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Abstract 

The objective of this study was to develop a predictive model that utilizes a Light 

Gradient Boosting Machine (Light-GBM) to accurately assess the risk of severe radiation-

induced toxicities in cancer patients undergoing chemoradiotherapy. The occurrence of these 

toxicities can have a substantial impact on the patients' quality of life. The Light-GBM model 

using clinical feature alone or integrating radiomic features extracted from computed 

tomography (CT) images used in treatment planning with clinical features can enhance the 

accuracy of early prediction. 

The study included 179 breast cancer patients and 223 patients with nasopharynx cancer 

who were treated with both radiotherapy and chemotherapy from April 2005 to October 2020. 

All of the patients with nasopharynx cancer had pre/postoperative CT/MR scans. The clinical 

features extracted from the medical records of patients included age, cancer stage, tumor size, 

tumor location, medical history, chemotherapy drugs, targeted therapy drugs, hormone therapy 

drugs, distant metastases, surgery, radiation therapy position, radiotherapy dose. The additional 

clinical features were also extracted from breast cancer patients, including electrocardiograph 

(ECG) signal score, and left ventricular ejection fraction (LVEF) value before radiotherapy. The 

Light-GBM was used to develop predictive models to predict oral mucositis and radiation 

dermatitis in nasopharynx patients and cardiotoxicity in breast cancer patients, respectively. The 

utility of the developed models was evaluated via receiver operating characteristic curve (ROC) 

and area under the curve (AUC). 

In breast cancer case, the patients were randomly divided into a training set (n=150) and a 

test set (n=29). A Light GBM enabled predictive model was developed using patients’ clinical 

features. The utility of the developed model was evaluated via ROC. The AUC of the 
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cardiotoxicity Light-GBM model was 0.82, higher than the clinical significance threshold of 0.7. 

Age, LVEF value before radiotherapy, cancer position, targeted therapy, tumor stage, and 

hormone therapy were the most valuable influencing factors. Specifically, we found that more 

severe cardiotoxicity occurred in patients with older age, higher LVEF value before 

radiotherapy, later tumor stage, and abnormal ECG signals with bradycardia, tachycardia, T 

wave, and Q wave abnormalities. 

For nasopharyngeal cancer patients, we developed two Light-GBM machine learning 

models: Model A, which included only clinical features, and Model B, which combined radiomic 

and clinical features. The models were trained using a training set of 200 samples and validated 

with a test set of 20 samples. A total of 756 radiomic features were extracted from the planning 

target volume (PTV), gross tumor volume (GTV), clinical target volume-GTV (CTV-GTV), 

clinical target volume (CTV), and organs at risk regions in the images. The models' abilities to 

predict severe toxicities were evaluated using ROC analysis in the validation cohort. 

The AUC values for Model A, which predicted six different toxicities (radiation oral 

mucositis, radiation dermatitis, skin ulcer, sternocleidomastoid muscle toxicity, thyroid toxicity, 

and skin thickness toxicity), were 0.8, 0.71, 0.72, 0.68, 0.75, and 0.64, respectively. In contrast, 

Model B demonstrated increased AUC values of 0.86, 0.81, 0.84, 0.77, 0.89, and 0.8. Feature 

importance analysis revealed that T stage, age, radiation dose, chemotherapy drugs, and 14 

radiomic features were the most valuable risk prediction factors.  

The results of this study illustrate the potential of utilizing machine learning models to 

predict various radiation-related toxicities. This approach facilitates the early identification of 

patients who may benefit from personalized chemoradiotherapy, timely interventions during or 

after chemoradiotherapy, or the use of alternative treatment technologies. 
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Chapter 1 Introduction 

1.1 Radiation Therapy and Radiation-included Toxicity 

Radiation therapy (RT) is a widely accepted treatment option for cancerous tumors. 

Although administering RT optimally requires striking a balance between maximizing the dose 

to the tumor while minimizing the dose to normal tissue, the mechanism of radiation-induced 

cell death does not solely target cancer cells [1]. RT employs ionizing radiation to eliminate 

tumor tissue, but it can also harm normal tissue by causing direct or indirect damage to DNA 

through ionizing radiation. This triggers a sequence of events that may lead to cell death and 

toxicity [2]. 

The toxic effects of RT are divided into three categories: early, subacute, and late [3]. 

Early toxicities typically occur during cancer treatment or immediately after its completion. 

Early toxicities may appear within hours or days of receiving therapy, and they are generally 

temporary, resolving as the body recovers from treatment. Examples of early toxicities include 

acute nausea and vomiting, immediate skin reactions, or allergic reactions to chemotherapy 

drugs. Subacute toxicities manifest within days to a few weeks after the initiation of treatment 

and may persist for some time following its completion [4]. Subacute toxicities can be a 

continuation of early toxicities or new symptoms that develop as the cumulative effect of 

treatment takes its toll on the body. Examples of subacute toxicities include fatigue, mucositis, 

and hematological toxicity. Late toxicities, also known as long-term side effects or late effects, 

are complications that arise months or even years after cancer treatment has been completed [3]. 

Unlike early and subacute toxicities, late toxicities can have a more chronic or long-lasting 

impact on a patient's health and quality of life. Some common late toxicities include secondary 
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cancers, cardiovascular issues, lung problems, kidney damage, neurological issues, hormonal 

imbalances, bone issues, and growth and development issues  [3, 4]. How to manage and when to 

intervene those toxicities in cancer patients receiving chemoradiotherapy is a focus of clinical 

attention. 

1.2 Cardiotoxicity in Breast Cancer Patients Receiving Radiotherapy 

Radiation therapy, in particular, has played a vital role in breast cancer treatment, which 

is the most common cancer type among women globally [5, 6]. According to the American 

Cancer Society's biennial report on breast cancer statistics in the United States, the death rate for 

breast cancer was 1.3% between 2011 and 2017 [7].Fortunately, the prognosis for operable non-

metastatic breast cancer is excellent, with an estimated 5-year overall survival rate of 90%. 

Currently, radiation therapy is a standard of care for managing this type of breast cancer as it has 

been shown to reduce breast cancer mortality [8]. 

However, RT can have negative effects on cardiovascular health of breast cancer patients, 

which can significantly impact patients' survival and quality of life [9]. Its associated 

cardiotoxicity can lead to cardiomyopathy, and in severe cases, progress to heart failure, 

hindering the effectiveness of RT [10]. Currently, the risk of potential cardiotoxicity remains a 

concern. An accurate method of evaluating cardiac radiation exposure can predict radiation-

induced cardiac side effects, and this information can be used to adjust the clinical treatment 

plan. 
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1.3 Radiation-induced Toxicities in Nasopharynx Patients Undergoing Concurrent 

Chemoradiation Therapy 

Nasopharynx cancer (NPC) is a type of cell carcinoma that originates from the inner 

lining of the nasopharynx and has a tendency to spread to other parts of the body. Its aggressive 

nature is one of the biggest obstacles in treating NPC, with a very poor outcome once it has 

metastasized, resulting in a 91% death rate within a year after the initial metastasis [9]. NPC is 

known for its early spread to the lymphatic system and a high likelihood of spreading through the 

bloodstream. Many patients are diagnosed at an advanced stage of the disease, which makes 

treatment challenging due to the nasopharynx's proximity to vital structures [10]. 

Nasopharyngeal cancer is associated with various factors, including genetic, dietary, 

environmental, and EB virus infections [14]. Due to the nasopharynx's hidden location, early 

symptoms of nasopharyngeal cancer are complex and lack distinct characteristics, which makes 

it difficult for patients to discover the disease on their own and easy for it to be overlooked. Even 

when patients seek medical attention, 80% of cases are already in the late stage. 

There are several treatment options available for nasopharyngeal cancer, including 

radiation therapy, surgical treatment, and immunotherapy. However, more than 95% of 

nasopharyngeal cancer cases belong to poorly differentiated or undifferentiated types with high 

malignancy and rapid growth, often leading to lymph node or vascular metastasis. Unfortunately, 

at the time of diagnosis, 75% of patients have already reached stages III and IV, making surgical 

treatment unsuitable for patients in these stages as it has a high risk of recurrence or metastasis 

[12, 15, 16]. Therefore, radiation therapy is considered the first-line treatment for 

nasopharyngeal cancer.  
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Radiation therapy can inadvertently damage the muscle fibers or surrounding blood 

vessels, leading to inflammation, scarring, or muscle atrophy. Common toxicities experienced by 

nasopharyngeal cancer patients undergoing chemoradiotherapy include radiation-induced oral 

mucositis, dermatitis, skin ulcers, muscle damage in the sternocleidomastoid, thyroid 

dysfunction, and increased skin thickness [7-10].  

Severe toxicities can substantially reduce patients' quality of life. For example, oral 

mucositis may cause difficulty swallowing, leading to malnutrition and weight loss. Radiation 

dermatitis and skin ulcers can be painful and limit patients' daily activities. Thyroid dysfunction 

can affect energy levels, metabolism, and overall well-being. Addressing these toxicities can 

help improve patients' quality of life during and after cancer treatment [7-10]. 

1.4 DICOM-RT  

In the nasopharynx cancer toxicity study, a predict model was built via combing patients' 

clinical data and radiomic features to improve prediction performance. The DICOM standard, 

widely used in radiology for diagnostic imaging, has been extended for use in sub-specialties 

such as radiation therapy through the development of DICOM-RT (DICOM in Radiation 

Therapy) [11]. In our study, patients were scanned using a CT scanner, which produced DICOM 

computed tomography (CT) images that were used for the Light-GBM model building. DICOM 

files can be complex as it is essential to have a thorough understanding of the standard and 

appropriate tools for data analysis. Additionally, patient privacy and data security are vital 

considerations when working with medical imaging data. 
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1.5 Imaging Biomarker Explorer 

The Imaging Biomarker Explorer (IBEX) is a radiomics tool that is freely available to the 

public [12]. It was developed by the MD Anderson Cancer Center with a user-friendly interface 

to facilitate the extraction and calculation of quantitative features from medical images, which 

can assist in cancer treatment decision-making. For this study, IBEX was used to extract various 

types of features commonly used in radiomics for medical physics. These features were 

classified into groups, such as gray level co-occurrence matrix, gray level run length matrix, 

intensity, neighborhood intensity difference matrix, and shape. Users can modify the parameters 

for each feature set as required. The use of IBEX allowed us to extract critical data from medical 

images, which could aid in the development of cancer treatment plans. The tool's accessibility 

and user-friendly interface make it a valuable resource for healthcare professionals and 

researchers [13-16]. Figure 1 shows the IBEX user interface for extracting features from 

patient’s DICOM-RT files. 
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Figure 1: Example showing IBEX user interface for extracting features from patient’s DICOM-RT files 

 

 

1.6 Light Gradient Boosting Machine (Light-GBM) Model 

The Light-GBM Model [17-19] is a gradient boosting framework that uses tree-based 

learning algorithms. It has been optimized for efficiency and distribution, offering several key 

benefits, such as faster training speed, improved performance, lower memory consumption, 

higher precision, support for parallel and distributed learning, GPU compatibility, and the ability 

to process large-scale data. Contrary to most decision tree learning algorithms, which construct 

trees level-wise, Light-GBM grows trees leaf-wise (best-first) [20] (as shown in Figures 2 and 3). 

This algorithm selects the leaf with the highest delta loss for expansion, keeping the leaves fixed 

to achieve lower loss than level-wise algorithms. Light-GBM uses histogram-based algorithms to 

place continuous feature values into discrete bins. [19, 21, 22]. This approach accelerates the 
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training process, reduces memory usage, and offers several benefits, including lower 

computational cost for calculating the gain of each split, histogram subtraction for additional 

speed, lower memory consumption, and reduced communication cost for distributed learning. 

 

 

Figure 2: Normal decision tree learning algorithms.  

 

Figure 3: Light-GBM decision tree learning algorithms.  

 

 

Owing to the leaf-wise tree growth characteristic, Light-GBM may cause overfitting with 

small datasets. To address this problem, it includes the parameter "max_depth" to limit tree 

depth. However, even with "max_depth" set, Light-GBM continues to grow tree leaf-wise. 
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Light-GBM offers a unique approach to handling categorical features during the splitting 

process. While one-hot encoding is a widely used method for representing categorical features, it 

may not be the most efficient approach for tree-based models, especially for high-cardinality 

categorical features. When a tree is built on one-hot encoded features, it may become imbalanced 

and require a deep structure to achieve high accuracy. Instead of using one-hot encoding, Light-

GBM uses a technique that groups the categories of a categorical feature into two sets. For a 

feature with k categories, there are 2^(k-1) - 1 possible partitions. However, Light-GBM has an 

efficient solution for finding the optimal partition that takes approximately (k * log(k)) time for 

regression trees [22].  

Light-GBM has seen success in many medical applications. For instance, Gao et al. 

developed a model to predict acute kidney injury in ICU patients using Light-GBM [23]. Zhou et 

al. showed that Light-GBM outperforms Support Vector Machine (SVM) in detecting 

Alzheimer’s disease from brain imaging samples [17]. By using Light-GBM as an auxiliary 

decision support tool, clinical medical staff can work more efficiently by leveraging data-driven 

insights, ultimately reducing workload. This complementary relationship between Light-GBM 

and clinical medical staff helps improve diagnosis and treatment outcomes [18]. 

In this project, a Light-GBM-enabled predictive model was developed to integrate 

patients' electronic medical records (EMRs) to predict patients' toxicities years after undergoing 

chemoradiotherapy. By leveraging the power of Light-GBM, the predictive model offers 

improved accuracy and efficiency in forecasting treatment induced toxicities, ultimately 

contributing to better patient care and management strategies. With Light-GBM's continued 

advancement and application in medical scenarios, we can expect to see more innovations that 

help healthcare professionals make data-driven decisions to improve patient care. 
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1.7 Receiver Operating Characteristic Curves and Area Under the Curve value  

Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) are 

commonly used in machine learning for various purposes, such as evaluating the performance of 

diagnostic, decision support, and prognostic models. These curves have been thoroughly 

researched and applied in various statistical and medical domains [24-26]. 

The ROC curve serves as a graphical representation that delineates a classifier's 

performance across a range of classification thresholds. By plotting the True Positive Rate (TPR, 

also known as sensitivity) against the False Positive Rate (FPR, or 1-specificity), the ROC curve 

demonstrates the model's capacity to accurately classify instances while concurrently minimizing 

erroneous classifications (shown in Figure 4 below). In contrast, the Area Under the Curve 

(AUC) quantifies a classifier's overall performance as a single value, derived from calculating 

the area beneath the ROC curve. AUC values range from 0 to 1, with values exceeding 0.5 

signifying a classifier possessing some level of discriminatory ability—higher values are 

indicative of enhanced performance. A classifier with an AUC of 1 demonstrates perfect 

discrimination between positive and negative classes.  
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Figure 4: the ROC curve by plotting the TPR against FPR.  

 

 

Binary tests are a popular classification method used in medicine. They generate two 

clear-cut outcomes (e.g. positive or negative) to establish the unknown, such as determining the 

presence or absence of toxicity. The precision of these tests is often analyzed by using sensitivity 

(SN) and specificity (SP) as measurement tools, where: 

𝑆𝑁 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                               (1)  

𝑆𝑃 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                                               (2)  
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In the context of binary classification, true positives (TP), true negatives (TN), false 

positives (FP), and false negatives (FN) are terms used to describe the outcomes of a 

classification algorithm. True Positives (TP): These are cases where the model correctly predicts 

the positive class. True Negatives (TN): These are cases where the model correctly predicts the 

negative class. False Positives (FP): These are cases where the model incorrectly predicts the 

positive class. False Negatives (FN): These are cases where the model incorrectly predicts the 

negative class. 

1.8 Objectives 

The goal of this study is to investigate the feasibility of utilizing Light-GBM for 

predicting cardiotoxicity in breast cancer patients undergoing radiotherapy and for predicting 

radiation-induced toxicities in nasopharynx cancer patients undergoing concurrent 

chemoradiation therapy, respectively. The models used patients' chart data extracted from EMRs 

to predict potential cardiotoxicity and used combined radiomic features extracted from patients’ 

CT data and clinical features extracted from EMRs to predict the nasopharynx cancer toxicity in 

the years following chemoradiotherapy treatment. This will facilitate timely intervention and 

appropriate treatment in patients with both breast cancer and nasopharynx cancer. These models 

serve as a robust, quantitative, and predictive diagnostic tool for radiotherapy-induced toxicities, 

providing clinically actionable information to the clinical end-users, such as radiation 

oncologists, for reliable prediction of several toxicities.  
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Chapter 2 Development and validation of a light-GBM 

enabled model to predict cardiotoxicity in breast cancer 

patients receiving radiotherapy 

2.1 Introduction 

2.1.1 RT-induced Cardiotoxicity in Breast Cancer Patients 

Radiotherapy is an effective treatment in reducing the risk of local recurrence, shrinking 

tumor size, and decreasing mortality rates in breast cancer patients [27]. However, it can also 

adversely affect normal tissues within the irradiation field, particularly the heart. These toxicities 

caused by radiation can significantly decrease the quality of life for cancer survivors. 

Radiation therapy for breast cancer may result in long-term cardiac toxicity, such as heart 

failure, coronary artery disease, myocardial infarction, and cardiovascular death, up to 10 years 

post-treatment. The risks associated with these toxicities are estimated to range from 1.2 to 3.5 

times for patients who received left breast treatment, which entails higher heart exposure, versus 

those treated for the right breast or not exposed to RT at all [28-31].  

 Retrospective studies analyzing the medical records of breast cancer patients who 

received radiation therapy and underwent coronary angiography several years later have 

established a correlation between radiation exposure and the location of stenosis. These studies 

discovered that stenosis commonly occurred in the left anterior descending artery [32, 33]. 

Previous studies have emphasized the importance of considering both the location of radiation 

doses on heart structures and their localized effects, particularly on coronary arteries [34-36].  

2.1.2 Left Ventricular Ejection Fraction  
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Current methods for identifying early stages of chemoradiotherapy-induced 

cardiotoxicity remain suboptimal and costly. The most commonly employed technique for 

monitoring anthracycline-induced cardiotoxicity is cardiac magnetic resonance imaging (CMR), 

which offer a comprehensive assessment for detecting cancer therapy-related cardiac dysfunction 

(CTRCD) [37, 38]. In recent years, cardiac ultrasound has been adopted in oncology for 

detecting cardiotoxic treatment-induced changes in Left Ventricular Ejection Fraction (LVEF). 

This approach utilizes  real-time imaging, noninvasive nature, non-ionizing radiation, and lower 

cost ultrasound imaging systems, and has proven useful in the early diagnosis of 

chemoradiotherapy-induced cardiotoxicity [39]. 

LVEF is a critical indicator of left ventricular systolic function, measured as the ratio of 

blood expelled from the left ventricle during systole (stroke volume) to the volume of blood in 

the ventricle at the end of diastole (end-diastolic volume). Stroke volume is calculated as the 

difference between end-diastolic volume (EDV) and end-systolic volume (ESV). The formula for 

LVEF is as follows: LVEF = (SV/EDV) x 100. The SV and EDV values can be measured using 

cardiac ultrasound.  

The American College of Cardiology (ACC) has established a simple classification 

system for the clinical use of LVEF, which includes the following categories: Hyperdynamic 

(LVEF > 70%), normal (LVEF between 50% and 70% with a midpoint of 60%), mild 

dysfunction (LVEF between 40% and 49% with a midpoint of 45%), moderate dysfunction 

(LVEF between 30% and 39% with a midpoint of 35%), and severe dysfunction (LVEF < 30%) 

[36]. According to the American Society of Echocardiography (ASE) and the European 

Association of Cardiovascular Imaging (EACVI), cardiotoxicity is defined as a decline in Left 
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Ventricular Ejection Fraction (LVEF) by more than 10% below the lower threshold of normal, 

which is set at 53%, and is not related to any symptoms [40].  

Echocardiography has been employed in recent years to elucidate early RT-induced 

cardiovascular effects in chemotherapy patients [41, 42]. The New York Heart Association 

(NYHA) classifies a decrease greater than 15% in the global longitudinal strain (GLS) from the 

baseline GLS value as evidence of subclinical left ventricular (LV) dysfunction [43, 44].  In this 

study, two-dimensional echocardiography with speckle-tracking imaging was conducted at 

baseline (pre-chemotherapy), before and after radiation therapy (pre-RT and post-RT), and 6 

months post-RT, used together with LVEF to enhance accuracy. 

2.1.3 Objective of the Work 

Previous research on cardiotoxicity has primarily focused on anthracycline chemotherapy 

drugs [45-48], trastuzumab [42, 49, 50], and standalone radiotherapy [51]. However, 

cardiotoxicity generally stems from the combined effects of multiple treatments rather than an 

individual factor. Tuohinen et al. [13] utilized ECG and echocardiography to assess 

chemoradiotherapy toxicity without developing a predictive model. Ryberg et al [41] identified 

risk factors for cardiotoxicity, using factors including targeted therapy, advanced tumor stage, 

age, anthracyclines, targeted drugs, and abnormal ECG signals before therapy. In this work, we 

develop an innovative model for predicting cardiotoxicity arising from chemoradiotherapy using 

a combination of echocardiography and ECG for toxicity assessment. We further considered 

atypical LVEF values as a potential feature associated with an increased risk of cardiotoxicity. 
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2.2 Methods and Materials 

2.2.1 Patients and Inclusion Criteria 

A total of 179 breast cancer patients were included in this study with stage I-IV breast 

cancer who underwent both radiation therapy and chemotherapy at Sichuan Cancer Hospital, 

China, between April 2005 and October 2020. The patients were followed for one to four years 

after receiving therapy. Patients with the majority of their data missing were excluded from the 

study. For patients missing one or two characteristics, since “N/A” constituted only a small 

percentage of the total data for each patient (0.56% to 4.47%), we replaced “N/A” with the 

median value of this feature for all patients. To achieve more accurate cardiotoxicity results from 

ultrasound LVEF values and ECG scores, a cardiologist and a sonographer provided their 

expertise and assistance. 
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2.2.2 Flowchart of Light-GBM Model 

 

Figure 5: Flowchart of the development of a Light-GBM predictive model. 

 

 

Figure 5 illustrates the workflow for the Light-GBM model applied to breast cancer 

patients for cardiotoxicity prediction. After data collection, features that failed to meet the 

specified criteria were removed and those meeting the inclusion criteria were retained. The 

selected features were then preprocessed and normalized to numerical values (Section 2.2.2) for 

the Light-GBM model's interpretation. Subsequently, the dataset was randomly partitioned into a 

training set (n=150) and a test set (n=29), with the training set used for model development and 

the test set employed for performance evaluation. 

Then, we proceeded to train the Light-GBM model, adjusting various hyperparameters, 

such as learning rate, maximum tree depth, and the number of boosting rounds, to guarantee 

optimal model development. The final specific configurations were established as follows: the 
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number of leaves at 31, the learning rate at 0.05, "feature_fraction" at 0.9, "bagging_fraction" at 

0.8, and "bagging_freq" at 5, wherein every 5th iteration was utilized for bagging. The trained 

model was saved to a file named 'model.txt' using the save_model() function. Subsequently, the 

trained model were employed to make predictions on the test dataset using the predict() function. 

Concurrently, the model's performance was evaluated using a 10-fold cross-validation method, 

which aimed to estimate generalization capabilities and avert overfitting. This procedure was 

conducted ten times with distinct randomly selected training and test datasets. 

In the final step, the prediction outcomes from each iteration in the 10-fold cross-

validation were examined via deriving performance metrics, encompassing ROC, AUC, 

accuracy, precision, recall, F1-score, and others. 

2.2.2 Features and Feature Normalization 

All features used for model training are listed in Table 1 below. 
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Table1. Training factors for Light-GBM Model  

Variable   Num

ber 

Percent

age 

Gender Male 1 0.56% 

Female 178 99.44% 

Age <40 17 9.50% 

40~60 128 71.51% 

>60 29 16.20% 

Tumor size T1 39 21.79% 

T2 113 63.13% 

T3 11 6.15% 

T4 8 4.47% 

N/A 8 4.47% 

Cancer position Right 94 52.51% 

Left 85 47.49% 

Cancer stage I 19 10.61% 

II 90 50.28% 

III 54 30.17% 

IV 16 8.94% 

Heart disease 

history 

Yes 54 30.17% 

No 119 66.48% 

N/A 6 3.35% 

ECG signal score 

before radiotherapy 

Normal 119 66.48% 

Arrhythmia, premature atria, and 

premature ventricular beats 

12 6.70% 

Bradycardia and tachycardia 15 8.38% 

T wave and Q wave 

abnormalities, intra- 

26 14.53% 

-atrialblock, and ST segment 

upper oblique elevation 

N/A 7 3.91% 

Distant metastases Yes 33 18.44% 

No 145 81.01% 

N/A 1 0.56% 

Hormone therapy Yes 110 61.45% 

No 66 36.87% 

N/A 2 1.12% 

chemotherapy 

drugs 

Epicorubicin and doxorubicin 155 86.59% 

Cyclophosphamide, paclitaxel, 

and docetaxel 

19 10.61% 

Capecitabine, vinorelbine, 

gemcitabine,  

3 1.68% 

cisplatin, nedaplatin, carboplatin, 

xeloda 

radiotherapy dose <40Gy 21 11.73% 

40~50GY 142 79.33% 

>50GY 16 8.94% 

surgery Breast conserving 116 64.80% 

Total excision 63 35.20% 
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To optimize the machine learning model's performance, all features were normalized, and 

certain categorical features were transformed into binary values. "Yes or no" questions were 

encoded as 1 for "yes" and 0 for "no," which allowed for effective model training and improved 

efficiency, such as heart disease history, distant metastases, hormone therapy, and target therapy 

drugs. 

For categorical features with only two options (e.g., gender, cancer position, and 

surgery), we encoded male, left, and breast-conserving as 0 and female, right, and total excision 

as 1. For numerical features (e.g., age, radiotherapy dose, and LVEF value before radiation 

therapy), we divided the values by 100 to fit the required range. For cancer stage and tumor size, 

which have multiple categories, we assigned T1 and stage 1 a value of 0, T2 a value of 0.33, T3 a 

value of 0.66, and T4 a value of 1. Finally, we included the ECG signal scores before 

radiotherapy, chemotherapy drugs, and target therapy drugs as additional features in the model. 

Based on clinical experience and literatures, we defined a normal ECG signal as 0 and various 

types of arrhythmias, premature atrial and ventricular beats, bradycardia, and tachycardia as 0.1. 

T wave and Q wave abnormalities, intra-atrial block, and ST segment elevation were assigned a 

value of 0.3. In terms of the potential cardiotoxicity of chemotherapy drugs and target therapy 

drugs, we rated epirubicin and doxorubicin as 0.3 (high potential for cardiotoxicity), 

cyclophosphamide, paclitaxel, and docetaxel as 0.2 (moderate potential for cardiotoxicity), and 

targeted therapy 

drugs 

None 115 64.25% 

Trastuzumab 41 22.91% 

Pertuzumab 22 12.29% 

Bevacizumab 1 0.56% 

LVEF value before 

radiotherapy 

<60 15 8.38% 

60~70 113 63.13% 

>70 51 28.49% 
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capecitabine, vinorelbine, gemcitabine, cisplatin, nedaplatin, carboplatin, and xeloda as 0.1 (low 

potential for cardiotoxicity). Similarly, we rated bevacizumab as 0.3, pertuzumab as 0.2, and 

pertuzumab as 0.1 based on their potential for cardiotoxicity. All optimized feature values are 

consolidated in Excel CSV files to facilitate seamless integration with the Light-GBM model. 

2.2.3 Model Building 

The Light-GBM library is implemented as a standalone module, and model development 

is carried out using the scikit-learn API. Python is employed to create training and validation 

datasets for processing patient CSV files in this project. Initially, we import LightGBM, pandas, 

and mean_squared_error from the sklearn library. Subsequently, the training and test datasets are 

read from CSV files and partitioned into features (X_train and X_test) and target variables 

(y_train and y_test). The pandas DataFrames are then transformed into LightGBM Datasets 

(lgb_train and lgb_eval) to facilitate model training. 

Following this, we establish the model's initial hyperparameters: number of leaves (n=35), 

learning rate (0.07), "feature_fraction" (0.09), and "bagging_fraction" (0.8). The LightGBM 

model is trained using the lgb.train() function with the specified parameters, setting the number 

of boosting rounds (n=20) and early stopping rounds (n=5) to prevent overfitting and reduce 

training time. Training will cease if there is no improvement in the performance metrics on the 

validation dataset for five consecutive rounds. The save_model() function is utilized to save the 

trained model in a text file for subsequent use. 

2.2.4 Model Training  

Patients were randomly allocated into a training set (n=150) and a validation set (n=29) 

for the development and validation of the Light-GBM predictive model. The model was 
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established based on 17 clinical features, including age, cancer stage, tumor size, tumor location, 

medical history, chemotherapy, targeted and hormone therapy drugs, distant metastases, surgery, 

radiation therapy position and dose, ECG signal score, and LVEF value prior to radiotherapy. To 

mitigate the risk of overfitting due to an excessive maximum tree depth in our small dataset, 

specific configurations were set as follows: the number of leaves at 31, the learning rate at 0.05, 

"feature_fraction" at 0.9, and "bagging_fraction" at 0.8.  

Lastly, to evaluate the model, a 10-fold cross-validation method is employed to assess its 

performance and generalization capabilities. This approach helps ensure that the model is not 

overfitting to a specific training set and can perform well on unseen data. The dataset was 

divided into ten equal folds, with the training and validation process carried out ten times. In 

each iteration, nine folds are used for training, while the remaining fold serves as a validation set 

to assess the model's performance. This process is repeated ten times, with each fold acting as 

the validation set exactly once. The performance of the model was obtained by averaging all ten 

AUC values. 

2.3 Results 

2.3.1 AUC  

The ROC curve for our Light-GBM model is shown in Figure6. With an AUC value of 

0.82, which is significantly higher than the clinical threshold of 0.7, our model demonstrates 

strong performance in predicting cardiotoxicity for breast cancer patients undergoing 

chemoradiotherapy. 
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Figure 6: ROC curve of our Light-GBM model. The AUC value is 0.82. 

 

 

2.3.2 Feature Importance 

Our results suggested that the two most severe cardiotoxicity-related features for patients 

analyzed by the Light-GBM model are patients' age and LVEF value before radiotherapy by 

“lgb.plot.importance” function. Features with higher importance are more influential in the 

model's predictions and should be considered more carefully when interpreting the model's 

output. As shown in Figure 7, these two features scored 105 and 97 in total, indicating greater 

importance than other features. Cancer position, chosen target therapy drugs, chosen 

chemotherapy drugs, ECG signal before radiotherapy, and tumor stage also have a significant 

influence on the model results (22-31 scores).  
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The results showed that cardiotoxicity increases with older age, later tumor stage, lower 

LVEF value before radiotherapy, and abnormal ECG signals with bradycardia, tachycardia, T 

wave, and Q wave abnormalities. Moreover, patients who received epirubicin and doxorubicin as 

chemotherapy drugs and took bevacizumab and pertuzumab as targeted therapy drugs exhibited 

more severe cardiotoxicity than others. 

 

 

 

Figure 7: Feature importance distribution by Light-GBM Model predicted, which Age, LVEF value before 

radiotherapy, cancer position, targeted/chemotherapy therapy drug chosen, and ECG signal are most considered 

influence factors. 
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2.4 Statistical Analysis 

The performance of the Light-GBM model is summarized in Table 2. For the validation 

set, the model achieved a sensitivity of 78.6%, specificity of 81.8%, F1 score of 81.5%, precision 

of 84.6%, and overall accuracy of 80.0%. For statistical analysis, a 10-fold cross-validation was 

conducted by randomly permuting the target variable from the dataset ten times in both the 

training set (n=150) and test set (n=29). The average of the ten AUC values is 0.822, with a 

standard deviation (σ) of 0.069 and a standard error of the mean (SEM) of 0.02. 

 

 
 

Table 2. The Performance of Light-GBM Model 

 

 

 

2.5 Discussion 

To the best of our knowledge, this is the first study to utilize a Light-GBM to construct 

predictive models that integrate patients' EMRs to predict cardiotoxicity in patients years after 

chemoradiotherapy treatment. The results of the performance of the model suggest that the 

Light-GBM model developed in this study is effective in identifying patients who are at high risk 

of cardiotoxicity.  

The study included 179 patients with stage I-IV breast cancer who underwent both 

radiation therapy and chemotherapy at Sichuan Cancer Hospital. We found that age, LVEF value 

 AUC Sensitivity Specificity F1 score Precision 
      

Accuracy 

 0.82 
±0.02 

0.79 ±0.03 0.82 ±0.05 
0.815 

±0.02 

0.846 
±0.02 

0.8 ±0.04 

Light-GBM Model: using 17 Clinical, Ultrasound and ECG features 
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before radiotherapy, cancer position, targeted therapy, tumor stage, and hormone therapy were 

the most influential factors. Similar research, such as Ryberg et al [38], has previously identified 

older age, targeted therapy, later tumor stage, hormone therapy, anthracyclines, targeted drugs, 

and abnormal ECG signals before therapy as risk factors for cardiotoxicity. However, our results 

suggest that patients with higher LVEF values before radiotherapy experienced more severe 

cardiotoxicity.  

The findings by Potter et al indicated that Radiation therapy-induced changes in the ECG 

are common among patients with breast cancer. By demonstrating simultaneous correlation with 

structural and functional changes in echocardiography, ECG changes can serve as surrogate 

markers for the assessment of the impact of radiation therapy on the heart in this patient 

population, both during the screening process and in follow-up evaluations [52]. 

Recent studies have demonstrated that 2D strain analysis has lower or comparable intra- 

and inter-observer variability than 2D LVEF, and it is more sensitive in detecting changes in left 

ventricular (LV) function [52, 53]. As a result, in future studies, we could consider utilizing 

speckle-tracking imaging to detect cardiac function and optimize the predictive power of the 

model. 

The limitation of our study is a small sample set limited by missing DICOM files for 

some patients due to the long data collection period (2005-2020). In this study, we only used the 

clinical characteristics as the training data for our Light-GBM Model. We have put the 17 

clinical features of 150 patients into the training dataset to train and optimize the model. The 

AUC value of the Light-GBM predictive model achieved in the validation set was 0.82. A larger 

sample size with an increased number of features would undoubtedly enhance the predictive 

capabilities of the model substantially. In future studies, by employing a more extensive sample 
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size and incorporating additional feature information, the model's predictive ability could be 

significantly improved. For instance, Jiang et al. achieved impressive results by combining 

clinical, dosimetric, and radiomics features in their machine learning model for predicting 

radiation pneumonitis from planning CT images [54]. Furthermore, additional image factors 

from breast cancer patients' DICOM and CT files will be included in future study, allowing us to 

determine the influencing factors of cardiotoxicity more accurately [44]. 

. The developed model allows radiation oncologists and medical physicists to optimize 

treatment planning and assess whether patients require early clinical intervention. Ultimately, 

this model could significantly reduce the impact of cardiotoxicity for breast cancer patients 

undergoing both radiotherapy and chemotherapy. 
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Chapter 3 Development and validation of a light-GBM 

enabled model to predict radiation-induced toxicity in 

nasopharynx cancer patients undergoing radiotherapy 

3.1 Introduction 

Nasopharyngeal cancer is known to be sensitive to radiation therapy. While radiation 

therapy effectively destroys tumor cells, it also inevitably exposes normal tissue or organ cells to 

radiation. Systemic radiation reactions include fatigue, dizziness, decreased appetite, nausea, 

vomiting, alterations in taste, and sleep disturbances. Mucosal reactions can occur after a 

radiation dose of 40Gy, causing swelling or congestion in the oral pharynx, nasal pharynx, nasal 

cavity, and accessory sinuses, and an increase in exudate. In severe cases, this can lead to 

punctate or patchy membranes [10]. Patients may also experience throat pain, difficulty eating, 

and nasal congestion during the radiation process.  

Other radiation reactions involve the salivary glands, such as decreased saliva secretion, 

dry mouth, and difficulty swallowing, as well as radiation injury to the brain and spinal cord 

[55]. Research has linked higher doses in areas such as the floor of the mouth, oral cavity, 

submandibular glands, parotid glands, brainstem's area postrema, and other sites to more severe 

toxicities [56-60],  Prior studies have investigated radiation toxicity in head and neck tumors, 

with published reports mainly focusing on oral mucositis, ocular toxicity, thyroid toxicity, 

pharyngeal toxicity, muscular toxicity, and radiation otitis media which significantly impact the 

quality of life for patients [61-65]. These studies predominantly emphasized clinical follow-up 

evaluations of toxicities, lacking quantitative assessment methods. Ishibashi N et al. [62] 

employed CT values of the thyroid gland before and after radiation to evaluate thyroid radiation 

toxicity, while Huang X et al. utilized CT values to assess sarcopenia induced by radiotherapy 
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[64]. Additionally, serum markers such as thyroid function and pretreatment serum vitamin 

levels have been used in radiation-induced thyroid toxicity and oral mucositis studies [63, 66]. 

However, these investigations only addressed single toxicities and did not provide a 

comprehensive quantitative assessment of multiple toxicities. 

Moreover, studies predicting radiotherapy toxicity are relatively scarce. Most have 

explored the correlation between toxicity and radiation dose based on the occurrence of 

corresponding toxicity, summarizing dose thresholds for specific toxicities. These studies did not 

employ predictive models. Guo Li et al.[67] used a Cox proportional hazards model, highlighting 

the detrimental impact of the vicious cycle of acute radiation toxicities and weight loss on NPC 

patient prognosis. However, due to the absence of established machine learning models, the 

performance of the AUC value was suboptimal. Machine learning models, which possess 

superior prediction capabilities, have only been applied to predict breast skin toxicity and 

radiation pneumonitis [53, 68]. 

To mitigate the occurrence of various toxicities and enhance patients' quality of life, there 

is an urgent need for an effective machine learning prediction model that addresses a wide range 

of radiation toxicities. In this study, we innovatively conduct quantitative assessments and 

grading of toxicities by comparing CT values, organ cross-sectional 

diameter/area/width/thickness changes in MRI/CT before and after radiotherapy. For the first 

time, to the best of our knowledge, we developed a Light-GBM tool for early prediction of 

severe radiation-induced toxicities. This tool is based on dose distribution, radiomics features 

within three ROIs, and patient physical information, as well as targeted therapy and 

chemotherapy regimens. 
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3.2 Material and Methods 

3.2.1 Patients and Inclusion Criteria 

A total of 223 patients with nasopharynx cancer receiving RT at Sichuan Cancer hospital, 

Chengdu, China between 2018 and 2021 were included in this study. All the patients were 

followed up in two months to two and half years after they received radiation therapy. All 

patients received pre- and post-RT MRI/CT scans. Toxicity outcomes were determined by 

comparing pre-RT and post-RT MRI/CT scans. Experienced radiologists assessed changes in CT 

values, organ section dimensions (diameter, area, and width), and skin thickness. 

Patients were categorized as having toxicity or non-toxicity based on the CTCAE 

(Common Terminology Criteria for Adverse Events) cut-off value of ≥ 2. The CTCAE cut-off 

value serves as a threshold in clinical research to distinguish between varying degrees of adverse 

events or toxicities experienced by patients during treatment. Developed by the National Cancer 

Institute (NCI), this standardized classification system consistently describes and grades the 

severity of side effects caused by cancer therapies. A CTCAE cut-off value of ≥2 encompasses 

all adverse events classified as grade 2 (moderate) or higher, emphasizing the focus on more 

severe toxicities.  

3.2.2 Features and Feature Normalization 

All the patients who have lost most of their data were excluded from this study. For 

patients who lack one or two features, as “N/A” only precents a small number of total features 

for each patient (0.56% to 4.47%), we consider “N/A” as the median number of that feature for 

all patients. 
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As shown in Table 2, the clinical features used in the study include gender, age, cancer 

stage, tumor size and location, chemotherapy and targeted therapy drugs, distant metastases, 

radiation therapy position and dose. Additionally, 756 radiomic features were extracted from 

images of the gross target volume (GTV), clinical target volume (CTV), CTV-GTV, planning 

target volume (PTV), and organs at risk (OAR) regions, and were selected as the training 

features. The IBEX 6.10 software was used to extract those radiomics features from 17 different 

regions of interest (ROIs) in treatment planning images, organized into 5 feature categories.  

To speed up the model training, all the features were normalized within the range of 0 to 

1. We represented all “yes or no” questions (heart disease history, distant metastases, hormone 

therapy, target therapy drugs) into 1 and 0, with patients having none of these conditions as 0, 

and opposite as 1. For gender (male or female) and cancer position (left or right) those only have 

two sides features, we unified male, left as 0, and female, right as 1. We divided age and dose 

values by 100. For cancer stage, we set stage 1 as 0, stage 2 as 0.33, stage 3 as 0.66 and stage 4 

as 1. For chemotherapy drugs and target therapy drugs, we consider arrhythmia, premature atria, 

and premature ventricular beats, we set them as 0.1. Bradycardia and tachycardia as 0.2. And 

according to different chemotherapy drugs and target therapy drugs’ potential toxicity influence, 

we consider Epicorubicin and doxorubicin as 0.3. Cyclophosphamide, paclitaxel, and docetaxel 

as 0.2. Capecitabine, vinorelbine, gemcitabine, cisplatin, nedaplatin, carboplatin, xeloda as 0.3. 

Same with target therapy drugs, we set Bevacizumab as 0.3, Pertuzumab as 0.2 and Pertuzumab 

as 0.1. All optimized feature values are consolidated in Excel files to facilitate seamless 

integration with the Light-GBM model. 
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Table3: Training Clinical factors for Light-GBM Model 

Variable  Number Percentage 

Gender 
Male 138 61.88% 

Female 85 38.12% 

Age 

<44 69 30.08% 

44~62 94 42.15% 

>62 60 26.90% 

Tumor size 

T1 36 16.14% 

T2 67 30.04% 

T3 64 28.69% 

T4 56 25.11% 

Cancer 

position 

Left 78 34.98% 

Middle 65 29.15% 

Left 80 35.87% 

Cancer stage 

I 14 6.28% 

II 69 30.94% 

III 40 17.94% 

IV 100 44.84% 

Distant 

metastases 

Yes 192 86.09% 

No 31 13.90% 

 

chemotherapy 

drugs 

Epicorubicin and 

doxorubicin 
167 74.89%  

Cyclophosphamide, 

paclitaxel, and docetaxel 
46 20.63%  

Capecitabine, vinorelbine, 

gemcitabine, 
3 1.35%  

cisplatin, nedaplatin, 

carboplatin, xeloda 
4 1.79%  

radiotherapy 

dose 

<65Gy 27 1.21%  

65~70GY 160 71.75%  

>70GY 36 16.14%  

targeted 

therapy 

Yes 144 64.57%  

No 79 35.42%  

targeted 

therapy drugs 

Trastuzumab 163 73.09%  

Pertuzumab 50 22.42%  

Bevacizumab 10 4.48%  
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3.2.3 Light-GBM Model Building and Training 

The Light-GBM model and Python program were employed in this study. In the study of 

nasopharynx cancer patients, 223 patients were randomly divided into a training set of 203 

patients and a validation set of 20 patients. The Light-GBM model was developed using only 

clinical features (Model A) or a combination of clinical and radiomic features (Model B). The 

performance of the models in predicting severe toxicities was evaluated using ROC analysis on 

the validation cohort. 

3.3 Results 

3.3.1 AUC  

We developed two distinct models for more effective comparison of results. Model A, 

which incorporates only clinical features, yielded AUC values for sternocleidomastoid muscle 

toxicity, radiation oral mucositis, radiation dermatitis, skin ulcer, thyrotoxicity, and skin 

thickness toxicities of 0.8, 0.71, 0.72, 0.68, 0.75, and 0.64, respectively (Figure 8). Upon 

incorporating radiomics features into the Light-GBM model training for Model B, the AUC 

values for the six toxicities improved to 0.86, 0.81, 0.84, 0.77, 0.89, and 0.8 (Figure 9). The 

results demonstrated that by incorporating radiomic features, the accuracy of the Light-GBM 

model has significantly improved. 
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Figure 8: The receiver operating characteristic (ROC) curves for Model A, which only built with clinical factors. 
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Figure 9: The ROC curves for Model B, which training by combining clinical and dosimetry factors. 

 

 

3.3.2 Feature Importance 

In this study, we also employed the "lgb.plot_importance" function from the Light-GBM 

library in Python to examine the significance of features for model prediction. The feature 

importance analysis revealed that T stage, age, radiation dose, chemotherapy drugs, and 14 

distinct radiomic features were the most valuable risk prediction factors, as shown in Figure 10. 

Later T stages, older age, higher radiation doses, and increased PTV, CTV, and GTV values 

were associated with more severe toxicity than others. 
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Figure 10: Total feature importance analysis to show the most valuable influencing factors that contributes to the 

prediction of Light-GBM Models. Abbreviations: Std =Standard; NIDM =neighborhood intensity difference matrix; 

Nov =Number of Voxel; GLCM =gray-level co-occurrence matrix 

 

 

3.4 Statistical Analysis 

The calculated t-value between the two distinct models, at 6.82, considerably surpasses 

the critical t-value of 2.571. As a result, the null hypothesis can be rejected, denoting a 

statistically significant difference between the two models. The combined Model B outperforms 

Model A, which was dependent solely on clinical features. 
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3.5 Discussion 

NPC is known to be sensitive to radiation therapy, which serves as the preferred 

treatment method for this type of cancer [69]. However, due to the inevitable exposure of 

surrounding healthy tissue to radiation, NPC patients may experience complications such as oral 

mucositis, radiation dermatitis, skin ulceration, changes in sternocleidomastoid muscle thickness, 

and thyroid toxicity after radiation therapy [61, 68, 70]. These complications can lead to pain, 

difficulty swallowing, weight loss, and may even necessitate treatment cessation, resulting in 

delayed tumor treatment and a reduced quality of life. Predicting radiation toxicity effectively 

can help identify patients at risk of developing severe radiation toxicity following chemotherapy, 

providing a basis for adjusting clinical treatment plans, reducing toxicity occurrences, and 

ensuring treatment completion. 

To enhance the prediction of radiotherapy toxicity in nasopharyngeal cancer patients, we 

developed a Light-GBM model based on clinical features and radiomics features for the first 

time. The challenge in controlling post-radiotherapy toxicity lies in optimizing the radiotherapy 

dose distribution to minimize late toxicity. For example, Xiao et al  [71] demonstrated that 

employing IMRT and SMART (simultaneous modulated accelerated radiation therapy) can 

protect healthy tissue, reduce late toxicity through optimal dose distribution, and improve long-

term local control rates when combined with synchronous chemotherapy.  

In this study, we assessed toxicity by comparing changes in CT values, organ cross-

sectional dimensions (diameter, area, and width), and skin thickness between pre-radiotherapy 

MRI/CT and post-radiotherapy MRI/CT scans, as evaluated by experienced radiation 

oncologists.  Out of the 223 patients included in this study, 71 patients (31% ratio) with a 
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CTCAE ≥ 2 were determined to have radiotherapy toxicity, which is consistent with previous 

studies.  

We have developed two distinct Light GBM models to predict radiation-induced toxicity 

in nasopharyngeal cancer patients by incorporating clinical variables and/or radiomic features. 

Model A includes only clinical features, while Model B optimizes the model by adding 

radiotherapy parameters, which significantly improves the AUC value compared to previous 

studies [72]. Effectively predicting radiotherapy toxicity helps identify nasopharyngeal cancer 

patients at risk of severe radiation toxicity after chemotherapy. This enables adjustments to 

clinical treatment plans, reduces the occurrence of toxicities, ensures treatment completion as 

planned, and improves patient quality of life post-tumor cure. 

Feature importance analysis reveals that T stage, age, radiation dose, chemotherapy 

drugs, and 14 radiomic features are the most valuable risk prediction factors. Patients with a late 

T stage, older age, higher radiation dose, and higher PTV, CTV, and GTV values of drugs 

exhibit more severe toxicity than others. To the best of our knowledge, our AUC results are 

comparable to or even surpass some related studies, such as the prediction of radiotherapy-

induced xerostomia in head and neck squamous cell carcinoma, as seen in the RTOG 0522 

clinical trial [72]. Table 3 shows a comparison of some of our results with other people’s work. 
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Table 4: Comparison of some model prediction results with other work. 

Method Toxicity Type AUC Values 

Men’s 3D rCNN[70] 

 

Men’s 3D rCNN without CT[70] 

 

 

Light-GBM Model 

 

Light-GBM Model 

Xerostomia 

 

Xerostomia 

 

 

Radiation Oral Mucositis 

 

Radiation Dermatitis 

0.82 

 

0.78 

 

 

0.86 

 

 

0.81 

 

 

 

In contrast to previous studies that focused on specific radiotherapy-induced toxicities, 

our research comprehensively investigates radiation-induced oral mucositis, radiation dermatitis, 

skin ulcers, chest wall pectoral muscle toxicity, thyroid toxicity, and skin thickness toxicity. We 

adopted the CTCAE ≥ 2 standard, as in prior studies [73], for assessing toxicity. Additionally, 

we involved experienced radiation oncologists in the evaluation of pre- and post-radiotherapy 

imaging, an innovative approach that enables more accurate toxicity determinations. 

Nonetheless, our study has limitations, being a single-center retrospective study. Future 

research could expand the sample size and conduct multi-center or prospective studies to acquire 

more reliable clinical data. This would enhance the model's predictive performance and better aid 

radiation oncologists in proactively preventing toxicity, adjusting radiotherapy plans promptly, 

and ultimately improving patients' quality of life. 

Despite its limitations, our study delivers valuable insights into predicting radiation-

induced toxicity in nasopharyngeal cancer patients. By combining clinical variables and radiomic 

features, our models contribute to a better understanding of factors influencing toxicity risk. This 
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knowledge can potentially inform clinical decision-making, facilitating more personalized 

treatment plans that minimize severe toxicity risks while maximizing therapeutic outcomes. 
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Chapter 4 Conclusion 

To summarize, our study demonstrated that the Light-GBM classifier can be utilized to 

develop predictive models for radiotherapy-induced breast cancer and nasopharynx cancer 

toxicity, which can automatically predict different toxicities using EMR data and patients' 

images. We successfully established an early toxicity risk prediction model that can facilitate the 

identification of cancer patients who are likely to develop severe radiation-induced toxicities 

after chemoradiotherapy. 

The ability to identify patients with potential cardiotoxicity and nasopharynx toxicity 

early on using an inexpensive and widely available point-of-care test has significant practical 

implications for toxicity diagnosis and management of patients from a precision medicine 

perspective. Our research has the potential to enhance the effectiveness of cancer treatments and 

improve patient outcomes. 
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