
UNLV Theses, Dissertations, Professional Papers, and Capstones

12-1-2022

Jiapi: A Type Checker Generator for Statically Typed Languages Jiapi: A Type Checker Generator for Statically Typed Languages

Benjamin Cisneros Merino

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Cisneros Merino, Benjamin, "Jiapi: A Type Checker Generator for Statically Typed Languages" (2022).
UNLV Theses, Dissertations, Professional Papers, and Capstones. 4579.
http://dx.doi.org/10.34917/35777461

This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital
Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that
is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to
obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons
license in the record and/or on the work itself.

This Dissertation has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and
Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F4579&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F4579&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.34917/35777461
mailto:digitalscholarship@unlv.edu

JIAPI: A TYPE CHECKER GENERATOR FOR STATICALLY

TYPED LANGUAGES

By

Benjamin Cisneros Merino

Master of Science � Computer Science
University of Nevada, Las Vegas

2019

Bachelor of Science � Computer Science
University of Nevada, Las Vegas

2017

A dissertation submitted in partial fulfillment
of the requirements for the

Doctor of Philosophy � Computer Science

Department of Computer Science
Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas
December 2022

© Benjamin Cisneros Merino, 2023

All Rights Reserved

ii

Dissertation Approval

The Graduate College
The University of Nevada, Las Vegas

December 5, 2022

This dissertation prepared by

Benjamin Cisneros Merino

entitled

Jiapi: A Type Checker Generator for Statically Typed Languages

is approved in partial fulfillment of the requirements for the degree of

Doctor of Philosophy - Computer Science
Department of Computer Science

Jan Pedersen, Ph.D. Alyssa Crittenden, Ph.D.
Examination Committee Chair Vice Provost for Graduate Education &

 Dean of the Graduate College
Kazem Taghva, Ph.D.
Examination Committee Member

Fatma Nasoz, Ph.D.
Examination Committee Member

Andreas Stefik, Ph.D.
Examination Committee Member

John Minor, Ph.D.
Examination Committee Member

Laxmi Gewali, Ph.D.
Examination Committee Member

Emma Regentova, Ph.D.
Graduate College Faculty Representative

Abstract

Type systems are a key characteristic in the context of the study of programming languages.

They frequently o↵er a simple, intuitive way of expressing and testing the fundamental struc-

ture of programs. This is especially true when types are used to provide formal, machine-

checked documentation for an implementation. For example, the absence of type errors in

code prior to execution is what type systems for static programming languages are designed

to assure, and in the literature, type systems that satisfy this requirement are referred to as

sound type systems. Types also define module interfaces, making them essential for achiev-

ing and maintaining consistency in large software systems. On these accounts, type systems

can enable early detection of program errors and vastly improve the process of understand-

ing unfamiliar code. However, even for verification professionals, creating mechanized type

soundness proofs using the tools and procedures readily available today is a di�cult under-

taking.

Given this result, it is only logical to wonder if we can capture and check more of the

program structure, so the next two questions concern type checking. Once a type system has

been specified, how can we implement a type checker for the language? Another common

question concerns the operational semantics, that is, once the type system is specified, how

can we take advantage of this specification to obtain a type checker for the language? In each

of these cases, type systems are often too complex to allow for a practical and reasonable

approach to specifying many common language features in a natural fashion; therefore, the

crux here is: What is the bare minimum set of constructs required to write a type

checker specification for any domain-specific language (DSL)? We believe that sets

(including tests for memberships, subsets, size, and other properties) as well as first-order

logic and an expression grammar can be used to do this. In addition, we will need the ability

iii

to apply some form of filter on sets, as well as possibly a reduction and map.

The primary goal of this thesis is to raise the degree of automation for type checking,

so we present Jiapi , an automatic type checker generation tool. The tool generates a type

checker based on a description of a language’s type system expressed in set notation and first-

order logic, allowing types to be interpreted as propositions and values to be interpreted as

proofs of these propositions, which we can then reduce to a small number of easily-reviewable

predicates. Consequently, we can have a completely spelled-out model of a language’s type

system that is free of inconsistencies or ambiguities, and we can mathematically demon-

strate features of the language and programs written in it. We use two languages as case

studies: a somewhat large and more general, and a more domain-specific. The first one is a

true subset of Java (an object-oriented language) called Espresso, and the second one is a

pedagogical language like C/C++ called C-Minor. Also, there is a declarative type system

description extension for the first language, and parts of the specification for the second one.

Finally, our approach is evaluated to demonstrate that the generated type checker can check

automatically the full functional correctness of an Espresso and C Minor program.

iv

Acknowledgements

“There are a number of people I not only want to thank but also express my gratitude

to. Firstly, I would like to express my deep gratitude to my Ph.D. advisor Dr. Jan ‘Matt’

Pedersen. My interest in interpreters and compilers began with a Spring course taught by

him at the University of Nevada Las Vegas. His experience and approach to the field have

shaped my views on various programming languages considerably. I would also like to thank

all the members of my committee and for their valuable input.

Last but not the least, I would like to thank my family. I feel immense gratitude for their

constant support and love during the entire process of writing this thesis as I sat endless

hours in front of my computer.”

Benjamin Cisneros Merino

University of Nevada, Las Vegas

December 2022

v

To my Daughter

You had me wait 9 long months, and then you arrived in a

swirl of drama just like a celebrity diva... But it does not

matter because I will always be your biggest fan.

To her Mommy

For sticking with me through this whole roller coaster, for

tolerating my child behavior, for every now and then giving

a courtesy laugh at my lousy dad jokes, and for helping me

with the diapers... thank you.

vi

Table of Contents

Abstract iii

Acknowledgements v

Dedication vi

Table of Contents vii

List of Tables xi

List of Figures xii

List of Algorithms xv

Chapter 1 Introduction 1

1.1 Overview . 1

1.2 Types and Type Systems . 4

1.3 Describing a Type System . 9

1.4 Proposed Approach . 13

1.5 Scope of Type Systems . 14

1.6 Road Map . 15

Chapter 2 Problem Statement 17

2.1 Introduction . 17

2.2 Thesis Statement . 19

2.3 Why Static Typing . 22

vii

2.4 Motivation . 25

2.5 Contributions . 27

Chapter 3 Type Systems 29

3.1 Introduction . 29

3.2 The Big Picture . 31

3.3 The Role of a Type System . 35

3.4 Type Safety . 39

3.5 Type Information . 41

3.6 Type Inference . 44

3.7 Type Annotation . 48

3.8 Types and Type Checking . 50

3.8.1 Implementation . 53

3.8.2 Designing a Type Checker . 54

Chapter 4 The Espresso Language 57

4.1 Introduction . 57

4.2 What is Espresso? . 58

4.3 Syntax Extension . 60

4.3.1 Overview of the Abstract Syntax . 61

4.4 Type System . 62

4.4.1 Type Environment . 63

4.4.2 Types . 64

4.4.3 Type Predicates . 75

4.4.4 Primitive Types . 75

4.4.5 Constructed Types . 79

4.4.6 Type System Specification . 92

4.5 Closing Remarks . 102

Chapter 5 Jiapi 106

5.1 Introduction . 106

viii

5.2 Notation . 107

5.3 Meta-Language . 111

5.3.1 Stages in Jiapi . 114

5.3.2 Structure of a Jiapi File . 114

5.3.3 Describing Primitive Types . 121

5.3.4 Describing Constructed Types . 122

5.3.5 Patterns for Constructed Types . 126

5.4 Representing ProcessJ protocols in Jiapi . 134

5.5 Back to Record Types . 138

Chapter 6 Case Studies 144

6.1 Introduction . 144

6.2 Espresso . 144

6.2.1 Specification of Espresso . 145

6.2.2 The Semantic Type System . 146

6.2.3 The Primitive Types . 148

6.2.4 The Constructed Types . 155

6.3 From Parse Tree to Types . 165

6.3.1 Constructed Types . 166

6.4 C-Minor . 176

6.4.1 Introduction . 176

6.4.2 Types . 176

6.4.3 Other Similar Constructs . 178

6.5 Finding the Correct Method . 181

6.6 Simplicity vs. Expressiveness . 188

6.7 Conclusion . 192

Chapter 7 Related Work 194

7.1 Tools . 194

7.1.1 CENTAUR and TYPOL . 194

7.1.2 LATOS . 196

ix

7.1.3 ASF+SDF . 197

7.1.4 Tinker Type . 199

Chapter 8 Conclusion 202

8.1 Summary . 202

Appendix A Background 205

A.1 First-order Logic (FOL) . 205

A.1.1 Syntax . 206

A.2 Set Notation . 207

A.2.1 Set-builder Notation . 207

A.2.2 Operations . 208

A.2.3 Relations . 209

A.3 Tableau . 210

A.3.1 Rules for the construction of Tableau 213

Bibliography 213

Curriculum Vitae 230

x

List of Tables

1 Atomic and constructed types. 74

2 Type hierarchy for atomic types in Espresso. 76

3 Type equality (=⌧). 82

4 Type equivalence (⇠⌧). 82

5 Assignment compatibility (:=⌧). 92

6 Helper methods . 93

6 Helper methods . 94

7 Implementing �⌧ with di↵erent types . 101

8 Naming convention and notation. 107

8 Naming convention and notation. 108

8 Naming convention and notation. 109

9 Logic notation. 110

9 Logic notation. 111

14 Primitive types and their representation. 122

17 Espresso’s primitive types . 148

19 Example of arrayLiteralAssignmentCompatible. 169

xi

List of Figures

1 Side by side comparison. 3

2 The generated type checker. 4

3 Part of the formalized syntax of Espresso . 10

4 Derivation using type rules. 11

5 Basic data flow of a front end . 29

6 Java’s numeric data type conversion . 37

7 The class hierarchy for elements in a list of objects 38

8 Venn diagram of programming errors. 41

9 Type checking vs. type inference. 45

10 Type inference: collecting and solving constraints. 47

11 Abstract syntax of Espresso. 61

12 The three kinds of type checking scenarios: (a) safe, (b) possible, and (c) impossible. 66

13 Espresso primitive type lattice. 77

14 The associated class hierarchy in reverse. 88

15 Proof tree for while statement . 95

16 The typing reason as a tree. 95

17 Possible typing rules for int, double, or string 98

18 Type checking a Java program. 100

19 Type checking subtypes . 100

20 Hierarchy of types in Espresso. 101

21 Type checking expressions . 104

22 Type checking statements . 105

xii

23 Context-free grammar for a header declaration. 117

24 Two-dimensional array of nodes. 118

25 Context-free grammar for atomic types. 119

26 Context-free grammar for a clause declaration. 120

27 Context-free grammar for a clause declaration. 121

28 Pattern for constructing a Record data type. 122

29 Recursive type expression. 125

30 Transformation from concrete syntax to abstract syntax tree to object-oriented

approach. 126

31 Context-free grammar for a constructed type declaration. 128

32 Basic information defined as a tree structure. 129

33 Decomposition of a ProcessJ Protocol. 135

34 Patterns for constructing a Protocol data type. 136

35 Grammar for a record type. 139

36 Typing rules for a record . 140

37 Additional typing rules for a record . 141

38 TypeSystem package. 145

39 TSPrimitive type specification . 154

40 TSArray type specification . 157

41 TSNull type specification . 159

42 TSClass type specification . 162

43 TSMethod type specification . 164

44 �-calculus rule for type checking a binary expression. 189

45 Inference rules and axioms (left) and pretty-printed (right). 195

46 Example of a TYPOL rule for expression dynamic semantics of Ei↵el. 195

47 Transformation: rule
to
�! LATOS

to
�! Miranda. 197

48 The structure of an ASF module. 198

49 The formal specification of for expressions. 198

50 Adaptation in ASF+SDF. 199

xiii

51 T-If clause. 200

xiv

List of Algorithms

1 A simple visitor pattern for structural equivalence. 130

2 Find the correct method call algorithm. 187

xv

Chapter 1

Introduction

1.1 Overview

As statically typed languages become increasingly sophisticated, di�cult to learn or even

understand [1, 2] (e.g., such as C++), we discover new reasons to reject programs we do not

want to compile: Names that are not in scope, new definitions that hide prior definitions,

functions that are called with the incorrect number of arguments, and employing functions

or operators with the incorrect types of arguments. To this list, we can add another issue:

The number of features a language contains, or how many approaches there are to achieve

the same goal, is a measure of its complexity. To prevent some of these drawbacks, it makes

logical sense to try to create a type system that can determine whether or not a particular

input program is internally consistent with its data usage at compilation time.

In its most basic form, a type system enable us to specify the purpose of a program in

the form of a type. For example, the purpose of finding the sum of elements in an array is to

take an array as input and produce the sum of all of its elements as output. This is a (fairly)

basic approximation of what it takes to write a summation program, but it provides certain

assurances. If the array’s type is known at compile-time (before the program executes),

the compiler can deduce the types of all of its elements as well. If the array is declared as

integer, then the compiler concludes that adding each of its elements results in an integer

type. Thus, the more specific we make the types, the more we provide a way of defining

type-constraints which say what type our variables have.

1

A type system is therefore an important component of a compiler’s semantic analysis

phase. It is built into most programming languages to detect type errors in programs, such

as when a value is used in a way that is inconsistent with its definition, or using the result

of an expression of one type in a context that expects data of a di↵erent and, perhaps,

incompatible type [3, 4, 5, 6, 7]. This type of verification model � known as type checking

� can be done statically (at compile-time) or dynamically (during run-time). It follows

that type checking has proven to be quite e↵ective in preventing � and catching � a wide

range of programming errors by ensuring that valid operations are invoked on variables and

expressions, enforcing intended interpretation of values, and providing a concise formalization

of the semantic checking rules.

Other means of testing the correctness of a program, such as ensuring that data has

the expected type without cluttering code with dynamic checks or having run-time errors

possibly from logical errors, examining the boundaries of an array [8], avoiding improper

pointer traversals, preventing unintentional aliasing [9], and examining control flow, are also

included in the compiler’s semantic analysis phase. Naturally, depending on the design of

the language, some of these checks can be resolved at compile-time, while others may have

to wait until run-time. It is clear, though, that the semantic-checking process may include

many more stages � or passes � depending on the language for which the compiler is being

written.

My thesis In this dissertation, the focus of semantic analysis is type checking. Figure 2

is a mere adaptation and variation of [5, Figure 1.6] and [3, Figure 1.7] that demonstrates how

the implementation of a generated type checker can change the structure of a compiler. Here,

a generated type checker is a program that takes a description of a programming language’s

type system as input and generates a type checker for use in the semantic analysis phase

of the language’s compiler. Although it is common knowledge that a type checker, just like

a scanner, parser, and code generator, requires careful specification and implementation by

the compiler writer, unlike these other components, a type checker does not have access to

specialized tools. We anticipate that by using our approach, the parser and type checker

will be closely integrated, making the development of new languages easier. This means that

2

a type checker can be written abstractly, without having to worry about implementation

details, allowing language designers and everyday compiler writers to focus on the essentials.

That is, rather than adhering to a specific grammar, a higher-level of abstraction can be used

to make it easier to check for errors. To illustrate this point, consider these questions: How

can we specify the range of an array? How many operations can we do on an array? etc.

Clearly, it should be feasible to construct an abstract interpretation of an array by considering

its terms as separate objects and abstracting away the actual values such objects can have

by focusing just on the kind (types) to which they belong to.

In this dissertation, we also describe a specific implementation of the above ideas using

an object-oriented language, in which the evidence of type safety is presented in the form of

a proof that the type checker validates to satisfy a safety specification. As we shall see later,

a type system consists of a set of typing rules for a programming language’s many syntactic

constructs. In most cases, the typing rules take the form of an implication; for example, the

addition typing rule may be (x : int ^ y : int)) (x+ y) : int, which means that if the type

system can type both x and y, then it can also type the expression x+ y. Typing rules are

usually described as inference rules in the literature on type systems, with all premises put

above the bar and the conclusion stated below the bar. A side-by-side comparison of our

methodology (left) and the traditional method of specifying a type system (right) is shown

in Fig. 1. (We will elaborate more on how to represents things like “is an integer”.)

� ` x : int � ` y : int
add

� ` (x+ y) : int

8x, y : y is an integer ^ x is an integer

) (x+ y) is an integer

Figure 1. Side by side comparison.

It is important to note that the proof and the specification are both written in a mathematical

logic, which is an extension of first-order predicate logic in this case. We also employ small-

step operational semantics, which involves reducing expressions in small steps until they

achieve a normal form. For example, an expression 2⇥ 4 evaluates further to the expression

8 via an evaluation rule e ! e0. The rest of this dissertation’s ideas are techniques to get

around the inherent complexity of static analyses and the indeterminacy of many useful

language features.

3

Middle (End)

Semantic

analysis

type checker

type checker

generator

Scanner

Parser

Front End

IR

Analyzer

Back End

Optimizer

Code

generator

Description of

type system

program text program

Source

Program
Compiler

Target

Program

Output

Compile

Errors
Input

generated type

checker file(s)

type checkertype checker

Figure 2. The generated type checker.

Remark 1 (Type Checking): For some languages, the type checker may only need to

verify that the programmer’s type annotations are consistent. For instance, a type checker

can alert the programmer at an early stage (during compilation) if a program contains sever

errors, such as applying a function defined for double to a string. For others, however,

the type checker may need to conduct type inference and, in some instances, reconstruct

the type of an expression1. Fortunately, the type checker in most languages is somewhere

in the middle of these two ends, inferring at least the “obvious” types, such as result of

expressions: The result of a type expression is either reconstructed or matched against some

type of signature provided by the programmer. Regardless of the component’s real function,

in this thesis, we will refer to it as a type checker.

1.2 Types and Type Systems

In general, types and type systems are indispensable in programming languages, as they

provide abstractions, documentation, helpful invariants to programmers, and can also be used

to instruct a programmer on how to construct correct programs. Even though the semantics

of a programming language defines types as subsets of the computed value domain, its type

system allows programmers to make verifiable statements � or assertions � that a compiler

1 In Espresso [10], as well as in ProcessJ [11], for example, the real baseType of a two-dimensional array
changes to be an array with one dimension removed (see Section 4.2 on page 59).

4

can check automatically, allowing errors to be detected at compile-time rather than at run-

time; however, these verifiable statements are handled di↵erently in di↵erent languages. For

example, some languages (such as C/C++ [12]) have weak type systems, making critical

errors possible to emerge if not careful, whereas others (such as occam [13, 14, 15] and occam-

⇡ [16, 17, 18, 19, 20]) have very strong type systems, making writing useful programs more

challenging if at all even possible to compile (e.g., [21, Section 5.1.1]2, [22, see occam-⇡’s

documentation]).

Despite the fact that di↵erent type systems are designed to eliminate di↵erent classes of

programming errors [23], such as trapped errors, untrapped errors, or forbidden errors (see

Section 3.4 on page 39), the majority of them strive to eliminate type errors. In this

way, by employing types and a well-designed type system, a language can often guarantee

that desirable behaviors are preserved and undesirable behaviors are avoided. This makes a

program significantly safer as it ensures data structure integrity and type-correct coupling

of program components (i.e., there is a level of assurance that the program will not carry

out any undefined or prohibited operations).

Unfortunately, there are no obvious and unambiguous guidelines � except for the stan-

dard language evaluation criteria of [24, Section 1.3] and selected criteria of [25, Section

1.2] � when it comes to language design. However, when designing the type system of a

language, a number of questions often arise; the bullet points that follow address some of

these questions:

• Soundness vs. completeness: How many meaningful programs should be ac-

cepted? Should all invalid programs and some valid ones be rejected? Or, should

all valid programs but also some invalid ones be accepted? For example, because of

the object reference downcasting in a class hierarchy, some invalid programs are admit-

ted in a typical object-oriented language (such as Java, C++, and C#) when, perhaps,

they should not [5]: If A is a superclass of B and C, a reference to an object of class

B or C may be stored in a variable of type A. A conversion from type A to either

type B or C requires a run-time check to ensure that the run-time value is actually

2 Non-aliasing in occam/occam-⇡ prevents the implementation of several useful data structures like linked
lists, circular lists, trees, etc.

5

an instance of the correct class; this is something that cannot always be checked at

compile-time.

• Decidability: Is it possible to determine whether a given expression is well-typed?

In a statically typed language, this is critical because the language’s compiler must

be able to determine whether a given input program is meaningful and then either

run or reject it [5]. Thus, is it possible to implement a type checker that decides if

a program is well-typed? Unfortunately, the answer is no. For example, C# [26] has

nominal subtyping, that is, a type T1 is a subtype of another type T2 if and only if

it is explicitly specified as such3. Additionally, C# has generic types, and covariance

and contravariance of generic interfaces. This means that for a parameterzied � or

generic � class C<T>, a contravariant class will allow the use of a more generic type,

whereas a covariant class will allow the use of a more specific type (than what was

initially specified). These three things are su�cient to make C#’s type system � and

any language that shares similar characteristics (see also [28, 29, 30, 31, 32, 33, 34] for

various approaches) � undecidable.

• E↵ectiveness: Aside from the theoretical aspect of decidability, there is this sin-

gular question of type checking e�cacy that must also be taken into consideration.

For example, is it possible to make type checking decidable in object-oriented lan-

guages? [35, 36, 37, 38], and [39] describe what restrictions can be put on a nominal

subtyping system � for example, such as C#’s � to make it decidable. In particu-

lar, [35] focuses on the combination of three main features: Subtyping is decidable

(i) if the class table does not use contravariance. (A class table is a collection of class

declarations of the form C<X> <:: T1...Tn, where C is the class name and Tis may

refer to the parameter variables X [35].)

(ii) if the class table is not expansive, that is, there is no cycle in any inheritance

hierarchy. (An expansive class table is defined by graphs having a cycle with

at least one expansive edge. For example, either C#i
1
�! C#i � a one cycle,

3 Note that the subtype relation in nominal type systems is between type names, and subtype relationships
are explicitly defined [27].

6

or C#i
1
�! D#j !+ C#i, where C#i is the ith formal type parameter in the

definition of the class C (i.e., C<X>) [35].)

(iii) if multiple instantiation inheritance is not used and all expansive-recursive type

parameters are invariant and linear.

However, the situation for many object-oriented languages remains the same: We pay

the price for repetitive run-time checks, a lack of guarantees that hidden bugs are no

longer lurking in our code, a lack of unambiguous attribution of how implausible data

came to be used in the way that it was, and due to a lack of knowledge of the concepts

behind object-orientation [40, 41].

• Accuracy: To what extent can the properties of programs be described? For exam-

ple, an integer division, such as 7/3, does not return a fraction; it returns a truncated

integer instead. This is an example of a situation where a run-time error (since a

fraction cannot be represented as an integer) often results in the incorrect answer.

Another example is integer overflow. What happens if the result of a calculation is

too large (positive or negative) to fit within a fixed range? The computation discreetly

wraps around (i.e., it overflows) and produces an integer that is within the acceptable

range, but not the correct value [42]. As a last example, floating point and double

types in Java have several non-real-number values, such as NaN (or “Not a Number”),

POSITIVE_INFINITY, and NEGATIVE_INFINITY [43, 44]. Thus, operations that

should create run-time errors instead produce one of these unusual values. However,

when the value being converted is something else, such as a String that does not

represent a number, a conversion will result in NaN.

• Compactness: What is the minimum amount of type information that the program-

mer must provide? And how much of that information should be organized? If there is

a standard means of recreating the missing information, then allowing the programmer

to omit particular types is favorable. For example, type inference (such as the auto

keyword) and move semantics (such as structured binding or decomposition declara-

tions) in C++ [45]. For more general type systems, on the other hand, decidability

7

can commonly be retrieved by requiring a large number of type annotations [46]. For

example, the @TypeChecked annotation in Groovy allows for a static type checker to

be invoked at compilation-time [47]. @TypeChecked also enables the use of abstract

syntax trees (ASTs) for compile-time metaprogramming [48, Section 2] and instructs

the compiler to omit certain type checks via type checking extensions. The checking

process for a Groovy class, thus, includes verifying that fields and properties exist at

compile-time. Annotations can also be written in additional locations [49, 50], such as

generic type parameters (e.g., List<@NonNull Object>), thanks to Java 8’s type

annotation syntax.

Realistically, soundness, completeness, and decidability, are in constant disagree-

ment: If we can catch all type errors at compile-time, the language is said to be strongly typed

and, therefore, the type system must be sound and decidable; but if we cannot, the type

system is complete but not sound and, therefore, not decidable. Notably, it is reasonable to

expect a type system to be di�cult to get right, and getting it wrong might result in a slew

of inconsistencies. For example, because of the object reference downcasting, we know that

Java is not strongly typed. Hence, it is possible to write Java programs that are invalid with

respect to the type system [5] (i.e., while the Java type system is complete, it is not sound

and not decidable). Fortunately, an endless number of small and gradual adjustments can

be made to a type system (e.g., Java’s [51, 52, 53, 54]) to make it stronger [55, 56, 57, 58].

Definition 1 (Sound and Completeness): If all invalid programs are rejected, a type

system is said to be sound, and if all valid programs are accepted, it is said to be complete.

If a type system is sound but no complete, it will reject both invalid and valid programs (we

have false negatives). However, if a type system is complete but not sound, it will accept

all valid programs as well as some that are not (we have false positives). Furthermore, a

type system is decidable if a type checker that decides if a program is well-typed can be

implemented [5].

8

1.3 Describing a Type System

The addition of type systems to statically typed languages is motivated by more than just

safety. Another motivation is to limit � and possibly eliminate � programs that contain

constructs that are di�cult to compile correctly or even e�ciently [59]; in reality, useful type

systems have a certain degree of freedom in expressing types and their relationships, which

requires that the type system be applied to the operators and operands of the language [5],

as well as establishing a mechanism for associating types with specific language constructs.

In spite of that, there is a broad spectrum of type systems, each with its own goals,

emphasis, and application areas, but they all share a similar inclination for expressing im-

plications between typing judgments, as seen in the use of deduction � or inference � rules

in their description [4, 60, 61]. For simplicity, consider the following formalism for describing

constants, variables, functions, and function applications in the simply-typed �-calculus (or

typed �-calculus for short), as described in [4, 56, 60, 62].

(1)
` e : ⌧

(e : ⌧) 2 �
(2)

� ` e : ⌧

� ` e1 : ⌧ ! ⌧ 0 � ` e2 : ⌧
(3)

� ` (e1 e2) : ⌧ 0
�, x : ⌧ ` e : ⌧ 0

(4)
� ` (�x : ⌧.e) : ⌧ ! ⌧ 0

The rules for deriving typing judgments are as follows. A typing judgment has the form e : ⌧

(an assertion), which means that if e is an expression, it produces a value described by ⌧

when its evaluation terminates. This also requires that e be well-typed before predicting e’s

ultimate value.

The first rule simply says that a constant value e has type ⌧ (where ⌧ is a meta-variable).

However, when we need to type check the type of a variable, we require a new typing rule

that allows us to leverage the typing context (i.e., we need the context of a type environment

like a symbol table). Thus, the second rule stipulates that any expression e must have at

least one type ⌧ under the assumption that free variables in e have types specified in � if

and only if e : ⌧ 2 � (where � is the type environment)4. The third rule says that if we

have a function of type ⌧ ! ⌧ 0 and an argument e2 of type ⌧ , then applying e1 to e2 will

produce an expression of type ⌧ 0. In a similar manner, the last rule states that �x : ⌧.e is

an expression denoting a function of type ⌧ ! ⌧ 0, whose formal parameter x has type ⌧ ,

4 A type environment is a partial function that assigns types to variables in this context, and it is usually
denoted with � where � 2 Env : Var * Type.

9

and the function body e has type ⌧ 0. The notation �, x : ⌧ (or � [x 7! ⌧]) is an extension of

the typing context � that includes a new mapping from x to ⌧ . Thus, if � already has a

mapping for x, this new mapping takes precedence over it.

For completeness, we will illustrate these key ideas and define a set of inference rules that

allow us to make judgments about expressions in typed �-calculus for the Espresso language.

Part of the formalized syntax of Espresso is defined inductively in Figure 3. Although we

will demonstrate how expressions and statements in a (very extensive!) grammar can be

used to describe any type of expression, we will largely employ shortcuts to define parts of

Espresso’s syntax.

⌧ 2 primitives = byte | short | char | int | long types�� float | double | boolean | void�� ⌧ ! ⌧ 0 function
e 2 expressions = v variables�� true | false boolean values�� e1 � e2 binary operations�� ...
s 2 statements = if (e) { s1 } else { s2 } if statement�� ...

� 2 {*,%,/,+,-,<<,>>,<,<-,>,>-,...}

Figure 3. Part of the formalized syntax of Espresso.

Espresso is a language that is quite similar to Java but without exceptions, significantly

simpler imports, and without generics [10] (basically, Java 1.0). It is a fairly complex pro-

gramming language with constructs for arithmetical operations, lexical binding of variables,

scope, classes, functions, assignments and side e↵ects, simple control constructs (including

sequential, selection, and repetition), and dynamic dispatch. Hence, its syntax contains a

number of properties and features that can be handled by the analysis described above. For

example, a simple arithmetical rule for adding two integers, and an integer rule (an axiom)

that says that n always has the type int, can be defined as follows:

� ` e1 : int � ` e2 : int
add

� ` e1 + e2 : int
int

� ` n : int

The rule add reads aloud as “if e1 has type int and e2 has type int, then so does

e1 + e2”; specifically, the colon functions as the phrase “has type”, whereas the bar acts as

10

an if-then clause. For example, to deduce that the expression 7 + (3 + 2) is of type int,

we simply need to link several uses of the rule int into a derivation tree, with the root of

the tree being the judgment we want to prove, to derive that such expression has type int.

Note that the leaves of the tree (dashed rectangles), as shown in the diagram below (see

Figure 4), are all axioms. We began with a conclusion rather than ground truths since we

were looking for a derivation that proved the proposition (i.e., the root).

int
� ` 7 : int

int
� ` 3 : int

int
� ` 2 : int

add
� ` (3 + 2) : int

add
� ` 7 + (3 + 2) : int

,

int (+)

int (7) int (+)

int (2) int (3)

Figure 4. Derivation using type rules.

A type checker could then implement the rule add in three steps:

1. Type check e1 : int.

2. Type check e2 : int.

3. The type of the entire expression is int.

It is important to note that the type of each expression is checked in a predetermined

order (commonly in the form of a visit [63, 64]), as the type of e1 and e2 must be known before

addition can be computed, which was not the case in the above derivation tree. Furthermore,

since a type checker is basically a theorem-prover that is formally validating the type of an

expression, we can think of � as a “proof context”. That is, in order to type check expressions

with variables, we need to introduce a typing context � a symbol table of some sort � that

maps variables to their types. For example, a variable can have any of the types available

in the language. In Espresso, the type is determined by the declaration of the variable.

In inference rules, the variables are collected to a context, denoted by � ; however, for the

compiler, the context is a symbol table of (variable, type) pairs. This symbol table is created

whenever a language construct opens a new scope so that names can be associated with their

declarations/definitions [5], facilitating type checking of variables in expressions.

11

Naturally, we say that a correct program is also one that never refers to an undefined

variable (i.e., a variable that is not accessible or was not declared in the program). Many

compilers do a check to determine if variables and other named entities have been declared

or defined before they are used. These entities cannot be referred to in locations where it

would be considered illegal or out of scope; therefore, symbol tables have an important part

in type checking. A rule for checking whether a variable is defined in some context can be

defined as follows:

var, � (v) = ⌧
� ` v : ⌧

The rule var5 states that variable v has whatever type the context assigns to it (i.e.,

⌧ 2 {byte, short, int, long, float, double, boolean, void}), which means that � must have

an association for v in order for � ` v : ⌧ to hold. In Espresso, we can formulate name

resolution as a two -stage problem when dealing with defining and resolving symbols, such

as names of variables, classes, and methods [5]. The first stage is to locate and insert all

named entities that can be forward referred into the proper symbol tables. Meanwhile, the

second stage involves resolving the use of all names, including variables names, parameter

names, and method names. The symbol table is essentially a map between each variable’s

name and the symbol structure that describes it.

Following the example of the first arithmetical rule (i.e., add), it is natural that most

of Espresso’s operations for primitive types follow a similar pattern; for example, we could

create a conversion rule that would change an integer to a long, double, or other type of

number and use the transformed value as such. While this may appear to be a simple

mathematical concept (given that integers are a subset of doubles), integers and doubles

have completely di↵erent binary representations and sets of instructions. As a result, type

conversions are normally handled by the compiler using a specific instruction. Consider the

typing rule below (i.e., max):

� ` e1 : ⌧ � ` e2 : ⌧ 0
convert, if ⌧ 2 {int, long, double}

� ` e1 + e2 : max(⌧, ⌧ 0)

If we were to assume no loss of information and the following ordering:

int <⌧ long <⌧ double

5 This rule is equivalent to rule (2) in Section 1.3 on page 9.

12

then, the type of e1 + e2 for ⌧ = int and ⌧ 0 = double is

dint, doublee⌧ = double

Thus, 2 + 2.4 gives the result 4.4 because double is the maximum. (Note that the <⌧

operator is introduced in Section 4.4.4 on page 75.)

At the same time, some of Espresso’s types are more of a run-time notion (a term we

use to refer to instances that represent an implementation of a type � a class) and, as such,

can be manipulated at run-time, rendering compile-time checking impossible. In Section 4.2

on page 58, we will look at the primitive types, classes and inheritance, instance variables

and methods, interfaces, shadowing of instance variables, and dynamic method binding in

the Espresso language.

1.4 Proposed Approach

The problem with sophisticated type systems is that they force us to spend a lot of our

development time (universally) thinking about type hierarchies and their interactions rather

than actual reasoning (in a more localized way), oftentimes involving: Naming and organizing

useful concepts (as seen earlier), providing information � to the compiler or programmer �

about data manipulated by a program, and ensuring that the run-time behavior of programs

meet certain criteria. This failure appears to be primarily attributable to the fact that type

checkers are written in a pre-existing formalism rather than a type-specific syntax. For this

reason, we suggest that a di↵erent kind of abstraction be created: One that is more simple

and practical (though, perhaps, not as precise), and more “approachable” for the (average)

compiler writer.

We present Jiapi , an automatic type checker generator tool that uses first-order logic

and set notation, along with an expression grammar for describing the type system of any

domain-specific language (DSL). To define a type system, Jiapi generalizes the concepts of

atomic and constructed types and combines them with a controlled form of a meta-language.

The intent is to automate code generation for semantic checking tasks that can be specified

and inferred based on types alone. For the sake of clarity, this thesis focuses on the type safety

of Espresso as an example, a large but representative Java subset. Correspondingly, the

13

abstract syntax, type system, and type constraints guaranteed by Espresso’s type analysis

are formally defined. The thesis also provides a formal specification of the type system rules,

which a Espresso program must follow in order to be accepted.

Finally, what sets Jiapi apart from other approaches is that we want to create a formal

verification model that can be explained as a simple extension of type checking verification,

based on simple concepts that are used to describe a language construct (such as types,

functions, operators, and so on), and for which we can specify the required checks � largely

� in terms of type predicates (of the form P?(x)), type equality (the =⌧ operator), type

equivalence (the ⇠⌧ operator), and assignment compatibility (the :=⌧ operator). In

fact, undergraduate and graduate students in [65, a compiler construction course at UNLV]

will be customers of this work, both in the classroom and at home, where they have already

been using di↵erent verification approaches to improve the quality of their compilers.

1.5 Scope of Type Systems

As we wrap up this chapter and begin our analysis of the problem that our research attempts

to address (in Chapter 2 on page 17), it is noteworthy to mention that type systems are far

too vast a topic to include all proposed systems in a single framework. Therefore, we will

briefly summarize the common ways type systems are specified and perform many semantic

checking tasks in accordance with the literature.

Type systems are motivated by a variety of factors, including mathematical reason-

ing [66, 67, 68, 69, 70] and the need to di↵erentiate data types during compilation [3, 5, 71].

They can be described in a variety of ways, including natural language [72, 73, 74], deduc-

tion systems [75, 76, 77], algorithms [78, 79, 80], and constraint systems [81, 82, 83]. Although

they cover everything from checking type annotation correctness to reconstructing the type

of every expression and function in a program [84, 85], they often operate by establishing

and enforcing constrains. For example, some constrain the argument type of a function to

be a subtype of type, such as t ! int\{t int}, where t is constrained to be a subtype

of int, while others allow recursive constrains, such as t t ! int [83]. There are several

type systems that add constraints to the Hindley-Miller system [86]; for instance, record

14

systems [87], overloading [88, 89, 90], and systems that permit subtyping6 [93, 94] are just a

few examples.

Compiler optimizations, static analysis, software design approaches, and safety consider-

ations on executable code can all be found somewhere in the middle [3, 5]. For example, it is

a static type system if the type system is present in the language and used at compile-time

with the goal of being able to issue compile-time errors. Otherwise, it is a dynamic type

system that prohibits illegal program states by stopping the program in the middle of its ex-

ecution rather than preventing it from starting at all. In contrast, providing both static and

dynamic characteristics [95] is a fairly frequent type system feature. Hybrid type checking

combines the two approaches with the purpose of enforcing precise interface requirements

when static analysis is possible and dynamic checks are required [96, 97]. This method is use-

ful in dependent type systems where types are parameterized by expression run-time values7

(e.g., [100] and [101]).

Even this rudimentary summary suggests that the scope of a type checker generator

should be (and is) limited. For an analysis, known parser generators do not handle every

imaginable language syntax, but they do provide a framework that can be easily customized

to a specific class of syntax structures prevalent in computer languages. On account of

this, we will start with the simply-typed lambda calculus while developing the type checker

for Espresso, gradually adding language components to make the design self-contained and

well-defined. Then, we will retrace these steps with the resulting system and re-write the

implementation in Jiapi .

1.6 Road Map

The rest of the thesis is organized as follows. The first chapter (which you are currently read-

ing) serves as an overview of the rest of the thesis. After reviewing the essential background

on types and type systems, Chapter 2 begins with a general exposition of the problem, which

6 John C. Mitchell was the first to propose that subtyping constraints be included in typing decisions
judgments [91, 92]. Only coercions between type variables were allowed in his constraint sets, which were
atomic.

7 The separation between types and terms is reduced in dependently typed languages. They allow types
to rely on a term of a di↵erent type, increasing the expressiveness of a programmer’s code and lowering the
computational cost while lowering the risk of type errors [98, 99].

15

later explains our central argument; it then goes on to explain why statically-typed languages

are preferred, and ultimately, it describes our motivations and contributions. Chapter 3 pro-

vides an overview of type systems while providing several examples. Chapter 4 introduces the

Espresso language. A formal specification and corresponding type system for the Espresso

language is briefly presented here � only the essential core of the language using an abstract

syntax of Espresso. In Chapter 5, we provide an overview of Jiapi , our type checker gen-

erator tool for the Java-like classroom language Espresso. We have included some common

definitions and notational patterns for the reader’s convenience. Chapter 5 also describes the

implementation of Jiapi ; in particular, we illustrate how to apply it in di↵erent parts of the

type checker specification. Chapter 6 introduces case studies involving two imperative and

object oriented languages. Chapter 7 compare existing relevant work. Chapter 8 concludes

with the remaining activities for the finalization of the thesis.

16

Chapter 2

Problem Statement

2.1 Introduction

In computing, the problem of correctness is always ubiquitous: A program is developed

with a certain specification in mind, and it is run under the assumption that it meets that

specification. This assumption, as we all know, is frequently unjust: in the vast majority

of cases, the program fails to operate as it should. But what should be done about this

problem? Only a formal proof of correctness can guarantee that a program meets its spec-

ifications [102, 103, 104]; testing cannot guarantee the absence of mistakes [105], but it can

only demonstrate that a program is not correct. So far, if we take a simplistic approach

to this strategy (e.g., testing programs), in which we write the program and then provide a

proof that it complies with a specification thereafter, there still is a risk that the program

we develop may not work properly. We should instead aim at developing the program in

such a way that it must perform as it ought.

In 1972, Edsger W. Dijkstra addressed the issues posed by the lack of program correctness

proofs and devoted a few lines to the problem:

“Program testing can be a very e↵ective way to show the presence of bugs,

but is hopelessly inadequate for showing their absence. The only e↵ective way

to raise the confidence level of a program significantly is to give a convincing

proof of its correctness. But one should not first make the program and then

prove its correctness, because then the requirement of providing the proof would

17

only increase the poor programmer’s burden. On the contrary: the programmer

should let correctness proof and program grow hand in hand.” [106]

Essentially, Dijkstra is proposing the approach taken by advanced type theories, of al-

lowing programmers to describe important semantic invariants of a program in a type sys-

tem [107, 108, 109], in which we can describe a family of constructs spanning a set of param-

eters, each of which is unique to the constructs being specified. The type system is therefore

built in such a way that a program is only adequately typed if the required invariants are

satisfied. In light of this, type theorists believe that given a powerful enough type system,

most � if not all � characteristics of a language that one wishes to preserve can be proved

for certain programs. Even so, even if the core mechanics of a program are well understood,

implementing a new type system can be a challenge.

The problem with the average programmer is that type systems are often designed using

axioms and inference rules [110], possibly with various side conditions, to prove the absence

of certain kinds of program behaviors; for example, writing logic formulas as pre- and post-

conditions, and verifying them mechanically. This leaves average programmers with no choice

but to perform the proof equivalent of bookkeeping, as many of them are unfamiliar with

proof-theoretic definitions. That is, the most basic version of this technique entails feeding

numerous inputs to the tested program and checking the result for correctness. Other more

advanced versions of this technique attempt to select inputs in such a way that all, or at

least the majority, of the available execution paths are examined. Of course, this is a shaky

notion of program correctness, but it is quite useful in identifying errors in practice.

Strictly speaking, type checking is a lightweight technique for demonstrating that a pro-

gram satisfies specific requirements. Unlike theorem-proving techniques based upon ax-

iomatic semantics, type checking rarely determines whether a program will yield the correct

result. Instead, it is a means to test if a program is well-formed, using the premise that a well-

formed program meets desirable properties. This implies demonstrating that a type-correct

program might never reach a non-final configuration in its operational semantics where its

behavior is unknown [25, 24]8. Our solution to this challenge is to give programmers the tool

8 A well-typed program cannot become stuck in the middle of a computation; in other words, well-typed
programs cannot fail [86].

18

to test or reduce a proof to a limited number of easily-reviewable predicates. For example,

we might find helpful to try to prove the theoretically equivalent interpretation of a desired

property of a program, in which we simplify things for the type checker, such as by breaking

up various cases or adding predicates to break complex proofs into smaller steps.

It should be emphasized that, for a large range of statically typed languages, it is impos-

sible to develop a type checker that accurately distinguishes between ill-behaved and well-

behaved programs due to the theoretical limitations of type systems [35, 36, 39, 87, 111, 112].

For example, statically checks can be overly burdensome if they require a lot of bookkeep-

ing without su�cient proofs. This raises the following question: How e↵ective are type

systems in the real world? It turns out that they di↵er markedly when comparing their

notion of type and genericity, from very simple (even though e�cient to compute, they are

also quite restricted) to quite sophisticated (even though di�cult to compute, they can be

incredibly expensive). Needless to say, a substantial part of current programming language

research focuses on improving the power and expressiveness of type systems while keeping

them practical.

2.2 Thesis Statement

As stated above, the challenge in constructing a type system is to find the right balance

between soundness, completeness, and decidability. There will always be correct programs

in that they will never crash at run-time due to data misuse, but we will never be able to

convince the compiler that these programs are correct. For example, they could rely on

complex invariants or subtle data and control-flow dependencies that the type system is not

equipped to detect and exploit (e.g., [35, 36]). We could try to improve the type system to

do this, but that would require the programmer to provide enough evidence at all times to

satisfy the new type system, and that evidence (in the form of type annotations) may be

incredibly tedious [55, 113, 114, 84]. Worse still, some type safety properties may not even

be decidable.

Unfortunately, even with today’s tool support and approaches, creating mechanized type

soundness proofs is a demanding task for verification professionals. The provided assistance

19

frequently entails manually spelling out a huge number of trivial stages inside such proofs,

requiring a certain degree of skills and competence. The thesis’s ultimate goal is to increase

the degree of automation for mechanizing type checking in a simple yet practical way. The

idea is that a value is regarded as a proof of the statement corresponding to its type, while the

type is interpreted as a proposition, resulting in the Curry-Howard correspondence [115]9.

As we shall see later, this concept will be used to derive the majority of common logical

connectives. To this end, we present a framework for implementing type checkers that

adheres to common design patterns. Although we focus on domain-specific languages (DSLs),

we use Espresso (a large subset of Java) as an example.

The type system we will develop here involves not only primitives but also constructed

types. Given that Espresso is object-oriented, we will need to consider classes and other

sorts of reference types that are related to the basic concept of a class (such as interfaces

and enumerations, and in some cases, procedures and functions10) but di↵er in some way

and are typically treated di↵erently by other languages. Hence, understanding how the basic

structure of Espresso’s type system works will lay the groundwork for understanding how

Jiapi can be used for developing more advance systems.

To reduce the possibility of errors, we will structure all of our validations as follows:

• Formal validation: Takes the form of a sound semantic model� or, to put it another

way, a logic model � based on a set of judgments (i.e., predicates about a language’s

properties) and a set of rules (i.e., implications between judgments). It is worth noting

that this description consists only of rules, with no axioms, because rules are what

allows us to conclude one judgment from a collection of others. Now, formalizing the

syntax and semantics of predicates, and thus formalizing the set of rules, which are

just set notation and first-order logic, require four parts:

(i) A general statement of what we wish to prove.

9 The Curry-Howard correspondence is a theory that answers questions such as Can a program compute a

value of some type given values of some other types?, Is it possible to deduce a function’s code from its type

signature?, etc.
10 Procedures and functions can be treated as values in some languages (e.g., Algol [116], Simula [117],
Scala [118], Python [119], Perl [120], JavaScript [121]), allowing them to be assigned to variables or given to
other procedures and functions.

20

(ii) A description of the set on which the prove will be performed.

(iii) One or more particular cases that represent the most basic case.

(iv) The steps we assume to exists. In general, we will assume that the predicates hold

(i.e., these are statements that we can prove, disprove, assume, negate, and so

on), but sometimes we will need stronger assumptions. For example, the predicate

numeric?(⌧) could be defined as a disjunction of other predicates: numeric?(⌧) =

byte?(⌧)_ short?(⌧)_ · · ·_ double?(⌧)11 (see [5, Section 7.2.4]). Alternatively, for

atomic types, we may define this predicate as numeric?(X) = X.type 2 {int,

long, float, double, . . . }, where X.type refers to the named attribute type of node

X (see Section 5.3 on page 112).

Each rule, in addition, will have a set of premises and a conclusion, and can act on any

Java object that represents a type12 � rules typically act on the objects representing

parse-tree nodes. For the set of rules, we prefer that users utilize accurate mathematical

notation (see Section 5.2 on page 107). If a user does not know how to write in

mathematical notation, we will accept semi-formal statements in plain English as long

as they are correct, unambiguous, and complete.

• Practical validation: Comes in the form of several worked examples exhibiting dif-

ferent aspects of the compiler. These will include both program that compile and ones

that should not. In general, a successful set of test cases checks if the implementation

follows the design, whether the design contains loopholes or ambiguities that allow

for erroneous usage, and whether the implementation’s behavior can be predicted in

all scenarios. Upon running, this set of test cases should compile and should pass. It

can also be noted that writing tests after writing the specification will provide us with

insight into what our implementation should accomplish. Moreover, it will assist us

11 Naturally, a compiler or interpreted for a typed language (or intermediate representation [122] like the
Java bytecode) may require that a well-typed input satisfies a predicate. For example, in the implementation
of a type checker, we can introduce one predicate function for each atomic type, one for each type constructor,
and some to detect whether a type is integral or numeric.
12 Note that subclassing and subtyping are synonymous in most object-oriented language type systems.
However, in our type system, types are defined by classes, with each class defining a type or a family of
types.

21

in sorting out the types that we have in the language, and often understanding that

structure is a tremendous help in understanding the problem.

We believe that by suggesting a division of aspects, objectives, and activities, this method

will make language maintenance easier. Such a division will also allow DSL advancements

to be integrated, as feature requests and requirements change often to meet the regular

expanding needs.

2.3 Why Static Typing

The world itself is typed. We cannot add or subtract lengths in weights, and although we can

add or subtract lengths in inches (decimal or fractions), feet, centimeters, and millimeters,

we should convert at least one of the two. Failure to do this could bring any Mars journey

to a halt in a literal sense (e.g., [123, 124, 125]). On the other hand, in a language with a

static type checker, adding two lengths expressed in di↵erent units would have resulted in an

error or an automatic type cast. Consequently, seeing the importance of types in providing

a foundation for intrinsic code documentation (such as useful variable names, highlighting

keywords, or anything a↵ecting the actual code), it is good practice to try to choose languages

that support static analysis and type checking.

Indeed, any type system must be able to address at least some of the issues listed in

Section 1.2 on page 5. In a statically typed language, it is common practice to use a

type checker to filter out possibly ill-behaved programs before they are executed [3, 5] �

specifically after the program is read in and parsed but before creating the executable file.

For example, instead of lingering undiscovered until the code is deployed, possible errors can

be detected during the compilation process. This is because programs must abide by the

restrictions imposed by their types, or they risk being rejected. In plain words what this

means is types are about expressing more of our intent to the machine so it can do more

work for us. It is for this reason that statically typed languages can guarantee the absence

of entire classes of errors in programs [126, 127].

What follows is a summary of the benefits from adopting static typing in as few words

as possible. Note, however, that none of these points are new or unique, but we wanted to

22

consolidate them in one place to explain why we decided to create a tool for statically typed

languages. (Make reference to [128] for how static typing improves the maintainability of

software systems.)

• Untyped programs can often be unreadable, unreliable, and ine�cient [129, 130]. For

example, we could prove that executing a program written in an untyped language

results in a type error, but we would have to do it for every program written in that

language, whereas in a typed language, it is guaranteed in every case.

• A substantial number of errors are discovered earlier in the development process, closer

to the point of introduction. For example, consider a function f that accepts one

parameter of type string and returns a value of type int (the type of f is string !

int), but we accidentally pass an integer instead elsewhere in our program. With

static typing, the type checker would catch this issue and alert the programmer to the

incorrect value being given.

• Types guide development and can even write code for us, reducing the amount of in-

formation that the programmer has to specify. For example, the types of variables may

be inferred from context by the compiler as type inference provides the programmer

with an option: The freedom to choose between manifest and inferred types. Although

a number of compile-time analyses requires reasoning about unknown types, in object-

oriented languages like Java, C++, and C#, the initializer (e.g., constructor, literal,

method return value, etc.) always provides all of the information for an inferred type.

• Refactoring can be done with more confidence because a substantial number of errors

introduced during refactoring will end up as type errors. For example, consider the

same function f that returns a single value of type integer. If we wish to change it to

return a list of numbers instead, the compiler will catch most � if not all � the places

that need updating after modifying the type signature of this function.

• If we used static typing, we are prevented by the rules of a language’s type system

from forming expressions that may result in type errors when the program is executed.

23

Therefore, types can make developing programs easier by automatically tracking in-

formation that a programmer would otherwise have to keep track of mentally. For

example, Dropbox developed a tool for performing type checking on interpreted lan-

guages [131]. Their major argument was that coding at scale means ensuring that

developers can quickly understand the present codebase and become productive by

using the power of types and reassurance of type checking (e.g., [132, Section 3]).

• Type annotations serve as code documentation that is guaranteed to be valid, unlike

programmer comments, which are frequently missing, erroneous, or out of date. This

is especially true for many tasks that programmers often take for granted in their IDEs

and toolkits (e.g., IntelliJ [133], Eclipse [134], and Netbeans [135]). For example, static

code analysis, refactoring, code simplification, inlining variables, point out locations

with code duplication, to name a few, can be performed by IDEs and other tools

by means of types, type information, and type checking. Thanks to these types of

knowledge, a tool in our development environment (e.g., a daemon) may analyze our

code and immediately flag areas where we can enhance it.

• When types are used as annotations (not to be confused with the preceding bullet

point), they can be read by both programmers and the compiler, which may be able to

provide a “safety guarantee”. For the compiler, the safety guarantee will usually specify

that operations are only performed on arguments of the correct types, thus preventing

or reducing the frequency of run-time errors. For the programmer, types can aid in

the definition of more complex analyses, the reasoning of an analysis’ soundness, and

the e�ciency of static analysis [136]. For example, using static analysis for finding

dynamic errors [137], or finding and handling bugs in system code, such as Linux file

systems and drivers [138].

• Finally, type information eliminates the need for run-time type checks and allows the

compiler to optimize the entire code for better performance. For example, execution

can be 10 to 100 times faster than dynamic languages [24], becoming a clear advantage

for programs where e�ciency is crucial. (See also [139, Section 3] for static and dynamic

optimization techniques for object-oriented languages.)

24

It is worthy of note that the strictness with which static semantics13 are enforced varies

substantially between languages. In actuality, none of the above is enforced by all pro-

gramming languages. All of these factors compel us to formally specify the semantics of

the language we are implementing, even if we already have perfectly adequate implementa-

tions. For example, several papers have been written about ProcessJ (including [21, Section

5.1], [140, Section 1.1], [141, Chapter 5], [142, Chapter 3], and [143, Section 4.4]) with regard

to combining the familiar syntax of Java/C++ with the process semantics of occam/occam-

⇡. In general, the more static checking there is in a compiler, the less manual debugging is

required (e.g., [144]).

2.4 Motivation

As we all know, erroneous program behavior is all too common; nevertheless, without ob-

serving wrong behavior, we cannot generally state if a program is well-typed or whether we

simply have not tested it with an input that would cause an error. Furthermore, type sound-

ness is no longer trivial after a language and its type system are enhanced with additional

features. Even though each feature may be sound in isolation, the combination of two � or

more � features can be unsound. This is troublesome since researchers often prefer to look

at each element in isolation and do not always anticipate issues with the combination. For

this reason, as software becomes increasingly complex, employing more powerful methods for

verifying that a program is well-typed (those that can provide the highest level of certainty)

becomes exponentially more di�cult for the average compiler writer and programmer.

Part of the reason is that the structure and semantics of types have been formalized

and reasoned about using type systems, which is done to ensure that type declarations and

expressions are sound [114]. Although there exists di↵erent formalism to specify semantics,

operational semantics notation is often used as a basis for semantic specifications. The

semantics are expressed in the form of axioms and rules, consisting of a collection of premises

and a conclusion that form the basis of a proof. These rules are closely related to a language’s

13 These are semantic rules that can be checked prior to the execution of a program [24, 25]. For example, if
we verify the type of expressions in advance of execution to forecast some features of the program’s dynamic
behavior, then this type checking is part of the language’s static semantics.

25

abstract syntax, as we have briefly demonstrated in Chapter 1, and therefore can be explicitly

divided into smaller rules in order to ensure type safety for declarations and expressions.

Driven by this, we decided to create something more practical.

The following bullet points influenced our decision in the design and development of Jiapi :

• To ensure that a type system is well defined, various formalism are utilized; however,

type checkers in commercial language processors rarely use tools to transform these

formalism into code. For example, the majority of existing compiler and interpreter

development tools are focused on the creation of scanners and parsers.

• Type systems are defined and written precisely. The verification of formal properties

(such as type safety) in detail provides assurance that their definitions are correct [145].

Russell’s initial ramified theory of types [146], Ramsey’s simple theory of types [147],

Church’s typed lambda-calculus [148], Löf’s constructive type theory [66], and Baer-

ardi’s pure type systems [149] are all notable milestones in type systems formalization.

These verification models formalize data � and data abstraction � and give techniques

for describing structural constraints; however, their perceptions are vastly di↵erent and

somewhat di�cult to apply even for individuals who are experts in the area of mech-

anized verification.

• Proving that a program is well-typed is also limited to demonstrating that a program

adheres to a set of specifications and requirements, namely, the type system of the

language. But what if the specification � of the type system � has a flaw? This is

at the center of the critique in Social Processes and Proofs of Theorems and Programs

by de Millo, Lipton, and Perlis [150], arguing that formal program verifications will

not play the same crucial role in the advancement of computer science and software

engineering as proofs do in mathematics, regardless of how they are attained.

• Often, the proofs are frequently extensive and tedious proof-by-cases, with less engaging

intellectual content than most mathematical proofs. For example, such proofs employ

formal verification schemes to ensure that the system’s fundamental principles are

correct before they are accepted [151]. In fact, most languages do not have a fully

26

formal specification � or are not fully formalized mathematically � outside of research

contexts.

• Finally, formal semantics is needed for whichever language a program is spec-

ified in � all languages have semantics independent of their implementations

(c.f., [152, 153, 154]). With today’s tools, describing the formal semantics of even a

simple language is a big undertaking, both conceptually, in the form of mathematical

frameworks, and with software, such as theorem provers. (Isabelle [155] and Coq [156]

are two examples of powerful proof assistants.) For example, there may be possible

input values that require special handling or strange compiler behavior that is simply

di�cult to express and model, requiring a certain level of semantics maturity that

many do not posses.

For these reasons, we believe that we should establish more realistic targets given that

we can solve nearly no general problem in the realm of program correctness (in this instance,

well-typed programs); for instance, there is no algorithm for determining if a given input will

cause an arbitrary program to terminate [157, The halting problem, Section 5.1]. Fortunately,

the lack of generic solutions does not rule out the possibility of proving well-typed programs

in specific circumstances or in a context that is confined in some way. We strongly believe

that we can focus on actually solving the problem at hand once we have established the

importance of well-typed programs as an engineering and theoretical problem.

2.5 Contributions

This thesis makes a significant contribution by providing a new perspective on the problems

of type checking and type inference. The main contributions of this thesis are as follows:

1. Demonstrate that if a type system is described in a formal way as part of a language

development, the tool ships the potentially implementation of a type checker.

2. We created a simple formalization for capturing type system specifications using set

notation and first-order logic. This formalization is quite expressive and incorporates

modern programming features such as recursive types, inheritance, polymorphism, and

27

exceptions. It also provides a clear separation between atomic types and constructed

types, as well as subtyping and subclassing if applicable to any reasonable DSL. Thus,

we can arrange and constrain a language’s type system specification in a straightfor-

ward and unified manner without having to modify our approach for each new pro-

gramming language. Moreover, we created a meta-language for describing data types

with a minimum set of required characteristics. Under this circumstance, we can use

simple elements (i.e., characters) and constructs (i.e., a combination of characters and

symbols) to describe the definition of records/structs, enumerations, classes, functions,

and other patterns (Table 8, in Section 5.2 on page 107, summarize punctuation and

keywords in Jiapi).

3. A tool that takes a type system definition as input and generates a specific implemen-

tation of a type checker for any reasonable DSL. The tool is accessible to the compiler

in the form of a tree API that provides an object based representation of a type checker.

This type checker works as a function that converts the type of an expression from an

AST representation. For example, a type T is represented by a tree of objects in this

object-based model, with each object representing several type system nodes (such as

atomic and constructed types) and each object having pointers to the objects that

represent its constituents. Thus, if y is a double, the AST representing the expressions

y�2.5 will be mapped into the data structure representing the type double. It is worth

noting that, because most languages support many binary and unary operators, hard-

wiring their type checking into the type checker with code is tedious. Hence, in order

to make the type checker easier to update and maintain, we use a special symbol table

to hold all operators (as well as system functions) along with their signatures. Finally,

the tool creates the necessary Java files, which must be imported into the source code

for compilation.

4. Finally, we can demonstrate that type system specifications for languages that conform

to our meta type systems are guaranteed to be valid using empirical data. This instills

a high level of trust in our typing systems.

28

Chapter 3

Type Systems

3.1 Introduction

A compiler must do more than simply recognize input and to respond to it in some way

such as being able to properly identify di↵erent components and di↵erentiate phrases in a

language. It must be able to determine useful information for later phases and find errors

that would render a program invalid. In other words, if the program is not semantically valid,

it will not be possible to generate code such that the meaning of the target program is the

same as the meaning of the source program (albeit, as we will see later in the chapter, this

is not true for any useful object-oriented language). Following parsing (or syntax analysis),

the next phase of a typical compiler is semantic analysis. Fig. 5 illustrates the elements and

basic data flow of a compiler’s front end.

Source Program
(Character Stream) a := 4 * b + c

a := 4 *

Lexical Analysis

Syntax Analysis

Semantic Analysis

Token
Stream b + c

S
:=id E

T
F T'

E'
+ T E'

const id* F T'
id

:=
id +

const
id*

id

AST
syntax
tree

front end

correct
tree

evaluation
code generation
translation
...

Figure 5. Basic data flow of a front end.

29

A variety of checks are performed during semantic analysis to ensure that the source

program can be translated into the intermediate or target code [5, 158]. Once the syntactic

structure of the program is known, semantic analysis computes additional information related

to the program’s meaning. This is done to allow for semantic checks, such as checking for type

errors, associating variables and functions references with their definitions, requiring variables

to be initialized before use, among other things, in order to ensure that a program is sound

enough to proceed to code generation. Therefore, to be semantically valid, all declarations

and statements in a program must be appropriately defined, expressions and variables must

be clear and consistent with how control structures and data types are expected to be used,

and access control must be respected.

Typically, semantic analysis involves keeping track of variables, functions, declarations,

and type checking. For example, a language may require identifiers to be specified before

they can be used. The type information assigned to these identifiers is then recorded as the

compiler encounters new declarations. This ensures that the type of an identifier is respected

in terms of the actions executed as the compiler continues to inspect the rest of the program.

The language may also require that identifiers be unique, making it impossible for two global

declarations to have the same name. Arithmetic operands may be required to be numeric,

perhaps even of the same type where no automatic data conversion is allowed (e.g., no int-to-

double). Finally, it may also be necessary for the right-hand side of an assignment statement

to match the type of the left-hand side, and the left-hand side to be a correctly defined and

assignable identifier. These are some examples of the things that the semantic analysis step

looks at.

In order to perform these checks, the type system of a language must describe which

operations are valid for a type. As a result, the aim of type checking is to ensure that

operations are only performed on variables � and expressions � of the correct types and

number. Normally, in object-oriented languages, type-checking is accomplished by a visitor 14

calling a set of methods at the proper times, and as the syntax requires. All operators are

type-checked to ensure that they are compatible with their operands. We refer to operations

14 A visitor provides an iterator over a tree-like data structure. Each node in a parse tree is, in general,
an object instance of a subclass that represents a specific node type. Each such subclass � of the general
visitor class � reimplements a particular method for each node that requires any action such as a visit.

30

such as addition and multiplication as well as explicit assignment using the assignment

operator (=), and implicit assignment of arguments to formal parameters in function calls.

We begin this chapter with some basic definitions that will help in setting the stage for

performing semantic analysis in Section 4.4 on page 62. We explain what a type system

is, how it is specified (in accordance with type safety, type information, type inference, and

type annotation), how it defines types for language constructs, how it can be implemented

by a type checker, and introduce some of the basic issues with types and type checking.

3.2 The Big Picture

When writing code using statically typed languages, we always know something about

the types of the values we are working with; otherwise, we would not be able to write

meaningful programs. When looking at a data structure or interface, it is also helpful to be

able to discern which data is unlikely to change, which data is likely to change, and who

might change that data. Basically, the data types that the data source provides in a program

(i.e., the primary location from where data comes), the semantic category that matches these

data types, and how they map to the data types that a language supports are all determined

and specified by the integrated type system.

In most mainstream statically typed languages, a programmer must first define the name

and type of any data object, and, in most cases, the programmer also determines its lifetime.

A declaration, for example, is a statement in a program that provides the compiler with

this information. The most simple declaration consists of only a name and type, although

in some languages, modifiers that control visibility and lifetime may be included (e.g., Java

and C++ classes). The following C++ statements are examples of declarations, visibility,

and lifetime.

void print(const Array& a); // function prototype

int cnt = 0; // global variable avaiable

class Array {

31

// variable only accessible within the class

std::vector<int> list;
// this access modifier makes everything from here on

// available and accessible in main

public:
Array(int size) : list(size) {}
// a const reference qualifier in a member function

int operator[] (int idx) const {
return list[idx];

}
};

int main() {
// local variable available only in main

Array a(10);
...

}

Additionally, functions also have types � the type of value they return and arguments

they take, which the compiler uses to ensure that a program calls a function correctly. In

C++, for example, function prototypes are comparable to variable declarations in that they

both serve the same purpose. In a function call, the prototype is used by the compiler to

check the number and type of arguments. The location and qualifiers, however, establish

the visibility and accessibility of the function (e.g., is the function local to a file or global?,

is it defined in a module, a package, or a namespace?, is it nested in another function?, is it

defined in a class?, etc.).

While a type qualifier is used to improve the declaration of variables, functions, and

parameters in C++15, a qualifier in a declarative language like Analytica [159] ensures that

a formal parameter receives the kind of value that a function expects. Consider the function

Sum with parameters specified as
15 When using a type qualifier, we can specify whether:

• The value of an object can be changed.
• An object’s value must always be read from memory rather than a register.
• A modifiable memory address can be accessed by several pointers.

Note that in this context, the term object refers to data, not an instance of a class.

32

Function Sum Parameters: (a: Number; b: Number)

and which may be called in an expression like this

Sum(4, 6)

The parameters a and b in the Parameters attribute (termed formal parameters) require

that the actual parameters 4 and 6 evaluate to numbers as specified by the qualifiers Number;

otherwise, it is considered an error.

In reference to other declarations and uses, type declarations such as C’s typedef,

C++’s template expansion, and Java’s generic type declarations behave in a similar way.

For example, a typedef in C creates an alias or a new name for an existing type or user

defined type. We can write a typedef declaration anywhere other declarations are allowed,

but the scope of the declaration depends on the location of the typedef statement. Consider

the following C snippet of code:

int main() {
typedef unsigned char uchar; // only avaiable in main

uchar c = 'b'; // interpreted as unsigned char c = 'b'

...
}

uchar ch = 'a'; // error due to unknown type

Since the typedef definition is declared inside the main function, the scope is local, and

the alias can only be used by the function that contains the typedef statement. Otherwise,

an error occurs during compilation as the new name (i.e., the alias) is unknown.

In parameterized classes or generics [160], a generic type is a type having formal type

parameters. A paremeterized type is a generic type that is instantiated with an actual type

arguments (i.e., it means binding its parameters � its type variables � to actual types). In

order to use a generic type in Java or C++, we must provide one type argument for each

type parameter that the generic type declares. Consider the following C++ snippet of code:

33

// array.h

template <class Type>

class Array {
Type *list;
... // same as before

};

// main.c

int main() {
// instantiation of the generic class Array

Array<int> arr(10);
...

}

Before instantiation, a template declaration and definition is examined for syntactical

accuracy. The compiler then instantiates the generic type in order to verify the concrete

parameter types and non-type parameter values before applying the constraint checking

templates to these types. As an example, a template definition may occasionally use names

that are not defined by the template arguments or within the template itself [161]. If this

is the case, the name is derived from the scope enclosing the template, which could be the

context at the time of definition or the context at the time of instantiation. Furthermore,

since template instantiation relies on type-name equivalence16 to determine which templates

need to be instantiated or reinstantiated, local types can cause problems when used as

template arguments. Consider the following C++ code:

// file1.h

#include "array.h"
struct A { int a; };
Array<A> x;
...

// file2.h

#include "array.h"

16 C/C++ uses structural equivalence for everything, except unions and structures, for which it uses loose
name equivalence.

34

#include "file1.h"
struct A { float a; };
Array<A> y = x;

the A type defined in file1.h is not the same as the A type defined in file2.h. This

indicates that the assignment expression Array<A> y = x is considered an error (see

also [73, 162, 163] for a detailed discussion of class and function templates, along with exam-

ples).

Ultimately, we want a language that is safe, with a few exceptions, and also typed. We

would also like the language to be sound if it is typed, and to have a type systems that is

decidable so we can be sure that the types are not “lying” (see Definition 1). For example,

when we write int y, we hint that y will always contain an integer value, and that other

sections of the program that rely on y can trust that this statement will be enforced. Of

course, all this form of knowledge can be encoded, manipulated, communicated, and checked

using a type system. Thus, when creating a type system for a language, the language designer

must also strike a balance between execution, e�ciency, expressiveness, safety, simplicity, and

other factors like typedness and soundness.

3.3 The Role of a Type System

Probably, one of the main significant points of di↵erence between programming languages

is their type systems. Even languages that appear to be similar in “appearance” have

vastly distinct type systems. As an example, while C and Java do not have the same set of

types, they do have similar syntax and control structures; however, the rules that determine

whether or not a program is legal with respect to types are significantly di↵erent because

each has a distinct type system. Consider the following snippet of code:

int p = (int)"Should this be legal?";

Java’s type rules does not allow the above statement because String and int are not in

the same type hierarchy (that allows for data type conversion), but C does allow it. Then

35

why do di↵erent languages use di↵erent type systems? Well, this reflects the fact that there

is no such thing as a one-size-fits-all type system. Each type system has its own set of

advantages and disadvantages. As a result, di↵erent languages employ distinct type systems

according to their di↵ering objectives. For example, since C was originally derived from

the typeless language BCPL17 [71], it seems reasonable to cast from (void *) to any type

without having to explicitly cast so. This is particularly important when allocating memory

dynamically in a malloc, realloc, or calloc call, or when accessing and manipulating any

kind of data. Thus, due to the implicit narrowing conversion in C, it is possible to convert

memory addresses to integers since a pointer to void may be converted to or from a pointer

to any other � incompatible � type [165].

It should be clear that a strong understanding of type systems is essential for under-

standing how to get the most out of programming languages. A type system is defined as

follows:

Definition 2 (Type System): A type system is a collection of types, along with a set

of rules for associating types with expressions, variables, and other entities that can have a

type. [5]

In terms of programming languages, type systems refer to a set of rules that, when applied

to language terms, generate types for those terms [4, 166, 114]. Essentially, a type system is

a method of classifying entities in a program � such as expressions, variables, functions, and

other entities as described in Definition 2 � according to the types of values they represent

in order to avoid undesired program states; namely, the type of an entity is the classification

attributed to it. For example, consider the following Java code:

System.out.println(7 + 3.14);

Although this does not need to be explicitly stated, literals 7 and 3.14 represent values

of type int and double, respectively. When applying the binary operator + to two values

of type int and double, the result yields a value of type double because of the data type

17 BCPL [164] was a typeless procedural, imperative, and structured programming language intended for
writing compilers for other languages.

36

conversion between Java’s numeric data types (Figure 6 illustrates how Java automatically

coerces data in the direction of the arrows18). Because one operand of a binary operator

is double and the other is not, the non-double operand is converted to double before

the operation is performed. Therefore, Java’s static type system assigns the expression

7 + 3.14 the type double.

byte short int long

float doublechar

Figure 6. Java’s numeric data type conversion.

Furthermore, any statement that tries to coerce data against the direction of the arrows will

be flagged as an error by the compiler. For example, the Java compiler issues a “possible

lossy conversion from long to int” as an error message for the following declaration:

int num = 100L;

In the past, data could not be specified in terms of other data types because it was

common for programming languages to have a fixed set of types [167]. Very often, these

languages imposed a restriction on the sets used to create types, requiring that any operation

associated with a type has to act consistently across all values of the type. For example,

the set {�2147483648, . . . ,�2,�1, 0, 1, 2, . . . , 2147483647} denotes a type since addition,

subtraction, division, and other operations could be applied equally across all values. The

set {false,true} also denotes a type since conjunction (^), disjunction (_), and negation

(¬) could be applied equally across all values. However, the set {3.14,false,"seven"}

does not denote a type since there are no operations that could be applied equally to the

values of this set.

In contrast to old languages, specialized and modern languages generally contain an ex-

tensible type system [168] that allows programmers to specify new types, new operations,

18 Coercions that follow a ‘dotted arrow’ are permitted, but they may cause loss of precision, which means
the converted value may not be equal to the original value. Despite this, many languages allow type coercion
as a convenience to the programmer.

37

new notations, and, on some occasions, new verification schemes. For example, defining a

class in Java constitutes creating a type like this:

class A { ... } // where A represents a new type

Moreover, it is possible to be completely non-descriptive when creating a “set” of di↵erent

values since Object sits at the top of every class hierarchy in Java. For example, in

Object[] list = {1, 1.2, "3.14"};

{1, 1.2, "3.14"} denotes a type because there may be operations (e.g., the + operator

can also be used to concatenate strings while defined over numbers) that could be applied

equally across 1, 1.2, and “3.14”. This is because 1 and 1.2 are autoboxed19 to Integer and

Double, respectively, which extend the superclass Number, which extends Object, and String

also extends Object. However, treating this array as an array of integers is unsafe because

someone reading from the array of integers would expect to obtain integers but could instead

get arbitrary objects.

Figure 7 demonstrates an illustration of the associated class hierarchy for each element

in the list of objects. Note that the class hierarchy is a tree.

Object

Integer Double

StringNumber

1 1.2 "3.14"

Figure 7. The class hierarchy for elements in a list of objects.

Looking at the class hierarchy in Figure 7, if we were to omit the type list has, and

we wrote ...[] instead, what would the element’s default type be? If it is Object, do we

19
Autoboxing in Java is the process of assigning a primitive value directly to a wrapper object without

calling the wrapper object’s constructor [169].

38

always need to downcast to integers or doubles? If it is Number, how do we guarantee that

we will only add two elements of the same or equivalent types? As we will see later, the

situation for type checking is not as favorable in object-oriented languages. Although great

progress in building static type systems for object-oriented languages has been made (mainly

as a result of research on type systems [170]), some still remain unsafe or inflexible [171],

requiring the programmer to “guide” the system to check for types that it cannot detect,

forcing the usage of type casts to compensate for the system’s deficiencies. These type

casts can either be unchecked (like they were before the introduction of dynamic_cast20

in C++) or checked at run-time (like in Java). Even when contemporary languages like

Java [172], C++ [173], and C# [174] have more strict type systems than desired, others like

Ei↵el [175], Groovy [176], and Kotlin [177] require dynamic or link-time checks to guarantee

type safety and ensure the integrity of the computation.

3.4 Type Safety

Type safety is an important property in programming languages as it can prevent programs

from causing errors. A type safe language � one whose programs are known to contain no

type errors21, at the very least, ensures that its programs have a well defined meaning.

This guarantee is necessary for reasoning about what programs might do, which is especially

significant when security is an interest. As such, a language is said to be strongly typed if

all type errors can be detected at compile-time before the statement in which they can occur

is executed [5, 158]; that is, no type-related errors can occur at run-time. However, if any

checking is deferred to run-time, the language is said to be weakly typed. Some languages,

like C, provide explicit pointers on which arithmetic can be done. These languages are

referred to as weakly typed since expressions with pointer arithmetic cannot be type checked

at compile-time (e.g., null dereferences, dangling pointers, leaking memory, and unintentional

aliases are all potential hazards).

It is helpful to remember Cardelli’s terminology in order to be able to explain what con-

20 The dynamic_cast operator allows donwcasting of polymorphic types; it casts data from one pointer
or reference type to another, performing a run-time check to ensure the validity of the cast.
21 A type error occurs when a program tries to execute an operation on a value for which the operation is
undefined.

39

stitutes program errors [4, 62]. Di↵erent types of execution errors22 (or run-time errors) can

occur when a program is executed. These errors can be divided into two groups: untrapped

and trapped errors. Untrapped errors are errors that can go unnoticed for a while and then

cause arbitrary behavior. For example, in C++, reading data beyond the end of an array

or jumping to the wrong address may not create an immediate error, but it may cause the

program to crash later during execution. On the contrary, trapped errors are errors that

cause a computation to stop immediately. For example, in C++, dereferencing of a null

reference, accessing an illegal address, dividing by zero, or trying to read input from a file

that does not exist will cause the operation to stop. However, these errors can be handled by

the run-time system or by a language construct, such as exception handling (i.e., a try-catch

block). Examples of errors that fall somewhere in between these two extremes are subtype-

violation errors (SV for short). These are the kinds of errors that occur when values do not

match a declared type at a write operation [178]. Take, for example, the following snippet

of code from [178], where in checked mode (also known as the debug mode), the assignment

in 1 will cause the program to stop, but the argument in 2 will cause the program to stop

while in production mode (also known as the release mode):

String x = 5; 1

print(x.length); 2

Undoubtedly, understanding the di↵erence between these two types of execution errors

(that is, untrapped and trapped) can aid in reducing the number of typing errors in a program

and making it type safe. A simple categorization of program errors is shown in Figure 8,

where program errors 2 U , trapped errors 2 A, untrapped errors 2 B, errors caught by safe

languages 2 E, and execution errors 2 A [B.

22 Execution errors frequently cause a program to crash, whereas non-execution errors may cause a program
to provide incorrect results due to wrong logic.

40

U

A B

E

Figure 8. Venn diagram of programming errors.

Execution errors are a subset of all program errors (or bugs) in this diagram. Since

untrapped errors are obviously the most pernicious type of execution error, a language’s

type system should aim to catch as many untrapped errors as possible (e.g., safe languages

are those that eliminate all untrapped erros). To minimize execution errors, statically typed

languages add a type checker to ensure program safety by preventing an unsafe program from

running. These checks can be done as compile-time checks (also known as static checking),

in which the compiler detects possible errors and reports them to the user before creating

an executable file. However, some errors, such as array index out-of-bounds errors or down-

casting (i.e, from a supertype down to a subtype), are di�cult to address statically, so many

languages perform an additional run-time check (also known as dynamic checking) as part

of the program execution.

Whether at compile-time or at run-time, the main objective of a type system is to reduce

the number of execution errors that can occur in a program. What matters is whether or

not a given operation excludes any values. If it does, then we can consider if the language

prevents the operation from being used with any values that are prohibited. If the language

does not allow it, we label it as safe; but if it does, we label it as unsafe. Indeed, a language

can be safe for some operations while being unsafe for others, and so we generally refer to a

language as “safe” if all of its operations are safe (hence, we say that the language is type

safe if an operation does not lead to undefined behavior).

3.5 Type Information

In addition to catching errors, type information can also be used for type checking. Most

current compilers find and generate a variety of information during compilation, including

41

what the compiler performed to optimize the code, what optimizations were unsuccessful

(and why), how data is accessible, relationships between functions, and so on. In program

analysis, for example, type information has been used extensively. Aside from the input

provided by the compiler, program analysis tools provide further information to the pro-

grammer [179, 180, 181]. This has also proven useful for bug detection and verification tools,

as well as in IDEs to aid in program development.

Some of these tools perform static analysis, which involves looking at the code, either as

text or as a syntax tree, and determining attributes such as module interdependency and

uncaught exceptions. For example, in a control flow graph [182], each executable statement

in the code can be represented as a node with edges connecting nodes that can be executed

sequentially. Then, data flow markers are propagated around the control flow graph to

collect all data flow, and, as we approach each node, we can search for unusual patterns that

could indicate errors � perhaps the first such a tool to be widely used was Lint [183], which

became a standard tool for C programmers.

Another example is common subexpression elimination analysis [5, 158], which identifies

instances of identical expressions at some point in the program, and replaces them with

a single variable holding the computed value. Another analysis that works in a similar

manner is alias analysis [184]. In many languages, for example, an alias is defined as two

or more expressions that denote the same memory location and is introduced either by

pointers, call-by-reference, array indexing, or unions (due to shared memory) in C/C++.

Alias information [185, 186] is important because it can improve the precision of analyses

that require knowing what has been modified or referenced, removing redundant loads/stores

and dead stores, identifying objects to be tracked in error detection tools, and parallelizing

code (e.g., recursive calls to Quicksort can be made in parallel provided that each call refers

to distinct regions of the array [187, 188, 189]).

Over time, compilers incorporate more and more static analysis features. The g++ com-

piler, for example, has a number of collections “flags” that enable numerous warnings such as

-Wall, -Wextra, -pedantic, and -Weffc++ to name a few [190]. One concern is that

these are frequently not enabled by default and must be enabled using command-line argu-

ments. A few examples include: out of bound accesses to arrays (when compiled with -o2);

42

bad formats in printf; possibly uninitialized variables; use of char in array subscripts;

potentially uninitialized variables; unused function parameters; empty loops; for classes with

dynamic allocation, failing to implement your own copy constructor and assignment opera-

tor; and comparisons between signed and unsigned data types.

Since not all useful analysis can be done statically, there exists additional tools that

perform dynamic analysis to examine the execution flow of a program. Conventionally, the

C++ standard library does not check for typical misuses like overflowing an array or accessing

elements that do not exist. In some respect, the assert command in C++ and Java can

be thought of as the languages’ own extension mechanism for such checks. Pointer errors in

C++, which are normally unchecked by standard run-time systems, are also common [191].

Examples of ways to catch pointer errors include using fence-posts23 [193] around allocated

blocks of memory, adding tracking information to allocated blocks in order to indicate the

location of the allocation calls, or adding a secondary bit to allocated blocks that is cleared

when the block is first allocated and set when the block is freed24.

In object-oriented languages, the optimization of method dispatch is another area where

type information is helpful [195] (e.g., [196, 197, 198]). For example, a run-time lookup of the

code associated with the method invoked on an object, followed by a costly indirect jump

to that code, makes general method dispatch an expensive operation. If an object instance

of a class is known at compile-time, a more e�cient direct method invocation code can be

generated instead. The method’s code can even be expanded in-line at the moment of call

if it is small enough. Furthermore, a simple analysis of the object’s static type and the

program’s class structure � and hierarchy � reveals numerous chances for optimization. For

example, if the type of an object is a class with no subclasses, then the compiler knows the

real type of the object and, therefore, may create direct invocations for all methods of the

object [199, 200].

Static and dynamic program analysis, as it turns out, are both aimed at automatically

23 These are the areas immediately above or below memory allocations. The debug malloc library [192] can
put special values in the areas surrounding each allocation so that it can detect when or if they have been
overwritten. Note, the library does not notice when the program reads from these locations; only when it
writes values does the library notice.
24 There are currently free memory analysis tools like Memcheck, which is built on the Valgrind framework,
and commercial tools like BoundsChecker, IBM Rational PurifyPlus, and Intel Inspector [194].

43

answering questions regarding the possible behaviors of programs. However, some of these

analyses have unusual characteristics, primarily because they deal with static typing. In

fact, static typing is what ensures that no type errors occur during program execution and

allows the compiler to generate e�cient code with a minimal memory footprint.

3.6 Type Inference

Even though type information is frequently provided in the source code, it can also be

extracted directly from known types of individual symbols that occur in an expression.

This is performed in order to determine the type argument (or arguments) that make an

invocation applicable, the type of the result being assigned to a variable or being returned,

the type of global variables, the type of literals, etc. For example, when a method is defined,

type inference is used to determine the type arguments, return type, etc. When this is not

possible, perhaps, due to a lack of external information, type inference is postponed until

more information is available, such as at an invocation. This process is occasionally referred

to as “incremental type inference” [201, See Section 3].

Example 1: Consider a generic class with a generic constructor like this

class A<T> { 1

<T> A(T t) { } 2

}

and the following instantiation of the class G

A a = new A<Integer>(""); 3

2 contains a constructor with a formal type parameter T that is not the same as the

formal parameter of the generic class A<E> 1 . Later in 3 , we specify the explicit param-

eter type Integer for the formal type parameter E of the generic class A<E>, and use the

empty string (i.e., "") for the compiler to infer that the formal type parameter T is String.

In general, we do not need to declare type parameters for generic method calls, such as

44

invocations to constructor, because the Java compiler can infer them [202, See Chapter 18];

that is, the compiler takes advantage of the target type of an expression (i.e., the type that

the compiler expects) to infer type parameters. So, we may substitute the parameterized

type of the constructor, similar to what we did for its argument, with an empty set of type

parameters. For example, we could have also written 3 as

A<Integer> a = new A<>("");

The purpose of type inference is to recreate the types of expressions using known types

as a starting point. The distinction between type inference and compile-time checking is

essentially a matter of degree, even when type checkers are used to conduct some of this.

For example, a type checking algorithm runs through the program to ensure that the types

declared by the programmer match the requirements of the language (e.g., [203, 204, 205]).

Meanwhile, the concept underlying type inference is that certain information is not stated;

therefore, some form of logical inference is needed to figure out what kinds of identifiers are

being used (e.g., [94, 206, 207]). The di↵erence between these two is depicted in the Figure 9.

Note, the types that are crossed in (b) are the ones we should infer.

(a) int foo(int a){ return a *2; }

• Type checking

– Examine the body of each function

– Check language requirements by using declared types.
(b) int bar(int b) { return foo(b +2)/4; }

• Type inference

– Examine the code without type information

– Determine themost general types that could have been

declared.

Figure 9. Type checking vs. type inference.

Two common techniques to inference types in object-oriented languages are

Hindley-Milner type system [84], and Palsberg and Schwartzbach [206]. All type infer-

45

ence methods based on the Hindley-Milner technique have the same goal: To infer principle

types. The behavior of the type inference algorithm is briefly discussed next, with the goal

of conveying some of the key concepts.

Let us start by looking at (b) in Figure 9, in particular, let us look at the expression

foo(b+2)/4. Going from left to right, we can see that the type of the expression is int.

How do we know this? Well, we can see that the type of the + operator is int⇥ int! int.

We also know that the literal 2 has type int, so we conclude that b takes the type of 2 (which

is int), the type expected by the addition operator. This suggests that the return type of

foo must also be int because the result type of the addition operation is int, and so we have

int! int. From here, it becomes a trivial exercise to determine the type of 4 and the return

type of bar.

It should be fairly clear that Hindley-Milner’s type inference technique determines types

of definitions in order. That is, it infers later definitions by using the types of earlier defini-

tions, and it collects and solves some constraints for each definition in order to establish the

type of each (sub)expression. Figure 10 is an example that demonstrates how a typical type

system with type inference would work. The HM algorithm [208, 209] would build a parse

tree containing all of the elements, assign type variables25 (ti) to the tree’s nodes and use the

types that are already known (e.g., literals and operators), and then generate constraints26

in order to determine the unknown type of each element.

25 In this instance, type variables are special variable that serve as place holders for types that we do not
yet know. They are eventually substituted with other types during type inference and thus disappear from
the syntax tree.
26 These are a means to keep track of what we learn about types and their relation between them, as we
progress through the type inference process.

46

⟨function.⟩

⟨param.⟩ ⟨body.⟩

b

/

⟨invocation.⟩ 4

+

b 2

⟨return.⟩

t0

t1 t2

t4

t6 t7

t10 t11

t5

t3

t8⟨argument.⟩
t9

)

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

t0 := t1 ! t2 , int! int
t1 := t3 , t3 = t10) t1 = int
t2 := t4 , t4 = int) t2 = int
t4 := t5 , t5 = int) t4 = int
t3 := t10
t5 := int⇥ int! int
t6 := t8 , t8 = int) t6 = int
t7 := int
t8 := int
t9 := int⇥ int! int
t10 := t11 , takes the type of 2
t11 := int

bo
tt
om

-u
p

Figure 10. Type inference: collecting and solving constraints.

Figure 10 is an example of a bottom-up type inference, which is the kind where type

information flows from the leaves of the tree up to the root [210, 211]. It is the most prevalent

type inference method, and it is utilized in a lot of statically typed languages. However, type

information can travel in two directions in some modern languages, such as Swift: top-down

and bottom-up (also known as bi-directional type inference) [212]. This can be seen in

literals, implicit member expressions, closures, and function call expressions, among other

expression types.

Example 2: We have already seen how bottom-up inference type works. We will now

demonstrate how top-down inference type works in Swift when using and declaring a few

constants without having to specify any types at all, as the compiler can deduce that infor-

mation from the values being assigned:

let var1 = 42; // var1 is of type Int 1

let var2:Double = 42; // var2 is of type Double 2

let var3 = [1,2,3,4] // var3 is of type [Int] 3

let var4:Double = var1; // Error 4

A literal value like the one in 1 has type Int by default (so var1 is of type Int),

but we can change it to type Double with an explicit type annotation, as seen in 2 . This

means that in a constant or variable declaration, the type annotation serves as a context

47

type for the initial value (i.e., what a value is expected to be). Thus, even when the literal

42 is of type Int, there is an implicit conversion from Int-to -Double in 2 ; however, there

is not an implicit conversion in 4 because var1 is an instance of type Int, so we end up

with an error.

It should be pointed out that Swift’s bi-directional type inference is implemented via

a constraint-based system; that is, of comparison to a traditional type system, it captures

more information about the possible values in a variable.

Of course, while the syntax is not so much of importance, we may use a variable type

annotation (as seen in Example 2) to override the inferred type of a variable in Figure 9; for

example, we could have written

bar(b:int):int {...}

instead of

int bar(int b) {...}

3.7 Type Annotation

While a compiler can use type inference to type check a program that is completely free

of types, a type annotation � also known as type signature � can be used to indicate

the type of a variable or expression to the compiler and someone reading the code (i.e., it

explicitly specifies the type of a variable or expression) [113, 114]. Compare to other forms

of annotations, they are more precise than an annotation � or attribute � on a program

element (often a class, method, or field in languages like Java, Groovy, and C#) or program

comment, and they are easier to check. In Python, for example, a type annotation begins

with a colon and ends with a type after declaring or initializing a variable or an expression

as seen below [213]. For this example, we use to group type annotations.

48

def add(num1 :int , num2 :int) ->int :
...

For dynamically typed languages, this gives their typed system a sense of statically

typed control; for example, in Python, a type can be annotated � with some optional

metadata if needed � for static analysis tools like MyPy [214] and PyType [215] to type

check a program. In order to enable type checking, Python introduced PEP 48427, which

specifies a syntax for optional type annotations [217]. A type checker, such as MyPy, provides

a formal language for expressing types while also ensuring that the specified types match

the implementation (and optionally that they exist).

Example 3: Consider the following Python code:

def fib(n :int) ->Iterator[int] :
a, b = 0, 1
while a < n:

yield a
a, b = b, a+b

When using MyPy, the type checker ensures that this function is invoked with the correct

type arguments, or that the result of this function is assigned to a variable of the appropriate

type before execution. For example,

:::::::::::::::::::::::::
Iterator [complex] it = fib(4)

will generate an error before the program executes because the expected type is of

type Iterator [int] . However, adding type hints allows third-party IDEs (e.g., Py-

Charm [218]) and linters to flag (or
:::::::::
highlight) erroneous annotations, acting as an early

warning system that something is wrong with our logic.

Thanks to type annotations, we can use static code analysis to catch type errors before

the execution of a program. This is done automatically by PyCharm, which highlights type

27 PEP 484 provides a number of ways for inspecting and verifying the types of objects in Python scripts,
such as type annotations and type comments [216].

49

errors (albeit, they are often easy to miss), as demonstrated above. In this scenario, type

hinting can assist with data validation and code quality, code speed (since some assumptions

can be made), as well as code documentation and readability. Aside from static type checkers,

dynamic type checkers can also ensure that the type of variables and return values match

the declared type hints at run-time.

3.8 Types and Type Checking

We have indirectly talked about types and type checking, but we have not formally defined

them yet. So, what exactly are types and how do they relate to type checking? Types play a

crucial role in programming languages. For example, to arrive at a result � either explicitly

or indirectly � every program utilizes data, which is often collected in the form of data

structures and handled by algorithms. This means that types specify the actions that may

be performed on the data, the meaning of the data, the methods for storing values of that

type, and the values that a variable or a function can accept. Therefore, the applications of

data types can be categorized into two groups: checking and translation.

• Type checking: With types, we can verify that valid operations are applied to

variables and expressions, and raise errors for anything that might cause a type error.

Type checking makes use of logical rules to reason about a program’s behavior at run-

time; for example, a function with a type boolean⇥ boolean! boolean expects its two

arguments to be of type boolean; the result is also of type boolean.

• Translation: With types, we can determine the amount of storage required for a

variable based on its type at compile-time or run-time. Local data storage can be allo-

cated statically or managed through a block-structured language’s standard stacking

mechanism. These strategies are appropriate for tables carrying contextual information

rather than the program text [24]. Such information is sometimes used in semantic

analysis to identify operators and check construct compatibility with their environ-

ments; for example, calculating the address denoted by an array reference.

Formally, we can say that a type in a language represents a set of values and the operations

50

and relations that are applicable to them in order to ensure that meaningless operations,

such as dividing the integer 7 by the string "seven", are not performed. For example,

the type int (typically, a 32-bit type) represents the set of whole numbers and the typical

integer operations and relations, including +, -, *, /, %, =, <, >, to name a few. A type can

be defined as follows:

Definition 3 (Type): A type is a set of values, V , and a set of operations, O, applicable

to the values in V [5].

In other words, a type specifies the possible values of a structure (e.g., such as a variable),

its semantic meaning (e.g., how a piece of data is supposed to behave; that is, int x in

Java means �2�31
 x 231 � 1), and how its values can be kept in memory (e.g., an int

in Java is a 32-bit signed 2’s complement integer).

It is important to mention that the result of applying an operator to a type is not always

guaranteed to yield a value from the type’s set of possible values [5]; that is, for a type T

with a set of values V , a set of operators O, an n-ary operator o 2 O and n values vi 2 V ,

there is no guarantee that o(v1, ..., vn) is a value in V . For example, if variables x and y are

declared to have a type integer, a static type system will assign the expression x < y the

type boolean, which guarantees that the value of the expression at run-time will be boolean.

Thus, a static type checking system detects when an expression is valid and should ensure

that the value of a type checked expression is compatible with its static type.

Every single bit of data that is processed in a program is categorized into two types

commonly known as atomic types (primitives) and composite types (constructed types);

therefore, a type is either a composite type constructed by applying a type constructor (see

Definition 4) to built-in types or a type from a collection of built-in types. However, despite

the fact that these types serve quite di↵erent purposes and may be distinguished from each

other, their concepts are frequently misunderstood in some languages. For example, some

languages o↵er built-in support for di↵erent primitive types or types composed of more than

one � primitive or constructed � type (e.g., such as a string28) than other languages.

28 A string is an atomic type is some languages; for example, JavaScript.

51

Definition 4 (Type Constructor): A type constructor is a language construct that allows

new constructed types to be created from existing atomic or other constructed types [5].

While di↵erent levels of type checking expressions can be applied to di↵erent areas of

the source code (this is done in order to rule out undefined behaviors), the general idea is

to first build a parse tree, assign a type to each leaf element, and then assign a type to each

internal node with a post-order walk. In order to do type checking, a compiler must assign

a type expression to each component of the source code so that we are able to represent

types that are defined in a program [3]. After that, the compiler must check that these type

expressions follow a set of logical rules known as the source language’s type system. That

is, we use them to ensure that the program satisfies both the general semantic rules and the

specific ones concerning the language constructs. We define type checking as follows:

Definition 5 (Type Checking): A type checker is a program that verifies that opera-

tions are performed with the correct types in line with the type system specification of a

language [3].

Type checking makes up a large part of the semantic analysis process. Generally, this

signifies that all operands in a given expression are of the correct type and number. For

statically typed languages, the type checker obtains the information it requires from decla-

rations and stores it in a symbol table. Nevertheless, the rules for operations are sometimes

established by other sections of the code (e.g., as in function prototypes), and other times

they are defined as part of the language’s definition (e.g., in a binary arithmetic operation,

both operands must be compatible29 or of the same type). For dynamically typed languages,

on the other hand, type checking is done at run-time by providing type information for each

data location. A variable of type string, for example, would include the actual string value

as well as some sort of “tag” indicating that it is of type string. Naturally, any operation

execution begins with a check of these tags, and the operation is only carried out if and only

if everything checks out; otherwise, a type error occurs, which normally causes the program

to halt.
29 A compatible type is one that is either permissible for the operator or one that is allowed by the language
rules to be implicitly converted to a legal type by compiler-generated code.

52

Although some languages are stricter about coercion than others, most � if not all �

compilers have built-in capabilities for rectifying even the most basic of type errors, such

as when a compiler finds a type error and then changes the type of the variable to an

appropriate type. This happens in Java when an addition operation is performed on a mix

of integer and floating point values (as seen in Section 3.3 on page 36). In fact, whenever a

type error occurs in Java, the compiler looks for a suitable conversion operation to put into

the generated code to correct the problem; thus, a type error occurs only if no conversion

can be performed. The question of whether or not to provide a coercion functionality is

debatable. Coercions can prevent a programmer from having to worry about minor details,

but they can also hide sever flaws that would otherwise be discovered during compilation.

3.8.1 Implementation

Recall, the semantic analysis step is concerned with verifying language rules, particularly

those that are too complicated or impossible to limit in the grammar. To give an idea, here

are a few semantic rules from the Espresso type system:

Rules Description

arrays the index of an array must be of type integer
expressions for a binary expression e1+e2, both expressions must

be of numeric type
methods each actual parameter in a method call must have the

same type as or be compatible with the type of the

formal parameter
class the parent of a class, if supplied, must be a correctly

declared class type
interfaces if a class declares that it implements an interface, it

must implement all of the interface’s methods

Even though semantic checking centers around types, as illustrated in the previous ex-

amples, we also need to verify that identifiers are not reused inside the same scope, that

identifiers are declared or defined before they are used, etc. A type checker’s implementation

entails going over all of a language’s established semantic rules and ensuring that they are

followed consistently. The recording of type information for each identifier is the first step

53

in developing a type checker for a compiler. The name of the identifier is all a scanner un-

derstands, and this is what is sent to the parser. After parsing each identifier’s declaration,

the parser builds a declaration record for it to be stored later. When the semantic analyzer

encounters uses of an identifier, it can search up that name and identify the matching decla-

ration, or it can report if no declaration is found. This is a crucial step because it allows us

to type check if the variable is used with an incompatible type or in a section of code where

the type is illegal.

In a language like Espresso, for example, the representation of base types (i.e., atomic

types) and array types is rather simple. Classes are more complicated because they must

have a list or table of all fields � variables and methods � present in the class in order

to allow access and type checking of the fields. Classes must also enable the inheritance

of all parent fields, which can be accomplished by linking the parent’s table to the child’s

or copying the parent table’s contents to the child’s. Interfaces resemble classes, but they

simply include method prototypes and no implementation or instance variables (except for

constant variables).

The last step in implementing a type checker is to create a list of the semantic rules

that govern which types are allowed in which language constructs. There are also general

guidelines that must be followed, rather than just a single construct, such as declaring all

variables, making all classes global, and so forth.

3.8.2 Designing a Type Checker

When designing a type checker for a compiler, one common way to do this is to:

1. Determine which types are available in the language.

2. Determine which language constructs have types associated with them.

3. Determine the language’s semantic rules.

A language’s type system is defined by the combination of these three things: Types,

appropriate constructs, and rules [3, 5]. We can use a type checker as part of the semantic

analysis step of a compiler once we have established a type system. In Espresso, we have base

54

types (int, short, boolean, double, etc.) and composite types (arrays, classes, interfaces,

etc.). Arrays of any type, including other arrays, can be created. Complex types � we

may recognize these as abstract data types (ADTs), such as stacks, queues, linked-lists,

hash-tables, etc., can be constructed using classes, but they are not treated any di↵erently

from classes, so we will not need to consider them (Espresso does not have support for these

type of higher-level abstractions).

Static type checking in Espresso consists of two separate processes: inferring the type of

each expression from the types of its components, and confirming that the types of expres-

sions in certain contexts match what is expected. Since these two steps can be combined

logically into one, we do so. How do we then determine the type of an expression? We

can think of the process of identifying the type of an expression as logical inference. For

example, if x is an identifier that refers to an object of type T , then expression x has type

T . Moreover, if the operands E1 and E2 of E1 + E2 are known to have types string and

string, then E1 + E2 has type string. On the other hand, a class type does not required

any checking, but it is in itself a type, so we simply return this as a type. It is evident

that all of this information can be encoded using inference rules provided that all parse tree

nodes that are descendants of Expression return their type after the type checking has taken

place. Simply put, type checking in a context is a collection of inference rules expressing yet

another judgement (i.e., an assertion)30, and these rules correspond closely to the recursive

AST traversal that implements them.

Why specify types this way? It turns out that doing so provides a precise definition of

types that is independent of any particular implementation. That is, there is no need for

Espresso’s compiler (or any compiler) to have the same rules as the reference Java compiler

for example. A type checker can also be implemented in any way as long as we follow the

rules, giving us the maximum flexibility possible in implementation. Just as importantly, it

also allows formal verification of programs properties as we can do inductive proofs on the

structure of programs (which is what it is used in the literature). In closing, a static type

system makes it possible for a compiler to catch many common programming errors, but at

30 Hence, type inference is nothing more than an attempt to demonstrate a di↵erent judgement by going
backwards through the rules.

55

the expense of preventing some valid programs. While others advocate for more expressive

static type checking, some advocate for dynamic type checking in its place (even when

they are also more complex). In the next chapter, we will illustrate the process previously

discussed in the context of Espresso to make it more tangible.

56

Chapter 4

The Espresso Language

4.1 Introduction

We define a Java subset, a safe language called Espresso, that replicates Java’s most impor-

tant features (without generics). Additionally, we define a type inference system to provide

compile-time language checking and operational functions 31 to describe how a Espresso

program behaves in terms of the behavior of its components. Espresso includes classes,

instance variables and methods, inheritance of instance variables and methods, shadowing

of instance variables and methods, interfaces, dynamic method binding, assignments, and

the null value. The operational semantics is defined in the context of configurations and

terms, where configurations are tuple terms and states, and the terms represent the part of

the original program to be executed. Textual substitution is used to explain method calls.

The type system is described as an inference system in which the types of expressions are

determined based on the types of some of the symbols that appear in them.

In the following sections, we will specify the syntax and the type system of Espresso.

Note that a Espresso program will type check with the Espresso type system (as specified

below) if it will type check with the Java type system (as specified in the Java language

specification). Thus, while Java’s static type system removes common programming errors

right from the start, its type system’s information is not always enough to prevent a run-time

error from occurring.

31 These include type predicates, type equality, type equivalence, and type assignment compatibility.

57

4.2 What is Espresso?

The concept of types is inextricably linked to our intuition. We have an intuition that

integers are distinct from booleans, which are di↵erent from characters, which are di↵erent

from other types. These di↵erences arise from behavior: We can push anything onto a stack,

but not onto a character; we can extract a substring with a specified length from a location

in a input string, but not from an integer; we can define a structure and behavior for a class,

but not for a type; and so forth. In Java, a type is all about behavior: An object may belong

to exactly one class, but it may have many types at run-time. For example, a string object

can be any of the following types: String, Comparable, CharSequence, or Object, but it only

has one class, String. Corresponding this analogy, Espresso works with data in the form of

values or objects, which have types; that is, descriptions of intended behavior and possible

values for their datum, similar to most other object-oriented programming languages.

Being a true subset of Java, the meaning of an Espresso program is given by its meaning

as a Java program. An Espresso program, therefore, consists of variable types, instance and

class variable types, parameter and result types for methods, and interfaces of classes. There

are five32 important kinds of types in Espresso [10, see Section 3.8.3]; these are:

• Primitive types � these include byte, short, char, int, long, float, double, boolean,

and void.

• Null types � the type of value null.

• Array types � the type of arrays of values.

• Class types � the type of objects.

• Interface types � similar to a class type.

Integers, floating point numbers, characters, and booleans all fall within the category of

primitive types. The size of the integer that each of the four types of integers (i.e., byte,

short, int, and long) may represent varies. Similarly, the range of floating point numbers

that the two forms of floating point types (i.e., float and double) may represent also varies.

32 In reality, there is a sixth kind of type: enumeration types, which we will discuss later.

58

Espresso will not complain if we treat a small integer as if it were a larger one; this means

that it will allows us to keep a short value in a variable declared long since every short integer

fits within the space designated for a large integer. Espresso also o↵ers two additional non-

numeric data types: char that represents special symbols, and boolean that represents truth

values (i.e., true or false).

There are class types and subclassing to consider. These are the ones that must be

instantiated before they can be used as types for values (e.g., these are the types of object).

An “empty” value is represented by a special null type and most operations with it result

in run-time errors or exceptions (e.g., an uninitialized reference variable). In addition, for

any non-null type T , an array of values of type T has type T[]. Any type T may be used.

We define the depth and the base of an array type for convenience and say that the depth of

an array type is simply its nesting depth, whereas the base is the number of square brackets

([]) removed. Formally, we defined the depth and base as follows: For a type T ,

depth(T)
def
=

⇢
depth(T 0) + 1 if T = T 0[], strip [] o↵ T 0

0 if T 2 {primitive, reference value}

base(T)
def
=

⇢
base(T 0) if T = T 0[], strip [] o↵ T 0

T otherwise

This will become clear when addressing the type expression of an array in Section 4.4.2

on page 66. We will also see the importance of this during type checking the four parse tree

nodes � ArrayLiteral, ArrayType, NewArray, and ArrayAccessExpr � that deal

with arrays in Espresso.

Implicit type conversions are confined to safe upcasts with respect to subtyping; all other

(unsafe) conversions must be done explicitly, using either a conversion function or an explicit

cast. In the general sense, upcasting is allowed whenever there is an is-a relationship between

two classes. Espresso uses nominal subtyping, which means that a subtyping relationship

is established when one type is explicitly declared to be a subtype of another. Note that

we will refer to subtyping as substitutability in this case. For example, if T1 is a subtype of

T2 (denoted as T1 �⌧ T2), values of type T1 can be safely used where values of type T2 are

expected. (By safe, we merely mean that we will not attempt to apply an operation to a

value for which the operation is undefined.) The subtyping relation is explained later in the

chapter.

59

Finally, for the majority of Espresso types, type safety (consistency between compile and

run-time types) is checked statically at compile-time. However, the compile-time type of a

value may vary in some cases based on the program’s control-flow and data-flow.

4.3 Syntax Extension

The grammar below uses the following notation with respect to Java in EBNF format [219]:

• Nonterminal symbols are words written in italic font.

• Terminal symbols are written in bold font.

• Production is of the form lhs = rhs, where lhs is a nonterminal symbol and rhs is a

sequence of nonterminal and terminal symbols.

The abstract syntax of Espresso programs is given in Figure Figure 11. This syntax gives

a variation of the Espresso grammar. This variation defines the types of our explicitly-typed

intermediate language. Here, x and y are in the set of variables (where x is for method

arguments and y for locals); cn, fn, and mn are in the set of variables of classes, functions,

and methods; and T is in the set of types. There are four kinds of types T : primitive types

(A), class names (cn), Object, and arrays. The notation xi implies a sequence of the form

x1, ..., xn, where the index set can be constrained as follows: xi
i2M and xi

i 6= k, for example,

where M could be a set or list, and k a number. The index i is omitted if ambiguity does not

arise. Instead of the conventional extends keyword that Espresso and Java source programs

use, we use �⌧ to denote a class extension.

Generic fragment:
P 2 program = K

K 2 class declaration = class cn �⌧ C { F M }

F 2 field declaration = T fn ;
M 2 method declaration = T mn (T x) { S return E ; }

T 2 type = C | A | T[]
C 2 class = cn | Object

A 2 primitive type = byte | short | char | int | long | float | double�� boolean | void

60

S 2 statement = if (E) S1 else S2�� while (E) S�� return E ;�� { Si }�� E ;
E 2 expression = y

�� E.y
�� E1 � E2

�� E1 = E2

�� E(E)
�� new cn�� E1[E2]

�� (cn) E

cn 2 class names
fn 2 field names
mn 2 method names
x, y 2 variables

Figure 11. Abstract syntax of Espresso.

4.3.1 Overview of the Abstract Syntax

The syntax is very simple since we only have to model a few constructs of Espresso. In

Espresso, a program consists of a main class and a list of class declarations K. A class

definition contains definitions for field identifiers and their types, method identifiers and

their signatures, and introduces a new class as a subclass of another (when no explicit

superclass is specified, the superclass is considered to be Object). The name of the method,

the names and types of the arguments, and a statement sequence make up the method

body. Each method body must contain exactly one return statement, and it must be the

last statement. This simplifies the operational semantics without limiting the flexibility of

a method definition (e.g., it only requires a simple change to the body of any Espresso

method to satisfy this property). Only conditional statements, repetition (e.g., while loops),

assignments, and method calls are to be considered valid statements in the program. Values

(which come in the form of primitives, references, and arrays), method calls, and access to

instance variables are also taken into account. Interfaces are not included in this summary

due to space constraints, although they can easily be added.

As Espresso statements we have conditionals if (E) S1 else S2, loop statements while

(E) S, method returns return E ;, statement composition {Si }, and expression statements

E ;. As Espresso expressions we have identifiers y, selections E.y, binary expressions E1�E2,

61

assignments E1 = E2, method applications E(E1, ..., En), new object creations new cn, and

array access E1[E2]. For simplicity we leave out method types of the form (T)! T 0, and

parameterized classes of the form C<A>, and only focus on the ones previously described.

We shall now proceed to an extensive and thorough explanation of the type system, type

environment, and types of Espresso. We will return to its static type checking rules in

Section 4.4.6 on page 92.

4.4 Type System

A typing judgment is commonly used to express the declarative specification of a type system.

� ` e : ⌧

In a type system like Espresso’s, however, � may contain classes, subclasses, and inter-

faces, as well as class hierarchies. It may also contain the type definitions of variables and

methods of classes and interfaces. The standard way to express these are with the judgments

` P
` mc
` K

C ` F
C ` M

⇤, C ` S
⇤, C ` E : T

meaning, the judgment ` P means the program P type checks. The judgment ` mc means

the main class type checks. The judgment ` K means that the class declaration K type

checks. The judgment C ` F means that the field declaration F type checks if defined in

class C. The judgment C `M means that the method declaration M type checks if defined

in class C. The judgment ⇤, C ` s means that the statement S type checks if defined in

class C, in a type environment ⇤. The judgment ⇤, C ` E : T means that the expression E

has type T if defined in class C, in a type environment ⇤. As we shall see later, we can think

of syntax analysis as proving claims about the types of expressions. We begin with a set

of axioms, then apply our inference rules to determine the types of expressions to validate

statements in the program.

62

4.4.1 Type Environment

A type environment is a set of identifiers that are mapped to types in a finite way. In

Espresso, we will approach environments a little loosely, considering them as sequences of

bindings at times and sets of bindings at other times. We will also make some assumptions,

such the fact that each variable can only exist once in a given environment. We use ⇤33

(short for environment) to range over type environments; we use Dom(⇤) to represent the

domain of ⇤. If var1, ..., varn are pairwise distinct variables (or identifiers), then the notation

{{var1 : ⌧1, ..., varn : ⌧n}} represent a type environment that maps vari to ⌧i for i 2 1..n; thus,

Dom(⇤) = {var1, ..., varn} and ⇤⌧ (vari) = ⌧i; in other words, ⇤⌧ strips var o↵ a type.

Types are now proven relative to the scope they are in, and so we write

⇤ ` e : ⌧

if, in environment ⇤, the expression e has type ⌧ . In pseudocode, we can infer the type of a

variable using a lookup function; for example:

⇤⌧ (vari) = ⌧i ⌘

8
<

:

infer(vari,⇤)
⌧i = lookup(vari,⇤)
return ⌧i

The environment keeps track of all we need to know about each declared variable (as

well as other named entities such as classes, methods, etc.) in the program. Although this

works, we still need to improve the concept of context as it relates to blocks. Instead of a

simple lookup table, ⇤ must be a “stack of lookup tables”; we separate the tables with dots

as follows:

⇤1 ·⇤2

where ⇤1 is an old (or outer) context, and ⇤2 is a new (or inner) context, making ⇤2 the

innermost context; that is, ⇤2 is the top of the stack.

⇤1 · ... ·⇤n| {z }
stack

⌘

⇤n top
...
⇤1

33
⇤ denotes a symbol table in Espresso.

63

With a stack of contexts, we start by looking in the top-most context and go deeper in the

stack only if we do not find what we are looking for. Therefore, if ⇤1 and ⇤2 are type

environments, then ⇤1 ·⇤2 is a type environment defined in the following way

(⇤1 ·⇤2)(var)
def
=

⇢
⇤2(var) if var 2 Dom(⇤2)
⇤1(var) otherwise

where ⇤2, being at the top of the stack, takes precedence over ⇤1.

4.4.2 Types

It is not always necessary to know an expression’s exact value; in many cases, knowing that

an expression belongs to a broad class (or group) of expressions with similar properties is

su�cient. If T denotes a type, an expression is of that type if it belongs to the class that T

denotes. For example, in Espresso, if an expression corresponds to the class of expressions

designated by the word int, which is the set of negative and positive numbers, it is said to

be of type int. There are names for many of these types (classes), such as integer, float,

double, etc. Other kinds are described by constructing more intricate type expressions from

more primitive type expressions using the grammar (a set of rules for valid combinations).

Types can also be used to describe expressions with the same underlying data structure, like

arrays, list, hash-tables, etc., and can be categorized according to the way in which they are

defined in the language.

In view of this, the concept of types must be introduced, including, where suitable, the

possible values that a variable of a certain type can take. Although we will go over all of the

constructed types one by one, we should keep in mind that some of these types � such as

record 34, union, procedure, pointer, and named type � are not part of Espresso. However, it

is important to mention them briefly as they are highly common from language to language.

For practical purposes, the characters t and ti are types; n and ni are names; vi is value; s

is superclass; ci is class, and ↵ is type variable (only where noted).

Let us become acquainted with the principles of type equality, type equivalence, and

assignment compatibility as described by [5] before going into any concrete types. First,

34 In this thesis, a Record type is employed as a small use-case study in Chapter 5.

64

let us defined the operators =⌧ (type equal), ⇠⌧ (type equivalent), and :=⌧ (assignment

compatible) as follows:

Two types T1 and T2 are said to be equal if they are the same type. We can write

T1 =⌧ T2

Given two types T1 and T2, we say that they are type equivalent if any value of type

T1 can be assigned to a variable of type T2, and any value of type T2 can be assigned to a

variable of type T1. We can write

T1 ⇠⌧ T2

Note that if T1 =⌧ T2) T1 ⇠⌧ T2, that is, if the two types are the same type (i.e.,

they are type equal), then they are naturally type equivalent. It should also be clear that

T1 ⇠⌧ T2) T2 ⇠⌧ T1. Finally, consider an assignment of the form

v = e

where v represents a variable and e expression. If we assume that the type of v is Tv and

the type of e is Te, and if a value of type Te can be assigned to a variable of type Tv, then

we say that Te is assignment compatible with Tv. We can write

Tv :=⌧ Te

The compiler will locate the declared type of v (i.e., ⌧ (v)), compute the static type of

e (i.e., ⌧ (e)), and determine whether the assignment is safe, impossible, or possible when

type checking an assignment v = e, for example. (We write ⌧ (v) = Tv, where ⌧ () is a

type computation function.) For the assignment to be safe, a variable must only contain

values of its type, which is always true when the assignment is executed if ⌧ (v)V ◆ ⌧ (e)V35.

Otherwise, the compiler would have to deem the assignment as incorrect � and therefore

impossible � or conduct a little further analysis. The further examination will then decide

whether ⌧ (v)V \⌧ (e)V is Ø or not. If they are disjoint, then the value e will never have the

type of v; but if they are not, then it is possible for e to have the type of v. The three kinds

of type checking scenarios are depicted in Figure 12.

35 Recall, ⌧ (v) is a type and a type T is a value set V, and a set of operations O; thus, ⌧ (v)V is a set of
types.

65

Tv

Te

(a)

Te

(b)

Tv Te

(c)

Tv

Figure 12. The three kinds of type checking scenarios: (a) safe, (b) possible, and (c)
impossible.

Remark 2 (6:=⌧): It is important to highlight that Tv :=⌧ Te and Te = Tv is not the

same [5]. The former means that a value of type Te can be assigned to a variable of type Tv,

and the latter that the two types are the same. Hence, the relation defined by :=⌧ is not

symmetric, meaning, T1 :=⌧ T2 6) T2 :=⌧ T1; however, if T1 =⌧ T2) (T1 :=⌧ T2)^ (T2 :=⌧

T1).

The remainder of this section will cover the representation for atomic and constructed

types, which is analogous to type constructors in languages like C/C++ and Java. It is

worth mentioning that, because type expressions are used to specify the type of a language

construct, they will be used to link each Espresso language construct to a type expression.

We also use types that are not part of Espresso. Again, we only include them here to demon-

strated how they can be implemented in Jiapi as they are often used in many mainstream

languages.

Even though we have just briefly addressed types, let us go over them again and this time

talk about how each can be represented in a language. After all, types are away of grouping

values based on the behavior we would like them to have.

4.4.2.1 Basic Types

An atomic data type such as byte, short, char, int, long, float, double, boolean, and void

are type expressions. Depending on the language, a string could be considered a primitive

or as a class, but in Espresso, it is a primitive type

66

4.4.2.2 Arrays

As is customary, an array can be defined as a contiguous collection of similar-type locations

with an indexing mechanism that translates n integers into these locations. The dimension

of an array determines the ranges in which the indices can change; generally, the first element

in an array is at index 0, and the last at index n � 1, where n is the length of the array.

How many bytes each location takes and how the bytes are interpreted is defined by the type

associated with the array. An expression for constructing an array can be defined as

Array(baseType, [low..high])

We can construct an array where baseType is the type, and low is the lowest legal index,

and high is the highest legal index. For example, the following snippet of code is a declaration

of a fixed-length array in C, which allocates an array of size 5 at compile-time if and only if

a is a global variable.

int a[5];

This array has the following type:

Array(int, [0..5])

In languages like Espresso, however, where an array is a heap-dynamic variable that is

allocated by the programmer using the keyword new, an index set cannot be determined at

compile-time. For example, the following also is a legal declaration of an array:

int a[] = new int[10];

This array has the following type expression:

Array(int, [])

Note that in the event that the index set is unknown, we can simply use [] as the index

set. For arrays with more than one dimension and fixed-length, like for example:

67

int a[2][3];

the type expression can be read as “array of 2 arrays of 3 integers each” and be written as

Array(Array(int, [0..3]), [0..2])

The internal representation of array a is depicted below as an abstract syntax tree.

Array: int[]

2Array: int[]

3int

Before we go any further, it is worth noting that some languages (such as C/C++, C#,

and Java) do not have multi-dimensional arrays. Consider the two-by-three array defined

below.

int a[][] = new int[2][3];

In a true two-dimensional array, all of the array’s items occupy a continuous block of

memory. In this situation, the baseType acts as a place holder for an real type (i.e., int[])

and, therefore, the type component of the entry for array a contains all the values needed to

compute the address of any given element of that array. The type expression of this array is

therefore:

Array(Array(int, [][])

This simply says that we should be able to form the type base_type[] for any baseType

(i.e., an array of baseType). Thus, if we use int[] as the baseType, the type we should

expect for array a is int[][], or an “array of n arrays of m integers each”, and that is

exactly what happens in Espresso. Since the elements in a two-dimensional array of type

int[][] are variables of type int[], a variable of type int[] can only hold a reference

to a one-dimensional array of type int. Basically, a two-dimensional array is just an array

of references/pointers, each of which can refer to a single-dimensional, so these empty index

68

sets must be taken into consideration when determining type equivalence and assignment

compatibility of arrays.

In order to create an array type with the appropriate dimensions in Espresso (the dimen-

sions of the type plus the number of brackets on either the type or the name), we use the

depth() function from Section 4.2 on page 59. For example, for

int a[][] = ...

the dimension is computed as follows:

depth(int[][]) = depth(int[]) + 1) strip [] o↵ int[][]

= depth(int) + 1 + 1) strip [] o↵ int[]

=
z}|{
0 +1 + 1) 0 because T is int

= 2) # of brackets

z }| {

Remark 3 (Type Variables): Despite the fact that Espresso lacks generics, we feel

compelled to discuss types that can serve as place holders for other types. A type variable

is defined to be a variable that holds a value, but the value is now the set of possible types

in the type system (i.e., atomic or constructed) [5], although there might theoretically be an

endless number of constructed types. For example, in

Array(↵, [low..high])

↵ represent all possible array types. By assigning a type to the type variable ↵, and poten-

tially a range as well, any specific may be obtained.

4.4.2.3 Unions

Although a union resembles a record in terms of syntax, it can be defined as a value that

can be one of several types. The basic representation for a union type is as follows:

Union(name, ((n1, t1), ..., (nm, tm)))

Here the only di↵erence between a union and a record type is the word “Union” rather than

“Record”. This definition implies that a union can only include one member from its list of

69

members at any given moment. It also means that, regardless of the number of members

in a union, only enough memory is used to store the largest member. Using the above

representation, we can construct a union named name with fields ni of type ti for i 2 1..m;

for example, in C++, the following snippet of code

union value {
int i_val;
double d_val;

};

means either i_val or d_val; that is, a variable of type value will hold either an integer

value or a double value. The value union has the following type

Union(value, ((i_val, int), (d_val, double)))

4.4.2.4 Enumerations

This is a special data type that allows for a variable to be a set of predefined constant

variables. The related constant values of enum members are � often in some languages and

by default in others � of type int, starting at zero and increasing by one in the sequence of

the declaration text. To define an appropriate type for an enumeration, we can just use

Enum(name, (v1, ..., vm))

to construct an enum named name with constant values vi of type int for i 2 1..m; for

example, in Espresso, the following code snippet

enum season {
spring,
summer,
autum,
winter

}

represents a choice from a set of mutually exclusive values. The method for accessing the

values of an enumeration type varies per language. In C, we can get a value of an enumerated

70

type by just typing the element’s name, whereas in C#, they are access much like fields in

structs. The season enum, therefore, has the following type:

Enum(season, (spring, summer, autum,winter))

4.4.2.5 Procedures

Most languages do not consider procedures to be a type, but others do, such as ProcessJ,

which has mobile procedures [220]. Typically, procedures36 declare a return value type (or

void if they do not return a value), a comma-delimited list of input parameters, proceeded

by their data types, enclosed by round brackets, and a body enclosed between curly brackets.

We can define a procedure type as

Procedure(name, ((n1, t1), ..., (nm, tm)), t)

and construct a procedure named name with a return type t and optional parameters ni of

type ti for i 2 1..m; for example, the C++ function declaration bellow (with a pointer as an

input argument)

void foo(int i, float f, double * d)

has the following type

Procedure(foo, ((i, int), (f, float), (d,>)), void)

However, what should the type constructor for the unknown (>)37 be? It makes reasonable

sense to define a pointer type and a type constructor for it, so that is what we will do next.

Note that we will not add the names of the parameters in the type because most languages

(Espresso included) do not allow the same procedure to be re-implemented with the same

name and type signature � parameters and return type; for type checking, we will use this

instead

Procedure(name, ((t1, ..., tm), t)
36 In this thesis, the term procedure is used as a synonym for method/function.
37
> ⌘ anything.

71

4.4.2.6 Pointers

These are integral values that represent locations in memory; therefore, the value of a pointer

(or reference) is a positive integral value. We can define a pointer type as

Pointer(↵)

where ↵ is some type (i.e., atomic or constructed.).

Going back to the previous type constructor, we know that the type of d is in fact a

pointer to a double. Recall, the * operator takes a pointer to an object and returns the

object, so d must be a pointer to an object of an unknown type ↵. If the type of d is

represented by �, then � = pointer(↵), and thus we say that the expression *d has type ↵.

We can now complete the type of foo to looks like this

Procedure(foo, ((i, int), (f, float), (d, Pointer(double))), void)

where

Pointer(double) = double*

Remark 4: Despite their resemblance to pointers, reference variables are intended to aid

the compiler and programmer [221]. A reference variable is simply a pointer-sized chunk of

memory that holds a pointer to the object. This variable, however, cannot be utilized in

the same way that a pointer variable may. For example, in languages like C/C++, C#, and

others alike, a pointer can be indexed like an array, but a reference cannot. A reference is

tracked by the garbage collector in C#, while a pointer is not. A pointer can be reallocated

in C++, but a reference cannot, etc. [26, 222].

4.4.2.7 Classes

In practice, we often need to create objects of the same kind in object-oriented language like

Java and C++, and Espresso is no exception. That is because classes are a fundamental

part of this language, so the ability to define classes is also a type constructor since defining

a class is the same as constructing a type. A class consist of a piece of information annotated

72

with types at various positions (e.g., declarations of fields, such as variables and methods).

It may also subclass another class or implement several classes. We can define a class type

as

Class(name, s, (c1, ..., cm))

and construct a class named name with an optional superclass s, and an optional number

of classes (or interfaces) ci for i 2 1..m. Note that for a language with multiple inheritance

like C++, it may be as

Class(name, (s1, ..., sm))

Consider the following Espresso code:

class A extends B implements C, D, E {
...

}

What is the type of an object of class A? As indicated before, an object may belong to

exactly one class, but it may have many types at run-time. From this, we could say that it

could be any one of these: A, B, C, D, or E (including Object); thus, the appropriate type

of the expression new A() ought to be

Class(A,Class(B, , ()), (Class(C, , ()), Class(D, , ()), Class(E, , ())))

For brevity, it is understood that Espresso is a language with single inheritance. Multiple

inheritance is possible in the language, but only through interfaces, so we will not discrimi-

nate the di↵erence between a class and an interface; instead, we will use the same notation

for an interface, except where noted.

4.4.2.8 Named Types

Last but important, a named type is commonly any explicitly constructed type (or a define

type) that we create and give a name, such as a class, struct, enum, etc. In some lan-

guages, there is a type definition operator that can introduce aliasing for types, such as the

73

typedef operator in C/C++, which provides a “new type” by wrapping an existing type.

A NamedType can therefore be used temporarily until it is resolved to a real type, often

during name resolution.

A named type can be defined as

NamedType(name)

where name is used to create an additional name for another type.

Table 1 summarizes the primitive types and the type constructors we have just discussed.

Table 1. Atomic and constructed types.

Atomic Types
Name Representation

byte integer
short short
... ...
boolean boolean
void void

Constructed Types
Name Representation

array Array(↵, [low..high])
record Record(n, ((n1, t1), ..., (nm, tm)))
union Union(n, ((n1, t1), ..., (nm, tm)))
enum Enum(n, (v1, ..., vn))
procedure Procedure(n, (t1, ..., tm), t)
pointer Pointer(↵)
class Class(n, s, (c1, ..., cm))
named type NamedType(n)

Before we dive deeper into type equality, type equivalence, and assignment com-

patibility for each type in Espresso, we will introduce some type predicates that will be

useful when we arrive at type checking.

74

4.4.3 Type Predicates

A type predicate is a method for defining a set of criteria and determining whether or not

the provided object fulfills them. There is a type predicate for each type in Espresso; for

example, byte?, short?, ..., Class?. Here are some examples,

byte?(⌧)
def
=

⇢
true if ⌧ is byte
false otherwise

short?(⌧)
def
=

⇢
true if ⌧ is short
false otherwise

...

Class?(⌧)
def
=

⇢
true if ⌧ is class C
false otherwise

Additionally, it can be used with the following predicates:

• Integral?(⌧) = (⌧ 2 {byte, short, char, int, long})

• Numeric?(⌧) = (Integral?(⌧) _ ⌧ 2 {float, double})

• Primitive?(⌧) = (Numeric?(⌧) _ ⌧ 2 {boolean, void})

We will now establish a number of type-to-type relationships as well as several functions

that operate on types in the sections that follow. This will, in turn, help us define a set of

rules for writing a type checker for Espresso. Since a type checker’s primary function is, of

course, to check types, then comparing types (type equal or type equivalent), checking if a

type is a specific type (predicates), and evaluating if assignments are type-safe (assignment

compatibility) are all part of this process.

4.4.4 Primitive Types

For numeric types, we need to introduce rules for coercion. This means that we need to

specify the type hierarchy (or type lattice). Given two primitive types ↵ and �, if a variable

of type � can hold any value of type ↵, then we say that a primitive type ↵ is “type-

wise less than” another primitive type �. This definition appears to be that of assignment

compatibility (as we shall see later), and it is, but it must be defined as an ordering operator

(or <⌧).

75

4.4.4.1 The Ordering Operator (<⌧)

Given two numeric types ↵ and �, if ↵ and � are not the same type then ↵ <⌧ � if all possible

values of ↵ can be held in a variable of type � without loss of precision; however, there

are some values of � that cannot be held in a variable of type ↵ without loss of precision. If

we consider the ordering of types below

byte <⌧ short <⌧ char <⌧ int <⌧ long

as well as

float <⌧ double

and also

int <⌧ float ^ long <⌧ float <⌧ double

we obtain the values column of Table 2. We can see that an integer variable, which can hold

values from �231 to 231 � 1, is capable of holding all the values of the short type; therefore,

we can say that short <⌧ int. It should be noted that the <⌧ operator is also transitive,

that is

(↵ <⌧ �) ^ (� <⌧ �)) ↵ <⌧ �.

The <⌧ operator, in addition, trivially extends to the ⌧ operator, and >⌧ and �⌧ can be

defined in a similar manner.

Table 2. Type hierarchy for atomic types in Espresso.

↵ <⌧ �

by
te

sh
or
t

ch
ar

in
t

lo
n
g

fl
oa
t

d
ou

b
le

b
oo

le
an

vo
id

byte F T T T T T T F F
short F F T T T T T F F
char F F F T T T T F F
int F F F F T T T F F
long F F F F F T T F F
float F F F F F F T F F
double F F F F F F F F F
boolean F F F F F F F F F
void F F F F F F F F F

76

Definition 6 (Least Upper Bound): We can define a ceiling function for two numeric

types since <⌧ is defined for all conceivable combinations of numeric types [5]; therefore

d↵, �e⌧
def
=

8
<

:

↵ if � ⌧ ↵
� if ↵ <⌧ �
? otherwise

the least upper bound LUB(↵, �) is an upper bound T of ↵ and � such that there is no other

upper bound of these types. That is, T is always one of the types ↵ or �. In some instances,

constructing the least upper bound for more than two types is required, in which case the

least upper bound operator LUB(T1, ..., Tn) is defined as LUB(T1, LUB(T2, ..., Tn)).

The hierarchy in Figure 13 is a partial ordered set with a least upper bound (LUB) for

each pair of elements. Two operands are transformed to the LUB for many binary operators

(all of the arithmetic ones we are familiar with, excluding exponentiation). Thus, combining

a short and a char implies the conversion of both to int; however, to add a byte to a float,

the byte must first be transformed to a float (the float remains float and is not converted.)

float

long

int

short

byte

char

double

boolean

String

Figure 13. Espresso primitive type lattice.

Surprisingly enough, we obtain the same hierarchy as Figure 13 if we do not allow integral

values to be assigned (without casting) to floating point variables; that is, int 6>⌧ float and

77

float 6>⌧ int [5]. This means that an integer value cannot be assigned to a float variable,

and vice versa � a float value cannot be assigned to an integer variable. The same goes for

other non-comparable atomic types, such as double and boolean. A boolean value cannot be

assigned to a double variable, and vice versa; then boolean 6>⌧ double and double 6>⌧ boolean.

Because it is obvious that two atomic types with the same name are the same, we must

define type equality next.

4.4.4.2 Type Equality (=⌧)

A primitive type ↵ is only ever equal to another primitive type � if they are both the same

type; that is

(↵ =⌧ �), Primitive?(↵) ^ Primitive?(�) ^ (↵ = �)

Note that the use of = means “the same” in the above formula.

4.4.4.3 Type Equivalence (⇠⌧)

Since the set of values that atomic types represent di↵er from type to type, type equivalence

is the same as type equality. Thus, we can define ⇠⌧ for two atomic types ↵ and � as

(↵ ⇠⌧ �), Primitive?(↵) ^ Primitive?(�) ^ (↵ =⌧ �)

4.4.4.4 Type Assignment Compatibility (:=⌧)

Due to numeric type coercion and inheritance in Espresso, the :=⌧ operator is more than

just type equivalence. For primitive types ↵ and �, we have

(↵ :=⌧ �), Primitive?(↵) ^ Primitive?(�) ^ (� ⌧ ↵)

Note that assignment compatibility is defined exactly as type equality for any remaining

atomic types that are solely assignment compatible with themselves.

78

4.4.5 Constructed Types

For constructed types, the previous operators (and operations) may not always be as straight-

forward as they are for atomic types. This is mostly determined by the choices we make

when defining the type system for a language. Starting with type equality, we will go over

each operator once more.

4.4.5.1 Type Equality (=⌧)

For constructed types that are named, we can use that name to determine if two types are

the same. Of course, we assume that a name cannot be used twice, therefore there cannot

be two types with the same name. Alternatively, we can use the structure that defines the

types to determine if two types are the same.

Arrays

Two arrays ↵ = Array(t1, I1) and � = Array(t2, I2), where Ii represents the index set of

each array, are equal if they are both arrays and both have type equal base types, or both

are undefined (?)38.

(↵ =⌧ �), Array?(↵) ^ Array?(�) ^ (t1 =⌧ t2) ^ ((I1 = I2) _ ((I1 = ?) ^ (I2 = ?)))

Records

A record (also known as a struct) is a collection of named fields that are arranged in a

specific order. Therefore, a record type’s value is an ordered collection of values that are

compatible with the record’s types. Using name equivalence, we can say that for two record

types ↵ and � to be the same, they have to have the same type name, and so we get

↵ = Record(name1, ((n1,1, t1,1), ..., (n1,m1 , t1,m1)))

� = Record(name2, ((n2,1, t2,1), ..., (n2,m2 , t2,m2)))

(↵ =⌧ �), Record?(↵) ^Record?(�) ^ (name1 = name2)

38
? ⌘ nothing.

79

However, if we wanted our type checker to consider the structure of a record rather than

just its name, we could instead write

(↵ =⌧ �), Record?(↵) ^Record?(�) ^ (m1 = m2) ^
� m1̂

i=1

t1,i =⌧ t2,i
�

which says that, in addition to our first definition, record types must have the same number

of fields (i.e., m1 = m2), and the ith field in ↵ has to be type equivalent with the ith field in

�, and vice versa.

Unions

We can define type equality for union types in two ways, similar to how we defined record

types. We can either check that two unions ↵ = Union(name1, ((n1,1, t1,1), ..., (n1,m1 , t1,m1)))

and � = Union(name2, ((n2,1, t2,1), ..., (n2,m2 , t2,m2))) have the same type name,

(↵ =⌧ �), Union?(↵) ^ Union?(�) ^ (name1 = name2)

or we can check if they have the same structure; therefore, for two union types

(↵ =⌧ �), Union?(↵) ^ Union?(�) ^ (m1 = m2) ^
� m1̂

i=1

t1,i =⌧ t2,i
�

Enumerations

Along similar lines, two enums ↵ = Enum(name1, (v1,1, ..., v1,m1)) and � = Enum(name2,

(v2,1, ..., v2,m2)) are equal if they have the same type name, such as

(↵ =⌧ �), Enum?(↵) ^ Enum?(�) ^ (name1 = name2)

or, if they are structurally the same; therefore, we have

(↵ =⌧ �), Enum?(↵) ^ Enum?(�) ^ (m1 = m2) ^ ({v1,1, ..., v1,m1} = {v2,1, ..., v2,m2})

Procedures

For two procedure types to be equal, they must have the same name and the same

signature; to that end, a procedure type is only ever equal to itself. For two types

80

↵ = Prodecure(name1, (t1,1, ..., t1,m1), t1) and � = Prodecure(name2, (t2,1, ..., t2,m1), t2), we

have

(↵ =⌧ �), (name1 = name2) ^ (m1 = m2) ^
� m1̂

i=0

t1,i =⌧ t2,i
�
^ (t1 = t2)

Pointer

For two pointers ↵ = Pointer(type1) and � = Pointer(type2) to be equal, type1 must be

equal to type2; then we have

(↵ =⌧ �), Pointer?(type1) ^ Pointer?(type2) ^ (type1 =⌧ type2)

Classes

We can define equality for two classes ↵ and � by comparing their names; so, for ↵ =

Class(name1) and � = Class(name2), we have

(↵ =⌧ �), Class?(name1) ^ Class?(name2) ^ (name1 = name2)

Named Type

Finally, since all named types must resolve to real types, each named type must have

a reference to its actual type in that two named types ↵ = NamedType(n1) and � =

NamedType(n2) are only ever equal if their names and actual types are the same. Then, we

have

(↵ =⌧ �), NamedType?(n1) ^ NamedType?(n2) ^ ⌧ (n1) =⌧ ⌧ (n2)

where ⌧ (ni) resolves its actual type.

Table 3 summarizes the type equality, under name equivalence, for each constructed

type [5]. For structural equivalence, we simply look at Table 4 on the next page and substitute

⇠⌧ with =⌧ .

81

Table 3. Type equality (=⌧).

Type Equality

record name is the same
union name is the same
array base and index is the same
enum name is the same
procedure name and signature is the same
pointer type is the same
class name is the same
named type actual type is the same

4.4.5.2 Type Equivalence (⇠⌧)

Using the name to check for type equivalence involves determining whether two types have

the same name; therefore, for all constructed types ↵ and �, we have:

(↵ ⇠⌧ �), (↵ =⌧ �)

Checking structural equivalence, on the other hand, involves comparing the structure of

types and their respective subtypes as seen before. Table 4 summarizes the type equivalence

for each constructed type [5].

Table 4. Type equivalence (⇠⌧).

Type Equivalence

record Record?(↵) ^Record?(�) ^

(m1 = m2) ^ (
Vm1

i=1
t1,i ⇠⌧ t2,i)

union Union?(↵) ^ Union?(�) ^

(m1 = m2) ^ (
Vm1

i=1
t1,i ⇠⌧ t2,i)

array Array?(↵) ^ Array?(�) ^

(base_type1 ⇠⌧ base_type2)^((I1 = I2) _

((I1 = ?) ^ (I2 = ?)))
enum Enum?(↵) ^ Enum?(�) ^

(m1 = m2) ^ (
Vm1

i=1
v1,i ⇠⌧ v2,i)

procedure (name1 = name2) ^ (m1 = m2) ^

(
Vm1

i=1
t1,i ⇠⌧ t2,i) ^ (t1 ⇠⌧ t2)

82

pointer Pointer?(↵) ^ Pointer?(�) ^ ↵ ⇠⌧ �
class Class?(↵) ^ Class?(�) ^ (↵ =⌧ �)
named type NamedType?(↵) ^NamedType?(�) ^

⇢(↵) ⇠⌧ ⇢(�)

4.4.5.3 Assignment Compatibility (:=⌧)

The understanding of type equivalence is often determined on whether the language uses

name equivalence or structural equivalence. In general, type equivalence appears to be an

acceptable criteria for assignment compatibility given that a value of type Te and a variable

of type Tv are compatible if Te can be assigned to Tv. Therefore, and with the exception of

classes and arrays, for all constructed types ↵ and �, we have

(↵v :=⌧ �e), (↵v ⇠⌧ �e)

where ↵v is the type of the left-hand side variable v, and �e is the type of the right-hand

side expression e.

Arrays

Arrays are not quite as straightforward in Espresso. For two arrays ↵ and �, a reference

to ↵ can be assigned to � if both ↵ and � contain elements of the same type, or if both

contain references and the type of reference contained in the elements of ↵ can be assigned

to the type of reference contained in �. But what if the array type holds a reference to

an empty array � specifically if we have an assignment of the form e = {}? Writing a

predicate function, like ALAC (short for ArrayLiteralAssignmentCompatible), to determine

if an array literal e = {e1, ..., en} can be assigned to an array type T = Array(base_type, [])

can solve this problem [5]; so we have

ALAC(T, e)
def
=Array?(T) ^

8
<

:

true if e = { }
nV

i=0

�
ALAC(baseType,⌧ (ei))

�
if e 6= { }

Example 4: The code below demonstrates how the array assignment compatibility rules

are applied.

83

class B {...}
class A extends B {...}
...
int[] i = new int[4];
int j[];
short s[];
A[] a;
B[] b;
j = i; // OK

s = i; // Error

a = b; // Error

b = a; // OK

Because both variables are declared as references to arrays with integer values, assigning

i to j does not generate an error. However, assigning i to s is incorrect because the variables

are declared as references to arrays that contain di↵erent kinds of elements, none of which

are object references. What about a = b and b = a? Before we answer this question, we

need to remember a couple of things about classes in object-oriented languages.

Now that we have defined what constitutes types in Espresso � and other common

languages, we move on to answering the question: Under what circumstances a type ↵ is

a subtype of a type �; denoted as ↵ �⌧ �? If we have an expression e1 with type ↵ and

an expression e2 with type �, we can sometimes safely use e1 instead of e2. As an analogy,

the C function getchar() reads a character from stdin (the standard input), regardless of

which standard input is used. It is almost as if we have an IO_Stream class with numerous

derivatives, such as keyboard or disk, on which we may use getchar. In this case, the types

keyboard and disk are both subtypes of IO_Stream; as an alternative, IO_Stream may be

considered a supertype of keyboard and disk. It should be clear that a polymorphic type

system is one that allows functions to increase generality by taking use of the possibility that

a value may exist in several types [223].

Subtype polymorphism is the kind of polymorphism that we find in Espresso. It is based

on the principle that there may be a relationship between types [32, 108, 223], and we use the

�⌧ 39 operator to indicate this. When using inheritance in Espresso, subtyping is performed

39 Most literature uses v, <:, or to denote subtyping, but we will stick with �⌧ .

84

automatically; however, this does not imply that subtyping and inheritance are the same

thing [32, 223]. There can also be instances of subtyping that are not inherited; this can be

done with interfaces. A interface is a declaration that includes a list of method names �

but not method bodies � and sometimes some constants. Hence, there is nothing to inherit

because there is no code in an interface except for a (sub)set of methods. (We use the term

“concrete” to denote that a class is completely defined, that is, it has all of the actual code

for the methods.)

We define subtyping as follows:

Definition 7 (Subtyping): Given two types ↵ and �, we define ↵ �⌧ � if and only if

whenever the context requires an element of type �, anything of type ↵ can be used. In

other words, a type ↵ is a subtype of a type � if it any object that belongs to ↵ will also

belong to �; therefore, it is legal to assign an instance of ↵ var1 to a reference of � var2 such

that var2 var1.

The �⌧ operator satisfies:

• If (↵ �⌧ �) ^ (� �⌧ �)) ↵ �⌧ �

• If (↵ �⌧ �) ^ (↵0
�⌧ �)) (↵ ^ ↵0) �⌧ �

• If ↵ �⌧ ↵) ↵40

Note that Definition 7 can alternatively be interpreted in terms of subsets as well, where,

for example, if ↵ is a subtype of �, then all elements of type ↵ are automatically elements

of type �. According to Definition 7, we say that A is a subtype of B, in Espresso, if one of

the following requirements is true:

(1) A and B are the same type.

(2) A and B are both class types, and A is a direct or indirect subclass of B.

(3) A is not a primitive type, and B is the type Object.

40 This may be used to prevent cyclic inheritance when writing the typing rules for a type system.

85

(4) A is the null type, and B is not a primitive type.

(5) A and B are array types, and A = A0[] and B = B0[], then A0
�⌧ B0.

Rule (1) says that subtyping is a reflexive relation. Rule (2) and (3) are fairly obvious

since every class in Espresso extends Object, therefore making subtying a transitive relation.

Rule (4) says that null is a subtype of everything considering that we can assign the null

reference to any reference type. We will return to rule (5) in Definition 8.

Now that we have everything in place, we can return to addressing the question regarding

a = b and b = a. Because we declared a class A to be an extension of class B, we will have

� in addition to all inheritance � that A �⌧ B. Any access to an instance of A, however,

will be restricted to methods and fields declared in B, or, more broadly, in everything B

inherits from or implements. Then, given that A is a subtype of B, the expression b = a

is legal, but a = b is not, and since b = a is allowed, we say that Espresso arrays are

covariant for reference types. This leads us to the next definition (following that of [5]).

Definition 8 (Covariant Arrays): If two references types ↵ and �, ↵ �⌧ �) Array(�,

[]) :=⌧ Array(↵, []). For reference types, ↵ �⌧ � is equivalent to � :=⌧ ↵.

That being the case, we must distinguish between references and other types, yielding

the following equation for Tv = Array(�, I1) and Te = Array(↵, I2)

Tv :=⌧ Te ,
�
((� ⇠⌧ ↵) ^ (¬Class?(�) ^ ¬Class?(↵))) _
((↵ �⌧ �) ^ (Class?(↵) ^ Class?(�)))

�
^

((I1 = I2) _ ((I1 = ?) ^ (I2 = ?)))
(If e is an array literal, then ALAC(Tv, e))

Classes

As mentioned earlier, subtyping is a concept that is strongly linked to inheritance and

polymorphism, and it provides a systematic approach to examine them. Before we leave this

section, let us consider the following Espresso code:

B b = new A(...);

86

This assignment is legal if and only ifB = A or A �⌧ B, making it easier to define assignment

compatibility for reference types in Espresso; so for Tv = Class(B) and Te = Class(A), we

have

Tv :=⌧ Te , (B = A) _ (A �⌧ B)

Example 5: What if A not only extends B, but also implements several interfaces, as

illustrate below?

interface I1 { }
interface I2 { }
class B { }
class A extends B implements I1, I2 { }

Well, the same rules apply to interface types as they do to classes when it comes to

assignment compatibility. In this case, we have

A �⌧ I1 and A �⌧ I2 an A �⌧ B

and there is no type relation existing between I1 and I2, between B and I1, and between B

and I2 going " (up) in the class hierarchy; however, there is a kind of lower bound relation

going # (down). In addition, it makes sense to define an upper and lower bound operator

that imposes numerous inheritance restrictions, specially when dealing with parameterized

class41.

Definition 9 (Greatest Lower Bound): Similarly, we can also define a floor function for

two reference types since �⌧ is defined for all valid combinations of reference types; therefore

b↵, �c⌧
def
=

8
>><

>>:

T if ↵ and � have anything in common
↵ if ↵ �⌧ �
� if � �⌧ ↵
? otherwise

41 Generics are not available in Espresso, but they are in Java. Jiapi is designed to be used with any kind
of DSL, so we have to briefly consider generic types.

87

the greatest lower bound GLB(↵, �) is a lower bound T of ↵ and � such that there is no other

lower bound greater than T ; T could also be one of the types ↵ or �. In the same way as

LUB, when constructing the greatest lower bound for more than two types, GLB(T1, ..., Tn)

is defined as GLB(T1, GLB(T2, ..., Tn)). Note that GLB is commutative, that is, GLB(↵, �)

= GLB(�, ↵).

Consider the slightly modified version of the above Java code.

// same as before

class C extends A implements I1, I2 { }

This results in the graph depicted in Figure 14. Note that we have turned it upside down

to get the smallest class at the bottom, which is the class that the upper classes have in

common.

C

A

B I1 I2

lower bound

Figure 14. The associated class hierarchy in reverse.

It should be clear that the greatest lower bound (GLB) of two types is equivalent to the

intersection of two types T1 and T2 (denoted as T1 &⌧ T2). This means that intersection

types are commutative and associative following the GLB properties. For example, T1 &⌧

T2) T2 &⌧ T1, and T1 &⌧ (T2 &⌧ T3)) (T1 &⌧ T2) &⌧ T3. Going back to Figure 14,

the result of bI1, I2c⌧ (or I1 &⌧ I2) is a type that is all of I1 and I2, enabling an object of

this type, like C, to have all members of I1 and I2. As can be seen, an intersection is the

result of “merging” several types into one. This allows us to combine many types in order

to create a single type with all of the properties and features we need.

Naturally, the LUB operator (see Definition 6 on page 77) can be extended to work with

88

reference types (denoted as d↵, �e⌧); therefore, for two reference types ↵ and �,

d↵, �e⌧
def
=

8
>><

>>:

T if ↵ and � have a common ancestor
↵ if ↵ �⌧ �
� if � �⌧ ↵
? otherwise

Likewise, a union type of two types (denoted ↵ |⌧ �) is equivalent to the least upper bound;

for example, the dB,Ce⌧ (or B |⌧ C) is B. Note that this operator can be used to assist in

finding the most specific class in a multilevel inheritance hierarchy.

But how does the rule for subtypes and assignment work for generics? Does ↵ �⌧ �)

G<↵> �⌧ G<�>? The answer is no; we will demonstrate this with a simple, yet reasonable,

counter example.

Example 6: Consider the following Java-like code:

class ↵ extends � { }
class G<E> { public E e; }
G<↵> alpha = new G<↵>();
G<�> beta = alpha; 1

beta.e = new �(); 2

↵ a = alpha.e; // Error 3

Why is there an error when ↵ �⌧ �? Let us take it one step at a time, beginning from

1 . Presumably, since ↵ �⌧ �) G<↵> �⌧ G<�>, then 1 should be legal. Considering

that the type of beta.e is � (despite beta pointing to an object of type G<↵> from the

preceding assignment), then 2 should also be legal. So far, everything is going well with

our assumptions, but what about the last assignment? The issue here is that we do not

know what alpha.e’s true type should be in 3 ; is it of type ↵ or �? The compiler should

not issue an error message if it is the former, but it should if it is the latter; so we say that

↵ �⌧ �) G<↵> �⌧ G<�> defies the principles of substitution. Luckily, the Java compiler

will generate a compile-time error from 1 .

) ↵ �⌧ � 6) G<↵> �⌧ G<�>

89

Generics were introduced to Java in order to improve the expressiveness of its type

system [224, 225, 226, 227]. However, Java generics include some characteristics that have

been di�cult to analyze and reason about in the past, such as Java wildcards [228, 229] (i.e,

<?>), F -bounded generics42 [226], and Java erasure [230]. For this reason, upper and lower

bounds are frequently used to tackle some of these issues, limiting the types of values that

can be passed to a class as generic arguments, as demonstrated next.

Remark 5: Java generics are implemented using type erasure [5, 225], which leads to all

sorts of wacky issues, one of them being that we cannot find out what type a generic class

is using at run-time43. To get around this problem and ensure generic type safety, we need

to be able to specify unknown types as subtypes or super types. For example,

G<↵> alpha = new G<↵>();
G<�> beta = new G<�>();
G<? extends �> ebeta = alpha; 1

� b = ebeta.e; // legal 2

G<? super ↵> salpha = beta; 3

salpha.e = new ↵(); // legal 4

2 is legal because if ↵ �⌧ � and ? �⌧ �, then ? 7! ↵ (i.e., ? is an ancestor of the unknown

type). Consequently, 4 is also legal for the same reason, meaning, if ↵ �⌧ � and ↵ �⌧

?, then ? 7! � (i.e., ? is the descendant of the unknown type). This implies that for any ↵

such that ↵ �⌧ � (including � = ↵), then:

• G<? extends �> can get as value G<↵>

• G<? super ↵> can get as value G<�>

42 F -bounded is an object-oriented technique that makes use of the type system to encode generic re-
strictions. Java, as opposed to Espresso, o↵ers F -bounded subtyping, allowing type parameters to generic
classes to have bounds that specifically refer to the parameter; for example, class A<T extends B<T>>
{ ... }
43 For example, at a later stage in the compilation process, G<E> is replaced by G<Object>; thus, at run-
time, the notion of E is lost � it is only Object by then. This is known as the “erasure” system, in which
E is used to check the sources early in the compilation process before being replaced by Object.

90

Recall from Definition 3 on page 69 that we can obtain any specified type by assigning

a type to the type variable ↵, and potentially a range as well. Now, how do we deal with

generic or parameterized classes like the one below:

public class Hastable<A, B> {
...

}

Obviously, the type of the expression that creates a Hashtable is Class(...); but, what

should ... be? It is impossible to instantiate a Hashtable without the types A and B

being specified. For example, if we had the expression

new Hashtable<Integer, String>

The types Integer and String must be included in the type for the expression. This is simple

to accomplish if we use type variables to give the type of the Hashtable class as seen

below:

Class(Hashtable<↵, �>)

where ↵ represents the type A and � represents the type B. Therefore, when determining the

type of new Hashtable<Integer, String>, we substitute ↵ and � for the appropriate

types, yielding:

Class(Hashtable<Integer, String>)

A number of terms that are important to understand when working with types and type

constructors are defined in Definition 10 [5].

Definition 10 (Reifiable and Variance): Any type whose type information is entirely

available at runtime is referred to as a reifiable type. This covers non-generic types and

primitives; nevertheless, any type that lacks complete runtime access to its information is

said to be non-reifiable. Furthermore, variance in a type system refers to the relationship

between subtyping between complex types and subtyping between the parts that make up

the complex types. For example, the type constructor C is said to be covariant if there

91

is a type constructor C, two types A and B where A ⌧ B, and the condition that if

A ⌧ B) C(A) ⌧ C(B). If, however, A ⌧ B) C(A) �⌧ C(B), then we say that

C is contravariant. Note that it is referred to as bivariant if both applied, but if neither

applies, then it is referred to as invariant or nonvariant.

We will stop here as we have covered everything we will need in order to write parts

of the type system specification of Espresso � and latter of Espresso using Jiapi . Table 5

summarizes the rules for assignment compatibility that we have just defined [5].

Table 5. Assignment compatibility (:=⌧).

Type Assignment Compatible

record Tv ⇠⌧ Te

union Tv ⇠⌧ Te

array
�
((� ⇠⌧ ↵)^ (¬Class?(�)^¬Class?(↵))) _

((↵ �⌧ �) ^ (Class?(↵) ^ Class?(�)))
�
^

((I1 = I2) _ ((I1 = ?) ^ (I2 = ?)))

(If e is an array literal, then ALAC(Tv, e))
enum Tv ⇠⌧ Te

procedure (m1 = m2) ^ (
Vm1

i=1
t1,i ⇠⌧ t2,i) ^ (t1 ⇠⌧ t2)

pointer Tv ⇠⌧ Te

class (Tv = Te) _ (Te �⌧ Tv)
named type Tv ⇠⌧ Te

4.4.6 Type System Specification

The Espresso type system is described in terms of an abstract syntax that omits a lot of

the details found in the concrete syntax. The abstract syntax is somewhat analogous to the

parse-tree data structures used by the compiler, although it excludes a number of derived

forms that can be expressed in terms of more basic syntax. Let us start with the Espresso⇡

type checking specification. Recall, the typing judgment for the terms has the form:

⇤, C ` E : T Term E has type T in context C and in a

type environment ⇤

92

We need a method to check whether a given Espresso program in the typed �-calculus is

well-typed, or whether it is guaranteed to behave properly. Being well-typed is a judgment,

much like we have for first-order logic. Here our judgments are of the form ⇤, C ` E : T ,

meaning, “expression E has type T under the set of hypotheses ⇤, C”. Assumptions about

the many types of variables, such as x1 : T1, x2 : T2, ..., xn : Tn, etc., make up the hypotheses

that guide our judgments. Here, x1, ..., xn are distinct variables (or identifiers) and T1, ..., Tn

are types. A list of this form is called typing context. Such as list is supposed to serve as the

“context” for type checking terms. In order to judge the expression in the typed �-calculus,

we created a set of inference rules. These rules are standard for methods, fields, classes,

statements, and expressions.

As in Java, static type checking is performed at compile-time in Espresso, thus these

rules are invoked as subroutines during type checking (typically in the form of a visit [3, 5]).

In addition, the methods in Table 6 provide information about the relative position of a

variable within the current scope during type checking. We assume that the abstract syntax

complies with a number of syntactic constraints that are discussed in the next section.

Note that a significant component of this project is to develop the skills needed to produce

an implementation from a specification. For this reason, the following specification is a

description of a property (yes/no question; true/false statement). It does not specify how

to determine whether certain properties holds, though it may make suggestions in this regard.

Table 6. Helper methods

Method Description

classname(class cn { ... }) = cn Returns the name of a class declaration

hierarchy(class cn { ... }) = {cn, cn0
}

hierarchy(class cn { ... }) = {Ø}

Returns a set containing the name a

class and its parent class

method name(T mn (T x) { ... }) = mn
Returns the name of a method

declaration
field name(T fn) = fn Returns the name of a field declaration

8i 2 1..n : 8j 2 1..n : idi = idj) i = j
unique id(id1, ..., idn)

Determines if the identifiers in a list

are pairwise disjoint

93

Table 6. Helper methods

¬(9j1, ..., jk 2 1..n : (8i 2 1..k � 1 :
idji+1 = id0ji+1

) _ (idjk = id0j1))

acyclic({(id1, id01), ..., (idn, id
0
n)})

Determines if a set of pairs contain no

cycles

class cn { ... } 2 P
fields(cn) = {{id1 : T1, ..., idn : Tn}}

Defines a type environment

constructed from the fields of K
class cn { ... M1 ... Mn } 2 P

9j 2 1..m : method name(Mj) = mn
mn = T mn(T1 xi...Tn xn) { ... }

find method(K,mn) = (T1, ..., Tn)! T

_

class cn { ... M1 ... Mn } 2 P
8j 2 1..m : method name(Mj) 6= mn

find method(K,mn) = ?

Determines if a method declaration of

name mn exists in K, or ? if no such

method exists

class cn { ... F1 ... Fn } 2 P
9j 2 1..m : field name(Fj) = fn

fn = T fn
find field(K, fn) = T fn

_

class cn { ... F1 ... Fn } 2 P
8j 2 1..m : field name(Fj) 6= fn

find field(K,mn) = ?

Determines if a field declaration of

name fn exists in K, or ? if no such

field exists

find method(K,mn) 6= ?)
find method(K,mn) =
find method(K 0,mn)
overloading(K,K 0,mn)

Determines if a method is overloaded

4.4.6.1 Notation for Rules

We use the flowing notation

hypothesis1 hypothesis2 ... hypothesisn

conclusion

where in a rule there is only ever one possible conclusion; nevertheless, the number of

premises is limitless. For example, the above is a rule that states that if we can derive

all of hypothesis1, hypothesis2, ..., hypothesisn, then we can also conclude the conclusion.

It should be said that a special case arises when n = 0, that is, we write this case as

94

conclusion

or we can omit the horizontal bar and write just

conclusion

representing an axiom. The process of starting with one or more axioms, possibly applying

certain rules, and ending with a conclusion is known as a derivation. A typing derivation is

a tree structure of inferences that each aim to demonstrate how a certain type of rule applies

to the term in question, as depicted in Example 7.

Example 7: Figure 15 gives a typing derivation for the while statement rule mentioned

in Section 4.4.6 on page 102 (using parts of Figure 4) where the root of the tree is the

whole expression, each node is an instance of a typing rule, and leaves are the rules with no

hypotheses.

⇤⌧ (x) = boolean

⇤, C ` x : boolean

⇤, C ` !x : boolean

⇤, C ` 7 : int

⇤, C ` 3 : int ⇤, C ` 2 : int

⇤, C ` (3 + 2) : int

⇤, C ` 7 + (3 + 2) : int

⇤, C ` while (!x) 7 + (3 + 2)

Figure 15. Proof tree for while statement.

Although the suitable formalism for type checking is logical rules of inference, Figure 16

o↵ers another perspective on the aforementioned derivation.

while (!x) 7 + (3 + 2)

!x : boolean +: int

x : boolean 7: int +: int

3: int 2: int

valid!

infer(x): boolean

Figure 16. The typing reason as a tree.

95

Another option is to write the derivation in a linear form by labeling the statements as we

write them and making references to them from other statements as needed. However, in

actual use, it is rarely required to explicitly write out typing derivations in full. Annotating

terms and subterms is su�cient, but we must make sure that the annotation adheres to the

type requirements.

Example 7 demonstrates a trace of actions the type checker performs, built up rule-by-

rule, with each judgment being a conclusion from the judgments that came before it (with

some of the rules indicated beside the line). Consequently, a derivation (or proof tree)

is a tree where nodes are instantiations of inference rules and edges connect a premise to

a conclusion. The goal of the type checker is to verify that such derivation exists. This

derivation in turn provides a specification for the static correctness of Espresso programs.

Bear in mind that we only take into account instances of judgments that are well-formed; if

an instance is not well-formed, it has no meaning and it is pointless to evaluate whether it

holds or whether a derivation of it exists.

4.4.6.2 Syntactic Restrictions

The type checker imposes a number of syntactic limitations. Some of these properties could

have been provided in the grammar, but doing so would have rendered it significantly verbose.

Others are properties that could be specified as part of the typing rules, but it is easier to

specify them separately. Let us have a quick look at them.

1. Context: Any of the Espresso types are permissible for variables, which are then

gathered into a context (this being a symbol table)

2. Expressions: Checking expressions is defined in terms of type inference, so for

x : int, y : int ` x ⇤ y > 10 : boolean

x ⇤ y > 10 is a boolean expression in the context where x and y are integer variables.

From this, it is clear that an inference rule specifies a unique way for determining

whether a given expression has a particular type. For example, the � ` n : int rule of

96

n : int is axiomatic � a numeric constant has type int under all conditions; therefore,

10 is a constant integer value. Evidently, it is also clear that from the binary rule for

multiplication that if two subexpressions are integers, then the binary operation on

those subexpressions is also an integer, allowing type checking of the entire expression.

3. Expression statements: We only need to know that an expression has a type in

order to infer its type; this often applies to assignments and method calls.

4. Method definitions: The variables listed as the method’s parameters define the

context, and therefore the statements S
i2 {1..n}

in the method body are checked in this

context. It should be noted that the type checker verifies that each variable in the

parameter list is unique and that declarations may cause the context in the body to

change.

5. Statements: When type checking a statement, we are only concerned with deter-

mining whether the statement is valid and not with its type. For instance, validating a

while statement entails type checking as well as validating its constituent expressions.

• Return statement: We can inspect the method body for a return statement of the

expected type when checking a method definition. A more sophisticated version

of this could also allow returns in ternary expressions.

• Declarations and blocks structures Every declaration has a scope that is within a

certain block. Since portions of code between curly brackets, { and }, are roughly

equivalent to blocks in Espresso, two rules govern the use of variables:

(a) A variable declared in a block has its scope until the end of that block.

(b) A variable can be declared again in a inner block, but not otherwise.

Whenever a new variable is declared, it is first verified that it is unique in the context

before being added to the current scope. As a result, a declaration extends the context

in which the statements that follow are checked. Strictly speaking, if the statements

that come after a declaration are valid in the context in which the declared variable

97

is added, then the declaration is valid. This addition causes the type checker to rec-

ognize the e↵ect of the declaration. Naturally, the declaration only has an impact on

the statements that are already part of the same context (i.e., a block); subsequent

statements are una↵ected.

6. Overloading: Binary arithmetic operations (such as +, -, * and /) and comparisons

(such as ==, !=, <, >, <= and >=) are in many languages overloaded which means

that they are usable for di↵erent types. For example, Figure 17 gives the typing rules

for Expresso if the possible types are int, double, or string.

⇤, C ` E1 : T ⇤, C ` E2 : T
if T 2 {int, double, string}

⇤, C ` E1 + E2 : T

⇤, C ` E1 : T ⇤, C ` E2 : T
if T 2 {int, double}

⇤, C ` E1 = E2 : boolean

Figure 17. Possible typing rules for int, double, or string.

It should be noted that since strings in Espresso are immutable, the == operator

for string comparison does not compare the contents of the string (it only compares

memory address). For this reason, the second typing rule does not apply to strings.

4.4.6.3 Type Checking a Program

At the top level of the program, we need to figure out the types of classes and make sure

their bodies are well-typed. Therefore, we define Espresso programs as being well-formed if

they go through three phases of type checking:

1. Generate a class environment

2. Check that the class environment is well-formed, and

3. Check that every class is well-formed under the environment

98

1. Phase 1: Generating a class environment is straightforward. For each class defini-

tion, we make a binding that associates the class name cn with an entry, for example:

class(K,C). This entry is made of of the class and a local environment C that

records the type of the super class and the types that each class member has (fields

and methods).

2. Phase 2: A class environment is well-formed if it meets the following criteria:

(a) A top element (often Object) is present in the partial order of ground types defined

by �⌧ .

(b) For two ground types, if K1 is well-formed and ` K1 �⌧ K2, then K2 is well-

formed.

(c) The type is the same for method declarations with the same name across classes.

(This is merely done for the sake of illustration.)

3. Phase 3: We presume that we have a well-formed class environment. We start with

the rule for typing expression, followed by the rules for typing statements. We then

give rules for all remaining Espresso constructs.

Recall, we carry around an environment (some kind of symbol table) that records the

type of the variable symbols (variables and class names) during type checking. The initial

environment contains the type of all classes defined so far (including those of the Espresso

library). Let us start at the top-level, type checking a program. A program P type checks

(written ` P) if all the classes in that program type check. (Recall that a program is simply

a collection of classes.) A class type K checks (written ` K) if all of fields and methods it

contains type check as well (i.e. C ` F and C ` M). To type check a program, we type

check each class in the program, ensuring that all classes in the program are added to the

environment. Although there is a circularity here, it turns out to be not a problem.

To type check a class, we must type check all of its methods and fields. Let us focus

on the methods for now. A method type checks (written C ` M or C ` T mn (T x)

{ S return E ; }) if all the statements and declarations it contains type check. When type

checking, for example, System.out.println(...), the environment contains the name of the

99

class where this invocation was made (with a type indicating it is a class with a method of

type void), as well as the name System, which is a class with a field out pointing to an

object and a method println expecting a String.

Let us assume that println is invoked with a.toString(). Then, a must either have a

type Object or some type T �⌧ Object because both have a method called toString. Thus,

a.String() is valid, and the result is of course a string, which means that the call to println

is also valid and returns no value (i.e., void). Therefore, this statement type checks and

can be represented as depicted in Figure 18.

⇤, C ` System.out : PrintStream { ... void println(...) ... }

⇤, C ` a.toString() : String

⇤, C ` System.out.println(a.toString()) : void

Figure 18. Type checking a Java program.

So what does Figure 18 says, in other words, what does type checking guarantees? It says

that certain bad things cannot happen at runtime. It is worth noting that every object at

runtime has a corresponding runtime class K (the class it was created as). ` P is guaranteed,

that is, whenever the type system attempt to invoke some methodM on some objectO during

program execution, object O has an implementation of method M ; otherwise, it is an error.

4.4.6.4 Subtyping

The subtyping relation on class names is the least partial order consistent with the rules

given in Figure 19. We use �⌧ to denote the subtyping relation and say that T1 is a subtype

of T2 if T1 �⌧ T2. Note that �⌧ is reflexive (1) and transitive (2), and generated by the

extends relation among classes (3), as defined in Definition 7.

(1)
T �⌧ T

T1 �⌧ T2 T2 �⌧ T3
(2)

T1 �⌧ T3

class K0 extends K1 { ... }
(3)

K0 �⌧ K1

Figure 19. Type checking subtypes.

100

How do we implement the �⌧ operator that we have described? There are many situ-

ations to consider, but Table 7 summarizes several of them according to the hierarchy for

types given in Figure 20.

Table 7. Implementing �⌧ with di↵erent types

From

To
Class Type Primitive

Type
Array Type Null Type Error Type

Class Type If same or
inherits from

No No No No

Primitive
Type

No No No No No

Array Type No No If underlying
types match

No No

Null Type Yes No No Yes No
Error Type Yes Yes Yes Yes Yes

One challenging problem is what to do when an expression does not have a valid type

under the rules. A simple recovery mechanism is to assign the type Error to any expression

that cannot otherwise be given a type (we used this method in Espresso). Although not

previously discussed, we introduce a new type representing an error into the type system.

The error type is less than all other types and is denoted ? (sometimes referred to as

bottom type). By definition, ? �⌧ T for any type T , so on discovery of a type error we

assume that the expression � one that produces an error � has type error type.

If the intended outcome of the type operation was to produce a type itself, any type

operations where one or more of the operands is an error type will and should produce both

an error message and an error type.

Type

Error Type Null Type Array Type Primitive Type Class Type

Figure 20. Hierarchy of types in Espresso.

101

4.4.6.5 Type Checking Expression

We must first define how we choose an expression’s type in this conceptual framework for

type systems. The context C in the type environment ⇤, which maps names to types, serves

as a representation of what bound variables and methods are in scope for type checking

expressions. We use the metavariable symbol id to represent arbitrary identifiers, n to

represent an integer literal constant, string to represent a string literal constant (recall that

a string is an Object in Java), char to represent a character literal constant, and true or false

to represent boolean literal constants. Using these conventions, the expression typing rules

are depicted in Figure 21.

4.4.6.6 Type Checking Statements

To typecheck statements, we need all the information used to typecheck expressions. State-

ments can also result in new variable bindings because they contain declarations, which

results in an updated type context that we will refer to as C 0 (although most of the state-

ments are fairly straightforward and do not change C). To represent a statement, we utilize

the same metavariable S and use the statement typing rules given in Figure 22.

4.5 Closing Remarks

Espresso’s type system at a basic level works in the same way as typed �-calculus. During

assignments, programmers provide explicit type annotations to variables, and if the type of

the expression is anything other than the type, Espresso complains and stops compilation.

Using an operator on an incorrectly typed object, calling a function on incorrectly typed

inputs, or defining a function to return a type other than its explicitly declared return

type are all catchable compilation errors (hence the statically typed nature of Espresso). A

second, maybe less evident, point is that because the Espresso type system is a first-order

type system, it does not support the passing of methods as parameters or the return of

methods as results, but it is feasible to pass and return objects that include methods.

Object identity is another intriguing aspect of the language. In Espresso, this is useful,

but is it rarely what we want? For example, we may want to say that two lists are equal if they

102

have the same sequence of elements (This is a little bit like in set theory, where two sets are

considered equal if they have the same elements, or considering two lists equals if they have

the same elements in the same order.) To have object equality in the language, we need the

object’s equals method to satisfy the main properties of equality: reflexivity, symmetry,

and transitivity. Naturally, even with a more robust type system (or simply the presence of

a static type system in comparison to dynamically typed languages), languages like Espresso

cannot capture all errors during compilation.

103

⇤, C ` n : int ⇤, C ` string : String ⇤, C ` true : boolean

⇤, C ` false : boolean ⇤, C ` char : char

C 6= ?

⇤, C ` this : C ⇤, C ` new cn (): cn

id 2 dom(⇤)

⇤, C ` id : ⇤(id)

⇤, C ` E1 : int ⇤, C ` E2 : int � 2 {+, �, ⇥, ÷}

⇤, C ` E1 � E2 : int

⇤, C ` E1 : int ⇤, C ` E2 : int � 2 {=, 6=, <, , >, �}

⇤, C ` E1 � E2 : boolean

⇤, C ` E1 : boolean ⇤, C ` E2 : boolean � 2 {=, 6=, <, , >, �}

⇤, C ` E1 � E2 : boolean

⇤, C ` E : int

⇤, C ` �E : int

⇤, C ` E : boolean

⇤, C ` !E : boolean

⇤, C ` E1 : T[] ⇤, C ` E2 : int

⇤, C ` E1[E2] : T

⇤, C ` E : int

⇤, C ` new T[E] : T[]

⇤, C ` E 0 : K find method(K, id) = (T 0
1
, ..., T 0

n)! T

⇤, C ` Ei : Ti
i2 {1..n}

Ti
i2 {1..n}

⌧ T 0
i

i2 {1..n}

⇤, C ` E 0.id(E1, .., En) : T

⇤, C ` E : K find field(K, id) = id : T

⇤, C ` E.id : T

⇤, C ` E : T[]

⇤, C ` E.length : int

Figure 21. Type checking expressions.

104

⇤, C ` Si
i2 {1..n}

⇤, C ` {S1, ..., Sn }

⇤(id) = T1 ⇤, C ` E : T2 T2 �⌧ T1

⇤, C ` id = E ;

⇤, C ` E : boolean ⇤, C ` S1, C 0 ⇤, C ` S2, C 00

⇤, C ` if (E) S1 else S2 : C 0
t C 00

⇤, C ` E : boolean ⇤, C ` S, C 0

⇤, C ` if (E) S : C 0

⇤, C ` E : boolean ⇤, C ` S, C 0

⇤, C ` while (E) S

⇤, C ` E : T

⇤, C ` return E ; : T

Figure 22. Type checking statements.

105

Chapter 5

Jiapi

5.1 Introduction

As briefly mentioned in Section 1.4 on page 13, Jiapi is a type checker generator that uses

first-order logic and set notation, along with an expression grammar for describing a type

system. To define a type system, Jiapi mixes a controlled form of a meta-language with the

concepts of atomic (or primitive) and constructed (or structured) types. The idea is to make

the automation of code generation for semantic checking tasks possible for which types alone

can be specified and inferred. This approach connects objects (instances of classes) with

various components in the type system through an iterative process. The iterative nature of

this process can be explained by the fact that an object representing a semantic node (or

parse tree node) is often implemented by a number of sub-objects, much like a procedure is

typically implemented by a number of procedures in top-down programming [231, Section

7]44.

In this chapter we briefly explore a few standard constructs of mainstream languages as

presented by [5], and for which we can specify the required checks in the context of type

predicates (of the form P?(x)), type equality (the =⌧ operator), type equivalence (the

⇠⌧ operator), and assignment compatibility (the :=⌧ operator). Other operators that

are either derivable or extensions of the ones already stated are also available. Further-

more, fragments of the meta-language’s syntax are specified in Extended Backus-Naur Form

44 The di↵erence here is that, in the design process, functionality and data representation can be both
improved.

106

(EBNF) as needed. We start by outlining the notation that the tool uses. The process for

generating the *.java files is then described. Next, the structure of a Jiapi file is explained

in detail, step-by-step. Finally, we conclude the chapter with a process-oriented language

constructed type example and a simple representation of typed �-calculus rules to Jiapi .

5.2 Notation

We encounter the challenge of varied notation when referring content from various fields of

type literature. Clearly, there are two alternatives to consider: Either cite all sources using

the same notation or transcribe the sources to a common notation. In this thesis, we decided

to go with the latter alternative for three reasons. First, the overall structure and format will

be more consistent. Second, we want to stress commonness while avoiding being distracted

by minor di↵erences in notation. Third, the changes required are minor, primarily consisting

of symbol replacement.

Table 8 emphasizes the naming convention and notation that will be followed. This

notation corresponds to the syntax for specifying a type system in Jiapi with a few minor

exceptions for better readability and clarity. We include the original content when the

structure of the supplied material needs to be altered in non-trivial ways to illustrate a

commonality.

Table 8. Naming convention and notation.

Symbol

T Type with unknown nullability
{T} Set of all possible values of T
{: ... :} Code declaration section
{...}? Semantic predicate
(...) Sequence of elements
{...} Optional sequence of elements
[...] Required sequence of elements
? Optional closure
+ Positive closure
* Kleen closure
.. Range operator
h...i Sequence formation
s[k] kth member of the sequence s

107

Table 8. Naming convention and notation.

s� k Drop the first k member of the sequence s
s+ t Concatenation of sequences s and t
t) a, b McCarthy-like conditional “if t then a else b”

Well-formed Type

� Type environment
A =⌧ B A and B have the same type
A ⇠⌧ B A value of type A can be assigned to a variable of

type B and a value of type B can be assigned to

a variable of type A
A :=⌧ B A value of type B can be assigned to a variable of

type A but a value of type A cannot be assigned

to a variable of type B
A <⌧ B A precedes B
A ⌧ B A value of type A can legally be assigned to a

variable of type B
A �⌧ B A is a subtype of B
A 6�⌧ B A and B are not related with respect to subtyping
bA,Bc⌧ Greater lower bound (or GLB) of A and B
dA,Be⌧ Least upper bound (or LUB) of A and B

Builder Notation

a= a1, ..., an Sequence of elements
As+1 = As

[{ai} Adding an elements to A
As�1 = As

\{ai} Removing an element from A
|A| Cardinality (or size) of A
!A Complement of A are all elements which are not

in A
!(A ^B) Complement of A and B are all elements which

are not in A and B
A\B A set-minus B are all elements in A which are not

in B
A ⇢ B A is a proper subset of B
A 6⇢ B A is not a proper subset of B
A ✓ B A is contained in B
A 6✓ B A is not contained in B
A \B A intersection B are all the members of A that

also belong to B
A [B A union B are all the members of A and all the

members of B
A B B is assigned to A

108

Table 8. Naming convention and notation.

a 2 A The element a is a member of the set A
a 62 A The element a is not a member of the set A
A = {a 2 A | {...}?} Removes unwanted elements from A based on a

semantic predicate and returns a new set A
Textual Symbol

=⌧ =T
⇠⌧ ⇠T
:=⌧ :=T
<⌧ <T
⌧ <=T
�⌧ <:T
6�⌧ <:>T
b_,_c⌧ GLB(_,_)
d_,_e⌧ LUB(_,_)
{a1, ..., an} { , } to enclose elements of a set
Ø { } (empty set)
8 for all, for every, for any

2 in

/2 !in
⇢ subset

6⇢ !subsetS
unionT
intersectionV
andW
or

! ->

) =>

, <=>

Others

// Single-line comment
/*...*/ Multi-line comment

1
low is the lowest legal index, and high is the highest index.

2 This notation is borrowed from [232].

Predicates have a number of algebraic properties that can be useful when examining and

transforming logic formulations. Predicate symbols, such as p and q, represent object-to-

object relations. Keep in mind that a relation is a collection of tuples. For example, we

could define the relation {(wine, red),(ocean,blue),...}. However, without an interpretation,

we have no idea what the relation or objects are. Table 9 highlights the various types

of expressions that can be employed in propositional and predicate logic, as well as their

109

meanings.

Table 9. Logic notation.

Logic notation

true, false Boolean (truth) constants
p, q, ... Boolean variables
P?(x), Q?(x), ... Boolean predicate
¬p Negation of p
p ^ q Conjunction of p and q
p _ q Disjunction of p and q
P?(x) ^Q?(x) Conjunction of predicate P and predicate Q

P?(x) _Q?(x) Disjunction of predicate P and predicate Q

P?(x)) Q?(x) Implication: predicate P implies predicate Q

P?(x), Q?(x) Logic equivalence P implies predicate Q

Set-builder notation

a 2 A Set membership. The element a is a member of

the set A
a 62 A Set membership. The element a is not a member

of the set A
{x : P?(x)} Set of all elements x that makes the predicate P

true

A = B
def
=x 2 A, x 2 B Set equivalence. Any member of set A is also a

member of set B, and any member of set B is also

a member of set A

A ✓ B
def
=x 2 A) x 2 B Any member of set A also is a member of the set

B. However, there may be members of B that are

not in A, although A and B can be the same.

A ⇢ B
def
=A ✓ B ^A 6= B Any member of A also is a member of B. How-

ever, there exists at least one member of B that

is not a member of A

A [B
def
={x | x 2 A _ x 2 B} Any number of A or B or both is a member of the

union of A and B

A \B
def
={x | x 2 A ^ x 2 B} Any member of A that also is a member of B is

in the intersection of A and B.

A\B
def
={x |A ^ x 62 B} Any member of A that is not a member of B is a

in the di↵erence of A and B
8x P?(x) Universally quantified predicate expression

110

Table 9. Logic notation.

9x P?(x) Existentially quantified predicate expression

5.3 Meta-Language

In order for Jiapi to produce a type checker for a language, its type system must be described

by a meta-language. This means that we need to define one or more syntactic groupings and

provide rules (i.e., logic formulas) and some actions (i.e., a block of arbitrary code enclosed

with {: :}) for assembling them from their constituent elements. One kind of grouping

is called a type expression [3]. For example, a type expression for a record data type

might be described in plain English as: “A record is data that contains other data, which

are grouped together into a single value type”. Another would be: “A record is a value type

that encapsulates data and related functionality”. The essential structure of a record can be

deduced from either of these descriptions as follows (where ? means optional, and * means

0-or-more):

Record hnamei { hfield-declsi* };

where hfield-declsi is a declaration of the form

htypei hnamei ;

or a declaration of the form

htypei hnamei((htypei hnamei (,htypei hnamei)*)?);

Of course, this representation can be broken down into simpler terms, but that is a

lexicographic issue rather than a grammar issue. The expression, as well as the field or the

function declaration, are syntactic groupings in the aforementioned record. Although the

full grammar for a Record type may include dozens of additional language constructs (and

thus production rules) in a language like C#, each with its own nonterminal symbols, we

utilize a common concept that involves naming (sequence of characters), repetition (+ or *),

111

alternatives (?), order-independence ((), {}, or []), and value ranges (. . .) to describe the

semantics of the above notation. These symbols will form the foundation of type expressions’

footprints45 and signatures (see Section 5.3.4 on page 122).

Another kind of grouping is called a predicate [5], and it plays a big role in Jiapi , as

a user-defined or internally implemented. The user will typically have to specify a limited

collection of predicates and functions, as well as some true/false groundings. For example,

the ability to determine if a given type is a specified type or to throw some form of exception

is rather useful in the development of a type checker. These tasks can be accomplished

using a number of semantic predicates, which are conditions that must be met at compile-

time before creating an executable file; therefore, a semantic predicate can be defined and

implemented as needed. There are two types of semantic predicates that we distinguish: (1)

type predicates for each atomic type and constructed type, and (2) validated predicates for

throwing exceptions if their conditions are not met.

A predicate expression evaluates to either true or false. As an example of a type predicate,

consider the following:

Record?(⌧) = ⌧ == X

where X is the type Record as defined in the type system of the target language. On the

other hand, a validated predicate is simply a block of code followed by a question mark

operator (?), where . . . can be either a simple Java statement or a type predicate:

{...}?

For example, consider the Record predicate, which determines if ⌧ is a Record type,

embedded in the following validated predicate

{ Record?(⌧) }?

when the generated code for this predicate executes, it will throw an exception if and only

if ⌧ is not a type Record. As may be expected, we can catch the exception in an exception

handler before displaying the appropriate error message.

45 A footprint of any type ⌧ in an expression e is a collection of symbols that are used to represent ⌧
occurrences within e.

112

In many object-oriented languages, atomic types are commonly implemented in a single

file, as a class (e.g., PrimitiveType) that may subclass an abstract Type, with several constant

declarations, where each represents a separate atomic type (e.g., INT_TYPE, DOUBLE_TYPE

, etc.). An example of a type predicate for an atomic type in Espresso with an embedded

action is shown below:

Integer?(X) = {: X.type == PrimitiveType.INT_TYPE :}

where X is, in Espresso, a parse-tree node type and type is an integer value that represents

one of the constants declarations. Again, an action is a block of text written in the target

language and enclosed in curly brackets. The main di↵erence between the definition of

Record? and Integer? is that, for the latter, the code enclosed in {: and } is copied verbatim

into the generated code.

The last kind of grouping is a logic formula. The essential idea is that a type can be

thought of as a proposition, and a value can be thought of as a proof of the statement that

corresponds to its type. Thus, we can combine these syntactic groupings with a particular

number of terms to form a semantic model (see Section 2.2 on page 20), where we consider

the problem of representing and reasoning about type checking using set notation, and first-

order logic with quantification over types. For example, consider the following definition for

two record types, where . . . is a field declaration:

r1 = Record(name1, (...))

r2 = Record(name2, (...))

If we wanted to incorporate the check that r1 and r2 are both records, we could write

(r1 =⌧ r2), Record?(r1) ^Record?(r2) ^ (name1 = name2)

where Record? takes a type (as defined in the type system) and returns true if the type is

an instance of a Record type and was declared using the same name (i.e., the name of the

record). However, if we wanted our type checker to consider the structure of a record rather

than just its name, we could instead write

(r1 =⌧ r2), Record?(r1) ^Record?(r2) ^ (n1 = n2) ^
� n1̂

i=1

f1,i ⇠⌧ f2,i
�

113

which says that, in addition to our first definition, record types must have the same number

of fields (i.e., n1 = n2), and the ith field in r1 has to be type equivalent with the ith field in

r2, and vice versa.

5.3.1 Stages in Jiapi

The type system design process using Jiapi , from grammar specification to a working type

checker, has these parts to it:

1. Formally specify the types along with the set of rules for recognizing types with ex-

pressions.

2. For each type in the language, describe the action that is to be taken when an instance

of the type is recognized. The action is described using predicates, set notation and

first-order logic.

3. Write error-reporting routines.

We must follow these steps to turn this source code into a runnable program:

1. Run Jiapi on the type system specification file in order to produce the type checker.

2. Import the generated *.java file(s) for compilation.

3. Compile the code output by Jiapi , as well as any other required source files.

5.3.2 Structure of a Jiapi File

A Java Jiapi file has at least four parts to it: A header section (a header followed by an

optional options and declarations), a types section, a clauses section, and a type checker

specification section. The structure of the file is as follows:

{header, options and declarations}
%%
{atomic and constructed types}
%%

114

{clauses}
%%
{type checker}

It should be said that the file containing these sections must end with .jiapi. The %%

is a punctuation that appears in every Jiapi file to separate sections.

5.3.2.1 Header Section

This is the first section in the file. It includes source code that must come before any

generated code, such as a package and import statements. This is used to indicate the

package for the generated code, any imported classes, the file name, and the target language,

all of which can appear in any order. A header section could look like this:

file test 1

package demo; 2

use foo; 3

use bar.baz.foo; 4

use bar.baz.*; 5

use bar.baz{a as num1, b as num2} 6

After these declarations, there is a series of optional declarations that allow user code to

be inserted in the generated file. Next in the specification is the optional code requires

declaration which has the form:

code requires {: 7

... 8

:}

This declaration permits the inclusion of code directly within the generated file. Let us now

go through the part of the header line-by-line:

• file test 1 tells Jiapi that the type checker is called test and thus should be

located in a file called test.java.

115

• A package functions in the same way as it does in Java. The line package demo 2

specifies the location of the file and where the generated Java files should be placed.

Since Jiapi generates code in that same demo directory where this file is, the Java

compiler will anticipate classes in package demo to be in directory demo.

• An import statement can be used to import both a local file and a library file. For

example, the foo class is imported by the line use foo;, which is presumed to be in

the same directory demo 2 . A basic import statement, which fully defines the class

name as well as the package with absolute path, can be given if necessary, such as use

bar.baz.foo; 4 . This will import the file foo from the bar.baz package located

in a directory bar/baz. However, by specifying the file name as an asterisk (i.e., *),

we can import all files in a package, such as import bar.baz.*; 5 . We can also

provide alternative names for existing types (e.g., a as num1, b as num2 6).

This instructs the tool to use whatever defined alias there is or introduce a di↵erent

shorter name for names that are too long.

• code requires 7 is the optional section in the header (i.e., it does not need to be

present in the file), as it consists of optional code fragments. This is where we define

Java code to be included within the generated code.

Note that it is only permissible to declare valid data types as defined by the imple-

mentation language. Alternatively, an import statement in the header section should

be used to import user-defined data types.

Figure 23 lists the context-free grammar for a header declaration.

116

hprologuei ! hfilei hpackagei himportsi hcodei?

hfilei ! file ID

hpackagei ! package ID

himportsi ! use static? hqualified_namei�� use static? hqualified_namei . ∗�� use static? hqualified_namei { haliasesi }
hqualified_namei ! ID (. ID)*

haliasesi ! ID (as ID)?

hcodei ! code requires {: huser_codei :}

Figure 23. Context-free grammar for a header declaration.

5.3.2.2 Types Section

The first mandatory section of the specifications follows the user-supplied code: A lists of

types. These declarations are responsible for giving each type in the language a name and

a type, with each type being represented by a parse-tree node type. A types section could

look like this:

atomic { 1

boolean, 2

void, 3

[byte < short < int < long < float < double], 4

[char < int] 5

}

constr 1 ... ;6
...

constr n ... ;7

Let us take a look at each line individually:

• atomic 1 is used to group and create a type hierarchy (or type lattice). It is not

necessary for the hierarchy to be linear as it could branch; a branch is created after a

type (or group) is followed by a comma (,). For example, from this grouping, Jiapi

creates a directed graph and returns a two-dimensional array of nodes, where each row

and column represents a primitive type that might appear before all nodes to which

117

it points. In this lattice or hierarchy, some of these types might be ranked using the

ordering operator (or <⌧) and according to the group to which they belong, resulting

in a total ordering of the types; this is depicted in Figure 24.

, A =

2

66666666666664
by

te

sh
or
t

ch
ar

in
t

lo
n
g

fl
oa
t

d
ou

b
le

b
oo

le
an

vo
id

0 1 1 1 1 1 1 0 0 byte

0 0 1 1 1 1 1 0 0 short

0 0 0 1 1 1 1 0 0 char

0 0 0 0 1 1 1 0 0 int

0 0 0 0 0 1 1 0 0 long

0 0 0 0 0 0 1 0 0 float

0 0 0 0 0 0 0 0 0 double

0 0 0 0 0 0 0 0 0 boolean

0 0 0 0 0 0 0 0 0 void

3

77777777777775

double

float

long

integer

charshort

byte

Figure 24. Two-dimensional array of nodes.

• Each of the types boolean 2 and void 3 represent a sub-tree of a node in the type

hierarchy and, therefore, they are not part of any group and exist independently (as

seen in Fig. 13 on page 77).

• A pair of square brackets ([]) is used to create not only new groups of numeric types

within the atomic group but also atomic types without <⌧ that are not numeric, as

shown in 4 and 5 .

• constr ... 6 is the declaration of a pattern that will be used to type check con-

structed types. It is to be noted that, whereas atomic types can only ever have one

grouping, constructed types can have multiple declarations in the types section 7 .

Figure 25 lists the context-free grammar for creating a grouping of atomic types.

htypesi ! hprimiti_typesi? hconstructedi*
hprimiti_typesi ! atomic { hatomicsi }

hatomicsi ! hatomici (, hatomici)*
hatomici ! ID

118

�� hatomic_listi
hatomic_listi ! [helementsi]
helementsi ! hatomic_typei (< helementsi)*

hatomic_typei ! ID

Figure 25. Context-free grammar for atomic types.

5.3.2.3 Clauses Section

This section consists of declarations and logical statements, which often incorporate variables

that span sets of possible instances, referred to as universes. It is also � and exclusively

� used to create operators and operations that pertain to a node type. These operators

and operations can be re-implemented or use in other clauses. We use quantifiers to specify

that something holds for all possible instances or for some but possibly not all instances.

Declarations and statements are constructed from terms using the logical connectives ¬ (not),

^ (and), _ (or),) (implies or if-then), and , (equivalent to), that can be prefixed by 8

(universal) or 9 (existential) quantifiers, or be prefixed by a
V

(conjunction),
W

(disjunction),
S

(big-union), or
T

(big-intersection) of variables. Other symbols, such as 2 (in), ⇢ (subset),

\ (set-minus), [(union), \ (intersection), Ø (empty set), etc., from set theory may also be

used (see Table 8 on page 109 for more symbols).

A clauses section could look like this:

clause Class { 2

def Class?(t)= {: t.name == X :} 1

def t1 =T t2 <=> Class?(t1)/\ Class?(t2)/\ 3

t1.name = t2.name
def t1 ⇠T t2 <=> t1 =T t2 4

def t1 :=T t2 <=> t2 </_T t1 5

def t1 <:T t2 <=> t1 = t2 \/ t1 <:T super \/ \/ i in 1..n:
t1 <:T interfaces[i] 6

...
}

Let us go over the part of the clauses, line-by-line:

• clause Class 2 is used to group and create a list of operations that pertain to

119

types in the target language. A clause has a name, a number of predicates and

functions, a number of local variables introduced in the body, and the body itself.

Any local variables used in the body must be “forward-declared”; that is, for local

variables, they must either represent the same clause, a constructed type, or one of

the members of its constructed type equivalent. For instance, we may have a variable

of type Class, any constructed type that was previously defined, or one of the atomic

types � as defined earlier in the atomic type section � in the body of the above clause.

Predicates and functions behave similarly to how they would in a language like Java.

• We define the =⌧ operator in 3 , and use the a predicate in 1 to determine if two

types t1 and t2 are classes.

• Using the definitions for t1 and t2, we proceed to define the ⇠⌧ operator in 4 and

the :=⌧ operator in 5 .

• Finally, we implement a new operator � the subtyping operator (�⌧) � for classes

in 6 . Note that the above clause is a description of what, in a language like Java,

defines a class as a class. Therefore, a clause typically has access to all the components

that are relevant to its constructed type equivalent. This means that we access these

elements in the same way that we would access members of a class, with the exception

that their access modifier is public by default.

Figure 26 lists the context-free grammar for a clause declaration.

hclausei ! clause { ID | atomic) hclause_bodyi* }
hclause_bodyi ! hfield_declarationi | hmethod_declarationi

hfield_declarationi ! static? (def | let) ID (: htypei)? (<- hexpressioni)?

hmethod_declarationi ! def ID (hparamsi?) (hreturn_typei | =) hexpressioni�� def ID hoperatori ID equival hexpressioni

Figure 26. Context-free grammar for a clause declaration.

5.3.2.4 Type Checker

Jiapi permits the user to embed actions in the form of visits for type checking.

120

action ClassType for ct{
T(ct)!= nil => return T(ct) 1

def cd = new Class()
T(ct)= cd 2

return T(ct) 3

}

The action statement above, for example, defines a block of code that is embedded into

the type checker visitor. It is clear that action names are referred to by the name of the

variable that represents a syntactic node, and they are executed when a type computation

of the form ⌧ (...) takes place 1 . However, if the type of a node is already known, and if

⌧ (...) appears to the left of an assignment expression 2 , then it becomes a getter method;

otherwise, it becomes a setter method as it appears anywhere as in the return statement

3 . We should emphasize that the placement of action is entirely up to the user due to the

compositional nature of the visitor pattern.

Figure 27 lists the context-free grammar for the type checker section.

htype_checkeri ! hfield_declarationi�� haction_declarationi
haction_declarationi ! action htypei for ID hreturn_typei? hblock_expressioni

Figure 27. Context-free grammar for a clause declaration.

5.3.3 Describing Primitive Types

Any type that a program can use but cannot build using type constructor is an atomic

(or primitive) type in the language. Numeric types such as integers and doubles, as well

as booleans, characters, and, in some languages, strings, are examples of atomic types, so

we can describe them by their names alone. Table 14 summarizes the primitive types in

Espresso.

121

Table 14. Primitive types and their representation.

Atomic Types
Type Representation

byte byte
short short
char char
integer integer
long long
float float
double double
boolean boolean
void void

5.3.4 Describing Constructed Types

Any type that a program can construct from existing atomic types or other constructed

types created using the language is a constructed (or structured) type in the language. Some

examples of constructed types are records, classes, interfaces, unions, and enumerations.

Although each language has its own set of types and rules for describing them, we use

patterns in order to describe them in a more general manner. In Jiapi , patterns are used

to match values to structures and, in some cases, to bind variables to values within these

structures. They are also utilized in variable declarations and parameters for functions (or

methods). Figure 28 shows a pattern made up of just five terms and all possible recursive

combinations. (Note, a word in italic font represents a “tag”46.) An example of a recursive

data type, for reference types only, is given in Section 5.3.4 on page 124.

constr Record (name: name, (name: name, type: type)+: name)

1 2 3 4 5

Figure 28. Pattern for constructing a Record data type.

The notation in Figure 28 appears to be slightly di↵erent from that of a meta-

46 In Jiapi , a tag is a reserved word use to distinguish what constitutes a name from a type.

122

syntax47 [233, 234], but it is not:

1. Creates a constructed type called Record.

2. Assigns a name to the constructed type.

3. Creates a collections of values, where each component is identified by a di↵erent field

name and type.

4. At least one field will be present in the collection.

5. Assigns a name to the collection of values, which is used as an accessor in the generated

code.

Using this pattern, we can construct a record named name with fields ni of type ti for

i 2 1..m, in order, where a field is declared like a local variable with a type and a name.

Note that this pattern (which we shall refer to as type constructor) is used to represent a

record data type during type checking. Thus, from a constructive point of view, a type is

either one of a narrow set of built-in types (e.g., integer, character, boolean, etc., which are

often known as primitive or predefined types) or a composite type generated by applying a

type constructor to one or more simpler types. For example, the following snippet of code

demonstrates the red, green, and blue properties (a fixed set of primitive types) of a Color

struct in C#.

struct Color {
byte red;
byte green;
byte blue;

}

Here, we verify that the above type matches that expected by its pattern. A Record

pattern, therefore, matches record values that match all criteria defined by its sub-patterns

or terms (e.g., its fields are referenced by name and their types by type respectively), which

are also use to destructure (i.e., break up) the record.

47 Informally speaking, a meta-syntax is a shorthand for the phrase “meta-language syntax”.

123

Now, how do we compose a type and defined operations on them? One way to do this is

by parameterizing the expression of a type as seen below.

Record(name, ((n1, t1), ..., (nm, tm))) (5.1)

One may want to think of (..., (...)) as the signature of the type constructor. Intuitively,

the Record type constructor takes a pair consisting of a name and a collection of values

stored together as one, where each component is identified by a di↵erent field name, ni, and

type, ti. Therefore, the Color struct has the following type:

Record(Color, ((r, byte), (g, byte), (b, byte)))

For convenience, we may use “syntactic sugar” as a shorthand; that is, we may intro-

duce multiple parameters to an expression using the positive closure (or +) as a shorthand

for ((n1, t1), ..., (nm, tm)) only to make notation on paper more clear and examples more

comprehensible; therefore,

(n, t)+ = ((n1, t1), ..., (nm, tm))

Note that this abbreviation has already been used in Figure 28. Let us now move on onto

recursive patterns.

A recursive data type is one that can contain other values of the same type as a prop-

erty [3, 5]. Often, when we want to construct dynamic data structures, we use recursive data

types, such as lists or trees, and depending on our run-time needs, the size of these dynamic

data structures can expand or shrink. For example, a linked list node has a recursive struc-

ture that includes both data and computation, requiring the adoption of a recursive pattern.

The snippet of code for a node element, such as

struct node {
int data;
node next;

}

defines the recursive type node as a class that contains a field data and a field next of

type node. As a result, this linked list can be of the following type:

124

Record(node, ((a, int), (next, node)))

Note that one of the expressions, namely (next, node), is recursive: It is defined in terms

of a Record type. Recursion naturally captures the tree structures found in programming

language syntax. For example, we can expand the expression next (which is demonstrated by

thin red dashed lines) to show how a Record type is structured recursively. Here, subscripts

are used to keep track of multiple occurrences of the same type expression in Figure 29.

⟨Record.⟩

⟨name.⟩ ⟨field-decls.⟩

⟨name1.⟩⟨type1.⟩node

data1 int1

⟨name2.⟩⟨type2.⟩
next1 node

next

data2 int2 next2

Figure 29. Recursive type expression.

As a common rule, when analyzing the structure of a data type, it is important to remem-

ber that we are interested in the abstract syntax of its type constructor (e.g., Pattern 5.1)

rather than the concrete syntax of the type (e.g., the correct syntax for writing a struct

in C#). In such case, we prefer to think of type constructors as abstract syntax trees, and it

should be obvious that brackets ((), [], or { }) are simply a means to describe these

two-dimensional tree-like data structures as a linear character of strings. The goal is to pair

each language construct with an expression that describes its type but without adding a

new form of expression to the abstract syntax. This is done so that a type constructor can

define type expressions inductively from fundamental � or basic � types and constants. An

object-oriented approach to dealing with type constructors proceeds as follows:

1. Identify the components of the constructed type.

2. Encapsulate those components into a class.

3. If necessary, include “hooks” in the class to access needed information stored in a

di↵erent location.

125

Figure 30 depicts the entire scenario. The visitor pattern [63, 64] is then applied to define

the actions for operating on the type, which allows us to control when certain actions are

performed: On the one side, we have data access, which understands how to traverse a data

structure, while on the other, we are focused on a specific computation that needs to be

executed. Whether it is a pre-order, an in-order, or a post-order traversal, or a combination,

this can also be done by hand after extending the visitor pattern. The end result is a reusable

and extendable system of cooperating objects that is also simple to understand and maintain.

struct node {
 int data.;
 node next.;
}

Concrete Syntax

⟨Record.⟩

⟨name.⟩ ⟨field-decls.⟩

⟨name1.⟩⟨type1.⟩

Abstract Syntax Tree

Record (name: name, (name: name, type: type)+)

Abstract Syntax

node

data int

class Record {
 String name;
 List fields;

}

class Field {
 String name;
 Type type;

}

“hooks”

Object Approach

...

...⟨name2.⟩⟨type2.⟩

next node

Figure 30. Transformation from concrete syntax to abstract syntax tree to object-oriented

approach.

5.3.5 Patterns for Constructed Types

A constructed type can have several patterns listed, each having di↵erent elements used to

described it. In simple cases, it is su�cient enough to provide:

1. A line that declares the name of a constructed type, such as

constr Record| {z }
name

(...)

2. A list of names and types, such as

constr ... ((n1, t1), ..., (nm, tm)| {z }
list of names
and types

)

with fields name ni of type ti for i 2 1..m

126

3. A type followed by a list of names, such as

constr ... (t, (n1, ..., nm)| {z }
list of names

)

with fields name ni of type t for i 2 1..m

4. A meta-character that precedes a name, a type, or follows a list (a sequence of

elements), such as

constr ... ((n, t)+) or constr ... (t, (n)+)
| {z }

list of names
and types

positive

closurez}|{

same
type

|{z}
list of
names

positive

closurez}|{

5. A range operator that represents a set of elements greater or equal to � or less or equal

to ⌘, where � and ⌘ are placeholders for real values, such as

constr ... (..., [�..⌘])

A range of values can be matched using the binary operator [..]. The expression

[�..⌘] matches characters in that range inclusively, and only the lower, �, and upper,

⌘, bounds are stored in the implementation of this operator, making it lightweight. We

use the range operator to determine the length of an array or list; for example, for a

declaration

int a[5];

we can use the range operator as follows:

constr Array| {z }
name

(int, [0..5]) or constr Array| {z }
name

(int, [])
|{z}
type

range

operatorz }| {

|{z}
type

empty
rangez}|{

lower
bound

upper

bound

127

As we shall see later, these patterns are used to destructure a constructed type into its

constituent elements during code generation, thus making static type-checking easier. The

syntax used is almost the same as when creating such types. Figure 31 lists the context-free

grammar for creating constructed types.

hconstructedi ! ID hcontructed_listi
hcontructed_listi ! (hconstructed_elementi*)�� { hconstructed_elementi* }�� [hconstructed_elementi*]

hconstructed_elementi ! ID (+ | ∗ | ?)? : id�� ID (+ | ∗ | ?)? : ID�� ID (+ | ∗ | ?)? : type�� ID hrange_inclusivei ID : ID�� hconstructed_listi (+ | ∗ | ?)? : ID

Figure 31. Context-free grammar for a constructed type declaration.

5.3.5.1 Sequence of hconstructed_listi

Recall, constructed types define data structures that contain various types of data members

(e.g., constants and fields, such as methods, properties, operators, etc.) that may need to

be type checked in a number of ways. The big question here is: How should these data

members be traversed when writing a source-to-source translator for a language? The idea

is to decouple some behavior from a collection of data and the structure that contains

them. Typically, a data set could have an accept() method that iterates over all values and

later calls a visitor.visit() method for each value [5], allowing the visitor to see all of the

values. Unfortunately, the standard visitor pattern is incapable of traversing a hierarchical

structure48, leaving us with only two options: (1) use an alternate method of traversal or (2)

search all branches with no chance of matching.

We will use the former approach in this thesis to allow operations to be performed on

the nodes of a hierarchical object structure, as explained in Example 8.

Example 8 (Constructed Type: Record): As seen before, atomic types equivalence

is usually straightforward to establish; for example, an int is only equivalent or equal to

48 It does not support traversal depth tracking or short-circuit branch traversal [235].

128

another int, a double is only equivalent to another double, etc. The ability to determine

the equivalence of constructed types is also required in many languages. When dealing with

constructed types, however, one typical strategy is to store the essential information defining

the type in tree structures. Consider the same recursive type node (from Section 5.3.4 on

page 124) but with one additional field (prev):

struct node {

int data;

node next;

node prev;

}

hRecordi

node (prev)

......int (data)

node (next)

......int (data)

int (data)

Figure 32. Basic information defined as a tree structure.

Here is a set of rules for building such tree:

Type Description

record one subtree for each field
atomic one subtree
reference one subtree containing the type that the pointer refers to

Checking the equivalence of two types becomes a straightforward recursive tree operation

if we store the type information in this way. The following is an outline of a recursive

structural equivalence test:

129

Input: Types ↵ and �

Output: true if the types are structurally equivalent

1 Function structuralEquivalence

2 if ↵ and � are struct types 1 then

3 if |↵| 6= |�| then

4 return false

5 result = true

6 8ti : 8tj : ti 2 ↵ ^ tj 2 �: result &= structuralEquivalence(ti, tj)

7 return flag

8 if ↵ and � are primitive types 2 then

9 t↵ = ↵ as primitive type

10 t� = � as primitive type

11 return t↵ == t�

12 if ↵ and � are reference types then

13 return ↵ == �

14 return false

Algorithm 1: A simple visitor pattern for structural equivalence.

The method is rather simple, but is it guaranteed to terminate? Our record type is

recursive (i.e., it contains a reference to a record of the same type), so we need to be careful

when traversing the tree in 1 ; otherwise, the visit invocations in 2 will never execute. To

get around this, we could “mark” the tree nodes as we traverse the tree, allowing us to detect

cycles and limit equivalence on reference types. Doing this would require keeping track of

when we enter and exit a constructed type, with each call of accept() returning a boolean

traversal status for the tree’s depth. For example, if accept on a constructed type answers

true, the traversal immediately stops at that tree depth.

The standard visitor can only tell us when we are entering a node (i.e., a constructed

type). We have no idea if we exited the prior node before entering the current one; therefore,

we cannot track when we are entering and leaving a node. Since we cannot implement

this strategy using the traditional visitor pattern, we device the following patterns to allow

conditional navigation. These patterns will enable us to skip unnecessary branches and all

of their children.

130

5.3.5.2 Elements and Patterns

Each element and language construct pertaining to Jiapi is described below. We use the

character ↵, �, or � to refer to an element without a tag, and use the term group to describe

the sequence of elements ↵, �, and � enclosed in one of these: (), [], or {}. Whenever

needed, and for the remaining of this chapter, we will use [[]] to indicate that either (), [],

or {} may be used, except where noted. We also use the � operator to indicate that either

?, +, or ∗ may be used, except where noted.

Elements

An element is either a name preceded by a tag, which can be one of these:

• name: name

• type: name

or a group enclosed in brackets followed by an optional closure operator, and an optional

colon and name, such as:

• [[...]] � : name

Patterns

• Pattern #1: A group enclosed with round brackets (()) represent an ordered se-

quence of elements. This guarantees iteration order over each of their elements, which

is normally the order in which elements were inserted into the sequence (insertion-

order), provided that the sequence is not structurally modified at any time (i.e., we do

not make any insertions while traversing a sequence of elements). Note that the symbol

!i (meaning left-to-right) represents the order traversal of elements in a sequence of

steps i. For example, the sequence

(↵ � � (↵' �' �'))

can be traversed as follows

131

1. !1 ↵ !2 � !3 � !4 (!5 ↵' !6 �' !7 �')

which means “match ↵ � and � sequentially”, then “match ↵0 �0 and �0 sequentially”.

Here is the familiar visitor pattern operating on this sequence in a depth-first walk.

visitor

visitX() ()

()

�'�'↵'

��↵
visit↵()

visit �() visit�()

visit↵0()
visit �0()

visit�0()

• Pattern #2: A group enclosed with curly brackets ({}) represent an unordered

sequence of elements. Since elements in an unordered sequence are just that, unordered,

it does not matter whether groups are enclosed in the same or di↵erent pairs of brackets.

Put di↵erently, there is no first, last, or, in general, i-th element in the sequence. For

example, the sequence

{↵ � � {↵' �' �'}}

can be traversed as follows

1. !1 ↵ !2 � !3 {!4 �' !5 ↵' !6 �'} !7 �

The diagram shown below shows a “random” walk, represented by the thick dashed

line.

visitor

visitX()
{ }

�{ }

�'↵'�'

�↵
visit↵()

visit�()

visit �0()
visit↵0()

visit�0()

visit �()

It also can be traversed in two other ways, such as

132

(b) !1 {!2 �' !3 �' !4 ↵'} !5 � !6 � !7 ↵

(c) !1 � !2 {!3 �' !4 ↵' !5 �'} !6 ↵ !7 �

Although there are several ways to traversed the above sequence, as it is unordered,

the element order should be implicit in the syntax of the constructed type; that is,

the tree structure that should be produced from the constructed type is traversed in a

left-to-right depth-first order.

• Pattern #3: A group enclosed with square brackets ([]) represent a required se-

quence of elements. By default, only one element is required if included in () or

{}. This is because not all elements in a constructed type might be needed (e.g., a

class may or may not extend another class or a group of classes, or may or may not

contain fields). However, it is sometimes necessary to “explicitly” labeled words as

required using square brackets (i.e., if we required a class to have fields then we make

it so by enclosing an element � or a group � in []). For example, when grouping

mutually-exclusive elements in () or in {}, like in the following sequence

(↵ ↵' [{� �}1 {�' �'}2])

only one element in the sequence (↵ ↵'...) (i.e., ↵ or ↵0), and in the first sequence of

{� �} (i.e., � or �) and second sequence of {�' �'} (i.e., �0 or �0) would be required.

The entire sequence can then be traversed as follows

1. !1 ↵ !2 [!3 {!4 � !5 �} !6 {!7 �' !8 �'} !9]

The diagram shown below represents a “random” walk by the thick dashed line. In

addition, although ↵0 is present, it is assumed to be absent from the tree and is repre-

sented by a thin dashed line.

133

visitor

visitX() ()

[]

{ }

�'�'

{ }

��

↵'↵
visit↵()

visit �()

visit�() visit �0()

visit�0()

It can also be walked in a number of di↵erent ways, including

(b) !1 ↵' !2 [!3 {!4 � !5 �} !6 {!7 �' !8 �'} !9]

(c) !1 ↵ !2 [!3 {!4 �} !5 {!6 �'} !7]

(d) !1 ↵' !2 [!3 {!4 �} !5 {!6 �'} !7]

(e) !1 [!2 {!3 � !4 �} !5 {!6 �' !7 �'} !8]

Note that groups enclosed in square brackets will always appear in any given sequence

as they are required; therefore, both {...}1 and {...}2 are required.

These elements and language constructs, when combined, form valid patterns, each start-

ing with a keyword followed by a constructed type name. For example,

constr name [[...]]

creates a constructed type named name consisting of elements (1), and either pattern (1),

pattern (2), pattern (3), or a combination of them inside brackets ([[...]]). We will put some

of these patterns to use next.

5.4 Representing ProcessJ protocols in Jiapi

Early on in the chapter, we used a few of these patterns to describe the structure of a record

type. Let us now apply these patterns again to define a construct that is more complex,

such as that of a protocol in ProcessJ [11]. Protocols are comparable to unions in C, except

that they are used to specify the structure of a single message sent over a channel [21, see

134

Section 6.2.1]. A protocol is a type with one or more elements indexed by a tag-name, which

is a list of variables preceded by their data types, separated by semicolons, and enclosed by

curly brackets. The following is a general layout for a variant protocol:

Protocol hnamei (extends name (, name)*) { htag-declsi+ };

where htag-declsi is a declaration of the form

tag : { (fields;)* }

A example variant protocol can be defined as follows:

protocol Alternatives {
dog: { int i; }
car: { string s; double d; }
pig: { Packet p; }
canary: { Message m; }
poison: { }

}

where Packet and Message are some named types. From the layout and definition, we

conclude that a protocol must have at least one tag-name, and this tag-name may or may not

be followed by an empty pair of {}. We can create a type constructor for such protocol using

the preceding patterns, where [] denotes that anything in between [and] is required, and

everything else is optional. So, for Figure 33

Protocol(n,

An exception is thrown

if the set is emptyz }| {
((tag1, {(n1,1, t1,1), ..., (n1,m1 , t1,m1)}),
(tag2, {(n2,1, t2,1), ..., (n2,m2 , t2,m2)}),
...,
(tagk, {(nk,1, tk,1), ..., (nk,mk

, tk,mk
)}

| {z }
Optional set, no exception

is thrown

))),

9
>>=

>>;
At least one element/term

is required

Figure 33. Decomposition of a ProcessJ Protocol.

the corresponding type expression is given in Figure 34.

135

constr Protocol(name: name, [name: name (name: name, type: type)+: fields]+:tags)

Figure 34. Patterns for constructing a Protocol data type.

Ordering Operator (<⌧)

We can also define the order operator (<⌧) for protocols in the same way that we did for

atomic types using the same approach as we did for Espresso’s constructs. To begin, we

must first understand the di↵erence between object inheritance in a language like Espresso

and protocol inheritance in ProcessJ. Let us consider object inheritance first. Assume we

have the following code

class A {
int a;

}

class B extends A {
int b;

}

then a variable of type A can hold a reference to an object of type B; however, a variable of

type B cannot hold a reference to a variable of type A. To understand why assume that a

variable of type A could hold a reference to an object of type A, and consider the following

code

...
B tmp = new A();
tmp.b = 100;

Clearly, the b field does not exists in the A object. Now consider the following ProcessJ

declarations:

136

protocol A {
a1: { ... }
a2: { ... }

}

protocol B extends A {
b1: { ... }
b2: { ... }
b3: { ... }

}

We encounter the same issue as we did with object if we are not careful. For example, if

the following code was legal we would have a problem:

B b = ...
... b.b3 ...

The problem here consists of the unchecked access to the variant cases of b. In ProcessJ,

all access to protocol variables must happen in a tag-guarded switch statement. This way the

compiler can assure that the wrong fields are never accessed. Since inheritance for protocols

in ProcessJ operates in the opposite direction to that of Espresso’s, we can say that one

protocol type is less than another if its cases are a subset of the other � that is, we take

both names and types into consideration. So for two general (protocol) types p1 and p2, we

have:

(p1 <⌧ p2), (p1 �⌧ p2) _ (9X : X �⌧ p2) ^ (X �⌧ p1)

where p1 �⌧ p2 means that p1 extends p2; namely, if p1 either directly or transitively extends

p2. The last part comes from observing that �⌧ applied transitively gives (X �⇤
⌧ p1),

meaning that p1 =⌧ X and which further gives us X <⌧ p1. Trivially ⌧ is defined as

(p1 ⌧ p2), (p1 =⌧ t2) _ (p1 <⌧ t2)

assuming that p1 and p2 are both already protocol types. Note that if needed, the ceiling

function can be applied to protocol types as well.

137

Type Equality (=⌧) and Type Equivalence (⇠⌧)

We can also express the =⌧ operator for protocols in ProcessJ in terms of name equivalence

thanks to what we learned in Chapter 4. For two such types to be the same, they have

to be the same type name. Therefore, for two protocols types p1 = Protocol(n1, (...)) and

p2 = Protocol(n2, (...)), we obtain

(p1 =⌧ p2), Protocol?(p1) ^ Protocol?(p2) ^ (n1 = n2)

Note that type equivalence is equal to type equality so, therefore, for two protocol types

p1 and p2, we have:

(p1 ⇠⌧ p2), (p1 =⌧ p2)

Assignment Compatibility (:=⌧)

Last but important, assignment compatibility of protocol types is also straightforward, as

discussed when we defined the ordering operator. Thus, for two protocols p1 and p2, we

have:

(p1 :=⌧ p2), Protocol?(p1) ^ Protocol?(p2) ^ (p1 ⌧ p2)

In a similar manner, we could define a type ordering of record types, but we will leave

that as an exercise for the reader.

5.5 Back to Record Types

Now that we have returned to records, we will make use of one as a small case study to

demonstrate the representation of simple typed �-calculus rules in Jiapi syntax. Recall,

Records (or structs) are a stylized form of tuples that can be accessed via mnemonic field

names. Both are product types that can be generalized in a straightforward manner to n-ary

products [236]. For example, h4, “jiapi”, truei is a 3-ary tuple with a type int ⇥ string ⇥

boolean because it contains an integer, a string, and a boolean value. A record type can

therefore be written as

{`i : ⌧i, ..., `n : ⌧n}

138

for i 2 1..n, where `1, ..., `n are distinct field names (or identifiers) and ⌧1, ..., ⌧n are types.

This record type is essentially a notational variant of the product type ⌧1⇥ ...⇥ ⌧n, although

the main di↵erence is that records have subtyping property. It is worth noting that the

notation used above is equivalent to

{̀ i : ⌧i}

where `i : ⌧i = `1 : ⌧1, ..., `n : ⌧n.

Let us now write part of the grammar for a record value and its type, as shown in

Figure 35. This is a slightly di↵erent variation of [114, Figure 11-7] and [237]:

Extensions:
record e = ... {̀ i = ei}

field access
�� e.n

record value v = ... {̀ i = vi}
record type ⌧ = ... {̀ i : ⌧i}

Figure 35. Grammar for a record type.

where `1, ..., `n are labels and e1, ..., en are corresponding fields. Record fields are accessed

via the • operator (the extraction operator), so if r is a record, then r.x is a field of this

record. The order in which the fields are listed in {̀ i = ei} and {̀ i : ⌧i} matters (at least

for our small example); that is, the type of the record value {age=50, name="Matt"} is

{age:int, name:String}, which is di↵erent from {name:String, age:int}, the

type of the record value {name="Matt", age=50}. Thus, we write the type of a record

as

{age=50, name="Matt"}:{age:int, name:string}

and use the extraction operator to access individual field values, such as

{age=50, name="Matt"}.age

139

Typing Rules

In the same way that tuples have a type system, we can do the same for records. Here are

the typing rules for the terms dealing with record types:

(8i) � ` ei : ⌧i
(1)

� ` {̀ i = ei} : {̀ i : ⌧i}

� ` e : {̀ i : ⌧i}
(2)

� ` e.`i : ⌧i

(8i) : (9j) : `0i :=⌧ `j ^ ⌧j �⌧ ⌧ 0i
(3)

{̀ j : ⌧j
j 2 {1..m}

} �⌧ {̀
0
i : ⌧

0
i

i2 {1..n}
}

Figure 36. Typing rules for a record

� contains all of the information needed to type check expressions, as well as the types of

elements a record contains. The first rule states that for each expression e of type ⌧ , the

form {̀ i = ei} evaluates to a record, which has a record type {̀ i : ⌧i} in the typing context

� . The second rule is the selection operation, which allows us to select a component of a

record under the assumption that such component � annotated with a label ` � has type

⌧ . Therefore, if an expression e is a record type in the typing context � , then we can access

each field of record e using the • operator. The third rule is a little bit more involved as it

requires to take into account the depth and width of records. Consider the example below.

Example 9: Is it required for the subtyping relation between two records to have the

same number of fields? Before we answer this question, let us define the type Person to

be a record type {fname:string, lname:string}, that contains two fields fname and

lname, both of type string; that is

Person = {name:string, lname:string}

Let us also define

Student = {name:string, lname:string, id:int}

140

as the type of a record with two string fields and one integer field.

It seems reasonable to say that Student could be a subtype of Person because Student

contains all of the fields of Person, and those fields have the same type as the Person’s fields.

Also, observe that the subtype contains more elements than the supertype in this example.

Of course, this is identical to the connection between a subclass and a superclass, in which

the subclass has all of the superclass’s components, which it inherits from the superclass,

but may also have components that the superclass lacks. Now, given that a variable of a

superclass type can hold a reference to an object of subclass type, then any piece of code

that uses a value of type Person can use a value of type Student. Thus, we get

Person :=⌧ Student

and therefore, we define

Student �⌧ Person

Bearing this in mind, the final rule says that for two general records types r1 and r2, each

of the form {`1 : ⌧1, ..., `n : ⌧n}, if ⌧ �⌧ ⌧ 0, then this implies that anything of type ⌧ can be

used in a context expecting something of type ⌧ 0. However, if ⌧ has fewer elements ` than

⌧ 0, then there will be values of type ⌧ for which no corresponding reference exists whenever

the context requires something of type ⌧ 0.

Finally, one thing to note is that we could have defined the depth and width separately

(see Figure 37), but we chose to merge them into a single rule represented by the third rule.

(8i) ⌧i �⌧ ⌧ 0i
depth

{̀ i : ⌧i
i2 {1..n}

} �⌧ {̀ i : ⌧ 0i
i2 {1..n}

}

m n
width

{̀ i : ⌧i
i2 {1..m}

} �⌧ {̀ i : ⌧ 0i
i2 {1..n}

}

Figure 37. Additional typing rules for a record.

Jiapi ’s Rules

We will now retrace the steps and rewrite the rules using Jiapi . Let us start with the first

rule.

141

(8i) � ` ei : ⌧i
(1)

� ` {̀ i = ei} : {̀ i : ⌧i}

We use the notation recordvalue(idR) to denote the value of a record with name idR in

� . The result of recordvalue is a record value type of the form {̀ i = ei} : {̀ i : ⌧i}. The

definition of recordvalue is:

idR = {`i = ei, ..., `n = en} 2 �

recordvalue(idR) = {̀ i = ei} : {̀ i : ⌧i}

Additionally, redcordname is a function that returns the name of a record type, and so we

have:

recordname(idR = {`1 : ⌧1, ...`n : ⌧n}) = idR

When everything is combined, we obtain

rule1(id) , 8x 2 Dom(�) : tR ⌧ � (x) ^
Record?(tR) ^ recordname(tR) = id)
recordvalue(id),nil

where Record?(⌧) is a predicate function that evaluates to either true or false depending on

whether or not ⌧ is a record type, and Dom(�) is the collection of all variables (identifiers)

that exists in � . Since Dom(�) is the collection of variables ei for i 2 1..m, then � (ei)

represents the type ⌧i associated with ei49.

The second rule is similar, only we must define a function that either returns a record

type’s field or allow us to access the record type’s field if such record exists.

� ` e : {̀ i : ⌧i}
(2)

� ` e.`i : ⌧i

We use the notation recordfield(R) to denote a type environment constructed from the

fields of record R and the fields of the superclass of R if such exists. (This is needed for the

third and final rule.) Note, the fields in R take precedence over the fields in the superclass

49 Dom(�) and � (e) can be implemented as functions.

142

of R. The definition of recordfield is:

idR = {`1 : ⌧1, ...`n : ⌧n} 2 �

recordfield(idR) = {{`1 : ⌧1, ...`n : ⌧n }}

or

idR = {`1 : ⌧1, ...`n : ⌧n} 2 �
idRs = {`1 : ⌧1, ...`n : ⌧m} 2 �
idR �⌧ idRs

recordfield0(idR) = recordfield(idRs) • {{`1 : ⌧1, ...`n : ⌧n }}

Putting everything together, we obtain

rule2(id, `) , 8x 2 Dom(�) : tR ⌧ � (x))
Record?(tR) ^ recordname(tR) = id)
8y 2 Dom(�) : ↵ ⌧ � (y) ^Record?(↵) ^ tR �⌧ ↵)
recordfield0(id).`, recordfield(id).`,nil

For the third and final rule

(8i) : (9j) : `0i :=⌧ `j ^ ⌧j �⌧ ⌧ 0i
(3)

{̀ j : ⌧j
j 2 {1..m}

} �⌧ {̀
0
i : ⌧

0
i

i2 {1..n}
}

we obtain

rule3(id, id0) , 8x, y : x 2 Dom(�) ^ y 2 Dom(�))
tR ⌧ � (x) ^ ↵ ⌧ � (y) ^Record?(tR) ^Record?(↵) ^
recordname(tR) = id ^ recordname(↵) = id0)
8a, b : a 2 recordfield(tR) ^ b 2 recordfield(↵))
a.` :=⌧ b.` ^ b.` �⌧ a.`) true, false, false

143

Chapter 6

Case Studies

6.1 Introduction

In order to evaluate the e↵ectiveness of our meta-language and the general usefulness of

our tool for formal usability, we provide two case studies: Espresso from Chapter 4, and a

pedagogical language based on high-level design principles referred to as C-Minor [238]. We

initially provide separate descriptions of the two case studies and their results. For each

study, we first present their type system specification in Jiapi . Next, we show a side by

side comparison between the code generated by the tool and their implementation using

first-order logic and set notation. After having presented both cases studies, we discuss the

results and compare the two case studies. Our approach actually reduces the user e↵ort

required to construct a type system for general and domain specific languages in comparison

to the verification systems we examined in Chapter 7.

6.2 Espresso

As a first case study, we use a subset of Java, which we introduced at the beginning of

this thesis and thoroughly examined in Chapter 4. There, we formalized parts of the type

system specification using operational functions (such as type predicates, type equality, type

equivalence, and type assignment compatibility) and using typed �-calculus. We now use

Jiapi to specify the same exact type system. We adhere to the specifications presented in

Chapter 4 as closely as possible. However, minor deviations from these specifications are

144

occasionally required to accommodate the features available in Espresso, which we will name

in the following text.

6.2.1 Specification of Espresso

We have only discussed theoretical calculi for language design thus far, but the goal is to

implement a language that follows these rules in practice. So we begin by presenting the top-

level component of Espresso’s type system specification in Jiapi , which is the TSType class.

The specification of primitives and some of the constructed types is then introduced, along

with code snippets. We note that, in this subsection, we will omit some specific annotations

for auxiliary functions and start with the basic structure of the current implementation of

Espresso. Bear in mind that this is the code that the tool generates.

We have implemented all the types in a TypeSystem package:

M1-Air:EspressoNew matt$ ls -l src/TypeSystem/
total 48
-rw-r--r--@ 1 matt staff 2204 Jun 11 16:22 TSArrayType.java
-rwxr--r--@ 1 matt staff 2832 Jun 11 16:30 TSClassType.java
-rw-r--r--@ 1 matt staff 1084 Jun 30 19:58 TSError.java
-rw-r--r--@ 1 matt staff 3802 Jun 11 16:34 TSMethodType.java
-rwxr--r--@ 1 matt staff 735 Jun 10 14:49 TSNullType.java
-rwxr--r--@ 1 matt staff 3922 Jun 11 16:52 TSPrimitiveType.java
-rwxr--r--@ 1 matt staff 3046 Jun 10 14:39 TSType.java

Figure 38. TypeSystem package.

The actual type checker will be in a file called TypeChecker.java in the package

TypeChecker:

package TypeChecker;

import Utilities.Visitor;
import AST.*;
import TypeSystem.*;

public class TypeChecker extends Visitor<Object> {
...

}

145

6.2.2 The Semantic Type System

The type system utilizes types classes starting with the prefix TS. The super class of all

semantic types (which are created from a clause declaration) is the TSType (implemented in

the file TSType.java). Naturally, this super class is the place where we want all predicates,

functions, and “global” variables to exists. This is because many derived classes can reuse

or utilize these fields as they are eventually converted into member fields of the super class

in the generated code. The generated class for TSType is given below:

public abstract class TSType {
public abstract boolean equal(TSType other);
public abstract boolean equivalent(TSType other);
public abstract boolean assignmentCompatible(TSType other);
public abstract String typeName();
...

}

As we can see, there are four abstract methods that must be implemented – three of

which are directly related to type checking; these are as follows:

• equal() � the type operator =⌧ .

• equivalent() � the type operator ⇠⌧ .

• assignmentCompatible() � the type operator :=⌧ .

• and finally typeName() which technicality is not needed for the semantic type checking,

but is used to produce readable output and user-friendly error messages.

In addition to these four methods, a number of predicates will be generated based on the

type system. One predicate for each primitive type and constructed type will be generated.

For example, from this atomic type specification (the complete specification is given in

Figure 39 on page 154)

146

atomic {
boolean,
string,
void,
[byte < short < int < long < float < double],
[char < int]
}

the following code is generated:

...
// integer_?()

public boolean isInteger() {
return false;

}

// long_?()

public boolean isLong() {
return false;

}
...

As a default, all these are implemented to return false in this class. They will be re-

implemented to return true in the classes that represent the respective types. Finally, the

user-defined predicates will also be implemented to return false. For Espresso, we have just

two:

// Numeric_?()

public boolean isNumeric() {
return false;

}

// Integral_?()

public boolean isIntegral() {
return false;

}

147

6.2.3 The Primitive Types

In Espresso, not everything is an object. A subset of data types known as primitive types

are used quite often. Recall, the list of primitive types in Espresso is as follows:

Table 17. Espresso’s primitive types

Name Numeric Integral

byte X X
short X X
char X X
integer X X
long X X
float X
double X
string
void

In the implementation, rather than creating a separate file for each primitive type, we

bundle them together into a single primitive type file. A class TSPrimitive is implemented

as follows:

public class TSPrimitive extends TSType {

// Type lattice of primitive types

public final static boolean[][] atomicHierarchy = ...

// Constants defining the primitive types

public final static int BOOLEAN = ...
public final static int CHAR = ...
public final static int BYTE = ...
public final static int SHORT = ...
public final static int INT = ...
public final static int LONG = ...
public final static int FLOAT = ...
public final static int DOUBLE = ...
public final static int STRING = ...

148

public final static int VOID = ...

private static String[] names = new String[]{
"boolean", "char", ... };

...
}

We have associated constructors and accessors as follows:

private int kind;

public TSPrimitive(int kind) {
this.kind = kind;

}

public int getKind() {
return kind;

}

public String typeName() {
return names[kind];

}

which can be used to create new primitive types as well as access data. We need to re-

implement all the predicates that relate to the primitive types:

// int_?()

public boolean isInt() {
return kind == INT;

}

// boolean_?()

public boolean isBoolean() {
return kind == BOOLEAN;

}

// byte_?()

149

public boolean isByte() {
return kind == BYTE;

}
...
public boolean isPrimitive() {

return true;
}

and the two user-defined predicates Numeric? and Integral? defined as follows:

Integral?(t) = byte?(t) _ short?(t) _ char?(t) _ int?(t) _ long?(t)

Numeric?(t) = Integral?(t) _ float?(t) _ double?(t)

they become:

// Numeric_?() -- user defined

public boolean isNumeric() {
return (isFloat() || isDouble() || isIntegral());

}

// Integral_?() -- user defined

public boolean isIntegral() {
return (isInteger() || isShort() || isByte() ||

isChar() || isLong());
}

We now need to consider the three type operations that must be defined for all types:

=⌧ ,⇠⌧ , and :=⌧ :

↵ =⌧ � , Primitive?(↵) ^ Primitive?(�) ^ ↵ = �

As we have seen, equality (=⌧) between primitive types is easy. We only check that

both types are primitives and that their kind fields match. Since we implement this in

an object-oriented manner, we can thing of ↵ =⌧ � as ↵. =⌧ (�); that is, we know that

↵ already is a primitive type, so the requirements are reduced to Primitive?(�) ^ ↵ =

�. For a primitive type, ↵ = � always reduce to whether their kinds are the same

(((TSPrimitiveType)other).getKind() == kind); therefore we obtain:

150

// =_T

public boolean equal(TSType other) {
return this.isPrimitive() && other.isPrimitive() &&

this.kind == ((TSPrimitive) other).kind;,!

}

And since equivalence for primitives is the same as equality, we have:

↵ ⇠⌧ � , ↵ =⌧ �

which is easily implemented as:

// ˜_T

public boolean equivalent(TSType other) {
return equal(other);

}

For the final of the three type function (assignment compatible) we have the following:

byte <⌧ short <⌧<⌧ int <⌧ long <⌧ float <⌧ double

chat <⌧ int

this will create the implementation of <⌧ as follows:

public boolean lessThan(TSType other) {
if (!(other instanceof TSPrimitive)) {

return false;
}
TSPrimitive otherType = (TSPrimitive) other;
return atomicHierarchy[kind][otherType.getKind()];

}

Again, we can use the <⌧ function to determine compatibility of primitive types. Note that

this techniques also work if the parameters are of class type because :=⌧ is correctly defined

for class types as well.

151

Remark 6 (Type Lattice and d↵, �e⌧): From Section 4.4.4 on page 76, we can argue

that a partial order is a complete lattice having a unique largest element >, a unique smallest

element ?, and satisfying the condition ? < x < > for every x in the set. In Jiapi , elements

from lattices are stored in a matrix50 and accessed using the id space and index space of a

type. The id space of each element (i.e., each atomic type) in the set is represented by an

identifier, which is a positive long value. We may use this representation to store larger sets

of elements or to use them as keys in maps. The index space, in contrast, is represent by

indices that correspond to the position of each element in the set of atomic types. Note that

since we have a set of dependencies (i.e., some precedence constraints) of the form “↵ is less

than �”, we defined a topological ordering of nodes such that for every pair (⌧i, ⌧j) in the

type lattice, we have i < j.

That leave just one more user-define type-related function to be handled, namely, the

d↵, �e⌧ � the ceiling function. This function relates to the type hierarchy we defined above

for numeric types:

byte <⌧ short <⌧ int <⌧ long <⌧ float <⌧ double

char <⌧ int

Given two numeric types, this function should return the higher of the two:

d↵, �e⌧ =

⇢
� if ↵ <⌧ �
↵ otherwise

creating another implementation for the same operator <⌧ as follows:

public TSPrimitive lessThanType(TSType other) {
if (!(other instanceof TSPrimitive)) {

return false;
}
TSPrimitive otherType = (TSPrimitive) other;
if (atomicHierarchy[kind][otherType.getKind()]) {

return new TSPrimitive(kind);
}
return this;

50 This is a 2-dimensional array of boolean values represented by atomicHierarchy.

152

}

Although the ordering operator is defined for numeric types, it could also be defined to

work with constructed types (in Section 5.4 on page 136, we gave an example of <⌧ operator

for Protocols). The obvious question is: How does the tool determine which version of the

ceiling function to use? If the <⌧ operator is used in a boolean expression, the first version

is used; otherwise, the second version is used regardless of whether the returned value is

assigned to a variable. For example, consider the following implication expression

alpha <T beta => ... , ... alpha <T beta

that becomes

if (alpha.lessThan(beta)) ...

This is because the expected value of the if statement’s conditional expression in the gen-

erated code must be boolean. However, if the operator appears anywhere where a boolean

type is not expected, the expression becomes

if (alpha.lessThan(beta)) { ..., alpha.lessThanType(beta) }

This brings another interesting question: if ⌧ (...) resolves to a visit, are we alwaysmaking

invocations to the appropriate visitor method? The answer is no. A type computation is

transformed into a ternary operator that checks whether the type of a syntactic node is null.

If it is, a visit takes places and during that operation the type of the node is set. This means

that if a node already has a type, then ⌧ (...) directly returns the type of this node

Finally, assignment compatibility can now simply be defined for primitive types as

↵ :=⌧ � , � <⌧ ↵ _ ↵ =⌧ �

and be implemented as follows

153

public boolean assignmentCompatible(TSType beta) {
return beta.lessThan(this) || this.equal(beta);

}

the atomic type specification is given below

atomic {
boolean,
string,
void,
[byte < short < char < int < long < float < double],
[int < float < double]
}

...

clause atomic {
def Integral?(t) = return byte?(t) \/ short?(t) \/ char?(t)

\/ int?(t) \/ long?(t),!

def Numeric?(t) = return Integral?(t) \/ float?(t) \/
double?(t),!

def alpha =T beta <=> return Primitive?(alpha) /\
Primitive?(beta) /\ alpha.kind == (beta as
TSPrimitive).kind

,!

,!

def alpha ˜T beta <=> return alpha =T beta

def alpha :=T beta <=> return beta <T alpha \/ alpha =T
beta,!

}

Figure 39. TSPrimitive type specification

154

6.2.4 The Constructed Types

Array Type

Recall, an array is a collection of values accessed by an index set starting at 0 and ending

at n � 1 if the array is sized to hold n elements. Arrays are dynamically allocated but the

size is fixed once allocated. Thus, the size of an array type is typically not known at compile

time. This means that the only information that can be kept about an array type is its base

type.

Array(Basetype)

This can be specified as follows:

Array(type : baseType)

A two dimensional integer array will look like this:

Array(Array(int))

in Java such a type can be specified as int[][]. As with the primitive types, the three

operators =⌧ ,⇠⌧ , and :=⌧ must be specified:

↵ =⌧ � , Array?(↵) ^ Array?(�) ^ (↵.baseType =⌧ �.baseType)

Two arrays are equal if and only if their base types are equal. For ⇠⌧ we have:

↵ ⇠⌧ � , ↵ =⌧ �

Assignment compatibility is a little more complex; note that the following is not allowed in

Espresso (or Java):

int[] i = ...;
double d[];

d = i; // illegal

However, the following is:

155

class A { ... }
class B extends A { ... }

...
A[] a = null;
B[] b = ...;
a = b

That is, we may assign null to an array variable, and we may assign an array of subclass

to an array of super class.

↵ :=⌧ � , Array?(↵) ^ Array?(�) ^

(Null?(�) _ (Primitive?(↵.baseType) ^ ↵.baseType =⌧ �.baseType)_

(↵.baseType :=⌧ �.baseType))

This may look a little complicated, but the implementation is surprisingly simple:

public boolean assignmentCompatible(TSType beta) {
if (this.isArray() && beta.isArray()) {

TSArray beta2 = (TSArray) beta;
return (beta.isNull() || (this.baseType.isPrimitive() &&

this.baseType.equal(beta2.baseType)) ||
(this.baseType.equivalent(beta2.baseType)))

,!

,!

}
return false;

}

The array type specification is defined as

constr Array (baseType:type)

...

clause Array {
def Array?(t) = return true

def alpha =T beta <=> {

156

Array?(alpha) /\ Array?(beta) => {
def beta2 = beta as Array
return alpha.baseType =T beta2.baseType

}
return false;

}

def alpha ˜T beta <=> return alpha =T beta

def alpha :=T beta <=> {
Array?(alpha) /\ Array?(beta) => {

def beta2 = beta as Array
return (Null?(beta) \/ (Primitive?(alpha.baseType) /\

alpha.baseType =T beta2.baseType) \/
(alpha.baseType :=T beta2.baseType))

,!

,!

}
return false

}
}

Figure 40. TSArray type specification

and its implementation is

class TSArray {
public boolean isArray() {

return true;
}
...
public TSType baseType;

public TSArray(TSType baseType) {
this.baseType = baseType;

}
}

157

Null Type

Since Espresso (and Java) have dynamically allocated objects and arrays, a null value is

needed. It could be implemented as a primitive type value, but here we have a special type,

namely, NullType.

NullType

and the three mandatory predicates:

↵ =⌧ � , Null?(↵) ^Null?(�)

↵ ⇠⌧ � , ↵ =⌧ �

↵ :=⌧ � , false

Note that the assignment compatible would require a null on the left, which is never

allowed. The implementation for NullType is therefore

public boolean equal(TSType beta) {
return this.isNull() && beta.isNull();

}

public boolean equivalent(TSType beta) {
return this.equal(beta);

}

public boolean assignmentCompatible(TSType beta) {
return false;

}

The null type specification is as follows

constr Null

...

clause Null {
def Null?(t) = return true

158

def alpha =T beta <=> return Null?(alpha) /\ Null?(beta)

def alpha ˜T beta <=> return alpha =T beta

def alpha :=T beta <=> return false

}

Figure 41. TSNull type specification

and its implementation is defined as

public class TSNull {
public boolean isNull() {

return true;
}
...

public TSNull() {}
}

Class Type

Apart from arrays, classes are the only other constructed type in Espresso (Java has enumer-

ations as well, Espresso does not). Since classes create a class hierarchy and since a variable

of super class can hold a reference to a subclass, a class type must contain information about

its super classes and interfaces:

Class(Name, SuperClass?, Interface⇤)

A class type uses that class’ name, and the super class and the interfaces are class types as

well.

Class(name : id, superClass? : Class, interfaces⇤ : Class)

↵ =⌧ � , Class?(↵) ^ Class?(�) ^ ↵.name = �.name

159

↵ ⇠⌧ � , ↵ =⌧ �

↵ :=⌧ � , Class?(↵) ^ Class?(�) ^ (Null?(�) _ ↵ ⌧ �)

From the above formulas, we can see that :=⌧ uses a di↵erent operator, namely, ⌧ . In

object-oriented terms, ⌧ , is often written as <:. That is the “is super class” operator.

If class A extends class B, then A <: B and A ⌧ B. Remember, the <: operator is

represented by �⌧ with the arrow pointing to the class that extends the super class (i.e.,

B �⌧ A).

↵ ⌧ � , ↵ =⌧ � _ (↵.superClass 6= null ^ ↵ ⌧ �.superClass) _ (
_

�2�.interfaces

↵ ⌧ �)

The implementation generated from the above formulas is

public boolean equal(TSType beta) {
if (this.isClass() && beta.isClass()) {

TSClass beta2 = (TSClass) beta;
return this.isClass() && this.name.equals(beta2.name);

}
return false;

}

public boolean equivalent(TSType beta) {
return this.equal(beta);

}

public boolean assignmentCompatible(TSType beta) {
return this.isClass() && beta.isClass() && (beta.isNull() ||

this.lessThan(beta));,!

}

public boolean lessThan(TSType beta) {
TSClass beta2 = (TSClass) beta;
boolean binVar0 = false;
for (int delta = 0; delta < beta2.interfaces.size();

++delta) {,!

binVar0 |= this.lessThan(beta2.interfaces[delta]);
}

160

return this.equal(beta2) || (this.superClass != null &&
this.lessThan(beta2.superClass)) || binVar0;,!

}

and its specification is as follows

constr Class (name:id, superClass?:Class, interfaces*:Class)

...

clause Class {
def Class?(t) = return true

def alpha =T beta <=> {
Class?(alpha) /\ Class?(beta) => {

def beta2 = beta as Class
return Class?(alpha) /\ alpha.name == beta2.name

}
return false

}

def alpha ˜T beta <=> return alpha =T beta

def alpha :=T beta <=> return Class?(alpha) /\ Class?(beta)
/\ (Null?(beta) \/ alpha <=T beta),!

def alpha <=T beta <=> {
Class?(alpha) /\ Class?(beta) => {

def beta2 = beta as Class
return alpha =T beta2 \/ (alpha.superClass != nil /\

alpha <=T beta2.superClass) \/ (\/ delta in
0..|beta2.interfaces|: alpha <=T
beta2.interfaces[delta])

,!

,!

,!

}
return false

}

{:

161

public ClassDecl myDecl;
public Class(ClassDecl classDecl) {

myDecl = classDecl;
name = myDecl.name();

}
:}

}

Figure 42. TSClass type specification

Method Type

Finally, we need method types. Even though Espresso does not allow passing methods as

parameters, it makes sense to have a method type for specifying the way a target method is

found in an invocation.

A method type depends on the name of the method, the type of the parameters and the

return type:

Method(Name, ParamType⇤, ReturnType)

or in the type system language:

Method(name : id, paramTypes⇤ : type, returnType : type)

↵ =⌧ � ,Method?(↵) ^Method?(�) ^ (↵.name = �.name) ^

(| ↵.paramTypes |=| �.paramTypes |)^
0

@
^

i2{0..|↵.paramTypes|�1}

(↵.paramTypes)i =⌧ (�.paramTypes)i

1

A

↵ ⇠⌧ � , ↵ :=⌧ � ^ � :=⌧ ↵

It should be pointed out that we use equivalence in terms of assignment compatibility in

both directions; we do this as we do not want to compare names like we do in =⌧ .

↵ :=⌧ � ,Method?(↵) ^Method?(�) ^ (| ↵.paramTypes |=| �.paramTypes |) ^

162

0

@
^

i2{0..|↵.paramTypes|�1}

(↵.paramTypes)i :=⌧ (�.paramTypes)i

1

A

If we planned to allow the passing of methods as parameters, we would also have to do

some checking of the return type, but that is not necessary here. Also, note that we do not

check for the equality of names. The implementation for method types is as follows

public boolean equal(TSType beta) {
if (this.isMethod() && beta.isMethod()) {

TSMethod beta2 = (TSMethod) beta;
boolean binVar1 = true;
for (int i = 0; i < this.paramTypes.size() - 1; ++i) {
binVar1 &=

(this.paramTypes)[i].equal((beta2.paramTypes)[i]);,!

}
return (this.name.equals(beta2.name)) &&

(this.paramTypes.size() == beta2.paramTypes.size()) &&
binVar1;

,!

,!

}
}

public boolean equivalent(TSType beta) {
return this.assignmentCompatible(beta) &&

beta.assignmentCompatible(this);,!

}

public boolean assignmentCompatible(TSType beta) {
if (this.isMethod() && beta.isMethod()) {

TSMethod beta2 = (TSMethod) beta;
boolean binVar2 = true;
for (int i = 0; i < this.paramTypes.size() - 1; ++i) {

binVar2 &=
(this.paramTypes)[i].equivalent((beta2.paramTypes)[i]);

}
return (this.paramTypes.size() == beta2.paramTypes.size())

&& binVar2;,!

}
}

163

and its specification is given bellow

constr Method (name:id, paramTypes*:type, returnType:type)

...

clause Method {
def Method?(t) = return true

def alpha =T beta <=> {
Method?(alpha) /\ Method?(beta) => {

def beta2 = beta as Method
return (alpha.name == beta2.name) /\
(|alpha.paramTypes| == |beta2.paramTypes|) /\
(/\ i in 0..|alpha.paramTypes| - 1 :

(alpha.paramTypes)[i] =T (beta2.paramTypes)[i]),!

}
return false

}

def alpha ˜T beta <=> return alpha :=T beta /\ beta :=T
alpha,!

def alpha :=T beta <=> {
Method?(alpha) /\ Method?(beta) => {

def beta2 = beta as Method
return (|alpha.paramTypes| == |beta2.paramTypes|) /\
(/\ i in 0..|alpha.paramTypes| - 1 :

(alpha.paramTypes)[i] :=T (beta2.paramTypes)[i]),!

}
return false

}

{: public ClassDecl myDecl; :}
}

Figure 43. TSMethod type specification

164

6.3 From Parse Tree to Types

In any language we want to type check, there are certain parts of the parse tree that represent

a type in the language. A simple example is the primitive types like int and double. These

parse-tree representations of types must be turned into actual types in the type system, that

is:

intparse tree inttype system

or, if we use teletype font for parse tree representations and italics for type system

representations:

int int

For example, the visit() method for turning int into int could look like this:

public TSType visitPrimitiveType(PrimitiveType pt) {
// Create a new Type System

TSPrimitive tspt = new TSPrimitive(pt.getKind());
pt.setTStype(tspt);
return tspt;

}

It is worth noting, the integer constants used for the parse tree primitive types are

also used by the Type System primitive type. This does not have to be the case, but it does

make things easier. Moreover, we have added some “back-hooks” in the parse tree nodes that

hold values of types in the Type System. More specifically, Type.java, ClassBodyDecl

and VarDecl all have the following code:

// Type System Related Stuff

private TSType myType;

public void setTStype(TSType type) {
myType = type;

}

165

public TSType TStype() {
return myType;

}
// End of Type System Related Stuff

6.3.1 Constructed Types

We begin this section by revisiting the constructed types we just discussed. We can now go

through some of the parse three nodes that require type checking and apply the techniques

that we learned. Then, in a re-implementation of the visitor pattern, we can implement these

techniques as methods. Let us start with an example of locals and parameter declarations.

Locals and Parameter Declarations

Both local and parameter declarations are of the form:

type name [= expression]

by visiting the type we obtain a Type System type and we can set the type of the local or

parameter. Here is an example of how to do this for a ParamDecl:

public TSType visitParamDecl(ParamDecl pd) {
TSType tsType = (TSType)pd.type().visit(this);
pd.type().setTStype(tsType);
return tsType;

}

and here is its description

ParamDecl

Syntactic Node:

ParamDecl: pd

Accessors:

166

Type type = pd.type()

Rules:

⌧ (pd) ⌧ ⌧ (type)

Checks:

• None

followed by its specification written in Jiapi

action ParamDecl for pd {
type: Type <- {: pd.type() :}
T(pd) <- T(type)
return T(pd)

}

Let us briefly consider what type checking is needed for the parse three nodes, but first

it is worth mentioning the following:

1. When the parser creates a node in the parse tree for a literal value, it assigns a type

to it.

2. Statements do not have values; if an error is detected within a statement, the type

error (i.e., ErrorType) is assigned.

3. Error types do not resolve to anything by themselves.

4. A named type is resolved to an actual type.

Arrays

To indicate that a type is an array type, it gets wrapped in an ArrayType for each array

level that it has. For example, int[][] is an ArrayType with type int and dimension 2,

becoming ArrayType(ArrayType(int))

167

ArrayType

Syntactic Node:

ArrayType: at

Accessors:

Type baseType = at.baseType()

int depth = at.getDept()

Rules:

⌧ (at) ⌧ Arraydepth(⌧ (baseType))

Checks:

• Add the correct number of Arrays

• Set myDecl to point to the top array

We can implement an ArrayType as follows:

action ArrayType for at {
def baseType: Type <- {: at.baseType :}
def depth: int <- {: at.getDepth() :}
def bastType <- T(baseType) as TSType
def at_t <- baseType
forall i in 0..depth : at_t <- new TSArray(at_t)
T(at) <- T(at_t)
return T(at)

}

Note, we add the correct numbers of ArrayType(...)s and find the element type, meaning,

the type without ArrayType round it.

Type checking ArrayLiterals is not quite simple. We cannot determine the definite type of

an array literal, but we can determine if an array literal can be assigned to an array type by

writing a fairly simple recursive procedure arrayLiteralAssignmentCompatible, which takes

in an array type and an array literal. Recall, from Section 4.4.5 on page 83 we know that

any array type can be assigned the value { }, and when we get to non-array items, the value

168

must be assignment compatible with the array type’s base type. This is depicted in Table 19.

Table 19. Example of arrayLiteralAssignmentCompatible.

Level Literal Type

{{{30, 40}, {}}, {{}, {50, 60}}} double[][][]
[0] {{30, 40}, {}} double[][]
[1] {{}, {50, 60}} double[][]
[2] {} double[][] X
[0][0] {30, 40} double[]
[0][1] {} double X
[0][1][0] 30 double X
[0][1][1] 40 double X
[1][0] {} double[] X
[1][1] {50, 60} double[]
[1][1][0] 50 double X
[1][1][1] 60 double X

As a result, there is no need to visit an ArrayLiteral in the type checker; instead, we must

perform the checking described above in the NewArray (after all, this is the only place where

an ArrayLiteral can appear). An allocation for an array using new is of the form:

variable name = new {[expression list]};

NewArray

Syntactic Node:

NewArray: na

Accessors:

Type baseType = ne.baseType()

Sequence dimsExpr = ne.dimsExpr()

Sequence dims = ne.dims()

ArrayLiteral init = ne.init()

Rules:

• (8 dim 2 dimsExpr : ¬Integral?(⌧ (dimsExpri))))

169

Error(”Array dimension must be of integral type.”)

• (init 6= null ^ ¬(ALAC(⌧ (ne),⌧ (init)))))
Error(”Array Initializer is not compatible.”)

• ⌧ (at) ⌧ Arraydepth(⌧ (baseType))

Checks:

• The type of dim must be integer if it is present

• If there is an initializer (i.e.,{e1, . . . , en}), we need to check if it is of proper

and equal depth, and then visit every element in it and check if they are

assignment compatible with the base type.

The first thing we check for a NewArray expression is that all of the non-empty dimensions

are of integral type, which means that something like this cannot exist: new int[3.4].

If there is an initializer (in which case all dimensions will be empty), we simply call the

arrayLiteralAssignmentCompatible method that we previously described.

The implementation for a NewArray is as follows:

action NewArray for ne {
def baseType: Type <- {: ne.baseType :}
def dimsExpr: Sequence <- {: ne.dimsExpr() :}
def dims: Sequence <- {: ne.dims() :}
def init: ArrayLiteral <- {: ne.init() :}
forall dims in 0..|{: dimsExpr.size() :}|:

!Integral?(T(dimsExpr[i])) =>
Error("Array dimension must be of integral type.")

def array_t <- T(basetype)
forall i in 0..|{:dims.nchildren + dimsExpr.nchildren:}| :

array_t <- new TSArray(array_T, null)
T(ne) <- array_t
init != null /\ !(ALAC(T(ne), T(init))) =>

Error("Array initializer is not compatible.")
return array_t

}

An ArrayAccessExpr is made up of an expression and one index in [] (each set of brackets

has one parse tree node), so all we need to check here is that the expression is of array type.

170

Naturally, the type of the entire parse tree node must be set, which is the base type of the

array type if the type is only one dimension deep; otherwise, it is a new array type with the

same base type as the expression with one dimension less. The form of an ArrayAccessExpr

is:

expr1[expr2]

ArrayAccessExpr

Syntactic Node:

ArrayAccessExpr: ae

Accessors:

Expression target = ae.target()

Expression index = ae.index()

Rules:

• (Error?(⌧ (target))))
⌧ (ae) ⌧ ⌧ (target)

• (Array?(⌧ (target)))) {

• ⌧ (target) ⌧ ⌧ (target).baseType()
• (¬Integral?(⌧ (index)) ^ ¬Error?(index)))

Error(”Array access index must be of integral type”)

| ⌧ (ae) ⌧ Error

}

Checks:

• The type of expr1 must be ArrayType, and the type of expr2 must be integer

The implementation for ArrayAccessExpr is:

action ArrayAccessExpr for ae {
def target: Expression <- {: ae.target() :}
def index: Expression <- {: ae.index() :}
Error?(T(target)) => T(ae) <- T(target)

, Array?(T(target)) => {

171

T(ae) <- T(ae).baseType()
!Integral?(T(index)) /\ !Error?(T(index)) =>

Error("Array access must be of integral type")
} , T(ae) <- T(target)

return T(ae)
}

Class

Finally, a simple class declaration is of the form:

[modifier] class class name
[extends class name [, class name]]
// fields, constructors, static initializer are defined here...

ClassDecl

Syntactic Node:

ClassDecl: cd

Accessors:

ClassType superClass = cd.superClass()

Sequence interfaces = cd.interfaces()

Sequence body = cd.body

Rules:

• ⌧ (superClass)

• ⌧ (interfaces)
• ⌧ (body)

Checks:

• Create a ClassType and use it to set the type of the class

• Update the current class as needed when traversing the type system

As we can see, class types can be simple or instances of more complex class declarations

(as described in Chapter 4). Again, unlike Java, Espresso does not allow the declaration of

inner classes or generic classes, making type checking easier in comparison to Java’s. At this

172

point, one may wonder about class types (after all a class is a type). We could also write the

specification for a class type, which would only involve creating the type for the current class

and then setting it to point to its declaration (wherever that may be in the source file). This

approach would, of course, be similar to what we did with ParamDecl. The implementation

for a ClassDecl is therefore

action ClassDecl for cd {
def superClass: ClassType <- {: cd.superClass() :}
def interfaces: Sequence <- {: cd.interfaces() :}
def body: Sequence <- {: cd.body() :}
T(superClass)
T(interfaces)
T(body)
return T(cd)

}

Assignment

As a final example, consider assignments in Espresso. Generally speaking, an assignment is

a statement that adds a new value to a program entity, which is indicated by the left-hand

side. Also, expressions must be used on both the left and right sides of an assignment. The

form of an assignment in Espresso is

target = value

Type checking code for assignments is not as straightforward as we might think due to

the di↵erent cases that we must take into account. Consider an assignment of the form

id = e, where id is an identifier. When our id lookup results in the declaration of a local

variable (which could be a formal parameter), a compile-time error occurs if the static type

of e is not assignable to the declared type of the local variable. Additionally, further analysis

as well as evaluation of p.id = e is needed if the declaration happens to be a field, where p

is an important prefix and id is (again) an identifier. For example, what if id is a non-static

field? A compile-time error should occur, unless p has a member such that the static type

of e is assignable to the declared type.

173

Assignment

Syntactic Node:

Assignment: as

Accessors:

Expression left = as.left()

Expression right = as.right()

AssignmentOp op = as.op()

Rules:

• Error?(⌧ (right)))
✏

| {: op.kind == AssignmentOp.EQ :})

¬(⌧ (left) :=⌧ ⌧ (right)))
Error(...)

| ({: op.kind == AssignmentOp.MULTEQ :}_

{: op.kind == AssignmentOp.DIVEQ :})

({: op.kind == AssignmentOp.MODEQ :}_

{: op.kind == AssignmentOp.PLUSEQ :})

({: op.kind == AssignmentOp.MINUSEQ :}))

(({: op.kind == AssignmentOp.PLUSEQ :}) ^ string?(⌧ (left))))
✏

| (¬(⌧ (left) :=⌧ ⌧ (right))))
Error(...)

| (¬(Numeric?(⌧ (left) ^Numeric?(⌧ (right)))))
Error(...)

| ({: op.kind == AssignmentOp.LSHIFTEQ :} _

{: op.kind == AssignmentOp.RSHIFTEQ :})

({: op.kind == AssignmentOp.RRSHIFTEQ :}))

(¬(Integral?(⌧ (left)) ^ Integral?(⌧ (right)))))
Error(...)

| ({: op.kind == AssignmentOp.ANDEQ :}_

{: op.kind == AssignmentOp.OREQ :})

({: op.kind == AssignmentOp.XOREQ :}))

(¬(((Integral?(⌧ (left))) ^ Integral?(⌧ (right))) _

174

((boolean?(⌧ (left))) ^ boolean?(⌧ (right)))))
Error(...)

| ✏

• T (as) ⌧ ⌧ (left)

Checks:

• The type of target must be assignment compatible with the with the type of value

Even though there are a few other checks that we did not include here, the implementation

of an Assignment is given as follows

action Assignment for as {
def left: Expression <- {: as.left() :}
def right: Expression <- {: as.right() :}
def op: AssignmentOp <- {: as.op() :}
def left_t <- T(left)
Error?(left_t) => ;
, {: op.kind == AssignmentOp.EQ :} =>

!(T(left) :=T T(right)) => Error("...")
, {: op.kind == AssignmentOp.MULTEQ :} \/ {: op.kind ==

AssignmentOp.DIVEQ :} \/,!

{: op.kind == AssignmentOp.MODEQ: } \/ {: op.kind ==
AssignmentOp.PLUSEQ :} \/,!

{: op.kind == AssignmentOp.MINUSEQ :} =>
{: op.kind == AssignmentOp.PLUSEQ :} /\

string?(T(left)) =>,!

;
, !(T(left) :=T T(right)) => Error("...")
, !(Numeric?(T(left)) /\ Numeric?(T(right))) =>

Error("...")
, {: op.kind == AssignmentOp.LSHIFTEQ :} \/ {: op.kind ==

AssignmentOp.RSHIFTEQ :} \/,!

{: op.kind == AssignmentOp.RRSHIFTEQ:} =>
!(Integral?(T(left)) /\ Integral?(T(right))) =>

Error("...")
, {: op.kind == AssignmentOp.ANDEQ :} \/ {: op.kind ==

AssignmentOp.OREQ :} \/,!

175

{: op.kind == AssignmentOp.XOREQ :} =>
!(Integral?(T(left)) /\ Integral?(T(right)) \/
boolean?(T(left)) /\ boolean?(T(right))) =>

Error("...")
, ;
T(as) <- T(left)
return T(as)

}

6.4 C-Minor

We add a second, distinct case study to strengthen the results of this thesis and to demon-

strate that our approach can be applied to several type system specifications. Our second

case study is a pedagogical language that has been proposed at the University of Nevada

Las Vegas (UNLV) to facilitate the learning of programming languages for first years college

students.

6.4.1 Introduction

Although C-Minor, as its name suggests, follows largely C-style syntax, it borrows elements

from many other languages such as Fortran 90, Ada, LISP, Java, and Pascal. The main

paradigms of the language are imperative and object-oriented. It is a language designed

specifically for novice programmers, focusing on features that are useful to users at that

level while avoiding overly complex constructs that they do not require [238].

6.4.2 Types

Every value in C-Minor has a data type that instruct the interpreter what type of data is

being specified so that it knows how to work with that data [238]. Boolean, integer, character,

and enumeration types are among the discrete types (as named in type declarations). Keep

in mind that while C-Minor is statically typed language, which means that it must know the

types of all variables, it support for range values for data types. Therefore, the programmer

176

can specify a range for each integer variable, and the compiler will choose the appropriate

representation. Let us write a specification for the atomic integer type.

To begin, an integer type in C-Minor must be represented as a constructed type rather

than as an atomic. This is done to avoid having the same property (the ability to specify a

range of values) for all of the other atomic types. Of course, this raises a problem because we

have to represent an atomic type as a constructed type. So, is it still possible to construct

a type lattice for the set of atomic types in C-Minor? The answer is yes; however, in

order for the operational functions to work (i.e., type predicates, type equality, type

equivalence, type assignment compatibility), the remaining atomic types must also be

interpreted as constructed types.

We can define an integer type as follows

Atomic(name, [low..high]?)

with an optional range, where low and high can be used to specify the default range of

acceptable values for each atomic type, while name is used for name equality (mainly to

enforce type checking).

Recall, we need to consider the three operators: =⌧ ,⇠⌧ , and :=⌧ ; therefore, for an

atomic type, we say that two types alpha and beta are equal if their names are the same

and their range of values are equal or if one is within the range of the other.

↵ =⌧ � , Atomic?(↵) ^ Atomic?(�) ^ ((↵.low �.low ^ ↵.high �.high)_

(�.low ↵.low ^ �.high ↵.high)) ^ (↵.name = �.name)

For type equivalence we have

↵ ⇠⌧ � , ↵ =⌧ �

and for assignment compatibility we have

↵ :=⌧ � , � <⌧ ↵ ^ ↵ =⌧ �

The implementation from the above formulas is as follows

177

public boolean equal(TSType other) {
if (this.isAtomic() && other.isAtomic()) {

return this.name.equals(other.name) &&
((this.low <= other.low && this.high <= other.high) ||
(other.low <= this.low && other.high <= this.high)) &&
(this.name.equals(other.name))

}
return false;

}

public boolean equivalen(TSType other) {
return equal(other);

}

public boolean assignmentCompatible(TSType beta) {
return beta.lessThan(this) || this.equal(beta);

}

6.4.3 Other Similar Constructs

Interestingly, C-Minor features a relatively free form looping structure. The block associated

with the loop statement repeats until the until statement’s boolean expression evaluates

to true. That is, the loop’s conditional is an ending condition rather than a continuation

condition, and it can be placed anywhere in the loop’s sequence. No “break” style command

exists to terminate the loop outside of the until statement. To simulate a C/C++ or Java

style while loop, the until should be the first statement in the block. A do-while loop would

have its until condition as the last statement in the block. A for-loop would have a limited

implementation as an iterator.

In order for the type checker to work, we will assume that C-Minor’s loop structure

generates three types of loop statements: while, do-while, and for as abstract syntax trees,

which can then be traversed based on where the until condition appears. The description

for a while statement transformation from a until loop is given below

178

WhileStat

Syntactic Node:

WhileStat: ws

Accessors:

Expression expr = ws.expr()

Statement stat = ws.stat()

Rules:

• (Error?(⌧ (expr))))
⌧ (ws) ⌧ void

| (Boolean?(⌧ (expr))))
⌧ (ws) ⌧ void

| ⌧ (ws) ⌧ Error(”Expression in while statement must be of Boolean type.”)

• ⌧ (stat)

Checks:

• Boolean?(⌧ (expr))

The implementation of this while statement is given as follows

action WhileStat for ws {
def expr: Expression <- {: ws.expr() :}
def stat: Statement <- {: ws.stat() :}
def op: BinOp <- {: be.op() :}
Error?(T(expr)) =>

T(ws) <- void

, Boolean?(T(expr)) =>
T(ws) <- void

, T(ws) <- Error
T(stat)
return T(ws)

}

Similarly, we could write a description for a do-while statement for when the until’s

179

conditional is used last in the body of the loop. Below is its description followed by its

implementation.

DoStat

Syntactic Node:

DoStat: ds

Accessors:

Statement stat = ds.stat()

Expression expr = ds.expr()

Rules:

• ⌧ (stat)
• (Error?(⌧ (expr))))
⌧ (ds) ⌧ void

| (Boolean?(⌧ (expr))))
⌧ (ds ⌧ void

| ⌧ (ds) ⌧ Error(”Expression in while statement must be of Boolean type.”)

Checks:

• Boolean?(⌧ (expr))

Notice that since C-Minor shares some similar constructs with Espresso, we can use

independent pieces of a previous formalization of a type system, such that parts shared

between languages can be reused.

action DoStat for ds {
def expr: Expression <- {: ds.expr() :}
def stat: Statement <- {: ds() :}
T(stat)
op: BinOp <- {: be.op() :}
Error?(T(expr)) =>

T(ds) <- void

, Boolean?(T(expr)) =>
T(ds) <- void

180

, T(ds) <- Error
return T(ds)

}

6.5 Finding the Correct Method

Let us briefly demonstrate how to compare and identify the right method in both Espresso

and C-Minor. Consider the following piece of code written in Espresso [5]:

void foo(double d, long l) { ... } 1

void foo(int i, long l) { ... } 2

void foo(int i) { ... } 3

void foo(string s, double d) { ... } 4

...
void main() {

int i;
...
foo(i, i + 1);

}

Which of the four foo methods should be the one called in main? The answer is 2 , of

course, but why? Let us look at each method one at a time. 3 is not the correct method

call because it has only one parameter. Since 4 ’s formal parameter is a string, it is also a

bad choice. We are left with options 1 and 2 . If each were the only declaration of foo,

both would be called,but we must choose only one. One way to do this is by specifying a

type for each that includes the types of the parameters and they value that each function

returns. For example:

⌧ (void foo(double d, long l){...}) = (double, long)! void

We could also specify that for an expression to be compatible with the method foo, it

must be of the form f(expr1, ..., expr2), where f is foo and the number of actual parameters

is the number for formal parameters where each has to be assignment-compatible with the

equivalent formal parameter; that is, f(e1, ..., en) is compatible with t g(t1 p1, ..., tm pm)

181

which has type (t1, ..., tm)! t if [5]:

• f = g (the methods are called the same) and

• n = m (they have the same number of parameters) and

• 8i(1 i n) : ti :=⌧ ⌧ (e1) (using the assignment compatibility rule, each formal

parameter is able to hold the value of the actual parameter).

Before implementing an algorithm for the type checker, we will use Definition 11 in order

to determine the correct method call by first finding all possible methods, and then removing

the more generals one.

Definition 11 (Comparing Methods): Let T1 = (t1,1, ..., t1,n) ! t1 and T2 = (t2,1, ...,

t2,m) ! t2 be two function types. We say that the function with type T2 is more general

than the one with type T1 if:

T1 ⌧ T2 , (n = m) ^ (
n̂

i=1

t2,i :=⌧ t1,i)

Alternatively, consider a set of actual parameters of type t1,1, ..., t1,n, and then consider if

these could be passed to the function with formal parameters t2,1, ..., t2,m. If they can, then

the method with T2 is more general than the one with type T1. Note: this definition cannot

be used for defining assignment compatibility for function types.

We shall now implement a method for finding the correct method call, called findMethod,

which we will refer to as findMethod. This method takes in a sequence of concrete methods,

the name of the method we are looking to invoke, and a sequence of the actual parameters.

Note that since the actual parameters are expressions, and the formal parameters are dec-

larations, we can call ⌧ (...) on both of them. For completeness, we also need to write the

specification of an invocation in Espresso in order to demonstrate the use of the findMethod

method.

The resolution of method invocations falls under the purview of the type checker (at least

in the case of statically typed languages), so an invocation in Espresso looks like this

182

action Invocation for inv {
def target:Expression <- {: inv.target() :}
def params:Sequence <- {: inv.params() :}
def methodName:Name <- {: inv.methodName() :}

def target_t:TSType <- nil
target != nil => target_t <- T(target) , target_t <- new

Class({: inv.myClass :}),!

!Class?(target_t) => {: System.out.println("Error: Attempt
to invoked something not of class type") :},!

def invocation_t:Method <- nil
def params_t:List[TSType] <- List()
forall i in 0..|{: params.nchildren :}| : params_t += {:

params.children[i].visit(this) :} as TSType,!

invocation_t <- new Method({: methodName.getname() :},
params_t),!

def candidates:List[Method] <- findMethod((target_t as
Class).{: myDecl.allMethods :}, invocation_t, true),!

|candidates| > 1 => {
{: System.out.println("More than one candidate remains:

"); System.exit(0) :},!

}, |candidates| == 0 => {
{: System.out.println("No candidates found!");

System.exit(0) :},!

}, {
def method:Method <- candidates[0]
T(inv) <- method.returnType
{: inv.targetMethod :} <- << method.myDecl >> as

MethodDecl,!

}
}

which generates the following implementation of an invocation visitor

183

public Object visitInvocation(Invocation inv) {
Expression target = inv.target();
Sequence params = inv.params();
Name methodName = inv.methodName();
TSType target_t = null;
if (target != null) {

target_t = (TSType) target.visit(this);
} else {

target_t = new Class(inv.myClass);
}
if (!target_t.isClass()) {

System.out.println("Error: Attempt to invoked something
not of class type");,!

}
Method invocation_t = null;
java.util.List<TSType> params_t = new ArrayList<>();
for (int i = 0; i < params.nchildren; ++i) {

params_t.add((TSType) params.children[i].visit(this));
}
invocation_t = new Method(methodName.getname(), params_t,

null);,!

java.util.List<Method> candidates = findMethod(((Class)
target_t).myDecl.allMethods, invocation_t, true);,!

if (candidates.size() > 1) {
System.out.println("More than one candidate remains: ");
System.exit(1);

} else if (candidates.size() == 0) {
System.out.println("No candidates found!");

} else {
Method method = candidates.get(0);
inv.setTSType(method.returnType);
inv.targetMethod = (MethodDecl) method.myDecl;

}
System.out.println("> " + inv.getTSType());
return (inv.getTSType() == null? inv.visit(this) :

inv.getTSType());,!

}

For a method invocation f(e1, ..., en), we define a set of candidate methods (matching

184

names). This set is used to hold all candidate methods that have the correct name (f),

the correct number of parameters, and the formal parameters that can hold the actual

parameters with respect to assignment compatibility. We then start eliminating more general

methods (from possible candidates), that is, a candidate g, whose parameters could be held

in another candidate method’s parameter. This results in the following specification and

implementation

def findMethod(methods: Sequence, inv: Method,
lookingForMethod:boolean) : List[Method] = {,!

def matchingName:List[Method] <- List()
forall m in 0..|{: methods.nchildren :}| : {

def md:ClassBodyDecl <- {: methods.children[m] :} as
ClassBodyDecl,!

{: md.getname() :}.equals(inv.name) :} => matchingName +=
{: md.visit(this) :},!

}
def possibleCandidates:List[Method] <- List()
forall m in matchingName : m :=T inv /\ m.name == inv.name

=> possibleCandidates += m,!

forall i in 0..|possibleCandidates| : {
def f:Method <- possibleCandidates[i]
forall j in 0..|possibleCandidates| :

possibleCandidates[j] :=T f => possibleCandidates -=
possibleCandidates[j]

,!

,!

possibleCandidates += f
}
return possibleCandidates

}

public java.util.List<Method> findMethod(Sequence methods,
Method inv, boolean lookingForMethod) {,!

java.util.List<Method> matchingName = new ArrayList<>();
for (int m = 0; m < methods.nchildren; ++m) {

ClassBodyDecl md = (ClassBodyDecl) methods.children[m];
if (md.getname().equals(inv.name)) {

matchingName.add((Method) md.visit(this));
}

185

}
java.util.List<Method> possibleCandidates = new

ArrayList<>();,!

for (var m : matchingName) {
if (m.assignmentCompatible(inv) &&

m.name.equals(inv.name)) {,!

possibleCandidates.add(m);
}

}
for (int i = 0; i < possibleCandidates.size(); ++i) {

Method f = possibleCandidates.remove(0);
for (int j = 0; j < possibleCandidates.size(); ++j) {

if (possibleCandidates.get(j).assignmentCompatible(f)) {
possibleCandidates.remove(possibleCandidates.get(j));

}
}
possibleCandidates.add(f);

}
return possibleCandidates;

}

The combination of visitInvocation and findMethod is equivalent to the algorithm given

in [5]. Algorithm 2 specifies the algorithm needed to determine the correct method to call.

186

Input: An invocation I = f(e1, ..., en)

Output: A method to call or an error

1 Function findMethod

2 Let T = (t1, ..., tn), ti = ⌧ (ei)
3 Let A be the set of all method with the same name as the one in the

invocation and with the same number of parameters

4 Let P = { }

5 foreach (f 2 A) do

6 //⌧ (f) = (p1, ..., pn)! t

7 if
nV

i=1

pi :=⌧ ti then

8 Add f to P

9 //P = {P1, ..., Pm} contains all candidates methods

10 foreach (Pi, Pj 2 P (i 6= j)) do

11 if Pi <⌧ Pj then

12 //Pj is less specific than Pi so remove it from P

13 P = P\{Pj}

14 if |P | == 0 then

15 //P = { }

16 Error(”No method to call”)

17 else if |P | == 1 then

18 //P = {Pk}, for some k (1 k m)

19 return Pk

20 else

21 // |P | > 1

22 9a, b(a 6= b ^ 1 a, b m) : Pa 6<⌧ Pb ^ Pb 6<⌧ Pa

23 Error(”More than one possible method to call”)

Algorithm 2: Find the correct method call algorithm.

The following bullet points explain the algorithm in detail as described in [5]:

• Let I = f(e1, ..., en) be the invocation.

• (Line 2) Let T = (t1, ..., tn) be the type list of the invocation’s actual parameters.

• (Line 3) Let A be the set of all methods with the same name as the one in the invocation,

and with the same number of parameters.

• (Line 4) Let P = { }.

187

• (Lines 5-8) For each f 2 A: where ⌧ (f) = (p1, ..., pn) ! t if
nV

i=1

pi :=⌧ ti then add f

to P (f ’s formal parameters can hold the actual parameters).

• (Line 9) P = {P1, ..., Pm} now contains all the possible methods that could be a

candidate to be the one called.

• (Lines 10-13) Consider each pair (Pi, Pj) where i 6= j: if Pi <⌧ Pj and Pj is still in

P , then remove Pj from P . That is, if we considered Pi’s parameter list to be a list

of actual parameters, then they would be assignable to the formal parameters of Pj.

Since Pi and Pj both are candidate methods for the invocation I, we can conclude that

Pj is a more general (or less specific) method than Pi and therefore can be discarded

as further candidate.

• (Lines 14-16) There are no methods that can be called for I; therefore, an error can

be returned.

• (Lines 17-19) If |P | == 1 and P = {Pk} for some value for k (1 k m), Pk is the

method that will be called.

• (Lines 20-23) There are at least two candidate methods, Pa and Pb, that cannot elim-

inate each other because neither Pa <⌧ Pb nor Pb <⌧ Pa, and no method can be

determined as the one to call.

6.6 Simplicity vs. Expressiveness

To put the current comparisons into context, consider comparing a typed �-calculus rule for

type checking a binary expression with one written in Jiapi . Recall that, in typed �-calculus,

to type check an expression E1 �E2, we must try to construct a derivation of the judgment

� ` E1 � E2 : ⌧ , where T represents the type after computing the result of the binary

operator �. Note that the � operator divides the binary expression into two groups: the

numeric ones and the relational ones (see Figure 21 on page 104). A rule in typed �-calculus

for type checking binary expressions in Espresso could look like the one given in Figure 44.

188

⇤, C ` E1 : int ⇤, C ` E2 : int � 2 {=, 6=, <, , >, �}

⇤, C ` E1 � E2 : boolean

Figure 44. �-calculus rule for type checking a binary expression.

Given the binary expression a < 5, we need to demonstrate that it can be expressed

as a tree, where the root of the tree is the entire expression, each node is an instance of a

typing rule, and leaves are rules that do not have a hypothesis. As we have seen earlier in

the thesis, this is a relatively simple process. Keep in mind that we create this tree under

the assumption that the variables have the types specified by C, so the expressions E1 and

E2 are likely to have the types T1 and T2, respectively. For literals, however, we can use the

following rule to infer their types: ⇤, C ` n : int.

In Jiapi , due to the expressiveness of the menta-language, we typically write di↵erence

cases when we specify type checking actions for binary operators because of the di↵erence in

behavior of the parse tree nodes. The easiest way to achieve this when coding is to switch

on the oeprator. The description is given below

BinaryExpr

Syntactic Node:

BinaryExpr: be

Accessors:

BinaryExpr left = be.left()

BinaryExpr right = be.right()

BinOp op = be.op()

Rules:

(Error?(⌧ (left)) _ Error?(⌧ (right))))
⌧ (be) ⌧ Error

| ({: op.kind == BinOp.LT :} _ {: op.kind == BinOp.LTEQ :} _

{: op.kind == BinOp.GT :} _ {: op.kind == BinOp.GTEQ :}))

(Numeric?(⌧ (left)) ^Numeric?(⌧ (right)))
⌧ (be) = d⌧ (left),⌧ (right)e⌧

189

| ⌧ (be) ⌧ Error(”...”)

Checks:

• Both expr1 and expr2must be of numeric type

• ⌧ (expr1 � expr2) ⌧ Boolean

following this is its implementation

action BinaryExpr for be {
left: Expression <- {: be.left() :}
right: Expression <- {: be.right() :}
op: BinOp <- {: be.op() :}
Error?(T(left) \/ Error?(T(right))) =>

T(be) <- Error
, {: op.kind == BinOp.LT :} \/ {: op.kind == BinOp.LTEQ :}

\/,!

{: op.kind == BinOp.GT :} \/ {: op.kind == BinOp.GTEQ :}
=>,!

(Numeric?(T(left)) /\ Numeric?(T(right))) =>
T(be) <- ceil(T(left), T(right))

, T(be) <- Error
...
return ...

}

How do we then verify that what we have is correct? In other words, can we create a

tree in such a way that it demonstrates that our specification is correct? The answer is, of

course, yes. We can demonstrate this using Tableau.

Example 10 (Constructing a proof): Suppose that BinOp(o) : o 2 {<,>,,�} is a

predicated used to determine whether the operator op is one of these: <, >, , and �. Also,

suppose that Numeric(n) is another predicate that checks whether n is an numeric type,

and Apply(x, y) represents the operator d↵, �e⌧ (i.e., the ceiling function). We can use these

predicates to write the following formula

8x8y9o(Binop(o) ^ (Numeric(x) ^Numeric(y)) ^ Apply(x, y)))

9x9y(Apply(x, y))

190

which says “for all x and y there is an operator o such that if o is <, >, , or � and it

can be applied to x and y and x and y are numbers, then there exists some x and y that

o can be applied to.” Now, to demonstrate the correctness of our rule for type checking

binary expressions, we must prove the following formula. We assume it is false and look for

a contradiction. So, let us begin with the signed formula contradiction. Note that due to

space constrains, we will abbreviate the predicates as N = Numeric, B = BinOp, and A =

Apply.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

¬(8x8y9a(B(a) ^ (N(x) ^N(y)) ^A(x, y))) 9x9y(A(x, y)))

8x8y9a(B(a) ^ (A(x, y) ^ (N(x) ^N(y)))

¬9x9y(A(x, y))

8y9a(B(a) ^ (A(b, y) ^ (N(x) ^N(y))))

9a(B(a) ^ (A(b, b) ^ (N(b) ^N(b))))

B(c) ^ (A(b, b) ^ (N(b) ^N(b)))

B(c)

A(b, b) ^ (N(b) ^N(b))

A(b, b)

N(b) ^N(b)

¬9yA(b, y)

¬A(b, b)

closed!

(1)

(1)

(2)

(4)

(5)

(6)

(6)

(8)

(8)

(3)

(11)

As we can see, despite some similarities (except for the quantifiers) between the two

versions of the same rule, the generated tree (i.e., the derivation) di↵ers due to the nature of

tableau. Tableau not only shows that the formula is not a tautology, but it also provides a

counterexample, that is, an interpretation of the variables that makes the formula false [239].

While we could still verify that our rule was correct, we had to first transform the

components of the rule into predicates and then use these predicates to arrive to a conclusion.

But could we ever get a derivation that is either similar to or the same as the one from typed

�-calculus? Unfortunately, the answer is no, and we will demonstrate this next.

191

Example 11: Consider the subtyping rule for a language such as Espresso, written in

typed �-calculus (left) and in Jiapi(right).

A �⌧ B B �⌧ C
A �⌧ C

8x8y8z(x �⌧ y ^ y �⌧ z)) 9x9z(x �⌧ z)

Can we prove the above implication? that is, can we demonstrate that if A is a subtype

of B and B is a subtype of C, then A is also a subtype of C. In typed �-calculus this would

be as simple as A �⌧ B ^ B �⌧ C) A �⌧ C; for Jiapi , however, we would need to rely

on the quantifiers. Why? Because quantifiers are the “words” used to refer to quantities.

Unfortunately, this means that when we use quantifiers, we will want to selectively instantiate

quantifier formulas on the left and right, with the goal of closing (or killing!) o↵ branches as

quickly as possible. Clearly, and as evidenced by Example 10, this can be challenging.

The proof is as follows

1.

2.

3.

4.

5.

6.

7.

8.

9.

8x8y8z(x �⌧ y ^ y �⌧ z)

¬(9x9z(x �⌧ z))

9y9z(a �⌧ y ^ y �⌧ z)

9z(a �⌧ b ^ b �⌧ z)

a �⌧ b ^ b �⌧ c

a �⌧ b

b �⌧ c

¬9z(b �⌧ z)

¬(b �⌧ c)

closed!

(1)

(3)

(4)

(5)

(5)

(2)

(8)

6.7 Conclusion

The specifications we developed in this section demonstrate that it is feasible to use set

notation along with first-order logic to develop a type system for a DSL. However, we would

like to highlight two observations that support Jiapi ’s independent development:

192

• Jiapi ’s parser generator only accepts grammars that extend meta-logic, which is useful

for mathematical notations. The abstract syntax made it easier to encode bound

names, but by fixing the grammar rules, it created a serious issue with type inference

for domain-specific languages.

• Despite having simple syntax-based rules that can be extended to first-order logic,

tableau has some theoretical flaws [240, 239]. For example, a rule may be deliberately

applied, allowing for very e�cient but also very ine�cient non-terminating proofs.

Another factor to consider is the tableau’s branching. Because each branch must be

worked on individually to check for closure, a large number of branches leads to a

larger search space. Aside from the branching, the rules themselves allow for multiple

appearances of the same formula.

193

Chapter 7

Related Work

7.1 Tools

We look at some of the existing relevant work in this chapter, then we explain the di↵erences

between them as well as the benefits and drawbacks of each.

7.1.1 CENTAUR and TYPOL

The CENTAUR [241] system is a generic interactive environment that, when provided with

the description of a particular programming language, produces a language-specific environ-

ment; in other words, syntactic editors and semantic tools, such as type checkers or inter-

preters for a given language, can be automatically generated from the syntax and semantics

specifications. It features a parser generator (METAL [242]) that converts a program’s tex-

tual form into an AST. A pretty-printer written in PPML [243] (an abstract data type for

dealing with a large number of sorted ASTs) converts the program’s structural representa-

tion � which is already saved as an AST � into a concrete layout, and the logical engine

is handled by TYPOL [244]. Here are a few instances of pretty-printed inference rules and

axioms [245, Section 1.4]:

194

env[] |- DECLS -> e & e |- STMT

|- #program(DECLS, STMS)

e |- decls[] -> e;

e |- DECL -> e1 & e1 |- DECLS -> e2

e |- decls[DECL.DECLS] -> e2;

,

⇢Ø ` DECLS : ⇢ ⇢ ` STMS

` begin DECLS STMS end

⇢ ` decls[] : ⇢

⇢ ` DECL : ⇢1 ⇢1 ` DECLS : ⇢2

⇢ ` DECL ;DECLS : ⇢2

Figure 45. Inference rules and axioms (left) and pretty-printed (right).

TYPOL is a logical framework-based implementation of natural semantics [246] that has

been used to describe type checking for a variety of Pascal-like languages [244, Section

6]. A TYPOL specification is made up of an unordered set of inference rules. An inference

rule with a numerator and denominator is the most fundamental unit of specification. Each

inference rule has a numerator with a finite number of premises (which is empty for an

axiom) and a denomiator with a conclusion. The premises and conclusion are represented

by a Gentzen natural deduction sequence [247]. Sequents and conditions are the two types

of formulae found in the premises. Although A can have a more generic structure, C must

be a predicate. A sequent has the form A ` C (a judgment) in which A is its antecedent and

C is its consequent. Conditions are boolean expressions that can be defined either within

TYPOL or through external procedures. Figure 46 illustrates an example of a TYPOL rule

for expressing the dynamic semantics of the Ei↵el [175] language’s loop instruction:

SYSTEM, OBJL, CURROBJ, CURRMETH, BIND_PARAMS, RESULT

|- <insts1> : OBJL1, RESULT1 &

expr_evaluation(SYSTEM,OBJL1,CURROBJ,BIND_PARAMS,RESULT1)

|- <expr> : OBJL2, true())

SYSTEM, OBJL, CURROBJ, CURRMETH, BIND_PARAMS, RESULT

|- from <insts1> until <expr> loop <insts2>: OBJL2, RESULT1 ;

Figure 46. Example of a TYPOL rule for expression dynamic semantics of Ei↵el.

According to the foregoing criteria (as described in [248]), the instructions in the from

section (<insts1>) must be executed first, followed by the evaluation of the expression <expr>.

The loop is finished if it is true. (Note that another rule is needed in order to handle the

false case.) It is worth noting that a TYPOL program’s evaluation is an attempt to show

195

a goal H0 ` T0 : S0 inside the logic given by the TYPOL program. A proof tree is created

as a result of such an evaluation. The proof yields the semantic value, S0, of the abstract

syntax term, T0, given some initial environment, H0.

For execution, TYPOL specifications are compiled to Prolog. Prior to translation, the

existing syntax trees are type checked using the formalism of operators, and variable types

are deduced. Moreover, predicates’ arguments are divided into two categories: in and out

(known as argument kinds). To eliminate ambiguity in the resultant Prolog program, the

types and kinds of a predicate’s arguments are employed for overload resolution. The best

matching choice is placed first, and the more precise rules outweigh the more general rules.

7.1.2 LATOS

LATOS [249] is a lightweight operational semantics animation tool that takes a Miranda [250]

superset as input and generates a declarative program that can be type checked and run by

the relevant language system. LATOS can be compiled into Miranda, which can then be

converted to Haskell. It can be used for non-deterministic specifications, with one caveat: An

animation can only produce one of many possible outcomes. All other features of LATOS,

such as type checking, source dependency checking and type setting are available for de-

terministic as well as non-deterministic specifications. Although other large and powerful

systems, such as CENTAUR [241] and ASF+SDF [251], include rendering, type checking,

execution, animation, etc., LATOS focuses on making the most of existing components and

carefully selecting necessary functionality.

Miranda is the basis of the LATOS input language, and it was enhanced with the following

constructs [249, Section 3]: A fairly general notation for expressing abstract syntax as an

algebraic data-type, a notation for expressing relations in terms of axioms and rules of

inference, the addition of basic set theoretic expressions, and a number of minor features

such as the provision of various types of brackets and ways of generating LATEX symbols. The

tool relies heavily on the target to provide semantics for language components that both the

target and LATOS share. This is a fundamental distinction between LATOS and other tools

that fix the semantics of the entire specification language. Figure 47 demonstrates this in

great detail.

196

Comparison rule:

` hs1, si
1
�! s0;` hs2, s0i

1
�! s00

[comp
ns
]

` hs1; s2, si
1
�! s00;

LATOS specification:
rule comp_ns =

|- <s_1, s> =1=> s’, |- <s_2, s’> =1=> s’’

|- <s_1 $Comp s_2, s> =1=> s’’ ;

Miranda output:
rule_1 [(s_1 $Comp s_2, s)]

= [s’’], if non_empty t_1 /\ non_empty t_2

where

s’ = last t_1 ;

t_1 = rule_1 [(s_1,s)] ;

s’’ = last t_2 ;

t_2 = rule_1 [(s_2,s)] ;

;

Figure 47. Transformation: rule
to
�! LATOS

to
�! Miranda.

7.1.3 ASF+SDF

ASF+SDF is a specification formalism that combines the algebraic specification formalism

ASF with the syntax definition formalism SDF [252, 253, 254]. ([251] provides an overview).

ASF+SDF is built on conditional equations for defining semantics and broad context-free

grammars for describing syntax. In this approach, the syntax of a (new or existing) language

can be easily described, as well as operations on programs written in that language, such as

static type checking, interpretation, compilation, or transformation. A basic ASF module is

made up of a many-sorted algebraic signature that declares sorts, constants, and functions,

as well as a collection of variables declarations and a set of positive conditional equations (see

Figure 48). An ASF specification is a collection of named, perhaps parameterized modules

with clear imports. On the other hand, a SDF specification is made up of productions that

are comparable to those in EBNF but are reversed: x1..xn ! s, with each xi representing

197

either a sort symbol (corresponding to a nonterminal symbol of the grammar) or a keyword

or separator, and s representing a sort symbol. For example, a function with ASF signature,

such as f: s1#...#sn->s, can be declared as "f" "(" s1 ","..."," sn ")" -> s in SDF.

module <ModuleName>

<ImportSelection>*

<ExportOrHiddenSection>*

<Grammar>*

equations

<ConditionalEquation>*

Figure 48. The structure of an ASF module.

A prototype for the static type analysis of XQuery programs (a query language for the

world-wide web) was introduced in [255]. The implementation was built using ASF+SDF, in

which di↵erent semantics for commands were tested. Figure 49 presents part of the original

definition of syntax and semantics of XQuery Core as it appears in [255]. The adaptation in

ASF+SDF is also given in Figure 50.

statEnvs ` Expr1 : Type;
statEnvs[varType(V ariable1 : prime(Type1))]

` Expr2 : Type2

statEnvs ` for V ariable1 in Expr1 return Expre2 :
Type2.quantifier(Type1)

statEnvs ` Expr1 : Type;
Type0 = [SequenceType]sequencetype;

Type1 <: Type0;
statEnvs[varType(V ariable1 : prime(Type1))]

` Expr2 : Type2

statEnvs ` for SequenceType V ariable1 in Expr1
return Expr2 : Type2.quantifier(Type1)

Figure 49. The formal specification of for expressions.

198

When represented in the syntax of the ASF+SDF meta-environment, these rules are as

follows:

[for-1] typecheck(E1, statEnvs) = T1,

insert ($ Var1 --> prime(T1)) in

VT of statEnvs = statEnvs1,

typecheck(TExpr, statEnvs1) = T2

===

typecheck(for $ Var1 in E1 return TExpr,

statEnvs = T2.quantifier(T1)

[for-2] typecheck(E1, statEnvs) = T1,

T0 = normSeqT(SeqT),

subtype(T1, T0, statEnvs) = true,

insert($ Var1 --> prime(T1)) in

VT of statEnvs = statEnvs1,

typecheck(TExpr, statEnvs1) = T2

===

typecheck(for SeqT $ Var1 in E1 return TExpr,

statEnvs = T2.quantifier(T1)

[default-for] typecheck(For, statEnvs) = static error

Figure 50. Adaptation in ASF+SDF.

Note that when no rule is applicable, the [default-for] rule is used, returning a static

type error. Assuming now that there is a program containing a for expression to be checked,

the function typecheck would be used in order to verify it. This function takes a program

phrase and a (static) environment comprising all known variables and function and their

types (see [255, Section 4]).

7.1.4 Tinker Type

TinkerType [58] is a language for controlling separate components of formal systems that

are not necessarily type checkers, and then assembling them into a complete system using

a set of options. Its formalist foundation is built on clauses (individual inference rules) and

features that control their inclusion. For example, the rule below [58, Section 2]:

199

� ;⌃ ` t1 : T2 ! T1 � ;⌃ ` t2 : U U<:T2
T-App[arrow,sub,store]

� ;⌃ ` t1t2 : T1

can be formalized by a set Names of clause names and a set Cnt of clause contents (an

uninterpreted string), where

Fts a set of features
Cls ✓ Names ⇥ P(Fts) ⇥ Cnt a set of clauses

with a feature dependency relation

Dep ✓ P(Fts) ⇥ P(Fts) a dependency relation

The closure(F) is the least superset F 0 of F that is closed under the dependency relation

for a given set of feature F . If closure(F) ◆ closure(F 0), then a set F dominates a set F 0.

A clause hn, F, ci � where n 2 Names, F ✓ Fts, and c 2 Cnt � is eligible for inclusion

if closure(F0) ◆ closure(F). This means that the requested features include those that are

covered by the clause (i.e., under the dependency relation). If more than one clause with

the same name is eligible for inclusion, the clause with the most features (in terms of ◆)

is selected; otherwise, an error is signaled. This technique ensures that the most relevant

clause is selected.

The assembly of a type checker for a given set of features of a type system is one of

TinkerType’s uses. An ML clause for type checking conditional expressions, for example, is

given in Figure 51 [58, Section 4].

T-If

{#TmIf(fi,s1,s2,s3) ->

if tyeqv ctx (typeof ctx s1) TyBool then

let tyS = typeof ctx s2 in

if tyeqv ctx tyS (typeof ctx s3) then tyS

else error fi "arms of conditional have different types"

else error fi "guard of conditional not a boolean"#}

Figure 51. T-If clause.

where T-If is the clause’s name and the contents enclosed in {# and #} is a verbatim content.

This segment computes the types of the guard expression s1 and its two arms s2, s3, and

200

checks that s1 has type bool and s2, s3 are of the same type. The type of s2 is the end

outcome. It should be pointed out that all checks are module convertible, which is required

in higher-order type system. TinkerType represents a range of checks that are comparable in

their traditional implementation and may be constructed by textually concatenating single

clauses. The feature dependencies act as consistency checks, determining whether clauses

can or must be used together.

201

Chapter 8

Conclusion

8.1 Summary

This thesis described a formalism that we believe can be useful in type checking statically

typed languages. We presented a method for automatically generating a type checker from

type system descriptions using set notation and first-order logic. We were looking for this

solution from the perspective of a typical compiler writer: someone who understands type

systems but is not necessarily skilled at applying advanced techniques based on existing

theorems.

Based on our analysis in Chapter 3, it is interesting to consider the historical development

of type systems from the standpoint of a user. The fundamental form of type information has

not changed; only the method by which it is obtained and used has. It is possible to construct

an abstract interpretation of programs by viewing terms as objects with input and output,

and then abstracting from the actual values those objects can have by looking only at what

type they belong to. Type information improves program readability by providing additional,

abstract (and thus less detailed) information about a program’s structure. Additionally, type

information is essential in the implementation during code generation: the information is

required to obtain an e�cient implementation as well as the ability to separate compilation

of program modules.

In Chapter 4, we studied the mechanism of Espresso’s type system; in particular, how

we defined our typing rules and the structure of di↵erent data types, and how they can

202

be used together to construct proofs about the types of expressions (and statements if the

language permits). However, merely having a type system specification is insu�cient – we

also need a type system that is e↵ective! The goal is to demonstrate that a well-typed

program never enters a“stuck state”. In order to accomplish this, we must demonstrate

progress and preservation to verify that our language is indeed type safe. For instance, an

integer expression should not become a function after being “stepped”. This is a prime

example of a programming language’s metatheoretical property [256]. That is, we prove

the existence of specific types for expressions using the type system51, and on the following

step, we must demonstrate the existence of specific properties for our type system (or proof

system) using structural induction to demonstrate type safety. This should provide a better

understanding of the e↵orts that are required to write and validate a type system. Hence,

it is an extremely challenging open research problem to automate such proofs.

With the present implementation of Jiapi (Chapter 5), it is possible to infer a type for

any type. Types can be processed in any order, and creating a type requires no more user

e↵ort than declaring one. Unfortunately, due to the nature of the declarations, the inferred

types usually exhibit bidericational behavior. Thus, the types of expression can be deduced

not only from their arguments, but also from their usage. In general, the development of a

type system in Jipai will follow the following path. For each clause declaration, (new) classes

are created and pieced together with other classes (but only when necessary). Type inference

is used in the early stages to infer general types with little regard for optimization. As the

type system matures (i.e., more types are added), standard components (such as individual

elements of a constructed type) are identified, and new class hierarchies (or relations) emerge.

These class hierarchies are important in dealing with the analysis of the domain and range

on which clauses are defined, as well as ensuring that these clauses are used appropriately

after looking at the syntactic structure of many of the target language’s constructs (not just

its types).

Jiapi is applied to imperative and object-oriented languages in Chapter 6. In most cases,

a language construct’s type requirements can be captured directly in a single Jiapi rule

51 The typing rule will provide us a more precise version of the proposition to prove in addition to particular
facts from our inductive hypothesis.

203

(that is there is no need for programing the type checker). Because the typing rules are

organized around language constructs, they have a high potential for reuse, which we take

advantage of with C Minor’s until statement. Furthermore, we show how to use tablaeu to

construct proofs from existing rules, though this requires the use of predicates. As a result,

the interpretation process is divided into atomic steps that are functions from one predicate

to the next.

Overall, we believe that the ideas and concepts within the design of Jiapi have the

potential support for turning complex type system into smaller rules in order to ensure type

safety.

204

Appendix A

Background

A.1 First-order Logic (FOL)

First-order logic can be thought of as an extension of propositional logic [107, 257]. The goal

of propositional logic is to establish mathematical truths by proving that statements hold.

It is for this reason that atomic formulas in propositional logic have no internal structure

since they are propositional variables that are either true or false. However, in first-order

logic, they are predicates that assert a relationship between specific elements. Quantification

is another important new concept here, which allows us the ability to assert that a certain

property holds for all or some elements.

FOL’s main feature is that it allows for the quantification of formulas over a given domain,

leading to the introduction of universal and existential quantifiers. A formula ' containing

a variable x is quantified using 8x to express that the formula will evaluate to true if x is

replaced by any element of the domain. In contrast, existential (or 9x) expresses that the

formula will evaluate to true if x is replaced by some element of the domain. Furthermore,

FOL supports predicates that describe properties of object (denoted conventionally with P ,

Q, ...), and functions that map objects to one another in a domain to express relations or

characteristics.

205

A.1.1 Syntax

The syntax of first-order logic is made up of a collection of constant symbols, function

symbols, and predicate symbols, referred to as a formula [257]. Each function and predicate

symbols has an arity n > 0. In general, we use letters a, b, ... to denote constant symbols,

f, g, ... to denote function symbols, and P,Q,R, ... to denote predicate symbols. Thus, given

a formula ', the set of terms for ' is defined by the following inductive process [257]:

• Each variable is a term

• Each constant symbol is a term

• If t1, ..., tn are terms and f is a function with arity n > 0, then f(t1, ..., tn) is a term.

The set of formulas is defined inductively as follows:

1. Given terms t1, ..., tn and a predicate symbol P with arity n > 0 then P (t1, ..., tn) is a

formula

2. For each formula F , ¬F is also a formula

3. For each pair of formulas F and G, F _G and F ^G are both formulas

4. If F is a formula and x is a variable, then 8xF and 9xF are both formulas

5. Nothing else is a formula.

(1) tells us that P (ai) is a formula for any i 2 N . These are the so called atomic formulas.

They give us a starting point, whereas the other clauses show us how to create new formulas

from existing ones. For example, by (2), we conclude that ¬P (a1) is a formula since P (a1) is

already a formula by (1). (3) is a rather self-explanatory rule. In (4), we get that 9a1¬P (a1)

is another formula, and so on. Finally, (5) tells us that only strings formed in this manner

qualify as formulas.

Using these rules, we can encode the statement “Everyone likes ice cream” as 8x.likes(x,

iceCream), or “There is no one who does not like ice cream” as ¬9x.¬likes(x, iceCream). In

both of these cases, we need to be able to speak directly about objects (such as people or

206

numbers) and write down logical statements that generalize (or quantify) over those objects.

This is made possible by first-order logic. Finally, the syntax of FOL allows us to explicitly

represent objects and relationships between objects, giving us far more representational

power than the prepositional case.

A.2 Set Notation

In mathematics, a set is a collection of objects (called elements or members) whose con-

tents can be clearly defined [258]. Being well-defined means that a set has no ambiguity

as to what objects are in the set or not. For example, the collection of all red laptops,

the collection of positive numbers, etc, are all well-defined. The elements of a set are ei-

ther written in roster notation (i.e., listing all the members of the set), or set-builder

notation (i.e., telling how the set is created). For example, we write the set of whole num-

bers less than five in roster notation as {0, 1, 2, 3, 4}, whereas in set-notation we write it as

{x | x is a whole number and x < 5}.

A.2.1 Set-builder Notation

Set-builder notation is a precise way of expressing a collection of objects [258]. That is

because we are either encoding or decoding mathematics when we use it. Although there

is no standard format for set-builder notation, it does allow for some flexibility. Set-builder

notation has the following representation

{expression : rules}

where the enclosing curly brackets denote a set, the vertical bar says “such that”, and

everything following the colon are conditions that explained the membership. We will now

go over the operations used to manipulate sets, taking advantage of the opportunity to

practice curly brackets notation.

Definition 12: The empty set is a set that contains zero elements. The empty set is

denoted by { } or Ø

207

Definition 13: We write a 2 A to denote that a is an element of the set A. 2 has

a partner symbol 62 that is used to say that an element is not in a set. For example, if

A = {{1}, {2, 3}}, then {1} 2 A, 1 62 A, but 1 2 {1}.

Definition 14: We say that two sets are equal if they contain exactly the same elements.

For example, {red, green, blue} 6= {r, g, b}, {1, {2}, 3} 6= {1, 2, 3}, but {1, dog, } = { ,

dog, 1}. Note, order does not matter and repeated elements are superfluous; therefore,

{ , dog, 1} = { , , 1, {dog}}.

Definition 15: The size (or cardinality) of a set is the number of elements it contains.

For example, for the set {1, dog, }, we show cardinality by writing |{1, dog, }| = 3.

A.2.2 Operations

Now that we have established what sets are and how to think about them, let us categorize

the operations that can be performed on them (but only the ones that we use in this thesis).

Definition 16: The union of two sets A and B is the collection of all objects that are in

either set, and it is denoted by A[B. For example, A[B = {x | x 2 A or x 2 B}. Here the

symbol “or” represents a disjunction, so if we think of A and B using set-builder notation

like this

A = {x | x 2 A}, B = {x | x 2 B}

then we end up with the original formula. For example, if A = {1, 2, 3} and B = {4, 5}, then

A [B = {1, 2, 3, 4, 5}.

Definition 17: The intersection of two sets A and B is the collection of all object that

are in both sets, and it is denoted by A \B. For example, A \B = {x | x 2 A and x 2 B}

means that if A = {1, 2, 3} and B = {2, 3}, then A \ B = {2, 3}.

Definition 18: The di↵erence of two sets A and B is the collection of all objects in A

that are not in B, and it is denoted by A\B or A � B. For example, A\B = {x | x 2

A and x 62 B}.

208

Definition 19: For two sets A and B, A is a subset of B (denoted by A ⇢ B) if 8x.x 2

A) x 2 B. More formally, any member of set A also is a member of set B; however, there

may be members of B that are not in A (although A and B can be the same). For example,

if A = {1, 2, 3}, then A has eight di↵erent subsets:

Ø {1} {2} {3}
{1, 2} {1, 3} {2, 4} {1, 2, 3}

Notice that A ✓ A and in face each set is a subset of itself. (The empty set Ø is a subset of

every set.)

A.2.3 Relations

In this section, we provide a brief overview of (binary) relations as they relate to compil-

ing [5, 258]. Let X be a finite set of elements. A binary relation R on X is defined as a set

of ordered pairs such that if a 2 X and b 2 X, we write

a ⇠ b, (a, b) 2 R

and say that “a is related to b”. Generally speaking, a relationship on a set is denoted by

the ⇠ symbol, but other symbols that are more relevant to the context can be used. Let us

look at the following relation examples (as given in [5, Example A.2]).

Example 12 (Relation): Let X = {1, 2, 3, ..., 10} and the less-than operator <. We can

create a relation R with respect to < such that for a 2 X and b 2 X:

a < b, (a, b) 2 R

What does the relation (i.e., R) look like then? Since we understand how the < operator

works, we require every pair of elements in X in which the first element is less than the

second. This gives us:

R = {(1, 2), (1, 3), ..., (1, 10), (2, 3), ..., (2, 10), ..., (9, 10)}

209

As can be seen, binary relations may themselves have properties. For example, a relation

R on a set X and with relational operator ⇠ is transitive if for x, y, z 2 X

if x ⇠ y ^ y ⇠ z) x ⇠ z

That is, if x is related to y and y is related to z, x is related to z.

Example 13 (Transitive Relation): The relation from Example 12 is transitive. For

example, if we choose three numbers: 2, 5, and 5, then because 2 < 5 and 5 < 7 (and thus

(2, 5) 2 R and (5, 7) 2 R), 2 < 7 and (2, 7) 2 R.

Furthermore, a relation R over a set X and with relational operator ⇠ is reflexive if for

all x 2 X:

x ⇠ x

That is, x relates to itself.

Example 14 (Reflexive Relation): Using the same example (Example12), we can see

that the relation R is no reflexive because no number x is strictly less than itself. However,

if we had use the operator instead, we could have made the relation reflexive by addling

all pairs (x, x) 2 R.

We summarize these relations here using FOL notation

Reflexivity: 8xR(x, x)
Transitivity: 8x8y8z((R(x, y) ^R(y, z))! R(x, z))

A.3 Tableau

Truth tables are based on the definition of a tautology as a formula that is true under all

possible interpretations. Using truth tables to evaluate the truth of a formula, on the other

hand, quickly becomes impractical. For larger formulas, we should look for a better approach,

something that is fairly schematic but no longer requires checking individual valuations.

Instead, it should be preferable to reason about truth and falsehood as such, and to analyze

the condition for the truth of a formula in light of what we know about its sub-formulas.

210

Tableau is a schematic method that replaces the statement “X is true” with the signed

formula TX and “X is false” with the signed formula FX [240, 239]. It replaces logical

reasoning with the schematic application of syntactic manipulations to a signed formula,

using the rules derived from the preceding observations. Before beginning with an example,

let us look at the following observations [240]:

Remark 7: For all propositions X, Y :

1a. T (¬X)) FX.

1b. F (¬X)) TX.

2a. T (X ^ Y)) TX and TY .

2b. F (X ^ Y)) FX or FY .

3a. T (X _ Y)) TX or TY .

3b. F (X _ Y)) FX and FY .

4a. T (X ! Y)) FX or TY .

4b. F (X ! Y)) TX and FY .

The analytic tableau method can be summarized as follows: We assume FX and derive

a contradiction using the rules from Remark 7 to prove the validity of a proposition X. In

doing so, we adhere to a specific format, as shown in the following example.

Example 15 (Tableau Proof): An analytic tableau proving the validity of 9x¬�(x) !

¬8x'(x) is shown next.

1. F9x¬'(x)! ¬8x'(x) Assumption

Since the main operator is !, we apply the ! F rule

1.

2.

3.

F9x¬'(x)! ¬8x'(x)X
T9x¬'(x)

F¬8x'(x)

Assumption

! F 1

! F 1

211

The next line to solve is 2. We use 9T . This requires a new constant symbols, and because

no constant symbols have yet been created, we can choose any variable � say a

1.

2.

3.

4.

F9x¬'(x)! ¬8x'(x)X
T9x¬'(x)X
F¬8x'(x)

T¬'(x)

Assumption

! F 1

! F 1

9T 2

Now we apply ¬F rule to line 3

1.

2.

3.

4.

5.

F9x¬'(x)! ¬8x'(x)X
T9x¬'(x)X
F¬8x'(x)X

T¬'(x)

T8x'(x)

Assumption

! F 1

! F 1

9T 2

¬F 3

Applying ¬T to line 4, followed by 8T to line 5, gives us a closed tableau.

1.

2.

3.

4.

5.

6.

7.

F9x¬'(x)! ¬8x'(x)X
T9x¬'(x)X
F¬8x'(x)X

T¬'(x)

T8x'(x)

F'(a)

T'(a)

closed!

Assumption

! F 1

! F 1

9T 2

¬F 3

¬T 4

8T 5

We say that tableau method is said to have proved a formula X if there is a closed an-

alytic tableau with origin FX. In other words, if a tableau branch contains a contradiction

(i.e., a formula labeled with two di↵erent truth values), it is closed; otherwise, it is open.

A completed open branch indicates the presence of an interpretation that fulfills the assign-

ments at the tableau’s root. A tableau with all branches closed demonstrates unsatisfiability

and can be read as proof.

212

A.3.1 Rules for the construction of Tableau

Let us go over what we just did. We used a schematic method that decomposes signed

formulas based on the four observations about signed formulas (see Remark 7). Note that

there are only two types of signed formulas [240]:

(A) T (¬X), F (¬X), T (X ^ Y), F (X _ Y), and F (X ! Y) are five signed formulas with

direct consequences

(B) F (X ^ Y), F (X _ Y), and T (X ! Y) are three signed formulas that branch

When we use a formula of type (A), we simply add all of its direct consequences to each

branch beneath the formula in question. In contrast to that, when using a formula of type

(B), we divide each branch beneath the formula into two new branches. The rules for tableau

are as follows:

T (¬X)

FX

F (¬X)

TX

T (X ^ Y)

TX
TY

F (X ^ Y)

FX | FY

T (X _ Y)

TX | TY

F (X _ Y)

FX
FY

T (X ! Y)

FX | TY

F (X ! Y)

TX
FY

Tableau can be written in a variety of styles. Each node can either write out the entire set

of formulas or just the formula being analyzed. Truth value labels can be written explicitly,

or they can be omitted and the false label can be replaced with the formula’s negation.

For classical propositional logic, the tableau method is a decision procedure; that is, a

completely mechanical method that guarantees whether or not a formula is satisfiable. We

can determine whether a given finite sequence is valid or not by starting with the assumption

that all premises are true and the conclusion is false.

213

Bibliography

1. Andreas Stefik and Stefan Hanenberg. “The Programming Language Wars:
Questions and Responsibilities for the Programming Language Community”. In:
Proceedings of the 2014 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software. 2014, pp. 283–299.

2. Charles A Hoare. Hints on Programming Language Design. Tech. rep. STANFORD
UNIV CA DEPT OF COMPUTER SCIENCE, 1973.

3. Alfred V Aho, Ravi Sethi, and Je↵rey D Ullman. “Compilers, Principles,
Techniques”. In: Addison wesley 7.8 (1986), p. 9.

4. Luca Cardelli. “Type Systems”. In: ACM Computing Surveys (CSUR) 28.1 (1996),
pp. 263–264.

5. Jan Bækgaard Pedersen. Practical Compiler Construction: with Java and the JVM.
United States: Lulu.com, 2018. isbn: 9781312519114.

6. Dennis Volpano, Cynthia Irvine, and Geo↵rey Smith. “A Sound Type System for
Secure Flow Analysis”. In: Journal of computer security 4.2-3 (1996), pp. 167–187.

7. John C Mitchell. “Type Systems for Programming Languages”. In: Formal Models
and Semantics. Elsevier, 1990, pp. 365–458.

8. Thomas Würthinger, Christian Wimmer, and Hanspeter Mössenböck. “Array
Bounds Check Elimination in the Context of Deoptimization”. In: Science of
Computer Programming 74.5-6 (2009), pp. 279–295.

9. Thi Viet Nga Nguyen and François Irigoin. “Alias Verification for Fortran Code
Optimization”. In: J. UCS 9.3 (2003), p. 270.

10. Jan Bækgaard Pedersen. The Espresso Compiler.
http://www.egr.unlv.edu/˜matt/teaching/CSC460/Espresso.pdf.

11. Jan Bækgaard Pedersen. Process-Oriented Programming and Design with ProcessJ
and CSP. United States: Lulu.com, 2022. isbn: 9781291220940.

12. Gregory J Duck and Roland HC Yap. “E↵ectiveSan: Type and Memory Error
Detection Using Dynamically Typed C/C++”. In: Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implementation. 2018,
pp. 181–195.

13. David May. “CSP, occam and Transputers”. In: Communicating Sequential
Processes. The First 25 Years. Springer, 2005, pp. 75–84.

214

http://www.egr.unlv.edu/~matt/teaching/CSC460/Espresso.pdf

14. Dick Pountain and David May. A Tutorial Introduction to OCCAM Programming.
McGraw-Hill, Inc., 1987.

15. David May. “occam”. In: ACM Sigplan Notices 18.4 (1983), pp. 69–79.

16. Peter H Welch and Fred RM Barnes. Communicating mobile processes: Introducing
occam-⇡. 25 Years of CSP (Lecture Notes in Computer Science, vol. 3525),
Abdallah AE, Jones CB, Sanders JW. 2005.

17. Peter H Welch and Frederick RM Barnes. “Communicating Mobile Processes”. In:
Communicating Sequential Processes. The First 25 Years. Springer, 2005,
pp. 175–210.

18. Peter H Welch and Fred RM Barnes. “Mobile Barriers for occam-⇡: Semantics,
Implementation and Application.” In: CPA. Vol. 5. 2005, pp. 289–316.

19. Peter H Welch. “Life of occam-⇡”. In: Communicating Process Architectures 2013
(2013), pp. 293–318.

20. Bertil Svensson et al. “occam-⇡as a High-Level Language for Coarse-Grained
Reconfigurable Architectures”. In: 2011 IEEE International Symposium on Parallel
and Distributed Processing Workshops and Phd Forum. IEEE. 2011, pp. 236–243.

21. Jan Bækgaard Pedersen and Marc L Smith. “ProcessJ: A Possible Future of
Process-Oriented Design.” In: CPA. 2013, pp. 133–156.

22. occam-⇡ and KRoC: Blending CSP and the ⇡-calculus.
https://www.cs.kent.ac.uk/projects/ofa/kroc/.

23. Muhammad Taimoor Khan and Wolfgang Schreiner. “Towards the Formal
Specification and Verification of Maple Programs”. In: International Conference on
Intelligent Computer Mathematics. Springer. 2012, pp. 231–247.

24. Robert Sebesta. Concepts of Programming Languages. Boston: Pearson, 2016. isbn:
978-0133943023.

25. Michael Scott. Programming Language Pragmatics. San Francisco, CA: Morgan
Kaufmann Pub, 2006. isbn: 978-0124104099.

26. Microsoft. The C# Type System — Microsoft Docs.
https://docs.microsoft.com/en-
us/dotnet/csharp/fundamentals/types/.

27. Klaus Ostermann. “Nominal and Structural Subtyping in Component-Based
Programming.” In: J. Object Technol. 7.1 (2008), pp. 121–145.

28. Luca Cardelli and Peter Wegner. “On Understanding Types, Data Abstraction, and
Polymorphism”. In: ACM Computing Surveys (CSUR) 17.4 (1985), pp. 471–523.

29. Luca Cardelli and John C Mitchell. “Operations on Records”. In: Mathematical
structures in computer science 1.1 (1991), pp. 3–48.

30. Mitchell Wand. “Type Inference for Record Concatenation and Multiple
Inheritance”. In: Information and Computation 93.1 (1991), pp. 1–15.

31. Luca Cardelli. “A Semantics of Multiple Inheritance”. In: International symposium
on semantics of data types. Springer. 1984, pp. 51–67.

215

https://www.cs.kent.ac.uk/projects/ofa/kroc/
https://docs.microsoft.com/en-us/dotnet/csharp/fundamentals/types/
https://docs.microsoft.com/en-us/dotnet/csharp/fundamentals/types/

32. William R Cook, Walter Hill, and Peter S Canning. “Inheritance is not Subtyping”.
In: Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. 1989, pp. 125–135.

33. John C Mitchell. “Toward a Typed Foundation for Method Specialization and
Inheritance”. In: Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. 1989, pp. 109–124.

34. Uday Reddy. “Objects as Closures: Abstract Semantics of Object-Oriented
Languages”. In: Proceedings of the 1988 ACM Conference on LISP and Functional
Programming. 1988, pp. 289–297.

35. Andrew J Kennedy and Benjamin C Pierce. “On Decidability of Nominal Subtyping
with Variance”. In: (2006).

36. Tom Schrijvers, Simon Peyton Jones, Martin Sulzmann, and Dimitrios Vytiniotis.
“Complete and Decidable Type Inference for GADTs”. In: ACM Sigplan Notices
44.9 (2009), pp. 341–352.

37. Aleksandr Misonizhnik and Dmitry Mordvinov. “On Satisfiability of Nominal
Subtyping with Variance”. In: 33rd European Conference on Object-Oriented
Programming (ECOOP 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
2019.

38. Ori Roth. “Study of the Subtyping Machine of Nominal Subtyping with Variance
(full version)”. In: arXiv preprint arXiv:2109.03950 (2021).

39. Yuri Leontiev, M Tamer Özsu, and Duane Szafron. “On Type Systems for
Object-Oriented Database Programming Languages”. In: ACM Computing Surveys
(CSUR) 34.4 (2002), pp. 409–449.

40. Michael Kölling. “The Problem of Teaching Object-Oriented Programming, Part 1:
Languages”. In: Journal of Object-oriented programming 11.8 (1999), pp. 8–15.

41. Michael Kölling. “The Problem of Teaching Object-Oriented Programming, Part 2:
Environments”. In: Journal of Object-Oriented Programming 11.9 (1999), pp. 6–12.

42. Will Dietz, Peng Li, John Regehr, and Vikram Adve. “Understanding Integer
Overflow in C/C++”. In: ACM Transactions on Software Engineering and
Methodology (TOSEM) 25.1 (2015), pp. 1–29.

43. Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Virtual
Machine Specification. Pearson Education, 2014.

44. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification. Addison-Wesley Professional, 2000.

45. Bjarne Stroustrup. The C++ Programming Language. Pearson Education, 2013.

46. Jana Dunfield. “Annotations for Intersection Typechecking”. In: arXiv preprint
arXiv:1307.8204 (2013).

47. Groovy Language. Type Checking Extensions.
https://docs.groovy-lang.org/next/html/documentation/type-
checking-extensions.html.

216

https://docs.groovy-lang.org/next/html/documentation/type-checking-extensions.html
https://docs.groovy-lang.org/next/html/documentation/type-checking-extensions.html

48. The Apache Groovy Programming Language — Runtime and Compile-Time
Metaprogramming. url: http://www.groovy-
lang.org/metaprogramming.html#_compile_time_metaprogramming.

49. Prodromos Gerakios, Aggelos Biboudis, and Yannis Smaragdakis. “Reified Type
Parameters Using Java Annotations”. In: Proceedings of the 12th international
conference on Generative programming: concepts & experiences. 2013, pp. 61–64.

50. Michael D Ernst. Type annotations specification (JSR 308). 2008.

51. Raymie Stata and Martin Abadi. “A Type System for Java Bytecode Subroutines”.
In: ACM Transactions on Programming Languages and Systems (TOPLAS) 21.1
(1999), pp. 90–137.

52. Stephen N Freund and John C Mitchell. “A Type System for the Java Bytecode
Language and Verifier”. In: Journal of Automated Reasoning 30.3 (2003),
pp. 271–321.

53. Stephen N Freund and John C Mitchell. “A Type System for Object Initialization in
the Java Bytecode Language”. In: ACM Transactions on Programming Languages
and Systems (TOPLAS) 21.6 (1999), pp. 1196–1250.

54. Gilles Barthe, David Pichardie, and Tamara Rezk. “A Certified Lightweight
Non-Interference Java Bytecode Verifier”. In: European Symposium on
Programming. Springer. 2007, pp. 125–140.

55. Benjamin C Pierce. Advanced Topics in Types and Programming Languages. MIT
press, 2004.

56. Jan Van Leeuwen. Handbook of Theoretical Computer Science (vol. A) Algorithms
and Complexity. Mit Press, 1991.

57. Thomas Reps. Generating Language-Based Environments. Tech. rep. Cornell
University, 1982.

58. Michael Y Levin and Benjamin C Pierce. “Tinkertype: A Language for Playing with
Formal Systems”. In: Journal of Functional Programming 13.2 (2003), pp. 295–316.

59. Erik Meijer and Peter Drayton. “Static Typing where Possible, Dynamic Typing
when Needed: The End of the Cold War Between Programming Languages”. In:
Citeseer. 2004.

60. Jan Herman Geuvers. Logics and Type Systems. [Sl: sn], 1993.

61. Judgment in nLab. https://ncatlab.org/nlab/show/judgment.

62. Luca Cardelli. Type Systems.
http://lucacardelli.name/papers/typesystems.pdf.

63. Jens Palsberg and C Barry Jay. “The Essence of the Visitor Pattern”. In:
Proceedings. The Twenty-Second Annual International Computer Software and
Applications Conference (Compsac’98)(Cat. No. 98CB 36241). IEEE. 1998,
pp. 9–15.

64. Bruno CdS Oliveira, Meng Wang, and Jeremy Gibbons. “The Visitor Pattern as a
Reusable, Generic, Type-Safe Component”. In: Proceedings of the 23rd ACM

217

http://www.groovy-lang.org/metaprogramming.html#_compile_time_metaprogramming
http://www.groovy-lang.org/metaprogramming.html#_compile_time_metaprogramming
https://ncatlab.org/nlab/show/judgment
http://lucacardelli.name/papers/typesystems.pdf

SIGPLAN conference on Object-oriented programming systems languages and
applications. 2008, pp. 439–456.

65. UNLV. CS 460 Compiler Construction — Acalog ACMSTM. https://catalog.
unlv.edu/preview_course_nopop.php?catoid=32&coid=159240.

66. Per Martin-Löf and Giovanni Sambin. Intuitionistic Type Theory. Vol. 9. Bibliopolis
Naples, 1984.

67. Thierry Coquand. “Metamathematical Investigations of a Calculus of
Constructions”. PhD thesis. INRIA, 1989.

68. Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard
Isomorphism. Elsevier, 2006.

69. Kazuo Thow. The Curry-Howard isomorphism: of proofs and programs. https:
//sites.math.washington.edu/˜morrow/336_11/papers/kazuo.pdf.

70. J Roger Hindley and Jonathan P Seldin. Lambda-calculus and Combinators, an
Introduction. Vol. 2. Cambridge University Press Cambridge, 2008.

71. Dennis M Ritchie. “The Development of the C Language”. In: ACM Sigplan Notices
28.3 (1993), pp. 201–208.

72. Bjarne Stroustrup. The C++ Programming Language: Reference Manual. Tech. rep.
Bell Lab., 1984.

73. Margaret A Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual.
Addison-Wesley Longman Publishing Co., Inc., 1990.

74. Kathleen Jensen and Niklaus Wirth. PASCAL User Manual and Report: ISO
PASCAL Standard. Springer Science & Business Media, 2012.

75. Göran Sundholm. “Systems of Deduction”. In: Handbook of philosophical logic.
Springer, 1983, pp. 133–188.

76. Henk Barendregt. “Introduction to Generalized Type Systems”. In: Journal of
functional programming 1.2 (1991), pp. 125–154.

77. Ross T Brady. “Natural Deduction Systems for Some Quantified Relevant Logics”.
In: Logique et Analyse 27.108 (1984), pp. 355–377.

78. LS van Benthem Jutting, James McKinna, and Robert Pollack. “Checking
Algorithms for Pure Type Systems”. In: International Workshop on Types for
Proofs and Programs. Springer. 1993, pp. 19–61.

79. Craig Chambers and Gary T Leavens. “Typechecking and Modules for
Multimethods”. In: ACM Transactions on Programming Languages and Systems
(TOPLAS) 17.6 (1995), pp. 805–843.

80. Mitchell Wand. “A Simple Algorithm and Proof for Type Inference”. In:
Fundamenta Informaticae 10.2 (1987), pp. 115–121.

81. Martin Odersky, Martin Sulzmann, and Martin Wehr. “Type Inference with
Constrained Types”. In: Theory and practice of object systems 5.1 (1999), pp. 35–55.

82. Nathaniel Nystrom, Vijay Saraswat, Jens Palsberg, and Christian Grotho↵.
“Constrained Types for Object-Oriented Languages”. In: Proceedings of the 23rd

218

https://catalog.unlv.edu/preview_course_nopop.php?catoid=32&coid=159240
https://catalog.unlv.edu/preview_course_nopop.php?catoid=32&coid=159240
https://sites.math.washington.edu/~morrow/336_11/papers/kazuo.pdf
https://sites.math.washington.edu/~morrow/336_11/papers/kazuo.pdf

ACM SIGPLAN conference on Object-oriented programming systems languages and
applications. 2008, pp. 457–474.

83. Valery Trifonov and Scott Smith. “Subtyping Constrained Types”. In: International
Static Analysis Symposium. Springer. 1996, pp. 349–365.

84. Luis Damas and Robin Milner. “Principal Type-Schemes for Functional Programs”.
In: Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. 1982, pp. 207–212.

85. Philip Wadler and Stephen Blott. “How to Make Ad-hoc Polymorphism Less Ad
Hoc”. In: Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. 1989, pp. 60–76.

86. Robin Milner. “A Theory of Type Polymorphism in Programming”. In: Journal of
computer and system sciences 17.3 (1978), pp. 348–375.

87. Didier Rémy. “Type Checking Records and Variants in a Natural Extension of ML”.
In: Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. 1989, pp. 77–88.

88. Cordelia V Hall, Kevin Hammond, Simon L Peyton Jones, and Philip L Wadler.
“Type Classes in Haskell”. In: ACM Transactions on Programming Languages and
Systems (TOPLAS) 18.2 (1996), pp. 109–138.

89. Kung Chen, Paul Hudak, and Martin Odersky. “Parametric Type Classes”. In:
Proceedings of the 1992 ACM Conference on LISP and Functional Programming.
1992, pp. 170–181.

90. Martin Odersky, Philip Wadler, and Martin Wehr. “A Second Look at
Overloading”. In: Proceedings of the seventh international conference on Functional
programming languages and computer architecture. 1995, pp. 135–146.

91. John C Mitchell. “Coercion and Type Inference”. In: Proceedings of the 11th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages. 1984,
pp. 175–185.

92. John C Mitchell. “Type Inference with Simple Subtypes”. In: Journal of functional
programming 1.3 (1991), pp. 245–285.

93. Kim B Bruce, Angela Schuett, and Robert van Gent. “PolyTOIL: A Type-Safe
Polymorphic Object-Oriented Language”. In: European Conference on
Object-Oriented Programming. Springer. 1995, pp. 27–51.

94. Alexander Aiken and Edward L Wimmers. “Type Inclusion Constraints and Type
Inference”. In: Proceedings of the conference on Functional programming languages
and computer architecture. 1993, pp. 31–41.

95. Stefan Hanenberg. “An Experiment About Static and Dynamic Type Systems:
Doubts About the Positive Impact of Static Type Systems on Development Time”.
In: Proceedings of the ACM international conference on Object oriented
programming systems languages and applications. 2010, pp. 22–35.

219

96. Kenneth Knowles and Cormac Flanagan. “Hybrid Type Checking”. In: ACM
Transactions on Programming Languages and Systems (TOPLAS) 32.2 (2010),
pp. 1–34.

97. Cormac Flanagan. “Hybrid Type Checking”. In: Conference record of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 2006,
pp. 245–256.

98. Ulf Norell. Towards a Practical Programming Language Based on Dependent Type
Theory. Vol. 32. Citeseer, 2007.

99. Hongwei Xi and Frank Pfenning. “Dependent Types in Practical Programming”. In:
Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. 1999, pp. 214–227.

100. Jessica Gronski, Kenneth Knowles, Aaron Tomb, Stephen N Freund, and
Cormac Flanagan. “Sage: Hybrid Checking for Flexible Specifications”. In: Scheme
and Functional Programming Workshop. Vol. 6. 2006, pp. 93–104.

101. Zachary Ryan Anderson. Static Analysis of C for Hybrid Type Checking. Tech. rep.
Tech. Rep. EECS-2007-1, UC Berkeley, 2007.

102. Edsger W Dijkstra. “Programming as a Discipline of Mathematical Nature”. In: The
American Mathematical Monthly 81.6 (1974), pp. 608–612.

103. Edsger W Dijkstra. “A Constructive Approach to the Problem of Program
Correctness”. In: BIT Numerical Mathematics 8.3 (1968), pp. 174–186.

104. Edsger W Dijkstra et al. “On the Cruelty of Really Teaching Computing Science”.
In: Communications of the ACM 32.12 (1989), pp. 1398–1404.

105. Philip L Frana and Thomas J Misa. “An Interview with Edsger W. Dijkstra”. In:
Communications of the ACM 53.8 (2010), pp. 41–47.

106. Edsger W Dijkstra. “The Humble Programmer”. In: Communications of the ACM
15.10 (1972), pp. 859–866.

107. Fairouz D Kamareddine, Twan Laan, and Rob Nederpelt. A Modern Perspective on
Type Theory: From Its Origins Until Today. Vol. 29. Springer Science & Business
Media, 2004.

108. John C Mitchell. Foundations for Programming Languages. Vol. 1. MIT press
Cambridge, 1996.

109. Brian Chin, Shane Markstrum, and Todd Millstein. “Semantic Type Qualifiers”. In:
ACM SIGPLAN Notices 40.6 (2005), pp. 85–95.

110. Type Theory (Stanford Encyclopedia of Philosophy).
https://plato.stanford.edu/entries/type-theory/.

111. Hongwei Xi and Frank Pfenning. “Eliminating Array Bound Checking through
Dependent Types”. In: Proceedings of the ACM SIGPLAN 1998 conference on
Programming language design and implementation. 1998, pp. 249–257.

112. Dominic Duggan and John Ophel. “Type-Checking Multi-Parameter Type Classes”.
In: Journal of functional programming 12.2 (2002), pp. 133–158.

220

https://plato.stanford.edu/entries/type-theory/

113. Martin Odersky and Konstantin Läufer. “Putting Type Annotations to Work”. In:
Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. 1996, pp. 54–67.

114. Benjamin C Pierce and C Benjamin. Types and Programming Languages. MIT
press, 2002.

115. Gianluigi Bellin, Valeria De Paiva, and Eike Ritter. “Extended Curry-Howard
Correspondence for a Basic Constructive Modal Logic”. In: Proceedings of methods
for modalities. Vol. 2. 2001.

116. John W Backus, Friedrich L Bauer, Julien Green, Charles Katz, John McCarthy,
Alan J Perlis, Heinz Rutishauser, Klaus Samelson, Bernard Vauquois,
Joseph Henry Wegstein, et al. “Report on The algorithmic Language ALGOL 60”.
In: Communications of the ACM 3.5 (1960), pp. 299–314.

117. Ole-Johan Dahl and Kristen Nygaard. “SIMULA: An ALGOL-based Simulation
Language”. In: Communications of the ACM 9.9 (1966), pp. 671–678.

118. Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth,
Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and
Matthias Zenger. “An Overview of the Scala Programming Language”. In: (2004).

119. Guido VanRossum and Fred L Drake. The Python Language Reference. Python
Software Foundation Amsterdam, Netherlands, 2010.

120. The Perl Programming Language - www.perl.org. https://www.perl.org/.

121. Functions - JavaScript — MDN. https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Guide/Functions.

122. David Tarditi, Greg Morrisett, Perry Cheng, Chris Stone, Robert Harper, and
Peter Lee. “TIL: A Type-Directed Optimizing Compiler for ML”. In: ACM Sigplan
Notices 31.5 (1996), pp. 181–192.

123. J. Oberg. “Why the Mars probe went o↵ course [accident investigation]”. In: IEEE
Spectrum 36.12 (1999), pp. 34–39. doi: 10.1109/6.809121.

124. Malaya Kumar Biswal M and Ramesh Naidu Annavarapu. “A Study on Mars Probe
Failures”. In: AIAA Scitech 2021 Forum. 2021, p. 1158.

125. Chung Y Lo. “NASA’s Space-Probes Pioneer Anomaly and the Mass-Charge
Repulsive Force”. In: 17th Annual Natural Philosophy Alliance Conference,
California State University, Long Beach, California June. 2010, pp. 23–26.

126. Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. “A Large
Scale Study of Programming Languages and Code Quality in Github”. In:
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering. 2014, pp. 155–165.

127. Chen Zhang, Bihuan Chen, Linlin Chen, Xin Peng, and Wenyun Zhao. “A
Large-Scale Empirical Study of Compiler Errors in Continuous Integration”. In:
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 2019,
pp. 176–187.

221

https://www.perl.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Functions
https://doi.org/10.1109/6.809121

128. Stefan Hanenberg, Sebastian Kleinschmager, Romain Robbes, Éric Tanter, and
Andreas Stefik. “An Empirical Study on the Impact of Static Typing on Software
Maintainability”. In: Empirical Software Engineering 19.5 (2014), pp. 1335–1382.

129. Stefan Hanenberg. “Costs of Using Untyped Programming Languages–First
Empirical Results”. In: IFAC Proceedings Volumes 42.4 (2009), pp. 1418–1422.

130. Sam Tobin-Hochstadt, Matthias Felleisen, Robert Findler, Matthew Flatt,
Ben Greenman, Andrew M Kent, Vincent St-Amour, T Stephen Strickland, and
Asumu Takikawa. “Migratory Typing: Ten Years Later”. In: 2nd Summit on
Advances in Programming Languages (SNAPL 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik. 2017.

131. Jukka Lehtosalo. Our Journey to Type Checking 4 Million Lines of Python —
Dropbox. https://dropbox.tech/application/our-journey-to-type-
checking-4-million-lines-of-python.

132. Faizan Khan, Boqi Chen, Daniel Varro, and Shane Mcintosh. “An Empirical Study
of Type-Related Defects in Python Projects”. In: IEEE Transactions on Software
Engineering (2021).

133. IDEA IntelliJ. “The Most Intelligent Java IDE”. In: JetBrains [online].[cit.
2016-02-23]. Dostupné z: https://www.jetbrains.com/idea/#
chooseYourEdition (2011).

134. Ed Burnette. Eclipse IDE Pocket Guide: Using the Full-Featured IDE. “O’Reilly
Media, Inc.”, 2005.

135. Apache NetBeans. Welcome to Apache NetBeans.
https://netbeans.apache.org/.

136. Jens Palsberg. “Type-Based Analysis and Applications”. In: Proceedings of the 2001
ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and
engineering. 2001, pp. 20–27.

137. William R Bush, Jonathan D Pincus, and David J Siela↵. “A Static Analyzer for
Finding Dynamic Programming Errors”. In: Software: Practice and Experience 30.7
(2000), pp. 775–802.

138. Cindy Rubio-González and Ben Liblit. “Finding Error-Handling Bugs in Systems
Code Using Static Analysis”. In: PhD Forum of the Grace Hopper Celebration of
Women in Computing, Portland, Oregon. 2011.

139. Urs Hölzle and Ole Agesen. “Dynamic versus Static Optimization Techniques for
Object-Oriented Languages”. In: Theory and Practice of Object Systems 1.3 (1995),
pp. 167–188.

140. Jan Bækgaard Pedersen and Brian Kauke. “Resumable Java Bytecode-Process
Mobility for the JVM.” In: CPA. 2009, pp. 159–172.

141. Oswaldo Benjamin Cisneros Merino. “ProcessJ: The JVMCSP Code Generator”. In:
(2019).

142. Alexander C Thomason. “The ProcessJ C++ Runtime System and Code
Generator”. PhD thesis. University of Nevada, Las Vegas, 2020.

222

https://dropbox.tech/application/our-journey-to-type-checking-4-million-lines-of-python
https://dropbox.tech/application/our-journey-to-type-checking-4-million-lines-of-python
https://netbeans.apache.org/

143. Matthew Sowders. “ProcessJ: A Process-Oriented Programming Language”. In:
(2011).

144. Fraser Brown, Andres Nötzli, and Dawson Engler. “How to Build Static Checking
Systems Using Orders of Magnitude Less Code”. In: Proceedings of the Twenty-First
International Conference on Architectural Support for Programming Languages and
Operating Systems. 2016, pp. 143–157.

145. Andrew K Wright and Matthias Felleisen. “A Syntactic Approach to Type
Soundness”. In: Information and computation 115.1 (1994), pp. 38–94.

146. Alfred North Whitehead and Bertrand Russell. Principia Mathematica to* 56.
Vol. 2. Cambridge University Press, 1997.

147. Frank Plumpton Ramsey. “The Foundations of Mathematics”. In: (1925).

148. Alonzo Church. “A Formulation of the Simple Theory of Types”. In: The journal of
symbolic logic 5.2 (1940), pp. 56–68.

149. Stefano Berardi. “Towards a Mathematical Analysis of the Coquand-Huet Calculus
of Constructions and the Other Systems in Barendregt’s Cube”. In: Technica1
report, Carnegie-Me11on University (USA) and Universita di Torino (Ita1y) (1988).

150. Richard A De Millo, Richard J Lipton, and Alan J Perlis. “Social Processes and
Proofs of Theorems and Programs”. In: Communications of the ACM 22.5 (1979),
pp. 271–280.

151. Jonathan Bowen and Victoria Stavridou. “Safety-Critical Systems, Formal Methods
and Standards”. In: Software engineering journal 8.4 (1993), pp. 189–209.

152. Bertrand Meyer. Introduction to the Theory of Programming Languages.
Prentice-Hall, Inc., 1990.

153. Peter D Mosses. “The Varieties of Programming Language Semantics and Their
Uses”. In: International Andrei Ershov Memorial Conference on Perspectives of
System Informatics. Springer. 2001, pp. 165–190.

154. Dana Scott. “Mathematical Concepts in Programming Language Semantics”. In:
Proceedings of the May 16-18, 1972, spring joint computer conference. 1971,
pp. 225–234.

155. Tobias Nipkow. “Programming and Proving in Isabelle/HOL”. In: Technical report,
University of Cambridge. 2013.

156. Adam Chlipala. Certified Programming with Dependent Types: A Pragmatic
Introduction to the Coq Proof Assistant. MIT Press, 2013.

157. Harry R Lewis and Christos H Papadimitriou. “Elements of the Theory of
Computation”. In: ACM SIGACT News 29.3 (1998), pp. 62–78.

158. Alfred V Aho, Monica S Lam, Ravi Sethi, and Je↵rey D Ullman. Compilers:
Principles, Techniques and Tools. 2020.

159. Analytica Wiki. https://wiki.analytica.com/index.php?title=
Analytica_Wiki&title=Analytica_Wiki.

223

https://wiki.analytica.com/index.php?title=Analytica_Wiki&title=Analytica_Wiki
https://wiki.analytica.com/index.php?title=Analytica_Wiki&title=Analytica_Wiki

160. Joseph A Bank, Andrew C Myers, and Barbara Liskov. “Parameterized types for
Java”. In: Proceedings of the 24th acm sigplan-sigact symposium on principles of
programming languages. 1997, pp. 132–145.

161. Brian McNamara and Yannis Smaragdakis. “Static Interfaces in C++”. In: First
Workshop on C++ Template Programming. Citeseer. 2000, pp. 26–31.

162. David Vandevoorde. C++ Templates : The Complete Guide. Boston:
Addison-Wesley, 2018. isbn: 978-0321714121.

163. C++ International Standard. http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2012/n3376.pdf.

164. Martin Richards. “BCPL: A Tool for Compiler Writing and System Programming”.
In: Proceedings of the May 14-16, 1969, spring joint computer conference. 1969,
pp. 557–566.

165. N1570 April 12, 2011 ISO/IEC 9899:201x. url:
http://port70.net/˜nsz/c/c11/n1570.html#I.

166. Allen B Tucker. Computer Science Handbook. CRC press, 2004.

167. David Gries and Narain Gehani. “Some Ideas on Data Types in High-Level
Languages”. In: Communications of the ACM 20.6 (1977), pp. 414–420.

168. Thomas A Standish. “Extensibility in Programming Language Design”. In:
Proceedings of the May 19-22, 1975, national computer conference and exposition.
1975, pp. 287–290.

169. Joshua Bloch. E↵ective Java. Addison-Wesley Professional, 2008.

170. Kim B Bruce. Foundations of Object-Oriented Languages: Types and Semantics.
MIT press, 2002.

171. Kim B Bruce. “Typing in Object-Oriented Languages: Achieving Expressiveness
and Safety”. In: Unpublished, June (1996).

172. Benjamin Evans. Java in a Nutshell. Beijing, China Boston, Massachusetts: O’Reilly
Media, Inc, 2018. isbn: 9781492037255.

173. Bjarne Stroustrup. The C++ Programming Language. Upper Saddle River, NJ:
Addison-Wesley, 2013. isbn: 978-0321563842.

174. Microsoft. The C# Type System – Microsoft Docs.
https://docs.microsoft.com/en-
us/dotnet/csharp/fundamentals/types/.

175. Bertrand Meyer. Ei↵el: The Language. New York: Prentice Hall, 1992. isbn:
978-0132479257.

176. Venkat Subramaniam. Programming Groovy 2 : Dynamic Productivity for the Java
Developer. Frisco, TX: The Pragmatic Programmers, 2014. isbn: 9781937785307.

177. JetBrains. Type System – Kotlin Language Specification.
https://kotlinlang.org/spec/type-system.html.

224

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3376.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3376.pdf
http://port70.net/~nsz/c/c11/n1570.html#I
https://docs.microsoft.com/en-us/dotnet/csharp/fundamentals/types/
https://docs.microsoft.com/en-us/dotnet/csharp/fundamentals/types/
https://kotlinlang.org/spec/type-system.html

178. Gianluca Mezzetti, Anders Møller, and Fabio Strocco. “Type Unsoundness in
Practice: An Empirical Study of Dart”. In: ACM SIGPLAN Notices 52.2 (2016),
pp. 13–24.

179. Per Runeson. “A Survey of Unit Testing Practices”. In: IEEE software 23.4 (2006),
pp. 22–29.

180. Michael Olan. “Unit Testing: Test Early, Test Often”. In: Journal of Computing
Sciences in Colleges 19.2 (2003), pp. 319–328.

181. Yoonsik Cheon and Gary T Leavens. “A Simple and Practical Approach to Unit
Testing: The JML and JUnit way”. In: European Conference on Object-Oriented
Programming. Springer. 2002, pp. 231–255.

182. Qing Li and Yu-Liu Chen. “Data Flow Diagram”. In: Modeling and Analysis of
Enterprise and Information Systems. Springer, 2009, pp. 85–97.

183. Alexandru G Bardas et al. “Static Code Analysis”. In: Journal of Information
Systems & Operations Management 4.2 (2010), pp. 99–107.

184. Jongwook Woo, Isabelle Attali, Denis Caromel, J-L Gaudiot, and
Andrew L Wendelborn. “Alias Analysis on Type Inference for Class Hierarchy in
Java”. In: Proceedings 24th Australian Computer Science Conference. ACSC 2001.
IEEE. 2001, pp. 206–214.

185. Maryam Emami. “A Practical Interprocedural Alias Analysis for an
Optimizing/Parallelizing C Compiler”. PhD thesis. McGill University Montreal,
Québec, 1993.

186. Jin Lin, Tong Chen, Wei-Chung Hsu, Pen-Chung Yew, Roy Dz-Ching Ju,
Tin-Fook Ngai, and Sun Chan. “A Compiler Framework for Speculative Analysis
and Optimizations”. In: ACM SIGPLAN Notices 38.5 (2003), pp. 289–299.

187. Philippas Tsigas and Yi Zhang. “A Simple, Fast Parallel Implementation of
Quicksort and Its Performance Evaluation on SUN Enterprise 10000”. In: Eleventh
Euromicro Conference on Parallel, Distributed and Network-Based Processing, 2003.
Proceedings. IEEE. 2003, pp. 372–381.

188. Philip Heidelberger, Alan Norton, and John T. Robinson. “Parallel Quicksort Using
Fetch-and-Add”. In: IEEE Transactions on Computers 39.1 (1990), pp. 133–138.

189. Daniel Cederman and Philippas Tsigas. “Gpu-quicksort: A Practical Quicksort
Algorithm for Graphics Processors”. In: Journal of Experimental Algorithmics
(JEA) 14 (2010), pp. 1–4.

190. Warning Options (Using the GNU Compiler Collection (GCC)).
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html.

191. Giuseppe Penna. “A Type System for Static and Dynamic Checking of C++
Pointers”. In: Computer Languages, Systems & Structures 31 (July 2005),
pp. 71–101. doi: 10.1016/j.cl.2004.05.002.

192. Gray Watson. “Debug Malloc Library”. In: Letters Corp 11 (1994).

225

https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://doi.org/10.1016/j.cl.2004.05.002

193. Gene Novark, Emery D Berger, and Benjamin G Zorn. “Exterminator:
Automatically Correcting Memory Errors with High Probability”. In: Proceedings of
the 28th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 2007, pp. 1–11.

194. Glenn R Luecke, James Coyle, Jim Hoekstra, Marina Kraeva, Ying Li,
Olga Taborskaia, and Yanmei Wang. “A Survey of Systems for Detecting Serial
Run-time Errors”. In: Concurrency and Computation: Practice and Experience
18.15 (2006), pp. 1885–1907.

195. Scott Milton, Heinz Schmidt, et al. “Dynamic Dispatch in Object-Oriented
Languages”. In: (1994).

196. Craig Chambers. “Object-Oriented Multi-Methods in Cecil”. In: European
Conference on Object-Oriented Programming. Springer. 1992, pp. 33–56.

197. Eric Amiel, Olivier Gruber, and Eric Simon. “Optimizing Multi-method Dispatch
Using Compressed Dispatch Tables”. In: Proceedings of the ninth annual conference
on Object-oriented programming systems, language, and applications. 1994,
pp. 244–258.

198. David Wetherall and Christopher J Lindblad. “Extending Tcl for Dynamic
Object-Oriented Programming.” In: Tcl/Tk Workshop. Vol. 670. 1995.

199. Mary F Fernandez. “Simple and E↵ective Link-Time Optimization of Modula-3
Programs”. In: Proceedings of the ACM SIGPLAN 1995 conference on Programming
language design and implementation. 1995, pp. 103–115.

200. Je↵rey Dean, David Grove, and Craig Chambers. “Optimization of Object-Oriented
Programs Using Static Class Hierarchy Analysis”. In: European Conference on
Object-Oriented Programming. Springer. 1995, pp. 77–101.

201. John Plevyak and Andrew A Chien. “Precise Concrete Type Inference for
Object-Oriented Languages”. In: ACM SIGPLAN Notices 29.10 (1994),
pp. 324–340.

202. Gosling James, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The Java
Language Specification – Java SE 8 Edition.
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf.

203. Thierry Coquand. “An Algorithm for Type-Checking Dependent Types”. In:
Science of Computer Programming 26.1-3 (1996), pp. 167–177.

204. Satish Chandra and Thomas Reps. “Physical Type Checking for C”. In: Proceedings
of the 1999 ACM SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering. 1999, pp. 66–75.

205. Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, and Martin Sulzmann.
“Type Checking with Open Type Functions”. In: Proceedings of the 13th ACM
SIGPLAN international conference on Functional programming. 2008, pp. 51–62.

206. Jens Palsberg and Michael I Schwartzbach. “Object-Oriented Type Inference”. In:
ACM SIGPLAN Notices 26.11 (1991), pp. 146–161.

226

https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf

207. Dominic Duggan and Frederick Bent. “Explaining Type Inference”. In: Science of
Computer Programming 27.1 (1996), pp. 37–83.

208. BJ Heeren, Jurriaan Hage, S Doaitse Swierstra, et al. “Generalizing Hindley-Milner
Type Inference Algorithms”. In: (2002).

209. David McAllester. “A Logical Algorithm for ML Type Inference”. In: International
Conference on Rewriting Techniques and Applications. Springer. 2003, pp. 436–451.

210. Tobias Lindahl and Konstantinos Sagonas. “Practical Type Inference Based on
Success Typings”. In: Proceedings of the 8th ACM SIGPLAN international
conference on Principles and practice of declarative programming. 2006, pp. 167–178.

211. Roberto Barbuti and Roberto Giacobazzi. “A Bottom-Up Polymorphic Type
Inference in Logic Programming”. In: Science of computer programming 19.3 (1992),
pp. 281–313.

212. Apple. About Swift — The Swift Programming Language (Swift 5.6).
https://docs.swift.org/swift-book/.

213. The Python Language Reference — Python 3.10.4 documentation.
https://docs.python.org/3/reference/index.html.

214. mypy - Optional Static Typing for Python. http://mypy-lang.org/.

215. PyType - A Static Type analyzer for Python Code.
https://google.github.io/pytype/.

216. PEP 484 – Type Hints — peps.python.org.
https://peps.python.org/pep-0484/.

217. Ingkarat Rak-amnouykit, Daniel McCrevan, Ana Milanova, Martin Hirzel, and
Julian Dolby. “Python 3 Types in the Wild: A Tale of Two Type Systems”. In:
Proceedings of the 16th ACM SIGPLAN International Symposium on Dynamic
Languages. 2020, pp. 57–70.

218. PyCharm: the Python IDE for Professional Developers by JetBrains.
https://www.jetbrains.com/pycharm/.

219. Niklaus Wirth. “What can we do about the unnecessary diversity of notation for
syntactic definitions?” In: Communications of the ACM 20.11 (1977), pp. 822–823.

220. Matthew Sowders and Jan Bækgaard Pedersen. “Mobile Process Resumption in
Java without Bytecode Rewriting”. In: Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and Applications (PDPTA).
Citeseer. 2011, p. 1.

221. Naftaly H Minsky. “Towards Alias-Free Pointers”. In: European Conference on
Object-Oriented Programming. Springer. 1996, pp. 189–209.

222. C++ Core Guidelines.
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.

223. Luca Cardelli. Typeful Programming. Digital Equipment Corporation Systems
Research Center, 1989.

227

https://docs.swift.org/swift-book/
https://docs.python.org/3/reference/index.html
http://mypy-lang.org/
https://google.github.io/pytype/
https://peps.python.org/pep-0484/
https://www.jetbrains.com/pycharm/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

224. Generics.
http://www.eecs.qmul.ac.uk/˜mmh/APD/bloch/generics.pdf.

225. Maurice Naftalin and Philip Wadler. Java Generics and Collections: Speed Up the
Java Development Process. ” O’Reilly Media, Inc.”, 2006.

226. Kresten Krab Thorup and Mads Torgersen. “Unifying Genericity”. In: European
Conference on Object-Oriented Programming. Springer. 1999, pp. 186–204.

227. G Bracha, M Odersky, D Stoutamire, and P Wadler. “Adding Genericity to the
Java Programming Language”. In: Proceedings of OOPSLA. Vol. 98.

228. Nicholas Cameron, Erik Ernst, and Sophia Drossopoulou. “Towards an Existential
Types Model for Java Wildcards”. In: Formal Techniques for Java-like Programs
(FTfJP) (2007).

229. Alexander J Summers, Nicholas Cameron, Mariangiola Dezani-Ciancaglini, and
Sophia Drossopoulou. “Towards a Semantic Model for Java Wildcards”. In:
Proceedings of the 12th Workshop on Formal Techniques for Java-Like Programs.
2010, pp. 1–7.

230. Ben Greenman, Fabian Muehlboeck, and Ross Tate. “Getting F-bounded
Polymorphism Into Shape”. In: ACM SIGPLAN Notices 49.6 (2014), pp. 89–99.

231. Edsger Wybe Dijkstra et al. Notes on Structured Programming. 1970.

232. William Shotts. The Linux Command Line: A Complete Introduction. No Starch
Press, 2019.

233. Vadim Zaytsev. “The Grammar Hammer of 2012”. In: arXiv preprint
arXiv:1212.4446 (2012).

234. Gordon A. Rose and Jim Welsh. “Formatted Programming Languages”. In:
Software: Practice and Experience 11.7 (1981), pp. 651–669.

235. Martin Bravenboer and Eelco Visser. “Guiding Visitors: Separating Navigation from
Computation”. In: (2001).

236. Tomasz Imielinski and Heikki Mannila. “A Database Perspective on Knowledge
Discovery”. In: Communications of the ACM 39.11 (1996), pp. 58–64.

237. Robin Cooper. “Records and Record Types in Semantic Theory”. In: Journal of
Logic and Computation 15.2 (2005), pp. 99–112.

238. John T Minor. “C Minor: A Pedagogical Language Based on High-Level Design
Principles”. In: UNLV School of Computer Science Technical Report# CSR-18-001
(2018).

239. Melvin Fitting. “Tableau methods of proof for modal logics.” In: Notre Dame
Journal of Formal Logic 13.2 (1972), pp. 237–247.

240. Jeremy Avigad. “Raymond M. Smullyan, First-Order Logic”. In: Journal of
Symbolic Logic 61.1 (1996).

241. Patrick Borras, Dominique Clément, Th Despeyroux, Janet Incerpi, Gilles Kahn,
Bernard Lang, and Valérie Pascual. “Centaur: The System”. In: ACM Sigplan
Notices 24.2 (1988), pp. 14–24.

228

http://www.eecs.qmul.ac.uk/~mmh/APD/bloch/generics.pdf

242. Gilles Kahn, Bernard Lang, Bertrand Melese, and Elham Morcos. “Metal: A
Formalism to Specify Formalisms”. In: Science of Computer Programming 3.2
(1983), pp. 151–188.

243. Elham Morcos-Chounet and Alain Conchon. “PPML: A General Formalism to
Specify PrettyPrinting.” In: IFIP Congress. 1986, pp. 583–590.

244. Thierry Despeyroux. “Executable Specification of Static Semantics”. In:
International Symposium on Semantics of Data Types. Springer. 1984, pp. 215–233.

245. Thierry Despeyroux. “Typol: A Formalism to Implement Natural Semantics”.
PhD thesis. INRIA, 1988.

246. Gilles Kahn. “Natural Semantics”. In: Annual symposium on theoretical aspects of
computer science. Springer. 1987, pp. 22–39.

247. Gerhard Gentzen. “Investigations Into Logical Deduction”. In: American
philosophical quarterly 1.4 (1964), pp. 288–306.

248. Attali, Isabelle and Caromel, Denis and Oudshoorn, Michael. “A Formal Definition
of the Dynamic Semantics of the Ei↵el Language”. In: (June 1998).

249. Pieter H Hartel. LATOS a Lightweight Animation Tool for Operational Semantics.
1997.

250. David Turner. “An Overview of Miranda”. In: ACM Sigplan Notices 21.12 (1986),
pp. 158–166.

251. Arie Deursen, Jan Heering, and Paul Klint. Language Prototyping: An Algebraic
Specification Approach. Vol. 5. World Scientific, 1996.

252. Jan A Bergstra. Algebraic Specification. ACM, 1989.

253. Jan Heering, Paul Robert Hendrik Hendriks, Paul Klint, and Jan Rekers. “The
Syntax Definition Formalism SDF—Reference Manual”. In: ACM Sigplan Notices
24.11 (1989), pp. 43–75.

254. Peter D Mosses. “Semantics of Programming Languages: Using ASF+ SDF”. In:
Science of Computer Programming 97 (2015), pp. 2–10.

255. Sandra Mara Guse Scós Venske and Martin A Musicante. “Typechecking XQuery: A
Prototype in ASF+ SDF”. In: RECEN-Revista Ciências Exatas e Naturais 8.2
(2006), pp. 247–258.

256. Benjamin C Pierce, Peter Sewell, Stephanie Weirich, and Steve Zdancewic. “It is
time to mechanize programming language metatheory”. In: Working Conference on
Verified Software: Theories, Tools, and Experiments. Springer. 2005, pp. 26–30.

257. Heinz-Dieter Ebbinghaus, Jörg Flum, Wolfgang Thomas, and Ann S Ferebee.
Mathematical logic. Vol. 1910. Springer, 1994.

258. Thomas J Jech, Thomas Jech, Thomas J Jech, Great Britain Mathematician,
Thomas J Jech, and Grande-Bretagne Mathématicien. Set theory. Vol. 14. Springer,
2003.

229

Curriculum Vitae

Graduate College

University of Nevada, Las Vegas

Benjamin Cisneros Merino

Email: benjcisneros@gmail.com

Degrees:

Masters of Science in Computer Science 2019

University of Nevada Las Vegas

Bachelor of Science in Computer Science 2017

University of Nevada Las Vegas

Thesis Title: Jiapi: A Type Checker Generator for Statically Typed Languages

Thesis Examination Committee:

Chairperson, Dr. Jan Bækgaard Pedersen, Ph.D.

Committee Member, Dr. Andreas Stefik, Ph.D.

Committee Member, Dr. Fatma Nasoz, Ph.D.

Committee Member, Dr. John Minor, Ph.D.

Committee Member, Dr. Kazem Taghva, Ph.D.

Committee Member, Dr. Laxmi Gewali, Ph.D.

Graduate Faculty Representative, Dr. Emma E. Regentova, Ph.D.

230

	Jiapi: A Type Checker Generator for Statically Typed Languages
	Repository Citation

