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ABSTRACT

The increasing popularity of deep neural network (DNN) applications demands high com-

puting power and e�cient hardware accelerator architectures. DNN accelerators use a large

number of processing elements (PEs) and on-chip memory for storing weights and other

parameters. A significant challenge is faced when designing a many-core DNN accelerator to

handle the data movement between the processing elements. As the communication back-

bone of a DNN accelerator, networks-on-chip (NoC) plays an important role in supporting

various dataflow patterns and enabling processing with communication parallelism in a DNN

accelerator. However, the widely used mesh-based NoC architectures inherently cannot e�-

ciently support many-to-one (gather) and one-to-many (multicast) tra�c largely existing in

DNN workloads. This dissertation is focused on e�cient communication support solutions

for these tra�c in DNN accelerators.

In NoCs, many-to-one tra�c is typically handled by repetitive unicast packets which is

ine�cient. The dissertation first proposes to use the gather supported routing on mesh-

based NoCs employing the Output Stationary (OS) systolic array in support of many-to-one

tra�c. Initiated from the left-most node, the gather packet will collect data generated from

the intermediate nodes along its way to the global memory on the right side of the mesh.

Without changing the router pipeline, the gather supported routing significantly reduces the

network latency and power consumption than the repetitive unicast method evaluated under

the tra�c traces generated from the DNN workloads.

iii



Further, the study is extended by proposing a modified mesh architecture with a one-

way/two-way streaming bus to speed up multicast tra�c and support multiple PEs per router

using gather supported routing. The analysis of the runtime latency of a convolutional layer

shows that the two-way streaming architecture achieves better improvement than the one-

way streaming architecture for an OS dataflow architecture. Simulation results confirm the

e↵ectiveness of the proposed method which achieves up to 1.8⇥ improvement in the runtime

latency and up to 1.7⇥ improvement in the network power consumption. The hardware

overhead of the proposed method is justifiable for the performance improvements achieved

over the repetitive unicast method.

Finally, In-Network Accumulation (INA) is proposed to further accelerate the DNN work-

load execution on a many-core spatial DNN accelerator for Weight Stationary (WS) dataflow

model. The INA unit further improves the latency and power consumption by allowing the

router to support the partial sum accumulation which avoids the overhead of injecting and

ejecting the partial sum from and to the PE. Compared with OS dataflow model, the INA-

enabled WS dataflow model achieves up to 1.19⇥ latency improvement and 2.16⇥ power

improvement across di↵erent DNN workloads.
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CHAPTER 1

INTRODUCTION

In this dissertation, the limitation of the existing communication backbone i.e., Network-

on-Chips (NoC) on executing the Deep Neural Network (DNN) workloads is presented. The

dissertation presents the improved communication architecture which helps in accelerating

the tra�c that exists in a DNN workload. For the rest of this chapter, Section 1.1 briefly

introduces the concepts and ideas on DNN. Section 1.2 describes the challenges and op-

portunities in the field of DNN hardware execution. Section 1.3 presents the motivation of

this disseration. Section 1.4 outlines the contribution of this dissertation and Section 1.5

summarizes the outline for rest of the dissertation.

1.1 Deep Neural Networks

Deep Learning is a subfield of machine learning which is an artificial intelligence (AI) field

study that gives the computers the ability to learn without explicitly being programmed.

Deep learning is framed by the development of deep neural networks which are widely

adopted in a variety of applications ranging from speech recognition, object detection, self-

driving cars to cancer detection, drug discovery and genomics [1] [2] [3].

Dated back to 1940s, the idea of neural networks is inspired by how biological neural

systems work. Fig. 1.1 (a) shows the biological model of the neuron and its mathematical

equivalent is shown in Fig. 1.1 (b). A neuron takes in the input/signal from dendrites,

1



.

.

.

axon
synapse

dendr
ite

axon

neuron/soma
x0w0

w0x0

wnxn

yj

(a) (b)

Figure 1.1: Neuron model (a) biological model, (b) mathematical model, weighted sum in
a neuron x,w,f,b are input activations, weights, activation function, and bias, respectively
(figures adopted from [6])

.

.

.

.

.

. . . .

.

.

.

.

.

.

I1

I2

IN

W11

WN1

O1

O2

OM

Input 
Layer

Hidden 
Layer

Hidden 
Layer

Output 
Layer
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performs the operation on those inputs and provides the output to an axon. The axon of

one neuron is connected to the dendrites of other neurons. As in improved version of the

conventional artificial neural network, a DNN consists of multiple layers (more than three

inclusive of input and output layers).

A DNN model may include tens of layers (such as convolutional layers, pooling layers,

and fully connected layers) and millions of parameters. The neurons (activations) in each

layer are connected to neurons (activations) in another layer in full or in part via synapses

(weights) as shown in Fig. 1.2. The output of each neuron in Fig. 1.2 can be expressed as

2



the operation shown in Equation (1.1).

Output = F
 

N�1X

i=0

Ii ·Wi,1 + b

!
(1.1)

where, Wi,1 represents the weights and Ii represents the input activation for the neurons in

a particular layer containing N neurons. Output represents the output activation which will

be fed as an input to another layer, and F(·) is the activation function like ReLU, sigmoid,

etc.

DNNs vary in a number of layers, the operation these layers perform, the size of inputs

and weights on these layers, etc. Most of the DNNs have a convolutional (CONV) layer and

a fully-connected (FC) layer. DNNs with only FC layers are called multi-layer perceptron

(MLP) and the ones with CONV layers are called convolutional neural networks (CNNs).

Apart from MLP and CNNs, there are other kinds of DNNs i.e., Recurrent Neural Network

(RNN) [9], Transformers [10], General Adversarial Networks (GANs) [11], etc. Although

the types of application for other DNNs vary from CNNs, most of the building blocks and

basic underlying operations remain the same. For example, RNNs and transformers are

dominantly memory bound and these are similar to the FC network in terms of network

tra�c. In this dissertation, the focus is on the tra�c optimization methods inside DNN

accelerators which are equally valid for all types of DNNs though the evaluation done in

CNNs like AlexNet [7], VGG-16 [8], ResNet50 [12].

The CONV layer performs an element-wise multiplication and accumulation operation as

shown in Fig. 1.3 (a). Each element in a filter (F ) is multiplied with a corresponding input

feature map (I) to produce a partial sum. These partial sums are accumulated to get an
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Figure 1.3: Convolution operation (a) 2D convolution, (b) higher dimensional convolution

element on an output feature map (O). Multidimensional CONV layers shown in Fig. 1.3

(b) are usually composed of Q filter weights each with dimension C ·R ·R, and input feature

maps with dimension C ·H ·H. The output map can be parallelized in hardware since the

multiply and accumulate operation can be performed simultaneously. This also provides an

opportunity in reusing the weights or inputs that are already loaded from the memory to

reduce the memory transactions in the hardware.

DNNs include the training phase and the inference phase. In the training phase, learning

is involved in determining the network weights and the biases. The inference phase is actually

taking the inputs from the user or sensor and making use of the weights and biases obtained

during the training phase to get the estimated result. Training DNNs often requires the

use of a large dataset and is more computation-intensive than inference. Training is not

performed frequently which is also a time-consuming process that may take up to several

weeks at a cloud/data center. On the other hand, inference usually happens at edge devices

like mobile phones which are directly performed by the users. This dissertation is focused
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on the inference phase of the DNN model.

As DNNs are continuously evolving, the DNN executing hardware infrastructure should

also be able to support the diversity and non-uniformity in DNN models. Unlike some

other standardized protocols in telecommunications, MP3 encoding/decoding, etc., there is

no one standard on how hardware can implement DNN models. This leads to the problem

of non-uniformity in the computing and communication requirement for DNN hardware.

Depending on the application, users can employ the techniques like pruning, quantization,

etc. to further reduce the DNN complexity. These complexity-reducing techniques also

contribute to the non-uniformity in DNN execution. Hence, the DNN executing hardware

infrastructure should also be able to support this diversity in DNNmodels and not necessarily

designed to execute certain DNN models.

1.2 Challenges and Opportunities in DNN Execution

The availability of training data and advancement in high-performance computing leads

to the pervasiveness of DNNs. However, there is also a disparity between the rate at which

DNN architecture is evolving and the underlying hardware that executes DNN to satisfy

the need of real-world applications. DNN execution demands a high computing and power

budget, however, many AI applications demand the execution on a hardware with limited

computation and power budget. Hence, traditional general-purpose processors are no longer

able to cater to this need, which drives the research on domain-specific processors i.e., ac-

celerators [4].

DNNs can extract the high-level features from the input data as in statistical learning
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Figure 1.4: Some popular DNN models with number of weights and MAC operations.

compared to hand-picked features from classic machine learning. This has enabled DNNs to

achieve human-level accuracy which comes at the cost of high communication and compu-

tation complexity. High complexity in DNNs is due to the involvement of a huge number of

parameters and multiply-and-accumulate (MAC) operations. Fig. 1.4 shows the number of

weights and MAC operations used in some of the popular DNN models. AlexNet [7] consists

of 61M weights and 724M MACs, while VGG-16 [8] consists of 138M weights and 15.5G

MACs.

Authors in [13] demonstrated that more than 90% of a certain class of DNN workload

execution time on a single-threaded CPU was spent on a convolution layer. Similarly, in

most commonly used DNNs the multiply and accumulate operation in CONV and FC layers

consume more than 90% of the total operations involved. Fig. 1.4 shows the amount of

MAC operations involved in some of the popular DNNs. The same figure also shows the

total weights involved in these DNNs. Hence, due to the volume of MAC operation and

data (weights, inputs) involved, the DNN execution bottleneck in hardware can be broadly
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Table 1.1: Convolution layers for AlexNet [7] & VGG-16 [8]

Model Layers
Kernels

(C ⇥ #kernels @ R ⇥ R)
Layer Size

(C @ H ⇥ H)

AlexNet [7]

Input 3@224x224
Conv1 3x64@11x11 64@55x55
Conv2 64x192@5x5 192@27x27
Conv3 192x384@3x3 384@13x13
Conv4 384x256@3x3 256@13x13
Conv5 256x256@3x3 256@13x13

VGG-16 [8]

Input 3@224x224
Conv1 64x64@3x3 64@224x224
Conv2 128x128@3x3 128@112x112
Conv3 256x256@3x3 256@56x56
Conv4 512x512@3x3 512@14x14

categorized into communication and computation.

The computation bottleneck is fairly straightforward to resolve. This involves adding or

increasing the number of processing elements (PEs) or computation nodes. However, it is

also to note that increasing computation resources will increase a fair amount of complexity

in the communication infrastructure. Additionally, DNNs comes in a variety of shape and

sizes which include the diversity in layers, kernels, etc. Computation needs should be re-

configurable to be able to handle these diverse workloads. Table 1.1 shows the diversity in

di↵erent convolution layers in Alexnet [7] and some representative layers from VGG-16 [8].

In a DNN accelerator, PEs perform MAC operations while the involved parameters are

usually stored in the global memory. There is a need of transferring data from global memory

to PEs and vice versa. PEs and the memory elements are often interconnected by a Networks-

on-Chip (NoC) [14] [15] [16] for realizing high throughput. These PEs operate in parallel

and reduce the memory access as much as possible by sharing and reusing the parameters
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with each other. Also, while sharing and resuing of these data happens, di↵erent kinds

of tra�c patterns exist in the DNN execution. In addition to one-to-one tra�c, there are

a large amount of one-to-many (input/weight distribution) and many-to-one tra�c (result

collection) in a DNN workload. The disparity of tra�c patterns imposes great challenges in

the communication supporting schemes of a DNN accelerator.

1.3 Motivation

As the communication backbone [17] [18] [19] of a DNN accelerator, NoC plays an im-

portant role in supporting various tra�c patterns and dataflow models, enabling processing

with communication parallelism, and enhancing scalability. Most of the recently proposed

DNN accelerators adopt the mesh topology, which is simple in design but also has some

drawbacks. Some common problems that can be addressed to improve the execution of a

DNN workload in mesh-based accelerators, as listed below:

• Lack of support for many-to-one tra�c: Existing mesh-based accelerator systems focus

more on improving scalability and data reuse, and little attention is given to enhancing

communication support that is abundant in the DNN workloads i.e., many-to-one

(gather) tra�c.

• Incompatible exisiting multicast algorithm: In the literature, di↵erent approaches have

been proposed to support multicast tra�c in NoCs [19] [20]. Noticeably, in a DNN

workload, multicast tra�c tends to have a fixed communication pattern. Thus, existing

multicast algorithms is not suitable for DNN workloads.

• Increasing the computation parallelism with limited communication overhead: As
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pointed out in Section 1.2, the computation throughput of a DNN accelerator can

be improved by increasing the number of PEs. There is a need of an architecure

that will scale up the computing bandwidth of the DNN layers at the same time not

requiring too much of the overhead in communication and memory requirements.

• As the DNN models are evolving, dataflow models are also improving. There are

certain dataflow models which may not perform well in other kinds of hardware tuned

to execute on di↵erent dataflow models. There is a need to identify the common

computing constraints that would work for di↵erent dataflow models.

1.4 Objectives

This dissertation aims to address the aforementioned problems and provide solutions to

enhance the communication support and computation throughput in DNN accelerators. The

following research tasks are conducted:

• Support for many-to-one tra�c: This dissertation proposes the gather supported rout-

ing scheme to support many-to-one type of tra�c on the Output Stationary (OS)

data flow model on mesh-based DNN accelerators. The use of gather packets helps in

reducing the network congestion and power consumption as well.

• Support for one-to-many tra�c: This dissertation proposes to use streaming buses to

stream input activations and weights from the memory elements to the PEs in the same

row and column, respectively. The streaming buses overcome the additional routing

overhead and thus improve the runtime latency and power consumption of a DNN

workload.
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• Support for multiple PEs per router: While improving the computation bottleneck

is fairly straightforward, this work proposes the support for multiple PEs per node

which helps in distributing the weights/inputs e↵ectively and maintaining compute

level parallelism to accelerate the DNN workload.

• In-Network Accumulation (INA) for di↵erent dataflow models: This dissertation fur-

ther proposes a modified router architecture i.e., the INA that is capable of accelerating

di↵erent types of dataflow models which exist in modern DNN accelerators.

1.5 Outline

The rest of the dissertation is organized as follows. Chapter 2 of this dissertation provides

the background and related works in NoC, dataflow models and existing DNN acclerators.

Chapter 3 presents the gather supported routing method to support many-to-one tra�c.

Chapter 4 presents the streaming architecture to address the DNN suitable multicast so-

lution. Chapter 5 presents the solution on scaling the computation throughput for DNN

accelerators. Chapter 6 presents the in-network accumulation architecture to support other

dataflow models and finally, Chapter 7 provides the conclusion and future work of this dis-

sertation.
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CHAPTER 2

BACKGROUND AND RELATED WORKS

In this chapter, all the necessary background and related works to understand the disser-

tation is presented. Section 2.1 briefly introduces the tra�c patterns in DNN workloads and

dataflow models and Section 2.2 describes the existing solutions that have been proposed to

address the need and requirement for DNN execution in hardware accelerators.

2.1 Background

2.1.1 Tra�c in DNN Workloads

A typical DNN model is shown in Fig. 1.2 where multiple layers are interconnected to

each other. While implementing these layers in hardware, typically neurons are mapped

to PEs inside a DNN accelerator. These neurons share the weights stored in the memory

element, similarly, the outputs of the neurons in one layer are the input to the neurons in the

adjacent layer. This sharing of data between adjacent PEs (neurons) creates tra�c inside

accelerators which can mainly be classified as one-to-one (unicast), one-to-many (multicast),

and many-to-one (gather) as shown in Fig. 2.1.

Di↵erent from conventional parallel workloads like PARSEC [23], DNNs involve a sig-

nificant amount of many-to-one tra�c in addition to one-to-one and one-to-many types of

tra�c. Unicast tra�c usually occurs when sending an input activation or weight from a
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memory element to a PE or any other inter-PE tra�c. Multicast tra�c mainly covers the

distribution of weights from the memory element to multiple PEs. Di↵erent dataflow mech-

anisms can be used to support multicast tra�c for weight distributions. Gather tra�c is

used to collect the output from multiple PEs to the memory element. Due to the limitation

of computing resources, the inference operation of a DNN workload is performed in multiple

rounds. When one round of MAC operations is completed, the intermediate results will be

gathered back to the memory element before initiating a new round.

The output of each neuron in Fig. 1.2 can be expressed as the operation shown in Equa-

tion (1.1). Many DNNs consist of multiple layers where both convolution and fully connected

layers perform MAC operation as shown in (Equation (1.1)). These layers are computation-

ally intensive and hence performed in multiple PEs in a distributed way. Moreover, the

weights and inputs are stored in the memory element and these steps require frequent access

to the memory element which is an expensive task in terms of latency and energy [25]. Data

communication in a DNN accelerator consumes around 30% of the total energy and increases

with the system scaling [24]. Hence, tra�c in a DNN workloads and communication support

is an important aspect of an e�cient DNN execution.
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Figure 2.2: OS dataflow model

2.1.2 Dataflow Models

The number of computations that should be performed in a DNN workload is very high

compared to the computing resources available in a DNN accelerator. Therefore, the opera-

tion needs to be broken down into chunks and executed on the limited number of computing

resources available in the accelerator. This presents the opportunity for the data resue i.e.,

the tensor used by one operation is also used by another operation in time by the same PE

or in space by another PE. This temporal and spatial data resue depends on the dataflow

technique employed in an accelerator.

The dataflow determines the processing order and where data is stored and reused, i.e.,

the way data (i.e., inputs, weights, and partial sums) communication happens between the
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PE and memory element. In the literature, various dataflow models have been proposed [25]

including Weight Stationary (WS), Output Stationary (OS), Row Stationary (RS), and No

Local Reuse (NLR), each of them has its own memory usage and energy advantages.

The examples of the OS, WS, and RS dataflow models are shown in Fig. 2.2 - 2.4, respec-

tively. Fig. 2.2 shows the OS dataflow where input activations and weights are streamed in a

row-wise and column-wise manner respectively while the partial sums are accumulated on a

PE. ShiDianNao [28] is one example of a design that uses an OS dataflow model. The choice

of dataflow depends on many factors such as the input size, the number of kernels, stride,

etc., mapping scheme of the DNN workload onto the architecture, and DNN optimizations

like pruning, sparsity [15]. An ine�cient dataflow model will cause stalls as appropriate

data may not be available at the PE when needed and low data reuse so that the same data

must be fetched multiple times from the memory, thus resulting in higher latency and energy

ine�ciency. Compared with other dataflow models, the OS dataflow model achieves good

performance with less complexity. This dissertation will implement the proposed solutions

on the OS dataflow model first and then extend to WS dataflow model.

Fig. 2.3 shows an example of the Weight Stationary (WS) dataflow model where each

PE keeps the filter weight stationary in a PE while the input activations and partial sums

move across the PE array. When these weights are no longer needed, they will be replaced

with other weights. This setting reuses the weights and minimizes the energy consumption

in reading the weights. Google’s TPU [29] is one example of a design that uses the WS

dataflow model. Opposite to the WS dataflow is the Input Stationary (IS) which focuses on

reusing the input activation and minimizing the energy consumption in reading the input

activations. IS model keeps the input stationary in a PE for further access while weights

15



and the partial sum move along the PE array.

The Row Stationary (RS) as shown in Fig. 2.4 on the other hand aims in maximizing the

reuse of all types of data i.e., weights, input activation, and partial sums. In an RS dataflow,

each row of the convolution processing (output row in Fig. 2.4) is mapped into each PE so

that eventually the partial sum for a row of a convolution are spread across multiple PEs (in

a column) which can be accumulated to get the final output convolution. In this model, filter

weights are kept stationary inside a PE, and inputs are streamed. The MAC operation for

each sliding window is performed at a time and a partial sum is generated. The generated

partial sums are finally accumulated columnwise to get the output activations. Due to the

nature of the dataflow, the input will also get reused between di↵erent sliding windows.

Eyeriss DNN accelerator [30] proposed the RS dataflow model.

2.2 Related Works

2.2.1 DNN Accelerators

DNN processing involves tens of layers and a large number of multiply-accumulation (MAC)

operations using millions of parameters, which imposes tremendous throughput and energy-

e�ciency challenges to the computing platforms. To cope with this challenge, temporal archi-

tectures like Single-Instruction, Multiple-Data (SIMD)/Single Instruction, Multiple-Thread

(SIMT) are used in CPU/GPU platforms where computing elements share the control unit

and memory element to perform the MAC operation in parallel. The operations in convo-

lution and fully-connected layers are often mapped to a matrix multiplication for e�cient

processing [31] [32]. However, the general-purpose CPUs provide the least performance ben-
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efit because of the limit in parallelism. Though GPUs solve the problem of parallelism, they

tend to consume high power.

On the other hand, spatial architectures use a distributed approach where the processing

elements (PEs) may have their own control logic and limited local memory. Recently, the

spatial DNN accelerators like [29] [30] [28] are gaining attention as they are optimized to

handle DNN processing e↵ectively. Commonly used in FPGA and ASIC based designs

[25] [29] [33] [34], spatial architectures use a distributed approach which adopts a large

number of PEs each having its own control logic & limited local memory and shared global

memory. Communication between PEs is allowed which enables the data movement between

each other. In the design of a DNN accelerator, a major consideration is optimizing data

movement which aims to minimize the global memory access and thereby reduce the power

consumption during the DNN processing.

In [29], authors presents a WS model where weights are stationary at the PEs while

the inputs and partial sums will move through the PEs and the memory element. On the

contrary, the OS model has the output stationary at the PEs while the inputs and weights

move which is implemented in [28]. The NLR model [24] focuses on increasing the size of the

global bu↵er at the expense of a register file and thus decreasing the DRAM accesses. The

RS model increases the reuse of all data types rather than focusing on the reuse of one type.

Systolic architecture [35] is another e�cient way of implementing the convolution operation

in hardware. In [30], various systolic CNN architectures are described which can be applied

to mesh-based NoCs.

DNN workloads contain di↵erent types of communication tra�c which handle the data

movement like partial sums, weights, and inputs streams to and from the memory. In a DNN
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accelerator [36], data movement is expensive in terms of energy which consumes around 50%

of the total energy. In some cases, data movement can even increase the latency [30] due to

the communication bottleneck. Although a bus-only based system is proposed in some prior

work, this kind of system will quickly become the bottleneck when the DNN size increases

[37]. This observation leads to the works which are focused on the NoC architecture and

communication support of the DNN accelerators [15] [38] [39] [40] [41] [42].

2.2.2 NoC in Accelerators

Network-on-Chip (NoC) has emerged as the de-facto standard for on-chip communication in

multi/many-core systems [21]. The need for NoC in a DNN accelerator is ever increasing and

becoming important because of the inherent nature of DNN computation and the on-chip

tra�c involved. Another important feature of NoC is scalability where nodes or processing

elements (PE) can be added with minimal changes. Modular design property helps in gating

and thus saving power by turning o↵ the unused modules. This also provides flexibility in

running di↵erent kinds of workloads on the same NoC-based system [22].

Various study has been done in NoC topology to accelerate a DNN workload [36] [37] [42]

[43]. In [42], a hierarchical Neu-NoC architecture is proposed which adopts a hybrid ring-

mesh topology. Multiple PEs are connected in a group of rings that are connected via a mesh

topology. This structure reduces the communication distance and shows better performance

against the bus and tree structures. Authors in [43] propose a reconfigurable topology for

a 3D neural network accelerator that can be reconfigured as a tree to handle the multicast

tra�c. A many-core system SpiNNaker is proposed to simulate the spiking neural networks

with torus network topology. In [37], the authors study di↵erent topologies and conclude
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that the mesh NoC is better for realizing spiking neural networks, compared with the tree,

point-to-point, and bus-based structures. In [36], a fat tree and a mesh are used for intrachip

communication and data movement among chips, respectively. The separation of intrachip

and interchip communication may create a bottleneck for the gather tra�c abundant in a

DNN workload.

Changes in the NoC topology also cause the change in the communication cost and

support of di↵erent tra�c patterns. Authors in [30] propose a mesh-based interconnection

network called hierarchical mesh network for DNN processing. The PEs and memory ele-

ments are grouped into a cluster which is then connected via the hierarchical mesh network.

The NoC is capable of configuring the network topology based on the needs. The Neuron-

Link [39] is a chip-to-chip interconnection network for large neural networks that support

both interchip and intrachip communication. Each chip consists of 16 PEs in a mesh topol-

ogy and 4 such chips are connected in a star topology to handle a large amount of unicast

and multicast tra�c. The artificial intelligence (AI) computing system from Cerebras [26]

uses 2D mesh as a communication topology to connect thousands of AI cores. Groq [27]

reorganizes 2D mesh into functional slices to optimize the microarchitecture.

Various routing methods are adopted to fulfill the communication needs especially mul-

ticast and gather tra�c in a DNN accelerator. Authors in [39] adopt XY routing for unicast

tra�c and a table-based routing for multicast tra�c. Authors in [30] propose di↵erent NoC

configurations for each datatype i.e., input activation, weights and partial sums. Further,

this method is suitable for RS dataflow architecture where partial sums are accumulated

across multiple PEs and hence not suitable to perform gather for unique partial sums across

the PEs which exist in OS dataflow architecture. In [44], authors have proposed an array
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of microswitches that are configured to handle di↵erent kinds of DNN tra�c by creating a

tree. In ClosNN [40], one or more layers can be conducted on the network by mapping the

neurons (PEs) on the input/output ports. Various stages of switching are done to connect

the input and output ports in ClosNN depending on the type of data tra�c.

Since the field of DNNs is evolving rapidly, hardware design should also be able to cope

with this pace. As a widely adopted NoC topology, mesh is used in most of the recently

proposed DNN accelerators [26] [27] [39] [37] [45]. As many-to-one and one-to-many tra�c

are not inherently supported in a mesh topology, they are typically modeled as repetitive

unicast (RU) tra�c in existing work [45] [30] which turn out to be ine�cient. Recent work

modifies the topology to simulate a tree or Clos network [40] [44] to support many-to-one

tra�c. Hence, this dissertation proposes an e↵ective communication solution to many-to-one

tra�c for a mesh-based NoC along with other improvements on the communication aspect

of the DNN accelerators.
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CHAPTER 3

SUPPORTING MANY-TO-ONE TRAFFIC

This chapter introduces many-to-one communication support solutions for a DNN ac-

celerator. Section 3.1 provides the motivation behind this study. Section 3.2 describes the

proposed routing algorithm and necessary support to enable gather tra�c. Section 3.3 shows

the proposed changes in the router microarchitecture to enable gather supported routing.

Section 3.4 provide the implementation results and finally, Section 3.5 summarizes this chap-

ter.

3.1 Motivation

It is clear that in order to utilize the best potential of the DNN accelerators we need

to parallelize the MAC operation. In a DNN accelerator, PEs perform MAC operations

while the involved parameters are usually stored in the global memory. There is a need

of transferring data from global memory to PEs and vice versa. PEs and the memory

elements are often interconnected by a Networks-on-Chip (NoC) [14] [15] [16] for realizing

high throughput. These PEs operate in parallel and reduce the memory access as much as

possible by sharing and reusing the parameters with each other, especially in the spatial

architectures. E↵ective utilization of the local PE memory requires the existing data to be

moved to the global memory which creates an abundant amount of many-to-one tra�c.

Fig. 3.1 shows a 6x6 mesh with six PEs ready to send data to the global bu↵er, Fig.
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Figure 3.1: 6x6 mesh example (a) without gather support (b) with gather support

3.1(a) shows the operation without the gather support where each PE sends a unicast packet

to the global bu↵er which requires 15 hops to get the data to the bu↵er. Is it possible to

collect the data to be sent to the bu↵er into one gather packet? Fig. 3.1(b) illustrates the

gather packet initiated from node 12 and also provides an answer to the above question.

As the gather packet progresses along the route, it will enclose the data payload from each

intermediate node. The hop count for the gather packet is only 5. It is clear that the

gather packet is able to deliver the data to the global bu↵er with less resource utilization by

removing the redundant use of the resources compared to the repetitive unicast method.

3.2 Gather Supported Routing

In this section, the NoC architecture and data flow on a systolic array will be introduced

followed by the description of the gather supported routing scheme and analysis of the

performance gain.
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Figure 3.2: OS Dataflow in NxM Mesh NoC (a) systolic array based (b) streaming bus based

3.2.1 Data Flow Model

The mesh-based NoC adopting the Output Stationary (OS) [44] [30] systolic architecture is

shown in Fig. 3.2(a). Each PE can perform the simple multiply and accumulate (MAC)

operation. The input data and filter weights are fed from the left and top edges to the left-

most column PEs and top-most row PEs, respectively. The output data will be stored to the

global bu↵er located on the right side of the NoC (similar to Fig. 3.1) which will be accessed

by the subsequent layers. These PEs will propagate the data to the PEs on the same column

and row until all the PEs receive the data. One of the advantages of systolic architecture is

that the whole operation is repeated in a pipelined manner making it easier to perform input

and output operations. In each pipeline stage, each PE stores the data received from its left

and top neighboring nodes, perform the MAC operation, and forwards the same data to the

right and bottom neighbor nodes in parallel. This helps in reducing a significant amount

of memory operations. Similarly, Fig. 3.2(b) shows another way of performing the same

operation using streaming bus architecture, more on this kind of architectures are explained
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Figure 3.3: Packet format

in Chapter 4.

Without the loss of generality, assume that there are N ⇥ M PEs in the mesh-based

NoC. The P inputs or feature maps of size H · H with C channels are streamed from the

left edge of the NoC and Q filters each of size R · R with C channel are streamed from the

top edge. Each PE will receive a total of C · R · R input and weight data then perform

C ·R ·R MAC operations. On this setting PE0,0 will be the first to finish the operation and

then PE1,0, PE0,1 are the second in line, and so on. When all P inputs are convolved with

Q filters the convolution operation is complete. Noticeably P · Q is not a trivial number

and the convolution will be completed by N ⇥M PEs in multiple rounds. Thus, once the

C · R · R data is streamed, partial sum (PS) output as shown in (3.1) is sent to the global

bu↵er before the next set of data is streamed.

PSi,k
i2{1...P};k2{1...Q}

=
C·R·RX

j=1

(Ii,j · Fk,j) (3.1)
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3.2.2 Routing Scheme

The process of moving the data from the PE to memory is gather tra�c or many-to-one

tra�c. This section proposes a gather tra�c support routing scheme. The PE which has

finished the operation first will initiate the gather packet towards the memory or a global

bu↵er and on its way, it will collect all the available results from the intermediate nodes on

the same row until its capacity is reached. Fig. 3.3 shows the packet format for the proposed

gather support. FT is the flit type that includes the head, body, and tail identifier. PT is

the packet type that includes unicast, multicast, and gather type identifier. ASpace in the

header flit is used to identify available space in a packet for a node to upload its payload. Src

and Dst are the identifiers for source and destination node and finally, MDst is the bit string

multicast destination representation. Both body and tail flits include the payload field.

Algorithm 1: Flow for the Gather Support

Input : Arriving flit (F ), Gather Payload (P )
Output: Updated flit (F ) or initiate a gather packet

1 if ((F.FT = H) and (F.ASpace >= sizeof(P )) and (F.PT = G)) then
// generate a load signal

2 if (F.Dst = P.Dst) then Load  1
// update F.ASpace before switch traversal

3 if (Load = 1) then F.ASpace F.ASpace - sizeof(P )
4 end
5 if ((F.FT = B or F.FT = T ) and (Load = 1)) then F.Data P.Data
6 else Can initiate a gather packet after � clock cycles
7 if (F.FT = T ) then Load  0

Algorithm 1 shows the flow for the gather supported routing implemented at each router.

The incoming header flit and the information from a gather payload are used to generate
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a Load signal, which indicates the router to fill a gather payload in an incoming body or a

tail flit by appending the payload. Ideally, the size of a gather payload is considered to be

less than a flit size. Fig. 3.4(a) shows the logic to generate a Load signal; the space counter

ASpace is decremented using the Load signal so that other PEs can estimate the space for

filling their gather payloads. If the ASpace is less than a gather payload size, the router can

initiate its own gather packet. However, to avoid the flooding of gather packets, each router

must wait for the timeout period of � cycle so that any other previously generated gather

packet can go through.

The value of � can be determined based on the router pipeline stages. Additionally, � can

be fine-tuned further for an individual router, if required. A too low value of � will result in

an increased amount of packets in the network, leading to congestion and increased latency,

while a too high value of � will cause nodes to wait too long for an incoming gather packet,

which may increase the latency of the packets. Noticeably, � also serves as a fault tolerance

mechanism. If a link is faulty, then the node can initiate its own packet without having to

wait indefinitely for a previously generated gather packet. In such a scenario, a large value

26



Input/Filter | MAC

Input/Filter | MAC

Input/Filter |   MAC   | Result

.
        .
              .

Input Stream T
MAC Result Collection

P
E

0
,0

Input/Filter |   MAC   | Result

.        .              .

P
E

0
,1

P
E

0
,M

-1 .        .              .
Input/Filter |   MAC   | Result

......

Total Latency
. . .

. . .

. . .

Figure 3.5: Pipelined operation of convolution on a row of PEs

of � can lead to higher packet latency. In our experiments, all links are assumed to be fault

free and reliable.

It is important to restrict a circular path in the routing algorithm to avoid a potential

deadlock. The proposed gather packet still follows XY routing, which is deadlock-free.

3.2.3 Analysis of Performance Improvement

The advantage of the gather supported routing is the savings in network latency and power

consumption that are obtained using the gather packet to collect data that were otherwise

going to be sent using unicast tra�c. The gather packet reduces the hop count needed to

deliver the data to the memory element by allowing the data from the intermediate nodes
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to piggyback its payload into the incoming gather packet.

The latency to finish one round of convolution is attributed to the input streaming time,

the MAC computation time, and the result collection time. Assume that wormhole switching

is used and the operations of input streaming/MAC/result collection are performed in a fully

pipelined fashion as shown in Fig. 3.5. Equations (3.2) and (3.3) estimate the latency in

clock cycles using the repetitive unicast (RU) method and the proposed gather method

(G) respectively. Equation (3.4) shows the expected performance improvement using the

proposed gather method over the repetitive unicast.

In these equations, C · R · R represents the time to stream the inputs to the PE, TMAC

represents the computation time for the MAC operation,  represents the number of pipeline

stages at each router (each stage occupying one cycle), P
N · Q

M represents the multiple rounds

for all the P inputs and Q filters. Assume that each unicast packet size is L, each gather

packet size is L0, and the flit size is W . The gather packet is initiated from the leftmost node

of each row.

LatencyRU =

⇣
C ·R ·R + TMAC +M · +

l
L
W

m
� 1 + (M � 1) ·

l
L
W

m
+�R

⌘
P
N · Q

M

=

⇣
C ·R ·R + TMAC +M

⇣
+

l
L
W

m⌘
� 1 +�R

⌘
P
N · Q

M

(3.2)

where M · represents the latency for the header flit from PE0,0 to reach to the global bu↵er,
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l
L
W

m
� 1 represents the remaining flits from PE0,0 to reach the global bu↵er, (M � 1) ·

l
L
W

m

represents the latency for the remaining packets to reach to the global bu↵er, and �R is the

latency added due to the congestion.

LatencyG =

⇣
C ·R ·R + TMAC +

P
⌃

M
⌘

⌥
�1

i=0

�
(M � i · ⌘) · +

⌃
L0

W

⌥
� 1 + t� +�G

�⌘
P
N · Q

M

(3.3)

where ⌘ is the number of payloads that can be collected by one gather packet,
⌃
M
⌘

⌥
represents

the number of gather packet, (M � i · ⌘) ·  represents the latency for the header flit in the

gather packet,
⌃
L0

W

⌥
� 1 represents the latency for the rest of the flit in the gather packet,

t� 2 {0, 1, .., �} is the latency added due to the delta(�) cycle which will vary depending on

the availability of gather packet when the gather payload is ready, and �G is the latency

added due to the congestion.

Improvement =

⇣
M
�
+
⌃

L
W

⌥�
�1+�R

⌘
�
⇣

P
⌃

M
⌘

⌥
�1

i=0

�
(M�i·⌘)·+

⌃
L0
W

⌥
�1+t�+�G

�⌘

C·R·R+TMAC+
P
⌃

M
⌘

⌥
�1

i=0

�
(M�i·⌘)·+

⌃
L0
W

⌥
�1+t�+�G

�
(3.4)
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3.3 Router Architecture

An NoC router typically consists of multiple pipeline stages. Fig. 3.6 shows a four-stage

router pipeline including stages of route computation (RC), virtual channel allocation (VC),

switch allocation (SA), and switch traversal (ST) [22]. For an incoming packet, only the

header flit undergoes the RC stage to determine the output port for the packet. Similarly,

only the header flit moves to the VC stage, where the flit arbitrates for a virtual channel

corresponding to its output port. In the SA stage, each flit arbitrates for the switch input

and output ports. Finally, in the ST stage, each flit traverses the crossbar. All flits of a

packet undergo the SA and ST stages. The unused pipeline stages for the body/tail flit can

be used to fill the gather payload into a gather packet.

Fig. 3.6 shows the modified router pipeline to incorporate the gather support. After

the header flit of a gather packet arrives at the input bu↵er, the Load signal is generated

during the RC stage and in the VC stage ASpace counter is updated. Upon the arrival of

the body/tail flit, the gather payload is filled into the packet during the RC and VC stages.

This modification does not require the packet to leave the router, nor add extra pipeline
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stages; thus, no additional latency is introduced. As the router pipeline does not change,

there is no impact on the router performance.

The modified router microarchitecture is shown in Fig. 3.7. The Load Signal Generator

block, shown in Fig. 3.4(a), has access to all the incoming input ports and the gather payload

generated from the PEs. A matching logic is used to identify certain conditions to generate

the load signal as described in Algorithm 1. The Payload Generator block as shown in Fig.

3.4(b) uses the load signal along with the decoded input port number to forward the payload

to the respective port which then updates the ASpace and uploads the gather payload to the

subsequent incoming body or tail flit. The Payload Generator block is also responsible for

sending the ACK signal back to the PE. Depending on the ACK signal, the PE will either

initiate its own gather packet if the incoming gather packet is full, or initiate its own unicast
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Table 3.1: Network configuration for many-to-one simulation

Topology 8x8 Mesh, 16x16 Mesh
Virtual Channels 4
Router Pipeline Stage 5
Bu↵er Depth 4 flits

Packet Size
Gather : 4 flits/packet
Other: 2 flits/packet

Flit Size 98 bits/flit
Gather Payload 32 bits
TMAC 5 Clock Cycles

packet upon the expiration of � cycles controlled by a counter set by the PE.

3.4 Performance Evaluation

This section evaluates the gather supported routing method and compare it with the

repetitive unicast method using the convolution layers in AlexNet [7] and VGG-16 [8].

3.4.1 Simulation Settings

A cycle accurate C++ based NoC simulator [46] is used to simulate the proposed method

implemented with the OS systolic array [30] on mesh-based NoCs as shown in Fig. 3.2(a).

Table 3.1 lists the NoC settings. Pytorch [47] framework is used to generate the parameters

for AlexNet [7] and VGG-16 [8] shown in Table 1.1. These parameters are used to generate

the traces for the experiment. Orion 3.0 [48] is used to estimate the dynamic power con-

sumption. Delta(�) is set to the 5 clock cycles to ensure at least the head flit will arrive at

the neighboring node. Assume that the global bu↵er is connected to the right edge of the

mesh. As shown in Fig. 3.2(a), the input feature maps and filter weights are streamed from
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Table 3.2: Estimated vs simulated performance improvement in total latency for Alexnet [7]
in 8x8 mesh for gather supported routing

Result
Layers

Conv1 Conv2 Conv3 Conv4 Conv5

Estimated 2.92 0.73 0.68 0.34 0.51
Simulated 5.93 1.37 1.27 0.63 0.95

the input and weight bu↵ers from the left and top side of the network respectively. A row-

based gather is simulated where the gather packet is initiated from the PEs in the leftmost

column to the rightmost PEs and then to the global bu↵er.

3.4.2 Result

Fig. 3.8 shows the performance improvement in the total latency (including the input stream-

ing time, MAC time, and result collection time) of all five convolution layers in AlexNet [7]

using the proposed gather method over the repetitive unicast method. Table 3.2 shows that

the changing trend of both results is consistent. For the estimated result in Table 3.2,the

parameters �G, �R, and t� are all set to 0, which reflects the ideal case with no congestion

and � delay. Noticeably, the estimated result represents the least improvement that can be

achieved. Nevertheless, in simulations, there exists congestion and delta delays, i.e., �R,

�G, and t� are not 0. That’s why the simulated improvement is higher than the estimated

result from (3.4).

It’s clear that 16 ⇥ 16 mesh o↵ers better improvement than 8 ⇥ 8 mesh as the saving

in hop count achieved by the gather method in 16 ⇥ 16 mesh is more significant than that

in 8 ⇥ 8 mesh. In addition, the congestion will start to degrade the performance of the

33



Figure 3.8: Improvement in total latency for AlexNet [7] on 8⇥ 8 and 16⇥ 16 mesh

Figure 3.9: Improvement in total latency for VGG-16 [8] on 8⇥ 8 and 16⇥ 16 mesh

Figure 3.10: Improvement in power for AlexNet [7] on 8⇥ 8 and 16⇥ 16 mesh
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Figure 3.11: Improvement in power for VGG-16 [8] on 8⇥ 8 and 16⇥ 16 mesh

repetitive unicast with the increase in the network size. The first convolution layer (Conv1)

shows the highest improvement in both meshes because it has the smallest C · R · R value

(refer to Table 1.1 and (3.4)). Similarly, Fig. 3.9 shows the performance improvement in the

total network latency for the selected 4 out of 13 convolution layers 2, 4, 6, 13 with di↵erent

parameters in VGG-16 [8]. Similarly, Conv1 (for layer 2) which has the smallest C · R · R

value has the best improvement compared with other CONV layers.

Fig. 3.10 shows the performance improvement in the total power consumption of all

the convolution layers in AlexNet [7] using the proposed gather method over the repetitive

unicast method. Although for 8 ⇥ 8 mesh less than 1% improvement is seen for all the

convolution layers, this improvement is better with the increased size of the network. For

16 ⇥ 16 mesh, the total improvement in all the convolution layers is around 8%. Similarly,

Fig. 3.11 shows the performance improvement of power in VGG-16 [8]. We can see a similar

trend, with an increase in the network size the performance improvement is getting better.
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3.5 Summary

This chapter presents the analysis of using the gather packet on mesh-based NoCs to

support the significant amount of many-to-one tra�c existing in a CNN workload. Particu-

larly during the convolution layer, continuous streams of input and weights are fed to PEs

and the MAC results are sent back from each PE to the output bu↵er before starting the

new round of computation. The simulation results of the gather method using the tra�c

traces generated from the convolution layers of AlexNet and VGG-16 are compared against

the repetitive unicast method on both 8⇥ 8 and 16⇥ 16 mesh-based NoCs. AlexNet [7] and

VGG-16 [8] both show the improvement in the total runtime and power consumption for

8⇥ 8 and 16⇥ 16 mesh-based NoCs employing output stationary systolic array. This gather

method can also be used to support gather type tra�c in other DNN workloads.
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CHAPTER 4

SUPPORTING ONE-TO-MANY TRAFFIC

This chapter presents the support to multicast tra�c for DNN workload i.e., one-to-

many tra�c. Section 4.1 explains the motivation behind this study. Section 4.2 presents the

modified streaming bus support for multicast tra�c. Section 4.3 presents the result of the

performance evaluation and finally, Section 4.4 summarizes this chapter.

4.1 Motivation

As shown in Fig. 3.2, in the OS model, a partial sum will be accumulated at a PE with

the input activations and weights streaming from the memory element [28] [49]. Assume

that one router can connect to up to N PEs so that these PEs will receive N sets of inputs

and weights. E↵ective data re-utilization can only happen if the distribution is performed

e↵ectively.

Fig. 4.1 shows the tra�c distribution in di↵erent layers in AlexNet [7] and VGG-16

[8]. The majority of the tra�c is concentrated in the CONV and FC layers. Other tra�c

involved in the maxpool layer is less compared to the CONV and FC layers combined. In

both DNNs for 1PE case, we can see the amount of tra�c for CONV and FC layer is more

than 90%. This tra�c includes the distribution of weights and inputs from memory to PEs

to perform MAC operations. Notice that, as the number of PEs per router increases, the

CONV/FC layer tra�c is distributed among those PEs with less overhead which reduces the
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Figure 4.1: % Tra�c/PE in AlexNet[7] and VGG-16[8]

tra�c in these layers. However, other tra�c which involves the inter PE sync and command

from the task scheduler increases due to extra PEs. The major advantage of having a spatial

neural network accelerator is to reuse the data and to avoid the duplication of the data.

Multicast communication i.e., one-to-many is one of the major tra�c in the CONV and FC

layer which needs special attention and handling in the DNN accelerators.

Multicast routing algorithms are broadly classified into tree-based and path-based. In

the literature, several tree-based and path-based multicast routing algorithms have been

proposed for NoCs [19][50]-[53]. The multiple unicast routing can be considered as a sim-

ple tree-based algorithm that has an advantage when the multicast destination is sparsely

located. In path-based multicast algorithms, intermediate branching is prohibited. Multi-

ple paths at the source node are identified and the packet is delivered to the destination

nodes along the paths. However, the multicast requirement for the DNN workloads vary

from the assumption that traditional single/multithreaded workload like PARSEC [23] in
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the following ways:

• Path-based multicast algorithm like DPM [19] follows a certain path from the source

node to all the destination nodes, this way of data delivery adds extra latency to the

packet delivered on each destination node. In the DNN accelerators, most of the PEs

work on the same weights or input activation, hence existing multicast algorithm is

ine�cient in DNN accelerators.

• Data reuse is the key feature of DNN accelerators which rely on data reception and

data delivery. Due to the variable data reception latency, data delivery will also vary.

This variation results in the late initiation of the subsequent layers since the processing

of the next layer in DNNs also depends on the completion of the previous layer.

4.2 Streaming Architecture

Based on this observation, a modification is proposed where the input activations and

weights are streamed using a bus from the memory elements to the PEs in the same row

and column, respectively. The streaming bus will help in overcoming the additional routing

overhead and thus improve the runtime latency and power consumption of a DNN workload.

When multiple PEs are supported by one router, the communication bandwidth can be

further improved using the streaming bus.

Fig. 4.2(a) shows the two-way streaming architecture, where two di↵erent stream units

will handle the streaming of input activations and filter weights. Each input activation

streaming unit handles the streaming of the corresponding input activation from the memory

element to a respective PE row. Each router in the same row will receive the same input
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Figure 4.2: Modified architecture with direct streams (a) two-way streaming, (b) one-way
streaming

activations, which are then bu↵ered for MAC operation on a PE’s internal register file.

Similarly, the weight streaming unit streams the filter weights from the memory element to

a respective PE column. These streaming units will stream all the row and column data to

the respective PEs, similar to the pattern shown in Fig. 3.2. The partial sums or the output

activations are calculated at all PEs. Results in the same row are then collected using a

gather packet as it proceeds towards the memory element. Other dataflow models can also

perform a similar data orchestration.
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Figure 4.3: Pipelined operation of a partial sum(PS) generation/gather in a row of PEs

Fig. 4.2(b) shows the one-way streaming architecture, where both the input activations

and the filter weights share the same streaming link to PEs in the same row. As either weight

or the activation streams share the link at a given clock cycle, there is a latency added before

the PEs can move ahead with the MAC operation. Fig. 4.2(b) also shows the streaming unit,

which streams the input/weight activation in an interleaved manner through a multiplexor

on a shared link. A gather packet will accumulate the partial sums before sending them

back to the memory element. This architecture will use less silicon area compared with

the two-way streaming architecture. This architecture may be beneficial for other types of

dataflow models like WS, RS, where the weights are streamed first to the PEs before input

streaming begins or where there can be a tradeo↵ between the area and power.
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4.2.1 Analysis of Streaming Bus

The total clock cycles required to finish one round of convolution operation can be attributed

to the time required for: input activation streaming and weight streaming; the MAC opera-

tion; and finally, the generation and collection of the result. Fig. 4.3 illustrates the pipeline

execution of multiple rounds of convolution operations in one row of PEs with one PE/router,

where the streaming of input activation and weights (I/W), followed by the MAC operation

and activation function, happen in parallel at all the PEs. After C ·R ·R MAC operations,

the partial sum (PS) is generated at each PE, which is then collected by the gather packet.

While the gather packet collects the PS results along its way to the global memory, the

next round of convolution operation occurs concurrently. With multiple PEs/router, in each

round the streaming time will be extended while other parts stay the same.

Equations (4.1)-(4.2) analyze the improvement of the runtime latency of a convolution

layer using gather support over repetitive unicast (baseline) for the OS dataflow model on

the proposed streaming architecture. In these equations, C · R · R represents the time to

stream the inputs to the PE, as shown in Fig. 3.2; n represents the multiplying factor, which

depends on the number of PEs per router; fl represents the factor that reduces the input

streaming with the streaming bus in the proposed method; TMAC represents the computation

time for the MAC operation;  represents the number of pipeline stages at each router (with

each stage occupying one cycle); and P
N · Q

M · 1
n represents the number of rounds needed

to finish the convolution of all P inputs and Q filters using the OS dataflow model. Each

unicast packet size is L, each gather packet size is L0, and the flit size is W . The gather

packet is initiated from the leftmost node of each row in Fig. 3.2.
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LatencyRU =

⇣
C·R·R·n

fl
+ TMAC

⌘
P
N · Q

M · 1
n +M · +

l
L
W

m
� 1 +�R

(4.1)

Equation (4.1) derives the runtime latency of a convolution layer using repetitive unicast,

where M ·  represents the latency for the header flit of the result packet (partial sum) from

PE0,0 to reach the global bu↵er,
l

L
W

m
� 1 represents the time needed for the remaining flits

to arrive at the global memory, and �R is the latency added due to the congestion. When a

data streaming bus is used, as the transmission of unicast packets, all nodes are parallelized,

the packet from the leftmost node will take the longest time to arrive at the global memory.

LatencyG =

⇣
C·R·R·n

fl
+ TMAC

⌘
P
N · Q

M · 1
n +

P
⌃

M.n
⌘

⌥
�1

i=0

�
(M � i · ⌘

n) · +
⌃
L0

W

⌥
� 1
�
+�G

(4.2)

Equation (4.2) derives the runtime latency of a convolution layer using gather support, where

⌘ is the number of payloads that can be collected by one gather packet,,
⌃
M.n
⌘

⌥
represents

the number of gather packets, (M � i · ⌘
n) ·  represents the latency for the header flit in the

gather packet,
⌃
L0

W

⌥
� 1 represents the latency for the rest flits in the gather packet, and �G

is the latency added due to the congestion.

Note that in Eqs. 4.1 and 4.2, the data streaming and MAC operation time is same; the

di↵erence lies in the time taken to transmit the results to the global memory. When n=1,

the time taken to transmit the unicast packet from the leftmost node is nearly the same as
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the time taken to transmit the gather packet. However, when n increases, the delay due to

network congestion will increase significantly for RU (reflected by �R). In comparison, the

network congestion for gather packets (reflected by �G) will be much less.

4.3 Performance Evaluation

Fig. 4.4 shows the simulated runtime latency improvement of the proposed gather support

with two-way streaming (Fig. 4.2(a)) and one-way streaming(Fig. 4.2(b)) architectures vs.

gather-only using the NoC parameter from Table 3.1. On average, the gather support with

two-way streaming architecture achieves 1.71 times improvement, and the gather support

with one-way streaming obtains 1.48 times improvement compared against the gather-only

method [41]. Both the one-way and two-way streaming shows similar performance trends on

an individual CONV layers. Also we can see the two-way streaming outperforms the one-

way streaming for the OS dataflow model on which the experiments were conducted. This

improvement of two-way streaming is due to the availablity of the input and weight data at

the PE when required. Both of them are streamed from the streaming unit making these

data available sooner than in one-way streaming where the streaming bus is multiplexed.

4.4 Summary

The traditional multicast algorithm performs well in multi/single-threaded many-core

architectures because the succeeding threads may not be dependent on the preceding ones

as frequently and we can expect a lot of out-of-orderness to exploit. This is not in the case

of DNN workloads and hence these algorithms will not serve the need of DNN accelerators.
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Figure 4.4: Simulated improvement on the runtime latency of di↵erent convolution layers in
Alexnet [7] and VGG-16 [8] over Gather-only [41]

This dissertation proposes a streaming bus architecture to cater to the need of the DNN

accelerators. It is clear that the runtime latency improvement using two-way streaming is

better than using one-way streaming in the OS dataflow model. However, one-way streaming

also outperforms the baseline model considerably. There is a trade-o↵ in the use case for one-

way and two-way streaming, and depending on the application requirement we can switch one

for the other. Since one-way streaming uses one bus, it occupies less silicon area compared

to two-way streaming. One-way consumes less area however, it su↵ers degradation in the

latency which is around 13% less than the two-way streaming.

45



CHAPTER 5

SUPPORTING MULTIPLE PEs PER ROUTER

This chapter presents an architecture that supports multiple PEs in a DNN accelerator.

Section 5.1 explains the motivation behind this study. Section 5.2 presents the router archi-

tecture to support multiple PEs per node. Section 5.3 presents the analysis of the gather

parameter � and the size of the gather packet for the number of PEs per node. Section 5.4

presents the result of the performance evaluation and finally, Section 5.5 summarizes this

chapter.

5.1 Motivation

A DNN accelerator would require having enough computation units to sustain the com-

putation bandwidth of the DNN layers at the same time not requiring too much of the

overhead in the inter-PE synchronization and memory per PE. Fig. 1.4 makes it abundantly

clear that MAC operation is the major computation in a DNN execution. The accelerator

that helps in improving this computation is going to accelerate the DNN workloads.

The PE architecture in the DNN accelerator needs to be simple and lightweight. This

helps in various other issues which can arise due to a complex PE which is not desirable. A

simple PE consists of a local Register File (RF), ALU, and a control unit which can perform

MAC, average, comparison, etc in each cycle. Fig. 5.1 shows a simple low complexity FSM

control unit for a PE that handles the task of fetching the data from the local interconnection
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port or an RF, executing on the data, and finally, writing back the result to either an RF or

a local interconnection port. The lightweight design of PEs makes it possible for the DNN

accelerator to scale the number of PEs to gain computation bandwidth. Due to the flexibility

in having a simple PE, DNN accelerators are able to scale these PE to gain computation

bandwidth. Furthermore, these PE can be clock gated when not in use or underused to save

energy consumption as done in [30] which saved 45% using this technique.

Moreover, Chapter 2 also describes the importance of spatial architecture and its ad-

vantage in enabling data reuse via various dataflow models. E↵ective communication via

an e�cient dataflow pattern will help accelerate DNN execution. When the number of PEs

increases, the network interface architecture need to be redesigned to improve the commu-

nication e�ciency i.e., maximum PE utilization and data reuse. This chapter focuses on the

solution to improve the communication e�ciency among the PEs to enable better data reuse

which reduces the memory footprint in the DNN accelerator.

5.2 Multiple PEs per Router

This work also consider an expanded mesh, where multiple PEs connect to a router.

Fig. 5.2 shows such an architecture. The Network Interface (NI) unit handles the packet

movement between the router and PEs. The streaming units feed input(s)/weight(s) (I/W)
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to the NI, as shown in Fig. 5.2(a). The NI dequeues an incoming packet from the router or

streaming unit from the incoming queue into a control logic. The NI further disassembles

the packet and forwards it to the respective PEs. The control logic keeps track of the type of

packet, start and end of the packet, and other necessary information to correctly decompose

the data for a respective PE. When PEs are ready to inject data into the network, the

packet format unit will collect the outgoing data from the PEs and generate a packet. The

generated packet is then forwarded to the control logic, which creates flits to be enqueued in

an outgoing queue. The router will access the outgoing queue and inject the packet into the

network. These PEs are simple, as proposed in [59], which supports MAC operation and an

activation function with predictable pipeline stages. Hence, the synchronization requires no

extra overhead.

The control logic in the NI as shown in Fig. 5.2(a) performs multiple functions to ensure

the correct flow of operation. It consists of two parts: the outgoing control logic (Fig. 5.2b)
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which serves as the interface from the PEs to the router and the incoming control logic

(Fig. 5.2(c)) which serves as the interface from the router to the PEs. The outgoing control

logic encapsulates the incoming payload with information including FT , ASpace, etc. in the

header (H) flit and controls the ordering of the flits before enqueuing them into the outgoing

queue. The incoming control logic arbitrates the input to the incoming queue and extracts

the incoming data before forwarding it to the respective PE. The Finite State Machine

(FSM) shown in Fig. 5.3(a) explains how the write FSM in Fig. 5.2(b) orchestrates the flow

in the outgoing queue. The state in the FSM represents the command of write control at a

given time. The outgoing queue is only written when the queue has space available to ensure

no packet from the PEs is lost. Fig. 5.3(b) demonstrates a similar FSM for read control
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which ensures proper reading of the incoming queue. The state in the FSM represents the

command of read control at a given time.

Supporting multiple PEs per router allows more partial sum generation in parallel and

makes better utilization of a gather payload, which can help accelerate the DNN execution

with reduced power consumption. Depending on the bus width, multiple input activations

and weights can be streamed in each NI at one time. As shown in Fig. 3.2, these input

activations and weights may have di↵erent combinations depending on how the PEs are

grouped. One option is multiple PEs on the same column sharing one router; then multiple

sets of input activation and one set of filter weight will be streamed in the NI. For example, for

two PEs/router, (I1,1...I1,CXRXR), (I2,1...I2,CXRXR), and (F1,1...F1,CXRXR) will be streamed in

the NI connected to PE0,0 and PE0,1 over multiple clock cycles. This can be further extended

for 4 and 8 PEs/router. Another option is multiple PEs on the same row sharing one router;

then one set of input activations and multiple sets of filter weights will be streamed in the

NI. Other options are possible, with the cost of a more complex design at the control logic.

The streaming units can receive this information as a configuration file at the beginning of

the operation.

In the proposed method, there are two di↵erent networks: one for gather tra�c and

the other for a streaming bus. In the mesh network, a credit-based flow control mechanism

[22] is used. The streaming bus can also use a similar end-end flow control mechanism,

but this may create an extra wire overhead from each node to the streaming unit. Hence,

a similar credit-based mechanism used in [44] to ensure the single-cycle data delivery to

the PE is adopted. The global bu↵er maintains the status of the credits for the PEs, i.e.,

incoming queue in the NI, as shown in Fig. 5.2 (a). The streaming unit will only perform
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Figure 5.4: Analysis of � on 8x8 mesh for di↵erent number of PEs/router

the streaming if all the nodes have free space to hold the data. This ensures the integrity of

the MAC operation.

5.3 Analysis of Routing Parameters

The timeout period � plays an important role in the performance of the gather supported

routing. The � value defines the waiting time (in cycles) for a PE with a gather payload to

wait before initiating its own packet, with the anticipation that the gather packet sent from

its neighbor will arrive. Fig. 5.4 shows the impact of � on the total runtime latency, as well

as the total power consumption of gather supported routing. The analysis is done on an 8x8

mesh under a similar tra�c scenario as in Fig. 3.1, where the nodes in one row are trying

to deliver the gather payload to the global memory on the right side of the mesh.

The time out period (� clock cycles) actually depends on the router pipeline stages ().

When � < , the header flit of a gather packet will not reach its adjacent node before
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the expiration of the � clock cycle. As such, each PE will initiate its own packet. This

situation is similar to sending the result from each node in a repetitive unicast way, which

will cause congestion in the network and result in increased runtime latency. As the value of

� increases, the gather packet initiated by a PE will subsequently reach the adjacent nodes

before the timeout occurs at those nodes. This piggyback mechanism will e↵ectively decrease

the network tra�c and improve resource utilization in the NoC.

As shown in Fig. 5.4(a), the normalized runtime latency (vs. � < ) is reduced with �

value increased except for the case with 1PE/router, which is almost the same. With more

PEs/router, the gather packet size is increased (3, 5, 9, 17 flits for 1, 2, 4, 8 PEs/router)

to accommodate more partial sums. Noticeably, no further improvement is observed after �

becomes su�ciently large (7). This is because the � value is large enough to allow all the

gather payload to be collected by a gather packet. Therefore, for NXN mesh, � is set to

(N � 1) to ensure that the header flit of the leftmost gather packet will arrive at all nodes

in the same row so that all the gather payloads can be uploaded into the same gather packet.

Fig. 5.4(b) shows the normalized power consumption for di↵erent values of � (vs. � < ).

With the increase in � value, the gather packets are able to collect all the partial sum results

generated in the network and thus reduce the total number of packets that are generated in

the network. This helps to reduce the total number of hops traversed and optimizes the NoC

resource utilization for 1,2,4,8 PEs/router, thus consuming less total power. Although the

runtime latency does not improve for the 1PE/router case, some significant improvement in

the power consumption is observed.

This dissertation further studies the tradeo↵ between di↵erent gather packet sizes for

di↵erent network sizes and di↵erent numbers of PEs/router. Fig. 5.5 compares the perfor-

52



mance of gather tra�c using di↵erent numbers of gather packets for di↵erent numbers of

PEs/router on 8x8 and 16x16 mesh. The ideal case is using one gather packet to collect all

the gather payload, however, this setting can be expensive in terms of flits per packet for

the OS dataflow model where reduction across the PEs is not performed. As the number

of gather packets increases, with fewer flits per packet used, the performance tends to get

close to the repetitive unicast method where eventually each node will have its own gather

packet.

Fig. 5.5(a) and (b) show the normalized runtime packet latency and power consumption

(vs. repetitive unicast) for 8x8 mesh. We can see a clear tradeo↵, where using one gather

packet with a larger number of flits is better in terms of latency improvement compared

to using a higher number of gather packets. As the number of gather packets increases,

the congestion in the network tends to increase. We observe a significant increase in power

consumption for the case of 1 PE/router with 4 gather packets/row because the total payload

size (256 bits) is much smaller than the total gather payload capacity (512 bits), excluding

the header. However, for 2 to 4 PEs/router, using 2 or 4 gather packets is better at improving

the power consumption than using 1 gather packet. A similar trend on 16x16 mesh is also

shown in Fig. 5.5(c) and (d).

For the 1 PE/router case, a slight increase in runtime latency occurs, as this is the case

in which the network does not have much load for the RU case, i.e., one packet per row. In

addition, we notice that with smaller gather flit size, one can expect small runtime; however,

it is the opposite, as shown in Figs. 5.5(a) and (c). The expiration of � clock cycles causes

this e↵ect; for the 2 gather packets per row case, the second packet is only injected when

the first packet reaches the node, with no space left for further payload. In such a case, the
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Figure 5.5: Analysis of di↵erent gather packet size on 8x8 mesh (a),(b) and 16x16 mesh
(c),(d) for di↵erent number of PEs/router
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first node to encounter such a situation will initiate a new gather packet, which is the second

gather packet. To avoid this scenario, the router can be hardwired with the information

to initiate its own gather packet without waiting for the incoming one, which reduces the

scope and scalability of the proposed method. To balance the tradeo↵ of latency and power

consumption, in the following performance analysis, one gather packet is used for 8x8 mesh

and 2 gather packets are used for 16x16 mesh with 3, 5, 9, 17 flits/gather packet set for 1,

2, 4, 8 PEs/router, respectively. This result is taken based on the average performance over

di↵erent numbers of PEs/router.

5.4 Performance Evaluation

To evaluate the performance of the proposed method, we ran simulations for di↵erent

CNN workloads and compared them with the repetitive unicast method on mesh-based NoCs

modified with the streaming architectures for the OS dataflow model. In this section, we

describe the experiment settings, followed by presenting the performance analysis.

5.4.1 Experiment Setup

This work compare the proposed method and repetitive unicast method in terms of the

runtime latency and power consumption. We assume that there is a higher level entity or a

mapping framework similar to [29] [28] [39] [40] [60] that does the task of mapping neurons

to the PEs, controlling timing for better synchronization without stalls, so that our focus is

on evaluating the performance of the on-chip network. In order to fully utilize the spatial

PE arrays, we use the parameters obtained from Pytorch framework [47] to model the traces

for the NoC. The neurons are organized in a 2D mesh represented by the PEs. The total
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Table 5.1: Network configuration for multiple PEs per router simulation

Topology 8x8 Mesh, 16x16 Mesh
Virtual Channels 2
Latency router: 4 cycles, link: 1 cycle
Bu↵er Depth 4 flits
Flit Size 128 bits/flit
Gather Payload 32 bits
Number of PE per router 1,2,4,8

Gather Packet Size
3,5,9,17 flits/packet for
1,2,4,8 PEs/router resp.

Unicast Packet Size 2 flits/packet
TMAC 5

neurons in each layer are divided to fit the PEs in a mesh. The memory elements (global

memory) are located on the north, east, and west sides of the network. Each PE receives

the input activation and filter weights from the streaming units on the north and east sides

of the mesh. Accumulation happens locally to generate the partial sums, which are then

collected from the left side to the global bu↵er at the right side of the mesh. The output

feature map of the current layer is completely generated before moving ahead with another

layer.

We have used a cycle-accurate C++ based NoC simulator [46] to simulate the generated

traces for AlexNet [7], ResNet-50 [12], and VGG-16 [8]. The three di↵erent CNNs are chosen

because of their diversity in terms of a number of parameters and the number of convolution

layers. Orion 3.0 [48] is used to estimate the power consumption for NoC, and DSENT [61] to

estimate the power consumption for the streaming bus. We have performed the simulations

on 8x8 and 16x16 2D mesh networks. Table 3.1 shows the NoC setting used for performance

analysis. As the number of PEs/router increases, the gather payload also increases. To
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accommodate these gather payloads, we can either use a fixed number of flits or a dynamic

flit size per gather packet. For the DNN workload, each node in the same row will generate a

prefix sum result. Hence, a fixed number of flits is chosen for our experiments which avoids

the extra overhead in router design compared to a dynamic flit size. The gather packet size

is set as 3,5,9,17 flits/packet for 1,2,4,8 PEs/router, respectively. This flit size is enough to

collect all the gather payloads for an 8x8 network; however, for a 16x16 NoC, two gather

packets are needed, as the first one will be full halfway to the global memory.

5.4.2 Performance Analysis

Figs. 5.6(a) and (c) shows the improvement in the total runtime latency of the proposed

method against the repetitive unicast method for all convolution layers in AlexNet [7] on 8x8

and 16x16 mesh-based NoCs. It is clear that as the number of PEs is increased across 8x8

or 16x16 mesh, we can see an improvement in the total runtime latency. This improvement

is attributed to more parallel operations enabled by an increasing number of PEs per router.

With more PEs, more MAC operations are done in parallel in one round, which reduces the

number of rounds needed. For a lower number of PEs per router, the runtime improvement

is minor as the network is not congested enough for the gather packet to improve the latency.

The delta analysis from Fig. 5.4(a) also shows a similar e↵ect.

The performance improvement is higher in the case of 16x16 mesh when compared with

the 8x8 mesh. For the 16x16 mesh, repetitive unicast tra�c creates much higher congestion

in the network, and the benefit of using gather tra�c is more significant than on the 8x8

mesh. Fig. 5.7(a) and (c) show the improvement in total runtime latency for all convolution

layers in ResNet-50 [12] for 8x8 and 16x16 meshes. Similarly, Fig. 5.8(a) and (c) show

57



0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1 2 4 8

m
pr
ov
em

en
ta
ga
in
st
R
U
(ti
m
es
)

PE per router
(a)

Latency on 8x8

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1 2 4 8

Im
pr
ov
em

en
ta
ga
in
st
R
U
(ti
m
es
)

# of PE per router
(b)

Power on 8x8

0.8

1

1.2

1.4

1.6

1.8

1 2 4 8

Im
pr
ov
em

en
ta
ga
in
st
R
U
(ti
m
es
)

# of PE per router
(c)

Latency on 16x16

0.8

0.9

1

1.1

1.2

1.3

1.4

1 2 4 8

Im
pr
ov
em

en
ta
ga
in
st
R
U
(ti
m
es
)

# of PE per router
(d)

Power on 16x16

Figure 5.6: Improvement on total runtime latency (a),(c) and power consumption (b),(d) for
AlexNet [7] over RU for di↵erent number of PEs/router
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Figure 5.8: Improvement on total runtime latency (a),(c) and power consumption (b),(d) for
VGG-16 [8] over RU for di↵erent number of PEs/router
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the improvement in total runtime latency for all convolution layers in VGG-16 [8] for 8x8

and 16x16 meshes. For both ResNet-50 and VGG-16, we see a similar trend in performance

improvement, with the 16x16 mesh o↵ering more improvement on VGG-16 (up to 1.84 times)

than the 8x8 mesh, and the improvement is better with the increasing number of PEs per

router. On average, performance improvement is higher in VGG-16 compared with AlexNet

and ResNet-50, as it has a lot more parameters to process than AlexNet and ResNet-50.

Bigger than those in the other two networks, the convolution layers in VGG-16 require

more rounds to complete, which makes the benefit of using gather supported routing more

prominent.

Figs. 5.6(b) and (d) shows the improvement in the total network power consumption

of the proposed method against the repetitive unicast method for AlexNet on the 8x8 and

16x16 mesh-based NoCs. Di↵erent from runtime latency, the total tra�c communicated

determines the network power consumption. For a smaller number of PEs per router the

power improvement is minor because the power consumption due to streaming is higher than

the power saving from the gather tra�c. As the number of PEs/router increases, improve-

ment in the total network power also increases (up to 1.4 times) because of the reduction

in streaming power. More weights or inputs can be streamed with an increasing number of

PEs/router, and the advantage of gather tra�c over the repetitive unicast tra�c is more

significant. For the 16x16 mesh, we can see that the improvement is slightly less than the

8x8 mesh, which is due to the increased number of gather packets for the same PEs/router.

Figs. 5.7(b) and (d) show the improvement in power performance for ResNet-50 [12] for

8x8 and 16x16 meshes and Figs. 5.8(b) and (d) show improvement in power performance

for VGG-16 [8] for both meshes. For both models, we see a similar performance trend as in
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Table 5.2: Hardware overhead

Metric
Router Baseline Proposed

Area (µm2) 72, 106 74, 950
Power (mW ) 26.30 27.87

Table 5.3: Comparision with NeuronLink [39]

NeuronLink[26] Ours
Topology 4 chips, 4x4 mesh 8x8 mesh
Technology 32nm 45nm
Frequency 1.2GHz 1GHz
Area 41.2mm2 40.19mm2

Power 15.4W 23.23W
GOPS/mm2 508.9⇤ 398.09
GOPS/W 1361.7⇤⇤ 688.73
When scaled to same techonology parameter as ours,
* GOPS/mm2 is 195.08
** GOPS/W is 586.53

Fig. 5.6(b) and (d). Similarly, the improvement of power consumption is higher in VGG-16

compared to AlexNet and ResNet-50 for the same reason as the latency improvement.

5.4.3 Hardware Overhead

We used DSENT [61] to estimate the area and power of a baseline router with the configu-

ration shown in Table 5.1 without the gathering features. The baseline router operating on

a 1 GHz clock consumes 26.3 mW power with an area of 72, 106 µm2. Table 5.2 shows the

hardware overhead of the proposed router from Fig. 3.7 evaluated using the synthesis tool

from the Synopsys Design Compiler with a 45 nm CMOS library. The power consumption

of a proposed router is 27.87 mW and the area is 74, 950 µm2. This increase in area and

power is due to the addition of the payload generator and load signal generator blocks in the
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Figure 5.9: Dynamic power breakdown of the proposed router

Figure 5.10: Dynamic area breakdown of the proposed router
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router in order to support the proposed gather based routing. With the proposed changes

in the router, the overhead is around a 4% increase in area and 6% increase in power, which

is worthwhile considering the performance improvement with the changes. Fig. 5.9 and 5.10

show the dynamic power and area breakdown of the proposed router. Other components of

the accelerator system include the streaming buses and PEs. One streaming bus (128-bit

wide) along one row or column of mesh consumes 37.7 mW of power with the total wire area

of 180 µm2. Similarly, a PE structure consumes 63, 933 µm2 and 30.2 mW area and power

respectively to perform a 32-bit MAC and maxpool operation.

Table 5.3 shows the comparison of our proposed method with one of the most recent

works NeuronLink[39]. Although, NeuronLink [39] does not support gather type tra�c,

both methods use mesh-based networks with similar routing methods. We used the method

from [62] to scale NeuronLink [39] to 45nm node to compare with our work. The key metrics

used to compare with NeuroLink [39] are area e�ciency (GOPS/mm2) and power e�ciency

(GOPS/W ). The area e�ciency and power e�ciency of NeuronLink [39] when scaled to

45nm are 195.08 and 586.53, respectively. Our work has an area e�ciency of 398.09 and

the power e�ciency of 688.73. Our proposed method is 2.04⇥ better in area e�ciency and

1.17⇥ better in power e�ciency than the scaled result of the NeuronLink [39].

5.5 Summary

This chapter presented an architecture to support multiple PEs and evaluate the perfor-

mance using gather support and direct data streaming architectures on mesh-based NoC to

handle abundant many-to-one and one-to-many tra�c in DNN workloads. The OS dataflow
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model is adopted to study the proposed method, which is evaluated using three DNN mod-

els: AlexNet [7], ResNet-50 [12], and VGG-16 [8]. The analysis shows that the two-way

streaming architecture achieves a more significant improvement in the runtime latency of

a convolutional layer. Simulation results confirm the e↵ectiveness of the proposed method,

which achieves up to 1.8 times improvement in the runtime latency and up to 1.7 times

improvement in the network power consumption. The hardware overhead of the proposed

method is justifiable for the performance improvements achieved over the repetitive unicast

method. Further, the presented method supports all three kinds of communication tra�c

necessary for a DNN workload in an area and power-e�cient way. Our method outperforms

the most recent mesh-based accelerator [39] by 2.04⇥ and 1.17⇥ in terms of area e�ciency

and power e�ciency, respectively.
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CHAPTER 6

IN-NETWORK ACCUMULATION

While Chapters 3-5 are about the communication and computation support schemes in a

DNN accelerator, this chapter focuses on reducing the network load and potentially memory

transactions. Section 6.1 explains the motivation behind this study. Section 6.2 presents the

proposed architectural support required to perform In-Network Accumulation (INA). Section

6.3 presents the result of the performance evaluation and finally, Section 6.4 summarizes this

chapter.

6.1 Motivation

The dominant computing architecture today relies on memory to provide data to the PE

when required. This approach of computing has hit the memory wall i.e., there is a big gap

to fill in between the memory latency and CPU execution latency. To overcome this gap,

near memory computing or in-memory computing [63] is considered a promising candidate.

The main philosophy behind these architectures is to process the data close to where it is

stored. Inspired by this philosophy, in this chapter we present in-network accumulation to

accelerate the DNN workload in accelerators. The fundamental principle of this architecture

is to process the data in the network while transitioning.

There exist enough operations in the DNN workload that can be o✏oaded to the memory

as near-memory computing. Authors in [64] proposed an in-memory computing architecture
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Figure 6.1: Accumulation organization (a) OS dataflow model (b) WS/RS dataflow model

for neural network applications, however, this method is not suitable for CNN workloads.

This architecture does not o↵er flexibility in data reuse which leads to frequent reloading

of input feature maps and weights during the DNN execution. Similarly, authors in [65]

propose a Computing-On-the-Move (COM) architecture to address the shortcomings of [64].

COM [65] is implemented on a 2D Mesh NoC to enable the inter-memory computation like

psum addition.

However, the aforementioned architectures cannot be easily integrated with existing ac-

celerator designs adopting di↵erent dataflow models. Let us assume a WS dataflow model,

where filter weights are stored at local PEs and kept there until all the MAC operations

involving the weights are exhausted. The major bottleneck in this approach is to keep the

filter weights in the local PE where we have limited scratch memory or a register file. To

address this problem, only a portion of the weights are kept in a PE, and overall multiple

PEs share and store the weights of one filter. This distribution of filter weights results in

the distribution of the partial sum across multiple PEs which need accumulation. A similar
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distribution also occurs in the RS dataflow model.

Fig. 6.1 shows the psum generation method which is explained by showing MAC oper-

ation in di↵erent dataflow models. A weight vector consisting of M elements W1, ...,WM

and an input vector consisting of M elements I1, ..., IM are streamed from the streaming bus

to the PE in the OS dataflow model where the psum accumulation is limited to a single

PE as shown in Fig. 6.1 (a). However, due to the distributed nature of weights/inputs in

the WS/RS dataflow model particularly due to the memory limitation, psum accumulation

needs to happen across di↵erent PEs as shown in Fig. 6.1 (b). Assuming that each PE can

hold only X elements from the weights and input vector, only a part of the psum is generated

at each PE. This provides an opportunity to optimize the way psum accumulation happens

in the WS/RS dataflow model.

6.2 Architectural Support

This dissertation proposes the in-network accumulation design by modifying the router

to support psum accumulation which makes it easy to integrate with the existing accelerator

design. The INA is controlled by a central controller, hence the accelerator can be optimized

for individual DNN layers unlike in COM [65] where the dataflow control is distributed. Fig.

6.2 shows an example of the WS dataflow model on a 4 ⇥ 4 mesh. Assume that a CONV

operation with a filter F ✏ {F1, F2, F3, F4}, input activation I ✏ {I1, I2, ..., IP} each with a

dimension of C ⇥ R ⇥ R is implemented on a 4 ⇥ 4 mesh where each PE can hold half the

elements of a filter. In order to generate one output activation, two PE are required as
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Figure 6.2: WS dataflow in 4x4 mesh NoC

shown in Fig. 6.2 where the filter weights are divided into two parts P1, P2 and distributed

among two adjacent PEs in the same column. After both PEs generate a psum, they can be

accumulated across the PEs to get the final output activations.

Fig. 6.3 shows the flow for psum accumulation with and without in-network support.

Fig. 6.3 (a) shows the flow where 1 - 4 are the sequential steps that need to be performed

in order to process the accumulation of the partial sum generated at each node on a WS

or RS dataflow model as shown in Fig. 2.3 and Fig. 2.4. In the absence of in-network

accumulation, the incoming packet 1 with partial sum is first ejected 2 to the local port

where accumulation happens locally and then a new packet needs to be injected 3 back to

the network for the next hop 4 . It seems an obvious way of performing the accumulation

in a mesh based network without the in-network accumulation support.

Fig. 6.3 (b) shows the alternative approach of accumulation of the partial sum generated

at each node on a WS or RS dataflow model in the presence of an in-network accumulation
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Figure 6.3: Partial sum (PSum) accumulation flow for WS/RS dataflow (a) without in-
network accumulation support (b) with in-network accumulation support

unit. Steps 1 - 3 show the flow of partial sum accumulation in the presence of in-network

accumulation support. This method of accumulation brings the computation close to the

data source and helps in removing the redundant and obvious network transactions. The

incoming packet 1 can be directly accumulated in the router with the partial sum as gener-

ated by the local node 2 before forwarding it to the next hop 3 . One thing to notice here is

ejection and injection of the packets are saved with the support of in-network accumulation

which not only helps in improving the latency but also saves the network power consumption.
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6.2.1 INA Modeling

INA is beneficial for the WS and RS dataflow models where certain parameters are stored

at the PE until resued. Consider a WS dataflow model on a N ⇥N mesh with 1 PE/router

with a memory capacity of M bits. For any CONV layer with K⇥K kernel size, C channels,

F filters, O⇥O output feature map, q-bit precision. We can model the INA of partial sums

using a series of equations shown below:

Condition to perform INA, i↵ Equation (6.1) holds true.

(K ⇥K ⇥ C ⇥ q) > M () INA (6.1)

Number of PEs (P#) to distribute the filter weights is:

P# =
lK ⇥K ⇥ C ⇥ q

M

m
(6.2)

Rounds of INA (INA#) to complete one CONV layer on a given N ⇥N mesh:

INA# =
lF
N

· O ⇥O

b N
P#
c

m
(6.3)

Equation 6.1 shows that the condition to perform an INA during a CONV layer execution

is dependent on the size of memory for PEs. With su�cient memory there is no need for

the INA, however, this is not feasible practically. Hence, in order to keep M in the practical

range, certain dataflow models like WS, RS needs to distribute the weights, inputs, etc.

among multiple PEs leading to the INA as an e↵ective solution. Note that INA# represents

the total rounds of psum accumulation on a N ⇥ N mesh for a given CONV layer. This
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Table 6.1: INA evaluation for AlexNet [7]

Layer K C F O P# INA#, N=8 INA#, N=16
CONV1 11 3 64 55 1 NA NA
CONV2 5 64 192 27 2 4374 1094
CONV3 3 192 384 13 2 2028 507
CONV4 3 384 256 13 4 2704 676
CONV5 3 256 256 13 3 2704 541
*Note: q=32bit, M=32KB, 1 PE/Router

Table 6.2: INA evaluation for VGG-16 [8]

Layer K C F O P# INA#, N=8 INA#, N=16
CONV1 3 64 3 224 1 NA NA
CONV2 3 64 64 224 1 NA NA
CONV3 3 128 64 112 2 25088 6272
CONV4 3 128 128 112 2 50176 12544
CONV5 3 256 128 56 3 25088 5018
CONV6 3 256 256 56 3 50176 10036
CONV7 3 256 256 56 3 50176 10036
CONV8 3 512 256 28 5 25088 4182
CONV9 3 512 512 28 5 50176 8363
CONV10 3 512 512 28 5 50176 8363
CONV11 3 512 512 14 5 12544 2091
CONV12 3 512 512 14 5 12544 2091
CONV13 3 512 512 14 5 12544 2091
*Note: q=32bit, M=32KB, 1 PE/Router

means the total number of accumulations in each round is di↵erent i.e., the number of parallel

accumulations happening each round. Tables 6.1 and 6.2 show the number of rounds of INA

operation for 8 ⇥ 8 and 16 ⇥ 16 mesh, respectively. It is seen that there exist enough INA

operations that can be optimized. Also, we can see that VGG-16 [8] has a lot of INA rounds

compared to AlexNet [7] since VGG-16 has a lot of filters with larger channels which makes

the parameter fit in one PE’s M � bits memory di�cult. Hence, the weights are distributed

among di↵erent PEs leading to an increase in INA rounds.
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Similarly, for multiple E PEs/router Equation 6.3 can be written as:

INA#E =
l F

N · E · O ⇥O

b N
P#
c

m
(6.4)

It is also to note that, with the increase in computation capacity the performance does

not scale linearly since the addition of E PEs/router will increase the communication load

in the network as well.

6.2.2 Router Support

Fig. 6.4 shows the changes required to make in the existing router architecture from Fig. 3.7

to support the INA. The INA block (Fig. 6.5(a)) is added along with the required control

(Fig. 6.5(b)) and signals to support the INA as shown in Fig. 6.5. The INA block is

responsible for monitoring the operands from the incoming local port i.e., NI, and from the

neighboring node i.e., N, S, E, W port. 1 , 2 , 3 from Fig. 6.3(b) can be equivalently mapped

to the states Acquire Operand 1, Acquire Operand 2 and Summation states respectively

from Fig. 6.5 (b). The source of Operand 1 is the NI where the local PE calculates the

partial sum based on the set of weights and input activations distributed to this node and

intends to forward it to the next node. The source of Operand 2 is the incoming packet from

the neighboring node which contains the rest of the partial sum.

During the DNN execution, weights are distributed to di↵erent nodes in part. The

number of parts depends on the memory size of the node and the size of weights for a

CONV layer. The scheduler or the top level controller will assign at the runtime i.e., during

streaming which node should initiate the INA packet. This is usually the first node that
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holds the first part of the weight during the distribution. We can use the packet format

shown in Fig. 3.3 to add this information in the field Packet Type (PT ).

The purpose of this work is to show the e↵ectiveness of DNN execution by evaluating

the network e�ciency. There are multiple ways of implementing the adder unit in the router

to achieve INA. Various analog adders have been proposed based on ReRAM technology

one such example is [66]. To adopt the ReRAM based structure, we need some additional

structures like the digital to analog converter and vice versa. There are other fast digital

adders [67]-[69] as an alternative to analog adders. For the multiple PEs/router scenario we

can further extend the adders into a simple SIMD/Vector adder unit, some of the alternative

choices are presented in [70]-[72]. In this work, our primary goal is to show the e�ciency of

the INA, hence we prefer to use a digital adder from [67] to validate our concept.

6.3 Performance Evaluation

We assume that there is a higher level entity or a mapping framework similar to [28],

[29], [39], [40], [60] that does the task of mapping neurons to the PEs, streaming of the

inputs and weights in parts, controlling timing for better synchronization without stalls, so

that our focus is on evaluating the performance of the on-chip network.

To evaluate the performance of INA for the WS dataflow model, we ran simulations

for di↵erent CNN workloads on 8x8 mesh-based NoCs modified with a two-way streaming

architecture. For the WS dataflow model, all the weights are streamed in full or in parts as

needed depending on the memory availability, these weights are stored in the local memory of

the PE and used for multiple rounds of MAC operation for all the input activations. Hence,
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input activation will not be streamed and the PE should not start the MAC operation until

all the weights are streamed to the local memory of the PE. In this section, we describe the

experiment settings, followed by presenting the results.

6.3.1 Experiment Setup

Table 6.3 shows the NoC setting used for performance analysis. To accommodate the gather

payload after INA, we have used various gather flit sizes. After the INA, the gather packet

can have 1 flit to 9 flits depending upon the number of nodes used to get the accumulation

result. For the 1 PE/router case, if the INA is performed on 2 nodes then the gather packet

needs to collect the result of 4 nodes on 8x8 mesh. This information is identified at the

compile time by the higher level entity or a mapping framework.

We compare the WS dataflow model with and without INA both using gather packets

in terms of the runtime latency and power consumption, we further extended the result

to compare the INA-enabled WS dataflow model with the OS dataflow model with gather

support from Section 5.4.1. We assume that the INA is using a similar digital adder proposed

in [67] which is fast and has various bit widths suitable for our analysis, we also assume that

the accumulation latency in both cases, with INA and without INA are comparable. We use

the parameters obtained from Pytorch framework [47] to model the traces for the NoC. The

neurons are organized similarly to the experiment setup from Section 5.4.1. Accumulation

happens using INA in the router as explained in Fig. 6.3. We have used a cycle-accurate

C++ based NoC simulator [46] to simulate the generated traces for AlexNet [7], ResNet-50

[12], and VGG-16 [8]. Orion 3.0 [48] is used to estimate the power consumption for NoC.
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Table 6.3: Network configuration for INA simulation

Topology 8x8 Mesh
Virtual Channels 2
Latency router: 4 cycles, link: 1 cycle
Bu↵er Depth 4 flits
Flit Size 128 bits/flit
Gather Payload 32 bits
Number of PE per router 1,2,4,8
Gather Packet Size 3,5,9 flits/packet for multiple PEs/router
Unicast Packet Size 2,3 flits/packet for multiple PEs/router
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Figure 6.6: Improvement on total runtime latency (a) and power consumption (b) for
AlexNet [7] over WS without INA for di↵erent number of PEs/router

6.3.2 Results

Fig. 6.6 (a), (b) shows the improvement in the total runtime latency and power consumption

of the WS dataflow model with INA against the one without INA case for all convolution

layers in AlexNet [7] on 8x8 mesh-based NoCs. We can see that INA can boost the latency

up to 1.17⇥ and power consumption up to 2.1⇥ compared to without INA case. A similar

improvement is seen across other DNN workloads as shown in Fig. 6.7 and Fig. 6.8 for

ResNet [12] and VGG-16 [8], respectively.
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Figure 6.7: Improvement on total runtime latency (a) and power consumption (b) for ResNet-
50 [12] over WS without INA for di↵erent number of PEs/router
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Figure 6.8: Improvement on total runtime latency (a) and power consumption (b) for VGG-
16 [8] over WS without INA for di↵erent number of PEs/router
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For all the workloads, the improvement in latency is almost similar in 1, 2, and 4

PEs/router, and the improvement increases for 8 PE/router. Latency improvement in this

comparison is determined by the packet size used for both INA and without INA. For 1,2,4

PEs/router, both the cases will use a similar number of flits per packet, and hence we can

also see a similar improvement in latency. However, for 8PEs/router packet size should

increase, and without INA case larger packet size adds up to more latency. We can also

see that VGG-16 on average has a larger improvement than other workloads due to the

multiple rounds of INA (INA#) needed in VGG-16. Even though ResNet-50 is bigger in

terms of the number of CONV layers than VGG-16, most of the ResNet-50 does not need to

split the weights among multiple PEs (I#) and hence ResNet-50 is not showing the highest

improvement even with a larger network model.

As for the power improvement, a smaller number of PEs shows the highest improvement.

As the number of PEs increases, the number of flits per gather packet should also increase to

accommodate all the payloads which contribute to the additional power in the case of INA.

Dynamic flit would have made an impact here but in this experiment, we have assumed

a static packet size. However, without INA, packets do not need to increase the flit size

since the addition is happening between two nodes and a smaller flit can be used to move

the partial sum for accumulation. A similar trend for performance is seen across di↵erent

workloads where VGG-16 is the highest performing due to the similar reasons as explained

for the latency improvement.

Fig. 6.9 - Fig. 6.11 shows the comparison between the WS dataflow model with INA and

gather supported and OS dataflow model with gather supported. We see that as the number

of PE increases the latency improvement of the WS dataflow model is decreasing because,
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Figure 6.9: Improvement on total runtime latency (a) and power consumption (b) for
AlexNet [7] over OS for di↵erent number of PEs/router
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Figure 6.10: Improvement on total runtime latency (a) and power consumption (b) for
ResNet-50 [12] over OS for di↵erent number of PEs/router
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Figure 6.11: Improvement on total runtime latency (a) and power consumption (b) for
VGG-16 [8] over OS for di↵erent number of PEs/router

for the WS dataflow model, weights need to be distributed before the psum accumulation

begins. As the number of PE increases the distribution of weights also takes longer due to

the larger packet size. However, on average we see on all the workloads WS dataflow model

is performing better than the OS dataflow model. As for the power improvement, the WS

dataflow model outperforms the OS dataflow model in all the cases. This improvement is

mainly due to the better reuse of weights leading to less streaming than the OS dataflow

model. We see fluctuations in power improvement going from 1 PE/router to 2 PEs/router

and from 4 PEs/router to 8 PEs/router because this is the boundary where a change in the

flit size happens due to the increase in the number of PEs in the router.
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6.4 Summary

DNN workloads can be executed with a variety of dataflow models. Supporting di↵erent

dataflow models is important to ensure e↵ective data resue during the DNN execution. In this

chapter, we present the In-Network Accumulation (INA), an architecture to support partial

sum accumulation without ejecting the packet from the network on a WS dataflow model.

We performed the simulation on di↵erent DNN workloads and showed the improvement of

INA in both runtime latency and power consumption compared with the WS dataflow model

without INA. We can see up to 1.22⇥ improvement in the latency and 2.16⇥ improvement

in the power consumption. We further evaluated the WS dataflow model with INA and

gather supported routing against the OS dataflow model with gather support. We can see

up to 1.19⇥ latency improvement and 2.16⇥ improvement in the power consumption across

di↵erent DNN workloads.
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CHAPTER 7

CONCLUSION AND FUTURE WORKS

7.1 Contributions

Research work on application-specific computing domains is becoming popular, which

has led to various studies focused on e�cient and e↵ective DNN workload execution. In

this dissertation, the study is focused on e�cient and scalable communication supporting

solutions for various tra�c patterns in NoC-based DNN accelerators. The contributions of

this dissertation are summarized below:

• Gather supported routing for many-to-one tra�c: This dissertation proposes a gather

based routing algorithm that e↵ectively accelerates the DNN tra�c. Experimental

result demonstrates the gather supported routing significantly reduces the network

latency and power consumption than the repetitive unicast method. We also provide

a modified router microarchitecture so that a minimal change will be required for the

existing router to support gather tra�c. This is also shown quantitatively by measuring

the hardware overhead of the changes required in the router.

• Analytical model to evaluate the e↵ectiveness of gather tra�c: This dissertation also

provides an analytical framework that evaluates the mathematical equivalency of the

proposed algorithm. Simulation results also validate the model, further analysis of

routing parameters like � and packet size for gather supported routing is performed
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which will help determine the best parameters for di↵erent network configurations.

• Streaming bus architecture for multicast: This dissertation proposes a streaming bus

architecture to support multicast tra�c in a DNN accelerator. Two versions of the

streaming support are presented and the experimental evaluation of CONV layers

shows the e↵ectiveness of both the models. Depending on the application’s require-

ment, one method can be chosen over the other.

• Scalable computation support: This dissertation provides a framework to support mul-

tiple PEs per router, this solution provides scalable support to increase the computation

throughput. By this way, the computing resource scaling can still take the advantage

of all the proposed communication infrastructure. Experimental results confirm the

e↵ectiveness of the proposed communication supporting and throughput enhancement

solutions in accelerating various DNN workloads.

• In-Network Accumulation (INA): This dissertation proposes INA architecture that

eliminates the unnecessary movement of the psum within the network leading to better

latency and power. Experimental results on the WS dataflow model show the e↵ective-

ness of this method when compared with the OS dataflow model across various DNN

workloads.

To summarize, this dissertation provides solutions to support all the kinds of commu-

nication tra�c that exist in the DNN workload. The communication support is scalable

across the mesh network of various sizes. The methods proposed in this dissertation are also

compatible with the scaling of the computing resources. Since both computation and com-
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munication scaling go side by side, the proposed solutions will help improve the performance

of the NoC-based DNN accelerator.

7.2 Future Work

As the field of DNN is rapidly changing, the hardware architecture to support these

applications should grow at the same pace. This rapid growth leads to various challenges

and opportunities which are summarized below:

• E�cient mapping and scheduling solutions: As the DNN architecture is evolving the

relation and interaction between the layers are also changing. There is a need for a

better neuron mapping and scheduling process where the relation between the neurons

is taken into account to map the neuron to the PEs. This process should also account

for the communication overhead among the layers while making the best use of existing

hardware resources.

• Better HW-SW co-design: While there is a hardware aspect of DNN execution, there

is also a software aspect that is equally e↵ective in reducing the complexity of DNN

execution. Reducing the bit precision, exploiting the sparsity are a few software tech-

niques that could help in e↵ective DNN execution. Future work can further explore

the co-design principle to incorporate the software input in better DNN hardware ex-

ecution.

• Fused PE and Router: As shown from our work on In-Network Accumulation, the role

of routers in DNN accelerators can be beyond communication. This can be the mo-

tivation to further explore the opportunities in the fused router and PE design where

85



we can fuse these two units as one. This lightweight fused node can process DNN

operation much faster without having the overhead of routing as in traditional routers.

• E↵ectiveness of proposed method in other workloads: While the gather supported rout-

ing and streaming architectures are proposed for DNN execution, these methods can

also be applied to other workloads. For sparse multicast workload, the streaming units

can be more e↵ective than path-based methods. Even in multi-threaded applications,

better scheduling can lead to e↵ective use of gather supported routing.
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