

|x|2
)
− 2

|x|N+2

〈
∇ϕ̂
( x

|x|2
)
, x
〉
x− (N − 2)

|x|N
ϕ̂
( x

|x|2
)
x,

for all x ∈ B \ {0}.

Note that for N = 2, (1.12) simplifies to

|∇ϕ̂(x)| = 1

|x|2

∣∣∣∣∇ϕ( x

|x|2
)∣∣∣∣. (1.13)

This is used in [4] to prove that the Kelvin transform is an order-preserving isometric isomorphism

between the spaces H1
0 (B) and D1,2(Ω). However, for N ≥ 3, to deal with the term involving

N − 2 in (1.12), we need the following well-known result (whose proof is also provided here for

completeness of the presentation).

Lemma 1.10. Let v(x) =
1

|x|N−2
u
( x

|x|2
)

be the Kelvin transform of u. Then

∆v(x) =
1

|x|N+2
(∆u)

( x

|x|2
)
.

Proof. From the product rule for the Laplacian operator, i.e.

∆(fg) = ∆f · g + 2〈∇f,∇g〉+ f ·∆g,

we have

∆v(x) = ∆

(
1

|x|N−2
u
( x

|x|2
))

= ∆

(
1

|x|N−2

)
u
( x

|x|2
)

+ 2

〈
∇
(

1

|x|N−2

)
,∇
(
u
( x

|x|2
))〉

+
1

|x|N−2
∆

(
u
( x

|x|2
))

.

11



Now

∂

∂xi

(
1

|x|N−2

)
=

(2−N)xi
|x|N

and so

∂2

∂x2
i

(
1

|x|N−2

)
=

(2−N)

|x|N
− (2N −N2)x2

i

|x|N+2
,

Summing over all 1 ≤ i ≤ N gives

∆

(
1

|x|N−2

)
=

N∑
i=1

(2−N)

|x|N
− (2N −N2)x2

i

|x|N+2
=
N(2−N)

|x|N
− (2N −N2)|x|2

|x|N+2
= 0. (1.14)

Next, by the same calculation as in Lemma 1.8, we have

∇
(
u
( x

|x|2
))

= ∇u
( x

|x|2
)( 1

|x|2
I − 2

|x|4
T

)
=

1

|x|2
∇u
( x

|x|2
)
− 2x

|x|4

〈
∇u
( x

|x|2
)
, x

〉
,

and so

〈
∇
(

1

|x|N−2

)
,∇
(
u
( x

|x|2
))〉

=

〈
(2−N)

|x|N
x,

1

|x|2
∇u
( x

|x|2
)
− 2x

|x|4

〈
∇u
( x

|x|2
)
, x

〉〉
=

(2−N)

|x|N+2

〈
x,∇u

( x

|x|2
)〉
− 2(2−N)

|x|N+4

〈
∇u
( x

|x|2
)
, x

〉
〈x, x〉

= −(2−N)

|x|N+2

〈
x,∇u

( x

|x|2
)〉

. (1.15)

Next, we must compute ∆

(
u
( x

|x|2
))

. Using the formula for the Laplacian of a composition, i.e.

∆(f ◦ g) = ∇f ·∆g + trace
[
∇gt ·∆f · ∇g

]
,

we have, using the notation of Lemma 1.8,

∆

(
u
( x

|x|2
))

= ∇u
( x

|x|2
)
·∆
( x

|x|2
)

+ trace

[
∇
( x

|x|2
)t

∆u
( x

|x|2
)
· ∇
( x

|x|2
)]

= ∇u
( x

|x|2
)
·D(Dx̂(x)) +Dx̂(x)Dx̂(x)∆u

( x

|x|2
)

= ∇u
( x

|x|2
)
·D(Dx̂(x)) +

1

|x|4
∆u
( x

|x|2
)
.
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Now,

∂

∂xk

[
Dx̂(x)

]
ij

=
∂

∂xk

(
δij
|x|2
− 2xixj
|x|4

)
=
−2(δijxk + δikxj + δjkxi)

|x|4
+

8xixjxk
|x|6

,

and so

[
D(Dx̂(x))

]
i

=
N∑
j=1

∂

∂xj

[
Dx̂(x)

]
ij

=
N∑
j=1

−4δijxj − 2xi
|x|4

+
8xix

2
j

|x|6

=
−4xi
|x|4

− 2nxi
|x|4

+
8xi|x|2

|x|6
=

2(2−N)xi
|x|4

.

Therefore

∆

(
u
( x

|x|2
))

=

〈
∇u
( x

|x|2
)
,
2(2− n)x

|x|4

〉
+

1

|x|4
∆u
( x

|x|2
)
. (1.16)

We then have

∆v(x) = 0− 2(2−N)

|x|N+2

〈
x,∇u

( x

|x|2
)〉

+
1

|x|N−2

(〈
∇u
( x

|x|2
)
,
2(2−N)x

|x|4

〉
+

1

|x|4
∆u
( x

|x|2
))

= −2(2−N)

|x|N+2

〈
x,∇u

( x

|x|2
)〉

+
2(2−N)

|x|N+2

〈
∇u
( x

|x|2
)
, x

〉
+

1

|x|N+2
∆u
( x

|x|2
)

=
1

|x|N+2
(∆u)

( x

|x|2
)
,

as desired.

Finally, we are ready to generalize the result in [4] and prove that for N ≥ 3 the Kelvin transform

does define an isometric isomorphism between the spaces H1
0 (B) and D1,2(Ω). Explicitly:

Theorem 1.11. The Kelvin transform K defined by

û(x) = (Ku)(x) =
1

|x|N−2
u
( x

|x|2
)

provides an order-preserving, isometric isomorphism from H1
0 (B) to D1,2(Ω), and K−1 = K.
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Proof. Suppose ϕ,ψ ∈ C∞0 (B). Then their respective Kelvin transforms ϕ̂(x), ψ̂(x) belong to C∞(Ω)

with ϕ̂ = ψ̂ = 0 in a neighborhood of ∂B. Let BR = B(0, R), R > 1. We then have

∫
Ω∩BR

|ϕ̂(y)|2 dy =

∫
Ω∩BR

∣∣∣∣ 1

|y|N−2
ϕ
( y

|y|2
)∣∣∣∣2 dy =

∫
B∩{|x|> 1

R
}
|x|N−2|ϕ(x)|2 1

|x|2N
dx

=

∫
B∩{|x|> 1

R}
|ϕ(x)|2 1

|x|N+2
dx ≤ RN+2

∫
B
|ϕ(x)|2 dx, (1.17)

Next, using Green’s first identity, we have that

∫
B
∇ϕ(x)∇ψ(x) dx = −

∫
B

(
∆ϕ(x)

)
ψ(x) dx.

Making the change of variables x 7→ y

|y|2
, we then have

∫
B
∇ϕ(x)∇ψ(x) dx = −

∫
Ω

(∆ϕ)
( y

|y|2
)
ψ
( y

|y|2
) 1

|y|2N
dy

= −
∫

Ω

1

|y|N+2
(∆ϕ)

( y

|y|2
) 1

|y|N−2
ψ
( y

|y|2
)

dy = −
∫

Ω

(
∆ϕ̂(y)

)
ψ̂(y) dy.

Here we use Lemma 1.10 and the definition of the Kelvin transform. Now, however, we cannot

directly apply Green’s first identity as Ω is an unbounded domain. Therefore we write:

−
∫
|y|>1

(
∆ϕ̂(y)

)
ψ̂(y) dy = lim

R→∞
−
∫

1<|y|<R

(
∆ϕ̂(y)

)
ψ̂(y) dy

= lim
R→∞

∫
1<|y|<R

∇ϕ̂(y)∇ψ̂(y) dy −
∫
|y|=R

∂ϕ̂

∂ν
(y)ψ̂(y) dS(y). (1.18)

Here ∂ϕ̂/∂ν is the normal derivative of ϕ̂ in the direction of the outward normal at |y| = R and

S(y) is the surface element. We now show that the second integral vanishes as R→∞.

First we transition to spherical coordinates and let r = |x| and ω = (ω1, ω2, . . . , ωN−1) be the

angular components of the point x. Then for ϕ(x) = ϕ(r, ω) and ψ(x) = ψ(r, ω), we have

ϕ̂(x) =
1

|x|N−2
ϕ
( x

|x|2
)

= r2−Nϕ
(1

r
, ω
)

and ψ̂(x) = r2−Nψ
(1

r
, ω
)
,
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and so

∂ϕ̂

∂ν
(x) =

∂

∂r
ϕ̂(r, ω) =

∂

∂r

[
r2−Nϕ

(1

r
, ω
)]

= (2−N)r1−Nϕ
(1

r
, ω
)

+ r2−N ∂ϕ

∂r

(1

r
, ω
)(
− 1

r2

)
.

Therefore, the second integral in (1.18) can be written as

∫
|ω|=1

[
(2−N)R1−Nϕ

( 1

R
,ω
)

+R2−N ∂ϕ

∂r

( 1

R
,ω
)(
− 1

R2

)]
R2−Nψ

( 1

R
,ω
)
RN−1 dω

= (2−N)R2−N
∫
|ω|=1

ϕ
( 1

R
,ω
)
ψ
( 1

R
,ω
)

dω −R1−N
∫
|ω|=1

∂ϕ

∂r

( 1

R
,ω
)
ψ
( 1

R
,ω
)

dω.

Now, since ϕ,ψ ∈ C∞0 (B), we have that, as R→∞, ϕ
( 1

R
,ω
)

, ψ
( 1

R
,ω
)

, and
∂ϕ

∂r

( 1

R
,ω
)

all remain

bounded, and so as R→∞, both of those integrals will go to zero. Explicitly,

lim
R→∞

∫
1<|y|<R

∇ϕ̂(y)∇ψ̂(y) dy −
∫
|y|=R

∂ϕ̂

∂ν
(y)ϕ̂(y) dS(y)

= lim
R→∞

∫
1<|y|<R

∇ϕ̂(y)∇ψ̂(y) dy − (2−N)R2−N
∫
|ω|=1

ϕ
( 1

R
,ω
)
ψ
( 1

R
,ω
)

dω

+R1−N
∫
|ω|=1

∂ϕ

∂r

( 1

R
,ω
)
ϕ
( 1

R
,ω
)

dω

=

∫
|y|>1

∇ϕ̂(y)∇ψ̂(y) dy.

Therefore ∫
B
∇ϕ(x)∇ψ(x) dx =

∫
Ω
∇ϕ̂(y)∇ψ̂(y) dy, (1.19)

for all ϕ,ψ ∈ C∞0 (B). In particular, if ϕ = ψ, we have

∫
B
|∇ϕ(x)|2 dx =

∫
Ω
|∇ϕ̂(y)|2 dy (1.20)

for all ϕ ∈ C∞0 (B). From (1.17) and (1.20), we see that ϕ̂ ∈ X, where X is the space

X = {u : Ω→ R : u ∈ L2
loc(Ω),∇u ∈ L2(Ω)}.
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Note that D1,2(Ω) ( X. By Simader and Sohr (cf. [21, Theorem 2.8]), we have that for u ∈ X,

u ∈ D1,2(Ω) if and only if u ∈ L2∗(Ω), where 2∗ is the Sobolev conjugate 2N/(N − 2). We therefore

claim that ϕ̂ ∈ L2∗(Ω). Indeed, we have

∫
Ω
|ϕ̂(y)|2N/(N−2) dy =

∫
Ω

∣∣∣∣ 1

|y|N−2
ϕ
( y

|y|2
)∣∣∣∣2N/(N−2)

dy =

∫
Ω

1

|y|2N

∣∣∣∣ϕ( y

|y|2
)∣∣∣∣2N/(N−2)

dy

=

∫
B
|x|2N |ϕ(x)|2N/(N−2) 1

|x|2N
dx =

∫
B
|ϕ(x)|2N/(N−2) dx.

Since ϕ ∈ C∞0 (B) ⊂ H1
0 (B), we have by Sobolev embedding that ϕ ∈ L2∗(B), and so ϕ̂ ∈ L2∗(Ω).

Next, if ϕ,ψ ∈ C∞0 (B) and α, β ∈ R, we have

K(αϕ+ βψ) =
1

|x|N−2
(αϕ+ βψ)

( x

|x|2
)

=
α

|x|N−2
ϕ
( x

|x|2
)

+
β

|x|N−2
ψ
( x

|x|2
)

= αKϕ+ βKψ.

Thus K : C∞0 (B)→ D1,2(Ω) is a linear isometry.

K therefore has a unique extension to H1
0 (B) due to the density of C∞0 (B) in H1

0 (B), which

is denoted by K̃. Moreover, by (1.20), we get ‖K‖ = ‖K̃‖ = 1, which shows that the extension

K̃ : H1
0 (B)→ D1,2(Ω) is an isometric, linear operator. Next we must show that the extension allows

for the same characterization as K, i.e. that the following holds true:

(K̃u)(x) = û(x) =
1

|x|N−2
u
( x

|x|2
)
, for all u ∈ H1

0 (B). (1.21)

The proof is by approximation. To this end let {ϕn} ⊂ C∞0 (B) and ϕn → u in H1
0 (B). Since {ϕn}

is a Cauchy sequence in H1
0 (B), from (1.20), it follows that the sequence of Kelvin transforms

ϕ̂n = Kϕn = K̃ϕn is a Cauchy sequence in X, and thus

ϕ̂n → v = K̃u in D1,2(Ω),

which in particular yields

lim
n→∞

∫
Ω
|∇(ϕ̂n − v)|2 dy = 0, lim

n→∞

∫
Ω∩BR

|ϕ̂n − v|2 dy = 0 for all R > 1.
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From (1.17) with ϕ replaced by ϕn − u and ϕ̂n replaced by ϕ̂n − û, respectively, we deduce for any

R > 1,

∫
Ω∩BR

|ϕ̂n(y)− û(y)|2 dy =

∫
B∩{|x|> 1

R}
|ϕn(x)− u(x)|2 1

|x|N+2
dx

≤ RN+2

∫
B
|ϕn(x)− u(x)|2 dx,

which implies

lim
n→∞

∫
Ω∩BR

|ϕ̂n(y)− û(y)|2 dy = 0 for all R > 1.

So, we have that û(y) = v(y) for almost every y ∈ Ω, which proves (1.21). Therefore K̃u = Ku = û.

So far, we have shown that K : H1
0 (B) → D1,2(Ω) is a linear, bounded, isometric and injective

operator. We now show that K is surjective, i.e. K(H1
0 (B)) = D1,2(Ω). Let v ∈ D1,2(Ω), then there

is a sequence ψn ∈ C∞0 (Ω) such that ψn → v in D1,2(Ω), that is,

lim
n→∞

∫
Ω
|∇(ψn(y)− v(y))|2 dy = 0 (1.22)

Since ψ̂n ∈ C∞0 (B), we have that {ψ̂n} is a Cauchy sequence in H1
0 (B), and thus ψ̂n → u in

H1
0 (B) for some u ∈ H1

0 (B). From this, it follows that for the corresponding Kelvin transforms

Kψ̂n −Ku = ψn − û we have using (1.20) that

lim
n→∞

∫
Ω
|∇(ψn(y)− û(y))|dy = 0. (1.23)

Therefore û = v in D1,2(Ω). Finally, we readily verify that K(Ku) = u for all u ∈ H1
0 (Ω), and thus

K = K−1. This completes the proof of the theorem.

Using the results we have established thus far, namely Lemma 1.7 and Theorem 1.11, we are able

manipulate the Hardy inequalities for exterior domains (cf. Lemma 1.3) to introduce the following

Hardy-type inequalities for the unit ball B for specific values of N and p:

Lemma 1.12 (Hardy-Type Inequalities for B). Let B = B(0, 1) ⊂ RN . Then for u ∈ H1
0 (B),
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(i) If N ≥ 3, then ∫
B

|u|2

|x|2
dx ≤

(
2

N − 2

)2 ∫
B
|∇u|2 dx (1.24)

(ii) If N = 2, then ∫
B

|u|2

|x|2
(

ln |x|2
)2 dx ≤ 4

∫
B
|∇u|2 dx. (1.25)

Proof. Note that since u ∈ H1
0 (B), we have û ∈ D1,2(Ω), and so we can apply Lemma 1.3 for both

cases:

(i) Considering (1.3), note that

∫
Ω

|û|2

|x|2
dx =

∫
B

∣∣∣∣û( x

|x|2
)∣∣∣∣2 |x|4|x|2 1

|x|2N
dx =

∫
B

∣∣∣∣ 1

|x|N−2
û
( x

|x|2
)∣∣∣∣2 1

|x|2
dx =

∫
B

|u|2

|x|2
dx.

Also, by (1.20), we have that
∫

Ω |∇û|
2 =

∫
B |∇u|

2 dx, and so (1.3) with p = 2 gives (1.24).

(ii) Considering (1.5), note that

∫
Ω

|û|2

|x|2(ln 2|x|)2
dx =

∫
B

∣∣∣∣û( x

|x|2
)∣∣∣∣2 |x|4

|x|2(ln 2/|x|)2

1

|x|4
dx =

∫
B

|u|2

|x|2(ln |x|/2)2
dx

Now by the corresponding result to (1.20) in [4], we have that
∫
B |∇u|

2 dx =
∫

Ω |∇û|
2 dx in

the case of N = 2 as well, and (1.25) follows.

1.4 Green’s Functions

We now compute the Green’s functions of Ω = RN \B in the case that N = 2 as well as N ≥ 3. We

recall the fundamental solution Φ(x) for the Laplace equation ∆u = 0:

Φ(x) =


− 1

2π
ln |x|, N = 2,

1

N(N − 2)ωN

1

|x|N−2
, N ≥ 3,

(1.26)
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where ωN is the surface area of the unit ball in RN . Recall that a function G̃Ω(x, y) is called a

Green’s function for a domain Ω if for y ∈ Ω,


−∆xG̃Ω(x, y) = δ(x− y), x ∈ Ω,

G̃Ω(x, y) = 0, x ∈ ∂Ω.

(1.27)

We know that G̃Ω(x, y) = Φ(x− y)− φy(x), where φy(x) solves the Dirichlet problem


−∆xφy(x) = 0, x ∈ Ω,

φy(x) = Φ(x− y), x ∈ ∂Ω.

(1.28)

1.4.1 Green’s Function of B

We first recall the derivation of the Green’s function of B. Consider the mapping y 7→ y/|y|2 =: ŷ, i.e.

the inversion through the unit sphere in RN . First, we assume N ≥ 3. The mapping x 7→ Φ(x− ŷ)

is harmonic for x 6= ŷ. Thus x 7→ |y|2−NΦ(x− ŷ) is harmonic for x 6= ŷ, and so for y ∈ B,

φy(x) := Φ(|y|(x− ŷ))

is harmonic in B. Furthermore, if x ∈ ∂B and y 6= 0,

|y|2|x− ŷ|2 = |y|2
(
|x|2 − 2x · y

|y|2
+

1

|y|2

)
= |y|2 − 2y · x+ 1 = |y − x|2.

Thus (|y||x− ŷ|)−(N−2) = |y − x|−(N−2). Consequently,

φy(x) = Φ(x− y) for x ∈ ∂B,

as required. Therefore Green’s function for the unit ball is

G̃B(x, y) = Φ(x− y)− Φ(|y|(x− ŷ)), x, y ∈ B, x 6= y (1.29)
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The same formula is valid for N = 2 as well (cf. [12]). Explicitly, we have

G̃B(x, y) = − 1

2π
ln |x− y|+ 1

2π
ln

(
|y|
∣∣∣x− y

|y|2
∣∣∣) (1.30)

for B ⊂ R2 and

G̃B(x, y) =
1

N(N − 2)ωN

(
1

|x− y|N−2
− 1

|y|N−2
∣∣x− y

|y|2
∣∣N−2

)
(1.31)

for B ⊂ RN , N ≥ 3.

1.4.2 A Derivation of the Green’s Function of Ω = RN \B

The motivation for our approach to derivation of the Green’s function G̃Ω(x, y) of Ω is the fact that

it will provide a representation formula for solutions to the Poisson equation


−∆u = f(x), x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.32)

of the form

u(x) =

∫
Ω
G̃Ω(x, y)f(y) dy (1.33)

(
informally −∆u(x) =

∫
Ω

(−∆xG̃Ω(x, y))f(y) dy =

∫
Ω
δ(y − x)f(y) dy = f(x)

)
.

But û, the Kelvin transform of the solution of (1.32), will then solve:

−∆û =
1

|x|N+2
f
( x

|x|2
)
, x ∈ B \ {0}.

Therefore

û(x) =
1

|x|N−2
u
( x

|x|2
)

=

∫
B
G̃B(x, y)

1

|y|N+2
f
( y

|y|2
)

dy, x ∈ B,
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and so

u(x) =

∫
B

1

|x|N−2
G̃B

( x

|x|2
, y
) 1

|y|N+2
f
( y

|y|2
)

dy, x ∈ Ω.

Next, using the change of variables y 7→ y

|y|2
gives

u(x) =

∫
Ω

1

|x|N−2
G̃B

( x

|x|2
,
y

|y|2
)
|y|N+2f(y) · 1

|y|2N
dy

=

∫
Ω

1

|x|N−2

1

|y|N−2
G̃B

( x

|x|2
,
y

|y|2
)
f(y) dy, x ∈ Ω.

So, we claim that

G̃Ω(x, y) =
1

|x|N−2
· 1

|y|N−2
G̃B

( x

|x|2
,
y

|y|2
)
,

where G̃B given in (1.30) for N = 2 or (1.31) for N ≥ 3 is the Green’s function for the unit ball in

RN :

Lemma 1.13. The Green’s function for Ω = BC ⊂ R2 is

G̃Ω(x, y) = G̃B

( x

|x|2
,
y

|y|2
)

= − 1

2π
ln

∣∣∣∣ x|x|2 − y

|y|2

∣∣∣∣+
1

2π
ln

(
1

|y|

∣∣∣∣ x|x|2 − y
∣∣∣∣), x, y ∈ Ω. (1.34)

Lemma 1.14. The Green’s function for Ω = BC ⊂ RN , N ≥ 3 is

G̃Ω(x, y) =
1

|x|N−2

1

|y|N−2
G̃B

( x

|x|2
,
y

|y|2
)

=
1

N(N − 2)ωN |x|N−2|y|N−2

(
1

| x|x|2 −
y
|y|2 |N−2

− |y|N−2

| x|x|2 − y|N−2

)
, x, y ∈ Ω. (1.35)

It can now be shown using simple calculations that equations (1.34) and (1.35) can be reduced

to the same formulas as (1.30) and (1.31), respectively. In other words, formulas (1.30) and

(1.31) provide Green’s functions of the unit ball B (if (x, y) ∈ B × B) as well as Ω = RN \ B (if

(x, y) ∈ Ω× Ω).
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Chapter 2

Solution in Ω ⊂ RN , N ≥ 3, by Direct Approach

In this chapter, we show the existence of a positive weak solution to the problem


−∆u = λa(x)u− b(x)g(u)− ch(x), x ∈ Ω,

u = 0, x ∈ ∂Ω = ∂B,

(2.1)

for Ω = RN \B(0, 1), N ≥ 3. We show the existence of a solution by adapting a direct approach,

employed in [14], where the authors consider such an equation in the whole space RN . The main

steps are as follows:

1. After stating the needed assumptions on the functions a(x), b(x), h(x) and g(u), we derive a

related problem, (cf. (2.12)), to problem (2.1).

2. We show the existence of a positive weak solution uc (cf. Theorem 2.2) for the related problem

using a minimization argument. This solution uc is then shown to be a subsolution to problem

(2.1).

3. Using this subsolution uc, we minimize the corresponding functional to problem (2.1) on a set

of the form M = {uc ≤ u a.e. in Ω}. Then, showing that the functional is differentiable in

certain directions, we conclude that the minimizer is in fact a solution to (2.1).

Although many proofs are unchanged from [14], there are several new contributions here, as will be

pointed out below.

2.1 Assumptions

We start by considering D1,2(Ω), the completion of C∞0 (Ω) with respect to the norm

‖u‖ =

(∫
Ω
|∇u|2 dx

)1/2

.
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A weak solution of (2.1) is defined as a function u ∈ D1,2(Ω) satisfying

∫
Ω
∇u · ∇v dx = λ

∫
Ω
a(x)uv dx−

∫
Ω
b(x)g(u)v dx− c

∫
Ω
h(x)v dx (2.2)

for all v ∈ C∞0 (Ω). The following assumptions are similar to those given in [14] with RN replaced

by the exterior domain Ω. We will show below that they are indeed sufficient to prove the existence

of a positive solution to our exterior domain problem.

(Ha) The function a : Ω→ R is positive and belongs to LN/2(Ω) ∩ L∞(Ω).

We call

λ1 = inf
u∈D1,2(Ω)\{0}

‖u‖2∫
au2

(Hg) The function g : R→ R+
0 is continuous, with g(s) = 0 for s ≤ 0. Furthermore, it satisfies

lim sup
s→0

g(s)

s1+β
<∞ and lim

s→∞

g(s)

s
=∞, (2.3)

where 0 < β ≤ 1 is a fixed constant.

(Hb) The measurable function b : Ω→ R is non-negative, not identically equal to zero, and satisfies

b(x) ≤ C1a(x)d(x)−β (2.4)

for some C1 > 0 and x ∈ Ω, where d : RN → R is the Aubin-Talenti instanton defined by

d(x) = (1 + |x|2)−(N−2)/2 (2.5)

Let Ω0 = {x ∈ Ω : b(x) = 0}. We assume either Ω0 has measure zero or Ω0 = int Ω0 (closure

in Ω0) with ∂Ω0 Lipschitz.

In the former case we set λ∗ = +∞, and in the latter case

λ∗ = inf
u∈D1,2(int Ω0)\{0}

∫
Ω0
‖∇u‖2∫

Ω0
au2
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By the unique continuation principle (cf. [22]), we have λ1 < λ∗.

(Hλ) The value λ is such that λ1 < λ < λ∗.

(Hh) The non-negative and not identically equal to zero function h(x) belongs to the space

h ∈ L1(Ω) ∩ Ls(Ω) for some s > N , and there exists a constant C2 > 0 such that for some

q > N/2,

RN/r‖h‖Lq(Ω\BR(0)) ≤ C2 for all R ∈ R+, (2.6)

with 1
q + 1

r = 1. Here BR(0) denotes the ball centered at zero with radius R.

(Hc) The parameter c is nonnegative.

We note that any function h(x) ∼= 1/|x|m for |x| large, where m > N , satisfies the hypothesis (Hh)

(see [6, 7] for details).

Remark 2.1. Under the above hypotheses, any positive weak solution u of (2.1) belongs to C1,α
loc (Ω).

Furthermore, lim|x|→∞ u(x) = 0.

Indeed, u satisfies

−∆u− λa(x)u ≤ 0

Therefore, by [13, Theorem 8.17], for any x ∈ Ω such that |x| > 3, we have for some C1 =

C1(‖a‖L∞(Ω), λ),

sup
B1(x)

u ≤ C1(‖u‖L2N/(N−2)(B2(x)) + 1) ≤ C‖u‖ ≤ C̃1.

Next, on the bounded domain S = {x : 1 < |x| < 4}, let M = sup|x|≥3 u (which is finite by above)

and v = u−M . Then v ≤ 0 on ∂S and v satisfies

−∆v − λa(x)v ≤ λa(x)M

So, by [13, Theorem 8.15], we have for some C2 = C2(M, ‖a‖L∞(Ω), λ),

sup
S
v ≤ C2(‖v‖L2(S) + 1) = C̃2
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Therefore u ≤ max{C̃1, C̃2 + M} on Ω, i.e. u ∈ L∞(Ω), and lim|x|→∞ u(x) = 0. From elliptic

regularity theory, it follows u ∈ C1,α
loc (Ω).

2.2 Related Problem

Following the approach of [14], we first introduce the auxiliary problem (2.12) below. By assumption

(Hg), there exist 0 < s0 ≤ 1 and C3 > 1 such that

g(s)

s
≤ λC3

C1
sβ for s ≤ s0.

We may assume C3 ≥ 1/sβ0 . We take

` =

(
1

C3

)1/β

(2.7)

so that

` ≤ s0. (2.8)

Using (2.4),

b(x)
g(s)

s
≤ λa(x)

(
s

`d(x)

)β
for s ≤ s0. (2.9)

where d is as in (2.5). We define

k(s) = sβ (2.10)

for s > 0, k(s) = 0 for s ≤ 0. Then

b(x)g(s) ≤ λa(x)sk

(
s

`d(x)

)
for s ≤ s0. (2.11)

We consider the equation


−∆u = λa(x)u

[
1− k

(
u

`d(x)

)]
− ch(x), x ∈ Ω

u = 0, x ∈ ∂Ω.

(2.12)

Now, instead of (Hλ), we assume
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(Hλ)′ The value λ is such that λ > λ1.

Theorem 2.2. Under (Ha), (Hλ)′, and (Hh), there exists c0 > 0 such that for all 0 ≤ c ≤ c0,

equation (2.12) has a positive weak solution uc ∈ D1,2(Ω) ∩ C1,α
loc (Ω). Furthermore, there exists

C4 > 0 such that for all 0 ≤ c ≤ c0, this weak solution uc satisfies

uc(x) ≥ C4

|x|N−2
for large |x|. (2.13)

In this section, by adapting the arguments used in [14] to our present case, we first prove existence

of a solution to (2.16) below. This solution will be used in the next section to establish Theorem

2.2. First, observe that the function `d(x) is a super solution of (2.12). Indeed, this easily follows

from −∆d = N(N − 2)d2∗−1 > 0 (2∗ = 2N/(N − 2)), and d > 0 on ∂Ω. Consider G : RN × R→ R

with G(x, u) := λa(x)
∫ u

0 sk
(

s
`d(x)

)
ds and the functional Ĩc : D1,2(Ω)→ R ∪ {+∞} defined by

Ĩc(u) =
1

2
‖u‖2 − λ

2

∫
Ω
a(x)(u+)2 dx+

∫
Ω
G(x, u) dx+ c

∫
Ω
h(x)udx (2.14)

if
∫

ΩG(x, u) dx < ∞ and Ĩc(u) = +∞ otherwise. We have used the standard notation u+ =

max{0, u}.

We define the set

N` = {u ∈ D1,2(Ω) : u ≤ `d(x) a.e. in Ω}, (2.15)

which is weakly closed in D1,2(Ω). The following results are proved in [14] for Ω = RN , but their

proofs carry over to our case with minimal change.

Lemma 2.3. Let L ≥ 0. The functional Ĩc is coercive on N`, uniformly in c with 0 ≤ c ≤ L, i.e. for

each C > 0, there exists R > 0 such that for all 0 ≤ c ≤ L and u ∈ N`, if ‖u‖ > R then Ĩc(u) > C.

Since the functional Ĩc is weakly lower-semicontinuous and coercive on N`, it admits a minimizer

ũc in N` for each c ≥ 0. It is not difficult to see that the derivative Ĩ ′c(ũc)ϕ is well defined for any

ϕ ∈ D1,2(Ω) ∩ L∞(Ω) with compact support, as sup ũc is uniformly bounded by `d (look to Lemma

2.10 below, where a similar result is proved). We therefore have:
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Lemma 2.4. The function ũc is a solution to the equation

−∆u = λa(x)u+ − λa(x)uk

(
u

`d

)
− ch(x) (2.16)

We finish this section by stating the following simple but useful result.

Lemma 2.5. There exists c1, C5 > 0 such that for 0 ≤ c ≤ c1, infN` Ĩc ≤ −C5 < 0, which implies

that there exist 0 < r0 < R0 such that

0 ≤ c ≤ c1 =⇒ r0 ≤ ‖ũc‖ ≤ R0 (2.17)

Proof. The fact that infN` Ĩc ≤ −C5 < 0 for 0 ≤ c ≤ c1 for 0 < c1 sufficiently small is easily seen.

Now (2.17) follows from Lemma 2.3 and by observing that since

Ĩc(u) ≥ −C‖u‖2 +

∫
Ω
G(·, u)− C‖u‖ ≥ −C‖u‖2 − C‖u‖,

we have

lim inf
u→0

Ĩc(u) ≥ 0.

2.3 A Positive Solution for the Related Problem

The minimizers ũc of Ĩc obtained above, and Lemmas 2.3 and 2.5 and (2.17) are now used to

complete the proof of Theorem 2.2 as in [14]. The first step is to consider the behavior of w, the

unique solution to −∆w = h(x) in D1,2(Ω) as |x| → ∞. As we are now in an exterior domain and

not the whole space RN , the proof of [14, Lemma 4.1] (which is [1, Lemma 4]) has to be adopted to

our present case. We have:

Lemma 2.6. Let h ∈ L1(Ω) and suppose (2.6) holds. Then the equation −∆w = h(x), w ∈ D1,2(Ω)
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has a unique solution, and there exists c > 0 such that

w(x) ≤ C

|x|N−2
for all x ∈ Ω.

Proof. If −∆w = h(x), by the Green’s formula in Section 1.4, we have that

w(x) = CN

∫
Ω

(
1

|x− y|N−2
− 1

|y|N−2
∣∣x− y

|y|2
∣∣N−2

)
h(y) dy,

where CN is a constant depending only on N . We first write

w(x) = CN

∫
Ω

1

|x− y|N−2
h(y) dy − CN

∫
Ω

1

|y|N−2
∣∣x− y

|y|2
∣∣N−2

h(y) dy = J1 − J2.

We have that

(N − 2)

∫ ∞
|x−y|

1

tN−1
dt =

(N − 2)

(2−N)tN−2

∣∣∣∣∞
|x−y|

=
1

|x− y|N−2
,

and so, using Fubini’s Theorem, and letting

h̃(x) =


h(x), x ∈ Ω,

0, x /∈ Ω,

we have

J1 = C

∫
Ω

(∫ ∞
|x−y|

1

tN−1
dt

)
h(y) dy = C

∫ ∞
0

(∫
{|x−y|≤t}

1

tN−1
h̃(y) dy

)
dt

= C

∫ ∞
0

1

tN−1
‖h̃‖L1(Bt(x)) dt.

Using the fact that h̃ is nonnegative, we may write

∫ ∞
0

1

tN−1
‖h̃‖L1(Bt(x)) dt =

∫ ∞
|x|/2

1

tN−1
‖h̃‖L1(Bt(x)) dt+

∫ |x|/2
0

1

tN−1
‖h̃‖L1(Bt(x)) dx = K1 +K2.
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Note first that

K1 =

∫ ∞
|x|/2

1

tN−1
‖h̃‖L1(Bt) dt ≤ ‖h‖L1(Ω)

∫ ∞
|x|/2

1

tN−1
dt = C‖h‖L1(Ω)

1

|x|N−2
=

C

|x|N−2
,

while

K2 =

∫ |x|/2
0

1

tN−1
‖h̃‖L1(Bt(x)) dt ≤ C

∫ |x|/2
0

t1−N+N/r‖h̃‖Lq(Bt(x)) dt

≤ C‖h̃‖Lq(B|x|/2(x))

(
|x|
2

)2−N+N/r

≤ C‖h̃‖Lq(RN\B|x|/2(0))

(
|x|
2

)N/q
· |x|2−N ≤ C

|x|N−2

by (2.6) and so

J1 ≤
C

|x|N−2
.

Next, note that f(x, y) = |y|2−N
∣∣∣x− y

|y|2
∣∣∣2−N is a continuous function in Ω× Ω, since for x, y ∈ Ω,

y 6= 0 and
y

|y|2
∈ B, so

∣∣∣x− y

|y|2
∣∣∣ 6= 0. Thus for |x| > 2,

∣∣∣x− y

|y|2
∣∣∣ ≥ |x| − 1 ≥ |x|

2
,

and therefore

J2 .
C

|x|N−2

∫
Ω

h(y)

|y|N−2
dy ≤ C

|x|N−2

since h ∈ L1(Ω). Therefore

w(x) ≤ C

|x|N−2
for all x ∈ Ω.

The proof is complete.

Now we can rewrite (2.16) as:

−∆(ũc + cw) = λaũ+
c

[
1− k

(
ũc

`d(x)

)]
. (2.18)

The remaining steps are as follows:

1. Observing that ũc1 is a sub solution of (2.16) for 0 ≤ c ≤ c1, we minimize the functional Ĩc
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over the set

M = {u ∈ D1,2(Ω) : ũc1 ≤ u ≤ `d(x) a.e. in Ω} (2.19)

to obtain a new solution uc of (2.18) for 0 ≤ c ≤ c1 with uc ≥ ũc1 , i.e.

−∆uc = λa(x)u+
c − λa(x)uck

(
uc

`d(x)

)
− ch(x). (2.20)

Note that as u+
c ≤ `d(x), k(s) ≡ 0 for s ≤ 0 and (Hh), standard elliptic regularity theory (see

the argument in Remark 2.1 above) implies that uc ∈ C
1,α
loc (Ω).

2. Using Lemma 2.5 and (2.17), we have that Ĩc(uc) < 0 for 0 ≤ c ≤ c1. This in particular

implies that uc1 = ũc1 cannot be nonpositive in Ω, and therefore there exists x0 = x0(c1) and

ρ > 0 such that Bρ(x0) ⊂ Ω and

inf
Bρ(x0)

ũc1 > 0.

We then fix ε0 sufficiently small satisfying

ε0G̃Ω(x, x0) < ũc1(x) ≤ uc(x) if x ∈ ∂Bρ(x0), and 0 ≤ c ≤ c1,

where G̃Ω(x, x0) is the Green’s function for Ω (cf. Section 1.4).

3. Using (2.19) and (2.20), we get

∫
Ω
∇(uc + cw) · ∇ϕdx =

∫
Ω
λa(x)u+

c

[
1− k

(
uc

`d(x)

)]
ϕdx for all ϕ ∈ D1,2(Ω)

and ∫
Ω
∇
(
εG̃Ω(x, x0)

)
· ∇ϕdx = 0.

for all ϕ ∈ D1,2(Ω) such that ϕ(x) = 0 on Bρ(x0). Subtracting these two equations yields

∫
Ω
∇
(
uc + cw − ε0G̃Ω(x, x0)

)
· ∇ϕdx =

∫
Ω
λa(x)u+

c

[
1− k

(
uc

`d(x)

)]
ϕdx (2.21)

for all ϕ ∈ D1,2(Ω) such that ϕ(x) = 0 on Bρ(x0).
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4. Considering the set

Sc =
{
x ∈ Ω \Bρ(x0) : ε0G̃Ω(x, x0) > (uc + cw)(x)

}
,

we let ϕ =
(
uc + cw − ε0G̃Ω(x, x0)

)
χSc ∈ D1,2(Ω). Note that Sc ∩ ∂Ω = ∅ since G̃Ω(x, x0) = 0

for x ∈ ∂Ω, and so ϕ is less than or equal to zero and has support in Ω \Bρ(x0). Using this

function ϕ in (2.21) gives

∫
Sc

∣∣∇(uc + cw − ε0G̃Ω(x, x0)
)∣∣2 ≤ 0,

meaning that Sc = ∅ and so ε0G̃Ω(x, x0) ≤ (uc + cw)(x) for all x ∈ Ω \Bρ(x0).

By the Hopf lemma (cf. Lemma 1.4), infx∈∂Ω
∂
∂ν G̃Ω(x, x0) > 0. Additionally, since G̃Ω(x, x0) ≥

C/|x|N−2 for |x| large, we can combine these steps with Lemma 2.6 to conclude that here exists

0 < c0 ≤ c1 such that for all 0 ≤ c ≤ c0 the function uc is positive and uc(x) ≥ C3/|x|N−2 for all

x ∈ Ω large. This completes the proof of Theorem 2.2.

2.4 Positive Solution for Ω

We now turn to equation (3.1). The outline of the proof is similar to that of the proof of [14,

Theorem 5.1], but with one key difference. In [14], the nonlinearity g(u) is approximated by a series

of cutoff functions, defined as polynomials of the form j(s) = sp for some 1 < p ≤ (N + 2)/(N − 2).

This is used to show that the corresponding functionals to the original problem with g(u) replaced

with j(u) are coercive and differentiable in the direction of functions v ∈ D1,2(RN ) with compact

support.

The approach we take here shows that this is not needed. We instead work with the original

nonlinearity g(u) and show that the corresponding functional Ic (see (2.24) below) is coercive and

differentiable in slightly different directions, as shown in Lemmas 2.8 and 2.10. Our results are

summarized as:

Theorem 2.7. Under (Ha), (Hb), (Hg), (Hλ) and (Hh), there exists c0 > 0 such that for all

0 ≤ c ≤ c0, equation (2.1) has a positive weak solution uc ∈ D1,2(Ω) ∩ C1,α
loc (Ω). Furthermore, there
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exists C6 > 0 such that for all 0 ≤ c ≤ c0 this weak solution satisfies

uc(x) ≥ C6

|x|N−2
for large |x|. (2.22)

Proof. We take the function k as in (2.10) and apply Theorem 2.2 to obtain a positive solution uc

of (2.12) for 0 ≤ c ≤ c0. Using (2.11) and

uc ≤ `d(x) ≤ ` ≤ s0 (2.23)

(see (2.8)), the function uc therefore satisfies

−∆uc ≤ λa(x)uc − b(x)g(uc)− ch(x),

and so is a sub solution to (2.1). For each 0 ≤ c ≤ c0 we define the weakly closed set

Mc = {u ∈ D1,2(Ω) : uc ≤ u a.e. in Ω}.

Let G(u) :=
∫ u

0 g(s) ds and define the functional Ic : Mc → R ∪ {+∞} by

Ic(u) =
1

2
‖u‖2 − λ

2

∫
Ω
a(x)u2 dx+

∫
Ω
b(x)G(u) dx+ c

∫
Ω
h(x)u dx (2.24)

if
∫

Ω b(x)G(u) dx <∞ and Ic(u) = +∞ otherwise. Again, one can easily see (look at the proof of

Theorem 6 in [11]) that:

Lemma 2.8. The functional Ic is coercive on Mc, uniformly in c with 0 ≤ c ≤ c0, i.e. for each

L > 0, there exists R > 0 such that for all 0 ≤ c ≤ c0 and u ∈Mc, if ‖u‖ > R, then Ic(u) > L.

As Ic is weakly lower semi-continuous on the weakly closed set Mc, inf{Ic(u) : u ∈ Mc} is

achieved as some uc ∈ Mc with uc ≥ uc. To show that uc is a weak solution of our problem, we

need the differentiability of

J(u) :=

∫
Ω
b(x)G(u) dx
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in certain directions. First we show:

Lemma 2.9. The minimizer uc of Ic on Mc is in L∞(Ω).

Proof. Let ϕ ∈ C∞0 (Ω) such that ϕ ≤ 0. Motivated by the proof of [23, Theorem 2.4], let ε > 0, and

define vε = max{uc, uc+εϕ}. Note that vε can be written as uc+εϕ+ϕε, where ϕε =
[
uc−(uc+εϕ)

]+
.

Therefore vε ∈Mc, and so Ic(vε) ≥ Ic(uc), since uc is the minimizer of Ic on Mc.

Since the set Mc is convex, for all 0 ≤ t ≤ 1, the function (1− t)uc + tvε = uc + t(vε − uc) is also

in Mc, and Ic(uc + t(vε − uc)) ≥ Ic(uc) for all 0 ≤ t ≤ 1. Let wε = vε − uc. We then have that

I(uc + twε) =
1

2

∫
Ω
|∇(uc + twε)|2 dx− λ

2

∫
Ω
a(x)(uc + twε)

2 dx+

∫
Ω
b(x)G(uc + twε) dx

+ c

∫
Ω
h(x)(uc + twε) dx

=
1

2

∫
Ω
|∇uc|2 dx+ t

∫
Ω
∇uc∇wε dx+

t2

2

∫
Ω
|∇wε|2 dx− λ

2

∫
Ω
a(x)u2

c dx

− λt
∫

Ω
a(x)ucwε −

λt2

2

∫
Ω
a(x)w2

ε dx+

∫
Ω
b(x)G(uc + twε) dx

+ c

∫
Ω
h(x)uc dx+ ct

∫
Ω
h(x)wε dx

≥ 1

2

∫
Ω
|∇uc|2 −

λ

2

∫
Ω
a(x)u2

c dx+

∫
Ω
b(x)G(uc) dx+ c

∫
Ω
h(x)uc dx = I(uc)

Canceling out the identical terms from both sides and rearranging, we have that

t

∫
Ω
∇uc∇wε dx− λt

∫
Ω
a(x)ucwε dx

≥ E(t2) +

∫
Ω
b(x)

[
G(uc)−G(uc + twε)

]
dx− ct

∫
Ω
h(x)wε dx. (2.25)

Here E(t2) represents all terms with a t2 in front. Note that G(uc)−G(uc + twε) is nonnegative.

Indeed, wε = vε − uc ≤ 0 (because ϕ ≤ 0), and so uc + twε ≤ u0, and G is increasing since g ≥ 0.

Similarly, −ct
∫

Ω h(x)wε ≥ 0. Dividing both sides of (2.25) by t and taking the limit as t→ 0, we

then have

∫
Ω
∇uc∇wε dx− λ

∫
Ω
a(x)ucwε dx
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≥ lim
t→0

E(t2)

t
+ lim
t→0

∫
Ω b(x)

[
G(uc)−G(uc + twε)

]
dx

t
− c

∫
Ω
h(x)wε dx ≥ 0

for all ε > 0. Writing wε = εϕ+ ϕε, we get

∫
Ω
∇uc

(
ε∇ϕ+∇ϕε) dx− λ

∫
Ω
a(x)uc(εϕ+ ϕε) ≥ 0,

or, equivalently,

ε

∫
Ω
∇uc∇ϕdx− ελ

∫
Ω
a(x)ucϕdx ≥ −

∫
Ω
∇uc∇ϕε dx+ λ

∫
Ω
a(x)ucϕ

ε dx (2.26)

Dividing both sides of (2.26) by ε, we obtain

∫
Ω
∇uc∇ϕdx− λ

∫
Ω
a(x)ucϕdx ≥ 1

ε

[
−
∫

Ω
∇uc∇ϕε dx+ λ

∫
Ω
a(x)ucϕ

ε dx

]
. (2.27)

Since uc is a sub solution to (2.1), we have (using ϕε =
[
uc − (uc + εϕ)

]+ ≥ 0):

∫
Ω
∇uc∇ϕε dx− λ

∫
Ω
a(x)ucϕ

ε dx+

∫
Ω
b(x)g(uc)ϕ

ε dx+ c

∫
Ω
h(x)ϕε dx ≤ 0,

and since the last two terms are positive, this implies that

∫
Ω
∇uc∇ϕε dx− λ

∫
Ω
a(x)ucϕ

ε dx ≤ 0. (2.28)

Dividing the left side of (2.28) by ε and adding it to the right side of (2.27) yields

∫
Ω
∇uc∇ϕdx− λ

∫
Ω
a(x)ucϕdx ≥ 1

ε

[
−
∫

Ω
∇uc∇ϕε dx+ λ

∫
Ω
a(x)ucϕ

ε dx

+

∫
Ω
∇uc∇ϕε dx− λ

∫
Ω
a(x)ucϕ

ε dx

]

=
1

ε

[∫
Ω
∇(uc − uc)∇ϕε dx− λ

∫
Ω
a(x)(uc − uc)ϕε dx

]
. (2.29)
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Now, since ϕε =
[
uc − (u+ εϕ)

]+
,

∇ϕε = ∇
[
uc − (u+ εϕ)

]+
=
[
∇(uc − u)− ε∇ϕ

]
χΩε ,

where Ωε = {x ∈ Ω : uc(x) + εϕ(x) < uc(x) ≤ uc(x)}. Therefore (2.29) can be written as

1

ε

∫
Ωε

|∇(uc − uc)|2 dx−
∫

Ωε

∇(uc − uc)∇ϕdx− λ

ε

∫
Ωε

a(x)(uc − uc)
[
uc − (u+ εϕ)

]+
dx. (2.30)

Both the first and third terms of (2.30) are positive, so subtracting them from the above inequality

gives ∫
Ω
∇uc∇ϕdx− λ

∫
Ω
a(x)ucϕdx ≥ −

∫
Ωε

∇(uc − uc)∇ϕdx.

Note that |Ωε| → 0 as ε→ 0. Hence by absolute continuity of the Lebesgue integral we finally obtain

∫
Ω
∇uc∇ϕdx− λ

∫
Ω
a(x)ucϕdx ≥ 0

for ϕ ≤ 0. Then replacing ϕ with ψ = −ϕ, we have that

∫
Ω
∇uc∇ψ dx− λ

∫
Ω
a(x)ucψ dx ≤ 0

for all ψ ∈ C∞0 (Ω), ψ ≥ 0, i.e.

−∆uc − λa(x)uc ≤ 0.

Then, by the same argument as immediately following Remark 2.1, we have that uc ∈ L∞(Ω).

Lemma 2.10. Suppose v ∈ D1,2(Ω) ∩ L∞(Ω) with compact support, and let uc be the minimizer

of the functional Ic on the set Mc. Then Ic is differentiable at uc in the direction v as

d

dt

∫
Ω
b(x)G(uc + tv) dx

∣∣∣∣∣
t=0

=

∫
Ω
b(x)g(uc) dx.

Proof. By Lemma 2.9, we have that uc ∈ L∞(Ω). We must first show that J(uc + tv) =
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∫
Ω b(x)G(uc + tv) dx is defined for |t| < δ with δ sufficiently small. Now we see that

G(uc + tv)−G(uc) = g(uc + stv)tv (0 ≤ s = s(t, x) ≤ 1)

and ∫
Ω
b(x)g(uc + stv)|v|dx ≤

∫
Ω
C1a(x)d(x)−βg(uc + stv)|v| dx

using (2.4) and d as in (2.5). Since uc, v ∈ L∞(Ω) and g is continuous, we have that g(uc+stv) <∞,

say g(uc + stv) ≤M = M(‖u‖L∞(Ω), ‖v‖L∞(Ω)). So

∫
Ω
b(x)g(uc + tv)|v| dx ≤MC1

∫
Ω
a(x)d(x)−β|v|dx. (2.31)

Since v has compact support, say v 6= 0 on Ωv ( Ω, we can then use that a(x) ∈ L∞(Ω) and d(x) is

continuous (and nonzero) to get

∫
Ω
a(x)(1 + |x|2)β(N+2)/2|v| dx = ‖a‖L∞(Ω)

∫
Ωv

d(x)−β|v|dx

≤ C = C(β, ‖a‖L∞(Ω), |Ωv|, ‖v‖L∞(Ω)) (2.32)

Combining (2.31) and (2.32), we have that J(uc + tv) is well-defined for any |t| < δ for δ sufficiently

small. Now, for the differentiability of J at uc in the direction of v, we have

lim
t→0

J(uc + tv)− J(uc)

t
= lim

t→0

1

t

∫
Ω
b(x)g(uc + stv)tv dx = lim

t→0

∫
Ω
b(x)g(uc + stv)v dx.

We need to show that b(x)g(uc + stv)v(x) ≤ k(x) ∈ L1(Ω). As shown above,

|b(x)g(uc + tv)v(x)| ≤ Cd(x)−β|v(x)|

where C depends on ‖u‖L∞(Ω), ‖v‖L∞(Ω), and ‖a‖L∞(Ω). Since v has compact support, d(x)−βv(x) ∈

L1(Ω). So, Lebesgue’s Dominated Convergence Theorem implies that J is differentiable at uc in the

direction of v ∈ D1,2(Ω) ∩ L∞(Ω) with compact support, and the lemma is proved.
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Combining Lemmas 2.9 and 2.10, we can now argue as in the proof of [23, Theorem 2.4] to see

that uc is a critical point of the functional Ic and so is a weak solution to (2.1).
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Chapter 3

Solution in Ω ⊂ RN , N ≥ 3, by Kelvin Transform

In this chapter, we prove the existence of a positive solution to equation (2.1) in Ω = RN \B(0, 1)

for N ≥ 3 using a different approach than the one employed in Chapter 2. Our approach in this

chapter is to transform the equation from the exterior domain to the unit ball B = B(0, 1) using

the Kelvin transform with Lemma 1.10 in mind, and solve the equation there. The technique for

solving the transformed equation (3.4) below in B is adapted from [14], with one major difference,

which will be expanded on below.

3.1 Application of the Kelvin Transform

Again let B = B(0, 1) be the unit ball in RN , N ≥ 3, and let Ω = RN \B. We seek conditions to

prove the existence of positive solutions of the problem


−∆u = λa(x)u− b(x)g(u)− ch(x), x ∈ Ω

u = 0, x ∈ ∂Ω = ∂B,

(3.1)

where, as in Chapter 2, the nonlinearity g(s) satisfies:

(Hg) The function g : R→ R+
0 is continuous, with g(s) = 0 for s ≤ 0. Furthermore, it satisfies

lim sup
s→0

g(s)

s1+β
<∞ and lim

s→∞

g(s)

s
=∞, (3.2)

where 0 < β ≤ 1 is a fixed constant.

By Lemma 1.10, If u is a weak D1,2(Ω) solution of (3.1), then its Kelvin transform û is a weak

H1
0 (B) solution to the boundary value problem
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
−∆û =

λ

|y|N+2
a
( y

|y|2
)
u
( y

|y|2
)
− 1

|y|N+2
b
( y

|y|2
)
g

(
u
( y

|y|2
))
− c

|y|N+2
h
( y

|y|2
)
, y ∈ B

û = 0, y ∈ ∂B,

or 
−∆û = λã(y)û− b̃(y)g(|y|N−2û)− ch̃(y), y ∈ B

û = 0, y ∈ ∂B,
(3.3)

where ã(y) = |y|−4a
( y
|y|2
)
, b̃(y) = |y|−N−2b

( y
|y|2
)
, and h̃(y) = |y|−N−2h

( y
|y|2
)
.

3.2 Direct Method in the Ball

We consider the problem of existence of positive weak solutions for the equation


−∆u = λã(x)u− b̃(x)g(|x|N−2u)− ch̃(x), x ∈ B

u = 0, x ∈ ∂B
(3.4)

in H1
0 (B). Note that, considering (3.2) and (3.3) above, we have:

lim sup
s→0

g(|x|N−2s)

s1+β
≤ C|x|(N−2)(1+β) and lim

s→∞

g(|x|N−2s)

s
=∞ (3.5)

for all x ∈ B \ {0}, where 0 < β ≤ 1 is a fixed constant.

Other assumptions on the heterogeneous coefficients will be stated below. For reference, we

state below the following result (cf. [14, Lemma 7.1], part (i)) concerning the existence of suitable

superharmonic functions in B:

Lemma 3.1 ([14, Lemma 7.1]). Let r > 0 and y0 ∈ B such that 1 − |y0| > 3r, and G̃B be the

Green’s function for B (cf. Section 1.4). Then there exists a function z ∈ C2(B), such that 0 < z in

B, z = 0 on ∂B, z is superharmonic in B and harmonic in B \Br(y0). The function z(x) further

satisfies

cG̃B(x, y0) ≤ z(x) ≤ CG̃B(x, y0) for B \B2r(y0) (3.6)
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for some constants c, C > 0, and therefore

c̃ · dist(x, ∂B) ≤ z(x) ≤ C̃ · dist(x, ∂B) (3.7)

for some constants c̃, C̃ > 0.

Our approach here is similar to the one taken in Chapter 2 to deal with equation (2.1) in the

exterior domain Ω, and similarly involves the following steps:

1. First we consider an auxiliary equation using the same ideas as in Section 2.2, where now the

Aubin-Talenti instanton is replaced by the function z(x) given in Lemma 3.1 above. We then

prove the existence of positive solutions uc for the auxiliary equation for 0 ≤ c ≤ c0 (with

some c0 > 0).

2. Now, arguing as in Section 2.4, using uc as sub solutions to (3.4), we obtain a solution to our

problem by minimizing the corresponding energy functional on the set Mc = {u ∈ H1
0 (B) :

uc ≤ u a.e. in B}.

To start this process, we first state our assumptions:

(Hã) The function ã : B → R is positive and belongs to L∞(B).

We call

λ̃1 = inf
u∈H1

0 (B)\{0}

‖u‖2∫
B ãu

2
. (3.8)

Furthermore, as stated above, g(|x|N−2u) satisfies (3.5).

The assumption on b̃(x) is related to the construction of the auxiliary equation, whose positive

weak solutions will provide sub solutions to (3.4), as in Chapter 2. In fact, we need

b̃(x)g(|x|N−2s) ≤ Cã(x)s

(
s

z(x)

)β

for all 0 < s sufficiently small and z as in Lemma 3.1. Considering (3.5), we now have

b̃(x)g(|x|N−2s) ≤ b̃(x)|x|(N−2)(1+β)s · sβ, for 0 < s sufficiently small.
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Thus, taking (3.6) and (3.7) into account, we are going to assume:

(Hb̃) The measurable function b̃ : B → R is nonnegative, not identically equal to zero, and satisfies

b̃(x) ≤ C1ã(x)(1− |x|)−β|x|−(N−2)(1+β). (3.9)

for some C1 > 0. Note that (Hb̃) allows b̃(x) to blow up as |x| → 0 or as |x| → 1−. Let

B0 = {x ∈ B : b̃(x) = 0}. We assume either B0 has measure zero of B0 = intB0 (closure in

B0) with ∂B0 Lipschitz.

In the former case we set λ̃∗ = +∞, and in the latter case

λ̃∗ = inf
u∈H1

0 (intB0)\{0}

∫
B0
|∇u|2∫

B0
ãu2

. (3.10)

(Hh̃) The nonnegative and not identically equal to zero function h̃ belongs to the space Ls(B) for

some s > N .

(Hλ) The value λ is such that λ̃1 < λ < λ̃∗.

(Hc) The parameter c is nonnegative.

Similar to Chapter 2, the auxiliary equation is given as


−∆u = λã(x)u

[
1− k

(
u

`z(x)

)]
− ch̃(x), x ∈ B

u = 0, x ∈ ∂B,
(3.11)

where, as mentioned before, we make use of the function z(x) as given in Lemma 3.1(i). Using

similar arguments as in Chapter 2, we get positive solutions zc for 0 < c ≤ c1. These will be our

sub solutions to (3.4). Now, as in Section 2.4 and mentioned above, we consider M̃c = {u ∈ H1
0 (B) :

zc ≤ u a.e. in B} and show that the corresponding functional to equation (3.4) is coercive on M̃c

and that it is differentiable in certain directions. Since this takes on a slightly different form than in

both [14] and Section 2.4, we provide a proof below. To this end, we let G(u) :=
∫ u

0 g(s) ds and

41



define the functional Ĩc : M̃c → R ∪ {+∞} by

Ĩc(u) =
1

2
‖u‖2 − λ

2

∫
B
ã(x)u2 dx+

∫
B
b̃(x)

G(|x|N−2u)

|x|N−2
dx+ c

∫
B
h̃(x)udx, (3.12)

if
∫
B b̃(x)G(|x|N−2u)/|x|N−2 dx <∞ and Ĩc(u) = +∞ otherwise. We then claim the following:

Lemma 3.2. The functional Ĩc is coercive in M̃c, uniformly in c with 0 ≤ c ≤ c1, i.e. for each

L > 0, there exists R > 0 such that for all 0 ≤ c ≤ c1 and u ∈ M̃c, if ‖u‖ > R, then Ĩc(u) > L.

Proof. The argument is similar to the one in [11, proof of Theorem 6]. Suppose by contradiction

there exists cn ∈ [0, c0] and un ∈Mcn with ‖un‖ → ∞, such that Icn(un) ≤ C. Then we would have

p2
n :=

∫
B
ã(x)u2

n dx→ +∞

since G is nonnegative and
∫
B h̃(x)u ≥ 0 for all u ∈ M̃c. We define a sequence of functions, (vn),

with vn = un/pn, so that
∫
B ã(x)v2

n dx = 1 and

1

2
‖vn‖2 −

λ

2
+

1

p2
n

∫
B
b̃(x)

G(|x|N−2pnvn)

|x|N−2
dx+

cn
pn

∫
B
h̃(x)vn dx ≤ C

p2
n

(3.13)

Inequality (3.13) implies ‖vn‖ is uniformly bounded in n. Up to a subsequence, vn ⇀ v in H1
0 (B)

and vn → v a.e. in B. The function v is nonnegative. From the assumption (3.2), we have that

lims→+∞G(s)/s2 = +∞. Taking the limit inferior of both sides of (3.13), and using Fatou’s lemma,

1

2
‖v‖2 − λ

2
+

∫
{x∈B:v(x)>0}

b(x)× (+∞)v2 dx ≤ 0.

Therefore the function v must be zero almost everywhere on the set where the function b(x) is

positive, i.e. (aside from a set of measure zero) v must have support in B0. We also obtain ‖v‖2 ≤ λ.

On the other hand, since
∫

Ω a(x)v2
n dx = 1 and

∫
Ω a(x)v2

n dx→
∫

Ω a(x)v2 dx, the function v 6≡ 0 and∫
Ω a(x)v2 dx = 1. If B0 has measure zero, then we are done. Otherwise, (Hb̃) implies v ∈ H1

0 (intB0)

and

λ̃∗ ≤
‖v‖2∫

B a(x)v2 dx
≤ λ
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which contradicts λ < λ̃∗. The lemma is proved.

Next, since Ĩc is coercive on the weakly closed set M̃c, for 0 ≤ c ≤ c1 it has a minimizer zc. As

in Section 2.4, we seek to prove differentiability of

J(u) :=

∫
B
b̃(x)

G(|x|N−2u)

|x|N−2
dx, (3.14)

which requires the following result:

Lemma 3.3. The minimizer zc of Ĩc on M̃c is in L∞(B).

The proof follows the same structure as the proof of Lemma 2.9. With these results at hand, we

are then able to prove the following:

Lemma 3.4. Suppose v ∈ H1
0 (B) ∩ L∞(B), and let zc be the minimizer of the functional Ĩc on the

set M̃c. Then Ĩc is differentiable at zc in the direction v as

d

dt

∫
B

b̃(x)G(|x|N−2(zc + tv))

|x|N−2
dx

∣∣∣∣∣
t=0

=

∫
B
b̃(x)g(|x|N−2zc) dx.

Proof. We show first that J(zc + tv) is defined for |t| < δ with δ sufficiently small and v ∈

H1
0 (B) ∩ L∞(B). We have:

G(|x|N−2(zc + tv))−G(|x|N−2zc) = |x|N−2g(|x|N−2(zc + stv))tv.

and

∫
B
b̃(x)g(|x|N−2(zc + stv))|v|dx ≤

∫
B
ã(x)(1− |x|)−β|x|−(N−2)(1+β)g(|x|N−2(zc + stv))|v|dx

using (3.5) and (5.8). Now, since zc, v ∈ L∞(B), for |x| < δ = δ(‖zc‖L∞(B), ‖v‖L∞(B)), we have

g(|x|N−2(zc + stv)) ≤ C(|x|N−2)1+β.
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So, using ã(x) ∈ L∞(B) and recalling that |x| ≤ 1, we have

∫
B
b̃(x)g(|x|N−2(zc + stv))|v|dx ≤

∫
B
ã(x)(1− |x|)−β|x|−(N−2)(1+β)g(|x|N−2(zc + stv))|v|dx

≤ C1

∫
|x|<δ

|v|+ C(δ)

∫
|x|>δ

g(|x|N−2(zc + stv))|v|(1− |x|)−β dx

≤ C(δ)

(
‖v‖L2(B) +

∫
B

|v|2

(1− |x|)2β
dx

)

But since we are assuming β ≤ 1, using the Hardy inequality for bounded domains (cf. Lemma 1.2)

implies ∫
B

|v|2

(1− |x|)2β
dx ≤

∫
B

|v|2

(1− |x|)2
dx ≤ C

∫
B
|∇v|2 dx.

Therefore J(zc+tv) is well-defined for any |t| < δ for δ sufficiently small. Now, for the differentiability

of J at zc in the direction of v, we have

lim
t→0

J(zc + tv)− J(zc)

t
= lim

t→0

1

t

∫
B
b̃(x)g(|x|N−2(zc + stv))tv dx = lim

t→0

∫
B
b̃(x)g(|x|N−2(zc + stv))v.

We need to show that b̃(x)g(|x|N−2(zc + stv))v(x) ≤ k(x) ∈ L1(B). As shown above,

b̃(x)g(|x|N−2(zc + stv))v(x) ≤ C1χ{|x|<δ}v(x) + C2χ{|x|>δ}v(x)(1− |x|)−β,

where C1 and C2 depend on δ, ‖zc‖L∞ , and ‖v‖L∞(B). Again since β ≤ 1, by the Hardy inequality

for bounded domains, we have that v(x)(1− |x|)−β ∈ L1(B). Therefore J is differentiable at zc in

the direction of v ∈ H1
0 (B) ∩ L∞(B).

Combining all of the above, we then have the following result (cf. [14, Theorem 7.3]):

Theorem 3.5. Under (Hã), (Hg), (Hb̃), (Hλ) and (Hh̃), there exists c1 > 0 such that for all

0 ≤ c ≤ c1, equation (3.4) has a positive weak solution zc ∈ H1
0 (B) ∩ C1,α

loc (B).

3.3 Return to External Domain

Now that we have a positive solution zc to equation (3.4), we consider ẑc, the Kelvin transform of zc,

which will provide a solution to (3.1) in the exterior domain Ω. From Theorem 1.11, we know that
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the Kelvin transform maps H1
0 (B) to the space D1,2(Ω), and so ẑc will be in D1,2(Ω). Throughout

this section, we use the variable y inside the ball B and x in the exterior domain Ω.

We first state the assumption in Theorem 3.5 in terms of the original data: a(x), b(x), and h(x).

Since by (Hã), ã ∈ L∞(B), we have

sup
y∈B
|ã(y)| = sup

y∈B

∣∣∣∣ 1

|y|4
a
( y

|y|2
)∣∣∣∣ <∞.

Therefore we require:

(Ha)′ The function a : Ω→ R is positive and belongs to L∞(Ω; |x|4).

Recall that

λ1 = inf
u∈D1,2(Ω)\{0}

‖u‖2∫
Ω au

2
,

which, since by Theorem 1.11, ‖u‖2
H1

0 (B)
= ‖û‖2D1,2(Ω) and

∫
B ãu

2 =
∫

Ω aû
2, satisfies λ1 = λ̃1.

From (5.8), we have that

1

|y|N+2
b
( y

|y|2
)
≤ C1

1

|y|4
a
( y

|y|2
)

(1− |y|)−β|y|−(N−2)(1+β)

for some constant C1 > 0 and y ∈ B. Again with x =
y

|y|2
∈ Ω, this becomes

b(x) ≤ C1|x|β(N−2)a(x)

(
1−

∣∣∣∣ x|x|2
∣∣∣∣)−β = C1|x|β(N−2)a(x)

(
|x| − 1

|x|

)−β
= C1a(x)

|x|β(N−1)

(|x| − 1)β

In particular, since β > 0, taking noted of (Ha)′ we observe that b(x) can be unbounded as |x| → 1+

as well as |x| → ∞ (at least for N sufficiently large). We therefore require

(Hb)′ The function b : Ω→ R is non-negative, not identically equal to zero, and satisfies

b(x) ≤ C1a(x)
|x|β(N−1)

(|x| − 1)β
(3.15)

for some 0 < β ≤ 1, C1 > 0 and all x ∈ Ω. Now, with Ω0 = {x ∈ Ω : b(x) = 0} ( Ω, we

require either Ω0 has measure zero or Ω0 = int Ω0 (closure in Ω0) with ∂Ω0 Lipschitz. Note
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that Ω0 may now be unbounded as well.

In the former case we set λ∗ = +∞, and in the latter case

λ∗ = inf
u∈D1,2(int Ω0)\{0}

∫
Ω0
|∇u|2∫

Ω0
au2

= inf
û∈H1

0 (intB0)\{0}

∫
B0
|∇û|2∫

B0
ãû2

= λ̃∗

For the function h, we needed only that h̃ ∈ Ls(B) for some s > N , meaning that

∫
B

∣∣∣∣ 1

|y|N+2
h
( y

|y|2
)∣∣∣∣s dy <∞.

Using the properties of the Kelvin transform (cf. Section 1.3), we have

∫
B

∣∣∣∣ 1

|y|N+2
h
( y

|y|2
)∣∣∣∣s dy =

∫
B

1

|y|(N+2)s
h
( y

|y|2
)s

dy =

∫
Ω
|x|(N+2)sh(x)s

1

|x|2N
dx <∞

Therefore, we must have

(Hh)′ The non-negative and not identically equal to zero function h(x) belongs to the weighted Ls

space Ls(Ω; |x|(N+2)s−2N ) for some s > N .

Finally, since λ̃1 = λ1 and λ̃∗ = λ∗, we still have:

(Hλ) The value λ is such that λ1 < λ < λ∗.

(Hc) The parameter c is nonnegative.

We can now state:

Theorem 3.6. Under (Ha)′, (Hb)′, (Hg), (Hλ) and (Hh)′, there exists c1 > 0 such that for all

0 ≤ c ≤ c1, (3.1) has a positive weak solution ẑc ∈ D1,2(Ω) ∩ C1,α
loc (Ω).

Remark 3.7. Since the solution described in Theorem 3.6 is the Kelvin transform of zc ∈ H1
0 (B)∩

C1,α
loc (B), we observe that there exists C3 > 0 such that the solution ẑc ∈ D1,2(Ω) ∩C1,α

loc (Ω) satisfies

lim
|x|→∞

ẑc(x) |x|N−2 = C3. (3.16)
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Chapter 4

Comparison of Results and Stability

In this chapter, we first compare the assumptions on our coefficient functions from Chapters 2 and

3, and then seek to answer the following question: Do the solutions obtained for the equation


−∆u = λa(x)u− b(x)g(u)− ch(x), x ∈ Ω

u = 0, x ∈ ∂Ω

(4.1)

in Chapters 2 and 3 satisfy some uniqueness property? To answer this question, we will first show

that if the assumptions given in Chapters 2 and 3 are slightly strengthened in each case, then we

do in fact have uniqueness in a sense that will be made precise below. Additionally, under a new

set of assumptions on the data that satisfies both sets of hypotheses adopted in Chapters 2 and 3,

respectively, we will show that the solutions to (4.1) obtained through the two different approaches

are actually the same.

4.1 Comparison of Assumptions

We first compare the stated assumptions on the data for the two different approaches above.

In Chapter 3, we assumed that the positive function a : Ω→ R belongs to the space L∞(Ω; |x|4),

whereas the direct method of Chapter 2 required a ∈ LN/2(Ω) ∩ L∞(Ω).

We observe that Kelvin transform approach requires a stronger assumptions on a(x). Indeed,

a ∈ L∞(Ω; |x|4) implies that a ∈ L∞(Ω), and furthermore,

∫
Ω
|a(x)|N/2 dx ≤

∫
Ω

C

|x|2N
dx <∞.

As for the nonlinearity, in both approaches we assume the same hypothesis (Hg).

Next, we take up the assumptions on b(x). Under the Kelvin transform approach of Chapter 3,
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we required that the nonnegative and not identically zero function b : Ω→ R satisfy

b(x) ≤ C1a(x)
|x|β(N−1)

(|x| − 1)β
, x ∈ Ω (4.2)

for some constant C1 > 0.

On the other hand, in the direct method employed in Chapter 2, the above inequality is replaced

by

b(x) ≤ C2a(x)(1 + |x|2)β(N−2)/2, x ∈ Ω (4.3)

for some C2 > 0. Here we can see that (4.2) allows b(x) to become unbounded both as |x| → ∞

and |x| → 1+, whereas (4.3) provides the same relation between b(x) and a(x) as |x| → ∞ but will

only allow b(x) ≤ Ca(x) as |x| → 1+. This is the key difference in the approaches here.

The direct approach of Chapter 2 imposes a stronger hypothesis on b(x), and therefore assumption

(4.3) is needed to fulfill the restrictions needed for both approaches.

As shown in Section 3.3, the values λ̃1 and λ̃∗ in the ball B are equal to the values λ1 and λ∗,

defined as

λ1 = inf
u∈D1,2(Ω)\{0}

‖u‖2∫
au2

(4.4)

and λ∗ = +∞ if Ω0 := {x ∈ Ω : b(x) = 0} has measure zero or

λ∗ = inf
u∈D1,2(int Ω0)\{0}

∫
Ω0
‖∇u‖2∫

Ω0
au2

, (4.5)

otherwise.

Finally, under the Kelvin transform approach of Chapter 3, we assumed that the non-negative and

not identically equal to zero function h(x) belongs to the weighted Ls space V := Ls(Ω; |x|(N+2)s−2N )

for some s > N . In the direct approach of Chapter 2, we needed for h(x) ∈ Z where Z :=

L1(Ω) ∩ Ls(Ω) for some s > N , and additionally required the existence of a constant C3 > 0 such

that

RN/r‖h‖Lq(Ω\BR(0)) ≤ C3 for all R ∈ R+ (4.6)

with 1
q + 1

r = 1. We recall that (4.6) is satisfied, for example, if |h(x)| ≤ C/|x|α for some α > N (cf.
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[6, 7]). We then make the following claim:

Lemma 4.1. If there exists C4 > 0 such that

h(x) ≤ C4

|x|m

for all x ∈ Ω and m > N + 2, then h(x) ∈ Ls(Ω; |x|(N+2)s−2N )∩L1(Ω)∩Ls(Ω) for some s > N , and

additionally satisfies (4.6).

Proof. For h(x) to be in the space Ls(Ω; |x|(N+2)s−2N ), with s > N , we must consider the integral

∫
Ω
|h(x)|s|x|(N+2)s−2N dx ≤ C

∫
Ω

|x|(N+2)s

|x|2N+sm
dx.

For this integral to be finite, we need 2N + sm− s(N + 2) > N , i.e.

s(m−N − 2) > −N ⇐⇒ m > N + 2− N

s
,

which is certainly satisfied for m > N + 2. Similarly, since m > N , we have that the integrals

∫
Ω
|h(x)|dx ≤

∫
Ω

C4

|x|m
dx and

∫
Ω
|h(x)|s dx ≤ C

∫
Ω

1

|x|sm
dx

are both finite; therefore h(x) ∈ L1(Ω) ∩ Ls(Ω). Finally, since h ≤ C/|x|m and m > N + 2, it

satisfies the sufficient conditions to satisfy (4.6) as shown in [6, 7].

Under a set of assumptions on the data that satisfies what is required for both approaches

simultaneously, we then obtain two solutions – one via the direct approach of Chapter 2 and one

via the Kelvin transform approach of Chapter 3. Explicitly:

Theorem 4.2. Consider equation (4.1) with the following assumptions:

1. The function a : Ω→ R is positive and belongs to the space L∞(Ω; |x|4).
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2. The function g : R→ R+
0 is continuous, with g(s) = 0 for s ≤ 0. Furthermore, it satisfies

lim sup
s→0

g(s)

s1+β
<∞ and lim

s→∞

g(s)

s
=∞, (4.7)

where 0 < β ≤ 1 is a fixed constant.

3. The measurable function b : Ω→ R is non-negative, not identically equal to zero, and satisfies

b(x) ≤ C1a(x)(1 + |x|2)β(N−2)/2 (4.8)

for some C1 > 0 and all x ∈ Ω.

4. The value λ is such that λ1 < λ < λ∗, where λ1 and λ∗ are defined above in (4.4) and (4.5),

respectively.

5. There exists C4 > 0 such that the non-negative and not identically zero function h(x) satisfies

h(x) ≤ C4

|x|m
(4.9)

for all x ∈ Ω and m > N + 2, and

6. The parameter c is nonnegative.

Then there exists c0 > 0 such that for all 0 ≤ c ≤ c0, we obtain two (possibly identical) positive

weak solutions to (4.1), namely uc, ẑc ∈ D1,2(Ω) ∩ C1,α
loc (Ω), from the direct approach of Chapter 2

and the Kelvin transform approach of Chapter 3, respectively. Furthermore, there exists C5, C6 > 0

such that for all 0 ≤ c ≤ c0, these weak solutions satisfy

uc(x) ≥ C5

|x|N−2
for large |x| and lim

|x|→∞
ẑc(x) |x|N−2 = C6.

4.2 Uniqueness of Stable Solution in the Ball

We now wish to show that the solution zc ∈ H1
0 (B) obtained via Theorem 3.5 is the unique positive

and stable solution of (3.4). Let λi(φ,B) denote the i-th eigenvalue of −∆ + φ over the region B
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with Dirichlet boundary condition. We omit the potential φ and write λi(B) if φ = 0. Furthermore,

for a solution u of (3.4), let µi(u) denote the i-th eigenvalue of the linearization of (3.4) at u, that

is µi(u) = λi(−λã+ b̃(x)|x|N−2g′(|x|N−2u), B). Following the classical terminology, u will be called

stable if µ1(u) > 0, and unstable if µ1(u) < 0. We also recall that

λi(φ1, B) < λi(φ2, B) if φ1 ≥ φ2 and φ1 6≡ φ2.

Note that λ1(B) and λ1(B0) are the same as λ̃1 and λ̃∗ in Section 3.2. Based on the results in Du

& Ma (cf. [10, 11]), Ouyang (cf. [18]), and Shabani & Tehrani (cf. [19, 20]), for the case c = 0, that

is, in the absence of harvesting, the equation


−∆u = λã(x)u− b̃(x)g(|x|N−2u), x ∈ B

u = 0, x ∈ ∂B.
(4.10)

has a unique positive solution:

Theorem 4.3 ([20, Theorem 1.1]). Assume b̃(x) 6≡ 0 in B.

(i) If B0 = ∅, then for every λ > λ1(B), equation (4.10) has a unique positive solution uλ.

(ii) If B0 6= ∅, then for any λ ∈ (λ1(B), λ1(B0)), equation (4.10) has a unique positive solution uλ.

In addition, if λ ≥ λ1(B0), then (4.10) has no nonnegative solution except zero.

Furthermore, in either case the curve λ→ uλ is continuous and increasing and the positive solution

uλ is stable, i.e. µ1(uλ) > 0.

This result requires a classical comparison principle (see Du & Ma [11]), which we state below

in a version suitable for our purpose here:

Lemma 4.4 (Comparison Principle). Suppose that ã(x), b̃(x) ∈ L∞(B) and 0 ≤ b̃(x) is not

identically zero. Let u1, u2 ∈ C2(B) be positive in B and satisfy

∆u1 + λã(x)u1 − b̃(x)g(|x|N−2u1) ≤ 0 ≤ ∆u2 + λã(x)u2 − b̃(x)g(|x|N−2u2), x ∈ B (4.11)
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and lim supx→∂B(u2 − u1) ≤ 0, where g is continuous and such that g(s)/s is strictly increasing in

the range infB{u1, u2} < u < supB{u1, u2}. Then u2 ≤ u1 in B.

For Lemma 4.4 to hold as well as in the following proofs, we need some slightly stronger

assumptions on the nonlinearity g and the function h, and so in addition to the hypothesis listed in

Section 3.3, we also assume:

(H) h(x) is positive in Ω and the function g : R→ R+
0 belongs to C1(R) with g(s) = 0 for s ≤ 0

and g′(s) strictly increasing for s > 0. Additionally, g satisfies

lim sup
s→0+

g′(s)

sβ
<∞ (4.12)

where 0 < β < 1 is a fixed constant.

One can easily see that g′ strictly increasing and g(0) = 0 implies that g(s)/s is strictly increasing

as well. We then claim the following:

Theorem 4.5. For 0 ≤ c < c1 (with c1 as in Theorem 3.5) the solution zc to problem (3.4) given

in Theorem 3.5 is stable, i.e. µ1(zc) ≥ 0.

Proof. As described above, µ1(zc) is the first eigenvalue of the linearization of (3.4) at zc, i.e.

µ1(zc) = inf
w∈H1

0 (B),w 6=0

∫
B |∇w|

2 + (b̃(x)|x|N−2g′(|x|N−2zc)− λã(x))w2∫
B w

2
(4.13)

Note that the solution zc is found by minimizing the functional

Ĩc(u) =
1

2

∫
B
|∇u|2 dx− λ

2

∫
B
ã(x)u2 dx+

∫
B
b̃(x)

G(|x|N−2u)

|x|N−2
dx+ c

∫
B
h̃(x)udx

on the set M̃c = {u ∈ H1
0 (B) : zc ≤ u a.e. in B}, where G(u) =

∫ u
0 g(s) ds and zc is the solution to

the auxiliary problem (3.11). Thus we expect that 〈Ĩ ′′c (zc)w,w〉 ≥ 0 for any directions w where it is

defined. We have previously shown that Ĩc is differentiable in the direction of w ∈ H1
0 (B) ∩ L∞(B)
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(cf. Lemma 3.4), and for w ∈ H1
0 (B) ∩ L∞(B), we have

Ĩ ′c(zc)w =

∫
B
∇zc · ∇w dx− λ

∫
B
ã(x)zcw dx+

∫
B
b̃(x)g(|x|N−2zc)w dx+

∫
B
h(x)w dx.

From this, we would like to prove that

〈Ĩ ′′c (zc)w,w〉 =

∫
B
|∇w|2 dx+

∫
B

(b̃(x)|x|N−2g′(|x|N−2zc)− λã(x))w2 dx

for all w ∈ H1
0 (B) ∩ L∞(B). We first have to show that 〈Ĩ ′′c (zc)w,w〉 is defined for all such w. It is

enough to consider twice-differentiability (at t = 0) of

Kw(t) := J(zc + tw) =

∫
B

b̃(x)G(|x|N−2(zc + tw))

|x|N−2
dx.

By the same arguments as in the proofs of Lemmas 2.10 and 3.4, Kw(t) can be seen to be well-defined

and differentiable for |t| sufficiently small, with

K ′w(t) =

∫
B
b̃(x)g(|x|N−2(zc + tw))w dx.

Now

g(|x|N−2(zc+ tw))−g(|x|N−2zc) = |x|N−2g′(|x|N−2(zc+stw))(tw) for some s = s(t, x), 0 ≤ s ≤ 1,

and so we have to show that

lim
t→0

K ′w(t)−K ′w(0)

t
= lim

t→0

∫
B
b̃(x)|x|N−2g′(|x|N−2(zc + stw))w2 dx

=

∫
B
b̃(x)|x|N−2g′(|x|N−2zc)w

2 dx. (4.14)

We claim that this follows from (4.12) for β ≤ 1. Indeed, by (4.12), for |x| < δ = δ(‖zc‖L∞(B), ‖w‖L∞(B)),

we have

0 ≤ g′(|x|N−2(zc + stw)) ≤ C(|x|N−2)β.
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Then from (5.8) and the fact that ã(x) ∈ L∞(B), we have

∫
B
b̃(x)|x|N−2g′(|x|N−2(zc + stw))w2 dx

≤ C1

∫
B
ã(x)(1− |x|)−β|x|−β(N−2)g′(|x|N−2(zc + stw))w2 dx

≤ C
∫
|x|<δ

w2 dx+ C(δ)

∫
|x|>δ

g′(|x|N−2(zc + stw))w2(1− |x|)−β dx

≤ C(δ)

(
‖w‖L2(B) +

∫
B

|w|2

(1− |x|)β
dx

)
.

So, as in the proof of Lemma 3.4, the Hardy inequality for bounded domain implies (since β ≤ 1):

∫
B

|w|2

(1− |x|)β
dx ≤

∫
B

|w|2

(1− |x|)2
dx ≤ C

∫
B
|∇w|2 dx.

Therefore (4.14) follows by Lebesgue’s Dominated Convergence Theorem. Thus 〈Ĩ ′′c (zc)w,w〉 is

well-defined, and we have that

K ′′w(0) = 〈Ĩ ′′c (zc)w,w〉 =

∫
B
|∇w|2 dx+

∫
B

(
b̃(x)|x|N−2g′(|x|N−2zc)− λã(x)

)
w2 dx.

Now recall that the weak solution zc ∈ L∞(B), ã(x) ∈ L∞(B), b̃(x)g(|x|N−2zc) ∈ Lp for some

p > N (since β < 1), and h̃(x) ∈ L∞(B), so zc ∈ C1,α(B), and so by the strong maximum principle

(cf. Lemma 1.5) zc < zc in B. Therefore for w0 ∈ C∞0 (B) we have: zc + tw0 ∈ M̃c for |t| small,

hence as zc is the minimizer of Ĩc on M̃c, we have K ′′w0
(0) = 〈Ĩ ′′c (zc)w0, w0〉 ≥ 0. Now by a density

argument we finally have that

K ′′w(0) = 〈Ĩ ′′c (zc)w,w〉 ≥ 0

for all w ∈ H1
0 (B) ∩ L∞(B), i.e. µ1(zc) ≥ 0.

Next note that if u1 is a positive solution of (3.4) for c = c1, then for c2 < c1, we have that u1 is

a sub solution of (3.4) for c = c2. Also, u1 ≤ uλ, where uλ is the solution for c = 0 (see Lemma 4.4

above). Thus u1 and uλ form an ordered sub/super solution pair of (3.4). Therefore there exists a

solution ū of (3.4) for c = c2 such that u1 ≤ ū ≤ uλ in B. Now considering u1 − ū and applying
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Hopf’s strong maximum principle (cf. Lemmas 1.4, 1.5), we have that u1(x) < ū(x) on B, and in

particular ū > 0 in B.

In this way, for 0 < c < c1, we get a new family of solutions, which we still denote by zc, such

that zc > zc1 . As g′ is strictly increasing we now have µ1(zc) > 0 for 0 < c < c1, and so the solution

zc is stable.

Next, for q > N , let X = {u ∈W 2,q(B), u = 0 on ∂B}, Y = Lq(B), and consider F : R×X → Y ,

given by:

F (c, u) = ∆u+ λã(x)u− b̃(x)g(|x|N−2u)− ch̃(x).

The stability of zc for 0 ≤ c ≤ c1 implies that for a fixed 0 < c∗ < c1, the implicit function theorem

is applicable to F (c, u) near the point (c∗, zc∗), and the solution set of (3.4) near (c∗, zc) forms a

curve, which we denote by γ(c), for |c− c∗| small. So γ(c) = zc∗ + γ′(c∗)(c− c∗) + o(|c− c∗|), where

γ′(c∗) = w∗ solves

−∆w∗ −
[
λã(x)zc∗ − b̃(x)g(|x|N−2zc∗)

]
w∗ = −h̃(x).

Since µ1(zc∗) > 0 we have w∗ < 0 in B which implies that γ(c) > zc∗ for c < c∗. Therefore

µ1(γ(c)) > 0 for c < c∗ and |c− c∗| small, and hence γ(c) can be continued for c < c∗ all the way

to c = 0. Now the uniqueness result of Theorem 4.3 above implies that γ(0) = uλ. Hence zc for

0 < c < c∗ are on the curve γ(c) and are the unique stable solutions of (3.4). See Figure 4.1 for a

zc

c
ĉλ

zĉλ

zc∗

c∗

uλ

Figure 4.1: An application of the implicit function theorem to show stability.
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visual representation of the ideas presented here. These considerations provide the sketch of the

proof of the following result, which was first given in [19] for a similar equation:

Theorem 4.6 ([19, Theorem 2.6]). Suppose λ1(B) < λ < λ1(B0) as in (Hλ), b(x) 6≡ 0 and h(x) 6≡ 0.

Then there exists ĉλ > 0 such that:

(i) If 0 ≤ c < ĉλ, equation (3.4) has a positive solution zc. If c > ĉλ then no solution of (3.4)

stays positive in B.

(ii) The curve c→ zc is decreasing with respect to the parameter c for c ∈ [0, ĉλ) and zc is stable,

that is, µ1(zc) > 0. Furthermore, zc is the unique positive stable solution of (3.4).

We can now state:

Theorem 4.7. Consider equation (4.1).

(i) Under the hypotheses (Ha)′, (Hb)′, (Hg), (Hλ) and (Hh)′ presented in Chapter 3, there exists

c1 > 0 such that for all 0 ≤ c < c1, (4.1) has a positive weak solution ẑc ∈ D1,2(Ω) ∩ C1,α
loc (Ω).

In addition, for each 0 < c < c1, there exists Lc > 0 such that

lim
|x|→∞

ẑc(x) |x|N−2 = Lc. (4.15)

(ii) Furthermore, under the additional hypothesis (H), for 0 ≤ c < c1, zc, the Kelvin transform of

ẑc, is the unique stable positive solution of the transformed equation (3.4) in the ball.

4.3 Stability through the Direct Approach

We now show that the positive weak solution uc obtained by the direct approach of Chapter 2 (cf.

Theorem 2.7) is stable in the sense that its Kelvin transform ûc is stable in the ball. We start by

adding the additional assumptions (H) mentioned in Section 4.2.

We first want to show that ûc is a weak solution to the equation


−∆ûc(y) = λã(y)ûc − b̃(y)g(|y|N−2ûc)− ch̃(y), y ∈ B

ûc = 0, y ∈ ∂B,
(4.16)

56



where ã(y) =
1

|y|4
a
( y

|y|2
)

, b̃(y) =
1

|y|N+2
b
( y

|y|2
)

, and h̃(y) =
1

|y|N+2
h
( y

|y|2
)

, as in Section 3.2. In

other words, with

Ĩc(u) =
1

2
‖u‖2 − λ

2

∫
B
ã(x)u2 dx+

∫
B
b̃(x)

G(|x|N−2u)

|x|N−2
dx+ c

∫
B
h̃(x)udx, (4.17)

we want to show that

〈Ĩ ′c(ûc), ϕ〉 =

∫
B
∇ûc∇ϕdx− λ

∫
B
ã(x)ûcϕdx+

∫
B
b̃(x)g(|x|N−2ûc)ϕdx+ c

∫
B
h̃(x)ϕdx = 0

for all ϕ ∈ H1
0 (B). Using (1.19) and the properties of the Kelvin transform, we have that

∫
B
∇ûc∇ϕdx− λ

∫
B
ã(x)ûcϕdx =

∫
Ω
∇uc∇ϕ̂dx− λ

∫
B

1

|x|4
a
( x

|x|2
) 1

|x|N−2
uc

( x

|x|2
)
ϕ(x) dx

=

∫
Ω
∇uc∇ϕ̂dx− λ

∫
Ω
|x|N+2a(x)uc(x)ϕ

( x

|x|2
) 1

|x|2N
dx

=

∫
Ω
∇uc∇ϕ̂dx− λ

∫
Ω
a(x)ucϕ̂dx.

We would like to say that this is equal to

−
∫

Ω
b(x)g(uc)ϕ̂dx− c

∫
Ω
h(x)ϕ̂dx

as uc solves equation (4.1), but the integral
∫

Ω b(x)g(uc)ϕ̂dx might not make sense. We have only

shown thus far (cf. Lemma 2.10) that the term

J(u) =

∫
Ω
b(x)G(u) dx (4.18)

is differentiable at uc in the direction of v ∈ D1,2(Ω) ∩ L∞(Ω) with compact support. Since

ϕ ∈ H1
0 (B), its Kelvin transform ϕ̂ does not necessarily have compact support, and instead belongs

to the space D1,2(Ω) ∩ L∞(Ω; |x|N−2). See Figure 4.2 for an illustration.
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supp ϕ̂

suppϕ

x 7→ x

|x|2

Figure 4.2: The support of the Kelvin transform of a function ϕ ∈ H1
0 (B).

We must introduce additional assumptions in order to prove differentiability of J(u) in the direction

of ϕ̂:

Lemma 4.8. Suppose that ϕ̂ ∈ D1,2(Ω) ∩ L∞(Ω; |x|N−2), and let uc be the solution of equation

(4.1) obtained through the direct method of Chapter 2. Assume that either

• β < 1
2 and a(x) ∈ L2N/(N+2)(Ω)

or

• β < 1 and a(x) ∈ Lp′(Ω), where p′ is the Hölder conjugate of

p =
N + ε

(1− β)(N − 2)
(4.19)

for some ε > 0.

Then the functional

Ic(u) =
1

2
‖u‖2 − λ

2

∫
Ω
a(x)u2 dx+

∫
Ω
b(x)G(u) dx+ c

∫
Ω
h(x)u dx
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is twice-differentiable at uc in the direction of ϕ̂ and we have

d

dt

∫
Ω
b(x)G(uc + tϕ̂) dx

∣∣∣∣
t=0

=

∫
Ω
b(x)g(uc)ϕ̂dx. (4.20)

as well as

d2

dt2

∫
Ω
b(x)G(uc + tϕ̂) dx

∣∣∣∣∣
t=0

=

∫
Ω
b(x)g′(uc)ϕ̂

2 dx. (4.21)

Proof. We will first show that J(uc + tϕ̂) is well-defined in either case. We know that uc ∈ L∞(Ω)

from Remark 2.1 and Lemma 2.9, and since L∞(Ω; |x|N−2) ⊂ L∞(Ω), we also know that ϕ̂ ∈ L∞(Ω).

Thus by the same argument as in Lemma 2.10, we get that

G(uc + tϕ̂)−G(uc) = g(uc + stϕ̂)tϕ̂ for some s = s(t, x), 0 ≤ s ≤ 1.

Assume first that β < 1
2 and a(x) ∈ L2N/(N+2)(Ω). Then

∫
Ω
b(x)g(uc + tϕ̂)|ϕ̂| dx ≤ C

∫
Ω
a(x)(1 + |x|2)β(N−2)/2|ϕ̂| dx. (4.22)

Since ϕ̂ ∈ L∞(Ω; |x|N−2) and by applying Hölder’s inequality, we then have

∫
Ω
b(x)g(uc + tϕ̂)|ϕ̂|dx ≤ C

∫
Ω
a(x)

(1 + |x|2)β(N−2)/2

|x|N−2
dx

≤ C
(∫

Ω
|a(x)|2N/(N+2) dx

)(N+2)/2N(∫
Ω

(1 + |x|2)βN

|x|2N
dx

)(N−2)/2N

.

The first integral on the right hand side is finite since a ∈ L2N/(N+2)(Ω). As for the second integral,

since β < 1
2 , we have that

(1 + |x|2)βN

|x|2N
≈ 1

|x|N+ε
for large |x|.

Therefore the right hand side of (4.22) is bounded, and so J(uc + tϕ̂) is well-defined for any |t| < δ

for δ sufficiently small.

Now assume that β < 1 and a(x) ∈ Lp′(Ω), with p as in (4.19). By (2.4) and (2.5) (and since
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a(x) ∈ L∞(Ω)),

b(x) ≤ C1a(x)(1 + |x|2)β(N−2)/2 ≤ Ca(x)|x|β(N−2), x ∈ Ω,

and so

∫
Ω
b(x)g(uc + tϕ̂)ϕ̂dx ≤

∫
Ω
a(x)|x|β(N−2)g(uc + tϕ̂)ϕ̂dx ≤ C

∫
Ω
a(x)|x|β(N−2) 1

|x|N−2
dx

= C

∫
Ω

a(x)

|x|(N−2)(1−β)
dx.

Now, since a ∈ Lp′(Ω),

∫
Ω
a(x)|x|(β−1)(N−2) dx ≤

(∫
Ω
a(x)p

′
dx

)1/p′(∫
Ω

1

|x|N+ε
dx

)1/p

<∞.

and so J(uc + tϕ̂) is well-defined for any |t| < δ for δ sufficiently small.

In either case, as in the proof of Lemma 2.10, we then have

lim
t→0

J(uc + tϕ̂)− J(uc)

t
= lim

t→0

1

t

∫
Ω
b(x)g(uc + stϕ̂)tϕ̂dx = lim

t→0

∫
Ω
b(x)g(uc + stϕ̂)ϕ̂dx.

We can now apply Lebesgue’s Dominated Convergence Theorem to see that J is differentiable at uc

in the direction of ϕ̂ ∈ D1,2(Ω) ∩ L∞(Ω; |x|N−2) and (4.20) is proved.

We have shown that

I ′c(uc)ϕ̂ =

∫
Ω
∇uc · ∇ϕ̂dx− λ

∫
Ω
a(x)ucϕ̂dx+

∫
Ω
b(x)g(uc)ϕ̂dx+

∫
Ω
h(x)ϕ̂dx,

for all ϕ̂ ∈ D1,2(Ω) ∩ L∞(Ω; |x|N−2), and from this we would like to prove that

〈I ′′c (uc)ϕ̂, ϕ̂〉 =

∫
Ω
|∇ϕ̂|2 dx+

∫
Ω

(
b(x)g′(uc)− λa(x)

)
ϕ̂2 dx.
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As for the second derivative, we see that

∫
Ω
b(x)g′(uc + stϕ̂)tϕ̂2 dx ≤ C

∫
Ω
a(x)|x|(N+2)βϕ̂2 dx ≤ C

∫
Ω

a(x)

|x|(N−2)(2−β)
dx

≤
(∫

Ω
|a(x)|N/2 dx

)2/N(∫
Ω

1

|x|N(2−β)
dx

)(N−2)/N

<∞

using the facts that g′ is bounded for bounded inputs, t ≤ 1, and ϕ̂ ≤ C/|x|N−2. The final expression

being finite relies on the facts that a ∈ LN/2(Ω) and N(2− β) > N for β < 1. Thus 〈I ′′c (uc)ϕ̂, ϕ̂〉 is

well-defined for ϕ̂ ∈ D1,2(Ω) ∩ L∞(Ω; |x|N−2), and (4.21) is proved.

We have shown that under additional assumptions on the function a(x) and the number β that

∫
B
∇ûc∇ϕdx− λ

∫
B
ã(x)ûcϕdx =

∫
Ω
∇uc∇ϕ̂dx− λ

∫
Ω
a(x)ucϕ̂dx

= −
∫

Ω
b(x)g(uc)ϕ̂dx− c

∫
Ω
h(x)ϕ̂dx

= −
∫

Ω
|x|N+2b(x)g(uc)|x|N−2ϕ̂

1

|x|2N
dx− c

∫
Ω
|x|N+2h(x)|x|N−2ϕ̂

1

|x|2N
dx.

So, making the change of variables x 7→ x

|x|2
, we have that

∫
B
∇ûc∇ϕdx = −

∫
B

1

|x|N+2
b
( x

|x|2
)
g

(
|x|N−2

|x|N−2
uc

( x

|x|2
)) 1

|x|N−2
ϕ̂
( x

|x|2
) |x|2N
|x|2N

dx

− c
∫
B

1

|x|N+2
h
( x

|x|2
) 1

|x|N−2
ϕ̂
( x

|x|2
) |x|2N
|x|2N

dx

= −
∫
B
b̃(x)g(|x|N−2ûc)ϕdx− c

∫
B
h̃(x)ϕdx

for all ϕ ∈ H1
0 (B). Therefore we do indeed see that 〈Ĩ ′c(ûc), ϕ〉 = 0 for all ϕ ∈ H1

0 (B), and so ûc is a

weak solution to (4.16) under these strengthened assumptions. Then ûc satisfies


−∆ûc − λã(x)ûc ≤ 0, x ∈ B

ûc = 0, x ∈ ∂B,

and so standard elliptic regularity results give that ûc ∈ L∞(B).
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We then make the following claim:

Theorem 4.9. Let uc be the positive solution to equation (4.1) obtained via the direct method in

Ω ⊂ RN for N ≥ 3 and 0 ≤ c ≤ c6. Under either set of assumptions on the coefficient functions a, b,

and h, the Kelvin transform ûc of uc is a positive and stable solution to the transformed equation

(4.16), i.e. µ1(ûc) ≥ 0.

Proof. The solution uc ∈ D1,2(Ω) ∩ C1,α
loc (Ω) is the minimizer of the corresponding functional

Ic(u) =
1

2
‖u‖2 − λ

2

∫
Ω
a(x)u2 dx+

∫
Ω
b(x)G(u) dx+ c

∫
Ω
h(x)u dx

on the set Mc = {u ∈ D1,2(Ω) : uc ≤ u a.e. in Ω}, where uc is given by Theorem 2.2. This means

that we have

〈I ′′c (uc)w,w〉 =

∫
Ω
|∇w|2 dx+

∫
Ω

(b(x)g′(uc)− λa(x))w2 dx ≥ 0 (4.23)

for all w ∈ D1,2(Ω) ∩ L∞(Ω; |x|N−2), since we have shown (cf. Lemma 4.8) that Ic is twice-

differentiable in the direction of all such functions w. Now, considering the transformed equation’s

corresponding functional Ĩc, we would like to show that

〈Ĩ ′′c (ûc)v, v〉 =

∫
B
|∇ϕ|2 dy +

∫
B

(b̃(y)|y|N−2g′(|y|N−2ûc)− λã(y))v2 dy ≥ 0

for all v ∈ H1
0 (B) ∩ L∞(B). We first have to show that 〈Ĩ ′′c (ûc)v, v〉 is defined for all such v. The

only portion of concern is whether

〈J ′(ûc + tv), v〉 =: K(t)

is differentiable at t = 0. The argument is similar to that in Theorem 4.5. We have

lim
t→0

K(t)−K(0)

t
= lim

`→0

∫
B b̃(y)

[
g(|y|N−2(ûc + tv))− g(|y|N−2ûc)

]
v dy

`

Now

g(|y|N−2(ûc + tv)− g(|y|N−2ûc) = |y|N−2g′(|y|N−2(ûc + stv))(tv)
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and so we have to show that

lim
`→0

∫
B
b̃(y)|y|N−2g′(|y|N−2(ûc + stv)v2 dy =

∫
B
b̃(y)|y|N−2g′(|y|N−2ûc)v

2 dy,

which is true by (4.12) as shown in the proof of Theorem 4.5.

Now that we have that 〈Ĩ ′′c (ûc)v, v〉 is well-defined, we replace ã(y), b̃(y), and ûc(y) with their

explicit definitions:

〈Ĩ ′′c (ûc)v, v〉 =

∫
B
|∇v|2 dy +

∫
B

(
1

|y|N+2
b
( y

|y|2
)
|y|N−2g′

(
uc

( y

|y|2
))
− λ

|y|4
a
( y

|y|2
))

v2 dy

=

∫
B
|∇v|2 dy +

∫
B

1

|y|4

(
b
( y

|y|2
)
g′
(
uc

( y

|y|2
))
− λa

( y

|y|2
))

v2 dy.

By making the change of variables y 7→ x

|x|2
in the second integral, we then have

〈Ĩ ′′c (ûc)v, v〉 =

∫
B
|∇v|2 dy +

∫
Ω
|x|4
(
b(x)g′(uc)− λa(x)

)
v2
( x

|x|2
) 1

|x|2N
dx

=

∫
B
|∇v|2 dy +

∫
Ω

(
b(x)g′(uc)− λa(x)

) 1

|x|2(N−2)
v2
( x

|x|2
)

dx.

Then, using Theorem 1.11 and the definition of the Kelvin transform of v, we have that

〈Ĩ ′′c (ûc)v, v〉 =

∫
Ω
|∇v̂|2 dx+

∫
Ω

(b(x)g′(uc)− λa(x))v̂2(x) dx = 〈I ′′c (uc)v̂, v̂〉

for all v ∈ H1
0 (B) ∩ L∞(B), or equivalently, for all v̂ ∈ D1,2(Ω) ∩ L∞(Ω; |x|N−2).

Therefore

〈I ′′(uc)v̂, v̂〉 = 〈Ĩ ′′c (ûc)v, v〉 ≥ 0,

i.e. µ1(ûc) ≥ 0.

Now, by the argument following Theorem 4.5 as well as Theorem 4.6, we can now state:

Theorem 4.10. Consider equation (4.1).

(i) Under the hypotheses (Ha), (Hb), (Hg), (Hλ) and (Hh), presented in Chapter 2, there exists

c0 > 0 such that for all 0 ≤ c ≤ c0, (4.1) has a positive weak solution uc ∈ D1,2(Ω) ∩ C1,α
loc (Ω).
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In addition, there exists C6 > 0 such that for all 0 ≤ c ≤ c0, uc satisfies

uc(x) ≥ C6

|x|N−2
for large |x|.

(ii) Furthermore, under the additional hypothesis (H) and either set of assumptions presented

in Lemma 4.8, for 0 ≤ c < c0, ûc, the Kelvin transform of uc, is the unique stable positive

solution of the transformed equation (4.16) in the ball.

Theorem 4.2 stated that under a preliminary set of assumptions, we obtain two solutions to

(4.1), namely uc (obtained through the direct approach of Chapter 2) and ẑc (obtained through the

Kelvin transform approach of Chapter 3). However, if we strengthen the assumptions to include

both (H) and either set of assumptions presented in Lemma 4.8, since we have shown uniqueness in

both cases, the solutions we obtain must be the same solution. Explicitly:

Theorem 4.11. Consider equation (4.1) with the following assumptions:

1. The function a : Ω→ R is positive and belongs to the space L∞(Ω; |x|4).

2. The function g : R→ R+
0 belongs to C1(R), with g(s) = 0 for s ≤ 0 and g′(s) increasing for

all s > 0. Furthermore, it satisfies

lim sup
s→0

g(s)

s1+β
<∞ and lim

s→∞

g(s)

s
=∞,

where 0 < β < 1 is a fixed constant.

3. One of the following is true:

• β < 1
2 and a(x) ∈ L2N/(N+2)(Ω), or

• β < 1 and a(x) ∈ Lp′(Ω), where p′ is the Hölder conjugate of p, defined in (4.19).

4. The measurable function b : Ω→ R is non-negative, not identically equal to zero, and satisfies

b(x) ≤ C1a(x)(1 + |x|2)β(N−2)
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for some C1 > 0 and x ∈ Ω.

5. The value λ is such that λ1 < λ < λ∗, where λ1 and λ∗ are defined above in (4.4) and (4.5),

respectively.

6. h(x) is positive in Ω, and there exists C4 > 0 such that

h(x) ≤ C4

|x|m

for all x ∈ Ω and m > N + 2, and

7. The parameter c is nonnegative.

Then there exists c0 > 0 such that for all 0 ≤ c < c0, the two solutions uc, ẑc ∈ D1,2(Ω) ∩ C1,α
loc (Ω),

obtained from the direct approach of Chapter 2 and the Kelvin transform approach of Chapter 3,

respectively, are in fact the same solution ŭc. Furthermore, for 0 < c < c0, there exists Lc > 0 such

that

lim
|x|→∞

ŭc(x)|x|N−2 = Lc. (4.24)
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Chapter 5

Solution in Ω ⊂ R2

In this chapter, we wish to discuss the existence and uniqueness of stable solutions for the problem


−∆u = λa(x)u− b(x)g(u)− ch(x), x ∈ Ω

u = 0, x ∈ ∂Ω = ∂B,

(5.1)

now in Ω = R2 \B(0, 1). We use some of the same techniques employed in Chapters 2 and 3, but

will require some slight differences along the way.

The solution space is again D1,2(Ω), the completion of C∞0 (Ω) with respect to the norm

‖u‖ =

(∫
Ω
|∇u|2 dx

)1/2

.

In [4] and [21], this space is shown to coincide with the spaces

Y = {u ∈ L2
loc(Ω) : ∇u ∈ [L2(Ω)]2, u||x|=1 = 0}

and

D̂1,2(Ω) = {u ∈ L1,2(Ω) : u ∈ L2(Ω ∩BR), for all R > 1, and ηu ∈ H1
0 (Ω) for any η ∈ C∞0 (R2)},

where BR = B(0, R) is the unit ball of radius R, and

L1,2(Ω) = {u ∈ L1
loc(Ω) : ∇u ∈ [L2(Ω)]2}.

In particular, the Kelvin transform is shown in [4] to be an isometric isomorphism between D1,2(Ω)

and H1
0 (B).

As before, we consider nonlinearities g satisfying:

66



(Hg) The function g : R→ R+
0 is continuous, with g(s) = 0 for s ≤ 0. Furthermore, it satisfies

lim sup
s→0

g(s)

s1+β
<∞ and lim

s→∞

g(s)

s
=∞, (5.2)

where 0 < β ≤ 1 is a fixed constant.

The following result, adapted from [14, Lemma 7.1] and Lemma 3.1 is essential in proving the

existence of a positive solution to (5.1) in the case of N = 2:

Lemma 5.1. Let U be a smooth domain in R2, r > 0, y0 ∈ U with dist(y0, ∂U) > 3r, and G̃U be

the Green’s function for U . Then there exists a function d ∈ C2(U), such that 0 < d in U , d = 0 on

∂U , d is superharmonic in U and harmonic in U \Br(y0), satisfying

cG̃U (x, y0) ≤ d(x) ≤ CG̃U (x, y0) for x ∈ U \B2r(y0) (5.3)

for some constants c, C > 0. If the domain U is bounded, we additionally have that

c̃ · dist(x, ∂U) ≤ d(x) ≤ C̃ · dist(x, ∂U) (5.4)

for some constants c̃, C̃ > 0.

Proof. Since the proof of (5.3) depends on the fundamental solution of the Laplace equation in R2,

it is shown here for completion. The reader is referred to [14] for a proof of (5.4). Let

Φ(x) = − 1

2π
ln |x|.

The function Φ is uniformly continuous in R2 \ Br(0). This means for each ε > 0 there exists

0 < δ < r such that y1, y2 ∈ Br(0)c and |y1− y2| < 2δ implies |Φ(y1)−Φ(y2)| < ε. If y1, y2 ∈ Bδ(y0)

and |x− y1| ≥ r, |x− y2| ≥ r, then |Φ(x− y1)− Φ(x− y2)| < ε. Hence,

y1, y2 ∈ Bδ(y0) and x ∈ U \Br+δ(y0) =⇒ |Φ(x− y1)− Φ(x− y2)| < ε.

Note that the definition of the Green’s function for U , just as in Section 1.4, is G̃U (x, y) =
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Φ(x− y)− φy(x), where 
−∆φy(x) = 0, x ∈ U

φy(x) = Φ(x− y), x ∈ ∂U.

For y1, y2 ∈ Bδ(y0) and x ∈ ∂U , we have |φy1(x)− φy2(x)| < ε, so by the maximum principle

y1, y2 ∈ Bδ(y0) and x ∈ U \Br+δ(y0) =⇒ |G̃U (x, y1)− G̃U (x, y2)| < 2ε.

One easily obtains x ∈ ∂Br+δ(y0) implies

G̃U (x, y0) = − 1

2π
ln |x− y0|+ φy0(x) =: c > 0,

where the value c depends only on r. Let

C = max
x∈∂Br+δ(y0)

G̃U (x, y0)

and choose ε = c/4. We have

y ∈ Bδ(y0) and x ∈ ∂Br+δ(y0) =⇒ c

2
≤ G̃U (x, y) ≤ C +

c

2
.

So y ∈ Bδ(y0) and x ∈ ∂Br+δ(y0) implies

c

2C
G̃U (x, y0) ≤ G̃U (x, y) ≤

(
C

c
+

1

2

)
G̃U (x, y0). (5.5)

By the maximum principle, the two inequalities of the last previous line also hold for x ∈ U \Br+δ(y0).

Let η ∈ C∞0 (Bδ(y0)), η ≥ 0 and
∫
U η = ρ > 0 and consider the function z ∈ C∞0 (U) defined by

z(x) =

∫
U
G̃U (x, y)η(y) dy. (5.6)

68



Multiplying (5.5) by η(y) and integrating, for x ∈ U \Br+δ(y0), we then have

ρ
c

2C
G̃U (x, y0) ≤ z(x) ≤ ρ

(
C

c
+

1

2

)
G̃U (x, y0).

Obviously, −∆z = η in U and z = 0 on ∂U .

5.1 Direct Approach

When applying the direct approach to the case of N = 2, there are a few difficulties that arise,

specifically related to the behavior of the solution at infinity. In particular, functions u ∈ D1,2(Ω) in

the case of N = 2 do not belong to any Lp space (see the definition of the space Y above), and so

many of the estimates used in Chapter 2 are not applicable in this case. Remark 2.1 does not hold

directly due to the Lp estimates that are used, and the main result that establishes the behavior

of our solution at infinity, namely Lemma 2.6, also does not hold in the case of N = 2, since the

Green’s function for Ω takes a different form.

For these reasons, we do not consider the direct approach in this dissertation, and instead choose

to focus on the Kelvin transform approach.

5.2 Kelvin Transform Approach

The Kelvin transform approach in R2 is nearly identical to that presented in Chapter 3, namely

we first transform the equation from the exterior domain to the unit ball B = B(0, 1) using the

Kelvin transform, and solve the equation there. The format of the proofs presented in Chapter 3

are largely unchanged.

By Lemma 1.10, if u is a weak D1,2(Ω) solution of (5.1) if and only if its Kelvin transform û is a

weak H1
0 (B) solution to the boundary value problem


−∆û =

λ

|y|4
a
( y

|y|2
)
u
( y

|y|2
)
− 1

|y|4
b
( y

|y|2
)
g

(
u
( y

|y|2
))
− c

|y|4
h
( y

|y|2
)
, y ∈ B

û = 0, y ∈ ∂B,
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or 
−∆û = λã(y)x̂− b̃(x)g(û)− ch̃(x), x ∈ B

û = 0, x ∈ ∂B,
(5.7)

where ã(y) = |y|−4a
( y
|y|2
)
, b̃(y) = |y|−4b

( y
|y|2
)
, and h̃(y) = |y|−4h

( y
|y|2
)
. Notice the slight difference

between (5.7) and (3.3) due to N = 2. We then can state the assumptions on our data:

(Hã) The function ã : B → R is positive and belongs to L∞(B).

(Hb̃) The measurable function b̃ : B → R is nonnegative, not identically equal to zero, and satisfies

b̃(x) ≤ C1ã(x)(1− |x|)−β (5.8)

for some C1 > 0 and all x ∈ B.

(Hh̃) The nonnegative and not identically equal to zero function h̃ belongs to the space Ls(B) for

some s > 2.

(Hλ) The value λ is such that λ̃1 < λ < λ̃∗, where λ̃1 and λ̃∗ are defined as in (3.8) and (3.10).

(Hc) The parameter c is nonnegative.

Now that we have transformed our equation, we can continue the proof of existence using Kelvin

transform approach given in Chapter 3:

1. First we consider the auxiliary equation


−∆u = λã(x)

[
1− k

(
u

`d(x)

)]
− ch̃(x), x ∈ B

u = 0, x ∈ ∂B,
(5.9)

where now the function d(x) is given by Lemma 5.1 and k(s) = sβ for s > 0, k(s) = 0 for

s ≤ 0. We then prove the existence of positive solutions uc for the auxiliary equation for

0 ≤ c ≤ c0 (for some c0 > 0) by the same process as in Section 2.3. Some small differences

arise in the proof of Lemma 2.3, as we have h ∈ L1(B) (as opposed to L2N/(N+2)(B) in [14]).
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Additionally, we are not using Lemma 2.6 since we are in a bounded domain, but the sketch

of the proof immediately following Lemma 2.6 holds, using the Green’s function for the ball

G̃B instead of G̃Ω.

2. Now, arguing as in Section 2.4 and using uc as sub solutions to (5.7), we obtain a solution to

our problem by minimizing the corresponding energy functional on the set

Mc = {u ∈ H1
0 (B) : uc ≤ u a.e. in B}.

The energy functional is now given as

Ic(u) =
1

2
‖u‖2 − λ

2

∫
B
ã(x)u2 dx+

∫
B
b̃(x)G(u) dx+ c

∫
B
h̃(x)udx,

where G(u) =
∫ u

0 g(s) ds (as the |x|N−2 terms in (3.12) are gone). The minimizer we obtain,

uc, is in L∞(B) by Lemma 2.9, since the proof there does not depend on N . Both Lemma 3.4

and the final proof of existence (cf. [14, Theorem 7.3]) also do not depend on N , and so the

existence of a positive weak solution uc ∈ H1
0 (B) ∩ C1,α

loc (B) to (5.7) follows just as in Section

3.2.

Lastly, just as in Section 3.3, we transform the assumptions needed on the data in the ball back in

terms of the external domain Ω now with N = 2 fixed:

(Ha)′ The function a : Ω→ R is positive and belongs to L∞(Ω; |x|4).

(Hb)′ The function b : Ω→ R is non-negative, not identically equal to zero, and satisfies

b(x) ≤ C1a(x)

(
|x|
|x| − 1

)β
(5.10)

for some 0 < β ≤ 1, C1 > 0 and all x ∈ Ω. Now, with Ω0 = {x ∈ Ω : b(x) = 0} ( Ω, we

require either Ω0 has measure zero or Ω0 = int Ω0 (closure in Ω0) with ∂Ω0 Lipschitz.

(Hh)′ The non-negative and not identically equal to zero function h(x) belongs to the weighted Ls

space Ls(Ω; |x|4(s−1)) for some s > 2.
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(Hλ) The value λ is such that λ1 < λ < λ∗, where λ1 and λ∗ are defined as in (3.8) and (3.10)

(since λ̃1 = λ1 and λ̃∗ = λ∗).

(Hc) The parameter c is nonnegative.

We can therefore state:

Theorem 5.2. Under (Ha)′, (Hb)′, (Hg), (Hλ) and (Hh)′, there exists c1 > 0 such that for all

0 ≤ c ≤ c1, (3.1) has a positive weak solution ûc ∈ D1,2(Ω) ∩ C1,α
loc (Ω). Furthermore, there exists a

positive constant C∞ such that

lim
|x|→∞

ûc(x) = lim
x→0

uc(x) = C∞ > 0. (5.11)

5.3 Uniqueness of Stable Solution

As in Section 4.2, we now wish to show that the solution uc ∈ H1
0 (B) ∩ C1,α

loc (B) obtained above is

the unique positive and stable solution of (5.7). Following the definitions given in Section 4.2, we

must show that

µ1(uc) := inf
w∈H1

0 (B),w 6=0

∫
B |∇w|

2 + (b̃(x)g′(uc)− λã(x))w2∫
B w

2
> 0.

We will also assume the additional hypothesis (H), listed here for convenience:

(H) h(x) is positive in Ω and g ∈ C2(R) is strictly convex, i.e. g′′(s) > 0. Additionally, g satisfies

lim sup
s→0+

g′(s)

sβ
< 0. (5.12)

The procedure to prove µ1(uc) > 0 is nearly identical to that presented in Section 4.2, summarized

briefly here:

1. Based on the results in Du & Ma (cf. [10, 11]), Ouyang (cf. [18]), and Shabani & Tehrani (cf.

[19, 20]), obtain the unique positive solution uλ for (5.7) for the case c = 0, that is, in the

absence of harvesting (similar to Theorem 4.3). This result requires the comparison principle

given in Lemma 4.4, now with N = 2.
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2. Show directly that the function Ic is twice-differentiable at uc in the direction of v ∈ H1
0 (B) ∩

L∞(B). This proof again makes use of the Hardy inequality for bounded domains (cf.

Lemma 1.2) and Lebesgue’s Dominated Convergence Theorem, similar to Theorem 4.5. Since

〈I ′′c (uc)v, v〉 is the same as the numerator of µ1(uc) and uc was obtained through minimization,

we obtain that µ1(uc) ≥ 0.

3. Finally, using the solution to the equation with no harvesting term uλ and the implicit function

theorem, follow the argument given following the proof of Theorem 4.5 and [19] to obtain that

µ1(uc) > 0, i.e. uc is in fact the unique positive stable solution to (5.7).

We can then state our final result, analogous to Theorem 4.7:

Theorem 5.3. Consider equation (5.1).

(i) Under the hypotheses (Ha)′, (Hb)′, (Hg), (Hλ) and (Hh)′, there exists c3 > 0 such that for

all 0 ≤ c ≤ c3, (5.1) has a positive weak solution ûc ∈ D1,2(Ω) ∩ C1,α
loc (Ω), satisfying, for some

C∞ > 0,

lim
|x|→∞

ûc(x) = C∞. (5.13)

(ii) Furthermore, under the additional hypothesis (H), for 0 ≤ c < c3, uc, the Kelvin transform of

ûc is the unique stable positive solution of the transformed equation (5.7) in the ball.

73



Chapter 6

Conclusion

In this thesis, we have shown the existence of positive weak solutions to equation (1.1) in the exterior

domain Ω in both R2 and RN , N ≥ 3. For N ≥ 3, we have been able prove the existence of a

positive weak solution to (1.1) using both the direct approach shown in Chapter 2 as well as the

Kelvin transform approach shown in Chapter 3, under some slight different assumptions on the

coefficient functions. Additionally, under some slightly stronger assumptions, we have shown that

the solutions obtained through each method are the unique stable solutions for the transformed

equation in the ball. In this way, if we have a set of assumptions satisfying both requirements of

the direct approach as well as the Kelvin transform approach simultaneously, then the solutions

obtained through the two approaches are in fact the same. Finally, we have shown that the Kelvin

transform approach can be employed in the case of R2 and that we obtain existence and uniqueness

results for a positive solution in this case as well.

The key contributions of this work are as follows:

1. We extend the results of [4] related to the Kelvin transform to the case of N ≥ 3, specifically

Theorem 1.11.

2. We show that the method presented in [14] to solve equation (1.1) in the whole space RN

can be adapted to the exterior domain Ω, summarized in Theorem 2.7. Additionally, it is

shown that the differentiability of the corresponding energy functional of problem (1.1) can

be proven directly, rather than using polynomial approximations, as in [14, Lemma 5.4] (cf.

Lemma 2.10).

3. We apply the Kelvin transform to equation (1.1), and making use of the corresponding results

for bounded domains in [14], show the existence of a positive solution to (1.1) in the exterior

domain through the use of Lemma 1.10.

4. We relate the notion of stability to equation (1.1) and show that the solutions obtained via

both methods are in fact stable (cf. Theorems 4.5, 4.9), and therefore are the same.
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5. Finally, we show that [14, Lemma 7.1] also holds in the case of N = 2 and that the same

ideas presented for the Kelvin transform approach in Chapter 3 can also be applied to show

existence and uniqueness of positive solutions to (1.1) in this case (cf. Theorem 5.3).
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