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Abstract

The sharing of private information is a daunting, multifaceted, and expensive undertaking. Fur-

thermore, identity management is an additional challenge that poses significant technological, op-

erational, and legal obstacles. Present solutions and their accompanying infrastructures rely on

centralized models that are susceptible to hacking and can hinder data control by the rightful

owner. Consequently, blockchain technology has generated interest in the fields of identity and

access control. This technology is viewed as a potential solution due to its ability to offer decen-

tralization, transparency, provenance, security, and privacy benefits. Nevertheless, a completely

decentralized and private solution that enables data owners to control their private data has yet to

be presented.

In this dissertation, we introduce DeA2uth, a novel decentralized, authentication and autho-

rization scheme for secure private data transfer. DeA2uth combines blockchain, smart-contracts,

decentralized identity, and distributed peer-to-peer (P2P) storage to give users more control of their

private data, and permissioning power to share without third party services. For this scheme, iden-

tity is proven using decentralized identifiers and verifiable credentials, while authorization to share

data is performed using the blockchain. A prototype was developed using the Ethereum Blockchain

and the InterPlanetary Files System, a P2P file sharing protocol. We evaluated DeA2uth through

use-case studies and metrics such as security, performance, and cost. Our findings indicate DeA2uth

to be viable alternative to using centralized services; however, the underlying technologies are still

in its infancies and requires more testing before it can supplant traditional services. Overall, this

dissertation provides a comprehensive examination of current decentralized technologies and con-

tributes to a possible future where users have complete control over their data.

iii



Acknowledgements

I would like to express my heartfelt gratitude to my esteemed academic advisor, Professor Yoohwan

Kim, of the Computer Science department at the University of Nevada, Las Vegas. Dr. Kim has

been an unwavering source of guidance and support throughout my Master’s and Ph.D. journey.

While allowing me to produce original work, he also provided invaluable direction in selecting a

stimulating topic and formulating critical research inquiries.

I would also like to extend my appreciation to my committee members: Professor Ju-Yeon Jo,

Professor Wolfgang Bein, Professor Laxmi Gewali, and Assistant Professor Tina Vo. I am grateful

for the time they invested in assessing and evaluating my dissertation. I would like to offer a special

note of thanks to Dr. Vo for the valuable advice and wisdom she has imparted during my graduate

assistantship at the Office of Research and Sponsored Projects.

Lastly, but of utmost importance, I would like to acknowledge the unwavering support and love

of my family, especially my mother. Their encouragement and motivation kept me focused, and

this accomplishment would not have been possible without them.

Phillipe S. Austria

University of Nevada, Las Vegas

May 2023

iv



Table of Contents

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables viii

List of Figures ix

List of Algorithms xi

Chapter 1 Introduction 1

1.1 Dissertation Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2 Literature Review 5

2.1 Blockchain-Based Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 BBAC in Healthcare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Self Sovereign Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 3 Background Knowledge 9

3.1 Symmetric Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Asymmetric Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Digital Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4.2 Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4.3 Merkle Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

v



3.4.4 Keys and Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4.5 Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.6 Mining and Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.7 Smart Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Identity Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5.1 Centralized and Federated Identity . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5.2 Decentralized Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5.3 Current State of Decentralized Identity . . . . . . . . . . . . . . . . . . . . . 24

3.6 InterPlanetary File System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Chapter 4 Proposed Scheme 26

4.1 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Wallet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.2 Smart Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.3 Data Storage and IPFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.4 Authorization Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.5 Data and Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.3 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Use Case Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Use Case 1: Transcript Verification . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.2 Use Case 2: Credit Report Transfer . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.3 Use Case 3: Electronic Health Record Transfer . . . . . . . . . . . . . . . . . 46

Chapter 5 Implementation 50

5.1 Application Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.1 Wallet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.2 P2P Wallet Messaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.3 Blockchain and Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.4 Obtaining a Verifiable Credential . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.5 EHR Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

vi



5.1.6 Important Libraries and Source Code . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Implementation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.1 Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.2 Wallet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.3 Encryption and Data Reliability . . . . . . . . . . . . . . . . . . . . . . . . . 59

Chapter 6 Performance Evaluation 61

6.1 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Chapter 7 Discussions 65

7.1 Timing Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.2 Cost Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Chapter 8 Conclusions 69

8.1 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Appendix A Notations 71

A.1 Encryption Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.2 Decentralized Identity Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Appendix B Glossary 73

Appendix C Source Code 75

Bibliography 81

Curriculum Vitae 87

vii



List of Tables

5.1 List of wallet messages, descriptions, and their follow up actions. . . . . . . . . . . . . . 51

5.2 Important libraries used for the DeA2uth prototype. . . . . . . . . . . . . . . . . . . . . 57

6.1 Operations and services evaluated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 Operation costs on Ethereum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3 Cost of storing data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.1 Operation costs on Polygon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.2 Cost to store data on alternative hosting services. . . . . . . . . . . . . . . . . . . . . . . 68

viii



List of Figures

3.1 Encrypting a message with symmetric encryption. . . . . . . . . . . . . . . . . . . . . . 10

3.2 Encrypting a message with asymmetric encryption. . . . . . . . . . . . . . . . . . . . . . 11

3.3 Authenticating a message with a digital signature. . . . . . . . . . . . . . . . . . . . . . 13

3.4 Authenticating a message with a digital signature. . . . . . . . . . . . . . . . . . . . . . 14

3.5 Building a Merkle Tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6 Example of a smart contact. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.7 Centralized identity model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.8 Centralized identity model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.9 Decentralized identity model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.10 Example DID Document. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.11 Example Verifiable Credential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.12 Creating a IPFS Content Identifier (CID). . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 DeA2uth components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Hierarchical Deterministic (HD) key generation. . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Example service in a DDO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Example smart contract in a DDO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Non-data message schema. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.6 Data message schema. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.7 DeA2uth Authentication Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.8 DeA2uth Authorization Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.9 Use case 1 - transcript verification activity diagram. . . . . . . . . . . . . . . . . . . . . 42

4.10 Use case 2 - credit report transfer diagram. . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.11 Use case 3 - EHR request diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.12 Use case 3 - EHR transfer diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

ix



5.1 Wallet user interface with three sections: messaging (a), DIDs/VCs, and a details view

(c) which shows information about the message or DIDs/VCs. . . . . . . . . . . . . . . 51

5.2 Example wallet messages. The wallet has been sent and accepted a DID authentication

request (a). In response, the wallet is sent a challenge in which wallet responds to

validate the DID (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Screenshot of receiving a SendData authorization message. Message is first looked up

from the blockchain (a). Then the Send Data submissions gives options to download

the message from IPFS, decrypt and store (save) it to the wallet. . . . . . . . . . . . . . 53

5.4 Various authorization messages displayed in the Authorization Message section of the.

Data Request (a), Ask Permission (b), Allow Permission (c) and Send Data (d). . . . . 54

5.5 Screenshot of DMV page to obtain a driver’s license VC. . . . . . . . . . . . . . . . . . . 55

5.6 Screenshot of a verified driver’s license VC from the DMV (a). The VC details, including

the signature, show in the Details View of the wallet (b). . . . . . . . . . . . . . . . . . 55

5.7 Screenshot of the various forms: patient registration form (a). patient data request form

(b). sharing patient EHRs form (c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.8 Screenshot of receiving a V Cpatient. Patient signs and sends V Pdrivers−license (a). The

patients signature displays in the Details View section (b). After signature validation,

HA sends the V Cpatient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1 Operation time to save and retrieve authorization messages from storage. . . . . . . . . 62

6.2 Operation time to submit (a) and retrieve (b) authorization message transactions. . . . 62

6.3 Upload times of various file sizes to storage. . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.4 Download time of various files sizes from storage. . . . . . . . . . . . . . . . . . . . . . . 63

C.1 Identity.sol smart contract written in Solidity. . . . . . . . . . . . . . . . . . . . . . . . . 75

C.2 Authorization.sol smart contract written in Solidity. . . . . . . . . . . . . . . . . . . . . 76

C.3 Code snippet for submitting an authorization message to Ethereum or Firebase. . . . . 77

C.4 Code snippet to lookup an authorization message submission from Ethereum or Firebase. 78

C.5 Code snippet to save an authorization message to IPFS or Firebase. . . . . . . . . . . . 79

C.6 Code snippet to retrieve an authorization message from IPFS or Firebase. . . . . . . . . 80

x



List of Algorithms

1 Create Public DIDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2 Authenticate DID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Exchange Private DID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Transfer Verifiable Credentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Verify Verifiable Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Request Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Ask Permission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8 Allow Permission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

9 Send Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

10 Retrieve Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

xi



Chapter 1

Introduction

Cloud services have become an increasingly popular option for personal users and businesses looking

to store, manage, and process data online. By leveraging the power of the internet and remote

servers, cloud services enable users to access a wide range of applications and services without

the need for local hardware or software. In addition to offering convenience and accessibility,

cloud services also provide several benefits to personal users and businesses, including cost savings,

scalability, and improved collaboration. As a result, the adoption of cloud services has grown

significantly in recent years, with more and more organizations turning to the cloud to meet their

computing needs [1]

However, this rapid growth has led centralization of data, data which includes personal and

private information. Google, Facebook, and Amazon have access to vast amounts of data through

their various products and services [2]. While companies such as the one previous mentioned, often

use this data to improve their services, target advertising, and develop new products, users must

that the storage provider will protect their data or not do anything malicious with it. Centralization

of data, more importantly personal identifiable information (PII), attracts hackers to steal valuable

information. In 2018, Facebook suffered a data breach that exposed the personal information of

87 million users [3], attackers were able to gain access to the personal information of the affected

users, including their names, email addresses, and phone numbers. Google Cloud Services has been

hacked on multiple occasions. In March of 2018, Google was hit with a data theft that affected

over 500,000 Google Cloud customers which resulted in names, email address and passwords being

stolen [4]. In addition, there have been several more instances of companies being hacked which

resulted in private information in the last 5 years including large companies such as: Equifax [5],

Uber [6], eBay [7] and more.
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Managing large amounts of data and its users is difficult. Often times companies rely on trusted

third parties which use centralized models such as Public Key Infrastructure (PKI) [8]. Even though

PKI been proven to be effective and secure if well managed, it comes at the cost of being complex,

challenging to implement, expensive and open to being a single point of failure [9]. Solutions such as

Federated Identity and Single Sign On (SSO) mitigated management complexity for both providers

and users; however, building trust between two or more entitles is difficult and risky [10]. For

example, many services allow you sign in with a Google Gmail account, however there little to no

banks that will allow SSO. Furthermore, Federated Identity have not been successful in addressing

the widespread problem of passwords or mitigating the risks of privacy violations, security breaches,

identity theft, and impersonation associated with the use of passwords [11].

Managing data and users in traditional cloud storage systems requires well a fine grain level of

access control. Attributed Based Access Control (ABAC) and Role Based Access Control (RBAC)

are both effective in achieving such control [12]. Through these modals data owners enforce a

policy that defines attributes or roles a data requester must have in order to access and decrypt

the data. However, ABAC and RBAC rely on a centralized model in which trusted third party

called a Private Key Generator (PKG) is required to create and distribute private keys. This puts

the PKG in vulnerable position. It becomes a single point of failure and must be trusted not to

abuse its power in managing private keys. If comprised, it has the ability decrypt all of the user’s

data. One industry that relies on well managed users and strict access control to information is

healthcare. There are several challenges that current healthcare systems struggle with, including

the difficulty in understanding how decisions are made, lengthy procedures and delays in diagnosis

and communication, time-consuming and costly insurance processes, and issues related to privacy,

security, data ownership, and control [13, 14, 15].

Blockchain is a type of distributed ledger technology (DLT) that consists of a growing list of

records, called blocks, which are linked and secured using cryptography [16]. Each block contains

a cryptographic hash of the previous block, a timestamp, and transaction data. The decentralized

nature of blockchain technology allows it to operate without a central authority and makes it

resistant to modification of the data. This makes it a secure and transparent method for storing

and transferring data and has led to its widespread adoption in a variety of industries such as the

automotive, construction and pharmaceutical industry [17, 18, 19].

Immutability, traceability, transparency, and privacy are a few of the potential benefits blockchain

brings and have been proposed in an increasing number of papers to improve identity management
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and access control. In a traditional identity management system, a central authority, such as a

government agency or a bank, is responsible for storing and verifying identity information. This

can be problematic, as it requires individuals to trust the central authority and makes the system

vulnerable to hacks and data breaches. Blockchain-based identity management systems aim to ad-

dress these issues by storing identity information on a decentralized ledger, which can be accessed

and verified by authorized parties without the need for a central authority. Furthermore, rather

than relying on a centralized authority to grant and revoke access, blockchain-based systems al-

low users to securely prove their identity and authorization status using cryptographic keys. This

decentralized approach has the potential to increase the security and reliability of access control

systems, as it reduces the risk of a single point of failure or vulnerability. Current research however

has yet that has created a scheme to combine decentralized identity, access control and storage to

create an ecosystem that is completely private, secure, and ultimately give the user more control

of their PII.

1.1 Dissertation Objectives

This dissertation introduces DeA2uth, a novel schema for decentralized authentication and au-

thorization that facilitates the secure transfer of private data. DeA2uth combines decentralized

identity, blockchain technology, and distributed peer-to-peer (P2P) storage to give users more con-

trol of their private data, and permissioning power to share without third party services. For this

scheme, identity is proven using decentralized identifiers and verifiable credentials, while autho-

rization to share data is performed using the blockchain. DeA2uth leverages the benefits of the

blockchain, including enhanced security, decentralization, transparency, and provenance. Through

DeA2uth, data owners can manage who has access to their data and how it is used, thus mitigat-

ing the risks of unauthorized access by malicious third parties. The objective of this dissertation

include:

1. Compare DeA2uth to current methods of identity management and private data transfer.

2. Propose and define the DeA2uth’s scheme’s architecture, components and interactions be-

tween the multiple technologies used.

3. Develop a working prototype using Ethereum Blockchain and P2P data storage.
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4. Apply the prototype to three real-world use cases: (1) Transcript Verification, (2) Credit

Report Transfer and (3) Healthcare Records Transfer.

5. Evaluate DeA2uth with and without blockchain using metrics such as security, performance,

and cost.

The remainder of this dissertation is structured as follows: Chapter 2 presents related works in

the fields of decentralized identity and blockchain-based storage access schemes. Chapter 3 provides

essential background knowledge to facilitate understanding of DeA2uth. In Chapter 4 , we detail

DeA2uth’s components, architecture, and sub-schemes. Chapter 5 presents the implementation and

development details for creating a prototype. In Chapter 6, we report on the performance and cost

evaluation based on the prototype testing. Chapter 7 discusses the results of the evaluation and

presents our interpretation of the findings. Lastly, Chapter 8 provides a conclusion and outlines

possible future work for this dissertation.
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Chapter 2

Literature Review

The primary objective of this chapter is to provide an in-depth review of previous research on

decentralized access control. In this regard, we present a comprehensive analysis of the literature,

which we have categorized into three distinct sections. Firstly, we examine traditional access control,

followed by a review of blockchain-based access control (BBAC). Lastly, we focus on decentralized

and self-sovereign identity (SSI)-based access control. By dividing the research into these three

sections, we aim to offer a structured and cohesive analysis of the existing literature in this field.

Through our systematic review, we aim to identify the main trends, challenges, and future directions

of decentralized access control research.

2.1 Blockchain-Based Access Control

BBAC refers to the use of distributed ledger technology to manage and verify the permissions of

users within a given system. This approach offers several advantages over traditional access control

methods, including increased security, transparency, and decentralization. With a decentralized

system, there is no single point of failure, making it more resilient to attacks and tampering. Addi-

tionally, the use of cryptographic techniques in conjunction with the blockchain ensures that access

permissions are verifiable and tamper-evident, providing a high level of trust and accountability.

Overall, the adoption of BBAC has the potential to significantly enhance the security and integrity

of various systems and processes.

Current cloud service leverage access control models such as Role Based Access Control (RBAC)

and Attribute Based Access Control (ABAC) to achieve fine-grained access control. RBAC is a

model of access control that determines whether a user is granted access to a particular resource
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based on their role within an organization, while ABAC determines whether a user is granted access

to a particular resource based on their attributes, rather than their identity or membership in a

particular group. While RBAC and ABAC provide fine-grain access control feature, those models

are derived ID Based Encryption (IBE) [20] and Attribute Based Encryption (ABE) [21, 22] which

require a trusted third party to create and manage private keys. This inherently creates a need

reliance on a centralized authority. Additionally, both RBAC and ABAC rely on polices that

determine which roles or attributers grant access. This policy generating services or nodes such as

Policy Decision Point and Policy Administration Point; if the nodes fail then data which users are

trying to access become unavailable [23].

As a solution, recent works have been proposed [24, 25, 26]. A proposed schema, described in

[24], delegates responsibility for private key management to the user or entity that owns the data,

thereby eliminating the need for a PKG . In another approach, the authors in [26] have proposed

a smart contract-based authentication mechanism known as RBAC-SC, which provides decentral-

ized RBAC for use in trans-organizational operations. This mechanism leverages the features of

blockchain technology to ensure secure and transparent access control within a decentralized setting.

Furthermore, in [25], the authors propose a blockchain-based ABAC solution that not only elim-

inates the need for a central authority, but also reduces or eliminates costs for service providers.

This approach is expected to improve the efficiency and effectiveness of access control, thereby

enhancing security and reducing operational costs.

2.1.1 BBAC in Healthcare

Blockchain technology has the potential to revolutionize various aspects of the healthcare industry

by improving efficiency, security, and interoperability. One key area where blockchain is being

utilized in healthcare is in the management of electronic health records (EHRs) and Electronic

Medical Records (EMRs). By using DLT, healthcare providers can securely store and share patient

data with authorized parties in a transparent and verifiable manner. This can help to reduce

errors and improve the accuracy of patient records, while also enabling better communication and

coordination among healthcare professionals.

Recent surveys have shown that blockchain technology is increasingly being proposed as a

potential solution to various problems in the healthcare sector [27, 28, 29]. A recurring theme across

these studies is the management of EHRs, which has been identified as the most targeted area for

blockchain research. In a study conducted by [27], it was noted that the healthcare industry faces
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general challenges such as data fragmentation, security, and privacy, and that blockchain technology

can provide a robust solution to address these issues. The majority of the papers reviewed in this

survey focused on new schemes for improving EHR and EMR systems.

Interoperability between integrating blockchain, a new technology, to a legacy health records

and data management system was also identified as an area of interest in both [27] and another

survey conducted by [29]. In the latter study, the potential of blockchain technology for patent data

and identity management was investigated, with the authors concluding that EHRs and Patient

Health Records (PHRs) are at the core of blockchain applications in healthcare. Overall, these

surveys indicate that blockchain technology has the potential to address various challenges in the

healthcare sector, particularly in the management of EHRs and interoperability between legacy

systems and blockchain-based solutions.

2.2 Self Sovereign Identity

Self Sovereign Identity (SSI) is a concept in digital identity management in which individuals have

full autonomy over their personal data and identity information [10, 11, 30, 31, 32]. This differs

from traditional centralized identity management systems, in which a centralized authority, such

as a government or corporation, controls and manages an individual’s identity. In SSI, individuals

are the custodians of their own identity information, and can selectively disclose this information

to various parties as needed. This is achieved using decentralized technology such as blockchain,

which allows for secure and tamper-proof storage of identity information.

One of the key benefits of SSI is that it empowers individuals to have greater control over their

personal data and identity information. This can help to protect their privacy and security and can

also enable them to access services and participate in online transactions more easily. Another key

benefit of SSI is that it can help to reduce the reliance on centralized authorities and intermediaries,

which can improve security and reduce the risk of data breaches. Additionally, SSI can also help

to promote interoperability and reduce the siloing of identity information, which can make it easier

for individuals to access services and transact online.

SSI is confronted with a multitude of challenges, ranging from adoption and interoperability to

technical complexity, security, and trust [10]. To overcome these obstacles, scholars have proposed

various solutions, including the Self-Sovereign Identity Based Access Control (SSIBAC) model,

as introduced by the authors in [33]. This approach offers an access control framework for cross-

organizational identity management by integrating traditional access control models and blockchain
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technology. Decentralized authentication is followed by centralized authorization, ensuring secure

and reliable identity verification. To enhance privacy, Zero Knowledge Proofs (ZKP) have been

implemented [34]. ZKP is a cryptographic technique that enables one party (the prover) to demon-

strate the veracity of a statement to another party (the verifier) without revealing any additional

information. This feature is especially beneficial in the context of SSI, as it allows individuals to

authenticate their identity to others without disclosing their personal information.
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Chapter 3

Background Knowledge

The aim of this chapter is to expound upon several fundamental concepts that are essential for

comprehending DeA2uth. These concepts include symmetric and asymmetric encryption, digital

signatures, blockchain, decentralized identity, and the InterPlanetary File System (IPFS). Through

a detailed examination of each of these topics, readers will gain a deeper understanding of the mech-

anisms that underlie DeA2uth. The subsequent sections will provide a comprehensive exploration

of each concept, discussing their principles and functionality.

3.1 Symmetric Encryption

In Symmetric Encryption, the same key is used to encrypt and decrypt messages.

CT = Enc(k,m) (3.1)

m = Dec(k,CT ) (3.2)

where:

CT = ciphertext

m = plaintext message

k = symmetric key

Enc = Encryption Algorithm

Dec = Decryption Algorithm
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In Figure 3.1, Alice wants to send an encrypted message to Bob. Alice first encrypts the

plaintext message m with a symmetric key k which results in a ciphertext CT . Alice sends CT

and shares k with Bob. Bob then uses k to decrypt CT and reveal m.

Figure 3.1: Encrypting a message with symmetric encryption.

The confidentiality of CT in a symmetric encryption scheme relies upon the secrecy of the shared

secret key, denoted by k. Consequently, this key must remain confidential and not be disclosed

to unauthorized parties. However, a challenge arises in distributing the key to all participating

parties in the communication. If a malicious adversary were to obtain the key, they would gain

access to the encrypted data. A possible solution to this limitation is to use asymmetric encryption

techniques to encrypt the shared secret key prior to its distribution.

Within the realm of symmetric encryption algorithms, there exist two distinct categories: block

and stream algorithms. The former operates on fixed-length blocks of plaintext, while the latter

processes messages character by character in what is commonly referred to as a stream [35]. The

Advanced Encryption Standard (AES) currently represents the National Institute of Technology

Standard (NIST) and is considered the most secure option among symmetric encryption algorithms

[36]. In terms of computational power and efficiency, stream algorithms have demonstrated superior

performance compared to block algorithms [35].

3.2 Asymmetric Encryption

Asymmetric encryption, commonly referred to as Public Key Cryptography, relies upon the uti-

lization of a pair of keys, namely a public key (pk) and a private key (sk), also known as a secret

key. Both of these keys have the capability to encrypt a plaintext message to produce a ciphertext.
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However, only the opposite key of the pair can decrypt the resulting ciphertext, as expressed in

Equations 3.3 and 3.4. Essentially, if a public key encrypts a message, solely the corresponding

private key can decrypt the message, and vice versa. Public Key Cryptography was first pro-

posed in 1976 by W. Diffie and E. Hellman at Stanford University [37]. Beyond encryption, Public

Key Cryptography serves multiple purposes, including shared key establishment, non-repudiation,

identification, and message integrity.

CT = Enc(pk,m) (3.3)

m = Dec(sk, CT ) (3.4)

where:

pk = public key

sk = secret key

Figure 3.2 illustrates how Alice can send a private message to Bob using asymmetric encryption.

First, Alice encrypts a plain text message m with Bob’s public key and results in a ciphertext CT .

Alice then sends CT to Bob. Lastly, Bob decrypts CT with sk to obtain m.

Figure 3.2: Encrypting a message with asymmetric encryption.

The fundamental principle underlying asymmetric encryption algorithms is the utilization of

one-way functions, which rely upon the complexity of mathematical problems. One-way functions

possess the property that given an input, they are easy to compute, but the reverse process is

11



significantly more challenging. This mathematical property serves as the basis for generating the

public-private key pair utilized in asymmetric encryption schemes. Two of the most popular one-

way problems upon which asymmetric encryption schemes rely are the integer factorization problem

[38] and the discrete logarithm problem [39]. The Rivest-Shamir-Adleman (RSA) scheme [40] is

based on the former, while the Diffie-Hellman Key Exchange (DHKE) scheme [37] is based on the

latter. Both of these schemes are widely used and have become industry standards.

When considering the relative merits of symmetric and asymmetric encryption schemes, it

is widely acknowledged in the literature that asymmetric schemes offer greater security [35, 41],

albeit at the cost of requiring more time, processing power, and memory. As a result, in practice,

symmetric keys are generally used for encrypting data, while asymmetric encryption is employed

to encrypt the symmetric key to facilitate secure delivery to each participant.

3.3 Digital Signatures

A digital signature is a mathematical scheme to verify the authenticity and integrity of a message

[42]. Using asymmetric encryption, the scheme gives the receiver high confidence that it was sent

by a known sender and was not altered. Digital signatures can also provide non-repudiation, that

is a signer cannot deny they have signed a message while claiming their private key which signed

the message, is still secret.

Digital Signatures was first introduced in 1976 by W. Diffie and M. Hellman in the same paper

which introduced Public Key Cryptography [37]. Soon after, RSA was invented and could also

produce digital signatures, although only as a proof of concept and cryptographically insecure at

the time [39]. Common digital signature schemes used today include: Digital Signature Algorithms

(DSA), Elliptic Curve Digital Signature Algorithm, Edwards-curve Digital Signature Algorithm

(EdDSA), RSA, ElGamal Signature Scheme and Schnorr Signature scheme [43].

Figure 3.3 shows in illustration of Alice wanting to prove that she was the sender of a private

message and that it was not tampered with using a digital signature. The sequence is described

below:

1. Alice hashes a message to produce a hash also known as a digest.

2. Alice encrypts the digest with her private key and produces a verifiable ciphertext, the digital

signature.
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3. Alice includes the signature with the message and encrypts then combined message with

Bob’s public key. The message is then sent to Bob.

4. Bob decrypts the message with his private key and separates the message from the signature

5. Bob decrypts signature with Alice’s public key, verifying the signature.

6. Bob hashes the original plain text message and produces a digest.

7. Bob compares the digest from verifying the signature and the digest from hashing the message.

If they match, then Bob knows that the message was sent by Alice and not tampered with.

Figure 3.3: Authenticating a message with a digital signature.

3.4 Blockchain

The Blockchain is a decentralized, immutable, and cryptographically secure digital ledger that was

first introduced in a white paper by [44]. The Blockchain serves as the foundational technology

that facilitates the operation of Bitcoin, a type of cryptocurrency, and the corresponding Bitcoin

protocol. Nakamoto’s motivation for creating Bitcoin and the Blockchain was to develop a secure,

electronic peer-to-peer cash system that was not under the control of a single entity. The Blockchain

maintains a record of transactions, which, in the case of Bitcoin, refer to the sending and receiving

of Bitcoin. This section will focus on the workings of the Blockchain specifically with respect to

Bitcoin, as it was the first application of this technology.
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Figure 3.4: Authenticating a message with a digital signature.

3.4.1 Architecture

The blockchain is comprised of the following components:

• transactions: signed data structure defining an action on the blockchain.

• blocks: data structure that contains a group of transactions, information about the block

itself such as the timestamp and a hash of the previous block.

• blockchain: data structure of linked blocks that have been validated.

• node: a participant in the network help to maintain the integrity of the blockchain. Nodes

store a copy of the blockchain, validates transactions and helps to propagate transactions to

the rest of the network.

• miner: a machine that can do anything a Node can, but also participates in the mining

process to add a new block to the blockchain.

• mining: the sequence of steps miners performs to add the next block to the blockchain chain

and generally are rewarded for it.

3.4.2 Transactions

The blockchain is underpinned by the transactions that take place within it. These transactions

are created, validated, and added to the blockchain via the blockchain protocols. A transaction
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represents a record of an action, which in the case of the Bitcoin Protocol, refers to the transfer

of ownership of Bitcoin from one entity to another. To provide evidence that a transaction is

authorized by the initiating entity, a digital signature is included. Transactions are public and can

be verified by anyone within the network.

3.4.3 Merkle Trees

A Merkle Tree is a binary hash tree data structure [45]. They are used to efficiently summarize

and verify the integrity of large sets of data. In blockchain, Merkle Trees are used to summary

transactions in a block. To create a Merkle Tree, transactions are hashed in pairs until there

remains only one hash, known as the Merkle Root (Figure 3.5). The Merkle Root is then included

in the Block header. Another benefit of using Merkle Trees, is that is allows nodes to easily verify

if a transaction is included in a block.

Figure 3.5: Building a Merkle Tree.

3.4.4 Keys and Addresses

In blockchain, keys and addresses play a fundamental role in establishing ownership and providing

a secure and unique identity for users. They enable the transfer and storage of assets on the

blockchain. Two types of keys are utilized: a private key and a public key. The private key is kept

confidential and is employed to sign transactions, while the public key is distributed to others and

is used to validate the authenticity of a signed transaction. An address is a string of alphanumeric

characters that designates a specific location on the blockchain where assets can be sent and stored.

A user’s address is generated from their public key and is used to receive assets on the blockchain.

Notably, private keys and addresses are not stored on the blockchain or any public network but are

instead stored by the user in a file or database known as a wallet.
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3.4.5 Blocks

A block is a data structure that stores transactions for inclusion in the blockchain. It is generally

made up of two main parts: the header and transactions. The header describes information about

the blockchain and includes data such as: a reference to the previous block in the form of a hash,

metadata, and the transactions Merkle Root. The metadata itself contains more information about

the block such as the timestamp, difficulty and nonce, a value we discuss in the next section.

A block can be identified in two ways. First is the block hash, which is generated by hashing the

block header, thus creating a unique identifier. Second is the block height, a value that describes

the sequence order in which the block was added to the blockchain. The block height; however,

is not guaranteed to be unique like the block hash. This is due to the scenario when two or more

blocks are at same position on the blockchain. The first block is commonly known as the Genesis

Block.

The blockchain is extended with a new block as new incoming blocks are received by a node.

When a node receives a new block, it first validates the block, then looks at the previous block hash

and verifies it matches the current block’s block hash. If so, the node stores the incoming block

and is now linked, becoming the current block.

3.4.6 Mining and Consensus

The term “mining” is the process by which transactions are verified and permanently recorded on

the blockchain in a decentralized manner. This process involves miners validating transactions,

bundling them into a block, and competing to link the block to the existing blockchain. This

competition is referred to as ”mining” and the successful miner(s) are rewarded by minting new

coins that are subsequently circulated.

The mining process entails solving a difficult mathematical problem based on hashing, which

results in the creation of a Proof-of-Work (POW) [46]. This solution is then included in the block

header for other miners to verify. In addition to the mining reward, the winning miner(s) also

receive all of the transaction fees associated with the transactions in the block.

The ultimate goal of mining is to achieve consensus among nodes in the network, wherein each

node has a local copy of the blockchain and through mining, arrives at the same outcome. Thus,

the blockchain represents a single truth agreed upon by all participating nodes.

Consensus can be summarized into four processes, done by each node in the network indepen-
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dently:

1. Verification of transactions.

2. Aggregation of transactions into blocks, included with the POW solution.

3. Verification of new blocks.

4. Choosing the chain with the most work when faced with blockchain forking.

In a blockchain network, every node is responsible for verifying transactions upon receipt. The

verification process entails various checks such as validating the data structure and size, ensuring

the reference to the previous transaction exists in the block, and adhering to specific criteria unique

to the blockchain. Verified transactions that are not yet added to the blockchain are stored in a

transaction pool, commonly referred to as a mempool.

During the mining process, a miner simultaneously receives transactions from the network and

validates them as described above. Valid transactions that are included in the current block are

removed from the mempool. Once the miner finds the solution for the current block, or when the

miner receives the current block from the network, indicating another miner has found the solution,

the miner begins to aggregate the transactions in the mempool into a candidate block. A candidate

block is a block that has not been validated yet, meaning it does not have a valid POW proof.

The POW algorithm relies on hashing to obtain a hash value that is less than the target value.

The miner achieves this by repeatedly appending a nonce to the block header hash and hashing it

until a valid POW is found. To prevent cheating, each node in the network independently validates

the new block against a set of criteria unique to the blockchain. The criteria include ensuring the

block structure is correct, the block size is within limits, and the POW is valid. These criteria differ

for each blockchain. The decentralized validation process is essential for achieving a consensus on

the state of the blockchain.

In the Bitcoin blockchain, it takes approximately 10 minutes for miners to find a valid POW.

Once a miner finds a valid POW, it becomes the block ID and is broadcasted to the miner’s

peers for validation. Any invalid block is discarded, and the miner’s effort to create that block is

wasted. Therefore, independent validation of new blocks is crucial for maintaining the integrity of

the blockchain.
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3.4.7 Smart Contracts

A smart contract is a program that runs on the blockchain. The concept of a smart contract was

first proposed by Nick Szabo and defined as a computerized contract transaction protocol [47].

Ethereum [48] was the first blockchain to introduce the smart contract to its protocol and allowed

users to code and extend the functionality of a blockchain beyond recording transaction of digital

currency. Once on the blockchain, smart contracts reside at a specific address, are not controlled

by any owner, and cannot be deleted.

Sequence of Smart Contract execution:

1. The Smart Contract is programmed and compiled into byte code by the compiler.

2. The contract is deployed as a transaction.

3. Miners validate the mined the transaction.

4. The transaction accepted into the blockchain, and the contract is assigned an address.

5. To use the contract, users submit transactions to the contract’s address specifying which

function they would like to call.

6. Once the transactions are validated and mined, each node in the network executes the smart

contract function.

Smart contracts are written in a similar style to writing a class in object-oriented programming.

In Ethereum, the contracts are written in a programming language called Solidity, though there

are libraries available to use JavaScript and Python. Ethereum Virtual Machine (EVM) [49] based

blockchains are compatible with Solidity. After a contract is written, it is compiled, then submitted

as a transaction to the blockchain. The specific transaction is sometimes referred to as a contract

deployment transaction and like any other transaction it must be verified by and propagated to

all nodes on the network. Users interact with the program much like they would with public

Application Programming Interface (API). Users submit a transaction using their wallet, which

then calls and executes a specific function within the smart contract.
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Figure 3.6: Example of a smart contact.

3.5 Identity Management

3.5.1 Centralized and Federated Identity

The concept of decentralized identity revolves around placing the control of identity in the hands

of its owner. This approach differs from the two existing identity management models: centralized

and federated [50]. In a centralized model, an identity provider takes charge of managing and

authenticating user identities across an organization. This model provides a centralized control

point for user identities, which facilitates the management and security of user access to multiple

systems and applications within the organization.

Figure 3.7: Centralized identity model.

In a federated model, two or more centralized systems establish trust allowing one system to

authenticate an entity for another. This is typically achieved with a third-party identity provider,

such as Microsoft Active Directory or Google, that manages and authenticates the user’s identity.
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The user’s identity is then shared among the various systems and applications that the user needs to

access, eliminating the need for the user to remember and manage multiple sets of login credentials.

This approach helps to increase security, reduce administrative overhead, and improve the user

experience [51].

Single Sign-On (SSO) is a solution derived from Federated Identity, which allows users to access

multiple systems and applications with a single set of login credentials [52]. This process simplifies

the user experience by eliminating the need for users to remember and manage multiple usernames

and passwords. Additionally, SSO reduces the risk of password-related security breaches. Upon

successful verification of the user’s identity, the identity provider issues a security token, such as a

JSON Web Token (JWT), which includes the user’s identity and other relevant information. The

systems and applications that the user needs to access can then use this token to authenticate the

user and grant access.

One of the key benefits of SSO is that it reduces administrative overhead by eliminating the

need to manage multiple sets of login credentials [52]. This can be especially useful in organizations

with large numbers of users, as it can greatly reduce the burden on IT staff. Additionally, SSO

can improve security by reducing the risk of password-related security breaches, as well as making

it easier to detect and respond to unauthorized access attempts.

While providing convenience to end users, there are privacy challenges involved in the federated

model due to the large volume of exchanging personal identifiable information across organizations

[53]. This challenge additionally incurs cost due to the increased security infrastructure needed to

share valuable information across domains using loosely coupled network protocols [51].

3.5.2 Decentralized Identity

Decentralized Identity is a new management paradigm that relies on cryptography and distributed

ledger technology to give entities more control over their identity. The entity assumes full respon-

sibility of their personal indefinable information. In a decentralized identity system, identity is

proved with digital signatures. The system is comprised of multiple components which we define

below:

• Decentralized Identifier (DID): a unique identifier that unlike traditional identifies that

are created by a centralized service (i.e. an email), is created by the entity themselves [54].

DIDs are assigned a public/private key pair, thus can be digitally signed. Depending on the
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Figure 3.8: Centralized identity model.

entity purpose, DIDs can either be public or private [55]. Moreover, they can be used for

establishing communication channels. The DID syntax has been defined by the W3C [56].

There are two main parts the specification method and the identifier. The specific method

defines how to read and write a DID and its DID Document. The identifier is a unique string,

generally a hash, that represents the DID. An example of a DID is:

did:btcr:xyv2-xzpq-qrst-n5pk

This DID is associated with a Bitcoin address and is used to identify the owner of the address

in a decentralized system. The prefix ”did:btcr:” indicates that this is a DID on the Bitcoin

blockchain, and the string of characters that follows is the unique identifier for the DID owner.

• DID Document (DDO): A DDO is a digital document that is used to verify the identity of

an individual or organization in a decentralized system. DID documents contain information

about the identity of the individual or organization, including their name, address, and other

relevant details. They can also include public keys, which can be used to authenticate the

identity of the DID document owner and enable secure communication (Figure 3.10 [56]).

Every DID has an accompanying DDO. The DDO can be stored on the blockchain itself or

stored off-chain and mapped within the DID Resolver [55].

• Distributed Ledger: While a blockchain is not required for decentralized identity, they

provide a ready-made infrastructure for managing data in a decentralized way [10]. Another
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Figure 3.9: Decentralized identity model.

Figure 3.10: Example DID Document.

advantage is that through blockchain’s transactions and their hashes, DIDs, DDOs and cre-

dentials can be notarized. This in turn provides proof when data was created and provides

an electronic seal to reveal when tamping has occurred. One ledger that is made just for

creating and managing a decentralized identity network is Hyperledger Indy [57].

• DID Resolver: A DID resolver is a piece of software that is responsible for resolving DIDs

to their corresponding DDO. It allows users to look up and retrieve DID documents using the

corresponding DID. This is accomplished by querying the decentralized ledger on which the

DID is stored and returning the DID document that is associated with the DID. The DID

resolver is designed to work in a decentralized environment and is typically implemented as a

software library or API that can be integrated into other applications or systems. Works such
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as [33] and [58] have used the Blockchain and Smart Contracts to implement a DID resolver.

• Claims: a claim is a statement about an individual or organization that can be proven or

disproven. Claims are a key component of verifiable credentials and verifiable presentations

and are used to prove the identity of an individual or organization, known as the subject,

in a decentralized system. Examples of claims are their name, date of birth, or professional

qualifications. Claims can be proven or dis-proven using cryptographic techniques, which

allows for the creation of a tamper-evident records, the verifiable credential.

• Verifiable Credential (VC): A verifiable credential is a digital document that contains

a set of claims about an individual or organization that can be independently verified by a

third party. Verifiable credentials are designed to be self-sovereign, meaning that the indi-

vidual or organization that holds the credential has control over it and can use it to prove

their identity or other attributes without relying on a centralized authority. They can be

used to prove a wide range of attributes, including personal information (e.g., name, date of

birth), professional qualifications (e.g., degrees, licenses), and other relevant details (Figure

3.11 [56]). Verifiable credentials are often issued by trusted organizations, such as schools,

government agencies, or professional associations, and can be verified by anyone who has

access to the credential and the necessary tools to check its validity. Due to personal and

private information being stored within the documents claims, VP’s are not stored on public

database or ledger, but rather on the user storage device and managed by a software known

as a digital wallet [59].

• Verifiable Presentation (VP): A VP is a digital document that contains a set of claims

about an individual or organization that has been attested to by a trusted third party. It

is the document that is generated and presented to a verifier upon their request to validate

claims about a subject. One main difference between VCs and VPs is that claims within

verifiable presentations are derived from one or more credential. Another difference is that

in order to prevent a replay attack [56], a VP contain both the cryptographic signature from

the issuer who issued the VC and additional signature from subject who generated the VP.

The additional signature contains a challenge the verifier must solve upon verification. An

important aspect of a VP is that the subject is given the choice to selectively reveal only the

information that is necessary for a specific purpose, while still maintaining control over their

own identity and personal information.
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Figure 3.11: Example Verifiable Credential.

• Credential Schema: a credential schema is a standardized set of rules and guidelines that

defines the structure and format of a verifiable credential. They include information about

the types of claims that can be made in a verifiable credential, as well as the format and

structure of the credential. Credential schemes are used to ensure that verifiable credentials

are interoperable, thus allowing for the easy exchange and verification of verifiable credentials

across different systems and contexts.

3.5.3 Current State of Decentralized Identity

Decentralized identity is a rapidly evolving field that is gaining increasing attention from both

academia and industry. It can be implemented with or without a blockchain as long as it supports

the necessary features and capabilities. The following are list networks and platforms being devel-

oped and used today: uPort1 , Sovrin2, IDchainZ3, EveryID4, SelfKey5 and Civi6. The authors

in [10] provide an evaluation of each of the mentioned platforms along with the challenges and

limitations.

1https://www.uport.me/
2https://sovrin.org/
3https://www.chainzy.com/products/idchainz/
4https://www.everyid.com/
5https://selfkey.org/
6https://www.civic.com/
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3.6 InterPlanetary File System

The InterPlanetary File System (IPFS) is a distributed file system that aims to make the inter-

net more resilient and scalable [60]. It is based on a P2P network architecture, in which nodes

communicate with each other to store and retrieve data. In contrast to traditional client-server

architectures, in which data is stored on centralized servers and accessed by clients through network

requests, IPFS allows users to access data directly from other nodes in the network.

An integral component of IPFS is the Content Identifier (CID), which serves as a unique iden-

tifier for files or content within the network. A CID is a unique identifier that is used to identify

and locate a file or piece of content within the IPFS network. CIDs are generated by hashing the

file and result in a fixed-length string of characters that are unique to the specific content (Fig-

ure 3.12). The resulting CID is used to locate and retrieve the content. An example of a CID

is QmV8RgHXhv7n68EoyYG5N8rGZn3vZ5z5LcN5Z8uAVhX9y7. Users can then use the CID to

retrieve the content from the IPFS network.

Figure 3.12: Creating a IPFS Content Identifier (CID).

IPFS allows for the decentralization of data storage and retrieval. This means that data is not

stored on a single central server, but rather is distributed across a network of nodes. This reduces

the risk of data loss or downtime, as data can still be accessed even if one or more nodes go offline.

Additionally, the decentralized nature of IPFS can make it more efficient and faster to retrieve

data, as it allows users to access data from the node that is closest to them, rather than having to

make a request to a central server that may be located far away. Overall, IPFS has the potential

to significantly improve the speed, resilience, and scalability of the internet.
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Chapter 4

Proposed Scheme

The purpose of this chapter is to provide a comprehensive introduction to DeA2uth. To achieve

this goal, we will offer a detailed explanation of the scheme’s underlying concepts and architecture.

DeA2uth’s concept consists of several critical components, including those responsible for data

management, logic, and storage. In addition, we will delve into DeA2uth’s functions and algorithms

that govern its operation.

4.1 Concepts

DeA2uth is comprised of three main components: the wallet, smart contracts, and IPFS, which are

unified by the blockchain (Figure 4.1). The wallet’s main responsibilities are identity and blockchain

address management. All participants must have a wallet to hold an identity and interact with

smart contracts. The smart contracts contain DeA2uth’s business logic. There are two smart

contracts, one to manage the creation and lookup of DIDs and the other to send messages and

data. The last component is a data storage layer. Messages and data are not stored on the on the

blockchain to minimize the memory growth rate. For DeA2uth we use IPFS to store large pieces of

data. Because IPFS is a distributed P2P network, all participants have access to store and retrieve

data form it. The rest of this section describes each component in detail.

4.1.1 Wallet

The wallet is the control center for each participant in the network. It allows users to manage their

identity and interact with the blockchain, including the smart contracts that run in the blockchain.

Wallets are generally used as desktop, mobile or web application. Additionally, they have different
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Figure 4.1: DeA2uth components.

features depending on what type of system they are used in. For example, wallets in a decentralized

identity system manage DIDs, while wallets in blockchain system manage blockchain addresses and

submit transactions to the blockchain. Since DeA2uth is a decentralized identity and blockchain

application, our wallet requires features to handle both responsibilities. DeA2uth wallet features

include:

• Generating and storing public/private key pairs

• Storing addresses, DIDs and VCs

• Create, lookup and revoke DIDs

• Verify VCs and VPs

• Create blockchain address

• Communicate with the blockchain

• Interact with smart contracts

Key Management

DeA2uth wallet is a deterministic wallet that organizes keys using Hierarchical Deterministic (HD)

key generation [61]. In HD key generation, private and public keys are generated from a same
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secret or seed. Moreover, the same pair of keys are generated given the seed has not changed. Non-

deterministic wallets on the other hand generate each key from a different, randomly generated,

seed, thus the same keys cannot be regenerated. Virtually and infinite number of keys can be

generated. In order for our wallet to be compatible with multiple blockchains we follow wallet

implementation which have been standardized such as BIP32 [62] and BIP44 [63].

A deterministic wallet is more suited for suited for DeA2uth and other blockchain application

than non-deterministic wallets for a few reasons. If a user deletes their wallet and the keys along

with them, their seed is enough to recover the same keys. Keys are well organized into branches

like files and folders on hard drive (Figure 4.2 [64]). Lastly, deterministic wallets can create public

keys without the need for private, thus can be used on an insecure server.

Figure 4.2: Hierarchical Deterministic (HD) key generation.

Address and Identity Management

User DIDs are derived from public keys and are stored in the digital wallet. Since DeA2uth’s wallet

is managing both blockchain address and DIDs, which both are derived from public keys, we must

have a way to separate the two. To solve this, we modified the BIP44 standard to accommodate

keys that are used for creating DIDs. BIP44 is a technical specification for HD wallets. It defines

a standard way of organizing the hierarchy of keys in an HD wallet, which allows the wallet to be

used with multiple different cryptocurrencies and to support different use cases. The BIP44 levels

are:

m / purpose / coin type / account / change / address index

The ”m” stands for “master seed” and is constant; all other levels are represented with an

index value (0, 1, 2. . . etc) and together form a path. The path is included when generating a
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public/private key pair. An example path is m/44/60’/0/0/0. 44 represents the BIP44 standard

and 60 is the constant value for the Ethereum Blockchain. More coin types can be found in [63].

In DeA2uth we modified the levels to accommodate managing DIDs. First, we modify account

such that even values represent accounts used for blockchain address and odd values represent

accounts used for DIDs. Furthermore, we modify the change level. For a blockchain address, 0

is used for external chain and 1 for internal chain. External chain is used for addresses that are

meant to be visible outside of the wallet (e.g. for receiving payments). Internal chain is used for

addresses which are not meant to be visible outside of the wallet and is used for return transaction

change. In DeA2uth, 0 is now used to create public addresses and DIDs while 1 is used to create

private addresses and DIDs. Recall private DIDs are not published on the blockchain and shared

only between participants in order to establish private communications between wallets.

Some example paths for blockchain address and DIDs are:

• m/ 44’/ 60’/0 /0/0 – public blockchain address

• m/ 44’/ 60’/0 /1/0 – public blockchain address

• m/ 44’/ 60’/1 /0/0 – public DID

• m/ 44’/ 60’/1 /1/0 - private DID

Agents

Agents are used in decentralized identity systems to facilitate interactions between users and the

DeA2uth network. They can be thought of as intermediaries that help users to manage their

identity information and use it to prove their identity to other parties. Agents are built into the

DeA2uth’s wallet software and can be accessed through APIs.

Services that agents perform are:

• Send and receive messages

• Encrypt and decrypt messages and files

• Authenticate and verify DIDs, VCs and VPs

• Manage wallet information

Services are made public and part of the DDO. An example of a service in a DDO shown in

Figure 4.3.
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Figure 4.3: Example service in a DDO.

4.1.2 Smart Contracts

DeA2uth utilizes two smart contracts, the Identity contract and Authorization contract. Recall

smart contracts enable interaction with the blockchain and allow users to change the state through

sending transactions (Section 3.4.7). The Identity contract responsibilities are to create and lookup

DIDs. While the Authorization contract is used to submit authorization messages that control

private data sharing permissions.

There is only one Identity contract deployed; however, there can be many Authorization de-

ployed. In DeA2uth, the data managers (DMs) each deploy their own data contract. The address

of the smart contract is included as a service in the DDO, so other user’s wallet knows where to

send transactions to (Figure 4.4).

Figure 4.4: Example smart contract in a DDO.

4.1.3 Data Storage and IPFS

DeA2uth uses IPFS for storing authorization messages and files. Large amounts of data is expensive

to store on the blockchain thus we use IPFS an off-chain storage layer. Only the DIDs and CIDs

are stored on the blockchain.
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4.1.4 Authorization Messages

Authorization messages are used to control data sharing permission in a secure and transparent

manner. Additionally, the messages enable a comprehensive record of all the permissions requested

and granted for data sharing between users. Messages are saved in IPFS and their CID submitted

to the blockchain via the Authorization Contract. To uphold the privacy of users, the authorization

messages are encrypted with a user’s public key derived from a private DID before saved in IPFS.

Message Types

The message types describe what type of authorization message is being sent. There are five

message types; however, can be extended to include more types if needed.

1. RequestData: request data from another user.

2. AskPermission: ask permission to transfer data that is not owned by them.

3. AllowPermission: owner allows the transfer of a user’s private data.

4. RejectPermission: owner denies the transfer of a user’s private data.

5. SendData: signify a data transfer and contains the location of the data being transferred.

Message Schema

The message schema is divided into two categories: non-data (Figure 4.5) and data (Figure 4.6).

We use JavaScript Object Notation (JSON) [65] to define the schema. All except the SendData

message type uses the non-data schema.

Figure 4.5: Non-data message schema.

The data schema uses the same property fields as the non-data schema, and also include fields

for the CID of the encrypted data being shared, and the CID of the symmetric encryption key.
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Figure 4.6: Data message schema.

4.1.5 Data and Encryption

Data is transferred only when AllowPermission is submitted by the owner. The data can be

anything from files, images, mp3s or videos. It transferred to the IPFS network when ready to be

shared. Prior to that, it is assumed to be stored on a privately owned database. Before data is

saved to IPFS; however, it must be encrypted to ensure the the owner’s privacy. Anything on IPFS

is public and all participants in the network can retrieve the file. Data is encrypted with AES using

a randomly generated symmetric key, k. This key is sometimes referred to as a session key [66].

After the data is encrypted, key k itself is encrypted and saved to IPFS in order for the requester

to use k to decrypt the requested data. Wallet agents encrypts k with a public key extracted from

a requester’s DDO before it is saved to IPFS.

4.2 Architecture

DeA2uth’s architecture is divided into two schemes: authentication (Figure 4.7) and authorization

(Figure 4.8). Authentication follows generational sequence between a Subject S, Issuer I and

Verifier V .

1. S requests a V C from I

2. I issues a V C to S

3. V requests a V P from S

4. S presents V P to V

5. V verifies V P with I
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Figure 4.7: DeA2uth Authentication Scheme.

Figure 4.8: DeA2uth Authorization Scheme.

The authorization scheme in Figure 4.8 illustrates how private data is transferred between users

in a decentralized system. Transfer between data occurs after authentication has been performed.

In the authorization scheme, there are three types of participants the Data Manager (DM), Data

Owner (DO) and Data Requester (DR). The DM is an entity that manages and stores data con-

taining PII about an DO. DMs cannot share this data without a DO’s permission. The DR is the

participant that is requesting data about a DO from a DM. The authorization sequence is listed

below:

1. DR submits a RequestData authorization message via the authorization smart contract.

2. DM submits a AskPermission message.

3. DO submits a AllowPermission message.
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4. DM encrypts and shares the data on IPFS.

5. DM submits a SendData message.

6. DR retrieves the data from IPFS and decrypts it.

4.2.1 Functions

In this section we define all major functions used in the DeA2uth scheme and are categorized into

6 function categories: (1) general, (2) wallet, (3) smart contract, (4) identity, (5) authorization

message and (6) data.

(1) General Functions:

• sk, pk ← genKeyPair(seed, path) - generates a private key (sk) and public key (pk) pair.

• k ← genSymmetricKey(seed) - generates a symmetric key for data encryption.

• CIDm ← lookupTID(TID) - looks up a blockchain transaction ID (TID) on the blockchain

and returns and embedded content Identifier (CID) associated with a message (m).

(2) Wallet Functions:

• createPublicConn(pubDID, pubDID) - creates a public connection between two wallets

using public DIDs (pubDID).

• createPrivateConn(privDID, privDID) - creates a private connection between two wallets

using private DIDs (privDID).

• true|false← authenticateDID(pubDID|privDID) - authenticates a DID. Returns true if

it the DID owner verifies the signature; false otherwise.

• true|false ← authenticateVP(V P ) - authenticates a VP. Return true if it the VP owner

verifies the signature; false otherwise.

• sendVPRequest(pubDID) - sends a VP request to a Subject.

• send(pubDID, V P |privDID|TID) - sends a VP, privDID, or TID to another wallet using

their public DID.

(3) Smart Contract Functions:

34



• pubDID ← publishDID(DID,CIDDDO) - publishes a DID to the blockchain making it

public. The DID is mapped to a DID Document (DDO) CID.

• DIDDDO ← lookupDID(pubDID) - returns a CIDDDO given a DID what has already been

published.

• submitMessage(t, CIDmCT ) - submits an encrypted authorization message (m) to the

blockchain. The function requires the message type (t) and the CID of the message CIDmCT ,

which is encrypted before storing on IPFS.

(4) Identity Functions:

• DID ← createDID(sk, pk) - creates a DID using a public key (pk). The DID is signed by

a private or secret key (sk).

• DDO ← createDDO(DID) - creates a DDO from a DID.

• signature ← extractProof(DDO|V P ) - extracts the signature from a DDO or a VP and

returns the signature. The signature is labeled as “proof” in the DDO.

• true|false ← verifyProof(signature, pk) - verifies a signature was digitally signed by a pk

and return true if so; otherwise, returns false otherwise.

• pk ← extractPublicKey(DDO) - extracts a pk from a DDO.

(5) Authorization Message Functions:

• mt ← createMessage(t, pubDIDsender, pubDIDreceiver) - creates a non-data message given

the type t, the sender’s pubDID and the receiver’s pubDID.

• mSendReport ← createDataMessage(′SendData′, pubDIDsender, pubDIDreceiver, CIDfCT , CIDkCT )

- creates a data message.

• CIDm ← saveMessageToIPFS(m) - saves m to IPFS and returns the CID of m.

• m← retrieveMessageFromIPFS(CIDm) - retrieves a m from IPFS given the CID.

• mCT ← encryptMessage(pk,m) - encrypts m with pk.

• m← deceryptMessage(sk,m) - decrypts m with sk
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(6) Data Functions:

• fCT ← encryptFile(k, f) - encrypts file f with symmetric key k.

• f ← decryptFile(k, fCT ) - decrypts file f with symmetric key k.

4.2.2 Algorithms

In this section, we describe the algorithms used in Authentication and Authorization schemes.

They combine multiple functions defined in the previous section.

• Algorithm 1 creates DIDs and associated DDOs for all participants in the network and

publishes them to the blockchain to make the public. The DDOs are stored on IPFS.

• Algorithm 2 authenticates a DID by verifying the signature in the DDO is valid and signed

by the proper sk.

• Algorithm 3 exchanges private DIDs between two participants with DIDs: DIDi and DIDj

• Algorithm 4 I sends a V C to S using a private connection.

• Algorithm 5 S creates a V P and is validated by a V .

• Algorithm 6 DR requests data about DO. The data is managed by DM .

• Algorithm 7 after receiving a data request message, DM requires DO’s permission.

• Algorithm 8 DO allows permission for DM to transfer data to DR.

• Algorithm 9 DM receives permission from DO to share with DR. DM encrypts and saves

O’s private data to IPFS.

• Algorithm 10 DR downloads encrypted private data fCT and encrypted symmetric key

kCT , decrypts kCT then decrypts fCT to obtain data f .

Algorithm 1 Create Public DIDs

1: for n ∈ N ; where i = S, I, V do
2: ski, pki ← genKeyPair(seed, path)
3: DIDi, DDOi ← createDID(pk)
4: CIDDDOi ← saveToIPFS(DDOi)
5: publishDID(DIDi, CIDDDOi)
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Algorithm 2 Authenticate DID

1: DDO ← lookup(DID)
2: DID,DDO ← createDID(pk)
3: signatureDDO ← extractProof(DDO)
4: true | false← verifyProof(sk, signatureDDO)

Algorithm 3 Exchange Private DID

1: sk, pk ← genKeyPair(seed, path)
2: DID,DDO ← genDID(pk)
3: pk ← extractPublicKey(DDO)
4: enc(DDO)← encrypt(DDO)
5: exchange(DIDi, DIDj)
6: DDO ← decrypt(enc(DDO))

Algorithm 4 Transfer Verifiable Credentials

1: createPrivateConnection(DIDpriv,subject, DIDpriv,issuer)
2: sender.sendVerifiableCredential(V Csubject)

Algorithm 5 Verify Verifiable Presentation

1: V P ← createVerifiablePresentation(V C)
2: signature← extractProof(V P )
3: true | false← verifyCredential(signature, sk)

Algorithm 6 Request Data

1: mRequestData ← createMessage(′RequestData′, pubDIDDR, pubDIDS)
2: pkpubDIDDM

← extractPublicKey(pubDIDDM )
3: mCT

RequestData ← encryptMessage(pkprivDIDDM
,mRequestData)

4: CIDmCT
RequestData

← saveToIPFS(mCT
RequestData)

5: TIDRequestData ← submitMessage(′RequestData′, CIDmCT
RequestData

)

Algorithm 7 Ask Permission

1: mCT
RequestData ← lookUpTID(TIDRequestData)

2: mCT
RequestData ← retrieveMessageFromIPFS(CIDmCT

RequestData
)

3: mRequestData ← decryptMessage(skpubDIDDM
,mCT

RequestData)
4: pubDIDs, pubDIDDR ← extractDID(mRequestData)
5: mAskPermission ← createMessage(′AskPermission′, pubDIDDR, pubDIDS)
6: mCT

AskPermission ← encryptMessage(pkprivDIDS
,mAskPermission)

7: CIDmCT
AskPermission

← saveToIPFS(mCT
AskPermission)

8: TIDAskPermission ← submitMessage(′AskPermission′, CIDmCT
AskPermission

)
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Algorithm 8 Allow Permission

1: mCT
AskPermission ← lookUpTID(TIDAskPermission)

2: mCT
AskPermission ← retrieveMessageFromIPFS(CIDmCT

AskPermission
)

3: mAskPermission ← decryptMessage(skprivDIDS
,mCT

AskPermission)
4: pubDIDs, pubDIDDR ← extractDID(mAskPermission)
5: mAllowPermission ← createMessage(′AllowPermission′, pubDIDS , pubDIDDR)
6: mCT

AllowPermission ← encryptMessage(pkprivDIDDM
,mAllowPermission)

7: CIDmCT
AllowPermission

← saveToIPFS(mCT
AllowPermission)

8: TIDAllowPermission ← submitMessage(′AllowPermission′, CIDmCT
AllowPermission

)

Algorithm 9 Send Data

1: mCT
AllowPermission ← lookUpTID(TIDAllowPermission)

2: mCT
AllowPermission ← retrieveMessageFromIPFS(CIDmCT

AllowPermission
)

3: mAllowPermission ← decryptMessage(skprivDIDDM
,mCT

AllowPermission)
4: pubDIDs, pubDIDDR ← extractDID(mAllowPermission)
5: k ← generateEncryptionKey(seed)
6: fCT ← encryptData(seed)
7: fCT ← encryptKey(pkprivDIDDR

, k)
8: CIDkCT ← saveToIPFS(kCT )
9: CIDfCT ← saveToIPFS(fCT )
10: mSendData ← createMessage(′SendData′, pubDIDS , pubDIDDR, CIDkCT , CIDfCT )

11: mCT
SendData ← encryptMessage(pkprivDIDDR

,mSendData)
12: CIDmCT

SendData
← saveToIPFS(mCT

SendData)

13: TIDSendData ← submitMessage(′SendData′, CIDmCT
SendData

)

Algorithm 10 Retrieve Data

1: CIDmCT
SendData

← lookUpTID(TIDSendData)

2: mCT
SendData ← retrieveMessageFromIPFS(CIDmCT

SendData
)

3: mSendData ← decryptMessage(skprivDIDDR
,mCT

SendData)
4: CIDkCT ← extractCID(mSendData)
5: CIDfCT ← extractCID(mSendData)

6: kCT ← retrieveMessageFromIPFS(CIDkCT )
7: fCT ← retrieveMessageFromIPFS(CIDfCT )

8: k ← decryptKey(skprivDIDDR
, kCT )

9: m← decryptData(k, fCT )
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4.2.3 Sequences

This section list the interaction sequence between users for the authentication and authorization

schemes. The section also includes the data sharing sequence that defines how private data is

shared once authorization is complete.

Authentication

The authentication sequence occurs between I, S and V :

1. I, S and V initiate wallets.

2. I, S and V create public DIDs.

3. I, S and V exchange private DIDs.

4. I issues V C to S.

5. V sends a V P request S.

6. S creates a V P from a V C.

7. S sends the V P to V C.

8. V verifies the V P with I.

Authorization

The authorization sequence occurs between DR, DM and DO. Prior to this sequence, all parties

have already authenticated each other and exchanged private DIDs.

1. DR creates a mRequestData with DM as the receiver.

2. DR encrypts mRequestData with the private DID-public key pkprivDIDDR,DM
.

3. DR saves mCT
RequestData to IPFS and obtains CIDmCT

RequestData
.

4. DR submits CIDmCT
RequestData

to the blockchain and obtains TIDRequestData.

5. DM uses TIDRequestData to lookup CIDmRequestData .

6. DM uses CIDmCT
RequestData

to retrieve mCT
RequestData from IPFS.
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7. DM decrypts mCT
RequestData with the private DID-private key skprivDIDDR,DM

.

8. DM creates a mAskPermission to DO.

9. DM encrypts mAskPermission with the private DID-public key pkprivDIDDM,DO

10. DM saves mCT
AskPermission to IPFS and obtains CIDmCT

AskPermission
.

11. DM submits CIDmCT
AskPermission

to the blockchain and obtains TIDAskPermission.

12. DM and DO create a private connection.

13. DM sends DO the TIDAskPermission.

14. DO looks up TIDAskPermission and retrieves CIDmCT
AskPermission

from the blockchain transac-

tion.

15. DO uses CIDmCT
AskPermission

to retrieve mCT
AskPermission from IPFS.

16. DO decrypts mCT
AskPermission with the private DID-private key skprivDIDDR,DM

.

17. DO extracts pubDIDDM from mAskPermission and authenticates pubDIDDM .

18. DO creates mAllowPermission.

19. DO saves mAllowPermission to IPFS.

20. DO encrypts mAllowPermission with the private DID public key pkprivDIDDM,DO

21. DO saves mCT
AllowPermission to IPFS and obtains CIDmCT

AllowPermission
.

22. DO submits CIDmCT
AllowPermission

to the blockchain and TIDAllowPermission is returned.

23. DO and DM create a private connection.

24. DO sends DM the TIDAllowPermission.

25. DM looks up TIDAllowPermission and retrieves CIDmCT
AllowPermission

from the blockchain trans-

action.

26. DM uses CIDmCT
AllowPermission

to retrieve mCT
AllowPermission from IPFS.

27. DM decrypts mCT
AllowPermission with the private DID secret key skprivDIDDM,DO

.

28. DM now the authorization from the DO to share their DO’s private data.
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Data Sharing

The data transfer sequence begins immediately the authorization sequence between the same par-

ticipants.

1. DM retrieves requested data f from their private database.

2. DM generates a symmetric key k.

3. DM encrypts f with k.

4. DM encrypts k with pkprivDIDDR
.

5. DM saves fCT and kCT to IPFS and obtains CIDfCT and CIDkCT .

6. DM creates mSendData.

7. DM encrypts mSendData with the private DID-public key pkprivDIDDR,DM
.

8. DM submits CIDmCT
SendData

the the blockchain and obtains TIDSendData.

9. DM and DR create a private connection.

10. DM sends TIDSendData to DR.

11. DR looks up TIDSendData and retrieves CIDmCT
SendData

from the blockchain transaction.

12. DR uses CIDmCT
SendData

to retrieve mCT
SendData from IPFS.

13. DR decrypts mCT
SendData with the private DID-private key skprivDIDDM,DR

.

14. DR uses CIDmSendData
and retrieves mSendData from IPFS.

15. DR extracts CIDfCT and CIDkCT .

16. DR retrieves fCT and kCT from IPFS.

17. DR decrypts kCT with skprivDIDDR
to obtain k.

18. DR decrypts fCT with k.
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4.3 Use Case Scenarios

In this section we apply DeA2uth to three real-world use cases:

1. Undergraduate Transcript Verification

2. Credit Report Transfer

3. Electronic Healthcare Records Transfer

4.3.1 Use Case 1: Transcript Verification

Alice, would like to to apply to graduate school (Grad). The graduate school requires an official

transcript from Alice’s undergraduate school (UGrad) (Figure 4.9). The application process accepts

transcripts as a V Ctranscript. In this scenario Alice is the Subject Alice, the undergraduate school

is the Issuer I and the graduate school is the Verifier V .

Figure 4.9: Use case 1 - transcript verification activity diagram.

Assumptions:

• All participants have a wallet.

• All participants have published a public DID and DDO.

• Alice has as a pre-registered account with the UGrad to receive a V Ctranscript.

Sequence:

1. Alice signs into her undergraduate school account to request a V Ctranscript and provides her

DID pubDIDAlice.
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2. UGrad looks up pubDIDAlice to retrieve DDODIDAlice

3. UGrad authenticates pubDIDAlice using the public key pkpubDIDAlice
provided inDDODIDAlice

.

4. Alice looks up pubDIDUGrad to retrieve the DDODIDUGrad

5. Alice authenticates pubDIDUGrad using the public key provided in DDODIDUGrad
.

6. Alice and UGrad create new DIDs to be used as a private DIDs privDIDS,I and privDIDUGrad,Alice.

7. Alice encrypt privDIDAlice,UGrad with pkpubDIDUGrad
and sends it to UGrad.

8. UGrad encrypt privDIDUGrad,Alice with pkpubDIDAlice
and sends it to Alice.

9. Alice and UGrad create a private connection using privDIDAlice,UGrad and privDIDUGrad,Alice

10. UGrad generates V Ctranscript for Alice.

11. UGrad sends V Ctranscript to Alice.

12. Alice stores V Ctranscript in her wallet.

13. Alice begins the the application and Grad is requiring V Ctranscript.

14. Alice looks up pubDIDGrad to retrieve DDODIDGrad
.

15. Alice authenticates pubDIDGrad using the public key pkpubDIDGrad
provided in DDODIDGrad

.

16. Grad looks up pubDIDAlice to retrieve the DDODIDAlice
.

17. Grad authenticates pubDIDAlice using the public key pkpubDIDAlice
provided in DDODIDAlice

.

18. Alice and Grad create a new DID and DDO to be used as a private DIDs privDIDAlice,Grad

and privDIDGrad,Alice.

19. Alice encrypt privDIDAlice,Grad with pkpubDIDGrad
and sends it to UGrad.

20. Alice encrypt privDIDGrad,Alice with pkpubDIDAlice
and sends it to Alice.

21. Alice and Grad create a private connection using privDIDAlice,Grad and privDIDGrad,Alice

22. Alice create V Ptranscript from V Ctranscript.

23. Alice sends V Ptranscript to Grad.

24. Grad verifies the signature in V Ptranscript.
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4.3.2 Use Case 2: Credit Report Transfer

Alice is requesting a loan from the Mortgage Company (MC). MC needs to acquire a credit report

form the Credit Report Company (CRC), in order to authorize a loan. However, before the CRC

can send MC the report, the CRC requires Alice’s permission. Once permission is given, the

CRC sends the report to the MC. In this scenario, Alice is the Data Owner, the MC is the Data

Requester and the CRC is the Data Manager (Figure 4.10). Additionally, for this scenario we skip

the authentication sequence for brevity, but still occurs between all participants.

Figure 4.10: Use case 2 - credit report transfer diagram.

Assumptions:

• All participants have a wallet.

• All participants’ public DID have been published to the blockchain.

• All participants have exchanged private DID between each other.

• An authorization smart contract has been deployed by CRC.

Sequence:

1. Alice applies for a loan from MC.

2. MC creates a RequestData message, mRequestData.

3. MC encrypts mRequestData with the CRC’s private DID-public key pkprivDIDCRC,MC
.

4. MC saves mCT
RequestData to IPFS and obtains CIDmCT

Request
.
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5. MC submits CIDmCT
RequestData

to the blockchain using the authorization contract and obtains

TIDReqestData.

6. MC and CRC create a private connection and MC sends TIDReqestData to CRC.

7. CRC looks up TIDReqestData and obtains CIDmCT
RequestData

from the blockchain transaction.

8. CRC uses CIDmCT
RequestData

and retrieves mCT
RequestData from IPFS.

9. CRC decrypts mCT
RequestData with their private DID-private key skprivDIDCRC,MC

.

10. CRC creates an AskPermission message mAskPermission.

11. CRC encrypts mAskPermission with private DID-public key pkprivDIDCRC,S
.

12. CRC saves mAskPermission to IPFS and obtains CIDmAskPermission
.

13. CRC submits CIDmAskPermission
to blockchain and obtains TIDAskPermission.

14. CRC and Alice create a private connection.

15. CRC sends Alice TIDAskPermission.

16. Alice looks up TIDAskPermission and obtains CIDmCT
AskPermission

from the blockchain transac-

tion.

17. Alice decrypts mCT
AskPermission with their private DID-private key skprivDIDAlice,CRC

.

18. Alice accepts and creates mAllowPermission.

19. Alice encrypts mAllowPermission with private DID-public key pkprivDIDAlice,CRC
.

20. Alice saves mAllowPermission to IPFS and obtains CIDmAllowPermission
.

21. Alice submits CIDmAllowPermission
to blockchain and obtains TIDAllowPermission.

22. CRC generates symmetric encryption key k.

23. CRC encrypts the credit report f with k.

24. CRC encrypts the k with pkprivDIDCRC,MC
.

25. CRC saves fCT to IPFS and obtains CIDfCT .
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26. CRC saves kCT to IPFS and obtains CIDkCT .

27. CRC creates a SendData message, mSendData

28. CRC saves mSendData to IPFS and obtains CIDmSendData

29. CRC encrypts mSendData with private DID-public key pkprivDIDMC,CRC
.

30. CRC submits CIDmCT
SendData

to blockchain and obtains TIDSendData.

31. CRC and MC create a private connection.

32. CRC sends MC TIDSendData.

33. MC looks up TIDSendData and obtains CIDmCT
SendData

from the blockchain transaction.

34. MC decrypts mCT
SendData with their private DID-private key skprivDIDMC,CRC

.

35. MC extracts CIDfCT and CIDkCT from CIDmSendData
.

36. MC retrieves fCT and kCT from IPFS.

37. MC decrypts kCT with skprivDIDMC,CRC
.

38. MC decrypts fCT with k and now has Alice’s credit report.

4.3.3 Use Case 3: Electronic Health Record Transfer

In this scenario there are two hospitals, Hospital A (HA), and Hospital B (HB). Alice registers

with Hospital HA using her a driver’s license V C which she obtained from the Department of

Motor Vehicles (DMV). After some time, Alice then wants to transfer to HB. Consequently, HB

requests Alice’s patient records from Alpha; however, HA requires Alice’s permission to do so. For

this scenario, Alice is the Subject, HA is the Data Manager and HB is Data Requester. The EHR

request and transfer scenario are represented in Figure 4.11 and Figure 4.12. Like the scenario we

skip the details of DID authentication sequence, but it still occurs between all participants.

Assumptions:

• All participants have a wallet.

• All participants have a public DID published to the blockchain.
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Figure 4.11: Use case 3 - EHR request diagram.

• An authorization smart contract has been deployed by HA and is the owner of the contract.

Sequence:

1. Alice applies to be a patient at HA by entering pubDIDAlice into the patient registration

form.

2. Alice and HA authenticate their public DID, exchange private DIDs and create a private

connection.

3. HA sends a message requesting Alice to provide a V C.

4. Alice selects her V Clicense and creates a V Plicense.

5. Alice signs V Plicense with skpubDIDAlice
.

6. Alice sends V Plicense to HA

7. HA verifies Alice’s and the DMV’s signature that are embedded in V Plicense.

8. HA sends Alice’s a new patient credential V Cpatient.

9. HB creates a RequestData message, mRequestData.

10. HB encrypts mRequestData with the private DID-public key pkprivDIDHA,HB
.

11. HB saves mCT
RequestData to IPFS and obtains CIDmCT

Request
.
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Figure 4.12: Use case 3 - EHR transfer diagram.

12. HB submits CIDmCT
RequestData

to the blockchain using the authorization contract and obtains

TIDReqestData.

13. HB and HA create a private connection and HB sends TIDReqestData to HA.

14. HA looks up TIDReqestData and obtains CIDmCT
RequestData

from the blockchain transaction.

15. HA uses CIDmCT
RequestData

and retrieves mCT
RequestData from IPFS.

16. HA decrypts mCT
RequestData with their private DID-private key skprivDIDHA,HB

.

17. HA creates an AskPermission message mAskPermission.

18. HA encrypts mAskPermission with Alice’s private DID-public key pkprivDIDHA,Alice
.

19. HA saves mAskPermission to IPFS and obtains CIDmAskPermission
.

20. HA submits CIDmAskPermission
to blockchain and obtains TIDAskPermission.

21. HA and Alice create a private connection.

22. HA sends Alice TIDAskPermission.

23. Alice looks up TIDAskPermission and obtains CIDmCT
AskPermission

from the blockchain transac-

tion.

24. Alice decrypts mCT
AskPermission with their private DID-private key skprivDIDAlice,HA

.
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25. Alice accepts and creates mAllowPermission.

26. Alice encrypts mAllowPermission with pkprivDIDAlice,HA
.

27. Alice saves mAllowPermission to IPFS and obtains CIDmAllowPermission
.

28. Alice submits CIDmAllowPermission
to blockchain and obtains TIDAllowPermission.

29. HA generates symmetric encryption key k.

30. HA encrypts the credit report f with k.

31. HA encrypts the k with pkprivDIDHA,HB
.

32. HA saves fCT to IPFS and obtains CIDfCT .

33. HA saves kCT to IPFS and obtains CIDkCT .

34. HA creates a SendData message, mSendData

35. HA encrypts mSendData with private DID-public key pkprivDIDHB,HA
.

36. HA saves mSendData to IPFS and obtains CIDmSendData

37. HA submits CIDmSendData
to blockchain and obtains TIDSendData.

38. HA and HB create a private connection.

39. HA sends HB TIDSendData.

40. HB looks up TIDSendData and obtains CIDmCT
SendData

from the blockchain transaction.

41. HB decrypts mCT
SendData with their private DID-private key skprivDIDHB,HA

.

42. HB extracts CIDfCT and CIDkCT from CIDmSendData
.

43. HB retrieves fCT and kCT from IPFS.

44. HB decrypts kCT with skprivDIDHB,HA
.

45. HB decrypts fCT with k and now has Alices’s patient records.
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Chapter 5

Implementation

The aim of this chapter is to provide an overview of the tools and methods that were utilized in the

development of a prototype application. The initial version of the application utilized a centralized

service to simulate the functionality of a blockchain as well as data storage. However, in the

subsequent iteration, decentralized services were integrated to enable the application to operate in

a decentralized manner. In this chapter, we will offer an in-depth discussion of the various tools

and methods used during the development process, including the rationale behind their selection

and implementation. The following technologies were used to develop the application:

• Next.js1 - a React framework to create to web applications.

• Firebase2 – Google’s back end as a service and cloud storage service.

• Web3.Storage3 – a service to store files accessible via IPFS.

• Ganache4 – a local Ethereum blockchain node.

5.1 Application Development

5.1.1 Wallet

The bulk of the development efforts were dedicated to designing and implementing the wallet

interface and its associated functionalities. The user interface (UI) of the wallet was built utilizing

1https://nextjs.org/
2https://firebase.google.com/
3https://web3.storage/
4https://trufflesuite.com/ganache/

50



Next.js and segmented into three distinct display sections: messaging, DIDs/VCs, and a specialized

area dedicated to the presentation of specific details such as VC signatures (Figure 5.1).

Figure 5.1: Wallet user interface with three sections: messaging (a), DIDs/VCs, and a details view
(c) which shows information about the message or DIDs/VCs.

The messaging section of the wallet interface presents P2P wallet messages originating from

other wallets, as well as messages regarding authorization message submissions to the blockchain

and the authorization n messages themselves. These wallet messages serve to alert the user that

another wallet has requested to verify their DID or VC. Furthermore, wallet messages notify the

user when an authorization message has been submitted to the blockchain and they are the intended

recipient. Each message is associated with specific actions that can be undertaken in response. For

instance, as depicted in Figure 5.2, the user can either accept or reject a DID authentication request

message. The complete catalogue of wallet messages created in the prototype is itemized in Table

5.1.

Table 5.1: List of wallet messages, descriptions, and their follow up actions.

Wallet Message Type Description Follow-up Actions

DID AUTH REQUEST another wallet requested DID authentication request accept or reject

ACCEPT DID AUTH REQUEST DID authentication request accepted send challenge

DID CHALLENGE DID authentication challenge sent respond to challenge

DID CHALLENGE RESPONSE DID challenge decrypted verify response

ID CREDENTIAL REQUEST another wallet requested a VC select a VC

ID PRESENTATION VP generated and signed verify VP

AUTHORIZATION MESSAGE authorization message submitted to blockchain look up TIDm
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Figure 5.2: Example wallet messages. The wallet has been sent and accepted a DID authentication
request (a). In response, the wallet is sent a challenge in which wallet responds to validate the DID
(b).

The authorization submissions section of the wallet interface displays the authorization message

submissions that have been retrieved from the blockchain. Upon being designated as the receiver

of an authorization message, the wallet is notified via a corresponding wallet message. The TID

associated with the authorization message is subsequently retrieved from the blockchain and pre-

sented within the authorization submission section of the wallet interface, see Figure 5.3(a). The

process of authorizing the submission entails three discrete operations: (1) accessing the authoriza-

tion message from IPFS, (2) decrypting the message with the associated DID private key, and (3)

storing the decrypted message within the wallet. The operations are show in Figure 5.3(b).

The authorization message section of the wallet interface presents plain text authorization

messages, such as RequestData, AskPermission, AllowPermission, and others, after their retrieval

from IPFS and subsequent decryption. Each message type is associated with a particular set of

actions that can be taken in response. For example, when a RequestData message is received, a

button is displayed enabling the user to seek permission from the DO to share their data. Figure 5.4

comprehensively catalogs the various types of authorization messages, along with their associated

actions.

The DID/VC section of the wallet UI presents the DIDs and VCs that are associated with

the wallet. Upon the creation of a new wallet, a key pair is generated, with the public key being

encoded in base58 to yield the wallet’s public DID. Although the prototype did not include the

capability to create new public or private DIDs, this feature is anticipated to be incorporated in
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Figure 5.3: Screenshot of receiving a SendData authorization message. Message is first looked up
from the blockchain (a). Then the Send Data submissions gives options to download the message
from IPFS, decrypt and store (save) it to the wallet.

future iterations of the application and saved for future works.

5.1.2 P2P Wallet Messaging

The current iteration of DeA2uth did not encompass the development of a fully functional P2P

wallet messaging system, as this aspect was not the central focus of the project. Nevertheless,

we do intend to integrate this feature into future iterations of the application, drawing upon the

specifications and protocols outlined in the DIDComm5 framework to provide a secure, private

communication methodology built atop the decentralized design of DIDs. In lieu of a functional

messaging system, we simulated messaging activity by storing messages in a JSON file. These

wallet messages are exchanged between wallets for the purpose of DID authentication, as well as

for transmitting TIDs associated with authorization message submissions.

5.1.3 Blockchain and Data Storage

Initially, we developed a prototype leveraging Google Firebase, which served a dual role in the

capacity of both the blockchain and the storage mechanism for files. Within this context, DDOs

and authorization messages were also saved to Firebase. To facilitate these operations, API library

was used that enabled the implementation of calls to store and retrieve data from Firebase. In

5https://identity.foundation/didcomm-messaging/spec/
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Figure 5.4: Various authorization messages displayed in the Authorization Message section of the.
Data Request (a), Ask Permission (b), Allow Permission (c) and Send Data (d).

essence, these calls simulated smart contract calls to the blockchain.

In the subsequent iteration of our project, we eliminated Firebase and replaced its calls with

smart contracts functions, while employing Web3.Storage for storing data to IPFS. The Identity

and Authorization contracts were designed and compiled using the Remix6 editor, as detailed in

Appendix C, Figure C.1 and Figure C.2. Initially, we conducted testing using Ganache, which is a

local Ethereum node. Thereafter, we conducted testing on the Goerli Ethereum test network.

5.1.4 Obtaining a Verifiable Credential

Upon wallet creation, it does not initially contain a VC. To acquire a VC, a driver’s license VC was

simulated to be obtained from the DMV. In this scenario, it is assumed that after a subject applies

for a driver’s license, they register their DID with the DMV. The DMV then allows subjects to

obtain a digital version of their driver’s license, which is the VC. Figure 5.5 shows a screen of the

prototype where the subject enters their wallet DID to receive VC. After the DID is submitted the

DID owner will receive a message to begin the DID authentication process.

Upon obtaining the VC, it is displayed in the central portion of the wallet interface (refer to

Figure 5.1). The user can view specific details of the VC by clicking on it, which will be displayed on

the right-hand side of the wallet. These details include the digital signature that was generated by

the DMV’s private key, as depicted in Figure 5.6. Upon clicking the lock symbol on the credential,

6https://remix.ethereum.org/
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Figure 5.5: Screenshot of DMV page to obtain a driver’s license VC.

the VC verification process is initiated, whereby the DMV validates the signature with their private

key. No wallet message is generated during this process.

Figure 5.6: Screenshot of a verified driver’s license VC from the DMV (a). The VC details, including
the signature, show in the Details View of the wallet (b).

5.1.5 EHR Implementation

In the prototype, we have implemented the use case scenario for transferring EHRs (as discussed in

Section 4.3.3). This implementation comprises three primary functionalities, which are illustrated

in Figure 5.7: (1) patient registration, (2) patient data request and (3) sending patient data to

another hospital.

In this scenario subject registers with HA. HB then will request patent records from HA. The

subject first registers as a patient with HA and obtains a VC as proof of registration, V Cpatient.

While actual registration generally requires the patient to provide detailed medical information,

in this scenario, only the identity needs to be verified. After submitting their DID, the patient

receives a message to prove their identity with a VC. The patient selects their V Cdrivers−license,
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Figure 5.7: Screenshot of the various forms: patient registration form (a). patient data request
form (b). sharing patient EHRs form (c)

generates V Pdrivers−license by signing the V Cdrivers−license with their private key and sends it to

HA, shown in Figure 5.8(a)(b). HA validates both patient’s signature and the DMV’s signature.

Once V Pdrivers−license is validated, HA sends the patient V Cpatient, shown in Figure 5.8(c).

Figure 5.8: Screenshot of receiving a V Cpatient. Patient signs and sends V Pdrivers−license (a). The
patients signature displays in the Details View section (b). After signature validation, HA sends
the V Cpatient.

5.1.6 Important Libraries and Source Code

Table 5.2 provides an overview of the important libraries and their corresponding versions utilized in

the development of the DeA2uth prototype. These libraries played a crucial role in the functionality
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of the application, such as the UI design and the integration of blockchain and storage mechanisms.

Additionally, numerous other libraries were utilized for the infrastructure and organization of the

application, although they did not directly contribute to the DeA2uth project. All these libraries

can be searched and accessed through npmjs.com7 .

Table 5.2: Important libraries used for the DeA2uth prototype.

Library Name Version Description

abi-decoder 2.4.0 accept or reject & helper library to decode smart contract call input

base-58 0.0.1 provides helpers functions to encode and encode in base58

firebase 9.1.16 api package to interact with Google Firebase

ganache 7.7.7 api package to interact with Ganache Ethereum local node

hdkey 2.0.1 hierarchical determinist key library to generate BIP32 compliant wallet keys

truffle/hdwallet-provider 2.1.8 library used to create a Ethereum provider that autosigns transactions

virgi-crypto 4.2.2 a cryptography library used for performing encryption

web3.js 1.8.2 a collection of libraries to interact with an Ethereum node

The source code for the smart contracts and important functions such as validating digital

signatures can be found in Appendix C. The entire prototype is hosted on Gitlab and is available

for the public to experiment with8.

5.2 Implementation Analysis

5.2.1 Blockchain

DeA2uth relies on the blockchain as the fundamental component and security layer of the system.

As such, it inherits the security concerns that are inherent in blockchain technology. There has

been extensive research conducted on the security of blockchain [67, 68]. The 51% attack is one

of the most significant security threats to blockchains and is also relevant to DeA2uth [69]. The

approach taken to carry out such an attack depends on the consensus mechanism employed by the

blockchain.

The DeA2uth prototype was developed using the Ethereum blockchain, which has recently tran-

sitioned from the PoW consensus mechanism to the Proof of Stake (PoS) mechanism. However,

the risk of a 51% attack persists as it does with PoW, albeit with higher economic risks for the

attacker(s) [70]. To control 51% of the staked ETH, the attackers would need to possess a con-

7https://www.npmjs.com/
8https://gitlab.com/paustria/unlv-dissertation
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siderable amount of Ether (ETH), which is held by validator nodes. Currently, there are 222,052

validator nodes with a combined 7,105,596 ETH. To conduct a 51% attack, an attacker would

require at least 3,552,798 ETH, which is valued at approximately $6,316,874,844 based on today’s

ETH price of $1,778 per ETH.

Moreover, the POS consensus mechanism provides an opportunity for the community to mount

a counterattack against a 51% attack [70]. In the event of such an attack, honest validator nodes

can choose to continue building on the minority chain and disregard the attacker’s fork while

encouraging other nodes to do the same. They can also forcibly remove the attacker from the

network, resulting in the destruction of their stacked ETH, which creates an even stronger economic

disincentive for an attacker to launch a 51% attack.

Attacks on a blockchain network are inevitable, and the likelihood of an attack increases for pub-

lic, non-permissioned blockchains such as Ethereum. Therefore, it is crucial to select a blockchain

with a healthy number of nodes and to use a well-researched and extensively tested consensus

mechanism.

5.2.2 Wallet

In DeA2uth, wallets and their corresponding private keys are stored on the device owned by the

user, giving them full control over their identity. However, this approach entails both security and

privacy benefits, as well as the responsibility of protecting the private keys from theft. Losing the

private keys could lead to the unauthorized control of DIDs and VCs, a situation akin to identity

theft. If an attacker steals the mnemonic phrase used to generate the private keys, they would be

able to access all the private keys. Additionally, since DeA2uth’s wallet contains blockchain private

keys for signing transactions, an attacker with access to the keys would have the ability to spend

any currency associated with those keys.

The immutability of DIDs on the blockchain implies that revocation of a DID is a challenging

task, and for this reason, revocation mechanisms have been proposed [56]. These mechanisms allow

issuers to publish a revocation status for a particular DID, which is verified prior to validating its

proof. However, this approach presents certain drawbacks, such as the potential for the revocation

list to become unwieldy and have negative impacts on system performance. To address these limita-

tions, current research efforts have proposed space-efficient and high-performance implementation

solutions [30].

The theft of a pneumonic seed phrase can have more severe consequences than the theft of
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a few keys, as the attacker would be able to generate all the private keys of the wallet. Thus,

it is imperative to safeguard the seed and only share it with trusted peers for backup purposes.

Additionally, forgetting the seed can be equally detrimental; if the wallet is deleted and the seed

is forgotten, the owner will lose complete access to the private keys. To mitigate this risk, wallet

providers today encourage seed phrase owners to write down the phrase and make it an explicit

step before using the wallet. Furthermore, recent research has proposed using the Shamir Secret

Sharing algorithm to recover forgotten keys [71, 72].

5.2.3 Encryption and Data Reliability

By default, data is not encrypted on IPFS, which was intentional by its creator to prevent applica-

tion developers from being limited due to a lack of modularity, flexibility, and future-proofing [73].

However, in DeA2uth, authorization messages are encrypted using RSA encryption, and files are

shared with AES encryption. Both RSA and AES are widely used and secure encryption algorithms

that are approved by NIST [41, 74]. The strength of the encryption depends on the length of the

key used, but the security of the system ultimately relies on the proper management of the keys

themselves [35]. In DeA2uth, when a new DID is created by the wallet, the private key of the DID

is used as a seed to generate an RSA key pair. Therefore, it is crucial to keep the wallet’s private

keys secure.

In the context of DeA2uth, an additional consideration relates to the reliability of the storage

network. Although IPFS serves as the protocol for sharing files between nodes, the protocol alone

does not determine metrics such as data redundancy, durability, and availability, which are com-

monly included in Service Level Agreements of storage providers such as Amazon S3, Dropbox,

and Google Drive. A study conducted by [75] found that Sia, one of the earliest blockchain-based

storage services, exhibited similar redundancy, durability, and availability factors as centralized

cloud services. However, it is important to note that these factors were primarily dependent on the

storage implementation rather than the blockchain itself.

For our prototype we utilized Web3.Storage, a service that uses both IPFS and Filecoin, a

blockchain based storage network [76]. Web3.Storage maintains its own IPFS nodes to ensure

availability and redundancy and employs the Filecoin network for durability. However, specific

information regarding the number of IPFS nodes they host, and deals made on Filecoin are not

disclosed in the Web3.Storage documentation. For instance, to achieve a level of redundancy that

is comparable to Google Cloud, they would need to replicate data at least twice.
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In practical applications, it is expected that a DR would store the data on their own hard drive or

storage network once they receive the files from the DM. Furthermore, while the message submission

transactions are permanently recorded on the blockchain, it is advisable for all participants to retain

the authorization messages for the auditing purposes and keeping a historical record.
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Chapter 6

Performance Evaluation

The purpose of this chapter is to offer a comparative analysis of the primary operations involved

in DeA2uth, as implemented in two distinct prototype versions. Specifically, we compare a cen-

tralized version that employs Firebase with a decentralized version that utilizes Ethereum and

Web3.Storage. To achieve this goal, we will present a detailed examination of both the timing and

cost results for each prototype. Table 6.1 shows the operations that were measured and analyzed.

By comparing the performance metrics of the two prototypes, we aim to provide valuable insights

into the relative advantages and disadvantages of centralized versus decentralized implementations

of DeA2uth.

Table 6.1: Operations and services evaluated.

Operations Firebase Ethereum Web3.Storage

Saving an authorization message x x

Retrieving an authorization message x x

Submitting an authorization message transaction x x

Retrieving an authorization message transaction x x

Storing various sized data x x

Retrieving various sized data x x

6.1 Timing

Figure 6.1 shows the average time to save and retrieve authorization messages from storage. Sav-

ing to Web3.Storage took approximately 1.4 seconds longer than saving to Firebase. Retrieving

messages were comparable between the two.
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Figure 6.1: Operation time to save and retrieve authorization messages from storage.

The results of comparing the average time for submitting and retrieving an authorization mes-

sage transaction between the centralized and decentralized versions of DeA2uth are presented in

Figure 6.2. It is worth noting that authorization messages are saved to storage and subsequently

submitted to the blockchain. The use of Firebase resulted in a significantly faster submission time

of 0.370 seconds, whereas Ethereum took 15.101 seconds. On the other hand, retrieving a trans-

action from Ethereum was faster, taking only 0.283 seconds, but it was still slower than Firebase,

which took only 0.114 seconds.

Figure 6.2: Operation time to submit (a) and retrieve (b) authorization message transactions.

Figure 6.3 shows the average times to upload different sized files to Firebase and Web3.Storage.

Image files and binary files were used for this test. It can be observed that, for files of size

1MB, 10MB, and 1000MB, the time taken to upload to Firebase was faster than to Web3.Storage.

The difference in time increased as the file size increased. Notably, for a 1000MB file, Firebase

was on average approximately 59 seconds faster than Web3.Storage. However, for the 100MB file,

Firebase surprisingly took longer to upload thanWeb3.Storage. Possible reasons for this unexpected
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observation will be discussed in the subsequent discussion section.

Figure 6.3: Upload times of various file sizes to storage.

Figure 6.4 shows average time to download various sized files to local storage. Additionally,

we also setup our own IPFS node and measured the time to download the 100MB and 1000MB

file. The results indicate that the average download times for Firebase and Web3.Storage were

similar for all file sizes. Using our own IPFS node however, showed a significant 90% download

time improvement for both the 100MB and 1000MB files.

Figure 6.4: Download time of various files sizes from storage.

6.2 Costs

In this section, we report on the cost of DeA2uth’s main operation transactions, which fall into

two categories: deploying contracts and smart contract function calls. The reported ETH amounts

include miner gas, and the exchange rate at the time of testing was $1719.74/ETH. All costs are

reported in USD.

Table 6.2 presents the cost of performing DeA2uth’s main operations on the to the Ethereum

Blockchain, Goerli Network. The cost to deploy the Authorization and Identity contract was $4.46
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and $4.97 respectively. The cost to submit an authorization message and publish a DID was $0.094

and $1.13 respectively.

Table 6.2: Operation costs on Ethereum.

Operation Ether (ETH) USD

deploy authorization contract 0.002701 $4.46

deploy identity contract 0.002786 $4.97

submit authorization message 0.000568 $0.94

publish DID 0.000632 $1.13

Table 6.3 summarizes the costs associated with storing one GB of data per month on these

platforms, including the download bandwidth cost. The prices listed reflect the current ”pay as

you go” rates, as both services offer promotions that provide free initial storage. For comparative

purposes, we assumed that the Data Requester would want to download the data after receiving

it from the Data Manager. Firebase charges a rate of $0.03/GB*mo for storage and $0.12 for

bandwidth, which results in a total cost of $0.15/GB*mo. In contrast, Web3.Storage charges a

higher rate of $0.08/GB*mo for storage but does not charge for download bandwidth.

Table 6.3: Cost of storing data.

Item Firebase Web3.Storage

storage ($/GB*mo) $0.03 $0.08

bandwidth ($/GB*mo) $0.12 -

total $0.15 $0.08
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Chapter 7

Discussions

The objective of this chapter is to conduct an evaluation of the timing and cost results obtained

from the tests performed in the previous chapter. By analyzing these metrics, we aim to provide

readers with a comprehensive understanding of the trade-offs and implications of our different

approaches to implementing DeA2uth.

7.1 Timing Evaluation

The research community is well aware of the performance limitations of the blockchain [77, 78].

Unlike normal databases, for each transaction, miners are required to validate the transaction, mine

a new block and propagate it to every node in the network. Furthermore, there is a limit on the

number of transactions per second (TPS) that each block can accommodate. The Ethereum (2.0)

blockchain, for example, has an average block time of approximately 12 seconds and can process

27-30 TPS. The impact of these limitations is reflected in Figure 6.1, where it takes approximately

15 seconds to submit an authorization message transaction on the Ethereum blockchain, whereas

it occurs nearly instantaneously using Firebase.

In the context of DeA2uth, optimizing performance is crucial, as users may not be willing to

wait for 12-20 seconds for authorization message transactions to be confirmed. Moreover, a data

manager, such as the hospital in our use case, may receive numerous requests to share data, requiring

efficient processing. To address these concerns, we recommend the utilization of high-performance

blockchains, such as Polygon and Avalanche, for the implementation of DeA2uth [78].

In terms of file uploading, including images, Firebase demonstrated a faster upload time com-

pared to Web3.Storage. Although there was no significant difference for small-sized files, the upload
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of a 1GB file was completed 60 seconds faster on Firebase. Web3.Storage, which hosts its IPFS

nodes, distributes a copy of the uploaded file to each node. However, the implementation details

of the service such as the replication factor, which may have an impact on upload time, were not

disclosed. It is important to note that the upload time of Web3.Storage does not reflect the per-

formance of the IPFS protocol itself. For future research, we plan to evaluate other IPFS services

such as Filebase and Infura and compare their upload times to those of Firebase.

We examined the performance of Firebase and Web3.Storage with regards to file downloading

times. Our findings indicate that both services exhibit comparable download times. It is likely that

this is because both services require the files to be downloaded through a single connection from

a gateway server, as depicted in the image below. To explore the potential benefits of leveraging

the IPFS network, we established our own IPFS node and measured the time required to download

files. Our results demonstrate that downloading files using our IPFS node was significantly faster

than using either Firebase or Web3.Storage. This is because IPFS operates in a P2P fashion and

can download pieces of files from multiple nodes simultaneously. In future work, we intend to

investigate the performance of other IPFS services, such as Filebase and Infura, and compare their

download times to those of Firebase and Web3.Storage.

To prioritize performance in the DeA2uth system, it is recommended that data requesters host

their own IPFS node to facilitate the efficient download of large files. However, this recommendation

is contingent on the data manager’s implementation strategy, specifically regarding the storage of

files on multiple nodes during the upload process.

7.2 Cost Evaluation

In DeA2uth, there are two main expenses that need to be considered, namely the cost of using the

blockchain and the cost of storing data. In the centralized version of DeA2uth, there are no costs

associated with deploying contracts or submitting authorization message transactions. Even when

using Firebase to simulate the blockchain, saving and reading transactions to its database incurs a

negligible cost of approximately $0.00000241 per transaction.

For the decentralized prototype iteration, one DID contract is required for the entire scheme

and one authorization contract is required per data manager. Additionally, each participant needs

to publish a DID to make it public. At this point costs are still relatively low. However, costs

become a concern when submitting authorization messages, as submitting a message on Ethereum

1https://cloud.google.com/firestore/pricing
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costs approximately $1 (as shown in Table 6.2). This means that an entire authorization sequence,

consisting of RequestData, AskPermission, AllowPermission, and SendData, requires four messages,

which amounts to approximately $4. This could be a potential concern for data managers who

receive many requests to share files.

One possible solution to address the cost issue is to divide the costs between data requester

and data managers, with the former paying for the RequestData and SendData messages, and the

latter paying for the AskPermission and AllowPermission messages. However, the cost of submitting

messages remains unchanged. Another approach to address this issue is to use a blockchain with

lower gas fees. To explore this, we tested deploying the contract and submitting authorization

messages on the Polygon blockchain, as shown in Table 7.1, where the cost of deploying a contract

and submitting a message is approximately $0.03 and $0.002, respectively. This solution can

potentially reduce costs significantly.

Table 7.1: Operation costs on Polygon.

Operation Polygon (Matic) USD

deploy authorization contract 0.025 $0.03

deploy identity contract 0.0268 $0.03

submit authorization message 0.001713 $0.002

publish DID 0.00147 $0.002

Table 7.2 displays the comparable data storage costs between Firebase and Web3.Storage, while

Table 7.2 presents alternative hosting services such as Infura, Filebase, and Fleek, which are IPFS-

based file hosting services. The prices offered by these hosting services are relatively similar. It is

important to note that DeA2uth’s main objective is to enable data file sharing among users, rather

than providing a data storage solution. Thus, a storage network is only necessary to facilitate the

exchange of files between users. It is anticipated that data managers will manage and store files

on their own database, and data requesters will download the shared files. As a result, long-term

storage is not essential. In an ideal scenario, both data managers and requesters would host their

IPFS node to eliminate the cost of using third-party IPFS hosting services and promote a genuine

P2P model.
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Table 7.2: Cost to store data on alternative hosting services.

Item Amazon S3 Infura Filebase Fleek

storage ($/GB*mo) $0.023 $0.08 $0.10 $0.12

bandwidth ($/GB*mo) $0.09 $0.12 $0.05 $0.05

total $0.11 $0.20 $0.15 $0.17
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Chapter 8

Conclusions

In this dissertation, we have presented DeA2uth, a novel decentralized authentication and authoriza-

tion scheme for secure private data transfer. DeA2uth employs blockchain technology, decentralized

identity, and P2P distributed storage to enable users to have more control over their personal iden-

tifiable information and provide a platform for sharing private data with proper authorization and

permission. Authentication of participants is achieved by verifying DIDs and VCs, while autho-

rization is managed by submitting authorization messages to the blockchain. Only after receiving

approval from the owner can a manager share private files with a requester.

To test DeA2uth, we developed a prototype using Google Firebase as a centralized cloud storage

service and then migrated to Ethereum and IPFS to make it decentralized. Our tests indicated that

Firebase had better overall performance and faster times than Ethereum and IPFS when performing

operations such as submitting authorization message transactions and uploading files for sharing.

However, decentralization comes at a performance cost, which was an expected tradeoff. On the

other hand, when downloading shared files, hosting our own IPFS node showed significant speedup

in download times, demonstrating the strengths of using a P2P distributed network.

The cost of implementing DeA2uth largely depends on the blockchain used to deploy the con-

tracts. Using Ethereum to deploy contracts and submit authorization messages incurred much

higher costs compared to using a cloud-based storage like Firebase. However, using a less expen-

sive blockchain such as Polygon greatly reduced the cost of deploying contracts and submitting

authorization messages.

In summary, our work has shown that DeA2uth is a promising solution for secure private data

transfer. Further studies are necessary to address the scalability issues of DeA2uth and to test it

with real-world use cases. Additionally, testing other IPFS services such as Filebase and Infura
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may provide insights into alternative decentralized storage solutions.

8.1 Future Works

The present work represents an exciting contribution to the field of decentralized technology, par-

ticularly with regards to the DeA2uth prototype. Nonetheless, there are several important features

that still need to be addressed, particularly regarding the wallet. For instance, a more advanced

production wallet would need to incorporate P2P communication, and it should be able to connect

with multiple blockchains and smart contracts.

Moreover, the effectiveness of decentralized identity relies heavily on the number of participants

in the network, including issuers, verifies, and subjects. Therefore, future testing of DeA2uth should

be conducted in existing networks, such as uPort, Soverin and Civic.

One of the most exciting aspects of DeA2uth is its flexibility, particularly about the authorization

message schema. Fine-grained access control can be applied by including attributes and roles into

the schema. Moreover, future investigations may extend to the exploration of potential applications

in diverse fields, including supply chain management, pharmaceuticals, and finance. Lastly, because

DeA2uth is built on blockchain and IPFS technologies, the prospects for its integration with other

decentralized technologies are boundless.
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Appendix A

Notations

A.1 Encryption Notations

Enc: encryption algorithm

Dec: decryption algorithm

sk: secret (or private)

pk: public key

CT : cipher text

m: plain-text message

mCT : encrypted message

t message type

f : plain text file

fCT : encrypted file

k: symmetric encryption key

kCT : encrypted encryption k
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A.2 Decentralized Identity Notations

S subject

I issuer

V verifier

V C verifiable credential

V P verifiable presentation

pubDID public decentralized identifier

privDIDi,j private decentralized identifier between peers i and j

DR: data requester

DM : data manager

DO: data owner

DID: decentralized identifier

DDO: decentralized identifier document object

TID: blockchain transaction ID

CID: IPFS Content Identifier
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Appendix B

Glossary

Private Key Infrastructure PKI

Distributed Ledger Technology DLT

Peer-to-Peer P2P

Blockchain-Based Access Control BBAC

Role Based Access Control RBAC

Attributed Based Access Control ABAC

Private Key Generator PKG

ID Based Encryption IBE

Electronic Health Record EHR

Patient Health Record PHR

Self Sovereign Identity SSI

Zero Knowledge Proof ZKP

National Institute of Technology Standard NIST

Advance Encryption Standard AES

Rivest-Shamir-Adleman RSA

Proof of Work POW

Ethereum Virtual Machine EVM

Application Programming Interface API

Single Sign-On SSO

JSON Web Token JWT

Decentralized Identifier DID

DID Document DDO
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Verifiable Credential VC

Verifiable Presentation VP

InterPlanetary File System IPFS

Content Identifier CID

Hierarchical Deterministic HD

Data Manager DM

JavaScript Object Notation JSON

Data Owner DO

Data Request DR

Mortgage Company MC

Credit Report Company CRC

Hospital A HA

Hospital B HB

Proof of Stake POS

Ether ETH

Transactions per second TPS
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Appendix C

Source Code

Figure C.1: Identity.sol smart contract written in Solidity.
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Figure C.2: Authorization.sol smart contract written in Solidity.
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Figure C.3: Code snippet for submitting an authorization message to Ethereum or Firebase.
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Figure C.4: Code snippet to lookup an authorization message submission from Ethereum or Fire-
base.
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Figure C.5: Code snippet to save an authorization message to IPFS or Firebase.
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Figure C.6: Code snippet to retrieve an authorization message from IPFS or Firebase.
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