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Abstract

This dissertation develops a model for the response of the transition points in the density profiles

from atomic (H0) to molecular (H2) hydrogen in a photodissociation region (PDR) due to a hard

X-ray flux (HXR). A model for a steady-state PDR due to the photodissociation of H2 by the

far-ultraviolet (FUV) Lyman-Werner radiation band is presented both analytically and computa-

tionally. A steady state X-ray dissociation region (XDR) from an HXR in the 1 - 100 keV energy

range is also developed both analytically and computationally. An analytic model is then developed

by combining these two different steady state models. The inclusion of the hard X-rays gives rise to

additional ionization in the PDR from secondary electrons which also leads to the generation of an

internal FUV radiation field. Computational results for the density profiles and the response of the

transition point of the PDR due to the HXR flux are given. A simple analytic formula based upon

the separate PDR and XDR is then given which can provide an approximation to the transition

point due to their combination.
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Chapter 1

Introduction

Interstellar gas clouds are regions that are dominated by the existence of molecular hydrogen

(H2) as well as dust grains which are intermixed with the hydrogen. These gas clouds can be

exposed to sources of radiation ranging from the optical, ultraviolet, and through to the X-ray

regime. There are two significant processes that can occur in these clouds that lead to regions

where atomic hydrogen (H0) is dominant over molecular hydrogen and it is these processes that

will be the focus of this dissertation. The aforementioned regions of atomic hydrogen are primarily

caused by the dissociation of molecular hydrogen due to fluxes of far-ultraviolet radiation (FUV)

and/or hard X-ray radiation (HXR). As the radiation fields are attenuated through the cloud, the

amount of molecular hydrogen increases and these regions that are shielded from radiation can

undergo star formation. The transition point where the gas goes from being predominantly atomic

hydrogen to that of molecular hydrogen is of interest here.

The galactic sources of these radiation fields can include bright O and B stars which produce

significant amounts of FUV radiation. As these star-forming regions can contain O stars with

short lifetimes (∼ a few million years) it is possible that there may exist an accretion disk around

a compact object. This would emit a radiation field in the HXR spectrum that would shift the

transition point compared to it not being there. For example an object with a luminosity of

LX ∼ 1040 erg s−1 at a distance of r ∼ 30 ly would have an energy flux of FX ∼ 1 erg cm−2 s−1 at

the cloud face. It is this response to the transition point due to the HXR radiation field that will

be modeled in this dissertation.

Photodissociation regions (PDRs), also known as photon dominated regions, are those char-
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acterized by exposure to far-ultraviolet radiation fields in the 6 - 13.6 eV range. The interaction

of the FUV radiation field that is in the 11.2 - 13.6 eV range with molecular hydrogen proceeds

by absorption into excited electronic states which can then undergo radiative decay into atomic

hydrogen or else into excited rovibrational levels of the ground electronic state.

The attenuation of the radiation by absorption as well as dust opacity leads to a reduction in

the FUV radiation field. From this then, as well as the the formation of H2 from atomic hydrogen in

dust grain catalyzed reactions, there exist atomic-to-molecular hydrogen transition points, namely

where nH0 = 2nH2 .

X-ray dissociation regions (XDRs), also known as X-ray dominated regions, are regions where

the interaction of high energy photons (E & 1 keV) with molecular hydrogen is due to direct pho-

toionization along with subsequent ionization from secondary electrons. These secondary electrons

can also excite H2 leading to the production of LW-band photons capable of further dissociating

molecular hydrogen. Due to the small cross-section for ionization the hard X-ray field (1-100 keV)

has H0-to-H2 transition points that occur at greater column densities than in PDRs.

The difference in nomenclature between photodissociation region and photon dominated region

is due the different modeling of the internal chemistry. The naming of photon dominated regions

was first given by models that include cosmic-ray ionizations [1], whereas photodissociation regions

assume that the dissociation of molecular hydrogen is mainly due to LW-band photons. As the

model of the PDR in this dissertation is based on the latter [2], the term photodissociation region

is used throughout both. A similar rationale for naming conventions is given in the case of X-ray

dissociation regions and X-ray dominated regions. The model used in this dissertation for the XDR

is based on an HXR radiation field [3] , so the term X-ray dissociation region is used here as it is

in the original paper. This varies from the more modern term X-ray dominated region [4].

The photodissociation of molecular hydrogen due to a FUV radiation field mostly occurs due

to the absorption of LW-band photons into bound excited states which then subsequently decay.

One of these decay pathways leads to the direct dissociation of H2 into its constituent hydrogen

atoms in an interaction known as the Solomon process [5].

In the case of an HXR radiation field, direct photoionization of molecular hydrogen leads to a

cascade of additional ionizations due the primary photoelectron. These ions react chemically with

the gas causing further H2 dissociations. The interaction of the secondary electrons with molecular
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hydrogen causes excitation into bound excited states which produce an internal FUV radiation

field. This internal field can then cause further dissociation due to the Solomon process.

The literature in the study of PDRs and XDRs is extensive and only a partial list of such

research will be given here. This includes the modeling of the interstellar radiation field [6, 7, 8],

the effects of molecular hydrogen self-shielding [9, 8, 10, 11, 12, 2], the interaction of FUV radiation

with dust grains [13], the formation of hydrogen on dust grains [14, 15], the modeling of steady

state PDRs [8, 12, 2, 16] and the sources, interactions and modeling of X-ray fields [17, 18, 3, 19].

Review articles discussing PDRs, XDRs and their combinations include [20, 21, 22, 23, 24, 25].

Of interest in this dissertation is the identification of the total integrated energy flux at the

transition point in the HXR range that would lead to a response in the transition points of an

FUV only PDR model. This model is based on the combination of two existing models for PDRs

and XDRs. The flux of hard X-rays is increased until a shift in the transition point of the FUV

only model is shifted to greater column densities. This is done with an HXR attenuation model

that doesn’t have significant attenuation until a total hydrogen column density of NH & 1021 cm−2

is reached, as well as a simplified HXR attenuation model that is being continuously attenuated

across all column densities. An analytic fit is given for the response of the simplified attenuation

function.

This dissertation starts off in Chapter 2 with the theory leading to the steady-state creation-

destruction model of a photodissociation region (PDR). The first steps are discussing details of

the FUV radiation field and its ability to dissociate molecular hydrogen in §§ 2.1.1 - 2.1.2.1. This

includes details on the Draine spectral energy distribution (SED) [7] that is commonly used in

PDR modeling as well as how the Solomon process leads to an efficient dissociation mechanism

for H2 [5]. Appendix A describes methods to convert between various forms of FUV SEDs that

are commonly encountered in the literature. The attenuation of the FUV radiation field due to

extinction from dust grains and the reduction of the field from the effect of self-shielding is given in

§§ 2.1.3 - 2.1.3.3. The formation routes of molecular hydrogen is in §§ 2.1.4 - 2.1.4.2 with emphasis

given to the formation mechanisms via dust grains as that is what this model is based upon.

There are many models of PDR regions that have been developed as well as advanced codes used

for their computation [26]. The steady-state model used for the creation-destruction of molecular

hydrogen in this dissertation is based on those of Sternberg, Bialy, et al.[2, 16] in § 2.2.
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Chapter 3 details the model that was used for the X-ray dissociation (XDR) region due to a hard

X-ray spectrum (HXR). The basis for this model is that developed by Maloney, Hollenbach, and

Tielens [3]. In §§ 3.1.1 - 3.1.2 the details involving the SED for a HXR field are given. This includes

the energy deposition due to the X-rays and the secondary non-thermal electrons that are produced

by the primary photoelectron. Appendix B gives further details on the energy deposition due to

hard X-rays. The interaction of the non-thermal electrons with H2 causes rovibrational excitation

and transitions to LW-band energy levels which can then produce an internal FUV radiation field

is described in § 3.2.1 [27, 28, 29].

The steady-models used in §§ 3.2, 3.4 and, 3.4 all have the same general form as that given

in § 2.2.

The analytic modeling and the computational results of the response of the PDR transition

points to an HXR field is contained in Chapter 4. In § 4.1 the equations for the determination of

the density profiles for the PDR model used are given. As a test for the code, the analytic model

for the density profiles from [16] is used where their attenuation function G was replaced by the

total hydrogen column density dependent function A. The results of these transition points and

their comparison are discussed in §§ 4.1 - 4.2.2.

The model for the response of the PDR to an HXR radiation field is in § 4.3. This creation-

equation combines the transition point of the FUV only PDR with a linear response due to HXR

radiation field with its associated internally generated FUV radiation. The computational results

of the response using the the exact analytic model for the energy deposition rate HX are given in

§ 4.4.1. Given are transition point response curve and an example of density profiles for an increase

in the transition point by one order of magnitude. The computational results of approximation to

the energy deposition is given in § 4.4.2 with the same plots described above. In § 4.5 a simple

analytic model is given that gives the transition point response curve as a function of the transition

point due to a independent PDR model and an HXR model.

The conclusions of this dissertation and possible future work is given in § 5.
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Chapter 2

PDR - Model

2.1 Physical Processes

The basic equation for the creation-destruction of H2 in steady state, isothermal, non-turbulent

conditions with a low ionization fraction (xe . 10−3) for a beamed far-ultraviolet (FUV) radiation

field into an optically thick plane parallel slab is given by

Rd n(H0)n(H) =
1

2
DU fatt,U n(H2) [cm−3 s−1]. (2.1)

The left side of Eq. (2.1) represents the formation rate per unit volume of molecular hydrogen,

H2 cm−3 s−1, and conversely, the right hand side is the destruction rate per unit volume of H2

with the same units. The volumetric formation rate of H2 is dependent upon the formation rate

coefficient Rd cm3 s−1, the atomic hydrogen number density n(H0) cm−3, and the total hydrogen

nuclei number density n(H) cm−3. The factor of 1/2 comes from the reduction in the surface flux

density of a total free-space radiation field when an optically thick semi-infinite slab is inserted and

the impinging field is considered to be beamed. The volumetric destruction rate of H2 due to an

FUV radiation field depends on the free space photodissociation rate DU s−1, the dimensionless

effective depth dependent attenuation of the radiation field fatt,U , and the molecular hydrogen

number density n(H2). The volumetric number densities shall be denoted as n(H0), n(H2), and

n(H) by nH0 , nH2 , and nH respectively. The total hydrogen nuclei number density, (i.e. proton
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number density), is conserved so that

nH ≡ nH0 + 2nH2 . (2.2)

The terms in equation (2.1) will be described in greater detail in §§ (2.1.1) - (2.2) below. A

similar equation will also be given for an X-ray dissociation region in § (3.1) which examines the

atomic-to-molecular (H0-to-H2) transition region due to a hard X-ray spectrum. § (3.1.2) will also

discuss how an increasing ionization fraction affects the molecular hydrogen destruction rate.

2.1.1 Ultraviolet Radiation Field

The interstellar ultraviolet (UV) radiation field is particularly important in the destruction of

molecular hydrogen. The broad UV field is considered to have a wavelength of between 100 Å

and 4000 Å; however, the FUV region of this spectrum has wavelengths, λ that are in the range

of 912 Å < λ < 3000 Å [30]. This region is of interest since photons with wavelengths less than

3000 Å have enough energy to cause ionization [6]. The extreme ultraviolet field (EUV) is in the

100 Å < λ < 912 Å range [30]. These fields exist primarily due to hot O and B stars.

The specific intensity distribution function, Iν is defined mathematically as

Iν =
dEν

dσ dt dν dω
[erg cm−2 s−1 Hz−1 sr−1], (2.3)

where Iν is the frequency dependent specific intensity, θ and φ are the polar and azimuthal angle

respectively that are made with respect to the source of the radiation and the observer, dEν is the

amount of energy per unit frequency crossing the detector, dσ is the unit area at the detector, and

dω is the solid angle subtended by the detector. The specific intensity can also be given in terms

of other quantities such as wavelength or photon number. For example, a frequency dependent

specific intensity can be related to a wavelength dependent one through the differential relation

Iν dν = Iλ dλ.

Assuming that there is no time dependence of the intensity, the specific intensity can be given

in terms of the energy density of the radiation field by defining a characteristic length s = c t, so
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that 1/dt = c/ds and then equation (2.3) becomes

Iν =
c dEν

dV dν dω
[erg cm−2 s−1 Hz−1 sr−1], (2.4)

where dV ≡ dσ ds, and c = 2.998× 1010 cm s−1 is the speed of light.

The interstellar energy density at the wavelengths of 1000 Å, 1400 Å, and 2400 Å was calculated

by Habing with a frequency specific energy density of νuν = 4×10−14 erg cm−3 at 1000 Å [6]. There

have been numerous updates and modifications to these values, a representative table of some of

which can be found in [12]. One such fit for Habing’s values is given by [12]

λuλ,Habing =

(
− 25

6
λ3

3 +
25

2
λ2

3 −
13

3
λ3

)
× 10−14 [erg cm−3], (2.5)

where λ3 ≡ λ/103 Å. The integrated (full 4π) energy density of this UV SED is found by

uλ,Habing =

∫ λ2

λ1

(−4.167× 10−23 λ2 + 12.5× 10−20 λ− 4.333× 10−17) dλ [erg cm−3], (2.6)

where λ1 is generally taken to be the ionization wavelength of atomic hydrogen (912 Å). With this

the energy and photon flux are given respectively by

FλE ,Habing = c

∫ λ2

λ1

uλ,Habing dλ [erg cm−2 s−1], (2.7a)

Fλγ ,Habing =
1

h

∫ λ2

λ1

λuλ,Habing dλ3 [photon cm−2 s−1], (2.7b)

and where c = 2.998×1010 cm s−1, h = 6.626×10−27 g cm2 s−1, and dλ3 has dimensions of 10−8 cm

for equation (2.7b) to be dimensionally correct since. Habing considers the radiation energy density

between 912 and 2400 Å (or equivalently between 13.598 and 5.166 eV respectively). Within these

ranges and using equations (2.5) - (2.7b), the spectrum has a (full 4π) integrated energy density

of 6.21× 10−14 erg cm−3, an integrated energy flux of 1.86× 10−3 erg cm−2 s−1, and an integrated

photon flux of 1.50 × 108 photon cm−2 s−1. This radiation field is often denoted as G0 in the

literature [8].

A radiation field in the far-ultraviolet regime that is commonly used in the study of photodis-

sociation regions is the Draine standard ultraviolet radiation field [7]. This radiation field is an
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analytic fit based on previous theoretical and observational work [6, 15, 31, 32, 33, 34, 35]. It de-

scribes a free-space isotropic far-ultraviolet radiation field between 5 and 13.598 eV (or equivalently

between 2480 and 912 Å respectively).

This can be written in terms of a specific photon intensity distribution as a function of photon

energy by [7]

FE,Draine =
(
1.658×106 (Ee)−2.152×105 (Ee)

2 +6.919×103 (Ee)
3
)

[photon cm−2 s−1 sr−1 eV−1],

(2.8)

where Ee ≡ (E/1eV). The integrated photon and energy flux of this energy distribution over the

relevant energy ranges are given respectively by

FEγ ,Draine =

∫ Ee2

Ee1

∫
Ω

(
1.658× 106 (Ee)− 2.152× 105 (Ee)

2 + 6.919× 103 (Ee)
3
)
dΩ dEe

[photon cm−2 s−1], (2.9a)

FEE ,Draine =

∫ Ee2

Ee1

∫
Ω

(
1.658× 106 (Ee)

2 − 2.152× 105 (Ee)
3 + 6.919× 103 (Ee)

4
)
dΩ dEe

[eV cm−2 s−1], (2.9b)

and where ∫
Ω
dΩ =

∫ 2π

0

∫ π

0
sin θ dθ dφ. (2.10)

The evaluation of this integral gives
∫

Ω dΩ = 4π. Conversion of equation (2.9b) into dimensional

units of erg cm−2 s−1 is given with 1 eV = 1.602×10−12 erg. With this then equation (2.9b) becomes

FEerg,Draine
= 1.602× 10−12 FEE ,Draine [erg cm−2 s−1]. (2.11)

The energy density of the Draine UV spectrum can then be found from equation (2.9b) as

uE,Draine =
1

c
FEerg,Draine

[erg cm−3]. (2.12)

This field has an integrated photon flux of 2.42 × 108 photons cm−2 s−1 over the 5 - 13.6 eV

range. The integrated energy flux of equation (2.8) is 1.932 × 109 eV cm−2 s−1 or equivalently
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3.11 × 10−3 erg cm−2 s−1 over the same energy range. The energy density of this field is 1.04 ×

10−13 erg cm−3 in this same range. There are various forms of equation (2.8) in the literature

[12, 2, 36, 37, 38].

Since equations (2.8) - (2.12) represent the full free-space Draine FUV radiation field, i.e.,

F (0) = 4πF0, where F0 is any particular specific flux intensity distribution that has been already

been integrated over its relevant functional dependency, a semi-infinite slab inserted into the field

will cause a decrease in the surface flux density across the cloud. For a beamed field the angular

integration modifies the angular portion of the free space field to
∫ 2π

0

∫ π/2
0 sin θ dθ dφ = 2π. The

surface flux density of the beamed field is then one half of the free-space field and

FBea(0) =
1

2
F0 [erg cm−2 s−1]. (2.13)

For a semi-infinite slab inserted into an isotropic Draine FUV radiation field, the angular portion

of the surface flux density is reduced to
∫ 2π

0

∫ π/2
0 sin θ cos θ dθ dφ = π. The surface flux density of

the isotropic field is then one quarter of the free-space field and

FIso(0) =
1

4
F0 [erg cm−2 s−1]. (2.14)

These relations also hold for the surface flux densities of the Habing FUV field, equation (2.7a).

Further details on these FUV spectral distributions as well as the distribution given in [2] are found

in Appendix A.

2.1.2 Molecular Hydrogen Destruction

The bond energy of molecular hydrogen, H2, is 4.476 eV, or a wavelength equivalent of 2770 Å.

Dissociation, however, does not occur directly at this energy via photon absorption through the

photodissociation reaction

H2 + γ ⇒ H + H. (2.15)

This radiative dissociation reaction has an extremely small rate coefficient (. 10−23 cm3 s−1) due

to the forbidden transition by the ∆S = 0 selection rule [14, 39]. This is because the hydrogen

molecule is a homonuclear diatom and thus has no dipole moment since the net dipole coordinate
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coincides with the geometrical center of mass of the molecule. Due to this, there are no pure

vibrational electric dipole-allowed transitions which would excite the molecule to the vibrational

dissociation continuum limit (ν ≥ 14). Since this is a forbidden transition there needs to be other

mechanisms which will allow the separation of molecular hydrogen into its constituent atoms.

Moving to the higher end of the UV energy spectrum required for H2 destruction, photons with

an energy of greater than 15.426 eV, or equivalently, wavelengths shortward of 804 Å are capable

of photoionizing the H2 molecule. H2 is photoionized in the reaction

H2 + γ ⇒ H+
2 + e. (2.16)

The dissociation energy of the hydrogen molecular ion, H+
2 , is 2.8 eV, however like the hydrogen

molecule, a greater energy than the binding energy is required for destruction. A minimum energy

of 12.5 eV, or an equivalent wavelength of less than 992 Å from the ground state of H+
2 leads to

the photodissociation reaction [40, 41]

H+
2 + γ ⇒ H+ + H, (2.17)

with the H0 atom being left in the ground state. If the energy for excitation to higher discrete

electronic states of H+
2 is between 19 and 30 eV, or a wavelength equivalent of 413 to 653 Å the

photodissociation reaction

H+
2 + γ ⇒ H+ + H*, (2.18)

can occur leading to a hydrogen atom in an excited state which can then decay or be ionized. For

photon energies greater than 30 eV, or equivalently wavelengths less than 413 Å excitation into the

continuum state can occur giving the dissociative ionization reaction

H+
2 + γ ⇒ 2 H+ + e. (2.19)

The destruction of H+
2 also occurs through a gas-phase chemistry dissociative recombination

reaction

H+
2 + e⇒ H+ + H + e. (2.20)
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Direct photodissociation of H2 at energies greater than the Lyman (photoionization) limit occurs

at an energy of 14.671 eV through the absorption of a λ < 850 Å photon leading to [5]

H2 + γ ⇒ H + H*, (2.21)

with the excited H0 atom being in the 2s or 2p state.

The destruction of H2 due to photons at these energies or greater leads to a layer of atomic

hydrogen that has built up in front of the molecular hydrogen layer. This layer of atomic hydrogen

is further stratified into a front of ionized hydrogen that is facing the radiation field and a thin

boundary layer of H+ and H0 where the transition from mostly ionized hydrogen to atomic hydrogen

occurs. Beyond this transition point the photodissociation region proper is entered. The hydrogen

in this region is neutral and consists of a layer of atomic hydrogen with a transition region where

the destruction of molecular hydrogen diminishes and the gas becomes predominantly molecular.

With the ionization energy of H0 being 13.598 eV, then photons with wavelengths shortward of

912 Å are attenuated in the process of ionizing H0 [42, 43]. Thus, due to destruction of H2 with

photons shortward of 912 Å and the ionization of H0 in the reaction

H + γ ⇒ H+ + e, (2.22)

the photodissociation region contains photons with wavelengths longward of 912 Å. Since pho-

tons with λ < 850 Å are absorbed in the ionization of atomic hydrogen, the pathway to direct

photodissociation as in equation (2.21) is absent.

If photons have energies greater than the H2 bond dissociation energy of 4.476 eV, there is a

pathway to direct photodissociation; however the reaction leading to X1Σ+
g → b3Σ+

u is a singlet-

triplet transition which changes the spin multiplicity and is a forbidden transition [5]. There are

also forbidden transitions to the triplet states a3Σ+
g and c3Πu from the X1Σ+

g state as well as

allowed transitions from the repulsive b3Σ+
u to the a3Σ+

g and c3Πu states. The former state has

allowed transitions to the repulsive b3Σ+
u state leading to dissociation, while the latter has allowed

transitions to the b3Σ+
u via the a3Σ+

g state for vibrational levels ν ≥ 1. The c3Πu (ν = 0) state is

metastable and can decay to the repulsive b3Σ+
u via a magnetic dipole transition [5, 44]. However,
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due to the multipole nature of these transitions, these reactions do not play a significant role in the

dissociation of H2.

The convention for the prefix of the molecular state of hydrogen is that the ground singlet is

state is denoted by X. Excited electronic states of the same multiplicity as the ground electronic

state have prefixes of A, B, C, etc. in terms of increasing energy. For states with multiplicity that

is different from the ground electronic state, the prefixes used in terms of increasing energy are a,

b, c, etc.

2.1.2.1 Solomon Process

The favored reactions for the dissociation of H2 at energies less than the Lyman (photoionization)

limit of H0 occur through what is called the Solomon process (P.M. Solomon, private communica-

tion, 1965, in [5] pg.226). There are allowed electric dipole transitions from the ground state of

H2 to two excited states at minimum energies of 11.2 and 12.3 eV. These excited states are the

B1Σ+
u and C1Πu respectively as there is no bound A1Σ state. The former is known as the Lyman

band transition and the latter as the Werner band transition after whom had first observed their

respective band systems [45, 46, 47].

In cold molecular clouds, T ∼ 100 K, essentially all of the hydrogen molecules are in the ground

vibrational state. Rotational levels within the ground vibrational level are typically in the first

or second rotational energy level. The photon energy spectrum related to these transitions are

infrared for vibrational transitions and microwave for rotational transitions.

The electric dipole transition rules for transitions between the ground and excited electronic

states include the change in projection of the total angular momentum along the internuclear axis,

Λ = 0,±1. This leads to the Λ = 0, Σ state; and the Λ = 1, Π state. These rules allow for

Σ → Σ and Σ → Π transitions. There is also the change in spin multiplicity of ∆S = 0. This

rule leads to the excited states having singlet spin multiplicity since the ground state has this spin

multiplicity, i.e. 1Σ → 1Σ and 1Σ → 1Π transitions. There are also symmetry rules for dipole

transitions. One is for the parity of the molecular wavefunction upon reflection of the electronic

coordinates about an internuclear plane containing the nuclei. For Σ states, there is no net orbital

angular momentum and so also a lack of degeneracy of the wavefunction upon reflection. Thus the

molecule is either in the parity unchanged Σ+, or parity changed Σ− state and the dipole selection
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rules due to non-degeneracy lead to Σ+ → Σ+ and Σ− → Σ−. For states with Λ ≥ 1, there is a

net angular momentum projection onto the internuclear axis and so there exists a degeneracy of

states upon reflection of the electronic coordinates. This is annotated by Π± as an example for the

Λ = 1 state. The dipole transition rules for the reflection operator are then given by Σ+ → Π±

and Σ− → Π±. Since the ground state of H2 is Σ+ the former rule applies. Since all states with

Λ ≥ 1 have this degeneracy, the convention is to suppress the ± notation so that, e.g. Π± → Π.

As H2 is homonuclear, there also is a symmetry regarding an inversion of electronic coordinates,

(x, y, z) → (−x,−y,−z), through the geometric center of the molecule. This operation on the

electronic wavefunction either changes the parity (ungerade, u) or leaves it unchanged (gerade, g).

This operator is often denoted by P̂ . The dipole selection rule for this operation is g → u or u →

g. As the ground state of H2 is Σu the latter rule applies.

The electric dipole selection rules for rotational transitions determine the rotational state of

the molecule upon absorption of a Lyman-Werner band photon. The particular selection rules

for a given molecule depend on the type of “coupling scheme” that is used. In the case of H2,

Hund’s coupling case (b) is used whereby the orbital angular momentum of the electrons, L, has

a well defined projection upon the internuclear axis, Λ. This is then coupled to the rotational

angular momentum of the nuclei, R. The addition of these gives the spin excluded total angular

momentum of the molecule such that N = R + Λ. The spin angular momentum of the electrons,

S is then coupled to this vector to give the total angular momentum of the molecule, J = N + S.

The rotational transition selection rule for the total angular momentum is given by ∆J = 0,±1

provided 0 = 0. The spin excluded total angular momentum selection rule is ∆N = 0,±1 where

∆N 6= 0 for Σ = Σ. There are also parity selection rules regarding the nuclear spin wavefunctions.

If the total molecular wavefunction excluding nuclear spin is symmetric and is combined with an

anti-symmetric nuclear spin wavefunction, then the rovibrational levels are symmetric regarding

P̂ and are denoted s. If the symmetry/anti-symmetry of the previous wavefunctions are reversed,

then the rovibrational levels are anti-symmetric regarding P̂ and are denoted a. The selection rules

for nuclear symmetry are s ↔ s, a ↔ a, s = a. There are also rotational states due to the spin

of the nuclei. When they are aligned anti-parallel the net nuclear spin, I is even and is called

para hydrogen. When they are aligned in parallel, I is odd and is called ortho hydrogen. In cold

molecular clouds, the ground state of H2 is predominantly in the J = 0 and the J = 1 states
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corresponding to I = 0 and I = 1 states. The degeneracy of these states in equilibrium due to the

Boltzmann distribution is in the ratio of 1:3 for para to ortho [48]. Electric-quadrupole transitions

determine the rotational transitions and so have the transition rules ∆J = 0,±2.

For transitions between vibrational levels, there aren’t selection rules regarding the vibrational

states. These transitions are governed by the Franck-Condon principle which gives greater prob-

ability for transitions to occur that minimize the change in kinetic energy of the molecule. Thus

the square of the transition dipole moment between different electronic states and the square of

the overlap integral between vibrational wavefunctions in these electronic states will have a greater

likelihood of occurring if internuclear separation is minimized during the transition. As discussed

earlier, at cold molecular cloud temperatures T ∼ 100 K, the ground X 1Σ+
g state is typically in

the ν = 0 vibrational level and J = 0 or 1. The transition strength of a particular line absorption

is given by

aν = a f φν [cm2 s−1 Hz−1] where a =
π e2

me c
[cm2 s−1]. (2.23)

Here a is the total atomic absorption coefficient, f is the oscillator strength related to the induced

Einstein absorption coefficient B lu (and hence spontaneous Einstein emission coefficient and the

induced Einstein emission coefficient, Aul and Bul respectively), and φν is the line profile. Details

of these rules can be found in various sources on molecular physics [49, 50, 51]. Further discussion

of equation (2.23) will be given in § 2.1.3.2.

In the Lyman band transition, photons shortward of 1108 Å can be absorbed into the first

excited singlet electronic state through

H2 (X1Σ+
g (ν, J)) + γ ⇒ H2 (B1Σ+

u (ν ′, J ′)). (2.24)

In the Werner band transition, photons shortward of 1008 Å can be absorbed into the second

excited singlet electronic state through

H2 (X1Σ+
g (ν, J) + γ ⇒ H2 (C1Π±u (ν ′, J ′)). (2.25)

For absorptions in the Lyman-Werner band, there are a few different decay mechanisms that

can occur. The least likely, but the one that is most significant for the creation of atomic hydrogen
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is a decay into the vibrational continuum of H2 at 4.476 eV. This leads to the dissociation of the

hydrogen molecule. In this process, there is a fluorescent decay from the B 1Σ+
u or C 1Πu into

an unbound (ν ≥ 14) vibrational level of the X 1Σ+
g state given rise respectively to the radiative

dissociation reaction

H2 (B1Σ+
u (ν ′, J ′))⇒ 2 H + γ′, (2.26a)

or

H2 (C1Πu (ν ′, J ′))⇒ 2 H + γ′, (2.26b)

where γ′ is of longer wavelength than the respective γ for absorption. Dissociation from the Lyman

band has a greater probability than the Werner band and various researchers have determined

these probabilities [43, 48, 52, 53, 54, 55, 56, 57, 58]. A mean dissociation probability for H2

for a transition from the LW band for a Draine FUV radiation spectrum has been calculated as

〈fd〉 = 0.12 [2].

For decays that don’t lead to dissociation, then the molecule de-excites through a radiative

transition to one of the excited rovibrational states of the ground electronic state of H2 through

H2 (B1Σ+
u (ν ′, J ′))⇒ H2 (X1Σ+

g (ν ′′, J ′′)) + γ′′, (2.27a)

or

H2 (C1Π+
u (ν ′, J ′))⇒ H2 (X1Σ+

g (ν ′′, J ′′)) + γ′′. (2.27b)

Molecules that are in excited rovibrational levels of the ground electronic state can undergo electric

quadrupole transitions in an infrared cascade [12, 59, 60, 61, 62, 11, 1, 63]. For UV radiation fields

of sufficient intensity, then molecules in an excited vibrational level of the ground electronic state

(2 ≤ ν ≤ 13) have the possibility of being directly photodissociated (ν ≥ 3), of being re-pumped

into an excited B1Σ+
u or C1Π+

u state, or of being directly photoionized [43, 64, 61].

2.1.3 Attenuation of Ultraviolet Radiation

The attenuation of FUV radiation decreases the destruction rate of H2 as it is absorbed or scattered

by dust particles and also by the removal of preferential photons with the Solomon process of
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dissociating H2. With this then the attenuation term in equation (2.1) is

fatt,U (NH, NH2) = fd,U (NH) fs,U (NH2) (2.28)

where fd,U (NH) is the total hydrogen column density dependent dust attenuation term, fs,U (NH2)

is the molecular hydrogen column density dependent self-shielding term, and NH ≡ NH0 + 2NH2

is the total hydrogen column density. To find the column density, one integrates along the line of

sight which gives a projected number density contained in a cylinder of unit area. For the total

hydrogen column density this is given by

NH ≡
∫
nH(s′) ds′ [cm−2] (2.29)

where for a planar slab intervening between the object and the detector along the line of sight

that has a fixed total hydrogen number density, the limits of integration are
∫ s′=s
s′=0 and the total

hydrogen column density simply becomes NH = nH s [cm−2]. Aspects of the physics discussed in

this section can be found in [65, 66, 67].

2.1.3.1 Extinction due to Interstellar Dust

Interstellar dust plays an important role in the extinction of electromagnetic radiation in intra-

galactic regions especially in the visible and ultraviolet wavelength range. This section looks at

extinction due to the absorption and scattering from interstellar dust particles. The composition of

the dust ranges from graphite, amorphous carbon and silicates, to simple molecules such as water

and ammonia and to more complex structures such as polycyclic aromatic hydrocarbons (PAHs).

The absorption and scattering of FUV radiation which reduces the dissociation rate of H2 needs to

be accounted for.

The measurement of light reaching a detector is given in units of magnitude, which is defined

as a difference of 5 magnitudes is a ratio of 100 in intensity. This can be represented as

I0

I
= 100(m−m0)/5, (2.30)

where I0 is the unattenuated intensity of the source, m0 is the reference magnitude of the source,
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I is the intensity received by the detector, m is the observed magnitude of the source, I0 > I, and

m > m0, or recast in the form

m−m0 = 2.5 log

(
I0

I

)
[mag]. (2.31)

The intensity of the radiation now needs to be determined at some location in a cloud containing

dust and the following paragraph is a brief description of how the radiation is attenuated. The

specific intensity of electromagnetic radiation as it traverses space will undergo changes in the

total intensity as it is absorbed and/or emitted by the medium in question. For emission from the

medium, the change in specific intensity increases and its differential is dIν = jν ds where jν is the

emission coefficient with units of erg cm−3 s−1 Å
−1

sr−1 and s is the distance in cm along the ray

path. The absorption of the radiation leads to a decrease in the specific intensity which is given

by dIν = −κν Iν ds where κν is the absorption coefficient with units cm−1. The net change in

the specific intensity after the radiation has traversed the medium and undergone absorption and

emission is

dIν = jν ds− κν Iν ds [erg cm−2 s−1 Hz−1 sr−1]. (2.32)

Dividing equation (2.32) by κν ds, defining Sν ≡ jν/κν as a term called the source term and which

has the same units as the specific intensity, and defining dτν ≡ κν ds where τν is dimensionless and

is called the optical depth (or opacity). From this then equation (2.32) becomes what is called the

equation of transfer and is given by

dIν
dτν

= Sν − Iν [erg cm−2 s−1 Hz−1 sr−1]. (2.33)

Assuming that the medium only absorbs and does not emit radiation (Sν = 0), then equation (2.33)

simply becomes

dIν
dτν

= −Iν [erg cm−2 s−1 Hz−1 sr−1]. (2.34)

To find then the specific intensity of the radiation at some optical depth into the medium one

integrates equation (2.34) from the surface of the cloud, (where the optical depth is zero) to a
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specific optical depth as ∫ I′ν=Iν,τ

I′ν=Iν,0

dI ′ν
I ′ν

= −
∫ τ ′=τν

τ ′=0
dτ ′ν , (2.35)

the solution of which finally gives the specific intensity into the cloud as

Iν,τ = Iν,0 e
−τν [erg cm−2 s−1 Hz−1 sr−1]. (2.36)

With equation (2.36) then the dust attenuation term in equation (2.28) becomes

fd,U (NH) = e−τd,U , (2.37)

where

τd,U ≡ NH σd,U , (2.38)

with NH being the total hydrogen column density, σd,U the effective cross section for dust attenu-

ation by FUV radiation, and τd,U is the optical depth due to interstellar dust grains.

Extinction of light (e.g., electromagnetic radiation from the FUV to the FIR), is commonly

measured using the UBV (Ultraviolet, Blue, and Visual) photometric system which measures the

color excess, or the amount of reddening of the observed light as shorter wavelength light is prefer-

entially attenuated by dust. This color excess is represented by E(B − V ) which is the difference

between observed and intrinsic values of the color index [68]. The extinction at a given wavelength

of light increases the apparent magnitude of an observed object. The difference in magnitudes can

be related to the extinction in magnitudes, Aλ, as

mλ −m0,λ ≡ 2.5 log

(
I0,λ

Iλ

)
= Aλ [mag]. (2.39)

For the extinction at a given wavelength Aλ, a relation can be made with the column density of

hydrogen. With the use of equations (2.36) - (2.39) the extinction in magnitudes becomes

Aλ = 1.086σd,λNH [mag]. (2.40)

where σd,λ is the effective attenuation cross section at wavelength λ.
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The ratio of the total extinction in the visual band to the color excess in the same band is

denoted by RV ≡ AV /(AB − AV ) ≡ AV /E(B − V ), with B being measured at 4405 Å and V at

5470 Å [65]. The average extinction value is taken to be RV ≈ 3.1, based on sightlines through the

Milky Way galaxy for diffuse gas.

The ratio of the total hydrogen column density to the color excess in these diffuse Milky Way

regions was found to be [69]

NH

E(B − V )
= 5.8× 1021 [mag−1 cm−2]. (2.41)

As seen in the previous paragraph, 1/E(B − V ) = RV /AV , then equation (2.41) becomes,

RVNH

AV
= 5.8× 1021 [mag−1 cm−2], (2.42)

or for RV = 3.1

AV
NH

= 5.35× 10−22 [mag cm2]. (2.43)

The extinction of FUV radiation due to dust needs to take into account both the scattering of

the radiation off of the dust grains as well as its absorption by the grains. The total extinction

for a given wavelength can be given in terms of an effective cross section taking into account the

aforementioned scattering and absorption. This can be denoted by

σex,λ = σsc,λ + σab,λ [cm2]. (2.44)

The albedo represents the reflectivity of the dust particle and is given as the ratio of the scattering

cross section to the total extinction cross section with

wλ =
σsc,λ

σex,λ
, (2.45)

with σex,λ being given by equation (2.44). The absorption cross section is then found from equa-

tions (2.44) and (2.45) giving

σab,λ = (1− wλ)σex,λ [cm2]. (2.46)
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For the radiation that is scattered from the dust, there is some mean value that the unpolarized

light will take, its value depending on the wavelength of the radiation relative to the grain size and

the physical nature of the grain (e.g., the optical properties of the dust, such as graphites (metals)

or silicates (dielectrics) which determine the optical constants: the refractive and absorption in-

dexes; as well as the geometric structure of the grain (spherical or non-spherical). Taking a random

orientation of grains then, unpolarized radiation has only a polar component regarding the pref-

erential scattering direction. This mean value that the scattered radiation takes is the scattering

asymmetry factor and is generally denoted by the mean of the cosine of the scattered polar angle

as

gλ ≡ 〈cos θ〉λ =
2π

σsc,λ

∫ π

0
cos θ

dσsc,λ

dΩ
sin θ dθ, (2.47)

where dσsc,λ/dΩ is the differential scattering cross section. At an extinction ratio of RV = 3.1 and

an FUV wavelength of 1000 Å ,the grain albedo is w1000 = 0.273, g1000 = 0.649 and σex,tot,1000 =

2.11 × 10−21 cm2 [13]. For a total extinction cross section with scattering in only the forward

direction, then

σex,for,λ = σex,tot,λ (1 + wλ(〈cos θ〉λ − 1)) [cm2], (2.48)

from equations (2.44) - (2.47). With the values given above, σex,for,1000 = 1.91× 10−21 cm2 which

is the same as the rounded values of σex,for,1000 = 1.9 × 10−21 cm2 in [2, 16] and σex,for,1000 =

2×10−21 cm2 in [12]. From the save grain opacity command in Cloudy 17.01, a range of values

for σex,for,LW can be calculated across the Lyman-Werner photon band [70]. These cross sections

range from σex,for,1110 = 1.60 × 10−21 cm2 to σex,for,912 = 2.02 × 10−21 cm2 across the LW band

with a value of σex,for,1000 = 1.87 × 10−21 cm2 at 1000 Å, where g ranges from g1110 = 0.570 to

g912 = 0.559 with a value of g1000 = 0.546 at 1000 Å and σex,for,λ = σsc,λ 〈cos θ〉λ + σab,λ was used.

The wavelength specific extinction cross section is taken to be σex,for,1000 = 1.91× 10−21 cm2 as is

used in [12, 2, 16] and which is consistent with [70] across the entire LW band.

Based on the values given above, the assumption is made that the metallicity affects the dust

to gas ratio in a linear relation so that [2, 16]

σd,U = 1.91× 10−21 Z [cm2], (2.49)
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where σex,for,1000 is denoted as σd,U and Z is the metallicity relative to solar values, Z�. Normalizing

equation (2.49) as a standard Galactic value gives [16]

σ̃d ≡
σd,U

1.91× 10−21 cm2
. (2.50)

2.1.3.2 Line Profiles

The physical process of photodissociation removes photons that would be capable of photodissoci-

ating other additional H2 molecules. The removal of these photons is called self-shielding and it’s

net effect is to reduce the flux of FUV that would be available for the destruction of H2 molecules.

This is represented in the second term of equation (2.28), fs,U (NH2), and a brief description of how

this process attenuates the FUV radiation field follows in § 2.1.3.3. This section describes some of

the underlying physics of line absorption cross sections and equivalent width.

The attenuation of radiation due to absorption by molecular hydrogen has the same form as its

attenuation due to dust, i.e. equation (2.36). As radiation is absorbed by a particular rovibrational

line, it reduces the flux of radiation at the specific frequency that makes up that transition. This

equation is given by

Iν = Ic e
−τν [erg cm−2 s−1 Hz−1 sr−1], (2.51)

where Iν is the frequency dependent specific intensity of radiation that is detected, Ic is the intensity

of continuum radiation across all wavelengths received by the detector, and τν is the opacity due

to absorption of the radiation at the rovibrational transition frequency, ν. Equation (2.51) is

often given in terms of the line and continuum fluxes that are observed and it becomes Fν =

Fc e
−τν erg cm−2 s−1. In either the intensity or the flux case, the optical depth, τν , varies from the

opacity due to dust. Here, it is given by

τν ≡ aν NH, (2.52)

or in an expanded form as

τν ≡ a f φν NH, (2.53)

where as mentioned in equation (2.23), aν = a f φν cm2 s−1 Hz−1 and a = π e2/me c cm2 s−1.
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The aν term is an absorption cross section for a specific rovibrational transition frequency. This

cross section represents the line strength of the transition and the three terms that make up the

absorption cross section are discussed briefly below.

The oscillator strength, f , is a dimensionless measure of the intrinsic strength of the transition.

Each transition has a different value for the oscillator strength, which can be given in terms of the

Einstein induced transition coefficient, B. For a transition from a lower energy level i, to a higher

energy level j, the absorption oscillator strength is given by

fij =
πe2

mec

hνij
4π

Bij , (2.54)

where the total atomic absorption coefficient is a = πe2/mec cm2 s−1, the energy difference between

the levels i and j is Ej − Ei is represented by the photon with the same energy as hνij , and the

Einstein induced absorption coefficient, Bij [s g−1].

The φν term is the line profile function, or also called the line broadening function, and has

units of Hz−1, or equivalently s. This profile represents the shape of the absorption curve about

a given frequency. If one assumes that there is no broadening to the function at all, then the line

function would be given by

φν = δ(ν − νij) [Hz−1], (2.55)

such that φν = 0 for ν 6= νij and
∫∞

0 φν dν = 1 (normalization). This is an idealization of the profile

function and there are effects that cause the line to broaden out so that absorptions away from the

natural oscillation frequency of the molecule can occur. The main causes of line broadening that

are considered here are natural broadening and doppler broadening.

The theoretical development of line formation was based on a classical model of a driven un-

derdamped harmonic oscillator. The natural frequency of the system is given by the transition

frequency and the radiative losses of the electron due to this oscillation is the damping portion of

the differential equation that models the motion. This differential equation is

mez̈ +meγż +meω
2
0z = eEeiωt [dyne], (2.56)

where the second term is the damping force, the third term is the restoring force, the fourth term
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is the driving force, me is the mass of the electron, e is the fundamental unit of charge, and E

is the magnitude of the incident electric field. The damping force term represents the radiative

loss of energy from the accelerating electron due to its oscillatory motion. Based on classical

electromagnetic arguments, the damping constant can be shown to be

γ =
8π

3

πe2

mec

ν2
0

c2
[Hz]. (2.57)

The restoring force term is the response to the resonance that occurs when a spring is acted upon

about its natural frequency. This is an analog of the absorption of radiation by the molecule at the

transition frequency, where the angular frequency ω0 = 2πν0, is the natural angular frequency of

the oscillator. The driving force term is the interaction of the electric field on the charged oscillator.

The sinusoidal exponential term contains the angular frequency of the incoming electromagnetic

wave, ω. Thus this model is representative of an oscillating electric field of angular frequency ω

interacting with a damped harmonic oscillator of natural angular frequency ω0.

Using classical electromagnetic theory, it can be shown that if a solution of the form z = z0e
iωt

is assumed for equation (2.56), then

aφν =

(
πe2

mec

)
γ/(4π2)

(ν − ν0)2 + (γ/4π)2
[cm2 s−1 Hz−1], (2.58)

where φν = γ/(4π2)
(ν−ν0)2+(γ/4π)2

Hz−1. This function is called a Lorentzian profile and has a peak where

ν = ν0, centered about ν0. Since this is a classical treatment, a modification needs to be made so

that there is a quantum mechanical analog to equation (2.58). For an electron that is in an excited

state, the lifetime before decay occurs is finite, thus there is an uncertainty in the width of the

energy levels between states. Heisenberg’s uncertainty principle gives this relation as

∆E ≈ ~
τj

[erg]. (2.59)

where τj is the lifetime in level j. Due to this, the classical damping constant is given in terms of
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the Einstein spontaneous emission coefficient, Aji, and,

γ → Γij ≡ Γji =
∑
k<i

Aik +
∑
k<j

Ajk [Hz]. (2.60)

The quantum mechanical modification to natural broadening then modifies the Lorentz profile

so that the Lorentz profile of the classical harmonic oscillator is then modified to its quantum

mechanical analog as

φν,Lor =
Γ/(4π2)

(ν − ν0)2 + (Γ/4π)2
[Hz−1], (2.61)

where the normalization condition
∫∞

0 φν,Lor dν = 1 has been imposed.

Further broadening of the absorption line profile occurs due to the random thermal motion

of the molecules as well as the bulk motion of the gas. Generally for most interstellar clouds,

thermal motion dominates the broadening features. The broadening of absorption lines is caused

by the Doppler shift of the absorption frequency due to line-of-sight motion of the molecules. The

frequency shift that occurs due to the Doppler shift is given by the non-relativistic Doppler formula

ν − ν0

ν0
=
vr
c
, (2.62)

where ν is the frequency of absorption in the observers frame of rest frame, ν0 is the frequency of

absorption in the molecular rest frame, vr is the radial velocity of the molecule with respect to the

observer, and c is the speed of light.

Assuming thermal motion only and ignoring the turbulent motion of the cloud, then the most

probable speed in the radial direction is

b =

√
2kT

m
[cm s−1], (2.63)

where k is Boltzmann’s constant, T is the kinetic temperature of the gas, and m is the mass of the

molecule. For molecules with a velocity given by equation (2.63), a Maxwellian distribution gives

a range of radial velocities between vr and vr + dvr as

fvr dvr =
1√
π

e−(v2r/b
2)

b
dvr. (2.64)
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If turbulent motion of the gas is considered, then this contributes an additional velocity component

to the Doppler parameter. The Doppler parameter, equation (2.63) is modified to

u =
√
u2

th + u2
tu [cm s−1], (2.65)

where uth is the thermal velocity given by equation (2.63) and utu is the turbulent velocity of the

gas. For a Gaussian curve, which describes the Doppler parameter, then b ≡
√

2σ where σ is the

standard deviation. A quantity called the Doppler width can be defined such that ∆νD = ν0 (b/c)

s−1, from which it can be shown that vr/b = ∆ν/∆νD. Then with consideration that a fraction of

the intensity that is absorbed over a narrow strip dν vs. dνD over all of the absorption lines, gives

a Gaussian, or Doppler profile:

φν,Dop =
1√
π

e−(∆ν2/∆ν2D)

∆νD
[Hz−1], (2.66)

where the normalization condition
∫ ∆ν+∞

∆ν=−∞ φν,Dop dν = 1 has been imposed.

Since there are two line profile functions, given by φν,Lor and φν,Dop, the natural (damping)

broadening function (Lorenztian), and the Doppler broadening function (Gaussian) respectively,

they need to be combined to get a single profile function. This is a convolution of the two aforemen-

tioned functions, which is called Voigt function. Performing this convolution, gives the absorption

profile cross section

aν,Voi =

(
a f√
π∆νD

)(
w

π

) ∫ +∞

−∞

e−y
2

(u− y)2 + w2
dy [cm2], (2.67)

where u ≡ (ν − ν0)/∆νD, w ≡ Γ/(4π∆νD), and y ≡ ∆ν/∆νD. The convolution of the Lorentz

and Doppler profiles is given by

H(w, u) =

(
w

π

) ∫ +∞

−∞

e−y
2

(u− y)2 + w2
dy (2.68)

where H(w, u) is the Voigt profile.

The Voigt profile is dominated about the line center, ν ' ν0, by the Doppler portion of the

convolution function, and is known as the Doppler core. As larger frequency shifts are considered
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away from the line center, the Gaussian (Doppler) portion dies off faster than the Lorentzian

(natural) component and the absorptions become more significant in the line wings.

The total strength of a given absorption line is given by the amount of flux that is removed

about the center of the line versus the flux from the radiation field. In practice the shape of the line

profile may not be resolvable but the amount of absorbed flux can be determined. The frequency

equivalent width is a method for converting the amount of absorbed flux from a line profile shape

to a rectangle with the same area. Mathematically this is given by

Wν ≡
∫ ∞

0

(
1− Fν

Fc

)
dν [Hz], (2.69)

where Fν is the flux at the line frequency ν, Fc is the flux of the continuum. The integrand is called

the line depth and is defined as Aν ≡ 1−Fν/Fc. The continuum flux can be considered as a constant

about the narrow frequency range of a line. Equation (2.69) is also given in wavelength equivalent

widths, velocity equivalent widths and as normalized equivalent widths. From equations (2.51),

(2.53), and (2.69) the equivalent width can be given in terms of the optical depth as

Wν =

∫ ∞
0

(
1− e−τν

)
dν [Hz]. (2.70)

For the optically thin case, τν < 1, the equivalent width can be approximated by

Wν ≈
(
πe2

mec

)
fij Ni

ν
[Hz], (2.71)

where fij is the oscillator strength between levels i and j corresponding to the absorption frequency

ν. Denoting the optical depth at line-center as

τ0 '
a√
π

fij Ni

b ν
, (2.72)

where a = πe2/mec. Equation (2.71) can then be written to first order as Wν ≈
√
π (b/c) τ0. From

equation (2.71) it can be seen that the equivalent width is directly proportional to the column

density as Wν ∝ Ni. This is called the linear portion of the curve of growth. As the column density

increases, the absorption of photons at the line center becomes saturated and Doppler broadening
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becomes the dominant part of the line profile. The equivalent width in this optically thick (τ0 & 10)

region is approximated as

Wν ≈
2 b

c

√
ln (τ0/ln 2) [Hz]. (2.73)

This is called the saturated (or flat) portion of the curve of growth as it is proportional to
√

lnNi.

As τ0 increases further, the Doppler core is completely saturated and the ”damping wings” of the

Lorentz profile are the only optically thin regions. In this region it is assumed that only the Lorentz

profile determines the line profile and then the equivalent width becomes

Wν =

√
b

c

τ0√
π

Γij
ν

[Hz]. (2.74)

This is called the damped (or square-root) portion of the curve of growth as the equivalent width

is proportional to
√
Ni.

2.1.3.3 Self-Shielding of Molecular Hydrogen

The effects of the processes discussed in § 2.1.2 and 2.1.3.2 diminishes the FUV radiation field needed

to dissociate H2, as the radiation is absorbed in the transition lines. This decreases the radiation

that is available to photoexcite H2 into the Lyman-Werner bands necessary for photodissociation.

Since the line absorption strength is a determinant of the equivalent width for that line, then the

relative attenuation that occurs (relative to there being no attentuation) as the FUV radiation

traverses the cloud is proportional to the derivative of the equivalent width with respect to the

attenuating column density. This can be written as [9, 10]

fs(NH2 , ν) =

(
πe2

mec
fij

)−1 dWν,ij

dNH2 ,i
, (2.75)

where Wν,ij is the frequency dependent equivalent width given by equation (2.69) andNH2 ,i is the

column density of molecular hydrogen in the initial rovibrational level i. From equation (2.69) it

can be seen that

fs(NH2 , ν) < 1 (2.76)
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At low column densities the line absorption is optically thin and if there is assumed to be no

coincidental overlap between absorption lines then equation (2.75) is a good approximation to self-

shielding [12]. As column densities increase and absorptions start to occur out in the Lorentzian

damping wings, overlap between nearby lines may occur and the self-shielding function needs to be

modified from the form of equation (2.75). A more accurate equation for the self-shielding function

is given by [12]

fs,U (NH2) =
0.965

(1 + x/b5)2
+

0.035

(1 + x)0.5
e(−8.5×10−4(1+x)0.5), (2.77)

where x ≡ NH2/(5 × 1014 cm−2) and b5 ≡ b/(105 cm s−1) where b is the Doppler parameter,

equation (2.65).
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Figure 2.1: The self-shielding function given by equation (2.77)
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2.1.4 Molecular Hydrogen Formation

The formation of molecular hydrogen occurs through two main pathways. The first discussed here

is the formation of H2 though mechanisms in the gas-phase chemistry. The second is its formation

on dust grains, a process known as grain-catalyzed H2 formation.

2.1.4.1 Formation in the Gas Phase

As was discussed in § 2.1.2, the direct formation of H2 via radiative association

H + H⇒ H2 + γ (2.78)

has an extremely slow reaction rate (. 10−23 cm3 s−1) due to the forbidden transition by the

∆S = 0 selection rule [14, 39]. The three-body reaction

H + H + H⇒ H2 + H, (2.79)

with the H atom carrying away the energy of formation as kinetic energy is another possible

mechanism to create H2 however this mechanism has a negligible rate to occur in typical molecular

cloud densities. Another mechanism is the two step reaction involving the H+ ion (proton). The

first is by radiative association

H + H+ ⇒ H+
2 + γ, (2.80a)

followed by charge transfer

H+
2 + H⇒ H2 + H+, (2.80b)

however the former reaction has a rate coefficient of k ≈ 7 × 10−20 cm3 s−1 and so is also an

insignificant route of H2 formation [71, 72].

In gas-phase chemistry with low metallicity, the dominant pathway to the creation of H2 is by

the two step reaction involving the H− ion. The first is by radiative attachment

H + e− ⇒ H− + γ, (2.81a)
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followed by associative detachment

H− + H⇒ H2 + e−. (2.81b)

The rate of formation of H2 via this channel in a low ionization environment can be given by [73]

RH−→H2
= 8× 10−19 xe,−3 T

0.88
3 [cm3 s−1], (2.82)

where xe ≡ ne/(10−3 nH) is the normalized ionization fraction and T3 ≡ T/(1000 K). In clouds

with a temperature of T ∼ 100 K this gives a formation rate constant RH−→H2
∼ 10−19 cm3 s−1.

2.1.4.2 Formation on Dust Grains

For the formation of molecular hydrogen to occur at faster rates, a different mechanism than gas-

phase chemistry is needed. The idea of forming H2 on the surface of dust grains was put forward as

an alternative mechanism [14, 74]. Further elaboration on the rates of grain-catalyzed H2 formation,

including theoretical, numerical, and experimental methods has been discussed by various authors,

some of which include [15, 34, 75, 76, 77, 78, 79, 80, 81, 82, 83] with a summary of these topics

given in [84].

Formation of H2 on the surface of dust grains occurs when an H0 atom strikes the surface of

a dust grain and sticks to its surface. A second hydrogen atom then approaches the adsorbed H0

atom and in doing so forms an H2 molecule which leaves the surface of the dust grain. There are

two types of mechanisms that allow dust grain surfaces to be used as heterogenous catalysts in the

formation of hydrogen molecules from H0 atoms. In this way it may be considered as a three-body

reaction:

H + H + grain⇒ H2 + grain (2.83)

The first way that H2 can be formed on dust grain surfaces is called the Langmuir-Hinshelwood

(LH) mechanism. In this process an H0 atom is physisorbed on the surface of the dust grain and is

loosely bound to its surface by electrostatic attraction (e.g., Van de Waals forces). The bound H0

atom is considered to be able to migrate by a random walk across the surface of the dust grain. If

another hydrogen atom leaves the gas phase and also becomes adsorbed to the surface of the dust
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grain, it too can migrate about the surface of the dust grain and if it comes close enough to the first

physisorbed H0 atom, they may form a molecule of H2 and leave the surface of the dust grain. The

formation of H2 by this mechanism is allowed versus the gas-phase formation mechanism because

the excess energy of formation, up to its ground state binding energy of 4.478 eV, can be given to

the dust grain lattice as thermal energy. The ejection of H2 from the dust grain surface often leaves

it an excited state which will then re-radiate in an infrared cascade.

The second way that molecular hydrogen is formed on the surface of dust grains is the Eley-

Rideal (ER) mechanism. In this mechanism, an H0 atom is chemisorbed from the gas phase into

sites on the dust grain surface. This binds the hydrogen atom into a lower potential well than

being physisorbed. Because of the deeper potential well in chemisorption, the grain can be of

higher temperatures than those in the LH case, however this limits the ability of the chemisorbed

hydrogen atom to move about the surface and it needs to quantum mechanically tunnel between

neighboring potential wells. Formation of H2 occurs in this case by the reaction of a chemisorbed

H0 atom with a gas-phase hydrogen atom where energy is lost to overcoming the potential barrier

of the well, the excitation (heating) of the dust grain lattice, rovibrational excitation of the H2

molecule, and the kinetic energy of the hydrogen molecule.

In either formation mechanism, the idea is that H0 atoms become either physisorbed or chemisorbed

on the dust grain surface and will form H2 before they are desorbed from the dust grain surface by

thermal excitation from the dust grain, or by an external radiation field. The energy of formation

is given up as heat to the dust grain, excitation of the H2 rovibrational levels, and to the external

kinetic energy of the molecule.

The formation rate of H2 on the surface of dust grains is dependent on a number of factors.

These include the nature of the material that makes up the dust grain, the probability that an initial

H0 atom sticks to the surface of the dust grain, the probability that an adsorbed H0 encounters

another H0 atom, the thermal speed of the hydrogen atoms in the gas-phase, the temperature of the

dust grain, the number density of dust grains, the number density of H0 atoms, and the effective

cross section of the dust grain. The H2 formation rate on dust grains can then be given as

dnH2,d

dt
=

1

2
S(T, Td) η 〈σd〉 〈vH0〉nH0 nH [cm−3 s−1], (2.84)
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where the factor 1/2 represents the fact that two H0 atoms are required for the formation of one

hydrogen molecule, S(T, Td) is the sticking factor, which represents the probability for a hydrogen

atom of temperature T to be adsorbed on the surface of the dust grain with temperature Td, η is

the probability that an adsorbed H0 atom will interact with another H0 atom and form a molecule

of hydrogen, 〈σd〉 is the mean effective surface area of the grains in units of cm2, nH0 is the number

density of H0 atoms in the gas phase and 〈vH0〉 is the mean thermal velocity of gas phase H0

atoms. The sticking factor will be denoted by S(T, Td) → S where the gas-phase temperature

and the dust grain temperature is implicit. Based on a Maxwell-Boltzmann distribution the mean

thermal velocity of the gas-phase H0 is

〈vH0〉 =

(
8kT

πmH0

)1/2

[cm s−1], (2.85)

where mH0 is the atomic mass of H0.

In order for H2 to form on the surface of dust grains, H0 atoms must be able to be adsorbed

and bind with another hydrogen atom to create a molecule of hydrogen before they are ejected

from the dust grain surface. This means that the rate of adsorption exceeds the rate of desorption

on the dust grain surface as

S〈σd〉〈vH0〉nH0 > ν0 e
−qads/kT , (2.86)

where 〈σd〉 is the effective average surface area per grain, ν0 is the frequency of surface vibration

of an adsorbed atom and qads is the adsorption binding energy. From this then there is a critical

dust grain temperature below which H2 formation can take place as its formation rate is greater

than the thermal desorption of the H0 atoms. The maximum critical dust grain temperature is

thus [75, 79]

Td,c <
qads

k

[
ln

(
ν0

S〈σd〉〈vH0〉nH0

)]−1

[K]. (2.87)

This shows that the greater the adsorption binding energy qads, the greater temperature that a

dust grain can have. The Eley-Rideal mechanism which involves the chemisorption of H0 atoms is

favored over the physisorption involved in the Langmuir-Hinshelwood mechanism.

The grain-catalyzed rate of formation molecular hydrogen can be cast into a simplified form by

32



combining the terms

S η ≡ ε, (2.88)

which represents the formation efficiency of molecular hydrogen. The mean surface area of the

grains can be given as

〈σd〉 ≡
∫
dnd

da
πa2 da [cm2]. (2.89)

Combining equations (2.85), (2.88) and (2.89) into equation (2.84) gives

dnH2,d

dt
= Rd nH0 nH [cm−3 s−1], (2.90)

where the formation rate coefficient is given numerically as

Rd ≡ 7.3× 10−18 T 1/2ε [cm3 s−1]. (2.91)

At a gas-phase temperature of T ≈ 70 K and assuming an ε ≈ 0.5 gives [85]

Rd = 3× 10−17 [cm3 s−1]. (2.92)

If it is taken that the formation rate coefficient is dependent on the square root of the gas

temperature and that the formation efficiency scales with the dust grain cross section, then the H2

formation rate on dust grain surfaces can be recast as [2, 16]

Rd = 3× 10−18 T 1/2 σ̃d [cm3 s−1], (2.93)

where σ̃d is normalized dust grain cross section, equation (2.49). If a fixed gas temperature of

T = 100 K is assumed, then equation (2.93) can be given as

Rd = 3× 10−17 σ̃d [cm3 s−1], (2.94)

so that only the normalized dust grain cross-section σ̃d, enters as a parameter.
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2.2 Steady State FUV Field Creation - Destruction of Molecular

Hydrogen

Starting with equation (2.1) which can be rearranged to give

nH0

nH2

=
1

2

DU

Rd nH
fatt,U , (2.95)

which is the dimensionless ratio of the atomic hydrogen to molecular hydrogen number densities

given in terms of the attenuated H2 FUV dissociation rate to the H2 formation rate. The coefficient

1/2 is inserted to account for the decrease in surface flux of the free space FUV radiation field

when an optically thick gas slab is inserted and the incident FUV radiation field is considered

to be beamed. This discussion on the relation of flux in beamed and isotropic fields is given in

§ 2.1.1. The free space dissociation rate, DU , is the product of the the mean weighted photon

flux in the LW-band (912 - 1108 Å) and the total H2 dissociation cross section and has a value of

DU = 5.81×10−11 s−1 in a unit Draine FUV spectrum [2], Rd is the molecular hydrogen formation

rate coefficient on dust grain surfaces and is given in equation (2.93). The attenuation term, fatt,U

accounts for a decrease in the free space dissociation rate due to the self-shielding of molecular

hydrogen and the extinction of LW-band photons on dust grains given by equation (2.28).

The free space dissociation rate given above will be used so that, DU = 5.81× 10−11 s−1 for a

unit Draine LW-band FUV-field, which can then be given as the product of an integrated photon

flux over the LW-band given in Table A.4 and an effective dissociation cross-section per photon

DU = QLW σU,Q [s−1]. (2.96)

This dissociation rate is scaled to the unit free space FUV radiation field in the LW-band, given as

IU = 1, so that

DU = 5.81× 10−11 IU [s−1]. (2.97)

From equation (2.96), an effective dissociation cross section per photon in the LW band can be

given by

σU,Q = 2.81× 10−18 [cm2 photon−1], (2.98)
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where a photon flux of QLW = 2.07 × 107 photon cm−2 s−1 was used. This effective cross-section

takes into account that only a fraction of the absorbed LW band radiation leads to a dissociation,

a mean value of which can be taken to be 〈fd〉 = 0.12 [2]. Thus the effective cross section for

absorption is approximately an order of a magnitude greater than that shown in equation (2.98).

The dimensionless ratio of the unattenuated H2 FUV dissociation rate to the H2 formation rate

is defined as α where [11]

α ≡ DU

Rd nH
. (2.99)

In terms of the photon flux and the total cross section over the LW band this is then

DU

Rd nH
=
QLW σU,Q
Rd nH

. (2.100)

Substituting in equations (2.93) and (2.97), and using a fixed gas temperature of T = 100 K give

[16]

α = 1.94× 106 IU
σ̃d nH

. (2.101)

where σ̃d comes from Rd = 3× 10−17 σ̃d cm3 s−1 at T = 100 K and is given by equation (2.50). In

this form α is dependent on the ratio of the scaled Draine FUV spectrum to the total hydrogen

number density and the normalized galactic dust cross section. As a comparison, α can also be

written in terms of the FUV flux over the LW band. Since IU is the unit Draine field and from

equation (A.44) and Table (A.4), then IU = (FLW/3.99× 10−4) erg cm−2 s−1 and,

α = 4.85× 109 FLW

σ̃d nH
. (2.102)

In this case the free space dissociation rate was given in terms of the FUV energy flux over the LW

band as

DU = 1.46× 10−7 FLW [s−1]. (2.103)

The dimensionless FUV attenuation function A is defined as

A ≡ fs,U (NH) fd,U (NH2) =

(
0.965

(1 + x/b5)2
+

0.035

(1 + x)0.5
e(−8.5×10−4(1+x)0.5)

)
e−τd,U , (2.104)
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where the terms x and b5 were defined below equation (2.77) and τd,U is given by equation (2.38).

This represents the attenuation of the FUV radiation field due to self-shielding of H2, and the

extinction of the radiation on dust grains. Again the notation is adopted from [2]. The value of

A is dependent on both the molecular hydrogen column density and the total hydrogen column

density, with the self-shielding term being dependent on NH2 and the dust absorption term being

dependent on NH, and is implicitly dependent on the normalized dust grain cross section σ̃d in the

τd,U term.

Combining equations (2.99) and (2.104) leads to

αA ≡
DU fs,U (NH) fd,U (NH2)

Rd nH
=
QLW σU fs,U (NH) fd,U (NH2)

Rd nH
. (2.105)

Thus, αA represents the ratio of the attenuated (due to self-shielding and extinction) H2 dissociation

rate per hydrogen nucleus and the free space H2 formation rate.

Using equations (2.38), (2.101), and (2.104) casts αA into the form

αA = 1.94× 106 IU
nH σ̃d

(
0.965

(1 + x/b5)2
+

0.035

(1 + x)0.5
e(−8.5×10−4(1+x)0.5)

)
e−τd,U , (2.106)

as in § 2.1.3.3, where x ≡ NH2/(5×1014 cm−2) and b5 ≡ b/(105 cm s−1). In this form it can be seen

that αA is dependent on the ratio of the multiple of a normalized free-space Draine FUV radiation

field per hydrogen nucleus IU/nH, to the normalized dust grain cross section σ̃d, attenuated by

terms dependent on the molecular hydrogen and total hydrogen column densities, NH2 and NH

respectively, as well as a normalized dust grain cross section σ̃d implicit in the optical depth term

τd,U . In terms of the FUV LW-band flux, equation (2.106) is given by

αA = 4.85× 109 FLW

nH σ̃d

(
0.965

(1 + x/b5)2
+

0.035

(1 + x)0.5
e(−8.5×10−4(1+x)0.5)

)
e−τd,U . (2.107)

The ratio of atomic-to-molecular hydrogen for an attenuated FUV radiation field can then be given

as

nH0

nH2

=
1

2
αA. (2.108)

The modeling of these density profiles is done in §4.2.

36



The attenuation function A is a complicated function of the total hydrogen column density NH.

An analytic fit to this attenuation function that is parameterized by the normalized grain cross

section is given by [16]

G = 3.0× 10−5 σ̃d

( 9.9

1 + 8.9 σ̃d

)0.37
, (2.109)

and is fixed for a given σ̃d. Combining equations (2.101) and (2.109) gives an analytic approximation

to the shielded atomic-to-molecular hydrogen density ratio nH0/nH2 as [16]

αG = 59
( IU
nH

)( 9.9

1 + 8.9 σ̃d

)0.37
, (2.110)

and in terms of the LW-band flux this then becomes

αG = 1.5× 105
(FLW

nH

)( 9.9

1 + 8.9 σ̃d

)0.37
. (2.111)

The model used in this dissertation calculates A instead of the parameterized form G. The αG

term will be used in order to pick an α for input into the model. From this then FLW/nH can be

determined. Comparisons between these models is given in §4.2.
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Chapter 3

XDR - Model

3.1 Physical Processes

The basic equation for the creation-destruction of H2 in steady state, isothermal, non-turbulent

conditions with a low ionization fraction (xe . 10−3) for a beamed hard X-ray spectrum radiation

field into an optically thick plane parallel slab is given by

Rd n(H0)n(H) =
1

2
DX fatt,X n(H2) [cm−3 s−1]. (3.1)

Similar to equation (2.1), the left side of equation (3.1) represents the formation rate per unit volume

of H2 cm−3 s−1, and conversely, the right hand side is the destruction rate per unit volume of H2

with the same units. The volumetric formation rate of H2 is dependent upon the formation rate

coefficient Rd cm3 s−1, the atomic hydrogen number density n(H0) cm−3, and the total hydrogen

nuclei number density n(H) cm−3. The factor of 1/2 comes from the reduction in the surface flux

density of a total free-space radiation field when an optically thick semi-infinite slab is inserted

and the impinging field is considered to be beamed. The volumetric destruction rate of H2 due

to a hard X-ray radiation field (HXR) depends on the free space destruction rate DX s−1, the

dimensionless depth dependent attenuation of the radiation field fatt,X , and the molecular hydrogen

number density n(H2) cm−3. The number densities n(H0), n(H2), and n(H) shall be denoted by

nH0 , nH2 , and nH respectively. The total hydrogen nuclei number density is conserved so that

nH ≡ nH0 + 2nH2 .
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3.1.1 Hard X-Ray Radiation Field

The radiation field due to hard X-rays (HXR) can come from a variety of sources that exist in

astrophysical environments. These X-rays are generally classified by a spectrum that has an energy

of greater than 1 keV. Sources of these X-rays range from accretion onto compact objects, supernova

shocks, radiation surrounding T Tauri stars and active galactic nuclei.

The energy deposition to the cloud is determined by the amount of radiation transferred into

kinetic energy of matter. This energy deposition rate is then given by

HX =

∫ Emax

Emin

σpa(E)F (E) dE [erg s−1]. (3.2)

Ignoring the rate of primary photoionizations compared to the rate of secondary ionizations due to

the primary photoelectron, the total hydrogen ionization rate is then

ζX ' Nsec(xe)HX [s−1]. (3.3)

A detailed analysis of the spectrum of a hard X-ray field was provided by Maloney et al. [3].

This section is an outline of the derivation they used in determining the energy deposition rate, and

hence the ionization rate of atomic and molecular hydrogen due to the aforementioned spectrum.

It will also be the spectrum that is used for the perturbation in this dissertation. We denote the

number of secondary ionizations produced with a regular text capital N to demarcate it from the

italicized N used to denote column density.

A flux of high energy X-ray photons that enter a molecular cloud are attenuated through the

preferential photoionization of the lowest energy photons in the spectrum. This is due to the cross-

section for both photoelectric and Compton scattering to have an inverse dependence on the energy

of the incident X-ray. For X-rays with an energy of E . 4 keV the interactions are dominated by

the photoelectric effect. As the energy of the X-ray increases into the 4 keV . E . 10 keV Compton

scattering becomes more predominant and dominates when E & 10 keV [86]. At an X-ray energy

of greater than 1.02 MeV, pair production is capable of occurring but is not of a concern in this

analysis. The SED is structured so that X-rays of an energy less than 1 keV are attenuated through

a column density of NH ≈ 1022 cm−2. For the purposes of the perturbation model used in this
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dissertation, the spectrum is considered to be only in the 1 - 100 keV range and that no attenuation

of photons of less than 1 keV need occur.

The spectral energy distribution shape is assumed to be a power-law so that the spectral energy

distribution is given by

FX(E) = F0X

(
E

1 keV

)−αX
[erg cm−2 s−1 keV−1], (3.4)

where FX is the incident X-ray flux into a cloud, F0,X is the initial X-ray flux at 1 keV, and αX

determines the spectral index. In this case the spectral index will be chosen to be αX = 0.7 [87].

The X-ray flux incident on the cloud then is attenuated through an optical depth such that

F (E) = FX(E) e−τX(E) [erg cm−2 s−1 keV−1], (3.5)

where τX(E) = σX(E)NH is the energy dependent optical depth, σX(E) is the relevant cross section

at solar metallicity for a photoionizing photon of energy E traversing an attenuating hydrogen

column NH, and F (E) represents the local X-ray flux per keV.

A beamed field of normally incident X-ray photons is assumed where the total photoionization

rate of hydrogen is given by

ζX =

∫ Emax

Emin

F (E)

E

[
σH(E) + σpa(E)(E − Eth)Nsec(E, xe)

]
dE [s−1], (3.6)

This represents the ionization rate due to both primary and secondary ionizations. Here σH(E) is

the photoionization cross section of hydrogen and σpa(E) is the X-ray photoelectric cross section

due to all elements per hydrogen nucleus. E − Eth energy difference between the incoming X-

ray and the threshold energy of the ionization potential for a cross section at energy E. The

number of secondary ionizations per unit energy of hydrogen that are produced by a photoelectron

from a primary photoionization is given by Nsec(E, xe) which is a function of the energy of the

photoionizing X-ray and the ionization fraction, xe. The probability that a photon has an energy

in the interval dE is given by dE/E. There are a few simplifying approximations that are made

in order to make the integral more tractable. The first approximation is that the hydrogen cross-

section is on the order of 10 - 1000 times smaller than that of all elements combined over the
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1 - 100 keV energy range [86]. The second is that the secondary ionization rate of hydrogen due

to photoelectrons is significantly greater than the primary photoionization rate and that both of

these then lead to σH(E) � σpa(E) (E − Eth) Nsec(E, xe). The third approximation is that the

energy contribution due to Auger electrons is equivalent to the photoionization threshold energy

which leads to E − Eth + Eaug = E [3, 88]. Finally the fourth is that the number of secondary

ionizations is independent of energy per keV and is only dependent on the ionization fraction such

that Nsec(E, xe) ' Nsec(xe). With these simplifying approximations in place equation (3.6) becomes

ζX ' Nsec(xe)

∫ Emax

Emin

F (E)σpa(E) dE [s−1]. (3.7)

The photoionization cross section per hydrogen nucleus for 1 - 100 keV X-ray photons is then split

into a power law fit that is inversely proportional to the energy

σpa(E) = σX(E/1 keV)−γ [cm2], (3.8)

where σX = 2.6 × 10−22 cm2 for 1 ≤ E ≤ 7 keV and σX = 4.4 × 10−22 cm2 for 7 ≤ E ≤ 100 keV

and γ = 8/3. The difference at 7 keV is due to K-shell interactions with Fe. The value used in the

model is σX = 2.6× 10−22 cm2 [3].

Substituting equations (3.4), (3.5) and (3.8) into equation (3.7) gives

ζX ' Nsec(xe)σXF0,X

∫ Emax

Emin

(E/1 keV)−γ(E/1 keV)−αXe−τX(E)dE [s−1], (3.9)

where the energy deposition rate in equation (3.9) is given by

HX ' σXF0,X

∫ Emax

Emin

(E/1 keV)−γ(E/1 keV)−αXe−τX(E)dE [erg s−1]. (3.10)

The attenuation term is energy dependent as τX(E) = σX(E)NH. A change of variables is now

made such that u ≡ τX E
−γ
k where Ek = (E/1 keV) and τX is the optical depth over the HXR

spectrum so that e−τX(E) → eu, τX = σXNH, and σX = 2.6 × 10−22 cm2. The differential then

becomes dE = −τ−1
X γ−1E−γ+1

k du, and the limits of integral go as
∫ Emax

Emin
→
∫ uE,max

uE,min
. Making these
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substitutions into equation (3.10) then gives

HX '
σXF0,X

γτX

∫ umax

umin

E
−(αX−1)
k eudu [erg s−1], (3.11)

where umin ≡ uE,max and umax ≡ uE,min. Note that the limits of integration flipped from equa-

tion (3.10) → (3.11) since dE ∝ −du. Substituting Ek = (u/τX)−1/γ into equation (3.11), HX

becomes

HX '
σXF0,X

γτφ+1
X

∫ umax

umin

uφeudu [erg s−1] (3.12)

where φ ≡ (αX − 1)/γ.

The integral in equation (3.12) represents the total energy dependent attenuation of the HXR

field over the energy range being considered up to a column densityNH. Its form is of the generalized

incomplete gamma function. The upper incomplete gamma function is represented by

Γ(φ+ 1, x) =

∫ ∞
x

uφe−udu. (3.13)

The integral in can then be represented by the difference of upper incomplete gamma functions 1

and will be defined as

S(τX) ≡ Γ(φ+ 1, umin)− Γ(φ+ 1, umax) =

∫ ∞
umin

uφe−u du−
∫ ∞
umax

uφe−udu, (3.14)

where umin = τXE
−γ
k,max, umax = τXE

−γ
k,min, Ek,max = 100 keV, Ek,min = 1 keV, and gamma is the

energy proportionality of photoionization cross section of Ek & 1 keV.

Thus the energy deposition rate from the hard X-ray spectrum, equation (3.12) becomes

HX '
σX
γ

S(τX)

τφ+1
X

F0,X [erg s−1]. (3.15)

Further details on the attenuation of the HXR spectrum S(τX)/τφ+1
X and its effect on the energy

deposition rate HX is given in Appendix B.

The integrated X-ray flux over the 1 - 100 keV at the cloud face is given by integrating the

1 This can also be represented as the difference of lower incomplete gamma functions where γ(φ + 1, x) =∫ x
0
uφe−udu so that γ(φ+ 1, umax) − γ(φ+ 1, umin) =

∫ umax

0
uφe−udu−

∫ umin

0
uφe−udu.
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X-ray SED, equation (3.4), and is given by

FX = F0,X

∫ Ek,max

Ek,min

E−αXk dEk [erg cm−2 s−1], (3.16)

where Ek has been normalized to 1 keV as mentioned earlier. Denoting the integral by FαX , the

energy deposition rate in terms of the 1 - 100 keV X-ray flux becomes

HX '
σX
γFαX

S(τX)

τφ+1
X

FX [erg s−1], (3.17)

where

FαX =
E1−αX
k,max − E

1−αX
k,min

1− αX
(αX 6= 1)

FαX = ln

(
Ek,max

Ek,max

)
(αX = 1). (3.18)

The energy deposition rate per hydrogen nucleus can be given as

HX

nH
' σX
γ FαX

S(τX)

τφ+1
X

FX
nH

[erg cm3 s−1]. (3.19)

For a source of X-ray radiation with a given luminosity of LX erg s−1, the flux is found through

the relation FX = LX/4πr
2 where r is the distance from the source to the point in question.

The ratio of the photon luminosity to the total number density of hydrogen nuclei is given by the

ionization parameter [89]

ξ ≡ LX
nHr2

[erg cm s−1]. (3.20)

Relating the ionization parameter, equation (3.20), to the photon flux gives

ξ =
4πFX
nH

[erg cm s−1]. (3.21)

With this, the ratio of the energy deposition rate per nuclei in terms of the ionization parameter is

now

HX

nH
' σX

4πγFαX

S(τX)

τφ+1
X

ξ [erg cm3 s−1]. (3.22)
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3.1.2 Molecular Hydrogen Destruction

Now that the energy deposition rate has been found, the rate of total hydrogen ionization, equa-

tion (3.3), can be returned to. For low ionization fractions, xe . 10−3, the amount of energy from

primary photoelectrons that goes towards the ionization of secondary electrons is on the order of

40%. This is the case for both atomic and molecular hydrogen [3, 88, 90]. As such the ionization

rate equation is modified by the fraction of energy that is deposited as secondary ionizations, fi.

This low ionization fraction is necessary for the destruction of molecular hydrogen by secondary

electrons to be efficient. When ionization fractions start to increase, the kinetic energy of the non-

thermal electrons is given up to the thermalization of other electrons due to Coulombic interactions.

The pathway to molecular hydrogen destruction by the interaction of secondary electrons begins

with the creation of a dihydrogen cation in the ionization reaction

H2 + e⇒ H+
2 + e+ e. (3.23)

The H2+ ions are then removed from the gas in the proton transfer reaction with H2 to create the

trihydrogen cation

H+
2 + H2 ⇒ H+

3 + H. (3.24)

The removal of H+
3 from the gas may occur via the charge transfer reaction with a molecule

other than H2 in the gas, creating a different ionic species, or else in either of the dissociative

recombination reactions

H+
3 + e⇒ H2 + H 〈0.50〉, (3.25a)

or

H+
3 + e⇒ H + H + H 〈0.50〉, (3.25b)

where the number in brackets is the probability of occurrence [3].

A significant amount of molecular hydrogen destruction will also occur from FUV photons that

are produced by the non-thermal electrons exciting H2 into the Lyman-Werner band states. Details

of the photodissociation of molecular hydrogen from FUV is discussed in § 2.1.2.1 and it’s effect is

discussed in § 3.2.1.
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The number of secondary ionizations Nsec is given by the energy deposited towards secondary

ionizations divided by the ionization energy of the relevant species. For H this is 13.598 eV, and for

H2 it is 15.426 eV. This can be expressed conveniently in terms of number of ionizations per keV. For

1 keV of deposited energy, with fi ∼ 0.4, then 0.4 keV goes towards secondary ionizations. As such

NH0,sec ≈ (0.4/(0.013598 keV) ≈ 29.4 keV−1 and NH2,sec ≈ (0.4)/(0.015426 keV) ≈ 25.9 keV−1. The

ionization energy of H and H2 can be equivalently given as 2.1786×10−11 erg and 2.4715×10−11 erg

respectively. Similarly for 1 erg of deposited energy, 0.4 erg goes towards secondary ionizations. As

such NH0,sec ≈ 1.836× 1010 erg−1 and NH2,sec ≈ 1.618× 1010 erg−1.

The ionization rate, equation (3.3) now becomes

ζX '
fiHX

Ei
[s−1], (3.26)

where HX is the total energy deposition rate, equation (3.22), fi is the fraction of energy deposited

towards ionizations, and Ei is the ionization energy of the particle in question. In terms of the

ionization energy per nuclei, equation (3.26) becomes for the ionization rate of atomic hydrogen,

ζH0

nH
' fi
Ei,H0

HX

nH
[cm3 s−1]. (3.27)

The above equation can be used in this form as is for atomic hydrogen, with it’s ionization energy

of 13.598 eV. The ionization rate per molecule of H2 needs to be modified slightly due to the

conservation hydrogen nuclei, nH = nH0 + 2nH2 . Since there are two H nuclei per molecule of H2,

then equation (3.27) is

ζH2

nH
' 2fi
Ei,H2

HX

nH
[cm3 s−1], (3.28)

where Ei is the ionization energy of H2, 15.426 eV. The two ionization rates can then be related

by ζH2 = 2(Ei,H/Ei,H2)ζH.

The reaction of ions in the chemical network will also lead to the dissociation of H2 molecules.

There are on the order of 3 dissociations of H2 for each hydrogen ionization that occurs [3].
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3.2 Steady State HXR Field Creation - Destruction of Molecular

Hydrogen

Similar to the steady state equation for the formation and destruction of H2 in a beamed FUV

radiation field, equation (2.1), a creation-destruction equation for a beamed HXR radiation field

onto a semi-infinite slab is then

RdnH0nH =
1

2
DHXRfatt,X nH2 . (3.29)

Here Rd is the formation rate of H2 on grains, DHXR is the unattenuated dissociation rate of H2

and fatt,X is the attenuation of the X-ray field.

The unattenuated energy deposition rate per hydrogen nucleus, equation (3.19) is denoted as

H0,X

nH
' σX
γFαX

FX
nH

[erg cm3 s−1]. (3.30)

and the unattenuated ionization rate, equation (3.28) as

ζ0,H2

nH
' 2fi
Ei,H2

H0,X

nH
[cm3 s−1], (3.31)

where the number of secondary ionizations of per erg per of deposited X-ray energy per H2 molecule

is given by

NH2,sec ≡
2fi
Ei,H2

= 3.24× 1010 [erg−1], (3.32)

and the fixed coefficients making up H0,X have a numerical value of

kH ≡
σX
γFαX

= 9.81× 10−24 [cm2]. (3.33)

The coefficients making up the energy deposition rate have the units of an effective cross section

for the HXR energy flux.

As was done for the PDR case, equation (3.29) can be given as the ratio of atomic-to-molecular

hydrogen densities as

nH0

nH2

=
1

2

DHXR

Rd nH
fatt,X . (3.34)
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From the energy deposition rate per hydrogen nucleus and the molecular hydrogen ionization rate

per hydrogen nucleus, equations (3.19) and (3.28) respectively, we define the ratio of the unatten-

uated dissociation rate of H2 due to X-rays DHXR, and its formation rate on grains per hydrogen

nucleus by the dimensionless quantity βHXR, where

βHXR ≡
12fi
Ei,H2

σX
γ Fα

FX
RdnH

=
DHXR

RdnH
, (3.35)

and

DHXR ≡ 3 ζ0,H2 =
12 fi
Ei,H2

σX
γ Fα

FX [s−1]. (3.36)

As previously mentioned, there are on the order of 3 dissociations of H2 for each hydrogen ionization

that occurs which accounts for the in 3 in equation (3.36) [3]. The factor of 12 in equation (3.35)

comes from equation (3.28) (a factor of 2 from the number of nuclei in a hydrogen molecule), the

discussion below equation (3.28) (a factor of 3 from the number of H2 molecules destroyed per

ionization), and equation (2.13) (a factor of 2 from the increase in surface flux when considering an

isotropic free-space flux density of a radiation field from it’s beamed equivalent upon a semi-infinite

slab). The other constants can be inserted into equation (3.35) in order to simplify the β term.

With the assumption that there is a low ionization fraction xe . 10−3, the fraction of energy

deposited leading to secondary ionizations is fi ∼ 0.4 [3]. The ionization energy of H2, Ei is

2.4715 × 10−11 erg. The photoionization cross section of 1 keV X-rays is σX = 2.6 × 10−22 cm−2,

the energy dependance at 1 keV is γ = 8/3, and the integral of the spectral shape between 1 keV

and 100 keV for a power-law index of αX = 0.7 gives FαX = 9.9369.

We define the constant

kI ≡
12 fi
Ei,H2

= 1.94× 1011 [erg−1], (3.37)

which represents the number of H2 molecules destroyed due to ionizations from secondary electrons

per erg of deposited energy. In terms of the constants given in equations (3.33) and (3.37), the

destruction rate from the HXR spectrum is

DHXR

nH
= kHXR

FX
nH

[cm3 s−1], (3.38)
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where

kHXR ≡ kIkH =
12 fi
Ei,H2

σX
γ Fα

[cm2 erg−1]. (3.39)

The numerical value of the HXR destruction rate per hydrogen nucleus in equation (3.38) is

then given as

DHXR

nH
= 1.91× 10−12FX

nH
[cm3 s−1]. (3.40)

As the H2 formation rate on dust grains is proportional to the normalized dust grain cross

section, equation (2.93), we can substitute this in so that Rd = 3 × 10−17 σ̃d cm3 s−1, where we

have assumed a gas temperature of T = 100 K. Substituting these values into equation (3.35) leads

to

βHXR = 6.35× 104 FX
σ̃dnH

. (3.41)

The terms that enter equation (3.41) as parameters are the free-space hard X-ray flux FX erg cm−2 s−1,

the total hydrogen number density nH cm−3, and the normalized dust grain cross section σ̃d.

Thus βHXR is the ratio of the free-space HXR flux at the cloud face per hydrogen nucleus (FX/nH),

and the normalized dust grain cross-section σ̃d.

From equations (3.1) and (3.19) we define the attenuation due to energy dependent optical

depth to be denoted by the dimensionless parameter B, where

fatt,X ≡ B ≡
S(τX)

τφ+1
X

. (3.42)

The optical depth in equation (3.42) is given by τX = σXNH, where σX = 2.6×10−22 cm2, so that B

is dependent on the total hydrogen column density NH, and scales as N−φ−1
H , where φ = (αX−1)/γ

from equation (3.12). With αX = 0.7 and γ = 8/3 from the discussion below equation (3.35),

φ = −0.1125, and φ + 1 = 0.8875. Further discussion on S(τX) and equation (3.42) is given in

Appendix B.

Combining equations (3.35) and (3.42) leads to

βHXRB ≡
12 fi
Ei,H2

σX
γ FαX

FX
Rd nH

S(τX)

τφ+1
X

=
DHXR

Rd nH

S(τX)

τφ+1
X

. (3.43)

Thus, βHXRB represents the ratio of the free space H2 destruction rate due to a hard X-ray
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spectrum per hydrogen nucleus to the free space H2 formation rate attenuated by the HXR optical

depth. With the use of the constant in equation (3.39) βHXRB is

βHXRB = kHXR
FX
Rd nH

S(τX)

τφ+1
X

. (3.44)

Using equations (3.41) and (3.42) casts βB into the form

βHXRB = 6.35× 104 FX
σ̃dnH

S(τX)

τφ+1
X

. (3.45)

The terms that enter equation (3.45) as parameters are the free-space hard X-ray flux FX erg cm−2 s−1,

the total hydrogen number density nH cm−3, and the normalized dust grain cross section σ̃d, at-

tenuated by the HXR optical depth.

The ratio of atomic-to-molecular hydrogen for an attenuated HXR radiation field can then be

given as

nH0

nH2

=
1

2
kHXR

FX
RdnH

S(τX)

τφ+1
X

, (3.46a)

or equivalently,

nH0

nH2

=
1

2
βHXRB. (3.46b)

3.2.1 Internally Generated UV Field due to Secondary Electrons

The interaction of secondary electrons due to the flux of HXR into the molecular cloud creates a

secondary source of electromagnetic radiation. These non-thermal electrons, in addition to causing

the ionization of molecular hydrogen, are also capable of exciting H2 into the Lyman-Werner, (i.e.

the B1Σu or C1Πu states respectively) or higher states [27, 28, 29]. The decay of these excited states

leads to the production of FUV photons in the 6 - 13.6 eV energy range. These wavelengths range

from 90 to 170 nm for the Lyman lines and 90 to 130 nm for the Werner lines [91]. As discussed

in § 2.1.2.1, approximately 12% of the decays will be to the vibrational continuum leading to the

photodissociation of H2. When ionization fractions in the gas are low, xe . 10−3, approximately

40% of the deposited energy due to the non-thermal electrons leads to the production of these

FUV photons [3]. More recent calculations show that for low ionization fractions, the fraction

of deposited energy leads to approximately 50% of the deposited energy going towards excitation
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processes [92]. The value of 40% will be used for this model.

A relation between the energy flux from an HXR illuminated cloud and the flux of an internally

generated FUV field is given by [3]

G0

nH
= 6× 1023fX→U

HX

nH
[cm3], (3.47)

where G0/nH is the ratio of the normalized free-space isotropic Habing FUV radiation field to the

total hydrogen density [8], fX→U is the fraction of deposited X-ray energy that is converted to FUV

photons, and HX is the energy deposition rate due to the HXR flux, equation (3.17). Here G0 has

been normalized over the 6 - 13.6 eV (912 - 2066 Å) energy range of the Habing FUV spectrum,

equation (A.10) such that

G0 =
F0,XUV

1.58× 10−3 erg cm−2 s−1
, (3.48)

where F0,XUV is the energy flux of secondary electron induced FUV radiation. The coefficient

in equation (3.47) has dimensions of s erg−1 in order for G0 to be dimensionless. Inserting equa-

tion (3.17) into equation (3.47) gives

G0

nH
= 6× 1023fX→U

σX
γFαX

FX
nH

S(τX)

τφ+1
X

[cm3], (3.49)

and then inserting the values of fX→U = 0.4, σX = 2.6 × 10−22 cm2, γ = 8/3, and FαX = 9.94

leads to

G0

nH
= 2.35

FX
nH

S(τX)

τφ+1
X

[cm3], (3.50)

where FX is the X-ray energy flux erg cm−2 s−1 and S(τX)/τX is its column density dependent

attenuation. Using equation (3.48) in equation (3.50), the induced FUV energy flux can then be

given as

F0,XUV

nH
= 3.73× 10−3FX

nH

S(τX)

τφ+1
X

[erg cm s−1]. (3.51)

If we want to consider the contribution of the internally generated FUV energy flux for the

Habing SED over the 11.2 - 13.6 eV range (LW band), then the values from Table (A.1) can be

used. Letting F0,H = 1.58× 10−3 erg cm−2 s−1 be the energy flux over the 6 - 13.6 eV energy range

and FLW,H = 2.37× 10−4 erg cm−2 s−1 over the 11.2 - 13.6 eV energy range. They are then simply
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related by FLW,H = 0.1495F0,H, or equivalently that ∼ 15% of the FUV photons produced are in

the LW band. From this and equation (3.51), the LW-band energy flux of a Habing SED due to

the energy deposition of an HXR radiation field is given as

FLW,H,XUV

nH
= 5.58× 10−4FX

nH

S(τX)

τφ+1
X

[erg cm s−1]. (3.52)

We define the normalized energy flux of the Sternberg version of the Draine FUV spectrum,

equation (A.44), over the 6 - 13.6 eV range as

G0,DS =
F0DS,XUV

2.68× 10−3 erg cm−2 s−1
, (3.53)

which corresponds to G0,DS = χG0, where a comparison of equations (3.48) and (3.53) gives the

scaling factor χ = 1.69 for both unit G0 and G0,DS over the 6 - 13.6 eV range. The normalized

free-space isotropic Sternberg variation of the Draine FUV radiation field for internal UV photons

produced by secondary electrons can then be given by modifying equation (3.47) such that

G0,DS

nH
= 3.55× 1023fX→U

HX

nH
[cm3]. (3.54)

Referring to equations (3.49) and (3.54) then this can be given as

G0,DS

nH
= 1.39

FX
nH

S(τX)

τφ+1
X

[cm3]. (3.55)

Using equation (3.53) in equation (3.55), the induced FUV energy flux for an SED given by equa-

tion (A.44) is

F0DS,XUV

nH
= 3.73× 10−3FX

nH

S(τX)

τφ+1
X

[erg cm s−1]. (3.56)

The change in normalization between the the two forms ofG0 lead to an adjustment of the coefficient

in equations (3.47) and (3.49). This maintains the total internal FUV flux, FXUV produced by the

secondary electrons due to a given amount of HXR flux over the given 6 - 13.6 eV energy range,

as this is independent of the normalization used. To consider the contribution of the internally

generated FUV energy flux for the Draine SED given by Sternberg over the 11.2 - 13.6 eV range

(LW band), then the values from Table (A.4) can be used. Letting F0,DS = 2.68×10−3 erg cm−2 s−1
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be the energy flux over the 6 - 13.6 eV energy range and FLW,DS = 3.99 × 10−4 erg cm−2 s−1

over the 11.2 - 13.6 eV energy range. They are then simply related by FLW,DS = 0.149F0,SD, or

equivalently that ∼ 15% of the FUV photons produced are in the LW band, approximately the

same for the Habing field. This relation can be defined as

kFLW ≡ 6× 1023fX→UF0,H
FLW,DS

F0,DS
[cm−2], (3.57)

The energy flux of internally generated LW band photons in the Draine-Sternberg SED from sec-

ondary electrons due to HXR is then given by

FLW,DS,XUV

nH
= kFXU

FX
nH

S(τX)

τφ+1
X

[erg cm s−1], (3.58a)

where

kFXU ≡ kFLWkH = 5.56× 10−4, (3.58b)

which is unitless, where FX is the X-ray energy flux [erg cm−2 s−1], and S(τX)/τφ+1
X is its column

density dependent energy deposition. Note that the HXR flux FLW,DS,XUV , in equation (3.58a) is

of the same spectrum as IU , where IU = (FLW,DS,XUV /3.99 × 10−4 erg cm−2 s−1) as described in

§2.2.

3.3 Steady State XUV Field Creation - Destruction of Molecular

Hydrogen

In order to find the combined steady state transition point when the induced FUV radiation field is

included a few adjustments need to be made. A key difference to the FUV radiation field produced

internally in the cloud due to the non-thermal electrons is that they are isotropic in nature. Also,

the external FUV radiation field undergoes an attenuation due to self-shielding and dust absorption

as it travels through the cloud. These internal FUV photons cannot then simply be added to the

α parameter from § 2.2 due to these reasons. Below we will show how to include them with the

steady-state HXR equation (3.1).

Treating the interaction of the X-ray induced FUV radiation field (denoted as XUV) with the
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molecular cloud as an independent steady-state creation-destruction equation in a similar form to

equations (2.1) and (3.1) we have

RdnH0nH =
1

4
DXUV fatt,XUV nH2 [cm−3 s−1], (3.59)

where DXUV s−1 is the free space dissociation rate due to XUV photons, fatt,XUV is any attenuation

of the XUV, Rd cm3 s−1 is the H2 formation rate coefficient as in equation (2.94), and nH0 , nH2

and nH are the atomic, molecular, and total hydrogen densities respectively. The factor of 1/4 is

due to equation (3.59) being represented by an isotropic radiation field that is considered to only

dissociate molecular hydrogen in the forward direction. The flux of an isotropic field is 1/2 that of

a beamed field as is given in equations (2.1) and (3.1).

Since we are considering the XUV radiation field to be that described by a Draine-Sternberg

FUV spectrum in the Lyman-Werner band, the unattenuated free space dissociation rate DXUV is

the same as that given in equation (2.97) with the notation

DXUV = 5.81× 10−11IU [s−1], (3.60)

where IU = (FLW,DS,XUV /3.99× 10−4 erg cm−2 s−1) is the unit Draine field. As in equation (2.96),

the dissociation rate is a product of the flux of radiation in the LW band and an effective cross

section that leads to dissociation given by

DXUV = FLW,XUV σLW [s−1]. (3.61)

An effective dissociation cross section per erg in the over an integrated LW band can be given by

σLW = 1.46× 10−7 [cm2 erg−1], (3.62)

where a photon flux of FLW = 3.99 × 10−4 erg cm−2 s−1 was used. As discussed below equa-

tion (2.98), this effective dissociation cross section underestimates the effective absorption cross

section by approximately an order of magnitude.
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Writing equation (3.59) as the ratio of atomic-to-molecular hydrogen densities gives,

nH0

nH2

=
1

4

DXUV

RdnH
fatt,XUV . (3.63)

This represents the atomic to molecular hydrogen density profiles for an induced XUV field only.

A ratio of atomic to molecular hydrogen densities can now be given that is a combination of the

HXR and its associated XUV radiation field. From equations (3.34) and (3.63) this is given as

nH0

nH2

=
1

2

DHXR

RdnH
fatt,HXR +

1

4

DXUV

RdnH
fatt,XUV . (3.64)

Equation (3.64) thus gives the atomic to molecular hydrogen density ratio as a combination of the H2

destruction rates based on the direct ionization leading to dissociation from secondary non-thermal

electrons (the first term on the right hand side) and the photodissociation due to induced LW band

FUV photons from the non-thermal electrons colliding with molecular hydrogen (the second term

on the right hand side). The first term in the above equation containing DHXR has already been

given directly as a function the HXR flux, FX , as in the numerator of equation (3.40). The second

term containing DXUV can also be given as directly dependent on the HXR flux. Equation (3.64)

will be developed further in § 3.4.

A brief summary of the substitutions of the previously derived formulae follows. First note that

from equations (3.47) and (3.48), the flux of FUV photons produced in the 6 - 13.6 eV range of a

Habing spectrum in terms of the energy deposition per hydrogen nucleus of the HXR field is

F0,XUV

nH
= 6× 1023fX→UF0,H

HX

nH
[erg cm s−1], (3.65)

where F0,H = 1.58× 10−3 erg cm−2 s−1. This FUV flux can be converted to the amount of energy

flux that would be present in the LW band of a Draine-Sternberg FUV spectrum by multiplying it

by the ratio FLW,DS/F0,DS so that equation (3.65) becomes

FLW,XUV

nH
= 6× 1023fX→UF0,H

FLW,DS

F0,DS

HX

nH
[erg cm s−1], (3.66)

where FLW,DS = 3.99 × 10−4 erg cm−2 s−1 and F0,DS = 2.68 × 10−3 erg cm−2 s−1. Inserting equa-
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tion (3.17) into equation (3.66) gives the FUV flux in the LW band of a Draine-Sternberg spectrum

produced from the collision of secondary electrons as

FLW,XUV

nH
= 6× 1023fX→UF0,H

FLW,DS

F0,DS

σX
γFαX

FX
nH

[erg cm s−1]. (3.67)

The unattenuated destruction rate of H2 per hydrogen nuclei can now be given by inserting equa-

tion (3.67) into equation (3.61) giving

DXUV

nH
= 6× 1023fX→UF0,H

FLW,DS

F0,DS
σLW

σX
γFαX

FX
nH

[cm3 s−1], (3.68)

with σLW = 1.46 × 10−7 cm2 erg−1 as given in equation (3.62). The gross energy deposition rate

(∼ 0.4) is the same ratio for both the production of secondary electrons via ionization and for the

production of LW band photons via collisions from secondary electrons. From this it can be seen

in equations (3.36) and (3.68) that the unattenuated energy deposition rate is identical

H0,X

nH
= kH

FX
nH

[erg cm3 s−1], (3.69a)

where

kH ≡
σX
γ FαX

= 9.81× 10−24 [cm2]. (3.69b)

The net energy deposition rate is also the same in both cases since the fraction of HXR that is

converted to secondary electrons is on the order of fi = fX→U ∼ 0.4.

From equations (3.59) and (3.68) we define the ratio of the unattenuated dissociation rate of

H2 due to X-ray induced FUV rays, DXUV , and its formation rate on grains per hydrogen nucleus

by the dimensionless quantity βXUV where

βXUV ≡ 6× 1023fX→UF0,H
FLW,DS

F0,DS
σLW

σX
γFαX

FX
RdnH

=
DXUV

RdnH
. (3.70)

In a similar manner to equation (3.37) we define the constant

kDLW ≡ 6× 1023fX→UF0,H
FLW,DS

F0,DS
σLW = 8.25× 1012 [erg−1], (3.71)

55



which represents the number of dissociations due to internal LW photons produced by molecular

excitation from secondary electrons per erg of deposited energy. In terms of the constants given in

equations (3.69b) and (3.71), the destruction rate from the XUV spectrum is

DXUV

nH
= kXUV

FX
nH

[cm3 s−1], (3.72a)

where

kXUV ≡ kDLWkH = 6× 1023fX→UF0,H
FLW,DS

F0,DS
σLW

σX
γ FαX

[cm2 erg−1], (3.72b)

and

kXUV = 8.10× 10−11 [cm2 erg−1] (3.72c)

The destruction rate of H2 per nuclei for a given FX is then

DXUV

nH
= 8.10× 10−11FX

nH
[cm3 s−1]. (3.73)

As the H2 formation rate on dust grains is proportional to the normalized dust grain cross

section, equation (2.93), we can substitute this in so that Rd = 3 × 10−17 σ̃d cm3 s−1, where we

have assumed a gas temperature of T = 100 K. Substituting these values into equation (3.35) leads

to

βXUV = 2.70× 106 FX
σ̃d nH

. (3.74)

The terms that enter equation (3.74) as parameters are the free-space hard X-ray flux FX [erg cm−2 s−1],

the total hydrogen number density nH [cm−3], and the normalized dust grain cross section σ̃d.

Thus βXUV is the ratio of the free-space HXR induced dissociation rate per hydrogen nucleus

(FX/nH), and the normalized dust grain cross-section σ̃d.

Since the energy deposition rate is dependent on the optical depth as S(τX)/τφ+1
X , this at-

tenuation term is also a common factor in the dissociation of H2 for both the ionizing effects of

secondary electrons as well as the dissociation from LW band photons produced by molecular col-

lisions. When these LW - XUV photons are produced during molecular collisions, we are assuming

that they travel only a short distance before they are absorbed by an H2 molecule; therefore, they
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undergo no additional attenuation, either due to self-shielding or by scattering/absorption from

dust. This on-the-spot approximation (or Case B) means the only attenuation we need to account

for the production of the XUV radiation field is that due to the strength of the hard X-ray field at

depth so that

fatt,XUV ≡ B =
S(τX)

τφ+1
X

. (3.75)

The discussion below equation (3.42) details the properties of B.

Combining equations (3.70) and (3.75) leads to

βXUVB ≡ 6× 1023F0,H
FLW,DS

F0,DS
σLWfX→U

σX
γFαX

FX
Rd nH

S(τX)

τφ+1
X

=
DXUV

Rd nH

S(τX)

τφ+1
X

. (3.76)

Thus, βXUVB represents the ratio of the free space H2 destruction rate from the internally generated

LW band spectrum per hydrogen nucleus to the free space H2 formation rate attenuated by the

HXR optical depth. With the use of constants in equations (3.69b) and (3.71), βXUVB is

βXUVB = kXUV
FX
RdnH

S(τX)

τφ+1
X

. (3.77)

Using equations (3.74) and (3.75) puts βXUV into the form

βXUVB = 2.70× 106 FX
σ̃dnH

S(τX)

τφ1
X

. (3.78)

Again as in the HXR case, the terms that enter equation (3.78) as parameters are the free-space

hard X-ray flux FX erg cm−2 s−1, the total hydrogen number density nH cm−3, and the normalized

dust grain cross section σ̃d, attenuated by the HXR optical depth. The ratio of atomic-to-molecular

hydrogen for a depth attenuated XUV radiation field can then be given as

nH0

nH2

=
1

4
kXUV

FX
Rd nH

S(τX)

τφ+1
X

, (3.79a)

or equivalently,

nH0

nH2

=
1

4
βXUVB. (3.79b)

As described below equation (3.59), the internally generated FUV radiation field is considered to
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be isotropic in the forward direction accounting for the factor of 1/4 in the above two atomic-to-

molecular hydrogen ratio equations.

3.4 Steady State HXR Field Creation - Destruction of Molecular

Hydrogen including an XUV Field

We are now in a position to combine the steady-state creation-destruction equations for both the

HXR only field and the XUV only field. This will give the effect of a beamed hard X-ray radiation

field impinging onto an optically thick plane parallel semi-infinite molecular cloud slab with the

addition of an isotropic LW band radiation field produced in the interior of the slab. Combining

equations (3.1) and (3.59) for the HXR field and XUV field respectively, the steady state creation-

destruction equation for molecular hydrogen becomes

RdnH0nH =
{1

2
DHXRfatt,X +

1

4
DXUV fatt,X

}
nH2 [cm−3 s−1]. (3.80)

In terms of the ratio of atomic-to-molecular hydrogen densities this combined field becomes

nH0

nH2

=
{1

2
DHXRfatt,X +

1

4
DXUV fatt,X

} 1

RdnH
. (3.81)

For computational purposes and our analytic model developed in Chapter 4 we write this as

nH0

nH2

=
1

2

{
DHXRfatt,X +

1

2
DXUV fatt,X

} 1

RdnH
. (3.82)

With use of equations (3.46a) and (3.79a), equation (3.82) can be given in terms of the constants

describing the ratio of atomic-to-molecular hydrogen densities and using fatt,X ≡ fatt,XUV

After inserting the constants defined earlier, this then becomes after simplification

nH0

nH2

=
1

2

{
kI +

1

2
kDLW

}
kH

FX
Rd nH

S(τX)

τφ+1
X

, (3.83)

where the constants kI = 1.94× 1011 erg−1, kDLW = 8.25× 1012 erg−1, and kH = 9.81× 10−24 cm2

are given by equations (3.37), (3.71), and (3.33) (or (3.69b)). The terms kI and kXUV represent
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the number of dissociations per erg of deposited energy due to ionization from secondary electrons

and from the internally generated FUV field respectively. The ratio of these constants, from FUV

induced dissociation compared to direct ionization is

kDLW
2kI

' 21. (3.84)

This result shows that the number of dissociations due to the Solomon process due to the internally

generated FUV field is on the order of 20 times greater than that from direct ionizations. Combining

the constants in equations (3.83) gives the new constant, kX

kXU = kI +
1

2
kDLW = 4.32× 1012 [erg−1]. (3.85)

The ratio of atomic-to-molecular hydrogen densities with this new constant is

nH0

nH2

=
1

2
kXUkH

FX
Rd nH

S(τX)

τφ+1
X

. (3.86)

Now, a constant that represents the cross section per unit energy is given as kX

kX ≡ kXUkH = 4.24× 10−11 [cm2 erg−1]. (3.87)

Thus, the density ratio becomes

nH0

nH2

=
1

2
kX

FX
Rd nH

S(τX)

τφ+1
X

. (3.88)

It can be seen from the above equation the net destruction rate per hydrogen nucleus for the

combined HXR and XUV radiation fields is

DX

nH
= kX

FX
nH

= 4.24× 10−11FX
nH

[s−1]. (3.89)

The atomic-to-molecular hydrogen ratio can be given in a simple form that is due to an HXR

spectrum with an XUV radiation field. Using the dimensionless terms βHXRB and βXUVB that
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are given in equations (3.43) and (3.76) respectively leads to

nH0

nH2

=
1

2

{
βHXR +

1

2
βXUV

}
B. (3.90)

The terms in brackets are combined into the new term β

β ≡ βHXR +
1

2
βXUV =

DX

Rd nH
(3.91)

which now represents the ratio of the unattenuated dissociation rate of H2 due to the dissociation of

the combined effects of ionizations from secondary electrons and the dissociation from the Solomon

process from secondary electron collisions, DX , and its formation rate on grains, Rd per hydrogen

nucleus. The attenuated ratio of the dissociation rate versus the formation rate per hydrogen

nucleus is defined in terms of the dimensionless quantities βB

βB ≡ kX
FX
RdnH

S(τX)

τφ+1
X

=
DX

RdnH

S(τX)

τφ+1
X

, (3.92)

or numerically as

βB = 4.24× 10−11 FX
Rd nH

S(τX)

τφ+1
X

. (3.93)

Thus, βB represents the ratio of the free space H2 destruction rate due to the HXR spectrum

with an internally generated FUV field to the free space H2 formation rate per hydrogen nucleus

attenuated by the HXR optical depth.

As the H2 formation rate on dust grains is proportional to the normalized dust grain cross

section Rd = 3× 10−17 σ̃d cm3 s−1, equation (3.93) becomes upon this substitution

βB = 1.41× 106 FX
σ̃d nH

S(τX)

τφ+1
X

. (3.94)

The terms that enter equation (3.94) as parameters are the free-space hard X-ray flux FX erg cm−2 s−1,

the total hydrogen number density nH cm−3, and the normalized dust grain cross section σ̃d.

The ratio of atomic-to-molecular hydrogen densities for the combined HXR and XUV fields is
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finally given in a simple form in terms of dimensionless quantities as

nH0

nH2

=
1

2
βB. (3.95)

With this equation we now have the density profiles for atomic-to-molecular hydrogen from the

total of the HXR spectrum and its induced FUV radiation field in a completely analogous form to

the FUV only radiation field in a PDR, equation (2.108).
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Chapter 4

Density Profiles and Transition Points

4.1 PDR Analytical Model

The basis for the analytical model of a PDR in this dissertation is one that has steady state,

isothermal, non-turbulent conditions with a low ionization fraction (xe . 10−3) for a beamed far-

ultraviolet (11.2 - 13.6 eV) radiation field into an optically thick plane parallel slab. This PDR is

modeled on that given by Sternberg & Bialy [2, 11, 16], the relevant details of which are given in

§ 2.2.

The point of interest is where there is a transition of the atomic-to-molecular hydrogen density

profiles, from the region where atomic hydrogen dominates to the region where molecular hydro-

gen dominates under steady-state conditions, specifically the location where the atomic hydrogen

number density equals the molecular hydrogen number density. In the PDR case this is given by

equations (2.1) and (2.108) which is given here as,

nH0

nH2

=
1

2

DU

Rd nH
fatt,U =

1

2
αA. (4.1)

Here the parameter αA determines the ratio of the number density of H0 to H2. As α is proportional

to the ratio of the free-space dissociation rate of H2 to its formation rate, an increase in α leads to an

increased ratio of nH0 to nH2 , thus atomic hydrogen is favored. The attenuation function A ≤ 1 is

a continuously declining function at a column density of NH & 1014 cm2 so that it begins to reduce

the free-space dissociation rate, and as such a decrease in A results in a decrease in attenuation
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so that nH0/nH2 decreases and molecular hydrogen is favored. Using the conservation of hydrogen

nuclei number density nH ≡ nH0 + 2nH2 , equation (4.1) can be given in terms of the H0 and H2

fractions, nH0/nH and nH2/nH respectively. At the specific transition point under consideration,

where the normalized number density of atomic hydrogen equals the normalized number density of

molecular hydrogen (i.e. xH0 = xH2), equation (4.1) then becomes,

nH0

nH
≡ xH0 =

0.25αA

1 + 0.25αA
, (4.2a)

2nH2

nH
≡ 2xH2 =

1

1 + 0.25αA
, (4.2b)

for the respective H0 and H2 atomic nuclei fractions.

4.2 PDR Computational Results

The PDR was modeled with code written in Python 2.7.10 based on the equations and discussion

given in §§ 2.2 and 4.1. The procedure involves solving equation (4.1) for nH0 and nH2 . There were

16 different variations of the parameters αA and σ̃d. The steady state density profiles for H0 and

H2 are shown in Figure 4.2. At low column densities the gas is predominantly atomic hydrogen

(cyan curve). This represents the face of the cloud and the radiation has not been significantly

attenuated. In this regime the shielding function is A . 1 and the ratio of atomic-to-molecular

hydrogen density is nH/nH2 → 1
2α. As the radiation gets attenuated as it traverses the cloud, the

gas becomes increasingly molecular (magenta curve) due to attenuation as A & 0. The transition

point in Figure 4.2 is given by the black dot and represents an equal ratio of atomic and molecular

hydrogen fractions such that,

nH0

nH
=

2nH2

nH
(4.3)

or equivalently

xH0 = 2xH2 , (4.4)

63



from equations (4.2a) and (4.2b). With the use of the conservation of hydrogen nuclei number,

equation (2.2) gives the transition point of interest as,

xH0 ≡ 2xH2 = 0.5. (4.5)

4.2.1 PDR density profiles and transition points for Bialy & Sternberg 2016

As a first step, a PDR model based on the five step analytical method given in [16] was used.

This was to give the code a benchmark for the atomic-to-molecular hydrogen transition points

(see Figure 4 of [16]). The density profiles from this procedure are shown in Figure 4.1 with the

transition points where nH0/nH = 2nH2/nH = 0.5 given in Table 4.1.

10−4

10−2

100
̃σd=0.01 ̃σd=0.1 ̃σd=1

αG
=
0.01

̃σd=10

10−4

10−2

100

αG
=
0.1

10−4

10−2

100

αG
=
1

1016 1018 1020 1022 1024

NH ̃cm−2)

10−4

10−2

100

1016 1018 1020 1022 1024

NH ̃cm−2)
1016 1018 1020 1022 1024

NH ̃cm−2)
1016 1018 1020 1022 1024

NH ̃cm−2)

αG
=
10

Figure 4.1: The H0 and H2 density profiles and transition points (blue dot) for nH0/nH (green
curve) and 2nH2/nH (red curve) with an FUV radiation field. This figure was created using the
five step analytical procedure for generating depth-dependent atomic and molecular densities (see
Bialy & Sternberg 2016).
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Table 4.1: H0-to-H2 FUV transition points NH [cm2] for αG

σ̃d

αG 0.01 0.1 1 10

0.01 4.56× 1019 1.32× 1018 1.48× 1017 2.85× 1016

0.1 1.62× 1021 6.39× 1019 3.46× 1018 3.93× 1017

1 2.09× 1022 1.68× 1021 1.32× 1020 1.07× 1019

10 9.46× 1022 9.18× 1021 8.90× 1020 8.49× 1019

4.2.2 PDR density profiles and transition points from computational model

The computational model used is given by equation (2.107), which differs from equation (22) in

[16] in that the analytic form for attenuation explicitly uses the total column density NH and isn’t

given solely by the parameter σ̃d. This term is composed of the analytic form for self-shielding

given in [12] and the dust attenuation term given in [2, 16].

A starting point for a given αA was based on their parameterized αG. The first step involved

picking an αG = 0.01, 0.1, 1, or 10, and then determining α using equations (2.109) and (2.111).

This is calculated for each of the normalized grain cross-sections σ̃d = 0.01, 0.1, 1, 10.

Since the molecular hydrogen formation rate coefficient is dependent only on the normalized

dust grain cross section σ̃d for a fixed gas temperature, only fixed ratios of IU/nH for a given α are

considered.

The goal of the code is to solve equation (4.1) for nH0 and nH2 as functions of the column

density. Using,

nH0 = dNH0/ds and nH2 = dNH2/ds, (4.6)

for semi-infinite slab geometry, where ds is the differential depth into the cloud, equation (4.1) can

be integrated since A(NH2 , NH) is a function of both the molecular hydrogen and total hydrogen

column density. In this way and with the use of NH = NH0 + 2NH2 , the number densities nH0

and nH2 can be solved for. The integration was done using the scipy package odeint. The

density profiles from our computation are shown in Figure 4.2 with the transition points where

nH0/nH = 2nH2/nH = 0.5 given in Table 4.2.
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Figure 4.2: The H0 and H2 density profiles and transition points (black dot) for nH0/nH (cyan curve)
and 2nH2/nH (magenta curve) as functions of the total hydrogen column density NH from an FUV
radiation field for the computational model. The profiles and transition points are calculated using
αA. The right y-axis gives the αG used. The transition points occur deeper into the cloud as the
FUV strength increases (greater αG) or as dust attenuation decreases (smaller σ̃d).
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Table 4.2: H0-to-H2 FUV transition points NH [cm2] calculating αA for a given αG

σ̃d

αG 0.01 0.1 1 10

0.01 4.91× 1019 1.59× 1018 1.98× 1017 3.91× 1016

0.1 1.87× 1021 6.87× 1019 3.98× 1018 5.03× 1017

1 2.31× 1022 1.83× 1021 1.41× 1020 1.17× 1019

10 1.01× 1023 9.66× 1021 9.29× 1020 8.79× 1019

The analytic (αG) and computational (αA) models are superimposed from Figures 4.1 and 4.2

to show a comparison of the density profiles and transition points. This is given in Figure 4.3. It

can be seen from the plots that there is excellent agreement between the two models. The transition

point for the computational model for all 16 plots occurs slightly deeper into the cloud than the

analytic model. The approximate percentage increase in total hydrogen column density that the

transition point occurs is given in Table 4.3.
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Figure 4.3: Superposition of the analytic and computational models for H0 and H2 density profiles
and transition points (blue dot - analytic; black dot - computational) for nH0/nH (green curve -
analytic; cyan curve - computational) and 2nH2/nH (red curve - analytic; magenta curve - compu-
tational) as functions of the total hydrogen column density NH from an FUV radiation field.

68



Table 4.3: Percentage increase in column density of transition point - Computational (αA) vs.
Analytical (αG)

σ̃d

αG 0.01 0.1 1 10

0.01 ∼ 8 ∼ 20 ∼ 34 ∼ 37

0.1 ∼ 15 ∼ 8 ∼ 15 ∼ 28

1 ∼ 11 ∼ 9 ∼ 7 ∼ 9

10 ∼ 7 ∼ 5 ∼ 4 ∼ 4

4.3 Analytic response of the PDR transition points to HXR field

For the response of the transition points of the far-ultraviolet only radiation field to a hard X-ray

spectrum, we consider a combination of the steady state PDR with the inclusion of the steady

state XDR model. The atomic-to-molecular hydrogen ratio nH/nH2 is now a function of both a

steady-state attenuated PDR given by 1
2αA and a steady-state attenuated XDR given by 1

2βB

from equations (2.108) and (3.95) respectively. The energy flux of the hard X-rays that causes the

response at the new transition point can then be determined.

This combination leads to the simple expression

nH0

nH2

=
1

2
δ, (4.7)

where

δ = αA+ βB. (4.8)

The ratio of number densities of atomic hydrogen to total hydrogen and also the ratio of

number densities of molecular hydrogen to total hydrogen can be given for δ in a similar manner

to equations (4.2a) and (4.2b) as

xH0 =
0.25δ

1 + 0.25δ
, (4.9a)

2xH2 =
1

1 + 0.25δ
, (4.9b)
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where xH0 ≡ nH0/nH and xH2 ≡ nH2/nH for the respective H0 and H2 fractions respectively.

For a given value of delta, which represents the atomic-to-molecular hydrogen ratio, the contri-

bution due to attenuated HXR’s then ranges from

0 ≤ βB ≤ δ. (4.10)

When the flux from the HXR radiation field is negligible in regards to creating a response in

the PDR, βB → 0 and αA → δ. As greater fluxes of X-rays are considered, βB starts making a

contribution to δ. When the HXR flux increases further, the contribution due to the FUV radiation

field becomes less significant, and as such αA→ 0, which leads to βB → δ.

4.4 Computational response of the PDR transition points to HXR

field

This section compares the response of the PDR only transition point to two forms of the HXR energy

deposition. The first is the exact analytic form with a hyperbolic approximation representing S(τX)

in § 4.4.1. The second ignores the S(τX) term and only takes into account the τ−φ−1
X attenuation

function in § 4.4.2.

4.4.1 HX ∝ S(τX)τ
−φ−1
X

The calculation of the response of the transition point of the PDR to a HXR field follows the same

procedure as that done in § 4.2.2. The code now solves equation (4.7) for nH0 and nH2 from which

the number density ratios given in equations (4.9a) and (4.9b) can be found. This was done for

each of the normalized grain cross-sections σ̃d = 0.01, 0.1, 1, 10 that we considered.

The same values of αG = 0.01, 0.1, 1, or 10 were used to determine α with the FUV shielding

function A(NH2 , NH) being used in place of G. The attenuated energy deposition rate of the HXR

spectrum B is given by the hyperbolic function in equation (B.4). This replaces the analytic form

of the HXR energy deposition rate attenuation given in (3.12).

The location of the transition point in terms of NH can be seen in Figure 4.4. From this the

amount of HXR energy flux per hydrogen nuclei needed to cause this response can be determined.
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Figure 4.4: The transition point curve where xH0 = 2xH2 for the response of a PDR to an HXR field
with S(τX)τ−φ−1 attenuation. The vertical portion of the curve represents the FUV only transition
point. The contribution of βB as a percentage of δ to the column density of the transition point is
shown at 10% (orange dot), 50% (green dot), and 90% (red dot).

As is noted in § Appendix B significant attenuation of the HXR flux doesn’t occur until NH ≈

1020 cm−2. When the transition point due to the FUV only field occurs less than this column

density there is a regime where there is no further significant attenuation of the HXR field until

NH ≈ 1020 cm−2. This is represented by the horizontal portion of the curve. Once the HXR flux

is great enough for the transition point to occur after 1020 cm−2, whether or not the FUV only

transition point occurs before or after this point, an increasing flux causes a linear increase in the

transition point on a log-log scale. This represents the energy deposition rate being HX ∝ τ−φ−1
X .
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Figure 4.5: The H0 and H2 density profiles and transition points for xH0 and 2xH2 of an FUV only
flux superimposed with an HXR flux S(τX)τ−φ−1 attenuation that causes a response in the PDR
transition point by one order of magnitude.

Table 4.4: HXR energy flux FX/nH [erg cm s−1] at the H0-to-H2 combined FUV-HXR transition
points at one order of magnitude increase in NH column density for S(τX)τ−φ−1 attenuation.

σ̃d

αG 0.01 0.1 1 10

0.01 2.27× 10−8 2.16× 10−7 2.34× 10−6 2.44× 10−5

0.1 1.14× 10−7 2.39× 10−7 2.15× 10−6 2.28× 10−5

1 1.05× 10−6 1.17× 10−6 3.01× 10−6 2.62× 10−5

10 3.9× 10−6 4.89× 10−6 6.86× 10−6 2.91× 10−5
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Table 4.5: HXR energy flux FX/nH [erg cm s−1] at the H0-to-H2 combined FUV-HXR transition
points at one order of magnitude increase in NH column density for τ−φ−1 attenuation.

σ̃d

αG 0.01 0.1 1 10

0.01 3.50× 10−9 1.72× 10−9 3.03× 10−9 7.58× 10−9

0.1 1.10× 10−7 4.90× 10−8 3.83× 10−8 6.68× 10−8

1 1.07× 10−6 1.13× 10−6 1.14× 10−6 1.23× 10−6

10 3.96× 10−6 4.95× 10−6 6.19× 10−6 7.64× 10−6

4.4.2 HX ∝ τ−φ−1
X

This section considers HXR attenuation due to the opacity term τ−φ−1
X . This calculation is per-

formed using a modification of equation (3.41) which is given as

βHXRB = 6.35× 104 FX

σ̃dnH

1

τφ+1
X

, (4.11)

where B ≡ τ−φ−1
X . The procedure follows the same methodology as that done in § 4.4.

The location of the transition point with this modified attenuation is shown in Figure 4.6 with

values of the HXR energy flux required to shift the FUV only transition point by one order of

magnitude given in Table 4.5.

These curves have a similar form across the range of column densities considered as the attenua-

tion of the HXR spectrum is now a linearly declining function on a log-log scale. The elimination of

the S(τX) term removes the inability of the HXR spectrum to have any significant energy deposition

at column densities of less than NH ≈ 1020 cm−2.

A comparison of the two forms of HXR attenuation function considered shows that for transition

points from the FUV only model that occur NH . 1020 cm−2, there is no significant difference in the

model used. As the FUV only attenuation curve occurs at smaller column densities, the difference

between the two attenuation curves gets more pronounced.

As can be seen in Figure (4.8), when σ̃d & 10 × αG the response of the transition point by

one order of magnitude due to the HXR attenuation function τ−φ−1 deviates from the S(τX)τ−φ−1

attenuation function by one or more orders of magnitude. As this discrepancy grows, the simplified
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Figure 4.6: The transition point curve where xH0 = 2xH2 for the response of a PDR to an HXR
field with τ−φ−1 attenuation. The vertical portion of the curve represents the FUV only transition
point. The contribution of βB as a percentage of δ to the column density of the transition point is
shown at 10% (orange dot), 50% (green dot), and 90% (red dot).

74



10−4

10−2

100
̃σg=0.01 ̃σg=0.1 ̃σg=1

α
G
=
0.01

̃σg=10

10−4

10−2

100

α
G
=
0.1

10−4

10−2

100

α
G
=
1

1016 1018 1020 1022 1024

NH̃[cm−2]

10−4

10−2

100

1016 1018 1020 1022 1024

NH̃[cm−2]
1016 1018 1020 1022 1024

NH̃[cm−2]
1016 1018 1020 1022 1024

NH̃[cm−2]

α
G
=
10

Figure 4.7: The H0 and H2 density profiles and transition points for xH0 and 2xH2 of an FUV
only flux superimposed with an HXR flux τ−φ−1 attenuation that causes a response in the PDR
transition point by one order of magnitude.
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Figure 4.8: Comparison of the response for the attenuation functions S(τX)τ−φ−1 and τ−φ−1

model becomes less accurate as Table 4.6 shows.

Conversely, when αG & σ̃d, the two HXR attenuation curves vary by less than one order of

magnitude. In the cases where αG & 10× σ̃d, then τ−φ−1 ≈ S(τX)τ−φ−1 in terms of the response

at one order of magnitude.
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Table 4.6: Ratio of the HXR energy flux FX/nH [erg cm s−1] at one order of magnitude increase in
NH column density for τ−φ−1 vs. S(τX)τ−φ−1.

σ̃d

αG 0.01 0.1 1 10

0.01 1.54× 10−1 7.97× 10−3 1.29× 10−3 3.11× 10−4

0.1 9.60× 10−1 2.05× 10−1 1.78× 10−2 2.93× 10−3

1 1.02× 100 9.64× 10−1 3.79× 10−1 4.71× 10−2

10 1.02× 100 1.01× 100 9.03× 10−1 2.63× 10−1

4.5 Analytic Fit for HX ∝ τ−φ−1
X

In this section we present an analytic model that estimates the behavior of the transition point

curve over the range of hard X-ray fluxes per hydrogen nucleus versus total hydrogen column

density for the given values of αG and σ̃d that we have considered in this paper. For this analytic

model we required that it took into account the limiting conditions when the amount of attenuated

HXR flux per nucleus was low (βB & 0) and when the attenuated HXR flux per nucleus was high

(βB . δ). In the first case, the transition point of the curve NH,trans, approaches that of the FUV

only transition point NH,trans → NH,FUV . In the second case, the transition point of the curve

NH,trans, approaches that of the HXR including XUV only transition point NH,trans → NH,XUV .

The analytic expression used for this fit is given by,

NH,trans =
(
Nφ+1

H,FUV +Nφ+1
H,HXR

)1/(φ+1)
, (4.12)

where φ + 1 is the same term that describes the behavior of the attenuation function B of the

HXR energy deposition rate HX ∝ τ−φ−1
X . This analytic fit is shown superimposed with our

computational models in Figure 4.9. A range of values varying by ±0.2 dex are shown about the

analytic line.

The analytic fit does a good job when the attenuated FUV radiation field per hydrogen nucleus

is low αG . 1 and the transition point is gradual between αG and βB. This is shown for the

values of αG = 0.01, 0.1, and 1. For the higher attenuated FUV radiation field per hydrogen nucleus

that we consider, αG = 10, the transition between αG and βB becomes sharp and our analytic fit
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Figure 4.9: The transition point curves for the response of a PDR to an HXR field with τ−φ−1

(solid blue line) superimposed with the analytic model (orange dashed line). A variation of ± 0.2
dex is shown around the analytic fit line (light grey strip).
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becomes less accurate at modeling the perturbation point.

The 16 images in Figure 4.9 are shown individually in Figures C.1 - C.16 in Appendix C.
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Chapter 5

Conclusions

In this dissertation, a simple model is presented that shows the response of the atomic-to-molecular

hydrogen transition point in a far-ultraviolet (FUV) only photodissociation region due to the con-

tribution from a hard X-ray (HXR) spectrum over the 1 - 100 keV energy range.

This model is a blend of two existing models of steady state regions, that of a photodissociation

region (PDR) [2][16] and that of an X-ray dissociation region (XDR) [3].

The PDR model of [2][16] was used as benchmark in order to determine what the transition

points would be for the model developed in this dissertation to be compared against. The transition

points where nH0/2nH2 = 0.5 were first found using the analytic model of [16] for a given αG and

σ̃d. This was done as the dust-limited self-shielding function G is given as an analytic fit that is

parameterized by the normalized dust-grain cross section σ̃d only [16]. In the model developed in

this dissertation the dust-limited self-shielding function is denoted by A(NHNH2) which is composed

of the optical depth parameterized by σ̃d and also by the self-shielding function of [12] (their

equation (37)). Our model replaced the parameterized equation (2.109) with the dust-limited self-

shielding function, equation (2.104). Thus we use αA in the code in order to determine the column

densities but αA is being plotted within the αG values. From this the normalized number densities,

xH0 and 2xH2 were found and density profiles plotted and compared to the transition points of [16].

This modification led to a small increase in the PDR only transition point from that ranged from

between 4 and 37%.

For the response of the transition points due to the inclusion of an HXR, two forms of the

energy deposition function HX were used. The first form used the analytic form of the function
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S(τX)τ−φ−1
X , where for computational efficiency, we found a hyperbolic fit to this given in equa-

tion (B.4). Recall that φ ≡ (αX−1)/γ where αX is the spectral index of the HXR SED and γ is the

energy dependence index for HXR interactions and note that S(τX) is parameterized by φ. When

the transition point of the PDR occurs at column densities less than NH . 1020 cm−2 there is a

shoulder region where X-ray attenuation decreases significantly until a column density of NH . 1021

cm−2 is reached. Under this form of the energy deposition function it is seen that the variation in

HXR flux at the transition point doesn’t show much variation within a given σ̃d. When σ̃d = 10,

the HXR flux at the transition point is FX/nH ∼ 10−5 erg cm s−1 across the range αG = 0.01− 10.

For σ̃d = 1, this becomes FX/nH ∼ 10−6 erg cm s−1 across the range αG = 0.01 − 10. This same

pattern occurs for σ̃d = 0.1, where FX/nH ∼ 10−7 erg cm s−1 across the range αG = 0.01 − 10.

Some variation to this shows up for for σ̃d = 0.01 where FX/nH ∼ 10−8 → 10−6 erg cm s−1 as

αG = 0.01→ 10. These FX/nH values are taken where αA ≈ βB. In regions where the attenuated

FUV is lower, αG = 0.01− 0.1, the transition point of the PDR occurs at hydrogen column densi-

ties less than NH . 1020 cm−2 and there is approximately a one magnitude increase in the HXR

flux required to cause a response in the transition point per magnitude increase in the metallicity.

For αG = 0.01, FX/nH ranges from ∼ 10−9 to ∼ 10−5 as σ̃d = 0.01 → 10. This is due to the

formation rate of H2 being dependent on the normalized grain cross section. This effect decreases

as αG→ 1−10 as the transition point from the PDR starts to occur at column densities that would

attenuate the HXR only field. As a comparison, an HXR only transition point occurs at an energy

flux per hydrogen nucleus of FX/nH ∼ 10−4 erg cm s−1 [3]. Thus the flux per hydrogen nucleus is

on the order of 1 to 4 orders of magnitude less to cause a response in the transition point.

A simplifying modification to the energy deposition function was made by ignoring the S(τX)

term. By doing this, in regimes where the transition point occurs at lower column densities than

where HXR attenuation would typically begin, i.e. NH . 1020, a deviation in the amount of HXR

flux per hydrogen nucleus required for a response occurs. This difference becomes more pronounced

as the PDR only transition point decreases and these ratios are given in Table 4.6. Under this

approximation there is essentially no variation in the HXR flux across σ̃d for a given αG. For each

magnitude increase in αG, approximately one magnitude more of HXR flux per hydrogen nucleus is

required for a transition point response. This can be seen in Figure 4.4. For αG = 0.01, 0.1, 1, 10 the

amount of HXR energy flux per hydrogen nucleus at αA ≈ βB is FX/nH ∼ 10−9, 10−8, 10−7, 10−7
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erg cm s−1 respectively.

In order to make a simple analytic fit to the behavior of the response curve, we used the form

of the energy deposition function τ−φ−1
X . For FUV only transition points occurring at NH & 1019

cm−2, the response at a one order magnitude increase in the column density of the transition point

due to an HXR flux is within one order of magnitude from the response to the S(τX)τ−φ−1
X function.

This can be seen in Figure 4.8 and in Table 4.6. The analytic fit we derived for the response of

the PDR due to the HXR flux from HX ∝ τ−φ−1
X was given in equation (4.12). The computational

curve showing the response compared to the analytic fit was with ±0.2 dex across the parameter

space of our simulations, except for the σ̃d = 0.01 and αG = 10 plot. The higher H2 dissociation

rate from the FUV field compared to the low formation rate caused a sharp response in the PDR

that caused it to curve more rapidly than in the other scenarios. The αG = 10 plots however all

had a more rapid response to the HXR field compared to the other αG values considered.

Future work on this project could be to develop an analytic fit for the S(τX)τ−φ−1
X model, to

examine the effect of metallicity on the HXR radiation field as well as the effect of attenuation of

the HXR field due to dust, and finally to use photoionization codes such as Cloudy or Meudon

PDR to investigate the transition points of these combined fields.
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Appendix A

Far-Ultraviolet Spectral Distributions

This appendix describes some of the different forms of a Draine FUV spectrum [7], and the units

and conversions (which aren’t always obvious) that are found in various papers. Some of the dis-

tributions found in the literature are given in terms of energy density [ergs cm−3], or as specific

intensities such as photon flux per unit energy [photons cm−2 s−1 eV−1], photon flux per unit fre-

quency [photons cm−2 s−1 Hz−1], energy flux per unit wavelength [photons cm−2 s−1 Å−1] and so on.

These distributions may or may not be given in terms of per solid angle (4π)−1 [sr−1] or integrated

over all space (full 4π).

In the examples given below, we shall denote the spectral distributions with the following nota-

tion: energy density, uρ [erg cm−3]; energy flux, fρ [erg cm−2 s−1]; photon density, pρ [photon cm−3];

and photon flux, qρ [photon cm−2 s−1]. Further, a subscript will denote if the distribution is de-

pendent on the wavelength, frequency, or energy with the symbols λ, ν, and E respectively. If the

distribution and its differential are given in terms of cgs units, then the conversion between the

terms above is a relatively straightforward procedure. In some of the distributions given in the

references, care must be taken upon calculation as the distribution and its differential could be cast

in different units or physical constants may be in cgs units, have wavelengths in Å or have energy

units in eV mixed together. We shall show those conversions explicitly in the examples given below

as well as convert all of the FUV spectral distributions to have wavelength dependencies in Å.
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A.1 The Habing SED

A fit to the Habing field [6] was given by Draine & Bertoldi [12]

uλ = λuρλ ≡
(
− 25

6
λ3

3 +
25

2
λ2

3 −
13

3
λ3

)
× 10−14 [erg cm−3], (A.1)

where λ3 ≡ λ/103 Å. This wavelength specific energy density is defined in terms of wavelength given

in units of Å and it has been integrated over all space. This wavelength specific energy density

distribution can then be defined by

uρλ ≡
duλ
dλ dΩ

[erg cm−3 Å
−1

sr−1]. (A.2)

In terms of equation (A.1) then this becomes

uρλ =
1

4π

(
− 25

6× 109
λ2 +

25

2× 106
λ− 13

3× 103

)
× 10−14 [erg cm−3 Å

−1
sr−1]. (A.3)

The 1/4π term is required for the distribution since equation (A.1) has already been integrated

over all space and also it is given in terms of wavelength units of Å−1 as the function is defined in

those units.

To convert the wavelength specific energy density distribution to a frequency specific energy

density distribution, then the conversion uρλdλ = uρνdν needs to be performed. Using the substi-

tutions λ = c/ν and dλ/dν = |c/ν2| casts equation equation (A.3) into the form

uρν =
1

4π

(
− 25

6× 109

c3
a

ν4
+

25

2× 106

c2
a

ν3
− 13

3× 103

ca

ν2

)
× 10−14 [erg cm−3 Hz−1 sr−1]. (A.4)

The sign change that is ignored in the absolute value term above is only required in order to flip

the limits of integration, if (A.3) is being used within a definite integral, as the wavelength and

frequency are inversely related. Care must be taken when using equation (A.4) that the speed of

light is given in angstroms which we denote by ca = 2.998×1018 Å s−1. If the speed of light required

is needed in cgs units, then it will be denoted by c = 2.998 × 1010 cm s−1. Similar conversions as

those given above equation (A.4) are required when changing between wavelength, frequency and

energy. In those other cases, the units that are being used must be examined for the correct
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conversions.

In § A.1 we will use the wavelength specific intensity energy density distribution as the basis

for the conversions to other quantities of interest.

As given in equation (A.1) the energy density is given by multiplying the wavelength specific

energy density by the wavelength,

uλ = λuρλ [erg cm−3 sr−1]. (A.5)

From this the energy flux can be found,

fλ = cλuρλ [erg cm−2 s−1 sr−1], (A.6)

the photon density,

pλ =
λ2uρλ
hca

[photon cm−3 sr−1], (A.7)

and the photon flux,

qλ =
cλ2uρλ
hca

[photon cm−2 s−1 sr−1]. (A.8)

The definite integrals for the energy density, energy flux, photon density, and photon flux,

equations (A.5)-(A.8) are then respectively given by

Uλ =

∫
Ω

∫ λ2

λ1

uρλdλ dΩ [erg cm−3], (A.9)

Fλ =

∫
Ω

∫ λ2

λ1

cuρλdλ dΩ [erg cm−2 s−1], (A.10)

Pλ =

∫
Ω

∫ λ2

λ1

λuρλ
hca

dλ dΩ [photon cm−3], and (A.11)

Qλ =

∫
Ω

∫ λ2

λ1

cλuρλ
hca

dλ dΩ [photon cm−2 s−1 sr−1], (A.12)

where λ1 < λ2.
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Table A.1: Habing SED

Wavelength specific @ 1000 Å

uλ fλ qλ pλ

[erg cm−3 sr−1] [erg cm−2 s−1 sr−1] [photon cm−2 s−1 sr−1] [photon cm−3 sr−1]

3.18× 10−15 9.54× 10−5 4.80× 106 1.60× 10−4

Integration between 912 and 1108 Å

Uλ Fλ Qλ Pλ

[erg cm−3] [erg cm−2 s−1] [photon cm−2 s−1] [photon cm−3]

7.90× 10−15 2.37× 10−4 1.21× 107 4.03× 10−4

Integration between 912 and 2066 Å

Uλ Fλ Qλ Pλ

[erg cm−3] [erg cm−2 s−1] [photon cm−2 s−1] [photon cm−3]

5.28× 10−14 1.58× 10−3 1.19× 108 3.97× 10−3

A.2 The Draine SED

A fit to the FUV interstellar background radiation was given by Draine [7],

qρE =
(
1.658× 106 (Ee)− 2.152× 105 (Ee)

2 + 6.919× 103 (Ee)
3
)

[photon cm−2 s−1 eV−1 sr−1],

(A.13)

where Ee ≡ (E/1eV). This energy specific photon flux distribution can then be defined as

qρE ≡
dqE
dE dΩ

[photon cm−2 s−1 eV−1 sr−1]. (A.14)

There is a 1/4π term implicit in equation (A.13) which can be pulled out becoming

qρE =
1

4π

(
2.084× 107 (E)− 2.704× 106 (E)2 + 8.695× 104 (E)3

)
[photon cm−2 s−1 eV−1 sr−1]. (A.15)

To convert the energy specific photon flux distribution to a wavelength specific photon flux dis-

tribution then the conversion qρEdE = qρλdλ needs to be performed. Using the substitutions
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E = heca/λ and dE/dλ = |heca/λ2| casts equation (A.15) into the form,

qρλ =
1

4π

(
2.084× 107

(
h2
ec

2
a

λ3

)
− 2.704× 106

(
h3
ec

3
a

λ4

)
+ 8.695× 104

(h4
ec

4
a

λ5

))
[photon cm−2 s−1 Å

−1
sr−1], (A.16)

where he = 4.136 × 10−15 eV s and heca = 1.240 × 104 eV Å. From equation (A.16) the energy

density can be found as,

uλ =
hca
c
qρλ [erg cm−3 sr−1], (A.17)

the energy flux,

fλ = hcaqρλ [erg cm−2 s−1 sr−1], (A.18)

the photon flux,

qλ = λqρλ [photon cm−2 s−1 sr−1], (A.19)

and the photon density,

pλ =
λ

c
qρλ [photon cm−3 sr−1]. (A.20)

The definite integrals for the energy density, energy flux, photon flux, and photon density,

equations (A.17)-(A.20) are then respectively given by

Uλ =

∫
Ω

∫ λ2

λ1

hca
cλ

qρλdλ dΩ [erg cm−3], and (A.21)

Fλ =

∫
Ω

∫ λ2

λ1

hca
λ
qρλdλ dΩ [erg cm−2 s−1], (A.22)

Qλ =

∫
Ω

∫ λ2

λ1

qρλdλ dΩ [photon cm−2 s−1], (A.23)

Pλ =

∫
Ω

∫ λ2

λ1

1

c
qρλdλ dΩ [photon cm−3], (A.24)

where λ1 < λ2.
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Table A.2: Draine SED

Wavelength specific @ 1000 Å

uλ fλ qλ pλ

[erg cm−3 sr−1] [erg cm−2 s−1 sr−1] [photon cm−2 s−1 sr−1] [photon cm−3 sr−1]

5.52× 10−15 1.65× 10−4 8.33× 106 2.78× 10−4

Integration between 912 and 1108 Å

Uλ Fλ Qλ Pλ

[erg cm−3] [erg cm−2 s−1] [photon cm−2 s−1] [photon cm−3]

1.35× 10−14 4.06× 10−4 2.10× 107 7.01× 10−4

Integration between 912 and 2066 Å

Uλ Fλ Qλ Pλ

[erg cm−3] [erg cm−2 s−1] [photon cm−2 s−1] [photon cm−3]

8.97× 10−14 2.69× 10−3 1.95× 108 6.50× 10−3

A.3 The Draine and Bertoldi SED

An alternative version of the Draine FUV interstellar background radiation was given in Draine

and Bertoldi [12, 7],

uρλ =
4× 10−14 χ

4π

(
3.1016× 1010

λ4
− 4.9913× 1013

λ5
+

1.9987× 1016

λ6

)
[erg cm−3 Å

−1
sr−1], (A.25)

where uρλ is the wavelength specific energy density and is defined as,

uρλ ≡
duλ
dλ dΩ

[erg cm−3 Å
−1

sr−1], (A.26)

χ is a normalization factor to the Habing SED at a wavelength of 1000 Å and is given as,

χ ≡
(λuHρλ)1000 Å

4× 10−14 erg cm−3
, (A.27)

where uHρλ is equation (A.3) and χ = 1.71. From equation (A.25) the energy density can be found

as,

uλ = λuρλ [erg cm−3 sr−1], (A.28)
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the energy flux,

fλ = cλuρλ [erg cm−2 s−1 sr−1], (A.29)

the photon flux,

qλ =
cλ2

hca
uρλ [photon cm−2 s−1 sr−1], (A.30)

and the photon density,

pλ =
λ2

hca
uρλ [photon cm−3 sr−1]. (A.31)

The definite integrals for the energy density, energy flux, photon flux, and photon density,

equations (A.28)-(A.31) are then respectively given by

Uλ =

∫
Ω

∫ λ2

λ1

uρλdλ dΩ [erg cm−3], and (A.32)

Fλ =

∫
Ω

∫ λ2

λ1

cuρλdλ dΩ [erg cm−2 s−1], (A.33)

Qλ =

∫
Ω

∫ λ2

λ1

cλ

hca
uρλdλ dΩ [photon cm−2 s−1], (A.34)

Pλ =

∫
Ω

∫ λ2

λ1

λ

hca
uρλdλ dΩ [photon cm−3], (A.35)

where λ1 < λ2.
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Table A.3: Draine & Bertoldi SED

Wavelength specific @ 1000 Å

uλ fλ qλ pλ

[erg cm−3 sr−1] [erg cm−2 s−1 sr−1] [photon cm−2 s−1 sr−1] [photon cm−3 sr−1]

5.93× 10−15 1.78× 10−5 8.95× 106 2.99× 10−4

Integration between 912 and 1108 Å

Uλ Fλ Qλ Pλ

[erg cm−3] [erg cm−2 s−1] [photon cm−2 s−1] [photon cm−3]

1.46× 10−14 4.37× 10−4 2.26× 107 7.52× 10−4

Integration between 912 and 2066 Å

Uλ Fλ Qλ Pλ

[erg cm−3] [erg cm−2 s−1] [photon cm−2 s−1] [photon cm−3]

9.13× 10−14 2.74× 10−3 1.98× 108 6.59× 10−3

A.4 The Draine - Sternberg SED

Another version of the Draine FUV interstellar background radiation was given by Sternberg [2, 93],

qρν =
1

4π

(
1.068×10−3

( ν
ca

)
−1.719×100

(ν2

c2
a

)
+6.853×102

(ν3

c3
a

))
[photon cm−2 s−1 Hz−1 sr−1],

(A.36)

where the substitution 1/λ = ν/ca was made. This equation varies from that given in equa-

tion (A1) of [93], as equation (A.36) is given in wavelength equivalent units of angstroms where

as equation (A1) is given in wavelength equivalent units of nanometers. This frequency specific

photon flux distribution can be defined as,

qρν ≡
dqν
dν dΩ

[photon cm−2 s−1 Hz−1 sr−1]. (A.37)

To convert the frequency specific photon flux distribution to a wavelength specific photon flux

distribution the conversion qρνdν = qρλdλ needs to be performed. Using the substitutions ν = ca/λ

and dν/dλ = |ca/λ2| casts equation (A.36) into the form,

qρλ =
ca
4π

(
1.068× 10−3

λ3
− 1.719× 100

λ4
+

6.853× 102

λ5

)
[photon cm−2 s−1 Å

−1
sr−1]. (A.38)
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From equation (A.38) the energy density can be found as,

uλ =
hca
c
qρλ [erg cm−3 sr−1], (A.39)

the energy flux,

fλ = hcaqρλ [erg cm−2 s−1 sr−1], (A.40)

the photon flux,

qλ = λqρλ [photon cm−2 s−1 sr−1], (A.41)

and the photon density,

pλ =
λ

c
qρλ [photon cm−3 sr−1]. (A.42)

The definite integrals for the energy density, energy flux, photon flux, and photon density,

equations (A.39)-(A.42) are then respectively given by,

Uλ =

∫
Ω

∫ λ2

λ1

hca
cλ

qρλdλ dΩ [erg cm−3], and (A.43)

Fλ =

∫
Ω

∫ λ2

λ1

hca
λ
qρλdλ dΩ [erg cm−2 s−1], (A.44)

Qλ =

∫
Ω

∫ λ2

λ1

qρλdλ dΩ [photon cm−2 s−1], (A.45)

Pλ =

∫
Ω

∫ λ2

λ1

1

c
qρλdλ dΩ [photon cm−3], (A.46)

where λ1 < λ2.

There are other SED’s based on [7] such as those found in [36, 37, 38] where the techniques

described in this appendix can be used to find radiation field quantities that may be needed.
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Table A.4: Draine - Sternberg SED

Wavelength specific @ 1000 Å

uλ fλ qλ pλ

[erg cm−3 sr−1] [erg cm−2 s−1 sr−1] [photon cm−2 s−1 sr−1] [photon cm−3 sr−1]

5.42× 10−15 1.63× 10−4 8.18× 106 2.73× 10−4

Integration between 912 and 1108 Å

Uλ Fλ Qλ Pλ

[erg cm−3] [erg cm−2 s−1] [photon cm−2 s−1] [photon cm−3]

1.33× 10−14 3.99× 10−4 2.07× 107 6.89× 10−4

Integration between 912 and 2066 Å

Uλ Fλ Qλ Pλ

[erg cm−3] [erg cm−2 s−1] [photon cm−2 s−1] [photon cm−3]

8.92× 10−14 2.68× 10−3 1.94× 108 6.48× 10−3
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Figure A.1: A comparison of the SED’s in this appendix between 6 - 13.6 eV
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Figure A.2: A comparison of the SED’s in this appendix between 11.2 - 13.6 eV
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Appendix B

Hard X-ray Attenuation and Energy

Deposition

This appendix describes the computational solution of the HXR attenuation function as well as its

effect on the energy deposition rate. The attenuation function has two components to it, the energy

dependent attenuated spectral energy distribution function S(τX) and the optical depth τ−φ−1
X .

The simpler of the two terms to calculate is the HXR optical depth dependent function τ−φ−1
X

that was derived in equations (3.10) - (3.12) and it will be described first. This is simply found by

using the optical depth τX = σXNH where σX = 2.6×10−22 cm2, and the exponent φ = (αX−1)/γ

with the relevant values αX = 0.7 and γ = 8/3 being used. This is shown in Figure B.1.
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Figure B.1: The attenuation of FX(N−φ−1
H ).

As described in § 3.1.1, the function S(τX) is found by calculating the generalized incomplete

gamma function up to the total hydrogen column density NH in question. This is given here again

as

S(τX) ≡
∫ umax

umin

uφeudu (B.1)

where u ≡ τXE
−γ
k , τX = σXNH, umin = τXE

−γ
k,max, umax = τXE

−γ
k,min, Ek,max = 100 keV, Ek,min =

1 keV, φ = (αX − 1)/γ, αX = 0.7 and γ = 8/3.

The calculation of the generalized incomplete gamma function was done as a difference of the

normalized lower incomplete gamma function. The relevant commands from the scipy.special

package in Python 2.7.10 are gamma(a) and gammaincc(a,x). This was done in two different ways:

one using a difference of upper incomplete gamma functions and the other using a difference of

lower incomplete gamma functions. Both gave identical results however the method using the
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lower incomplete gamma functions was on the order of 4 times faster than the upper incomplete

gamma functions and so that was used for the calculations. It will be seen in Figure B.2 that

floating point errors led to the function being non-smooth over its entire domain.

100 103 106 109 1012 1015 1018 1021 1024
Column Density NH [cm−2]

10−20

10−17

10−14

10−11

10−8

10−5

10−2

S(
τ X
)

Figure B.2: The attenuation term S(τX) calculated as a difference of lower incomplete gamma
functions using the scipy.special package.

To rectify this problem, the mpmath package was used to increase the number of decimal places

that the calculation used. This used the gammainc gen low(a,x1,x2) command which gave the

smooth curve in Figure B.3
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Figure B.3: The attenuation term S(τX) calculated as a difference of lower incomplete gamma
functions using the mpmath package.

The total attenuation term B for the HXR field is given by the combination

B ≡ S(τX)

τφ+1
X

. (B.2)

This is shown in Figure B.4 It can be seen that the attenuation doesn’t become significant until

a total hydrogen column density of about NH ∼ 1020 cm−2 is reached. Note that the attenuation

term B is not normalized to 1 as it is would be if it was strictly attenuating the HXR radiation

field. It is a part of the total energy deposition rate of the HXR along with the ”unattenuated”

portion β. This is not a problem as the computation uses the combined βB term to determine

densities.

97



100 103 106 109 1012 1015 1018 1021 1024

Column Density NH [cm−2]

10−5

10−4

10−3

10−2

10−1

100

101

S(
τ X
)N

−ϕ
−
1

H

Figure B.4: The total attenuation term of the HXR spectrum.

As the solution of S(τX) is a function of the hydrogen column density, solving for the atomic and

molecular hydrogen fractions equations (4.2a) and (4.2b) respectively, is computationally intensive

so an analytic approximation to B was found. A close approximation was found for B in log-

log scale that is more computationally efficient. This approximation can be given by an oblique

hyperbola which is given in asymptotic form as

(0.000007268NH +B − 0.0522466)(0.8987NH +B − 19.4507) = 0.04. (B.3)

For the computational model, equation (B.3) is given in terms of B(NH)

B = −5.26963
√

7.27113× 10−3N2
H − 3.13897× 10−1NH + 3.38921− 0.44935NH + 9.75147 (B.4)

98



A comparison of equation (B.2) and (B.3) is shown in Figures (B.5) and (B.6)
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Figure B.5: A comparison of the analytic and numerical forms of S(τX)N−φ−1
H .
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Figure B.6: A comparison of the analytic and numerical forms of S(τX)N−φ−1
H in the region where

attenuation begins to occur.
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Appendix C

Analytic Best Fit Curves
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Figure C.1: The HXR perturbation transition point curve (solid blue line) superimposed with the
analytic model (orange dashed line) for σ̃d = 0.01 and αG = 0.01. A variation of ± 0.2 dex is
shown around the analytic fit line (light grey strip).
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Figure C.2: The HXR perturbation transition point curve (solid blue line) superimposed with the
analytic model (orange dashed line) for σ̃d = 0.1 and αG = 0.01. A variation of ± 0.2 dex is shown
around the analytic fit line (light grey strip).
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Figure C.3: The HXR perturbation transition point curve (solid blue line) superimposed with the
analytic model (orange dashed line) for σ̃d = 1 and αG = 0.01. A variation of ± 0.2 dex is shown
around the analytic fit line (light grey strip).
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Figure C.4: The HXR perturbation transition point curve (solid blue line) superimposed with the
analytic model (orange dashed line) for σ̃d = 10 and αG = 0.01. A variation of ± 0.2 dex is shown
around the analytic fit line (light grey strip).
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Figure C.5: The HXR perturbation transition point curve (solid blue line) superimposed with the
analytic model (orange dashed line) for σ̃d = 0.01 and αG = 0.1. A variation of ± 0.2 dex is shown
around the analytic fit line (light grey strip).
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Figure C.6: The HXR perturbation transition point curve (solid blue line) superimposed with the
analytic model (orange dashed line) for σ̃d = 0.1 and αG = 0.1. A variation of ± 0.2 dex is shown
around the analytic fit line (light grey strip).
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Figure C.7: The HXR perturbation transition point curve (solid blue line) superimposed with the
analytic model (orange dashed line) for σ̃d = 1 and αG = 0.1. A variation of ± 0.2 dex is shown
around the analytic fit line (light grey strip).
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Figure C.8: The HXR perturbation transition point curve (solid blue line) superimposed with the
analytic model (orange dashed line) for σ̃d = 10 and αG = 0.1. A variation of ± 0.2 dex is shown
around the analytic fit line (light grey strip).
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Figure C.9: The HXR perturbation transition point curve (solid blue line) superimposed with the
analytic model (orange dashed line) for σ̃d = 0.01 and αG = 1. A variation of ± 0.2 dex is shown
around the analytic fit line (light grey strip).
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Figure C.10: The HXR perturbation transition point curve (solid blue line) superimposed with the
analytic model (orange dashed line) for σ̃d = 0.1 and αG = 1. A variation of ± 0.2 dex is shown
around the analytic fit line (light grey strip).
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Figure C.11: The HXR perturbation transition point curve (solid blue line) superimposed with the
analytic model (orange dashed line) for σ̃d = 1 and αG = 1. A variation of ± 0.2 dex is shown
around the analytic fit line (light grey strip).
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Figure C.12: The HXR perturbation transition point curve (solid blue line) superimposed with the
analytic model (orange dashed line) for σ̃d = 10 and αG = 1. A variation of ± 0.2 dex is shown
around the analytic fit line (light grey strip).
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Figure C.13: The HXR perturbation transition point curve (solid blue line) superimposed with the
analytic model (orange dashed line) for σ̃d = 0.01 and αG = 10. A variation of ± 0.2 dex is shown
around the analytic fit line (light grey strip).
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Figure C.14: The HXR perturbation transition point curve (solid blue line) superimposed with the
analytic model (orange dashed line) for σ̃d = 0.1 and αG = 10. A variation of ± 0.2 dex is shown
around the analytic fit line (light grey strip).
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Figure C.15: The HXR perturbation transition point curve (solid blue line) superimposed with the
analytic model (orange dashed line) for σ̃d = 1 and αG = 10. A variation of ± 0.2 dex is shown
around the analytic fit line (light grey strip).
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Figure C.16: The HXR perturbation transition point curve (solid blue line) superimposed with the
analytic model (orange dashed line) for σ̃d = 10 and αG = 10. A variation of ± 0.2 dex is shown
around the analytic fit line (light grey strip).
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