l lb II /‘ 7 | UNIVERSITY
LIBRARIES

UNLV Theses, Dissertations, Professional Papers, and Capstones

8-15-2023

OCR Post-processing Using Large Language Models

Mahdi Hajiali
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

b Part of the Artificial Intelligence and Robotics Commons

Repository Citation

Hajiali, Mahdi, "OCR Post-processing Using Large Language Models" (2023). UNLV Theses, Dissertations,
Professional Papers, and Capstones. 4811.

http://dx.doi.org/10.34917/36910880

This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital
Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that
is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to
obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons
license in the record and/or on the work itself.

This Dissertation has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and
Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F4811&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F4811&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.34917/36910880
mailto:digitalscholarship@unlv.edu

OCR Post-processing Using

Large Language Models

Mahdi Hajiali

Doctor of Philosophy — Computer Science
University of Nevada, Las Vegas
2023

A dissertation submitted in partial fulfillment
of the requirements for the

Doctor of Philosophy — Computer Science

Department of Computer Science
Howard R. Hughes College of Engineering
The Graduate College

University of Nevada, Las Vegas
August 2023

Copyright by Mahdi Hajiali, 2023
All Rights Reserved

UNLV [€8ipece®

This dissertation prepared by

Mahdi Hajiali

entitled

Dissertation Approval

The Graduate College
The University of Nevada, Las Vegas

May 24, 2023

OCR Post-processing Using Large Language Models

is approved in partial fulfillment of the requirements for the degree of

Doctor of Philosophy — Computer Science

Department of Computer Science

Kazem Taghva, Ph.D.
Examination Committee Chair

Laxmi Gewali, Ph.D.

Examination Committee Member

Wolfgang Bein, Ph.D.
Examination Committee Member

Ashok Singh, Ph.D.
Graduate College Faculty Representative

Alyssa Crittenden, Ph.D.
Vice Provost for Graduate Education &
Dean of the Graduate College

Abstract

Optical Character Recognition (OCR) technology transforms textual visuals into an electronically
readable, non-graphical format of the text. This allows the editing and other text manipulation
of the content by language technology software such as machine translation, text comprehension,
query-answering systems, and search engines. While Optical Character Recognition (OCR) sys-
tems continually progress towards greater precision, several complications persist when dealing
with low-resolution source images or those with multicolored backgrounds. Consequently, the text
derived from OCR necessitates additional refinement to optimize accuracy, beneficial for various
subsequent applications. It is recognized that the character accuracy of OCR generated text may
influence certain natural language processing tasks, including Information Retrieval, Named-Entity

Recognition, and Sentiment Analysis.

Post-processing techniques for Optical Character Recognition (OCR) consist of three funda-
mental stages of identifying incorrect words, producing a list of potential corrections, and selecting
the accurate word from the list to replace the erroneous word. In this work, we are using large
language models and word embeddings to detect recognition errors caused by the OCR software.
In addition, we use the generative capabilities of these language models to suggest correction can-
didates to possibly fix the errors. Our work also includes the development of tools that can be used

to further improve the OCR post processing technologies.

iii

Acknowledgements

Throughout the pursuit of my doctoral degree, many individuals have played a crucial role in
helping me achieve this significant milestone. First, my amazing wife, who has always been there
for me, cheering me on and supporting me. Her constant encouragement and understanding have
been invaluable in helping me persevere through the tough times.

I also want to thank my parents for their love and guidance. Their dedication and sacrifices have
played a significant role in shaping the person I am today.

A special thank you goes to my PhD adviser, Dr. Kazem Taghva, for his exceptional guidance,
expertise, and patience throughout this journey. His constant support and dedication to helping
me grow as a researcher have truly made a big difference in my academic journey.

Finally, my gratitude extends to my committee members for their valuable insights and feedback
on my work.

The collective support of all these individuals has been instrumental in shaping my success, and I

could not have accomplished this without them.

MAHDI HAJIALI
University of Nevada, Las Vegas
August 2023

v

Table of Contents

Abstract iii
Acknowledgements iv
Table of Contents v
List of Tables viii
List of Figures ix
Chapter 1 Introduction 1
Chapter 2 Preliminaries 3
2.1 Natural Language Processing (NLP) 3
2.2 Rule-based approaches (Top-Down) 4
2.3 Machine Learning-based approaches (Bottom-Up). 4
2.3.1 'Traditional Machine Learning Methods,)

2.3.2 Neural Networks-based methods 5

2.4 Text Representation e 6
2.4.1 One-Hot Encoding 6

2.4.2 Bag-of-Words (BoW) 7

2.4.3 TF-IDF-based method 9

2.4.4 N-Gram e e e 12

2.5 Word Embedding e 13
2.5.1 Word2Vec Embedding 14

2.5.2 GloVe Embedding 17

2.5.3 FastText Embedding o 19

2.6 Neural Language Modeling 22
2.7 The Attention Mechanism, The Transformer Architecture, And The Large Language
Models (LLMs) o o 24
2.8 BERT o 25
2.8.1 BERT Architecture. 26
2.8.2 BERT Pre-training 31
2.8.3 BERT Tokenizer e 32
2.8.4 Converting to base forms L 33
2.8.5 BERT Embedding 33
2.9 GPT . . . e 34
Chapter 3 Literature review 36
3.1 OCR definition o e 36
3.2 The Significance of OCR. 36
3.3 What advantages does OCR offer? 37
3.4 What are the applications of OCR? 37
3.5 Steps Involved in OCR. e 40
3.5.1 Image Capture e 40
3.50.2 Pre-processing e 40
3.5.3 Text detection 41
3.5.4 Post-processing 42
3.6 Evolution of OCR Post-Processing Methods 42
3.6.1 Word unigram based methods 43
3.6.2 Error correction techniques Lo 43
3.6.3 Statistical language modelso 44
3.6.4 Machine learning based methods 44
3.6.5 Neural network-based language models 45
3.6.6 Transformer-based language models oL 45
Chapter 4 Methodology 47
4.1 Detecting the OCR Errors o 47
4.2 Generating the Candidates for OCR Errors 49
4.3 Choosing the Best Candidate 53

vi

Chapter 5 Results

5.1 Dataset e
5.2 Detection Evaluation
52.1 BERT e
522 GPT-4 e
5.3 Correction Evaluation
5.3.1 BERT and FastText
5.3.2 GPT-4. . . . e

Chapter 6 Conclusion and Future Work

Bibliography

Curriculum Vitae

vii

55
95
56
o7
o8
99
99
60

61

63

68

2.1

5.1
5.2
5.3
5.4
9.5

List of Tables

An example for the input-output pairs of the CBOW method in Word2Vec 14
Features of the MiBio dataset 56
Confusion Matrix for BERT model L. 57
Confusion Matrix for GPT-4model 59
BERT- FastText Model Accuracy o o 0 v ittt e e e e 59
GPT-4 Model Accuracy e 60

viii

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

4.1

List of Figures

An example of One-Hot Encoding, 7
An example of BoW text representation L. 8
An example of TF-IDF-based text representation 11
CBOW Method in Word2Vec o e 15
Word Pairs in Skip-Gram e 16
Skip-Gram Method in Word2Vec 17
The Transformer model architecture. Adapted from [1]. 26
BERT model architecture. Adapted from [1]. 27
Multi-Head architecture. Adapted from [1]. 32

Detecting OCR. errors using Masked Language Modeling in BERT and computing the

score of Sentences 50

X

Chapter 1

Introduction

OCR (Optical Character Recognition) software transforms textual visuals into an electronically
readable, non-graphical format of the text. (e.g. ASCII). More broadly, OCR accepts an image
obtained from a scanner as input and performs a sequence of operations to extract text content.
These operations include pre-processing of the image to remove noise, zoning to separate text from
non-text components, and segmentation to isolate individual characters. The development of OCR
software has a long history and is a partly summarized in [2]. The OCR software are mainly
commercial. The only open source software is Tesseract developed by Ray Smith [3] at Hewlett-
Packerd (HP) and donated to Information Science Research Institute at the University of Nevada,
Las Vegas (UNLV). Later on, after some initial clean up of the code, it was taken over by Google
for further development.

The text output of OCR allows the editing and other text manipulation of the content by language
technology software such as machine translation, text comprehension, query-answering systems,
and search engines. Despite the ongoing advancements made to augment the accuracy of OCR
systems, there are still many challenges that persist, particularly when the source images have
poor resolution or backgrounds with intense color schemes [4]. Therefore, the output from OCR
necessitates further post-processing in order to enhance the results and increase precision.
Moreover, ensuring the quality of OCRed texts holds significant importance in achieving optimal
performance across various Natural Language Processing (NLP) tasks [5]. These tasks include
Information Retrieval [6], Named-entity recognition (NER), Sentiment Analysis, Topic Modelling,
ete.

The steps involved in post-processing Optical Character Recognition (OCR) primarily encompass

three tasks of identifying the errors, creating a list potential alternatives (candidates), and rectify-

ing the errors. There are other tasks associated with post processing such as identification of meta
data, sentences, paragraphs, and reading order (two column vs one column articles). This work
does not address the latter component of the post processing.

The remainder of this dissertation is structured as follows: In Chapter 2, the necessary preliminary
concepts and background information are presented to provide the reader with a clear understand-
ing of the research context. Chapter 3 conducts an extensive literature review to identify and
analyze existing research studies on the topic, highlighting the gaps and limitations in the current
knowledge. Chapter 4 describes the methodology employed in this research and Chapter 5 presents
the results of the research study. Finally, Chapter 6 provides a summary of the research findings and

draws conclusions based on the research outcomes, while also identifying areas for future research.

Chapter 2

Preliminaries

2.1 Natural Language Processing (NLP)

Natural Language Processing (NLP) is a sub-field of Machine Learning (ML) which is used to
extract insights from linguistic data. NLP is concerned with developing algorithms and models
that can understand and process human language in all its complexity, including its syntax and
semantics. NLP employs a range of techniques from various disciplines, including linguistics, statis-
tics, machine learning, and computer science, to create methods that can perform tasks such as
Machine Translation, Text Summarization, Text Generation, Sentiment Analysis, Information Re-
trieval, Topic Modeling, Question Answering, and OCR Post-Processing.

NLP faces various challenges when it comes to comprehending human language. For example, words
can mean differently in different contexts, and there are so many languages and dialects worldwide
that need to be accounted for. In addition, it’s not just about understanding individual words but
also how they fit together in a sentence or conversation to convey meaning. Sometimes, people
use sarcasm or irony, which can be difficult for machines to understand. All of these challenges
require researchers to come up with better ways for machines to understand and interpret human
language.

There are two main categories of methods to solve NLP tasks: rule-based approaches and ma-
chine learning-based approaches. In the following, we will discuss the differences between these two

approaches in more detail.

2.2 Rule-based approaches (Top-Down)

The fundamental idea behind Natural Language Processing (NLP) is to enable computers to un-
derstand human language. NLP, prior to late 1980s, predominantly employed rules-based systems
that utilized linguists’ handcrafted rules to dictate how computers analyzed language. These rules
were responsible for guiding computers on how to analyze and interpret language. Rule-based
methods are considered top-down because they start with a predefined set of rules or instructions
that govern how a computer should analyze language. However, this approach had its shortcomings
because developing rules for each language or each task required significant time and effort. Also
the rules were often inflexible in capturing the intricate nuances of language. In other words, the
rules were often too rigid to convey the subtleties of language.

In 1957, Noam Chomsky’s introduction of syntactic structures brought about a true revolution in
the field of NLP [7]. According to Chomsky’s theory, language is not just a product of learned
behaviors, but rather an inherent capability of the human mind that is biologically hardwired.
He proposes the existence of a universal grammar that underpins all human languages, and this
“universal grammar” can be uncovered and formalized through the study of language structure.
While Chomsky’s theories have made a significant contribution to the field of linguistics and rule-
based approaches, they have not been without criticism, especially concerning language acquisition
and learning. Some linguists have raised concerns that his theories overemphasize innate knowledge
and do not adequately address the role of experience and learning in language acquisition.
Chomsky’s view was challenged by Hockett, who argued that language is not as well-defined, stable,
or formal as previously thought. Hockett discovered several limitations with Chomsky’s approach,
particularly the belief that language is a precise, unchanging, and formal system that can only exist
in an idealized setting [8].

NLP underwent a significant transformation in the late 1980s when machine learning (ML) al-
gorithms were introduced for language processing. This change was a result of advancements in
computational power, as well as a shift away from Chomsky’s theories of linguistics, which discour-

aged the use of corpus linguistics, the base of the Machine Learning approach.

2.3 Machine Learning-based approaches (Bottom-Up)

With the rise of machine learning and corpus-based approaches to NLP, rule-based methods have

been largely replaced by more data-driven and flexible techniques. Machine learning methods are

considered bottom-up because they start with data and use algorithms to learn patterns and rela-
tionships within that data. These methods allow the computer to learn from the data and identify
patterns that may not have been explicitly programmed by humans.

Traditional machine learning methods and neural network-based methods have emerged as two of
the main approaches for processing and analyzing text data using ML techniques.

In the following sections, we will discuss the strengths and weaknesses of these two Machine
Learning-based approaches for NLP. Specifically, we will examine how traditional ML methods
and neural network-based methods differ in their ability to handle complex language structures,

their efficiency in training and inference, and their suitability for different NLP tasks.

2.3.1 Traditional Machine Learning Methods

These methods for NLP have been used for decades to solve various NLP tasks. These methods
utilize statistical models and algorithms to learn from input features and their relationships to
output labels. To accomplish this, domain experts must perform extensive feature engineering by
manually selecting and engineering relevant features from the raw input data. The quality of the
features directly impacts the performance of the model, and feature engineering can be a time-
consuming and challenging task. Additionally, traditional ML methods struggle to handle complex
language structures, such as sarcasm and irony due to their reliance on hand-crafted features.
These methods are generally more efficient in training and inference than neural networks. This
efficiency is due to the lower complexity of the models, which results in faster training times and
lower memory requirements. Traditional ML methods are particularly useful in scenarios where
there is a limited amount of training data.

An example of a Traditional machine learning approach is to use a Naive Bayes classifier or a
Support vector machines (SVM) classifier that is trained on a bag-of-words representation of text

to categorize sentiment into positive, negative, or neutral categories [9].

2.3.2 Neural Networks-based methods

The primary difference between traditional ML methods and neural network-based methods is in
their approach to feature engineering and their ability to handle intricate language patterns. Neural
network-based methods have the ability to learn the representation of the input text directly from

raw data. This feature eliminates the need for extensive feature engineering, making the training

process more efficient. Neural networks can handle complex language structures, making them
more suitable for tasks that require understanding of the deeper meaning of text, such as sentiment
analysis and language translation.

In the 2010s, deep learning became popular in natural language processing, leading to the widespread
use of deep neural networks. These networks are neural networks that have more than three layers
including input and output. In other words, they have more than one hidden layer [10]. These
methods have demonstrated the ability to achieve superior results in a variety of NLP tasks. This
shift towards deep learning was prompted by several factors including advancements in deep learn-
ing algorithms, the availability of larger datasets, and more powerful computing resources.

Deep neural network-based models for NLP include Recurrent Neural Networks (RNNs), Convolu-
tional Neural Networks (CNNs), Long Short-Term Memory Networks (LSTMs), and Transformer-
based models like BERT and GPT.

An example of using an Artificial Neural Network-based method is to use a Multi-layer Perceptron

(MLP) classifier to categorize documents [11].

2.4 Text Representation

Data is the most important part of any data science project. Unlike images, which can be repre-
sented as matrices of pixels, text data consists of sequences of symbols such as letters, words, and
sentences that convey meaning and context. Moreover, language is highly nuanced and context-
dependent, and the same word or phrase can have different meanings in different contexts. The
primary objective of natural language processing (NLP) is to construct a representation of the text
that adds structure to unstructured natural language. This is achieved by transforming raw text
data into a numerical or mathematical format that can be easily processed by machine learning
models.

To effectively represent text data and capture its meaning and context, NLP researchers have de-
vised a range of techniques. In the following, I will discuss the evolution of text representation

methods in NLP.

2.4.1 One-Hot Encoding

The earliest approach to text representation in NLP involved the use of one-hot encoding. This

method assigns a unique integer index to each word in the vocabulary and creates a vector of zeros

with a length equivalent to the vocabulary size. The vector is then populated with a value of one

at the index corresponding to the word in the text.

Vocabulary:
index | word match

0 won 0 0 0 0 0 1 0 0 0

1 | france Q index | 0 1 2 3 4 5 6 7 8

2 how

3 brazil brazil won france in the final match

4 in 1 1 0 1 1 1 1 0 1

5 match Q index 0 1 2 3 4 5 6 7 8

6 the - . Same
france won brazil in the final match Vector

! training 1 1 0 1 1 1 1 0 1

8 | final Q index| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8

Figure 2.1: An example of One-Hot Encoding

While this technique is easy to implement, it has several limitations such as:

1. Loss of semantic meaning: One-hot encoding treats each word as a separate entity and fails
to capture the semantic meaning and relationships between words. This can lead to poor
performance on tasks that require contextual understanding. For example in Figure 2.1,

both sentences are represented by the same vector, even though they have different meanings.

2. Sparsity: One-hot encoding creates a sparse feature space, with most values being zero, which

can lead to inefficient computations and slower training times.

3. High dimensionality: One-hot encoding creates a feature space with a high number of dimen-

sions, making it computationally expensive and difficult to analyze.

4. Inability to handle out-of-vocabulary words and lack of generalization: One-hot encoding
requires a fixed vocabulary size and cannot handle new words that are not in the vocabulary.

This can result in a loss of information.

2.4.2 Bag-of-Words (BoW)

A subsequent development in text representation was the bag of words (BoW) technique. In this

method, the text is treated as a bag of words, and the order in which they appear is not considered.

Each word is viewed as a separate feature, and its occurrence in the text is counted and stored in
a vector. The vector represents the text, and its size corresponds to the size of the vocabulary. An
example of this method is shown in Figure 2.2.

While the BoW model is a simple and effective text representation technique, it has several limi-
tations that can affect its usefulness in certain NLP applications. This method is more expressive
than one-hot encoding and can capture the frequency of words in the text. Nevertheless, there are

some potential drawbacks to using BoW text representation:

1. Loss of Sequence Information: BoW representation does not take into account the order of
words in a sentence or document. It treats each word as an independent unit and ignores
the context in which the word appears. This can result in a loss of important semantic

information that is conveyed by the order and structure of words in a sentence.

2. Vocabulary Size: To utilize the Bag-of-Words (BoW) representation, it is necessary to gen-
erate a vocabulary containing all distinct words present in the corpus. This can result in a
large and sparse feature space, which can increase computational costs and lead to overfitting

in the model.

3. Ignoring Rare Words: BoW representation tends to ignore rare words, which can be important
for certain tasks. For example, in sentiment analysis, rare words can often carry a strong

emotional meaning and may be critical for accurate classification.

4. Lack of Semantic Understanding: BoW representation does not capture the semantic rela-
tionships between words. It treats each word as a separate entity and does not take into
account the meaning and relationships between them. This can limit the model’s ability to

understand the underlying meaning of text data.

Document the| ball | world |france|and|brazil|was |last|match |vs |intense | between

the match between france and
brazil was the last match

the france vs brazil match was
intense intense intense

Figure 2.2: An example of BoW text representation

2.4.3 TF-IDF-based method

To address the drawbacks of BoW, the TF-IDF (Term Frequency multiplied by Inverse Document
Frequrncy) technique was introduced. In this method, the frequency of words in the text is weighed
based on their frequency across all the documents in the corpus. The TF-IDF score is determined
by multiplying the term frequency with the inverse document frequency. The term frequency repre-
sents the frequency of a word in the text, while the inverse document frequency indicates the rarity
of the word across all the documents. This representation is effective in capturing the importance
of words in the text and reducing the impact of common words such as "the” and ”"and.” TF-IDF
is frequently used in information retrieval tasks.

TF-IDF value of term x within document y is calculated as follows:

TF — Number of times term x appears in document y

Number of terms in document y

Number of documents present in the corpus (N)

IDF =1
8e Number of documents where term x has appeared

N
TF —IDF =TF(z,y) x IDF(x) = tfy, x log, a.

Let’s assume that we have two documents, namely:
Document 1: the match between france and brazil was the last match

Document 2: the france vs brazil match was intense intense intense

We first need to calculate the term frequency (TF) for each document, which is the number of
times each word appears in the document:

TF(”the”, Document 1) = 2/9

TF(”match”, Document 1) = 2/9

TF ("between”, Document 1) = 1/9

TF(”france”, Document 1) = 1/9

(
(
(
TF(”and”, Document 1) = 1/9

TF (”brazil”, Document 1) = 1/9

—

(
F(”was”, Document 1) = 1/9
TF("last”, Document 1) = 1/9
F(”vs”, Document 1) = 0/9

—

H

F(”the”, Document 2) = 1/8
TF(”match”, Document 2) = 1/8

—

F(”france”, Document 2) = 1/8

=

TF (”brazil”, Document 2) = 1/8
F("was”, Document 2) = 1/8

—

(
(
(
F("vs”, Document 2) = 1/8
(
(
(

TF (”intense”, Document 2) = 3/8

Next, we can calculate the inverse document frequency (IDF) for each word, which is a mea-
sure of how important the word is in the corpus:
IDF(”the”) = log(2/2) =0
IDF("match”) = log(2/2) = 0
IDF("between”) = log(2/1) = 0.693
IDF (" france”) = log(2/2) = 0
IDF(”and”) = log(2/1) = 0.693
IDF("brazil”) = log(2/2) = 0
(
(
(
(

—

DF("was”) = log(2/2) = 0
IDF("last”) = log(2/1) = 0.693
IDF("vs”") = log(2/1) = 0.693
IDF(”intense”) = log(2/1) = 0.693

Note that the IDF values for ”the”, "match”, ”france”, and ”brazil” are 0, since they appear

in both documents.

Finally, we can calculate the TF-IDF values for each word in each document, which is simply
the product of the TF and IDF values:
TF-IDF(”the”, Document 1) = (2/9) * 0 =0

10

TF-IDF(”match”, Document 1) = (2/9) * 0 =0
TF-IDF("between”, Document 1) = (1/9) * 0.693 = 0.077
TF-IDF (”france”, Document 1) = (1/9) * 0 =0
TF-IDF("and”, Document 1) = (1/9) * 0.693 = 0.077
TF-IDF(”brazil”, Document 1) = (1/9) * 0 = 0

TF-IDF ("was”, Document 1) = (2/9) * 0 =0

TF- IDF(”l st”, Document 1) = (1/9) * 0.693 = 0.077
TF-IDF("vs”, Document 1) = (0/9) * 0.693 = 0

TF-IDF(”the”, Document 2) = (1/8) * 0 =0
TF-IDF(”match”, Document 2) = (1/8) * 0 =0
TF-IDF(”france”, Document 2) = (1/8) * 0 =0
TF-IDF("vs”, Document 2) = (1/8) * 0.693 = 0.087
TF-IDF(”brazil”, Document 2) = (1/8) * 0 =0
TF-IDF("was”, Document 2) = (3/8) * 0 =0

TF-IDF (”intense”, Document 2) = (3/8) * 0.693 = 0.260

The vector representation of Document 1 and Document 2 is shown in Figure 2.3.

Document the | match | between|france | and |brazil|was| last | vs |intense

1 the mat_ch between france and 0 0 0.077 0 00771 o o loo77l o 0
brazil was the last match

2 the france vs brazil match was | o 0 0 0 o 0 0 o loos7| 026
intense intense intense

Figure 2.3: An example of TF-IDF-based text representation

It should be noted that TF-IDF typically uses smoothing to avoid 0 values in the actual implemen-

tation. This is represented in the formula:

IDF(x) =log, <1 ivdfx)

11

The advantage of TF-IDF is that it can effectively capture the most important words in a document
or corpus, while ignoring common and less informative words. However, there are some limitations

to this method:

1. Lack of semantic understanding: One major disadvantage is that it does not capture the
semantic meaning of words, so two words with different meanings but similar frequencies may

have similar TF-IDF scores. Figure 2.3 displays a few examples of such words.

2. Documents of different lengths can affect the TF-IDF score of terms, which may impact the

results of information retrieval.

3. Another significant limitation of TF-IDF is that it cannot handle the Out-of-Vocabulary
(OOV) problem effectively. OOV refers to the problem of encountering words in the test set
that were not seen in the training set. Since TF-IDF relies on the frequency of terms in the

corpus, it cannot assign a weight to new words that are not present in the corpus.

2.4.4 N-Gram

Another method of text representation is N-gram, which views the text as a sequence of contiguous
words or characters of a specified length (n) [12]. For example, a bigram representation of the

”.7isa”, ”a soccer”,

sentence ” Lionel Messi is a soccer superstar” would be [Lionel Messi”, ”Messi is
”soccer superstar”]. N-grams can capture the context of the words and are employed in several
NLP tasks such as speech recognition, machine translation, and Optical Character Recognition

(OCR) [13].

There are several cons associated with using n-gram text representation in NLP:

1. Limited context: N-gram models only capture short-distance context, which means they
cannot capture long-range dependencies in text data. This can lead to limitations in capturing

the meaning and semantics of text.

2. Large feature space: N-gram models generate a large number of features, which can lead to

the curse of dimensionality. This can make it challenging to process and analyze the data.

3. Sparse data: N-gram models can be extremely sparse, meaning that many of the features

may have zero values, making it difficult to extract meaningful information from the data.

12

4. Limited generalization: N-gram models are trained on specific training data, and they may
not be able to generalize well to new, unseen data. This can lead to limited performance on

tasks that require generalization.

As for the advantage of n-gram, capturing short-distance context can be useful in certain applica-
tions where it is possible that local context may be more relevant than global context, such as in
some text classification tasks. One example of a text classification task where n-gram models can be
useful is sentiment analysis. In such cases, the local context of the text, i.e., the individual words or
short phrases used, may be more informative than the global context or longer-range dependencies.
For example, a 2-gram model can capture pairs of words that often co-occur in positive or negative

reviews, such as ”great service” or "terrible experience”.

2.5 Word Embedding

The neural probabilistic language model proposed by Bengio et al. [14] has been influential in the
development of language models and neural networks for natural language processing. By leveraging
the power of neural networks to learn the representation of words, the model can capture more
complex relationships between words, and better understand the meaning behind sentences.

The last few years have brought about a paradigm shift in NLP’s text representation through the
emergence of models like Word2Vec, GloVe, and FastText. These models utilize neural networks
to learn the semantic associations between words and represent them as continuous vector spaces,
generating word embeddings that capture the semantic similarity between words. As a result, word
embeddings have become a widely adopted technique in various NLP tasks, thanks to their ability
to accurately capture the meaning of textual data.

Word embedding is the process of translating words into a vector of real numbers within a multi-
dimensional space. In essence, word embedding has the ability to position words with similar
meanings close to each other within that space.

The resulting word embeddings grasps the syntactic and semantic relationships between words in
the corpus, without requiring any explicit labeling of the data.

In the following discussion, we will focus on the three prominent methods of text representation -
Word2Vec, GloVe, and FastText and we will analyze their respective advantages and limitations

for word embedding generation.

13

2.5.1 Word2Vec Embedding

Word2Vec [15] is a neural network-based method that learns word embeddings by predicting the
context in which words occur. Specifically, Word2Vec uses a training corpus to build a model that
maximizes the probability of predicting a word given its surrounding words (CBOW) or maximizing

the probability of predicting surrounding words given a center word (skip-gram).

1- Continuous Bag of Words (CBOW)

1. The first step in CBOW is to create a training dataset by generating input-output pairs of
words. For example, given the sentence ”the match between france and brazil was the last

match”, the input-output pairs might be as shown in Table 2.1.

Table 2.1: An example for the input-output pairs of the CBOW method in Word2Vec

Input Output
”the”, "match”, ”france”, ”and” ”between”
"match”, "between”, ”and”, "brazil” | ”France”
"between”, ”france”, "brazil”, "was” | 7and”
”france”, "and”, "was”, "the” "brazil”
7and”, ”brazil”, "the”, "last” ”was”
"brazil”, "was”, ”last”, "match” ”the”

Each input-output pair consists of a list of context words and the target word. The context
words are the words within the specified window size (2 words on either side) of the target

word.

2. Creating One-Hot Encoding: The context words are represented as a list of one-hot vectors,
where each vector represents a word in the context words and has a value of 1 in the position

corresponding to the index of the word in the vocabulary and 0Os elsewhere.

3. Next, the input-output pairs are fed into the neural network. The input to the neural net-
work is the sum of the one-hot vectors for the input words, which produces a single vector
representation of the context words.

The neural network is trained to maximize the probability of predicting the correct target
word given the input words. The output of the neural network is a probability distribution

over the vocabulary for the target word.

14

After the neural network has been trained, the weights of the hidden layer can be employed as word
vector representations. These representations are dense and contain non-zero values for multiple
dimensions, unlike one-hot vectors which only have one non-zero value.

Each word in the vocabulary is depicted by a fixed-length dense