
UNLV Theses, Dissertations, Professional Papers, and Capstones

May 2023

High Clearance Collision-Free Paths High Clearance Collision-Free Paths

Barun Thapa

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Thapa, Barun, "High Clearance Collision-Free Paths" (2023). UNLV Theses, Dissertations, Professional
Papers, and Capstones. 4790.
http://dx.doi.org/10.34917/36114815

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F4790&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F4790&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.34917/36114815
mailto:digitalscholarship@unlv.edu

HIGH CLEARANCE COLLISION-FREE PATHS

By

Barun Thapa

Bachelor of Engineering in Computer Engineering

Tribhuvan University

2012

A thesis submitted in partial fulfillment

of the requirements for the

Master of Science in Computer Science

Department of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

May 2023

© Barun Thapa, 2023

All Rights Reserved

ii

Thesis Approval

The Graduate College
The University of Nevada, Las Vegas

May 2, 2023

This thesis prepared by

Barun Thapa

entitled

High Clearance Collision-Free Paths

is approved in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science
Department of Computer Science

Laxmi Gewali, Ph.D. Alyssa Crittenden, Ph.D.
Examination Committee Chair Vice Provost for Graduate Education &

 Dean of the Graduate College
Kazem Taghva, Ph.D.
Examination Committee Member

Mingon Kang, Ph.D.
Examination Committee Member

Henry Selvaraj, Ph.D.
Graduate College Faculty Representative

Abstract

Path Planning is one of the widely investigated research areas in computational geometry and

robotics. Given a set of polygonal obstacles inside a rectangular box, and start & goal points,

the path planning problem is to construct a collision-free path connecting the start point to the

goal point. We review existing well known algorithms for solving the path planning problem. We

propose new approaches for constructing a collision-free path with high clearance from obstacles.

The main idea of the proposed algorithm is the appropriate generation free-region nodes which can

be processed to construct high clearance paths. Neighbors of free-region nodes are carefully joined

to obtain a connected graph outside the obstacles. Standard graph searching algorithms are applied

in the constructed connected graph to obtain high-clearance paths. We also present methods to

remove a few free-region nodes to further increase clearance from obstacles. Finally, we present

experimental results on the construction of high-clearance collision-free paths.

iii

Acknowledgements

First and foremost, I would like to thank my advisor Dr. Laxmi Gewali for his guidance, continuous

support, motivation and patience throughout the work in this thesis. I am deeply indebted to his

vast experience and knowledge in the field of Computational Geometry which has been a great

source of help in the completion of the thesis.

Next, I would like to extend my sincere thanks to my committee members for agreeing to be in

the committee for my thesis and constantly providing their constructive feedback and suggestions

to improve the thesis.

I am also thankful for my wife Nikita Acharya for her moral support and motivation throughout

my graduate program culminating in this thesis. I am grateful for her review, proof-reading and

feedback on my thesis.

Finally, I am grateful to my friends and roommates Mr. Sweastik Pokhrel and Mr. Bibek

Bhattarai for keeping my spirits and motivations high. I would also like to thank my family for

their continuous support and well wishes for my progress.

Barun Thapa

University of Nevada, Las Vegas

May 2023

iv

Table of Contents

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures viii

List of Algorithms x

Chapter 1 Introduction 1

Chapter 2 Review of Collision-Free Paths 3

2.1 Voronoi Diagram and High Clearance Paths . 3

2.2 Triangulation and High Clearance Paths . 5

Chapter 3 Generating Quality Free-Region Nodes 8

3.1 Problem Introduction . 8

3.1.1 Visibility Graph guided Free-Region Nodes 9

3.1.2 Avoiding Low Clearance Nodes . 18

3.1.3 Randomly generated Free-Region Nodes . 19

3.1.4 Free-Region Nodes guided by Obstacle Expansion 20

Chapter 4 Implementation and Experiments 25

4.1 Interface Design . 25

4.1.1 Menu Bar . 26

v

4.1.2 Drawing Canvas . 26

4.1.3 Control Panel . 27

4.2 Experimental Results . 29

4.2.1 Mid-Point based Free-Region Nodes . 29

4.2.2 Randomly generated Free-Region Nodes . 30

Chapter 5 Discussion 33

Bibliography 35

Curriculum Vitae 36

vi

List of Tables

4.1 Menu Bar Description . 26

4.2 Control Panel Description . 28

4.3 Clearance Values for Normal and High Clearance Path 29

4.4 Normal and Enhanced Clearance Path Comparison . 30

4.5 Random Point Generation and Path Statistics . 31

vii

List of Figures

2.1 Voronoi Diagram of Point Sites and the Best Clearance Path 4

2.2 Depicting Generalized Voronoi Diagram . 5

2.3 Triangulation of Free-Regions . 6

2.4 Illustrating Centroid Guided Clearance Path . 6

2.5 Collision-free Path Guided by another Triangulation . 7

3.1 A Collection of Polygonal Obstacles in a Rectangular Box 8

3.2 Free-Region Point pi . 9

3.3 Illustrating Low and High Collision-free Paths . 10

3.4 Notion of Visibility . 10

3.5 Shortest Path Captured by Visibility Graph . 11

3.6 Mid-points of Selected Visibility Edges . 12

3.7 Mid-points of All Visibility Edges . 12

3.8 A Possible High Clearance Path by Carefully Connecting Free-Region Points 13

3.9 Free-Region Points . 14

3.10 Illustrating Embedded Grid and Guide Circle . 15

3.11 Illustrating Basic Block . 15

3.12 Illustrating Connecting Edges that Intersect with Obstacles 16

3.13 Formation of Navigating Network . 17

3.14 Finding Smallest Distance between Polygonal Obstacles 18

3.15 Code Snippet for Generating Random Points . 19

3.16 Expanded Edges of the Polygonal Obstacles . 20

3.17 Arcs Drawn from Vertices of a Polygonal Obstacle . 21

3.18 Expanded Arcs and Edges of a Polygonal Obstacle . 21

3.19 Convex Polygonal Obstacles with Expanded Arcs and Edges 22

viii

3.20 Expanded Convex Polygonal Obstacles with Nodes . 22

4.1 A Snapshot of the Application Interface . 26

4.2 Polygonal Obstacles, Network and High Clearance Paths 29

4.3 Comparison of Randomly Generated Nodes . 31

4.4 Comparison of Number of Nodes in Path . 32

4.5 Comparison of Randomly Generated Nodes Against Free-Region Area 32

5.1 Convex Hulls of Polygonal Obstacles . 34

ix

List of Algorithms

1 A High-Level Sketch of the Proposed Collision-free Path Algorithm 13

2 Construct the Navigation Network Algorithm . 17

3 Compute Threshold for Low Clearance Nodes Algorithm 19

4 Generate Free-Region Nodes Algorithm . 23

x

Chapter 1

Introduction

Connecting two points in a network is a widely investigated problem in computational geometry

with application in many areas of science and engineering including geographic information system,

transportation, robotics, and game development. The path connecting two points in a network is

evaluated using various metrics. Minimising the total length of the path, reducing the implied

turn-angle, reducing the number of hops are the commonly used factors for evaluating extracted

path for the network.

In applications in robotics, the input is not available as a network. The input is usually in the

form of collection of obstacles and it is required to find a good quality path that avoids obstacles.

In such applications, the first step is to convert the collection of obstacles into a network. This

step is usually called discretization. After a network G is available, the next step is to execute path

extracting algorithms on G. In such network all the edges are outside the obstacles. Commonly

constructed networks are Visibility Graph, Voronoi Diagram and Triangulated mesh.

In some applications, a pair of non-overlapping collision-free paths are needed. Such pair of

paths need to be disjoint from each other except the first and the last node. Having a pair of

collision-free paths is desirable in situation where some links could disappear.

In this thesis, we investigate the problem of constructing collision-free paths having high clear-

ance from the obstacles. The objective is to construct paths lying away from obstacles and make

it shorter where possible. In Chapter Two, we present a review of existing algorithms (reported

in published literature) for constructing high clearance paths. In Chapter Three, we introduce

new algorithms for computing collision-free paths based on generating nodes outside obstacles and

connecting them by suitable network. In Chapter Four, we present implementation results on the

generation of high clearance collision-free paths. The implementation is done in Java programming

1

language. The front end of the program prototype provides user friendly interfaces. Users can draw

polygonal obstacles, generate free-region nodes and the constructed network and a high clearance

collision-free paths are displayed. The program allows the users to save generated input for future

use via a drop-down menu.

Finally, in Chapter Five, we present some comments on the presented algorithms and discuss

possible extensions of the proposed algorithms.

2

Chapter 2

Review of Collision-Free Paths

In this chapter we describe a brief review of algorithms for constructing collision-free path with

high clearance.

2.1 Voronoi Diagram and High Clearance Paths

A structure that has great potential for planning high clearance paths in two dimensions is the

Voronoi Diagram mostly studied in computational geometry literature [O’R98]. The Voronoi dia-

gram induced by a set of point sites p1, p2, p3, pn in the plane is the partitioning of the plane

into convex cells called Voronoi Cells or Regions R1, R2, Rn. The region Ri corresponds to

site pi which is such that any point inside Ri is closer to pi than any other site. The Voronoi

Diagram induced by ten point sites is shown in Figure 2.1. Voronoi Diagram satisfies many inter-

esting properties useful for planning collision-free trajectories for robotic vehicles that include the

following:

a) A point on the Voronoi Diagram is equidistant from at least two point sites. From any Voronoi

vertex, exactly three point sites are equidistant.

b) All regions of Voronoi diagram are convex: some are bounded and others are unbounded. In

Figure 2.1, regions corresponding sites p1, p6 and p9 are bounded and other seven regions are

unbounded.

c) The dual of the Voronoi Diagram is the triangulation of point sites. These triangulations are

called Delaunay Triangulation.

d) The size of Voronoi Diagram is linear in the number of point sites.

3

e) Paths connecting two points via the Voronoi diagram is such that the path has the best

clearance from the point sites. For example, the path connecting two points in Figure 2.1

(shown as red path) has the best clearance from the two point obstacles.

Figure 2.1: Voronoi Diagram of Point Sites and the Best Clearance Path

Our interest in this thesis is to construct a path guided by Voronoi edges when obstacles are

polygons.

The Voronoi Diagram of polygonal obstacles are more complex than the Voronoi diagram of

point obstacles. An example of Voronoi Diagram of polygonal obstacles is shown in Figure 2.2.

The Voronoi Diagram edges are drawn red. In the Voronoi Diagram of point sites, Voronoi edges

are lines segments. On the other hand, the edges of Voronoi diagram of polygonal obstacles could

be mix of line segments and parabolic/hyperbolic curves.

As observed in [EDPB15], generalized Voronoi Diagram of polygonal objects are very compli-

cated to compute.

4

Figure 2.2: Depicting Generalized Voronoi Diagram

2.2 Triangulation and High Clearance Paths

One approach for constructing collision free paths having high clearance has been considered in

[JLLC21]. The approach essentially constructs a triangulation T of the free-region. In the trian-

gulation T, free-region nodes are positioned by choosing the centroids of each triangle that tile the

free-region. For increasing the quality of resulting high clearance path extra nodes on the edges of

obstacles and the bounding box are introduced. Such extra nodes along the edges are referred to

as Steiner vertices in computational geometry literature [dBvKOS00].

An example of triangulation of the free-region with the addition of Steiner’s points on the

boundary is illustrated in the Figure 2.3.

After the free-region is triangulated, centroids of the triangles are connected. For connecting

centroids only triangles that share edges are considered. The centroids, which are shown as red

dots, are connected to form a network as illustrated in Figure 2.4. The start and goal points, S and

G, are shown as unfilled dots. These points can be connected to the closest centroid points and a

high clearance path from S to G can be extracted which is shown by the network of green edges.

It is noted that the network formed by connecting centroids (called free-region network FRN)

5

Figure 2.3: Triangulation of Free-Regions

Figure 2.4: Illustrating Centroid Guided Clearance Path

6

is such that each node is of maximum degree three. Since FRN is the dual of a triangulation it is

also a planar network.

The triangulation of the free-region can be done in multiple ways. The triangulation may not

always return a high clearance path, as it will depend on the structure of the triangulation. Selecting

the best triangulation that can generate a high clearance path is a different research topic on its

own. An example of how that path may look like for the example above with different triangulation

is illustrated in the Figure 2.5. In the figure, it can be noted that few adjacent centroids may not

be connected because they can be obstructed by the polygonal obstacles. These are illustrated

at red dashed-lines in the Figure 2.5. Furthermore, if there are many broken connection in the

network due to centroids not being visible to each other, there may not be a path from S to G.

This demonstrates that the way in which free-region is triangulated determines the quality of the

high clearance path.

Figure 2.5: Collision-free Path Guided by another Triangulation

Another approach in constructing a high clearance path by using triangulation is presented in

[JLLC21]. Here, the the triangulation is achieved by using Constrained Delaunay Triangulations.

After the triangulations, the centroids of the triangles are used as vertices and a shortest path is

formed by using Dijkstra’s algorithm. Next, the mid-points of the edges of the triangles that are

intersected by the path are connected to form a new high clearance path.

7

Chapter 3

Generating Quality Free-Region

Nodes

3.1 Problem Introduction

Consider a collection of polygonal obstacles A,B,C,D, . . . , (disjoint or non-overlapping) enclosed

inside a rectangular box µ. The m vertices of obstacle A are denoted as a0, a1, a2, . . . am. The

vertices of other obstacles are denoted in similar manner. The vertices of each obstacle are listed

in the order in which they occur along the boundary, in the counterclockwise order. An instance

of a collection of nine polygonal obstacles, enclosed in a rectangular box is shown in Figure 3.1.

Figure 3.1: A Collection of Polygonal Obstacles in a Rectangular Box

8

Figure 3.2: Free-Region Point pi

A point pi outside of the obstacles is called a free-region point. In the Figure 3.2, free-region

points S and G are shown (drawn as unfilled dots). Two collision-free paths connecting S to G are

shown in the Figure 3.3: one is drawn in red color and the other is drawn as blue. It can be easily

observed that the red path has less clearance from obstacles compared blue path. We can imagine

many such collision-free paths connecting S to G. Some paths have high clearance from obstacles

and other have low clearance. The specific problem we propose to examine is the development of

collision-free paths having high clearance from obstacles. The problem can be formally defined as

follows.

High Clearance Path (HCP) Problem

Given: (i) A collection of polygonal obstacles A, B, C, D, . . . (ii) two free-region points S (start

point) and G (goal point).

Question: Find a collision free path P connecting S to G such that P has high clearance from

obstacles.

3.1.1 Visibility Graph guided Free-Region Nodes

To investigate the properties of collision-free paths, it is necessary to understand the visibility

relationships between the vertices of obstacle polygons. Two points pi and pj are said to be

9

Figure 3.3: Illustrating Low and High Collision-free Paths

mutually visible if the line segment connecting pi to pj lies completely in the free-region. This is

shown in Figure 3.4, where a0 is not visible to b0 as the line segment connecting a0 to b0 intersect

obstacle B. On the other hand, a4 is visible to b3, due to the fact that the line segment connecting

a4 to b3 lies completely in the free-region. Such visibility relations are explained on the textbooks

of computational geometry [O’R98] [dBvKOS00]

Figure 3.4: Notion of Visibility

Visibility Graph formed by a set of polygonal obstacles is a well investigated structure [GM87].

10

Specifically, visibility graph is obtained by including all edges corresponding to mutually visible

vertices in the collection of obstacles. Figure 3.5 shows a visibility graph of obstacle polygons. In

the figure, visibility edges are drawn as thin line segments. It is known that the shortest collision-

free path can be computed by applying Dijkstra’s shortest path algorithm on the visibility graph

[O’R98]. However, the shortest collision-free path extracted from the visibility graph has least

clearance from the obstacles. The shortest collision-free path is drawn red-colored which touches

several obstacles. Such a path has least clearance from obstacles. This shows that the shortest

path extracted from the visibility graph cannot be used for constructing high-clearance path.

Figure 3.5: Shortest Path Captured by Visibility Graph

A different approach can be taken to obtain a high clearance path from the visibility graph.

Instead of just following the visibility edges in the graph to reach the goal node, a new network

can be formed from the mid-points of the visibility edges. In this approach, first, the mid points

of the visibility edges are generated. Since, the edges are visibility edges, the mid-points of such

edges will naturally occur in the free-region as shown in the Figure 3.6. This process is repeated

for all the visibility edges to obtain free-region points as illustrated in the Figure 3.7.

11

Figure 3.6: Mid-points of Selected Visibility Edges

Figure 3.7: Mid-points of All Visibility Edges

12

If we carefully connect free-region points then a high clearance collision-free path can be con-

structed as shown in Figure 3.8. How to generate appropriate number of free-region nodes is very

critical issue.

Figure 3.8: A Possible High Clearance Path by Carefully Connecting Free-Region Points

As mentioned earlier, mid-points of visibility edges can be used to construct free-region nodes.

Once free-region nodes are generated they need to be connected to obtain a free-region network

(FRN in short). FRN can be searched to get a collision-free path. We could use the standard graph

searching algorithms to extract a path from FRN. A high level formal sketch(stepwise) of such an

approach is listed as 1 below.

Algorithm 1: A High-Level Sketch of the Proposed Collision-free Path Algorithm

Step 1: Compute Visibility Graph formed by the collection of obstacles.

Step 2: Take mid point of each Visibility Edge as free-region node.

Step 3: Let R = q1, q2, q3, . . . qm be the set of free points extracted from Visibility

Edges.

Step 4: Construct a Free-Region Network (FRN) by connecting nodes on R.

Step 5: Apply breadth first algorithm in FRN to obtain collision-free path.

13

Connecting Free-Region Points

Given a set of points q1, q2, q3...qm in the free-region, as illustrated in the Figure 3.9, it is required

to connect the points to form a network, which we refer to as free-region network (FRN). This is

required to generate the collision-free high clearance path.

Figure 3.9: Free-Region Points

There can be multiple approaches to connect the free-region points to form a network. Our approach

is to connect the points using grid and a guide circle.

Two structures are used to connect free-nodes in this approach. The first structure is the

guiding circle of radius r. The second structure is an orthogonal square grid whose cell size is

q x q. The starting value of r and q is determined in terms of the separation length δ′ between the

closest free-region node pair. The grid lines intersect with each other at multiple points and these

intersection points can be labeled as g1, g2, g3....gn. From each of these points, a guiding circle of

radius r is drawn. The value of r could be between 2δ′ and 3δ′. The value of q could be between 3δ′

and 6δ′. The values of r and q can also be selected interactively by the user. Figure 3.10 illustrates

embedded grid (black dashed-lines) and guide-circle(orange).

14

Figure 3.10: Illustrating Embedded Grid and Guide Circle

The nodes inside a guide-circle are connected by an edge as demonstrated in the Figure 3.11.

Figure 3.11: Illustrating Basic Block

The nodes, however, can only be connected if the edge does not intersect with any obstacle.

Figure 3.12 shows an instance in which some connecting edges intersect with obstacles. This means

the free-region nodes that lie inside the guide circle should be visible to each other and not blocked

by the polygonal obstacles. In the Figure 3.12, the nodes fp1 and fp2 can be connected as they

15

are visible to each other and are connected with a green line. The nodes fp1, fp4 and fp2, fp3

cannot be connected as they are blocked by an obstacle, or they are not visible to each other. They

are represented by red dashed lines. This essentially means that the high clearance path will not

traverse through the nodes fp1 and fp4 directly.

Figure 3.12: Illustrating Connecting Edges that Intersect with Obstacles

When all valid node pair inside a guide circle are connected we get basic-block as shown in

Figure 3.11. The process of constructing basic-block is repeated by placing guide circle at each grid

point. The aggregation of basic blocks give the navigating network to construct collision-free

path. An example of navigating network is shown in Figure 3.13.

16

Figure 3.13: Formation of Navigating Network

High Sketch Algorithm to Connect Free-Region Nodes

Algorithm 2: Construct the Navigation Network Algorithm

Input: (i) A collection of polygonal obstacles O1, O2,... Ok

(ii) A collection of free-region nodes q1, q2, q3.....qn
Result: Navigation Network (NN)

Step 1:
Compute the radius ’r’ of guiding circle by finding the distance between closest pair of
free-region nodes

Step 2:
for each grid point gi do

Compute the basic-block by using guide circle centered at gi
end

Step 3:
Combine basic-block to obtain Navigation Network (NN)

Step 4:
if NN is connected then

Stop
else

Increase the value of r and start from Step 2
end

17

3.1.2 Avoiding Low Clearance Nodes

Nodes that are closer to the obstacles (than other nodes) can be considered as low clearance nodes.

Here, the measure of the low-clearance needs to be quantified clearly. For the purpose of our

application we pick a threshold value of smallest distance between obstacles as the basis. If dmin

is the smallest distance between obstacles then 0.5dmin is taken as the threshold value. This is

illustrated in the Figure 3.14. In the Figure 3.14, the closest distance between polygonal obstacles

pairs are drawn with dashed lines. Not all distances are drawn to make figure clear. The smallest

distance is observed to be d4, which is the distance between obstacles B and C, and is marked as

dmin. The length 0.5dmin is used as the threshold to identify the low clearance nodes.

The threshold for the low clearance node is set to be 0.5dmin to ensure that the object traversing

the path can move in-between the obstacles without collision. The smallest distance is taken as

the diameter for the disc that can pass through. The radius value, dmin/2, is taken to filter out

the low clearance nodes. Any object can be enclosed in a circular boundary in a 2D plane, hence

a disc is considered to be a standard object. This is illustrated in the Figure 3.14.

Figure 3.14: Finding Smallest Distance between Polygonal Obstacles

The smallest distance, between two polygonal obstacles, needs to be defined properly to take

the measure. The distance that is measured is the distance between nearest points in the polygon

boundary. These points can be either vertices or edges. This means the smallest distance, between

18

two obstacles, could potentially be the distance between two vertices, between two edges or between

an edge and a vertex. These cases are illustrated in the Figure 3.14. The distances d1, d3, d7, d8

are taken between vertex of obstacle pairs. The distances d4, d5, d6 are taken between a vertex and

an edge. Finally, the distance between obstacles A and D is taken between the edges.

Algorithm 3: Compute Threshold for Low Clearance Nodes Algorithm

Input: List of polygonal obstacles

1 Select a pair of polygonal obstacles

2 Derive the sets of edges and vertices of the obstacles

3 Compute distance between vertices and edges pairs of two different polygons

4 Find the minimum distance and mark it as threshold

3.1.3 Randomly generated Free-Region Nodes

Free-region nodes can be generated randomly by using the random integer generation library for

Java system. Suppose we want to generate a random node in a canvas of size 800x700. We can

randomly generate a number between 0 − 800 inclusive and take it as the x-coordinate. The y-

coordinate is similarly generated by picking a random integer between 0−700 inclusive. The Figure

3.15 shows the Java code snippet used to generate a random nodes location.

Figure 3.15: Code Snippet for Generating Random Points

The random point so generated could be inside or outside the polygon obstacles. The nodes

that are inside the obstacle can be rejected. To check whether the generated node is outside the

obstacles or not can be done by appealing to point inclusion in polygon algorithm available in

standard computational geometry text book [O’R98].

The randomly generated free-region nodes need to be further processed to filter the nodes that

are very close to obstacles. For this purpose we can check the distance of the generated node to

the nearest obstacle. If the distance is smaller than a predetermined threshold distance δ. We have

19

taken the value of δ as the smallest separation between obstacles. The elimination of such nodes

can be done by following the same process as described in section 3.1.2.

3.1.4 Free-Region Nodes guided by Obstacle Expansion

Expanded Obstacles

Each polygonal obstacle can be expanded by δ extent to create a δ-envelop. For each edge

e = (a, b) a δ-displaced edge e′ = (a′, b′) is constructed, where e′ is parallel to e and at a distance

δ from e. Here the distance δ is measured perpendicular to e.

Figure 3.16 shows δ-displaced edges (drawn dashed) for all edges of the polygonal obstacles.

Figure 3.16: Expanded Edges of the Polygonal Obstacles

For each vertex a incident on edges (a, b) and (a, e) an arc is constructed whose center is at a

and of radius δ. The endpoints of the arc are δ-displaced points of edges (a, b) and (a, e). Such

arcs, labelled as (a′, b′) and (a′, e′), are constructed for all vertices as shown in Figure 3.17.

When δ-displaced edges and arcs are put together we get the δ-envelop of the polygon as shown

in Figure 3.18. Observe that δ-envelop is boundary of a convex polygon whose edges are both

line segments and arcs. When such envelops are constructed to an instance of high clearance path

problem (consisting of three convex obstacles) we get expanded obstacles as shown in Figure 3.19.

Suppose we perform the random generation of free-region nodes then some nodes will fall inside

the expanded obstacles and others outside. Those nodes that are inside the obstacles can be

discarded. The motivation for expanding the obstacle is to avoid the presence of free-region nodes

that are very close to the obstacles. In Figure 3.20, an instance of randomly generated nodes is

20

Figure 3.17: Arcs Drawn from Vertices of a Polygonal Obstacle

Figure 3.18: Expanded Arcs and Edges of a Polygonal Obstacle

shown where there are seven of them are within annulus region between original obstacle boundary

and the boundary of the expanded obstacle.

21

Figure 3.19: Convex Polygonal Obstacles with Expanded Arcs and Edges

Figure 3.20: Expanded Convex Polygonal Obstacles with Nodes

22

A formal algorithm for generating free-region nodes not close to the obstacles based on obstacle

expansion can be written as follow

Algorithm 4: Generate Free-Region Nodes Algorithm

Input: (i) A collection of polygonal obstacles O1, O2,... Ok

(ii) m, number of nodes to generate
(iii) Empty set R

Result: List of free-region nodes not close to obstacles

Step 1:
1 for i = 1 to k do
2 for each edge e of Oi do
3 construct δ-displaced edge
4 end
5 for each vertex vi of Oi do
6 construct δ-arc
7 end

8 end

Step 2:
1 Combine δ-displaced edges and δ-arcs in Step 1 to construct expanded obstacles

Step 3:
1 for i=1 to m do
2 x = random int in the range low-high
3 y = random int in the range low-high
4 construct a random node with coordinates x and y and add it to set R

5 end

Step 4:
1 for each randomly generated node nx do
2 if nx is inside any expanded obstacles then
3 remove nx from R
4 end

5 end

Step 5:
1 Output R

23

The time complexity of Algorithm 4 can be analysed as follows:

• In Step 1, (nested for loops), each edge of obstacles are processed only once. Similarly, each

vertex is processed only once. Hence the total time for Step 1 is O(n) where n is the number

of vertices in the obstacles.

• Combining δ-displaced edges and δ-arcs in Step 2 takes O(n) time

• A random integer in a range can be generated in constant time. Hence Step 3 takes O(m)

time

• Checking a point inside obstacles can be done in O(n) time by using point in polygon inclusion

algorithm [O’R98]. Hence Step 4 takes O(mn)

Thus the total time complexity of Algorithm 4 is

O(n) +O(n) +O(m) +O(mn) = O(mn)

24

Chapter 4

Implementation and Experiments

In this chapter, the application design, implementation details and the experimental results are

discussed. The Java programming language is used to implement the algorithms and JAVA Swing

API [Ora23] is used to develop the GUI.

4.1 Interface Design

The main window of the application is built with JFrame object from the Java Swing API. The

interface is illustrated in the Figure 4.1. The interface is divided into 4 distinct regions:

1. Menu Bar (Top)

2. Drawing Canvas (Center)

3. Control Panel (Right)

4. Action Bar (Bottom)

The menu bar is built by using JMenuBar object. The remaining sections are JPanels and are

set in the BorderLayout grid styling using Center, East and South positioning.

25

Figure 4.1: A Snapshot of the Application Interface

4.1.1 Menu Bar

The Menu bar sits at the top and has Menu options Read File and Save File. As the name sug-

gests, Read File reads a text file(.txt) that contains the co-ordinates of the vertices of a collection

of polygons and draws them in the drawing panel, which is detailed later. The Save File op-

tions lets users to save the polygons drawn in the drawing panel so that it can be reused. The

saved file will have the co-ordinates of the polygons that can be redrawn using the Read File option.

S.No. Menu Option Description

1 Read File Reads a text file and displays the polygonal obstacle layout.
2 Save File Save the co-ordinates of the polygons in the drawing canvas in a .txt file.

Table 4.1: Menu Bar Description

4.1.2 Drawing Canvas

The Drawing canvas is the center panel where a user can draw polygonal obstacles by using mouse

clicks. Similarly, user can draw a Source node and 3 Goal nodes for the path planning. The canvas

also displays the Mid-points, BFS tree and the high clearance path. The mid-points, shown as black

26

dots, are displayed when Find Mid-Points button is clicked. The networks are shown as colored

lines that connect the mid points. A general network that connects nearest midpoints are drawn as

blue lines, a BFS tree starting from the Source node is drawn as green lines and the High clearance

path computed form the BF tree is drawn as red lines. These are explained in details in following

section. It also contains a preset rectangular boundary with Steiner’s Points along the edges. At

the top-right position of this panel, the current position(co-ordinates) of the mouse pointer in the

drawing panel is displayed in x, y style. The drawings in the canvas are done using Mouse clicks

and Mouse drags.

4.1.3 Control Panel

The Control Panel is a JPanel object positioned to the right side or East side of the application

which contains all the functional control for the application. It contains various checkboxes, radio

buttons and text boxes to select what and how to perform any action in the canvas. The functions

are described in the following table in top to bottom order as displayed in the GUI.

The bottom or South panel consists of three action buttons. Find Mid-Points button computes

the mid points between the vertices of the polygons along with the Steiner’s point in the rectangular

boundary and displays them in the drawing panel. The Create Network button generates a network

connecting the mid-points, which is displayed in blue color. The network connections are determined

by the values set in the Grid Size and Circle Size text input in the control panel. Furthermore,

it also displays the BFS tree (in green color) and the High Clearance Path (in red color). These

networks can be shown or hidden based on the checkboxes in the control panel as explained above.

The final button is the Clear button, which clears all the polygons and mid-points drawn in the

drawing panel along with the networks. This also resets any variables/values that were set while

computing the networks.

27

S.No. Control Type Description

1 Select Polygon Text Input Set the Polygon number that is to be operated on.
Indicates the selected polygon.

2 Draw Polygon Radio Button Draw Polygon, identified by number set in above
textbox, on canvas.

3 Move Polygon Radio Button Move the polygon as selected in the text input
above.

4 Edit Polygon Radio Button Edit the vertices of the selected polygon.

5 Draw Source Node Radio Button Draws a Source node in the canvas.
6 Draw Goal Node Radio Button Draws Goal nodes in the canvas. The nodes are

drawn in round-robin system, each click will draw
node in the sequence 1, 2 & 3 and then starts
again from 1.

7 Grid Size Text Input The size, length and width, of the grids that is
used to position the circle for empty circle test to
determine close nodes and connect them.

8 Circle Size Text Input The radius of the circle that is used to perform
the circle test to connect the free-region nodes

9 Show Network Checkbox Displays the full network of connected free-region
nodes when selected and Draw Network button is
clicked

10 Show BFS Tree Checkbox Displays the BFS tree starting from the source
node when selected

11 Show Paths Checkbox Displays the path computed from the BFS tree

12 Show Low Clear-
ance Nodes

Checkbox Marks the low clearance nodes with with encir-
cling circle of radius defined in the Low Clearance
threshold box

13 Low Clearance
Threshold

Text Input Defines the threshold for the low clearance nodes

14 Avoid Low Clear-
ance Nodes

Checkbox When selected, the nodes that are marked as
low clearance are avoided while creating the free-
region network, BFS tree and high clearance paths

15 Generate Free-
Region Nodes
Using

Label

16 Mid Points Radio Button When selected, the free-region nodes are gener-
ated using the visibility graph mid point algorithm

17 Random Points Radio Button When selected, the free-region nodes are gener-
ated using the random point generation algorithm

18 Random Points Text Input The number of random points to be generated

Table 4.2: Control Panel Description

28

Figure 4.2: Polygonal Obstacles, Network and High Clearance Paths

4.2 Experimental Results

4.2.1 Mid-Point based Free-Region Nodes

In the application, a 7 polygonal obstacle set was designed. A source node was added at position

(114, 104). Then three goal nodes were added in different positions.

Sets Data Label Goal 1 Goal 2 Goal 3

Set 1 Location (x, y) 580, 91 492, 646 1121, 615
Normal Least Clearance 51.546 5 19.026
Enhanced Least Clearance 51.546 55.154 43.278

Set 2 Location (x, y) 125, 680 750, 434 434, 89
Normal Least Clearance 35.114 27.784 51.546
Enhanced Least Clearance 45.607 43.278 51.546

Set 3 Location (x, y) 954, 192 733, 549 512, 272
Normal Least Clearance 51.546 15.62 37.161
Enhanced Least Clearance 51.546 43.278 51.546

Table 4.3: Clearance Values for Normal and High Clearance Path

Similarly, for a set of 11 obstacles, we are experiments to compute the Euclidean distance of

the path together with the total number of nodes in the generated path. We set the low clearance

threshold - δ to 25 (px) and observed the values for normal clearance and enhanced(high) clearance

29

in the path.

Source (x, y) Goal (x, y) Clearance Min Clearance Nodes in Path Euclidean Distance

1025, 650

151, 96
Normal 15.81 18 1165.36

Enhanced 25.55 23 1311.15

451, 106
Normal 17.49 13 882.55

Enhanced 25.55 16 1010.74

117, 322
Normal 16.00 18 1160.46

Enhanced 25.46 23 1438.91

180, 124

1126, 129
Normal 20.40 19 973.95

Enhanced 26.48 19 974.28

497, 659
Normal 1.00 12 741.30

Enhanced 27.00 12 744.09

967, 397
Normal 15.81 16 989.83

Enhanced 25.06 17 974.54

Table 4.4: Normal and Enhanced Clearance Path Comparison

4.2.2 Randomly generated Free-Region Nodes

In the application canvas, 7 polygonal obstacles of different shapes and sizes were added. A source

node was placed at (127, 113) position, and a goal node was placed at (1109, 604). Next, random

points were generated in the canvas (as mentioned in the section 3.1.3). The points were filtered

first based on whether they were inside or outside the polygonal obstacles. The nodes inside the

obstacles were removed. Similarly, the nodes that had low clearance, nodes that were closer to an

obstacles than 40px, were removed. Now with the eligible free-region nodes, a graph network was

created and using Breadth First Search with start point as the source node, and end point as the

goal node. Form that path, we computed the number of nodes traversed, the euclidean distance of

the path and the minimum clearance of the path from the obstacles. We also recorded the number

of free-region nodes and high clearance nodes. This process was repeated for different number of

random points and the data is presented in the following table.

Figure 4.3 illustrates the comparison of high clearance nodes, low clearance nodes and nodes

that lie inside the polygonal obstacles for different number of randomly generated nodes. We can

observe that the randomness is fairly preserved on the number of each of such type of nodes.

30

Total Nodes
Free-Region
Nodes

High Clearance
Nodes

No. of Nodes
in Path

Euclidean
Distance

Minimum
Clearance

300 239 208 20 1386.89 40.25
350 274 245 18 1406.95 41.01
400 312 291 16 1354.18 40.31
450 359 337 16 1380.13 41.01
500 409 363 16 1262.49 47.51
550 431 379 13 1231.19 40.46
600 469 439 16 1427.40 45.01
650 499 470 15 1271.52 41.23
700 552 496 14 1291.13 46.09
750 593 544 15 1275.41 48.27
800 628 586 14 1228.52 52.63
850 669 616 15 1210.83 41.86
900 697 633 14 1195.35 41.86
950 756 657 14 1248.47 40.80

1000 789 717 14 1209.17 45.45

Table 4.5: Random Point Generation and Path Statistics

The number of nodes in the generated high clearance path is illustrated in Figure 4.4. It can be

observed that the number of nodes in the path decreases as the high clearance nodes increases until

total number of generated nodes reach 600. After that the number of nodes in path remain fairly

consistent to about 14.

Figure 4.3: Comparison of Randomly Generated Nodes

Furthermore, we experimented with varying free-region space and how the randomly generated

nodes would perform. We constructed polygonal obstacles of different shape and sizes to occupy

different area in the rectangular boundary. The free space thus obtained were 67%, 75% and 80%.

In each of such settings, we randomly generated 600, 800 and 1000 nodes. We then computed the

free-region nodes, high clearance nodes, low clearance nodes and nodes that were generated inside

the obstacles. Figure 4.5 illustrates the comparison of such nodes across different free-region space.

31

Figure 4.4: Comparison of Number of Nodes in Path

(a) Different Types of Generated Nodes (b) Percentage of Different Nodes

Figure 4.5: Comparison of Randomly Generated Nodes Against Free-Region Area

We can observe that as the free space increases, so does the high clearance nodes and the low

clearance and nodes inside obstacles decreases. Even with an 8% increase, from 67% to 75%, in

free space, we can see that the high clearance nodes significantly increases. This behavior is seen

to be consistent across the different number of total randomly generated nodes.

32

Chapter 5

Discussion

We presented a brief review of algorithms for constructing collision-free paths connecting two nodes

in a two dimensional Euclidean space containing convex obstacles. We introduced new algorithms

for constructing collision-free paths based on generating nodes outside obstacles which could be

possible candidates for interior nodes of the path. The generated nodes are processed to make

the constructed collision-free path to have more clearance from obstacles. The free-space nodes

are generated in two ways: One guided by the visibility edges induced by obstacle set and other

randomly generated nodes that are checked to lie outside obstacle set. We presented some ex-

perimental results on the quality of generated paths. The experimental results were obtained by

implementing presented algorithms in Java programming language.

There could be several extensions of the algorithms presented in this thesis as described next.

We developed the presented algorithms in the presence of convex polygonal obstacles. It would be

nice to extend our algorithm to the case of non-convex obstacles. One way in this direction would

be to replace each non-convex obstacle Oi with O′
i which is the convex hull of Oi. This approach

would work correctly only if the convex hull of obstacles do not overlap with each other and the

source or the goal node does not lie inside the convex hull of the obstacles. Figure 5.1 illustrates

overlapping of non-convex polygonal obstacles. In the figure, the convex hull of the polygons D &

E and polygons F & G overlap with each other.

33

Figure 5.1: Convex Hulls of Polygonal Obstacles

The collision-free path constructed by the presented algorithm could have very sharp turn

angles. It would be a good exercise to modify the proposed algorithm to avoid sharp turns in the

generated path.

34

Bibliography

[dBvKOS00] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Com-

putational Geometry: Algorithms and Applications. Springer-Verlag, second edition,

2000.

[EDPB15] John Edwards, Eric Daniel, Valerio Pascucci, and Chandrajit Bajaj. Approximating

the generalized voronoi diagram of closely spaced objects. Computer Graphics Forum,

34(2):299–309, 2015.

[GM87] Subir Kumar Ghosh and David M. Mount. An output sensitive algorithm for com-

puting visibility graphs. pages 11–19, 1987.

[JLLC21] Gene Jan, Ming Lee, Chaomin Luo, and Wei Chiang. Obstacle-avoidance path plan-

ning based on delaunay triangulation. 08 2021.

[O’R98] Joseph O’Rourke. Computational Geometry in C. Cambridge University Press, second

edition, 1998.

[Ora23] Oracle. Java development kit version 20 api specification. 2023.

35

Curriculum Vitae

Graduate College

University of Nevada, Las Vegas

Barun Thapa

barunthapa.bvdt@gmail.com

Degrees:

Bachelor of Engineering in Computer Engineering, 2012

Tribhuvan University

Thesis Title: High Clearance Collision-free Paths

Thesis Examination Committee:

Chairperson, Dr. Laxmi Gewali, Ph.D.

Committee Member, Dr. Kazem Taghva, Ph.D.

Committee Member, Dr. Mingon Kang, Ph.D.

Graduate Faculty Representative, Dr. Henry Selvaraj, Ph.D.

36

	High Clearance Collision-Free Paths
	Repository Citation

