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ABSTRACT

I analyze new HIRES Radial Velocity (RV) data in conjunction with transit mid-times and

uncertainties from the full 17 quarters of Kepler data to reassess the orbital parameters of the

Kepler-36 system. Six additional RV measurements were taken by the Keck-HIRES spectrograph

from September 21, 2021 to October 11, 2021. I carry out a differential evolution Markov Chain

Monte Carlo-based (DEMCMC) analysis to infer improved orbital elements for the two known

planets in the system. Leveraging additional information provided by the new RV measurements,

I extend this DEMCMC analysis to a possible three-planet configuration. I explore the likelihood

of a third planet using common statistical tests as comparison tools for my fitted two-planet and

three-planet models of the Kepler-36 system. My analysis favors a three-planet model containing a

previously-undetected planet with a mass of an orbital period near 43 Earth-masses and an orbital

period near 170 days. Should future observations of this system further support the presence of

this third planet, it will place significant constraints on the formation and dynamical evolution of

this system—which produced the inner planet pair in such close proximity to each other, with a

period ratio near 7:6.
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To my wife, Sabrina, for remaining my greatest discovery.
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CHAPTER 1 INTRODUCTION

Through a combination of precise photometric measurements and the extension of the transit

method to that of transit timing variations (TTVs), the Kepler space telescope’s four-year period

of stellar observation has led to the discovery of thousands of planets and planetary candidates

(Coughlin et al. (2015), Morton et al. (2016)). While this mission had particular success detecting

planets with short orbital periods of <∼1yr, its limited duration establishes an inherent difficulty

when attempting to detect orbiting planets with longer periods. Additionally, photometric observa-

tions like those made by Kepler are poor at detecting non-transiting, inclined planets. A common

approach to further understand planetary systems observed by Kepler is to follow up on these ob-

servations with radial velocity (RV) measurements. Here I report on such a follow up performed

on the Kepler-36 system.

Initially discovered in Carter et al. (2012), the known Kepler-36 system consists of a sub-giant

star of near-solar mass and two transiting planets. Kepler-36b and Kepler-36c are known to have

masses on the order of magnitude of the Earth (mb ∼ 4M⊕ and mc ∼ 7M⊕) (Vissapragada et al.

2019) and orbit closely to their host star with a period ratio near 7:6. Adding to the uniqueness

of this planetary system is the proximity of the planets’ orbits and their vastly different densities.

The two planets have semi-major axes that differ by only 10.29%, yet their densities are 6.8 and

0.86 g/cm3, respectively. Because of these anomalous properties, the characteristics of this plan-

etary system have been exhaustively studied over the years (Lopez & Fortney 2013; Quillen et al.

2013; Bodenheimer et al. 2018; Agol & Carter 2019). However, spectroscopic observations of
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the host star reveal additional RV activity in this system unaccounted by the known planets. This

demonstrates a need to explore the possibility of additional bodies orbiting the host star.

This paper is structured as follows. In chapter 2 I highlight some historical research on the

Kepler-36 system. In chapter 3 I describe the data I use. In chapter 4 I detail the methods I used

to perform my analysis. In chapter 5 I compare the empirical results of my two-planet and three-

planet models. I also use statistical tests to explore the possibility of a third planet in the Kepler-36

system. Finally, in chapter 6, I provide direction for future research on the Kepler-36 system and

speculate on the consequences of my results.
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CHAPTER 2 BACKGROUND

As discussed previously, several attributes contribute to the anomalous and intriguing nature of

the Kepler-36 system and make analyses of this system a useful proxy for identifying edge cases

of planetary formation and evolution theories. Since its discovery in 2012, there have been several

such analyses.

The physical separation of the two known planets is remarkably small at approximately 0.1

(Carter et al. 2012). This was the smallest fractional separation of all known multiplanet sys-

tems. Of complementary remarkableness was that it had one of the largest known density contrasts

(∼8:1). The masses and radii were constrained in Deck et al. (2012) from transit timing variations

with consideration given to the system’s long-term orbital stability. The high precision of these

values furthered the utility of this system for theoretical analysis.

A logical supposition to explain this unique configuration is that the two planets formed at

widely separated locations and migrated into close proximity. This was first explored in Deck

et al. (2012). Specifically, this work explored a convergent migration model, where both planets

formed in locations other than their current locations and subsequently migrated until they locked

into their current approximate 6:7 orbital resonance.

Quillen et al. (2013) further explored a migration explanation by fine-tuning several initial

conditions in an attempt to allow two convergently migration planets to bypass other mean motion

resonances and to arrive at 7:6. When considering embryos comparable to Mars in size, they

found that gravitational interactions are sufficient to allow the embryos to escape resonances. They
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further provided support for a convergent migration model by accounting for proximity and density

contrast through a series of collisions and these gravitational interactions.

Around this time, more works provided complementary insight on how such a planetary con-

figuration could be possible. For example, Paardekooper et al. (2013) demonstrated that config-

urations involving close proximity and wide density variations can occur given a wide range of

migration parameters in a turbulent protoplanetary disc. Additionally, to explain the density vari-

ation, Lopez & Fortney (2013) explored the system from the perspective of thermal evolution and

photo-evaporative mass loss. They found that photo-evaporation coupled with slight differences in

the planets’ mass-iron cores could explain this density variation.

Subsequent formation models considered alternate initial conditions and configurations. Bo-

denheimer et al. (2018) considered the formation models identified to-date and explored multiple

configurations in which one or both of the known planets formed in situ. This work was somewhat

inconclusive as it was able to find agreement with the present-day configuration of the Kepler-36

system with Kepler-36 b forming in situ and Kepler-36 c forming either in situ or migrating to its

current state.

While several attempts have been made to explain the formation of this system, none have

been able to confidently or conclusively identify a sole viable explanation. In other words, this

problem is still unsolved. As expected, formation models have yet to account for a third planet in

the Kepler-36 system.
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CHAPTER 3 DATA

While the Kepler space telescope provides precise photometric measurements, I adopted the

reduced data published in Rowe et al. (2015), which distilled this photometry into transit parame-

ters. This provides us with a straightforward way of simulating transits and TTVs while avoiding

computational complexity associated with photodynamical simulations, which instead seek to sim-

ulate the full light curve of a model. For simulation purposes, the only transit parameters I needed

to consider were the transit midpoints associated with each known planet in the Kepler-36 system.

The RV data for this work was collected using the High Resolution Echelle Spectrometer

(HIRES) at the Keck Observatory, which has the ability to achieve precise Doppler measurements

with an RMS of ∼ 2ms−1. Between July 30, 2012 and October 2, 2021, for a total of 25 Doppler

measurements were taken by HIRES of the Kepler-36 system.

The RV data is listed in table 3.1. Figure 3.1 shows this data alongside simulations using the

two-planet Kepler-36 model as constrained by TTVs alone in Hadden & Lithwick (2017). The

residuals demonstrate that an RV-based approach to analyzing the Kepler-36 system specifically is

particularly interesting. Despite being well constrained by transit and TTV methods, the known

bodies in this system poorly describe the radial velocity observed by HIRES. This indicates more

activity than models based on Kepler data alone can account for. Furthermore, the Kepler-36

system has not yet been followed up with RV approaches.
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Table 3.1: HIRES measurements of the Kepler-36 system

BJD RV unc. RV
( - 2454900.0) (m/s) (m/s)
1238.960111 12.40 3.22
1302.747190 -14.60 4.40
1980.986613 -3.48 4.04
1992.948262 -4.74 3.29
2009.872368 -4.73 3.25
2012.827319 -2.00 3.48
2251.077157 5.94 3.55
2280.097595 -0.43 3.53
2308.096426 9.77 3.71
2332.984981 -5.47 3.42
2343.082964 -13.49 4.02
3394.878483 6.24 3.32
3422.919588 -0.95 4.99
3429.871325 9.99 3.53
3437.067316 -8.30 3.83
3483.960506 1.59 4.13
3491.919851 7.80 3.76
3495.857491 8.38 3.60
3823.006589 3.68 3.58
4578.904109 4.31 3.67
4581.905374 -0.04 3.54
4584.862818 -0.40 3.38
4589.803662 -18.80 3.68
4597.749138 -5.08 3.40
4598.867840 8.90 3.41
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Figure 3.1: a) The radial velocity of Kepler-36 induced by both Kepler-36 b and Kepler-36. b)
Residuals of the radial velocity induced by Kepler-36 b and Kepler-36 c. c) The phase-folded
radial velocity of Kepler-36 induced by Kepler-36 b. Red points indicate binned data with a bin
size of 0.1 d) The phase-folded radial velocity of Kepler-36 induced by Kepler-36 c
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CHAPTER 4 METHODS

I conducted a joint fit of TTV and RV data to determine posterior probability distributions of or-

bital elements in the Kepler-36 system with the Differential Evolution Monte Carlo Markov Chain

Algorithm (DEMCMC) of Braak (2006) as implemented in the emcee code (Foreman-Mackey

et al. 2012). I fit the currently accepted two-planet model and one including an additional orbiting

body.

I performed simulations of transit mid-point times and radial velocity within this DEMCMC

fit using TTVFast (Deck et al. 2014) due to its ability to accurately simulate both measurements

simultaneously at minimal computational cost. ter Braak & Vrugt (2008) showed that a snooker

updater improves the practical applicability of DEMCMC as free parameter count increases. Be-

cause the relatively large number of free parameters in my model, I opted to include a snooker

updater in a random 10% of my steps.

I did not consider models using either data source individually because transit-only fits are

already well described in Rowe et al. (2015) and Jontof-Hutter et al. (2021). Additionally, the

HIRES measurements are not evenly sampled enough to fit independently. As such, I generated

two models, one describing a two-planet system and one describing a three-planet system. These

were generated using the approach outlined above, where both of these models considered RV and

TTV data simultaneously.

8



4.1 Priors and Initializations

For each fit, the number of parallel DEMCMC chains were set to be three times the number

of free parameters. Possible free parameters for consideration when performing DEMCMC runs

of this nature include all Keplerian orbital elements. To reduce the computational cost of my

DEMCMC runs, and because mutual inclinations of planets can be large and still be well described

by coplanar TTVs (Nesvorny & Vokrouhlicky 2014), I kept inclination and longitude of ascending

node fixed. This left the free parameters as planetary mass mi, the orbital period Pi, the eccentricity

ei, the argument of periastron ωi, and the mean anomaly M0,i. The subscript i denotes the ith planet,

i = b,c). I kept the central stellar mass fixed to M⋆ = 1.034M⊙ as in Yoffe et al. (2020). The prior

distributions of the free parameters are outlined in Table 4.1. I initialized free parameters with flat

prior distributions bound by physical constraints or previous studies as detailed below.

4.1.1 Priors for the Known Planets

For the two known planets, I constrained I constrained the orbital parameters as follows: m ran-

domly distributed between 0 and 10 M⊕ based on previous studies (Carter et al. 2012; Hadden &

Lithwick 2017); P randomly distributed between P0,i-0.05 day and P0,i+0.05 day, where P0,i is the

period provided in Rowe et al. (2015) of planet i and the ± 0.05 day range is generously several

orders of magnitude larger than the errors; e randomly distributed between 0 and 0.04, since ec-

centricities e > 0.04 are likely to induce instability and Carter et al. (2012) showed that ei < 0.04;

and ω and M randomly distributed between 0 and 360◦.
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4.1.2 Priors for the Possible Third Planet

I kept some orbital parameters fixed to reduce model complexity and reduce computational cost.

For example, I only considered third planets with circular orbits, fixing ed to 0. This assumption

is necessary given the temporal inconsistency of the RV measurements. Additionally, I kept id and

Ωd fixed for the same reasons described in the previous section.

My approach to the remaining free parameters, md , Pd , and Md , was to allow generous ex-

ploration of parameter space. To fulfill this objective I chose uninformative priors that sampled a

realistic parameter space for these orbital elements. This eliminated the risk of prior expectations

adulterating the posterior distribution of the analysis. The mean anomaly was permitted to explore

its entire domain. I constrained mass to a generously large parameter space, where values above

and below my limits are not physically reasonable explanations for my observations.

My constraints on orbital period, Pd , were considered carefully. I first sought to rely on the

Lomb-Scargle periodogram of RV of Kepler-36 as induced by the posterior maximum likelihood

orbital elements of the two-planet model as demonstrated in Figure 5.2 and discussed in more

detail in subsequent sections. This periodogram demonstrated a convincingly high power peak at

∼173 days with a correspondingly low false alarm probability. However, Earth’s orbit is sometimes

observed as an alias of long-period power, and this peak is close to half of the Earth’s orbit. Because

of this, I opted to broaden my priors to the generously large 40 ≤ Pd ≤ 600 range.
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Table 4.1: The prior distributions of each orbital element in my simulations. All elements with a
single value are fixed. Bracketed elements indicate the minimum and maximum values of flat prior
distributions.

Orbital Element Kepler-36b Kepler-36c Kepler-36d
Mass [1, 10] M⊕ [1, 10] M⊕ [1, 400] M⊕
Period [13.799, 13.899] d [16.1869, 16.2869] d [40, 600] d
Eccentricity [0.00, 0.04] [0.00, 0.04] 0.00
Inclination 90.0° 90.0° 90.0°
Asc. Node 0.0° 0.0° 0.0°
Arg. of Peri. [0.0, 360.0]° [0.0, 360.0]° 0.0°
Mean Anom. [0.0, 360.0]° [0.0, 360.0]° [0.0, 360.0]°

Table 4.2: Posterior maximum likelihood

Planet Orbital Element Two-Planet Run Three-Planet Run

Kepler-36b

Mass 4.4086 4.4079
Period 13.8391 13.8390
Eccentricity 0.0259 0.0284
Inclination 90.0 90.0
Asc. Node 0.0 0.0
Arg. of Peri. 81.4525 89.5704
Mean Anom. 228.9649 221.2440

Kepler-36c

Mass 7.5012 7.4782
Period 16.2401 16.2402
Eccentricity 0.0004 0.0036
Inclination 90.0 90.0
Asc. Node 0.0 0.0
Arg. of Peri. 304.1220 144.9822
Mean Anom. 139.3242 298.8267

Kepler-36d

Mass - 42.9010
Period - 173.5355
Eccentricity - 0.0
Inclination - 90.0
Asc. Node - 0.0
Arg. of Peri. - 0.0
Mean Anom. - 93.0557
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Figure 4.1: Combined posterior of all free parameters for the two-planet fit. The dark and gray
circles indicate the 68.3% and 95.5% confidence regions, respectively.
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Figure 4.2: Combined posterior of all free parameters for the three-planet fit. The dark and gray
circles indicate the 68.3% and 95.5% confidence regions, respectively.
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Figure 4.3: Transit timing variations (blue dots) for planets in the Kepler-36 system compared to
the best fit (solid lines) obtained using the full Kepler data set

14



CHAPTER 5 RESULTS

5.1 Posteriors

I performed 8,580,000 total DEMCMC iterations for the two-planet fit, and 4,630,000 total

iterations for the three-planet fit. The resulting covariance plots are shown in Figure 4.1 and Fig-

ure 4.2, respectively. The best-fit orbital elements, those with the highest likelihood, for each

DEMCMC run are included in Table 4.2.

As recommended by the emcee code, I considered the stopping criteria of sufficiently large

autocorrelation as outlined in Goodman & Weare (2010). Specifically, I set a stopping criterion

of 50 autocorrelation lengths. However, estimating integrated autocorrelation time proved to be

ineffective. At most, I achieved ∼4.4 autocorrelation lengths. It is possible that this may be

attributed to the multi-modality of angular orbital element configurations. Another metric, the

Gelman-Rubin statistic (Gelman & Rubin 1992), is widely considered to be a standard convergence

assessment tool. That said, Gelman-Rubin statistic is not practical for this work as the chains in

my fits are not independently sampled (a requirement for this approach).

Noting that it is never formally possible to guarantee convergence and any attempts to do so

will be heuristic in nature, I opted to run my fits for as long as my computational resources would

permit and instead assess the convergence of my fits by considering the confidence interval of the

posterior distribution of each parameter and comparing it to the range of the prior distribution. As

shown in table 5.1 and table 5.2, the standard deviation of every posterior distribution collapsed to

an average of 2.93% of its prior distribution for the two-planet system and 4.3% for the three-planet
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system.

The two-planet covariance plot demonstrates reasonably well-constrained posteriors. Addi-

tionally, comparing the best-fit orbital elements for both simulations shows that including the third

planet has little influence on the parameter distribution of the inner two planets. This highlights

that previous efforts to constrain the Kepler-36 system that consider only two planets are consistent

with this effort to identify a potential additional body. The two known planets fit well to transit

timing variations, do very little to explain my RV measurements, and are relatively unaffected by

the inclusion of a longer period, higher mass body.

The bi-modality of the three-planet fit as observed in Pd and Md is to be expected. The standard

deviation of Pd in this posterior distribution is shown to be quite wide due to this bi-modality. This

width propagates to the magnitude of the corresponding calculations shown in table 5.2. However,

it is visually apparent on the posterior covariance plot for the three-planet fit that there are two

distinguishable and separate peaks for the posteriors of Pd at approximately 173 days and 346

days.

While it is apparent that the peak for Pd at approximately 346 days is higher than that of ap-

proximately 173 days, the model using the 173 day value resulted in a higher probability. This

discrepancy is understood when considering the domain of the uninformative prior of Pd in con-

junction with the sampling configuration. The prior was randomly distributed between 40 and 600

days. While differential evolution and snooker algorithms were created in an attempt to overcome

the problem of walkers converging on local optima, the probability distribution of this parame-

ter space make random walks of that magnitude and specificity unlikely. As such, while the 173

day model fits the data more appropriately, the 346 day model was the favored by the probability

distribution and mcmc configuration.
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Figure 5.1: Radial velocity simulations of Kepler-36 induced by each of my best-fit models. Ob-
servations are shown as blue dots. Residuals are shown in the lower panel.

Because a third body has little impact on the the observed transit timing variations the con-

straints on this body are primarily informed by the RV measurements. As established, this data

alone is not sufficient to constrain the posterior distribution with more specificity than these modes.

The highest likelihood, best-fit orbital elements were used for all subsequent post-fit analyses.

Figure 4.3 illustrates the TTVs experienced by the two inner planets in each simulation, which are

in good approximation to those deduced from Kepler data as well as to each opposing simulation.

The simulated RVs, along with residuals, are shown in Figure 5.1. Keeping in mind that my best-

fit two-planet model is comparable to previous studies of this system, this figure also helps to

highlight the discrepancy between the currently accepted configuration of the Kepler-36 system

and the RV behavior of the host star as measured by HIRES.

As discussed previously, Figure 5.2 shows the periodogram of the residuals of the RV data as
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Figure 5.2: The Lomb-Scargle periodogram of the residuals of the RV data as simulated by the
posterior maximum likelihood orbital elements of the two-planet fit. The yellow line denotes the
false alarm probability.

simulated by the posterior maximum likelihood of the two-planet model. Note that the maximal

peak of this periodogram is ∼173 days. While I intentionally ignored this value when establishing

the priors for my three-planet fit, it is further supported by the posterior distribution of the three-

planet model. In other words, the periodogram of the residuals of the RV simulation of the two-

planet model has a maximal peak that matches the fitted orbital period of the third planet of the

three-planet model. These matching values are obtained independently of each other.
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Table 5.1: The standard deviation of the posterior distribution of each parameter in the two-planet
fit

Orbital Element Standard Deviation Prior Range % of Prior
mb 0.0674 9 0.75%
Pb 0.000246 0.1 0.25%
eb 0.00208 0.04 5.20%
wb 2.855 360 0.79%
Mb 2.695 360 0.75%
mc 0.0754 9 0.84%
Pc 0.0001675 0.1 0.17%
ec 0.001425 0.04 3.56%
wc 30.65 360 8.51%
Mc 30.7 360 8.53%

Table 5.2: The standard deviation of the posterior distribution of each parameter in the three-planet
fit

Orbital Element Standard Deviation Prior Range % of Prior
mb 0.052 9 0.58%
Pb 0.00028 0.1 0.28%
eb 0.0024 0.04 6.00%
ωb 4.52 360 1.26%
Mb 4.27 360 1.19%
mc 0.0746 9 0.83%
Pc 0.00158 0.1 1.58%
ec 0.00255 0.04 6.38%
ωc 13.9 360 3.86%
Mc 13.85 360 3.85%
md 13.1 399 3.28%
Pd 77.26 560 13.80%
Md 46.85 360 13.01%
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5.2 Statistical Analysis

After obtaining models with the highest likelihood from my fits and simulating observations

based on these models, I then sought to assess the statistical significance of these models. The

primary criteria I rely on to assess the quality of my fits are the χ2 test and the Bayesian Information

Criterion (BIC). Both tests are useful in this assessment because they do not consider how the

models were obtained. They simply provide vetting tools for the models themselves in the context

of observational data.

As described in Andrae et al. (2010), the χ2
red test can be used as an assessment of the ”goodness

of fit” of a model as well as provide a comparison of multiple models to each other. χ2 is calculated

using the following equation.

χ
2 =

∞

∑
n=1

(
yn − f (−→x n;

−→
θ )

σn
)2 (5.1)

This value is then standardized, or ”reduced,” by

χ
2
red =

χ2

k
(5.2)

where K is the number of degrees of freedom. When given data and multiple models, this test

helps assess which model fits the data best. The better fitting model is the one whose χ2
red value is

closest to one. Taken further, the χ2
red may be applied to single-model assessment. In this context,

χ2
red > 1 signifies an incomplete fit and χ2

red < 1 denotes an overfit.

Applying the χ2
red test to my best-fit models for each configuration demonstrates favorability

toward the three-planet system. Corresponding values are recorded in table 5.3. Since ∆χ2
red is
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Table 5.3: Statistical test results

Reduced χ2 Bayesian Information Criterion
Two-Planet Model 8.05 710.62

Three-Planet Model 3.36 692.13
∆ 4.59 18.49

4.59 in favor of the three-planet model and the χ2
red of the three-planet model is closer to one, this

model is the more likely explanation of the HIRES observations. It is, however, still an incomplete

explanation of the observations since the χ2
red of the three-planet model is greater than one. An

alternate explanation of this χ2
red could be underestimated RV uncertainties.

I can further support my claim using the BIC, given as

BIC = k lnn−2ln L̂ (5.3)

where k is the number of free parameters (non-fixed orbital elements) estimated by the model, n is

the number of observations, and L̂ is the maximized value of the likelihood function of the model.

Models with a lower BIC are preferred. Using the Jeffreys’ scale as described in Liddle (2007), I

treat ∆IC > 10 as decisive evidence in favor of the model with the lower information criterion.

In this case, the three-planet model has a lower BIC (692.13) than the two-planet model

(710.62). This ∆BIC (18.49) also provides decisive support for the case for the three-planet model.
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CHAPTER 6 DISCUSSION

My analysis described above justifies the candidacy of an additional body in the Kepler-36 sys-

tem. Leveraging the additional information of RV measurements, I have completed DEMCMC fits

for the current two-planet model and an expanded three-planet model using priors both uninforma-

tive and bound by physically viable constraints. These fits generated models that are in agreement

with the current configuration of this system. The three-planet model more accurately simulates

the TTV and RV measurements available to us. Moreover, commonly accepted statistical tools

provide further justification for the adoption of this three-planet model.

However, additional observations should be made. It is clear that this three-planet model,

while compelling, fails to fully explain the dynamics of this system. This claim is most obviously

supported by the fact that the fit did not isolate the posterior to a single orbital period. HIRES

data provided significant assistance in further constraining the behavior of this planetary system,

but sampling cadence and quantity problems persist. Efforts to fit a fourth orbiting body in this

research were futile, as the penalty that came with a more complex simulation were not able to be

overcome by the improvement in fit. Intuitive interpretation of my results lead to the understanding

that there is more activity in this system than even a three-planet model can explain. As such, future

efforts to explain the discrepancy between current models and observations will require even more

data.

The values of the bimodal peaks of Pd at approximately 173 and 346 days are of note. In

addition to being close to the periodicity of the ground-based Kepler field observing season and
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its alias, they are in proximity to the Earth’s orbital period. I have not attempted to explore the

possibility of this signal being an alias for either of these cadences and instead choose defer this

exploration to future efforts that possess the requisite additional data. Future iterations of this effort

could also independently explore each of these peaks and compare their fit to the data.

As discussed above, explanations for the formation of the Kepler-36 system are abundant and

inconclusive (Quillen et al. 2013; Paardekooper et al. 2013; Bodenheimer et al. 2018; Rimlinger &

Hamilton 2020). Early scenarios favored formation via migration. More recent works have been

able to model the known two-planet system with both migration and in situ approaches. Coupled

with the vastly differing densities and orbital proximity of the two known planets, the inclusion of

a longer period planet in this system could pose a significant challenge.

In the case of migration models, the need to account for a higher mass, longer period planet

would necessitate modified constraints the initial conditions of these models in the interest of or-

bital stability. Furthermore, these models would need to sufficiently account for varying migration

rates or magnitudes such that two short period orbits and at least one longer period orbit could be

observed today.

In situ models would be affected primarily at the accretion phase, where another body would

affect impact the configuration of feeding materials. This third body would itself accrete feeding

material, providing further constraints on the range and amount of material initially available to

the two known planets than previous studies have considered.
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