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ABSTRACT

BIDIRECTIONAL TESTING FOR REPAIRABLE SYSTEMS RELIABILITY:
POWER ASYMMETRIES, PANEL OF CONTROL CHARTS, AND

RELIABILITY GRAPHICS

by

Sung Keun Koo

Dr. Chih-Hsiang Ho, Examination Committee Chair
Professor of Mathematical Sciences (Statistics)

University of Nevada, Las Vegas, USA

To a practitioner who chooses to be on the safe side, we offer an option between a cocktail of tests

and a solo one-size-fits-all test as a needed antidote to power asymmetries. Two bidirectional tests

are first established to empower a basic pair of tests as asymmetrical performances. Unsurprisingly,

we’ve seen either bidirectional device championing in one alternative setting, but also being turned

against the very setting altered with just one of the composed elements. Progressing by filtering out

the bad and enhancing the good, we assemble a hybrid from the empowered pair to restore power

symmetries that are thought to be automatic and required for quality assurance. Data elaborated

by the maximum power-deficits certify that the hybrid, termed as the dual bidirectional test, is

robust with essential quality assurance in addition to a user-friendly version for the practitioners

conducting the work. To further substantiate the applicability of a p-value induced dual bidirectional

test, we challenge the legendary Laplace test to a duel. The outcomes reveal some elaborate concerns

associated with the defending champion while supporting the challenger as an all-purpose test and

a safe bet for practitioners doing the applicable real-world case studies. We extend the statistical

process control architecture to an all-in-one panel of coherent bidirectional control charts fit for group

sequential testing and multisystem. The charting tools start with a basic pair of tests that are more

complementary than competitive, and are bound together with a common set of control limits.

Another unified control limits, partners of an empowered pair of tests, form a second bidirectional

iii



control chart. And, a series of novel group sequential control charts, centering on a hybrid of

the empowered pair, characterize the test as the only tool possessing the unique feature of having

proxies that are free of the system sample size and the sampling schemes. It is, therefore, capable of

producing a one-size-fits-all control chart, to be considered in equipment performance assessments

of repairable systems and, by extension, other applications. Moreover, we start the development by

showing a simple dot-plot that cumulates all the dot-jumps up to each time-point of occurrences

and leaves us an often mysterious but meaningful footprint to shed any light on. Its mystery lies in

the sequence of the slopes and/or curvature associated with each corresponding hill edging up. We

then launch elaborated graphics panels to gain a broad perspective on the data analysis to exchange

information, support one another, share findings of reliability trends and the change-point(s) from

both directions, and even interconnected with power asymmetries. A cocktail of bidirectional tests

is a social lubricant in the saga of absorbing graphics to make it easier to collaborate on new and/or

improved technologies in reliability engineering and, by extension, other applications.

iv
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CHAPTER 1

INTRODUCTION

1.1 Weibull Distribution

In a technological world, nearly all the applications of practical sciences to industry or commerce

depend upon the continued functioning of a wide array of complex machinery and equipment for their

health, safety, mobility, and economic welfare. Continual assessment of new product reliability and

ongoing control of reliability are crucial necessities in today’s competitive arena. This phenomenon

brings about several reasons to discuss the Weibull distribution in the dissertation at first. Firstly,

the Weibull distribution with a scale parameter θ > 0 and a shape parameter β > 0 is widely

used in the field of statistics, engineering, medicine, social science, finance, insurance, biology, and

elsewhere related to the context of a lifetime not only to consider the reliability also to repair the

failures. Since it is essential to know if the repairable system’s reliability has grown, decreased, or

remained stable during the period, the cumulative failure times are recognized as the main events.

Second, the Weibull distribution is related to the power law process (PLP), which is known as a

commonly used model for the repairable systems. Third, if repairs bring a system back to a good as

a new state, the times between failures are independent identically distributed (iid) Weibull random

variables (Rigdon and Basu (2000) [81]).

The shape parameter β is the key to understand the behavior of Weibull distribution’s probability

density function (p.d.f.), which is:

f(t) = (β/θ)(t/θ)β−1e−(t/θ)β , t > 0, (1.1)

where β > 0, and θ > 0. Three different regimes depend on the value of shape parameter β. For

β < 1, the p.d.f. tends to infinity as the time approaches zero. The function is unbounded, and
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there is no turning point. This case is well suited to the time series data with heavy tails. When

β = 1, the p.d.f. is finite at the starting point and has no turning point. Finally, if β > 1, the p.d.f.

looks like the bell-shaped curve of the normal distribution with a hump, but it’s asymmetric. As

the value of β increases, the function resembles a normal distribution. The Figure 1.1 displays the

Weibull distribution’s p.d.f. for various values of shape parameter β for a fixed θ = 1.
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Figure 1.1. Weibull distribution’s p.d.f. for various values of shape parameter β.
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The hazard function well explains the properties of the Weibull distribution. This function

describes how likely something will fail given that it has survived so far. In other words, this function

is the conditional probability given that the failure we are concerned about has not occurred yet.

Let’s consider the probability that the failure occurs between time t and t + dt. This is the

probability that it has survived until time t, and it will fail in the next dt, and it may be expressed

as:

f(t)dt = S(t)h(t)dt, t > 0 (1.2)

where f(t) is the p.d.f. for the failure at time t, S(t) is the survival function describing the probability

that the failure has not occurred until time t, and h(t) is the hazard function.

The cumulative distribution function (c.d.f.) is the integral of the p.d.f. and it represents the

probability that the failure happened before some time t such as:

F (t) =

∫ t

0
f(x)dx = 1− e−(t/θ)β , t > 0. (1.3)

The survival function is the probability that there is no failure until time t, which is

S(t) = 1− F (t) = e−(t/θ)β , t > 0. (1.4)

From (1.2), (1.3), and (1.4) equations, we can determine that the hazard function is the negative

rate of change of ln of the survival function:

h(t) = −d ln(S(t))

dt
= −d ln(1− F (t))

dt
=

f(t)

S(t)
, t > 0. (1.5)

It turns out that the hazard function can be described as:

h(t) = (β/θ)(t/θ)β−1, t > 0. (1.6)

This hazard function can distinguish three different behaviors: (1) when β < 1 known as the

decreasing failure rate or improving, the times between the failures tend to increase, (2) if β = 1,
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the rate of failure is fairly constant with advancing age, and (3) for β > 1 known as the increasing

failure rate or deteriorating, the times between the failures tend to get shorter as time goes on.

The Figure 1.2 called the "bathtub" curve is helpful for visualizing the distinctions among different

values of the shape parameter β. This curve consists of three periods: an infant mortality period

with a decreasing failure rate followed by a standard life period with a relatively constant failure

rate and concluding with a wear-out period that displays an increasing failure rate.
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Figure 1.2. Bathtub diagram for different values of the shape parameter β.

As mentioned at the beginning of this chapter, the Weibull distribution has many applications

ranging in the areas mainly in the context of a lifetime to consider the reliability, since nearly

most depend upon the continued functioning of a wide array of complex machinery and equipment

for their health, safety, mobility, and economic welfare. Moreover, as the lifetime of events such

as most environmental phenomena with the inter-occurrences times between the successive events
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(e.g., earthquakes, volcanoes, floods, wildfires, etc) have skewed shape and heavy tail behavior of

the underlying distribution, the Weibull distribution can be the perfect distribution to analyze it.

Johnson et al. (1994) [62] provided extensive works on the Weibull distribution and its applications.

Rinne (2008) [82] also researched an extensive list of applications of Weibull distribution.

1.2 Power Law Process

This chapter provides the fundamental tests on detecting the non-stationarity of the cumulative

failure time against stationarity. Primarily, it recalls the forward test Z-test known as the optimal

test under the PLP and its time-reversed counterpart known as the ZB-test under the time-truncated

sampling.

1.2.1 Point Process

The point process, frequently called a counting process, is a stochastic model for describing events

occurring at a random time. This process tracks the number of occurrences of events, which are

recorded on the time axis. Throughout the dissertation, the cumulative failure times of repairable

systems are recognized as the main events. Thus, the models for the repairable systems must be

able to describe the cumulative failure times in time by a point process, which tracks the number

of occurrences of events.

Definition 1.1. Let N(t) be the random variable that denotes the number of failures in the interval

[0, t]. When N has as its argument an interval, we can write the number of failures in the interval

(a, b] with b > a > 0 as:

N(a, b] = N(b)−N(a). (1.7)

Definition 1.2. The mean function of a point process is defined as:

µ(t) = E(N(t)) (1.8)
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which represents the expected number of events to time t.

Since N(t) is a non-decreasing step function, there is no doubt that the mean function µ(t) must

be non-decreasing. Thus, monotonicity of N(t) leads monotonicity of µ(t), and the mean function

of a point process is right continuous (Rigdon and Basu (2000) [81]).

Alternative methods of specifying the point process are to find the joint density of the failure

times 0 < t1 < t2 < · · · < tn or the inter-event times such as

xi = ti − ti−1, i = 1, 2, . . . , n. (1.9)

Theorem 1.1. For any point process,

1. ti > v ⇐⇒ N(v) < i

2. ti ≤ w ⇐⇒ N(w) ≥ i

3. v < ti ≤ w ⇐⇒ N(v) < i ≤ N(w)

Using the results form Theorem, the joint density of any of following sets determine the joint

density of others (Rigdon and Basu (2000) [81]).

1. N(u1), N(u2), . . . , N(un) for any n and for any ui’s

2. t1, t2, . . . , tn for any n

3. x1, x2, . . . , xn for any n

Definition 1.3. A point process has independent increments if for all n and for all r1 < s1 ≤ r2 <

s2 ≤ · · · < rn ≤ sn,

P (N(r1, s1] = k1, . . . , N(rn, sn] = kn) =
n∏

i=1

P (N(ri, si] = ki). (1.10)

This implies that the random variables N(r1, s1], N(r2, s2], . . . , N(rn, sn] are independent.
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If we investigate the repairable systems, our question could be whether the pattern of failures

is constant with advancing age, or whether the times between two sequences of consecutive failures

tend to increase for an improving system or decrease for a deteriorating system over the time t.

Definition 1.4. A point process has stationary increments if for all k > 0

P (N(t, t+ s] = k) (1.11)

is independent of t.

This implies that the pattern of failures is stable or stationary over time t. The resulting point

process is called a homogeneous Poisson process (HPP).

Definition 1.5. The intensity function of a point process is

λ(t) = lim
∆t→0

P (N(t, t+∆t] ≥ 1)

∆t
. (1.12)

This intensity function is the unconditional probability of failure in a short time interval divided by

the length of the interval. It gives the instantaneous probability of occurring at least one failure in

a small time interval. Thus, getting higher intensity gives a higher chance of failures over intervals,

and fewer failures over intervals on which λ(t) is small. For some models, it is more necessary to

consider the conditional probability given the failure history of the process.

Definition 1.6. The complete intensity function is

λ(t) = lim
∆t→0

P (N(t, t+∆t] ≥ 1|Ht)

∆t
(1.13)

where Ht denotes the entire history of the failure process through time t and represents the set of

failure times {ti : i = 1, 2, . . . , N(t)}.
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1.2.2 Poisson Process

The Poisson process is one of the most widely-used point process. This process is a model for a

series of discrete events where the average time between events is known, but the exact timing of

events is random. In other words, this process is usually used in scenarios where we are counting

the occurrences of the event that occur at a specific rate, but completely at random.

A point process N(t) is said to be a Poisson process if:

1. N(0) = 0.

2. For any a < b ≤ c < d, the random variables N(a, b] and N(c, d] are independent. This

property is called the independent increments.

3. There is a function λ such that:

λ(t) = lim
∆t→0

P (N(t, t+∆t] = 1)

∆t
. (1.14)

This function is called the intensity function of the Poisson process.

4. The last property preclude the possibility of simultaneous failures.

lim
∆t→0

P (N(t, t+∆t] ≥ 2)

∆t
= 0. (1.15)

Properties (1) through (4) of the Poisson process imply (Rigdon and Basu (2000) [81]) that

P (N(t) = n) =
1

n!
(

∫ t

0
λ(x)dx)n exp(−

∫ t

0
λ(x)dx), n = 0, 1, 2, . . . (1.16)

N(t) ∼ Poisson(

∫ t

0
λ(x)dx). (1.17)

The expected number of failures as events through time t, known as the the mean function, can

be calculated as:

µ(t) = E(N(t)) =

∫ t

0
λ(x)dx. (1.18)
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The most common form of the intensity functions of the Poisson process is

λ(t|Θ) =
d

dt
µ(t|Θ) = (β/θ)(t/θ)β−1 (1.19)

where Θ is a vector of parameters, β > 0, and θ > 0. This form, termed the PLP, has found

applications in reliability analysis due to its flexibility and the fact that the distribution of the

time to first arrival in the process is Weibull (Finkelstein 1976 [37]; Lee and Lee1978 [65]; Bain

and Engelhardt 1980 [8]; Crow 1982 [24]; Bain and Engelhardt 1991 [9]; Ho 1993 [49], 1998 [51];

Rigdon and Basu 2000 [81]; Altun and Comert 2016 [3]). Depending on the sampling schemes,

the maximum likelihood estimates of parameters from the PLP of λ(·) can be calculated slightly

differently.

A goodness-of-fit test, maximum likelihood (ML) estimates of β and θ, confidence intervals,

inference procedures, and sequential testing for this process are presented in Bassin (1969) [12],

Crow (1974 [23], 1982 [24]), Finkelstein (1976) [37], Lee and Lee (1978) [65], Bain and Engelhardt

(1980) [8], Crow (1982) [24], and Ho (1993 [49], 1998 [51]. Extended applications, for example,

change-point detections are demonstrated in Bhaduri 2018 [14].

• Time-truncated sampling

If a nonhomogeneous Poisson process (NHPP) with intensity function is observed until time t, and

if the cumulative failure times are t1 < t2 < · · · < tn < t where n is a random number of failures

in the interval (0, t], the failures are said to be the time-truncated sampling with a predetermined

time t (Rigdon and Basu (2000) [81]). The likelihood equation for the time-truncated case can be

derived as follows: The joint density of (N,T1, . . . , TN ) is

f(n, t1, . . . , tn) =

{
fN (n)f(t1, . . . , tn|n), n ≥ 1

fN (0), n = 0.
(1.20)

The random variable N has a Poisson distribution with mean (t/θ)β , so

fN (n) =
[(t/θ)β]n exp[−(t/θ)β]

n!
, n = 0, 1, . . . (1.21)
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The random variables T1 < T2 < · · · < TN < T given N = n are distributed as n order statistics

from the distribution with c.d.f.:

G(y) =


0 y < 0

µ(y)/µ(t) 0 ≤ y ≤ t

1 y > t.

(1.22)

For the PLP, this is:

G(y) =
(y/θ)β

(t/θ)β
= (

y

t
)β, 0 ≤ y ≤ t. (1.23)

The density corresponding to G would be

g(y) =
β

t
(
y

t
)β−1, 0 ≤ y ≤ t. (1.24)

Thus, the joint density of t1 < t2 < · · · < tn < t given n with the PLP of λ(·) is

f(t1, t2, . . . , tn|n) = n!

n∏
i=1

G′(ti)

= n!

n∏
i=1

β

t
(
ti
t
)β−1

(1.25)

0 < t1 < t2 < · · · < tn < t.

Thus, the joint density of n and t1 < t2 < · · · < tn < t is

f(n, t1, t2, . . . , tn) =
βn

θnβ
(

n∏
i=1

ti)
β−1 exp[−(t/θ)β], (1.26)

n ≥ 1, 0 < t1 < t2 < · · · < tn < t.

To get the maximum likelihood estimation (MLE) of parameters, it is required to take the natural

logarithm of this joint density and set the first partial derivatives with respect to θ and β equal to

zero. The log-likelihood function is

l(θ, β|n, t) = n lnβ − n ln θ + (β − 1)

n∑
i=1

ln ti − n(β − 1) ln θ − (
t

θ
)β. (1.27)

If at least one failure occurs before time t then MLE’s exist and are equal to:

β̂ = n/

n∑
i=1

ln(t/ti), θ̂ = t/n1/β̂. (1.28)
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• Failure-truncated sampling

If the cumulative failure times of an NHPP are t1 < t2 < · · · < tn, the failures are said to be the

failure-truncated sampling with a predetermined number of failures n (Rigdon and Basu (2000) [81]).

Under this sampling scheme, the Poisson process is continually monitored until a predetermined

number of failures n, which is deterministic, and the time of the last occurrence tn is uncertain. After

observing the cumulative failure times until a predetermined number of failures n, the maximum

likelihood estimates of the parameters can be obtained as

β̂ = n/

n−1∑
i=1

ln(tn/ti), θ̂ = tn/n
1/β̂. (1.29)

1.2.3 Forward Test

Rigdon and Basu (2000) [81] show that the quantity Z = 2nβ/β̂ is pivotal, having a χ2(2n) for the

time-truncated sampling. In keeping on working on a time-reversed version of Z formulated by Ho

(1993) [49], this test based on the Z is called as the forward test, which is

Z = 2n/β̂ = 2
n−1∑
i=1

ln(tn/ti), or (1.30)

Z = 2n/β̂ = 2
n∑

i=1

ln(t/ti), (1.31)

with a time-truncated sampling and under the null hypothesis H0 : β = 1, where conditional on

N > 0 and for an observed number of failures, n > 0, the failure times are denoted by 0 < t1 <

t2 < · · · < tn < t.

1.2.3.1 The Null and the Alternative Distributions of Z

Rigdon and Basu (2000) [81] focus on testing that the failure process is homogeneous or not. But

we design the test to consider that the failure process is homogeneous (i.e. β = 1), improving (i.e.

β < 1), or deteriorating (i.e. β > 1) such as:

H0 : β = 1 vs HA : β > 1 (1.32)
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H0 : β = 1 vs HA : β < 1 (1.33)

H0 : β = 1 vs HA : β ̸= 1. (1.34)

• Time-Truncated Sampling

Rigdon and Basu (2000) [81] shows how to form the test statistic called the forward test Z, as well as

the distributions of null hypothesis and alternative hypothesis under the time-truncated sampling.

Theorem 1.2. For the time-truncated sampling, 2nβ/β̂ ∼ χ2(2n).

Proof. Conditioned on the number of occurrences N = n, the failure times t1 < t2 < · · · < tn < t

are distributed as n order statistics from the distribution with c.d.f.:

G(y) =


0 y ≤ 0

µ(y)/µ(t) 0 < y < t

1 y ≥ t.

(1.35)

For the PLP, the c.d.f. are:

G(y) =


0 y ≤ 0

(yt )
β 0 < y < t

1 y ≥ t.

(1.36)

Let Y be a random variable with c.d.f. G, then

(
y

t
)β = G(y) = P (Y ≤ y) = P (Y/t ≤ y/t) = P ((Y/t)β ≤ (y/t)β), 0 < y < t. (1.37)

This shows that (Y/t)β is uniformly distributed on the interval (0, 1). Thus, (ti/t)β, i = 1, 2, . . . , n

are distributed as n order statistics from U(0, 1). Applying the fact that if U has a uniform dis-

tribution on the interval (0, 1), then X = −θ lnU has an exponential distribution with mean θ, we

can claim that
n∑

i=1

− ln(ti/t)
β = −β

n∑
i=1

ln(ti/t) (1.38)

is a gamma (n, 1) distribution. After multiplying 2 to a gamma (n, 1) density, we conclude that

− 2β
n∑

i=1

ln(ti/t) = 2β
n∑

i=1

ln(t/ti) = 2nβ(
n∑n

i=1 ln(t/ti)
)−1 = 2nβ/β̂ (1.39)

13



has a chi-square distribution with 2n degrees of freedom.

After proving that 2nβ/β̂ ∼ χ2(2n), we can show that the general form of the test statistic

called the forward test Z, which is

Z = 2nβ/β̂. (1.40)

It is required to find the p.d.f. of Z under the null hypothesis and the alternative hypothesis to

calculate both errors and the power. Under the null hypothesis H0 : β = 1, Z = 2nβ0/β̂ = 2n/β̂

follows χ2(2n). In the same way, under the alternative hypothesis, 2nβ/β̂ ∼ χ2(2n) and the

technique for a transformation of a random variable is used to derive the alternative distribution of

Z as follows:

Let Z = 2nβ0/β̂ = β0

β
2nβ

β̂
= β0

β X, where X ∼ χ2(2n), then

Z =
β0
β
X =⇒ X =

β

β0
Z = g−1(Z) =⇒ d

dz
g−1(z) =

β

β0
(1.41)

fX(x) =
1

Γ(n)2n
xn−1e−

x
2 , x > 0 (1.42)

fZ(z) = fX(g−1(z))| d
dz

g−1(z)|

=
1

Γ(n)2n
(
β

β0
z)n−1e

− βz
2β0 ββ0

= (β/β0)
n 1

Γ(n)2n
zn−1e

− βz
2β0 , z > 0.

(1.43)

The same technique is used to obtain the probability density of β̂ by setting that X = 2nβ

β̂
,

Y = β̂ = 2nβ
X = g(X), and d

dyg
−1(y) = −2nβ 1

y2
. Using the p.d.f. of X above, we can derive

fβ̂(β̂) =
1

Γ(n)

(nβ)n

β̂n+1
e
−nβ

β̂ , β̂ > 0. (1.44)

E(β̂) =

∫ ∞

0

1

Γ(n)

(nβ)n

tn+1
e−

nβ
t tdt.
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Setting β
t = x and dt = − β

x2dx, the expectation of β̂ can be calculated as follows:

E(β̂) =

∫ 0

∞

1

Γ(n)
nnxne−nx(− β

x2
)dx

=
nnβ

Γ(n)

∫ ∞

0
e−nxxn−2dx

=
nnβ

Γ(n)

Γ(n− 1)

nn−1

=
nβ

(n− 1).

(1.45)

This result draws a conclusion that n−1
n β̂ is unbiased estimator for β (Rigdon and Basu (2000) [81]).

The null and alternate distributions of the forward statistic Z for the time-truncated sampling

with n = 10 are compared in Figure 1.3.
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Figure 1.3. Distributions of the forward statistic Z corresponding to different parameter values

• Failure-truncated sampling

Same technique is employed to get the analogous results for the failure-truncated sampling by

nothing that 2nβ/β̂ follows χ2(2n−2) (Rigdon and Basu (2000) [81]). The distribution of Z = 2n/β̂

16



under the null hypothesis H0 : β = 1 is χ2(2n− 2), and the alternative distribution is such as:

fZ(z) = (β/β0)
n−1 1

Γ(n− 1)2n−1
zn−2e

− βz
2β0 , z > 0. (1.46)

1.2.3.2 Critical Region

The critical region is the set of outcomes of a statistical test for which the null hypothesis is to be

rejected at the level of significance α. The statistical test will be one-tailed or two-tailed, depending

on the nature of the null hypothesis and the alternative hypothesis. Under the one-tailed “greater

than” type of alternative, large values of β̂ tend to conclude to reject the null hypothesis. Also, a

small value of statistic 2nβ0/β̂ = 2n/β̂ under H0 : β = 1 leads to the rejection of the null hypothesis.

Thus, the rejection region of the “greater than” type of alternative under the time-truncated sampling

at the level of significance (α) is

{z : z = 2n/β̂ < χ2
1−α(2n)} (1.47)

where χ2
1−α(2n) is the lower α point of a chi-square distribution with 2n degrees of freedom. Equiv-

alently, after solving for β̂, the above set of critical region is same as:

{β̂ : β̂ > 2n/χ2
1−α(2n)}. (1.48)

The Table 1.1 shows the critical regions in Z depending on the different alternative hypothesis under

the different sampling schemes.

Table 1.1. Critical regions for Z under the different alternative hypothesis.

HA : β > 1 HA : β < 1 HA : β ̸= 1

Time-truncated Z < χ2
1−α(2n) Z > χ2

α(2n) Z < χ2
1−α

2
(2n) or Z > χ2

α
2
(2n)

Failure-truncated Z < χ2
1−α(2n− 2) Z > χ2

α(2n− 2) Z < χ2
1−α

2
(2n− 2) or Z > χ2

α
2
(2n− 2)
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1.2.3.3 Analytical Power Function of Z-test

The power of a hypothesis testing is defined as the probability of making a correct decision, such

as rejecting the null hypothesis when the alternative hypothesis is true. Simply put, the power is

the probability of not making a Type II error which is the non-rejection of a false null hypothesis.

The power should be between 0 and 1; if the power is close to 1, the hypothesis testing is good at

detecting a false null hypothesis. If all other things are held constant and α increases, the power will

increase. This is because a larger α means a larger rejection region and thus a greater probability

of rejecting the null hypothesis. In the dissertation, the power is calculated by the Monte Carlo

technique. The basic idea of the Monte Carlo technique is 1) to generate a data set assuming the

alternative hypothesis is true, 2) to test the null hypothesis using the data set, 3) to save the results

of the test, such as rejecting or failing to reject the null hypothesis, and 4) to repeat steps 1–3 104

times. The proportion of rejecting the null hypothesis estimates statistical power by the Monte

Carlo technique.

Since the alternative distribution of Z is derived in the previous section, we can express the

power functions under different alternatives and sampling schemes. Under the one-tailed “greater

than” type of alternative, the small value of Z leads to the rejection of the null hypothesis, indicating

that the critical region should be the left-tailed. Let’s define πX,Y (β) as the power function under

the Xth type alternative and the Y th type sampling scheme. The power function under the “greater

than” type of alternative for the time-truncated sampling should be such as:

πG,T (β) = PHA
(Z < χ2

1−α(2n))

=

∫ χ2
1−α(2n)

0
(β/β0)

n 1

Γ(n)2n
zn−1e

− βz
2β0 dz

=

∫ χ2
1−α(2n)

0
βn 1

Γ(n)2n
zn−1e−βz/2dz.

(1.49)
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Setting βz = t =⇒ dt = βdz, we simplify the power function such as:

πG,T (β) =

∫ βχ2
1−α(2n)

0

1

Γ(n)2n
tn−1e−

t
2dt

= Ψ2n(βχ
2
1−α(2n))

(1.50)

where Ψm(·) is the c.d.f. of a chi-square distribution with m degrees of freedom.

Using the pivotal property of the quantity 2nβ0/β̂ = 2n/β̂ ∼ χ2(2n) with H0 : β = 1, we get

the same power function as follows:

πG,T (β) = PHA
(Z < χ2

1−α(2n))

= PHA
(2n/β̂ < χ2

1−α(2n))

= PHA
(2nβ/β̂ < βχ2

1−α(2n))

= Ψ2n(βχ
2
1−α(2n)).

(1.51)

The power functions under the “less than” type and the “two-tailed” alternatives for the time-

truncated case take the forms as:

πL,T (β) = 1−Ψ2n(βχ
2
α(2n)), (1.52)

πT,T (β) = Ψ2n(βχ
2
1−α/2(2n)) + 1−Ψ2n(βχ

2
α/2(2n)). (1.53)

Analogous power functions can be expressed for the failure-truncated case:

πG,F (β) = Ψ2n−2(βχ
2
1−α(2n− 2)), (1.54)

πL,F (β) = 1−Ψ2n−2(βχ
2
α(2n− 2)), (1.55)

πT,F (β) = Ψ2n−2(βχ
2
1−α/2(2n− 2)) + 1−Ψ2n−2(βχ

2
α/2(2n− 2)). (1.56)

The power curves under different types of alternatives are graphed for the different choices of the

sample size n in the Figure 1.4.
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Figure 1.4. Power curves under different types of alternatives

1.2.3.4 UMP of the Forward Test Z

In this section, we prove the UMP (Uniformly Most Powerful) of the Z for the time-truncated

sampling, which shows that the test gives greater power with the right alternative hypothesis than

any others. There are two crucial notions, which are Monotone-likelihood ratio and Karlin-Rubin

Theorem, to prove:

• Monotone-likelihood ratio (MLR): A family of p.d.f.’s or p.m.f.’s {g(t|θ) : θ ∈ Θ} for a univari-

ate random variable T with real-valued parameter θ has a MLR if, ∀ θ2 > θ1, g(t|θ2)/g(t|θ1) is

a monotone (nonincreasing or nondecreasingg) function of t on {t : g(t|θ1) > 0 ∪ g(t|θ2) > 0}.

•

Theorem 1.3. (Karlin-Rubin). Consider testing H0 : θ ≤ θ0 versus HA : θ > θ0. Suppose

that T is a sufficient statistic for θ and the family of p.d.f.’s or p.m.f.’s {g(t|θ) : θ ∈ Θ} of T

has a MLR. Then for any t0, the test that rejects H0 if and only if T > t0 is a UMP level α

test, where α = Pθ0(T > t0).

Theorem 1.4. (UMP of the Z). For testing H0 : β = 1 vs HA : β > 1, the forward test using Z

statistic is conditionally UMP.
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Proof. From the forward statistic Z, we can formulate that:

Z = 2nβ/β̂ = −2β
n∑

i=1

ln(ti/t) = −2
n∑

i=1

ln(ti/t)
β (1.57)

=⇒ −Z/2 =

n∑
i=1

ln(ti/t)
β (1.58)

=⇒ e−Z/2 =

n∏
i=1

(ti/t)
β. (1.59)

To prove that the the Z in the time-truncated sampling is UMP, there are two steps. First, we need

to prove that β̂ is sufficient for β. The joint density of t1 < t2 < · · · < tn < t given N = n is as

follows:

f(t1, t2, . . . , tn|n) = n!

n∏
i=1

λ(ti)

µ(t)
, 0 < t1 < t2 < · · · < tn < t. (1.60)

With the PLP of λ(·), the joint density is:

f(t1, t2, . . . , tn|n) = n!

n∏
i=1

β

t
(
ti
t
)β−1, 0 < t1 < t2 < · · · < tn < t. (1.61)

Using the relation from (1.59), the joint density can be:

f(t1, t2, . . . , tn|n) = n!
n∏

i=1

β

t
(
ti
t
)β−1

= n!
n∏

i=1

β(
ti
t
)β

1

ti

= n!βn
n∏

i=1

(
ti
t
)β

n∏
i=1

1

ti

= n!βn exp[−z/2]
n∏

i=1

1

ti

= {βn exp[−nβ

β̂
]}{n!

n∏
i=1

1

ti
}.

(1.62)

After simplifying the above joint density, β̂ is sufficient for β with the factorization h(ti) = n!
∏n

i=1
1
ti

and g(β, β̂) = βn exp[−nβ

β̂
].

Next, in the second part, it is required to show that β̂ has a monotone likelihood ratio with the

real-valued parameter β. Using one to one transformation technique, the p.d.f. of β̂ is from inverse
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gamma (n, nβ) such as:

fβ̂(β̂) =
1

Γ(n)

(nβ)n

β̂n+1
exp[−nβ

β̂
], β̂ > 0. (1.63)

Choosing β2 > β1, the ratio could be:

f(β̂|β2)
f(β̂|β1)

=

1
Γ(n)

(nβ2)n

β̂n+1
exp[−nβ2

β̂
]

1
Γ(n)

(nβ1)n

β̂n+1
exp[−nβ1

β̂
]
= (

β2
β1

)n exp[−n

β̂
(β2 − β1)] > 0. (1.64)

Since β2 > β1, the ratio of f(β̂|β2)

f(β̂|β1)
is a monotone function of β̂. This result also confirms that the

density of β̂ belongs to the exponential family. Thus, we can coincide with Bain and Engelhardt’s

result (1980) [8] that Z is UMP under the time-truncated sampling. Similar conclusions can be

proved for the failure-truncated sampling (Bain and Engelhardt (1991) [9]).

1.2.4 Backward Test

In the previous section, we proved the forward statistic Z and showed its properties under the

time-truncated sampling.

Z = 2nβ/β̂ = −2β
n∑

i=1

ln(ti/t) = 2β
n∑

i=1

ln(t/ti). (1.65)

This statistic Z describes in terms of the trend of failure in the time-truncated sampling. If the

repairable system is deteriorating (i.e. β > 1) with increasing intensity, most of the ti values tend

to cluster around a predetermined time t. Consequently, ti
t values get closer to 1, leading to small

values of the forward statistic Z. Under this deteriorating process, 1− ti
t values are close to 0. Thus,

unlike the forward statistic Z, the following value

ZB = −2β

n∑
i=1

ln(1− ti/t) = 2β

n∑
i=1

ln(t/(t− ti)) (1.66)

is inflated. A backward test statistic ZB, which is a reversed version of Z, is called the backward

test by Ho (1993) [49], where

ZB = 2
n−1∑
i=1

ln(tn/(tn − ti)), or (1.67)
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ZB = 2
n∑

i=1

ln(t/(t− ti)), (1.68)

respectively, for both sampling schemes under the null hypothesis H0 : β = 1. This test was

originally introduced by Ho (1993) [49] to provide the test which are more powerful than the forward

test Z or the Laplace test LP under the assumption of rough alternate intensities.

1.2.4.1 The Relationship between Two Versions of Tests

Theorem 1.5. The forward and the backward test statistics Z and ZB are related through:

ZB = −2β

n∑
i=1

ln(t/ti − 1) + Z. (1.69)

Proof. (Method 1). The first method of proof is furnished through the following observations:

ti/t = (ti/t− ti)(1− ti/t) = (1/(t/ti − 1))(1− ti/t). (1.70)

After taking the natural logarithm on the both sides, we get

ln(ti/t) = − ln(t/ti − 1) + ln(1− ti/t). (1.71)

Summing both sides and multiplying both sides by −2β:

− 2β
n∑

i=1

ln(ti/t) = 2β
n∑

i=1

ln(t/ti − 1)− 2β
n∑

i=1

ln(1− ti/t) (1.72)

=⇒ −2β
n∑

i=1

ln(1− ti/t) = −2β
n∑

i=1

ln(t/ti − 1)− 2β
n∑

i=1

ln(ti/t) (1.73)

=⇒ ZB = −2β
n∑

i=1

ln(t/ti − 1) + Z. (1.74)

(Method 2). The second version of proof is done by following observations:

− Z

2β
=

n∑
i=1

ln(ti/t) = ln
n∏

i=1

(ti/t) (1.75)

=⇒
n∏

i=1

(ti/t) = e
− Z

2β , (1.76)
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and similarly

− ZB

2β
=

n∑
i=1

ln(1− ti/t) = ln
n∏

i=1

(1− ti/t) (1.77)

=⇒
n∏

i=1

(1− ti/t) = e
−ZB

2β . (1.78)

By dividing the above two, we obtain

e
− Z

2β

e
−ZB

2β

=

∏n
i=1 ti/t∏n

i=1 1− ti/t
(1.79)

=⇒ e
− 1

2β
(Z−ZB)

=

n∏
i=1

ti/t

1− ti/t
=

n∏
i=1

ti/(t− ti) =

n∏
i=1

1/(t/ti − 1) (1.80)

=⇒ − 1

2β
(Z − ZB) = ln(

n∏
i=1

1/(t/ti − 1)) =

n∑
i=1

ln(1/(t/ti − 1)) = −
n∑

i=1

ln(t/ti − 1) (1.81)

=⇒ Z − ZB = 2β

n∑
i=1

ln(t/ti − 1) (1.82)

=⇒ ZB = −2β

n∑
i=1

ln(t/ti − 1) + Z. (1.83)

1.2.4.2 The Null and the Alternative Distributions of ZB

Lemma 1.1. If X ∼ Beta(m,n), then E(X
− 1

β ) =
B(n,m− 1

β
)

B(m,n) .

Proof. The technique for a transformation of a random variable is used for the proof. Let’s define

Y = X
− 1

β = g(X), then

X = Y −β = g−1(Y ) =⇒ d

dy
g−1(Y ) = −βY −β−1 (1.84)

fX(x) =
1

B(m,n)
xm−1(1− x)n−1, x ∈ (0, 1) (1.85)

fY (y) = fX(g−1(y))| d
dy

g−1(y)|

=
1

B(m,n)
(y−β)m−1(1− y−β)n−1βy−β−1, y ∈ (1,∞)

(1.86)
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E(Y ) =

∫ ∞

1
y

1

B(m,n)
(y−β)m−1(1− y−β)n−1βy−β−1dy

=
β

B(m,n)

∫ ∞

1
y−βm(1− y−β)n−1dy

=
B(n,m− 1

β )

B(m,n)
= E(X

− 1
β ).

(1.87)

Theorem 1.6. If Xβ ∼ U(0, 1), then the density of Y = (1−X)β is such as:

fY (y) = y
1
β
−1

(1− y
1
β )β−1, y ∈ [0, 1]. (1.88)

Proof. The proof is done by the technique for a transformation of a random variable with Xβ =

(1− Y
1
β )β = g−1(Y ).

fY (y) = fXβ (g−1(y))| d
dy

g−1(y)|

= y
1
β
−1

(1− y
1
β )β−1, y ∈ (0, 1).

(1.89)

With the density of Y , the c.d.f. can be defined as:

FY (y) = P (Y ≤ y) =

∫ y

0
u

1
β
−1

(1− u
1
β )β−1du = 1− (1− y

1
β )β−1, y ∈ (0, 1) (1.90)

which is the c.d.f. of a Kumaraswamy-Generalized distribution by Pascoa et al. (2011) [27].

Theorem 1.7. If Xβ ∼ U(0, 1), then the density of Z = −2 ln(1−X)β is:

fZ(z) =
1

2
e
− z

2β (1− e
z
2β )β−1, z ∈ [0,∞). (1.91)

Proof. From the previous theorem, the density of Y = (1−X)β is followed as:

fY (y) = y
1
β
−1

(1− y
1
β )β−1, y ∈ [0, 1]. (1.92)
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Applying the same technique with Z = −2 ln(1 − X)β = −2 ln(Y ) =⇒ Y = e−
z
2 = g−1(Z), then

the density of Z is given by:

fZ(z) = fY (g
−1(z))| d

dz
g−1(z)|

=
1

2
e
− z

2β (1− e
z
2β )β−1, z ∈ [0,∞).

(1.93)

Using X = Y/t, we can conclude that −2 ln(1 − Y/t)β has the density given by (1.91). Thus,

−2 ln(1− ti/t)
β are order statistics from a distribution of −2 ln(1− Y/t)β . Applying this fact, then

ZB = −2β
n∑

i=1

ln(1− ti/t) = −2

n∑
i=1

ln(1− ti/t)
β d
= −2

n∑
i=1

ln(1− Yi/t)
β (1.94)

where d
= means that equal in distribution. Even it is difficult to find the density of ZB, it is enough

to find the distribution of the sum of the iid variables of −2 ln(1− Yi/t)
β .

Theorem 1.8. The backward statistic ZB is non-pivotal.

Proof. From the (1.94),

ZB
d
= −2

n∑
i=1

ln(1− Yi/t)
β =

n∑
i=1

Zi (1.95)

where {Zi = −2 ln(1−Yi/t)
β}′s are iid and each density is given by (1.91). The moment generating

function (mgf) of Zi is as follows:

MZi(t) = E(etZi) =
1

2

∫ ∞

0
e
z(t− 1

2β
)
(1− e

z
2β )β−1dz. (1.96)

Setting u = 1− e
z
2β ,

MZi(t) = β

∫ 1

0
uβ−1(1− u)−2tβdu = βB(β, 1− 2tβ) (1.97)

which is only defined on {t : t < 1
2β}. Using the iid of the {Zi}′s, the mgf of ZB is:

MZB
(t) = [βB(β, 1− 2tβ)]n = βn[

Γ(β)Γ(1− 2tβ)

Γ(1 + (1− 2t)β)
]n. (1.98)
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Since the mgf of ZB contains β for the other choice of values not 1, the distribution of ZB also

contains β, thus the backward statistic is non-pivotal. Even this mgf is not a form to recognize,

there is a method, called inverse Fourier transformation, to find the true density of ZB.

Given the characteristic function ϕX(·) of a random variable X such as:

ϕX(t) = E(eitx) =

∫ ∞

−∞
eitxf(x)dx, (1.99)

we can find f(·) by an inverse Fourier transformation as:

f(x) =
1

2π

∫ ∞

−∞
e−itxϕX(t)dt. (1.100)

Since the characteristic function and the mgf and are connected through:

ϕX(t) = E(eitx) = MX(it), (1.101)

the characterise function for ZB should be:

ϕZB
(t) = MZB

(it) = βn[B(β, 1− 2itβ)]n. (1.102)

Using an inverse Fourier transformation, the true density of ZB is such as:

f(z) =
1

2π

∫ ∞

−∞
e−itzβn[B(β, 1− 2itβ)]ndt. (1.103)

• The Special Case β = 1

The mgf of ZB for the time-truncated sampling has been derived in the previous section:

MZB
(t) = βn[B(β, 1− 2tβ)]n, t <

1

2β
. (1.104)

If β = 1 known as the constant or homogeneous failure pattern over time, then the mgf should be:

MZB
(t) =[B(1, 1− 2t)]n

= [
Γ(1)Γ(1− 2t)

Γ(2− 2t)
)]n

= [
Γ(1)Γ(1− 2t)

(1− 2t)Γ(1− 2t)
)]n

= [
1

1− 2t
]n, t <

1

2

(1.105)

27



which is the mgf of the chi-square distribution with 2n degrees of freedom. Thus, the distribution

of backward statistic ZB with β = 1, known as the homogeneity, is a chi-square distribution with

2n degrees of freedom for the time-truncated sampling.

Also, for the failure-truncated sampling of size n and under the null hypothesis H0: β = 1, Z

and ZB, have the same distribution, and under this hypothesis, ZB ∼ χ2(2n − 2). However, this

property does not hold for other choices of β for ZB. In other words, even though for the forward

version, βZ ∼ χ2(2n − 2) for any β > 0, this pivotal is not shared by the backward version, and

the chi-square distribution only holds for the backward version when β = 1 (Ho 1993 [49]; Bhaduri

2018 [14]). The null distribution yields the same result under either sampling scheme, if the sample

is shifted by one size: n = m− 1, where n = time-truncated sample size and m = failure-truncated

sample size.

1.2.4.3 Critical Regions

If the repairable system is deteriorating (β > 1), most of the ti values tend to cluster around the t,

so (1 − ti/t) values are close to 0. We already found that we reject the null hypothesis with small

value of Z under the “greater than” type of alternative. We reject the null hypothesis for large value

of the backward statistic ZB under the “greater than” type of alternative. Since we proved that

ZB follows a chi-square distribution only when the null hypothesis H0 : β = 1, the Table 1.2 shows

the critical regions in the ZB depending on the different alternative hypothesis under the different

sampling schemes when H0 : β = 1.

Table 1.2. Critical regions for ZB under the different alternative hypothesis.

HA : β > 1 HA : β < 1 HA : β ̸= 1

Time-truncated ZB > χ2
1−α(2n) ZB < χ2

α(2n) ZB < χ2
1−α

2
(2n) or ZB > χ2

α
2
(2n)

Failure-truncated ZB > χ2
1−α(2n− 2) ZB < χ2

α(2n− 2) ZB < χ2
1−α

2
(2n− 2) or ZB > χ2

α
2
(2n− 2)
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For instance, one is interested in testing for the process: H0 : β = 1 vs Ha : β > 1 based on

a sample size 10. Since ZB follows the chi-square distribution with 20 degrees of freedom for the

time-truncated sampling under the null hypothesis β0 = 1, the critical region should be [28.4119,∞]

by exact chi-square calculations. However, this method is not useful for checking non-homogeneity

values such as β0 = 2, 3, . . . , since ZB follows the chi-square distribution only when H0 : β = 1.

However, the critical region can be found by measuring the proportion (α = .1) in excess of z∗.

This method is the inversion method with the true density of ZB to find z∗ under H0 : β = 1 by

solving as follows:

1

2π

∫ ∞

z∗

∫ ∞

−∞
e−itz110B(1, 1− 2it)10dtdz = 0.1. (1.106)

1.2.4.4 Power Function of ZB-test

The critical region is found by the chi-square calculations or inversion method for a given null

hypothesis. Under the “greater than” type of alternative, the power is the portion of observations

generated under the alternative choice of β that exceeds the threshold. After deciding z∗ for the

critical region, the inversion method with the true density of ZB under the alternative choice of β

is used to calculate the power function such as:

πG,B(β) =
1

2π

∫ ∞

z∗

∫ ∞

−∞
e−itzβnB(β, 1− 2itβ)ndtdz. (1.107)

1.3 Bidirectional Testing

Although both Z and ZB share a common chi-square distributions as their null distribution under

H0 : β = 1, the critical region is the left-tail for Z and right tail for ZB in testing for a one-sided

increasing trend, and vice versa for the decreasing trend. Additionally, even we’ve proved the Z’s

superiority under the PLP, there are asymmetrical performances between Z and ZB (Ho 1993 [49]).

For example, ZB is more powerful than Z in detecting (a) an increasing two-step-intensity alternative
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for the failure-truncated sampling, and (b) a decreasing two-step-intensity alternative for the time-

truncated sampling. Since the deterioration inflates ZB (or deflates Z) while the improvement

inflates Z (or deflates ZB), we introduce new tests with the optimal properties from both Z and

ZB to detect the non-stationarity (or non-homogeneity).

1.3.1 Right-Tailed Bidirectional Test

In the repairable systems, deterioration with the increasing intensity inflates ZB, while improvement

with the decreasing intensity inflates Z. Under the non-stationary systems, the maximum of theses

statistics is getting larger. For the sake of maintaining a broad two-sided alternative hypothesis,

we pair each right leg of both tests to form a right-tailed bidirectional test, characterized by a

right-tailed critical region. Since R takes the maximum value from the combination of Z and ZB,

the large value of R tends to reject the null hypothesis claiming homogeneity. In the context of

testing non-homogeneity, with H0 asserting otherwise, a maximum-based test is defined as:

Definition 1.7. With R = Max (Z, ZB), the right-tailed bidirectional test is defined as:

ϕ(R) =

{
1, if R ≥ cRα
0, otherwise

(1.108)

where cRα is the upper 100αth percentile of the null distribution of R. This test is referred to as the

R-test, or R throughout the remaining study.

1.3.2 Left-Tailed Bidirectional Test

In the same fashion, since L takes the minimum value from the combination of Z and ZB, the

small value of L leads to the rejection of the null hypothesis with a left-tailed critical region. In the

context of testing non-homogeneity, with H0 asserting otherwise, a minimum-based test is defined

as:

Definition 1.8. With L = Min (Z, ZB), the left-tailed bidirectional test is defined as:
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ϕ(L) =

{
1 ifL ≤ cLα
0 otherwise

(1.109)

where cLα is the lower 100αth percentile of the null distribution of L. This test is referred to as the

L, or L throughout the remaining study. With the same principle of the R, the small value of L

leads to reject the null hypothesis with a left-tailed critical region.

1.3.3 Dual Bidirectional Test

Another test could be comparing the p-values based on the bidirectional tests R and L. Choosing the

smaller p-value between the maximum based on R and the minimum based on L, the H0 asserting

homogeneity is rejected with the extremely low p-value. This option, termed the dual bidirectional

test is thus, formally defined as:

Definition 1.9. With PDB = Min{PHo(L ≤ l), PHo(R ≥ r)}, the dual bidirectional test is defined

as:

ϕ(PDB) =

{
1 ifPDB ≤ pα

0 otherwise
(1.110)

where l and r are the observed test statistics, and cPDB
α is the lower 100αth percentile of the null

distribution of PDB. Since PDB test takes the minimum value from the combination of p-values

from both R and L (1.108) and L (1.109), the small value of PDB leads to the rejection of the null

hypothesis with a left-tailed critical region. This test is referred to as the PDB-test or PDB, because

it has a p-value induced test statistic.

1.3.4 Empirical Null Distributions

The critical values (originally produced for the failure-truncated sampling in Bhaduri 2018 [14]) are

extended to include that of the time-truncated sampling. The method of using order statistics is

employed to simulate an HPP under time-truncated sampling. After generating an order statistics,

u(1) < u(2) < · · · < u(n), from the uniform distribution (0,1), the null distribution of Z and ZB are
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straightforward. The tabulated null bidirectional distributions furnish the critical values estimated

by the simulation with size N = 104, ensuring numerical stability across different runs for a different

choice of α and sample sizes up to n = 50. They are listed in Tables from 1.3 to 1.5 for R, L, and

PDB, respectively. Those critical values from the empirical null distributions are used to calculate

the power which is the portion of observations generated under the alternative with the structure of

the Monte Carlo simulations with 104 iterations. The critical values of R and L by simulation are

close to the χ2 with the right degrees of freedom, using of it for the approximation as well. Both

sampling schemes yield the same results if the sample is shifted by one size, as now noted in the

footnote of each table. Extensions to critical values with sample sizes over 50 are straightforward

with today’s computing technologies.

To check the accuracy of the results from the simulation studies, we also estimate the Monte

Carlo error (MCE), defined as the standard deviation of the Monte Carlo estimator taken across

hypothetical N repetitions of the simulation. Here, the critical values of PDB at α = 0.1 and

n = 40 with different number of simulations are performed with the results summarized as (N ,

Mean, Median, MCE): (100, 0.0590, 0.0591, 0.0006), (500, 0.0591, 0.0591, 0.0006), and (1000,

0.0591, 0.0591, 0.0006), respectively, which confirm the coherences of the Monte Carlo method

(MCM). Practices resembling the above accuracy checking will be repeated to guard the integrity

of the MCM, should sharp dissonances arise.
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Table 1.3. Empirical null distribution of the R-test.

n (or m − 1) α = 0.5 α = 0.3 α = 0.2 α = 0.1 α = 0.05 α = 0.025 α = 0.01 α = 0.005

1 2.76259 3.79368 4.61742 6.01252 7.43771 8.82506 10.66636 12.00176
2 5.32610 6.73754 7.77333 9.49008 11.19715 12.79352 14.96972 16.58467
3 7.76303 9.43076 10.66238 12.62517 14.48170 16.27738 18.58517 20.27207
4 10.10980 11.98017 13.32651 15.47724 17.49580 19.43530 21.85535 23.59617
5 12.42576 14.48732 15.94396 18.27325 20.49064 22.50523 25.13755 27.03184
6 14.71607 16.93867 18.49171 20.96555 23.31582 25.50324 28.24446 30.18008
7 16.96605 19.34730 21.02629 23.63173 26.04287 28.29317 31.31948 33.46228
8 19.24758 21.76299 23.54114 26.32911 28.88441 31.28316 34.31901 36.31103
9 21.45358 24.10742 25.96012 28.85463 31.48720 34.01073 37.04510 39.45562
10 23.69674 26.50450 28.44189 31.45434 34.28740 36.86675 40.17500 42.55875
11 25.90015 28.81487 30.79092 33.91083 36.78415 39.50690 42.91206 45.49608
12 28.08460 31.10241 33.17450 36.39437 39.40271 42.17813 45.66175 47.96833
13 30.24182 33.38780 35.53193 38.80962 41.83210 44.58839 48.23849 51.13652
14 32.43075 35.67317 37.89541 41.31345 44.46291 47.32479 50.90457 53.54462
15 34.60049 37.93522 40.24877 43.79044 46.99693 50.00544 53.89229 56.48313
16 36.80468 40.22437 42.60411 46.20453 49.45632 52.59392 56.22777 58.90075
17 38.93818 42.47041 44.88308 48.59943 52.04321 55.22288 58.99215 61.81646
18 41.10030 44.70812 47.19624 51.07271 54.53403 57.76255 61.92054 64.68762
19 43.28436 46.97789 49.49510 53.39487 56.95178 60.38342 64.31317 67.23934
20 45.45902 49.24856 51.83492 55.75066 59.20902 62.56931 66.64971 69.64516
21 47.56828 51.42327 54.07548 58.20524 61.79274 65.12872 69.31541 72.22356
22 49.70588 53.66163 56.34347 60.44500 64.20394 67.66134 71.88456 74.93144
23 51.80661 55.82266 58.55526 62.79905 66.58829 70.03232 74.26518 77.18792
24 53.97184 58.05699 60.88109 65.18466 68.99439 72.51321 76.81869 79.93586
25 56.11324 60.25292 63.10763 67.48075 71.32257 74.98080 79.22916 82.22116
26 58.25655 62.52827 65.43137 69.82024 73.73753 77.39443 81.95604 85.30411
27 60.37751 64.70543 67.69596 72.17025 76.15421 79.88920 84.43537 87.84940
28 62.46744 66.85732 69.82941 74.34704 78.42661 82.23217 86.90191 90.14095
29 64.64753 69.12219 72.16090 76.81343 81.00318 84.84853 89.68073 93.10866
30 66.78896 71.38293 74.51746 79.21807 83.40181 87.18431 92.10368 95.58734
31 68.89859 73.51126 76.61667 81.44399 85.76024 89.49425 94.37618 97.70716
32 70.97500 75.66018 78.84264 83.67877 87.97682 91.95972 96.71393 99.98882
33 73.10887 77.82006 81.05650 85.92275 90.40613 94.36789 99.15488 102.95130
34 75.16808 79.97505 83.33152 88.24318 92.69073 96.89902 102.03886 105.73834
35 77.35576 82.18788 85.54640 90.64357 95.12778 99.27702 104.21867 107.83860
36 79.43211 84.41624 87.74260 92.81780 97.26202 101.64589 106.81243 110.48551
37 81.54294 86.51411 89.86794 95.01258 99.69488 104.16198 109.44412 113.13416
38 83.64238 88.76837 92.17712 97.31172 102.03225 106.28557 111.46263 115.14064
39 85.81631 90.90753 94.36576 99.55392 104.16692 108.48713 113.82813 117.84133
40 87.91300 93.13927 96.60852 101.95897 106.62420 110.92530 116.35325 120.22401
41 89.93419 95.15864 98.68305 104.14069 108.87683 113.30276 118.99165 122.82949
42 92.10702 97.40866 101.01474 106.43982 111.35621 115.78230 121.15330 125.36994
43 94.20144 99.58255 103.17588 108.61722 113.51957 117.87329 123.25148 127.05246
44 96.29968 101.67572 105.33692 110.85339 115.83471 120.36238 126.07313 130.35565
45 98.36778 103.77828 107.45827 113.11453 118.14202 122.77036 128.44119 132.56211
46 100.47670 105.96660 109.69420 115.38890 120.55440 125.13160 130.88120 134.89820
47 102.60970 108.12190 111.91870 117.64990 122.70920 127.44060 133.24370 137.46020
48 104.64490 110.25200 114.09700 119.82870 124.95200 129.78250 135.66940 139.92260
49 106.82860 112.42820 116.31220 122.14890 127.28050 132.04100 137.72580 141.51270
50 108.86510 114.60230 118.48180 124.29890 129.53450 134.17700 139.95830 144.02770

n = Time-truncated sample size
m = Failure-truncated sample size
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Table 1.4. Empirical null distribution of the L-test.

n (or m − 1) α = 0.005 α = 0.01 α = 0.025 α = 0.05 α = 0.1 α = 0.2 α = 0.3 α = 0.5

1 0.00496 0.00968 0.02440 0.04912 0.10148 0.20937 0.32514 0.57871
2 0.14113 0.20553 0.32787 0.48013 0.70458 1.05673 1.36202 1.91759
3 0.52924 0.67660 0.94625 1.23677 1.63307 2.20575 2.66604 3.45845
4 1.08364 1.34365 1.76883 2.19033 2.74536 3.49416 4.08466 5.06973
5 1.84232 2.17549 2.69929 3.26488 3.94926 4.86997 5.56764 6.74274
6 2.69344 3.09186 3.76884 4.42238 5.24687 6.31889 7.12695 8.43950
7 3.57607 4.07729 4.88337 5.63821 6.58139 7.78416 8.69264 10.15679
8 4.58167 5.15628 6.07308 6.92219 7.98760 9.31569 10.31460 11.91371
9 5.64919 6.31048 7.28921 8.21018 9.37776 10.87094 11.95484 13.69039
10 6.67236 7.39876 8.48837 9.57427 10.86845 12.43528 13.59541 15.45398
11 7.88192 8.62764 9.84200 11.00875 12.33747 14.04595 15.27930 17.24390
12 8.96052 9.81878 11.15279 12.40290 13.86817 15.68820 16.99069 19.05882
13 10.34489 11.24661 12.59560 13.87275 15.40217 17.31803 18.68749 20.87337
14 11.47277 12.41510 13.93401 15.32600 16.96005 18.99670 20.42902 22.68435
15 12.74278 13.77007 15.36507 16.81694 18.50790 20.60748 22.10096 24.48719
16 13.99977 15.09067 16.82381 18.34486 20.12679 22.30810 23.84769 26.36333
17 15.37219 16.51118 18.22243 19.74212 21.64856 23.94395 25.57070 28.12884
18 16.68265 17.83106 19.66802 21.28818 23.23193 25.63209 27.31804 30.01377
19 18.10879 19.34236 21.19211 22.88618 24.89359 27.33956 29.10000 31.85378
20 19.49000 20.74359 22.76034 24.52446 26.59117 29.08694 30.86245 33.70737
21 20.79040 22.08443 24.16476 25.98771 28.12703 30.73597 32.58790 35.52336
22 22.16999 23.63075 25.74368 27.57779 29.76956 32.46485 34.39625 37.38189
23 23.75310 25.17462 27.30697 29.22074 31.49282 34.27596 36.21837 39.27462
24 25.06207 26.48464 28.79441 30.80348 33.13472 35.98709 38.00466 41.16940
25 26.40665 27.84508 30.31999 32.35567 34.78848 37.69247 39.76566 42.99167
26 28.09580 29.59211 31.96157 33.99234 36.42509 39.37967 41.50782 44.84832
27 29.53220 31.12188 33.51560 35.55661 38.08687 41.17439 43.33050 46.72264
28 30.75435 32.44268 35.00445 37.21620 39.78666 42.97774 45.16957 48.60607
29 32.39192 33.97122 36.55021 38.78450 41.42280 44.65543 46.88708 50.44333
30 33.68649 35.49459 38.16219 40.44531 43.18725 46.43378 48.73811 52.35432
31 35.27916 37.06908 39.73772 42.12037 44.84337 48.18767 50.53781 54.21078
32 36.84649 38.59552 41.41324 43.84722 46.68289 50.01705 52.40115 56.14410
33 38.24502 40.05474 42.90363 45.41105 48.28918 51.77920 54.21380 58.02875
34 39.80278 41.71766 44.50803 47.03421 50.02725 53.62885 56.06333 59.92897
35 41.14301 43.12522 46.19119 48.74126 51.75320 55.38316 57.89626 61.83402
36 42.86949 44.86493 47.83983 50.46096 53.48904 57.12711 59.68710 63.66223
37 44.32329 46.38906 49.47411 52.11902 55.20546 58.92955 61.53197 65.56219
38 45.93260 47.96664 51.03559 53.77772 56.93415 60.70973 63.34384 67.44238
39 47.40184 49.67057 52.72153 55.44111 58.64378 62.48056 65.16311 69.33439
40 49.25394 51.28861 54.26215 57.13216 60.43461 64.29103 67.03257 71.24293
41 50.79032 52.80223 56.06614 58.90344 62.16971 66.06346 68.86692 73.13810
42 52.47493 54.36625 57.58985 60.53676 63.88144 67.79632 70.60799 74.98391
43 53.78684 56.04082 59.30166 62.29918 65.63380 69.72141 72.52166 76.92106
44 55.16547 57.40073 60.88929 63.90559 67.38559 71.49733 74.37956 78.82325
45 57.03045 59.37039 62.67875 65.72370 69.20876 73.33371 76.23899 80.77581
46 58.62665 60.84379 64.48524 67.47125 70.95868 75.09224 78.03343 82.65800
47 60.06928 62.38479 65.86486 68.96245 72.55007 76.88860 79.88194 84.54005
48 61.71044 64.14565 67.68884 70.79906 74.45834 78.74278 81.75321 86.43494
49 63.22715 65.67830 69.26954 72.49601 76.23223 80.55290 83.55064 88.31438
50 65.01923 67.31776 70.93106 74.18551 77.93719 82.39122 85.49748 90.25809

n = Time-truncated sample size
m = Failure-truncated sample size

34



Table 1.5. Empirical null distribution of the PDB-test.

n (or m − 1) α = 0.005 α = 0.01 α = 0.025 α = 0.05 α = 0.1 α = 0.2 α = 0.3 α = 0.4

1 0.00501 0.01001 0.02501 0.05001 0.10000 0.20000 0.30000 0.40000
2 0.00312 0.00639 0.01627 0.03318 0.06890 0.14239 0.21959 0.30046
3 0.00289 0.00595 0.01522 0.03124 0.06428 0.13385 0.20698 0.28242
4 0.00292 0.00589 0.01489 0.03048 0.06284 0.13021 0.20144 0.27504
5 0.00283 0.00561 0.01458 0.03003 0.06195 0.12827 0.19856 0.27215
6 0.00273 0.00555 0.01435 0.02934 0.06074 0.12705 0.19689 0.26944
7 0.00278 0.00562 0.01421 0.02912 0.06047 0.12660 0.19575 0.26771
8 0.00274 0.00559 0.01420 0.02917 0.06009 0.12538 0.19467 0.26645
9 0.00279 0.00562 0.01433 0.02917 0.05997 0.12551 0.19405 0.26577
10 0.00280 0.00553 0.01410 0.02910 0.06008 0.12524 0.19384 0.26556
11 0.00272 0.00554 0.01413 0.02899 0.05996 0.12471 0.19311 0.26519
12 0.00274 0.00555 0.01431 0.02908 0.05978 0.12432 0.19247 0.26391
13 0.00274 0.00554 0.01414 0.02903 0.05972 0.12459 0.19252 0.26413
14 0.00272 0.00548 0.01395 0.02860 0.05922 0.12415 0.19207 0.26266
15 0.00275 0.00552 0.01416 0.02891 0.05935 0.12441 0.19258 0.26426
16 0.00273 0.00552 0.01410 0.02905 0.05947 0.12424 0.19144 0.26274
17 0.00272 0.00551 0.01402 0.02870 0.05943 0.12390 0.19161 0.26315
18 0.00271 0.00556 0.01414 0.02897 0.05959 0.12374 0.19108 0.26241
19 0.00267 0.00542 0.01392 0.02874 0.05924 0.12344 0.19075 0.26153
20 0.00265 0.00543 0.01389 0.02855 0.05889 0.12332 0.19074 0.26166
21 0.00270 0.00549 0.01403 0.02877 0.05924 0.12369 0.19102 0.26138
22 0.00268 0.00540 0.01406 0.02875 0.05928 0.12327 0.19110 0.26228
23 0.00265 0.00552 0.01403 0.02868 0.05914 0.12321 0.19055 0.26145
24 0.00276 0.00558 0.01398 0.02872 0.05916 0.12316 0.19107 0.26169
25 0.00269 0.00548 0.01398 0.02885 0.05932 0.12344 0.19104 0.26169
26 0.00269 0.00541 0.01382 0.02832 0.05911 0.12315 0.19072 0.26143
27 0.00267 0.00543 0.01383 0.02850 0.05917 0.12368 0.19134 0.26165
28 0.00275 0.00555 0.01410 0.02873 0.05926 0.12343 0.19088 0.26122
29 0.00265 0.00544 0.01403 0.02864 0.05915 0.12367 0.19186 0.26222
30 0.00264 0.00546 0.01409 0.02875 0.05930 0.12326 0.19089 0.26059
31 0.00271 0.00549 0.01419 0.02889 0.05952 0.12332 0.19075 0.26194
32 0.00275 0.00548 0.01406 0.02866 0.05919 0.12288 0.19049 0.26073
33 0.00271 0.00550 0.01398 0.02859 0.05918 0.12334 0.19099 0.26148
34 0.00270 0.00547 0.01389 0.02864 0.05911 0.12341 0.19060 0.26182
35 0.00267 0.00544 0.01390 0.02874 0.05926 0.12382 0.19129 0.26192
36 0.00268 0.00546 0.01394 0.02854 0.05913 0.12281 0.19001 0.26022
37 0.00269 0.00547 0.01395 0.02858 0.05926 0.12361 0.19102 0.26098
38 0.00269 0.00546 0.01389 0.02839 0.05886 0.12303 0.19035 0.26103
39 0.00267 0.00539 0.01390 0.02851 0.05885 0.12266 0.19003 0.26093
40 0.00270 0.00546 0.01402 0.02873 0.05923 0.12362 0.19086 0.26106
41 0.00268 0.00549 0.01404 0.02866 0.05905 0.12293 0.19033 0.26081
42 0.00272 0.00545 0.01387 0.02844 0.05905 0.12347 0.19072 0.26096
43 0.00267 0.00543 0.01403 0.02880 0.05905 0.12292 0.19051 0.26076
44 0.00271 0.00551 0.01405 0.02868 0.05879 0.12286 0.19043 0.26107
45 0.00274 0.00550 0.01405 0.02877 0.05919 0.12298 0.19054 0.26130
46 0.00273 0.00551 0.01405 0.02864 0.05897 0.12328 0.19041 0.26074
47 0.00271 0.00546 0.01398 0.02859 0.05872 0.12303 0.19037 0.26075
48 0.00268 0.00546 0.01398 0.02859 0.05875 0.12261 0.19029 0.26083
49 0.00267 0.00546 0.01396 0.02837 0.05853 0.12269 0.19011 0.26014
50 0.00270 0.00549 0.01395 0.02869 0.05915 0.12297 0.19087 0.26103

n = Time-truncated sample size
m = Failure-truncated sample size
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CHAPTER 2

AN INTELLIGIBLE VERSION

2.1 Motivation

Simulation studies are an important tool for statistical research, aimed better to understand the

behavior and performance of the calculated statistics. So far, it would seem that the main deliverable

is tabulated empirical null distributions for test statistics R, L, and PDB (Bhaduri 2018 [14]), which

are estimated by simulations with size N = 104, ensuring numerical stability across different runs

depending on the value of α and sample size n. However, it is old-fashioned and limited by the

range of n-values up to 50 for both sampling schemes. Folks don’t use those tables to calculate p-

values and powers anymore. Rather, they expect a distribution function like pnorm in R (e.g., Kerns

2010 [63]), or similar. This Chapter reveals that theory would showcase the way to calculate p-values

and powers with the bidirectional tests not only to overcome the hurdles but also to supercharge

the desired transformation throughout with the power: simplicity and practicality.

2.2 Propositions

The theoretical functional forms quantifying the dependence between the tests and that of the

complete analytical approach are yet to be explored in bidirectional tests, R, L, and PDB. We set

out to explore the possibility of the option for the practitioners, because the distributions of the

order statistics and p-values are known. Additional steps in their development for testing H0: The

intensity λ(·) is constant versus HA: λ(·) is not constant (increasing or decreasing) are taken as

follows:

Proposition 2.1. (a) The null distribution of R = Max (Z,ZB) ≈ X(2), and (b) the null distribution

of L = Min (Z,ZB) ≈ X(1), where X(·) are the order statistics of a random sample of size 2 from
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a χ2(k) with k = 2(m− 1) or 2n, respectively, for a failure-truncated sampling of size m and n for

that of a time-truncated sampling.

Proposition 2.2. The null distribution of PDB = Min (PHo(L ≤ l), PHo(R ≥ r)) ≈ U(1), where

U(1) is the first order statistic of a random sample of size 2 from U(0, 1).

2.3 The p-value Proxies

2.3.1 For the R-Test

Both Z and ZB share a common chi-square distributions as their null distribution under the H0 :

β = 1. The null distribution of R = Max(Z,ZB) ≈ X(2) is the maximum order statistic of a

random sample of size 2 from a χ2(k) with k = 2(m− 1) or 2n, respectively, for a failure-truncated

sampling of size m and n for that of a time-truncated sampling. If one is interested in finding the

critical value for R = Max(Z,ZB) with α = .1 by this method,

1− FR(r) = 1− P (R ≤ r)

= 1− P (Max(Z,ZB) ≤ r)

≈ 1− P (Z ≤ r)P (ZB ≤ r)

= 1− P (χ2 ≤ r)P (χ2 ≤ r)

= 1− (P (χ2 ≤ r))2

= 1− (Fχ2(k)(r))
2 = 0.1

(2.1)

=⇒ (Fχ2(k)(r))
2 = 0.9

=⇒ Fχ2(k)(r) =
√
0.9.

From the last equation, we can solve the equation to find the critical value r by the chi-square table

or the software R. Similar way is employed to calculate the p-value for R = Max(Z,ZB). The
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p-value of R = r is

PH0(R ≥ r) = 1− PH0(R < r)

= 1− PH0(Max(Z,ZB) < r)

≈ 1− [Fχ2(k)(r)]
2,

(2.2)

with k = 2(m− 1) or 2n, respectively, for a failure-truncated sampling of size m and n for that of

a time-truncated sampling.

2.3.2 For the L-Test

Both Z and ZB share a common chi-square distributions as their null distribution under the H0 :

β = 1. The null distribution of L = Min(Z,ZB) ≈ X(1) is the minimum order statistic of a random

sample of size 2 from a χ2(k) with k = 2(m−1) or 2n, respectively, for a failure-truncated sampling

of size m and n for that of a time-truncated sampling. If one is interested in finding the critical

value for L = Min(Z,ZB) with α = .1 by this method,

FL(l) = P (L ≤ l)

= 1− P (L > l)

= 1− P (Min(Z,ZB) > l)

≈ 1− P (Z > l)P (ZB > l)

= 1− P (χ2 > l)P (χ2 > l)

= 1− (P (χ2 > l))2

= 1− (1− P (χ2 ≤ l))2

= 1− (1− Fχ2(k)(l))
2 = 0.1

(2.3)

=⇒ (1− Fχ2(k)(l))
2 = 1− 0.1 = 0.9

=⇒ 1− Fχ2(k)(l) =
√
0.9

=⇒ Fχ2(k)(l) = 1−
√
0.9
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From the last equation, we can solve the equation to find the critical value l by the chi-square table

or the software R. Same technique is used to calculate the p-value for L = Min(Z,ZB). The p-value

of L = l is
PH0(L ≤ l) = 1− PH0(L > l)

= 1− PH0(Min(Z,ZB) > l)

≈ 1− [1− Fχ2(k)(l)]
2,

(2.4)

with k = 2(m− 1) or 2n, respectively, for a failure-truncated sampling of size m and n for that of

a time-truncated sampling.

2.3.3 For the PDB-Test

Under any circumstances, neither of the bidirectional tests is free from having a pair of two unde-

sirable low power (bad) legs, as per the symmetry/asymmetry properties. Of course, in any setting,

the odds are in favor of having at least one high power (good) leg in each pair. For R and L, the

existence of having the best or worst combination of the legs in detecting the same alternative would

definitely form a striking contrast in power comparison, where the extent is yet to be confirmed. An

intelligible approach is to collectively treat R and L as a transit to a test that can simultaneously

filter out the bad and enhance the good reflected by each of the bidirectional critical regions. This

leads us to compare the p-values from both the maximum-based R and the minimum-based L, and

to reject the homogeneity assumption for extremely low values of the minimum p-value.

Definition 2.1. The p-value is the probability of obtaining results as extreme as the observed results

of a statistical hypothesis test, assuming that the null hypothesis is correct.

Theorem 2.1. The p-value follows the uniform distribution (0, 1).

Proof. Consider a left-sided one-tailed hypothesis test. Then, the p-value is a function of the test

statistic P = FX(X) and p = FX(x), where x is the observed test statistic and FX(x) is the c.d.f.

of the test statistic under the null hypothesis.
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Then, we can obtain the c.d.f. of the p-value as

FP (p) = P (P ≤ p)

= P (FX(X) ≤ p)

= P (X ≤ F−1
X (p))

= FX(F−1
X (p))

= p

(2.5)

Consider a right-sided one-tailed hypothesis test. Then, the p-value is a function of the test

statistic P = 1−FX(X) and p = 1−FX(x), where x is the observed test statistic and FX(x) is the

c.d.f. of the test statistic under the null hypothesis.

Then, we can obtain the c.d.f. of the p-value as

FP (p) = P (P ≤ p)

= P (1− FX(X) ≤ p)

= P (−FX(X) ≤ p− 1)

= P (FX(X) > 1− p)

= 1− P (FX(X) ≤ 1− p)

= 1− P (X ≤ F−1
X (1− p))

= 1− FX(F−1
X (1− p))

= 1− (1− p)

= 1− 1 + p

= p

(2.6)

Consider a two-sided hypothesis test. Then, the p-value is 2Min{P (X ≤ x), P (X ≥ x)}. If

Min = P (X ≤ x), the p-value is a function of the test statistic P = 2FX(X) and p = 2FX(x),

where x is the observed test statistic and FX(x) is the c.d.f. of the test statistic under the null

hypothesis.
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Then, we can obtain the c.d.f. of the p-value as

2FP (p) = 2P (P ≤ p)

= 2P (2FX(X) ≤ p)

= 2P (FX(X) ≤ p/2)

= 2P (X ≤ F−1
X (p/2))

= 2FX(F−1
X (p/2))

= 2p/2

= p

(2.7)

If Min = P (X ≥ x), then, the p-value is a function of the test statistic P = 2(1− FX(X)) and

p = 2(1− FX(x)), where x is the observed test statistic and FX(x) is the c.d.f. of the test statistic

under the null hypothesis.

Then, we can obtain the c.d.f. of the p-value as

2FP (p) = 2P (P ≤ p)

= 2P (2(1− FX(X)) ≤ p)

= 2P (−FX(X) ≤ p/2− 1)

= 2P (FX(X) > 1− p/2)

= 2(1− P (FX(X) ≤ 1− p/2))

= 2(1− P (X ≤ F−1
X (1− p/2)))

= 2(1− FX(F−1
X (1− p/2)))

= 2(1− (1− p/2))

= p

(2.8)

Thus, the p-value follows the uniform distribution (0, 1).

Theorem 2.2. If two independent random variables X and Y follow the uniform distribution (0, 1),

the minimum of these two variables follows the beta distribution (1, 2).
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Proof. Let’s define U(1) = Min(U1, U2).

P (U(1) ≥ x) = P (Min(U1, U2) ≥ x)

= P (U1 ≥ x, U2 ≥ x)

≈ P (U1 ≥ x)P (U2 ≥ x)

= (1− x)(1− x) = (1− x)2

(2.9)

=⇒ FU(1)
(x) = P (U(1) ≤ x) = 1− (1− x)2 = 2x− x2

=⇒ fU(1)
(x) =

d

dx
FU(1)

(x) =
d

dx
(2x− x2) = 2− 2x, x ∈ (0, 1)

We can confirm that the minimum of two independent variables from the uniform distribution (0, 1)

follows the beta distribution (1, 2) proved by the c.d.f. and it’s p.d.f.

Also, using the order statistics, the c.d.f. of U(1) = Min(U1, U2), where U(1) is the minimum

order statistic of a random sample of size 2 from U(0, 1), is

FU(1)
(x) = P (U(1) ≤ x)

= 1− P (U(1) > x)

≈ 1− P (U1 > x)P (U2 > x)

= 1−
2∏

i=1

P (Ui > x)

= 1−
2∏

i=1

(1− P (Ui ≤ x))

= 1−
2∏

i=1

(1− x)

= 1− (1− x)2 = 2x− x2

(2.10)

Proving that the minimum of two independent variables from the uniform distribution (0, 1) is

beta distribution (1,2) in the Theorem (2.2), we can find the critical value in PDB test by solving the

quadratic equation of the theoretical c.d.f. of beta distribution (1, 2) or using the order statistics.

After solving it, the correct critical value should be between 0 and 1 due to the domain of beta
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distribution. For example, if one wants to find the critical value for PDB test with α = .1,

FPDB
(p) = P (PDB ≤ p) = 2p− p2 = 0.1

=⇒ 2p− p2 − 0.1 = 0

=⇒ p = 0.0513, 1.9486.

Due to the proper domain of the beta distribution, the critical value should be 0.02532 with α = .1.

Same technique is used to calculate the p-value for PDB = Min (PHo(L ≤ l), PHo(R ≥ r)). The

p-value of PDB = p is

PH0(PDB ≤ p) = 1− PH0(PDB > p)

= 1− PH0(Min(PH0(L ≤ l), PH0(R ≥ r)) > p)

= 1− PH0(Min(PH0(L ≤ l), PH0(R ≥ r)) > p)

≈ 1− [1− FU(0,1)
(p)]2

= 1− (1− p)2.

(2.11)

2.4 Performance Assessments

The realization of the above propositions becomes Table 2.1, where the cumulative failure times,

ti’s and t are recognized as the main events, and F (·) represents the lower-tail probability of the

distribution. In essence, Table 2.1 has so many simple yet profound implications. The functions are

not abstract – rather, grounded in practicality. For instance, an observed test statistic, p, of PDB

yields an associated p-value proxy ≈ 1− (1− p)2 with reasonable precision, which, in turn, can be

inverted for obtaining a critical value ≈ 1 −
√
(1− α) for a size α hypothesis testing. Recall that

PDB = Min(PHo(L ≤ l), PHo(R ≥ r)), a p-value induced dual bidirectional test statistic, apparently

possesses the unique feature of having proxies that are free of either the sample size or the sampling

schemes, which will be factored into the development as the study unfolds.
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Table 2.1. Functions for test statistics (Z and ZB) and the p-value proxies (R, L, and PDB), failure-
truncated and time-truncated sampling with size n.

Failure-truncated Time-truncated

Z = z z = 2
∑n−1

i=1 ln(tn/ti) z = 2
∑n

i=1 ln(t/ti)

ZB = zB zB = 2
∑n−1

i=1 ln(tn/(tn − ti)) zB = 2
∑n

i=1 ln(t/(t− ti))

p-value for R = r 1− [Fχ2(2n−2)(r)]
2 1− [Fχ2(2n)(r)]

2

p-value for L = l 1− [1− Fχ2(2n−2)(l)]
2 1− [1− Fχ2(2n)(l)]

2

p-value for PDB = p 1− (1− p)2 1− (1− p)2

Graphical comparisons between the empirical cumulative probabilities of the null distribution

(n = 21, failure-truncated sampling) tabulated in the Tables from 1.3 to 1.5 and their proxies using

the order statistics are presented in Figure 2.1. To further assess the utilities of the proxies, samples

of performance data are summarized in Table 2.2, measured by the mean absolute deviations.

Surprisingly, results surrogated by the order statistics reveal that the degree of dependence between

the test statistics hindering a complete analytical approach for obtaining the p-values is generally

minor, especially for moderate to small p-values where a statistical significance threshold is normally

set. Consequently, this user-friendly version of the test makes the p-values much more attainable.

Table 2.2. Mean absolute deviation (variance) between tabulated empirical cumulative probabilities
and their proxies for various sample sizes, failure-truncated sampling.

n = 3 n = 10 n = 21 n = 60

FPDB
(x) ≤ 0.100 0.0072 (9.17e-05) 0.0042 (3.37e-05) 0.0033 (2.57e-05) 0.0043 (3.21e-05)

Overall 0.0398 (2.03e-03) 0.0249 (8.26e-04) 0.0263 (9.27e-04) 0.0240 (8.00e-04)

FR(x) ≥ 0.900 0.0005 (3.97e-07) 0.0007 (4.63e-04) 0.0006 (9.94e-07) 0.0007 (1.21e-06)
Overall 0.0156 (3.93e-04) 0.0155 (3.80e-04) 0.0153 (3.73e-04) 0.0156 (3.84e-04)

FL(x) ≤ 0.100 0.0006 (7.15e-07) 0.0003 (2.61e-07) 0.0008 (1.02e-06) 0.0006 (8.45e-07)
Overall 0.0173 (4.95e-04) 0.0171 (4.72e-04) 0.0172 (4.85e-04) 0.0166 (4.41e-04)
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Figure 2.1. Pairwise comparison of the empirical null distribution (n = 21, failure-truncated sam-
pling) and the corresponding order statistic for (a) R and Xmax, (b) L and Xmin, and (c) PDB and
Umin.
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CHAPTER 3

POWER COMPARISONS

3.1 Motivation

Series of events come in different forms – one of the most sought-after and analyzed data imaginable.

Continual assessment of new product reliability and ongoing control of reliability are crucial neces-

sities in today’s competitive arena. Thus, the models for the repairable systems must be able to

describe the occurrence of events in time by a point process, which tracks the number of occurrences

of events (Cox 1955 [21]; Cox and Lewis 1966 [22]; Ascher 1984 [5]; Engelhardt and Bain 1987 [32];

Ho 1998 [51]; Limnios and Nikulin 2000 [66]; Rigdon and Basu 2000 [81]; Gertsbakh 2005 [39]; Ep-

stein 2008 [34]; Tobias 2011 [90]; Modarres and Kaminskiy 2016 [70]; Cha and Finkelstein 2018 [16];

McPherson 2019 [69]; Rai 2020 [79]; Signoret and Leory 2021 [86]). A critical aspect of engineering

applications is knowing if the system’s reliability has grown, decreased, or remained stable during

the period. Therefore, the cumulative failure times are recognized as the main series of events.

Along these lines, the Poisson process is a classical point process, supporting a growing body

of theories, methods, and applications. It may be reasonable to assume that the intensity, λ(·), is

constant, so tests of H0: λ(·) is constant versus HA: λ(·) is not constant (increasing or decreasing)

are of interest. The results of such tests could indicate whether the simple HPP may be adequate or

whether a more general NHPP is required in modeling the occurrences of natural phenomena (Ho

1990 [46], 1991 [47], 1992 [48], 1996 [50]; Ho and Bhaduri 2017 [53]; Amei et al. 2012 [4]; Tan et al.

2014 [88]). Outcomes based on risk and hazard assessment studies, often modeled by an NHPP, may

have long-lasting effects on humankind in one aspect or another (Ho 1991 [47], 1992 [48], 2010 [52];

Ho and Smith 1997 [54], 1998 [55]; Ho et al. 1991 [56], Ho et al. 2006 [57]; Ho et al. 2016 [58]).

By the simulating the events, as per Ho (1993) [49], there are asymmetrical and symmetrical
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performances between Z and ZB. First, for the asymmetry, ZB is more powerful than Z in de-

tecting (a) an increasing two-step-intensity alternative for the failure-truncated sampling, and (b)

a decreasing two-step-intensity alternative for the time-truncated sampling. In other words, both

legs (right and left, say) from Z and its ZB counterpart set to do the same job for a specific alter-

native setting differ in power. As for the symmetrical property, it is easy to show that these two

tests are equal in performance by properly allocating pairs of symmetrical change-points and trends

(decreasing versus increasing) of the step-function intensities, because ZB is a reversed version of

Z. Consequently, both legs of either test are valuable, which rationalize the urge to compare the

power with bidirectional tests.

3.2 Simulation Techniques

3.2.1 Power Law Process

This section explains how to simulate the data from a PLP. There are several ways to simulate

events from a PLP under time-truncated sampling. Order statistics from the uniform distribution

(0, 1) are employed to simulate an NHPP with a power law intensity. After generating the order

statistics, u(1) < u(2) < · · · < u(n), from a random sample of size n from the uniform distribution

(0, 1), the NHPP can be obtained through the solving µ(ti)/µ(t) = u(i) where µ(ti) =
∫ ti
0 λ(x)dx =∫ ti

0
β
θ (

x
θ )

β−1dx = ( tiθ )
β and µ(t) = ( tθ )

β . Since the distribution of ti/t, given n, does not depend on

t, we set t = 1 and get the NHPP:

t1 = u
1
β

(1), t2 = u
1
β

(2), . . . , tn = u
1
β

(n). (3.1)

After simulating the events, we can check that this process is flexible enough to model the

repairable systems which are improving (i.e. β < 1), deteriorating (i.e. β > 1), or remaining

homogeneous (i.e. β = 1) with respect to time t. For example, if β > 1, the derivative of the
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intensity function dλ(t|Θ)
dt is always positive,

d

dt
(β/θ)(t/θ)β−1 = (β/θ2)(β − 1)(t/θ)β−2 > 0. (3.2)

This indicates that the failure process gradually gets more intense over time, known as the deteri-

orating since λ(t|Θ) keeps increasing. If β < 1, failures are getting less prevalent with the advent

of time, indicating a hallmark of an improving system. Lastly, when β = 1, it is an HPP, implying

that the system is neither improving nor wearing out over the time, but is more or less uniformly

spread out with no apparent clustering tendency. The Figure 3.1 and Figure 3.2 display the different

patterns depending on the values of β.

Figure 3.1. Simulation from NHPP’s with different choices of β with n = 15
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Figure 3.2. Power Law (Weibull) intensities for different choices of β

3.2.2 Step-Function Intensities

Smooth intensities are adequate for representing changes in the failure pattern, which are gradual

over a considerable period. But if changes are abrupt, the failure rates are different over a while,

meaning that each interval has it’s own value of intensity. This type of intensity graphed in the
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Figure 3.3, called step-intensity, has the form:

λ(t) =

p∑
i=1

λiI(τi−1,τi](t), t > 0 (3.3)

where IA(·) is the indicator function on set A.
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Figure 3.3. Three types of graph in three-step-intensity

The two-step intensity (p = 2) of the form can be defined as λ(t) = λ1 for 0 < t ≤ τ , and

λ(t) = λ2 for τ < t. Moreover, we can calculate mean function in each interval such as:

µ(t) =

∫ t

0
λ(x)dx =

{
λ1t 0 < t ≤ τ

λ1τ + λ2(t− τ) τ < t
(3.4)

Generating an HPP of rate 1 (X), the NHPP (Y) can be obtained through the following inverse

transformation:

yi =

{
xi
λ1

xi ≤ λ1τ
xi−λ1τ

λ2
+ τ λ1τ < xi

(3.5)

For example, when λ1 = 5, λ2 = 1, n = 30 and sampling frequency is 1 : 1, this means within each

interval (0, τ ] and (τ,∞) has 15 events (= 30/2). On (0, τ ], as the process is an HPP with rate 5,
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the inter-event time is exponential with average 1/5. Thus, the waiting time for 15 events is 15 ×

1/5 = 3 (= τ).

For an observed number of failures, n > 0, the failure times are denoted by 0 < t1 < t2 < · · · <

tn < t. The three-step intensity of the form under the time-truncated sampling can be defined as

λ(t) = k1, for 0 < t ≤ τ1T , λ(t) = k2, for τ1T < t ≤ τ2T , and λ(t) = k3, for τ2T < t ≤ T . Moreover,

we can calculate mean function in each interval such as:

µ(t) =

∫ t

0
λ(x)dx =


λ1t 0 < t ≤ τ1T

λ1τ1 + λ2(t− τ1) τ1T < t ≤ τ2T

λ1τ1 + λ2(τ2 − τ1) + λ3(t− τ2) τ2T < t ≤ T

(3.6)

Generating the order statistics, u(1) < u(2) < · · · < u(n), from a random sample of size n from the

uniform distribution (0, 1), the NHPP (Y) can be obtained through the solving µ(ti)/µ(t) = u(i):

yi =


u(i)µ(t)

λ1
u(i) ≤ λ1τ1t

µ(t)
u(i)µ(t)−λ1τ1

λ2
+ τ1

λ1τ1t
µ(t) < u(i) ≤

λ1τ1+λ2(τ2t−τ1)
µ(t)

u(i)µ(t)−λ1τ1−λ2(τ2−τ1)

λ3
+ τ2

λ1τ1+λ2(τ2t−τ1)
µ(t) < u(i)

(3.7)

Since the distribution of ti/t, given N = n, does not depend on t, we set t = 1.

3.3 Power Comparisons for All Five Tests

The following power study is consistently for testing H0: β = 1 versus HA with a two-sided nominal

level of α = 0.1, where the distribution under HA will be a known NHPP. Proxies developed above

are not used for any of the simulations in this Chapter. The structure of the Monte Carlo simulations

starts with a failure-truncated sampling scheme with 104 iterations for each alternative distribution.

Tables from 3.1 to 3.4 summarize the results of this part. We then extend the same structure to

a time-truncated sampling scheme to complete the power comparisons. Tables from 3.5 to 3.8

summarize the results of the second part. Specifically, a total of 60 settings (excluding the reference

set, β = 1) of simulation will be considered. Every setting composes an element from each of the

following components: (a) An intensity differentiated by type, trend, and the location/number of
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change point(s), (b) sample size, and (c) sampling schemes as organized in the simulation flowchart

(Figure 3.4).

Sampling

Failure Time

PLP 2-Step 3-Step

Increasing Decreasingβ > 1β < 1 Over a speed bump Enter a lower road

F: Table 2.3
T: Table 2.7

F: Table 2.3
T: Table 2.7

F: Table 2.4
T: Table 2.8

F: Table 2.5
T: Table 2.9

F: Table 2.6
T: Table 2.10

F: Table 2.6
T: Table 2.10

Figure 3.4. Simulation flowchart: (Sampling) schemes → {(F)ailure-truncated sampling, (T)ime-
truncated sampling} → {PLP, (2-step) intensity, (3-step) intensity}, with simulation results from
Tables 3.1 to 3.8.

3.3.1 Failure-Truncated Sampling

Three types of alternative distribution to be evaluated are: a PLP with β ̸= 1 and an NHPP with a

two/three-step-intensity function. Composed elements associated with each setting will be furnished

as a footnote wherever applicable.

3.3.1.1 Power Law Process

For the first simulation set, we set n = 40, the total number of failures simulated/observed. In each

case, HA is a PLP with a β (1) listed in Table 3.1, which summarizes the estimated powers. The

corresponding powers of the Z-test (1.30) are also computed analytically based on its theoretical

power functions.
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Table 3.1. Estimated powers for testing H0 versus HA: a power law process with β = (0.2 − 2.0),
respectively, and n = 40 (failure-truncated sampling).

Simulation 1 2 3 4 5 6

β Overall Maximum
Test 0.2 0.6 0.8 1.0 1.2 1.5 2.0 Average Deficit

Z (Analyticala) 1.0000 0.9378 0.4275 0.1000 0.2837 0.7939 0.9973
Z 1.0000 0.9403 0.4299 0.1045 0.2869 0.7951 0.9976 0.7416 (1)b 0
ZB 0.9998 0.6594 0.2541 0.1054 0.1784 0.4935 0.9011 0.5810 0.1606
R 1.0000 0.9404 0.4363 0.1071 0.1749 0.4938 0.9015 0.6578 0.0838
L 0.9998 0.6593 0.2482 0.1035 0.2909 0.7953 0.9976 0.6651 (3) 0.0765
PDB 1.0000 0.9200 0.4016 0.0982 0.2536 0.7345 0.9943 0.7173 (2) 0.0243

a Computed analytically based on the power function of the Z-test.
b Top three tests per the averaged power.

Table 3.1 is meant to provide a baseline for all other simulation studies with abrupt change(s).

First, values at β = 1 are coherent among tests along with that of analytical results of Z, which

will be excluded from further power comparisons. An initial set of critical observations addresses

the existence of power asymmetry under a PLP alternative and, consequently, the rationale of this

study is summarized as follows:

• For a decreasing PLP (β < 1), R gets its full power from the right leg of Z which is a UMP

for the PLP alternative. On the other hand, L is the worst in this category, because the leg

from Z is useless for testing a decreasing PLP and the other one from ZB cannot compete

with that of the UMP.

• If the alternative is an increasing PLP (β > 1), the tables are turned and now L gets its full

power from the left leg of the UMP and R takes the place of L as the worst. Note that R

and L are tied at the first place with Z, respectively, in each trend accounted for simulation

errors.

• Taking no notice of asymmetry, the averaged powers of R and L are close (Table 3.1). The
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swing of the powers as the first sign of power asymmetries between R and L motivates us

to consider a competitive indicator, termed as the maximum power-deficit, where individual

deviation from the group maximum is quantified for performance assessments.

• In both cases, the PDB-test maintains a steadfast second place with an averaged overall power

of 71.73%, which is a mere loss of 2.43% versus that of the champion (= 74.16% for the

Z), equivalently reflected by its averaged maximum power-deficit for a quick reference (Table

3.1). An elaborate set of maximum power-deficits, made for asymmetry enhancement and

performance assessment, will appear as the study unfolds.

Both tests, the empowered pair, share the load in preserving the optimality of the Z-test, which

is a sign of power asymmetry right at the baseline. The dual bidirectional PDB-test, built into the

structure, appears to be working to safeguard power symmetry as per the baseline analysis, which

provides a platform for a straightforward extension to an alternative with pieces of HPPs, divided

by one or two change points – a step-function intensity. Optimality and power asymmetry of the

backward test are to appear in the settings that follow.

3.3.1.2 Two-Step-Intensity

We consider n = 10, 20, and 40 for all three groups here. In each group, a two-step-intensity of

the form λ(t) = 1 for 0 < t ≤ τ , and λ(t) = 3 for τ < t < ∞ is considered with various values

of τ for each sample size. For Group 1, the location of change occurs at τ = 5, 10, and 20 for

n = 10, 20, and 40, respectively (i.e., the midpoint with respect to each n). For Group 2, jumps are

set approximately one-third into the process at τ = 4, 7, and 14. Likewise, they are set at τ = 6, 13,

and 26, approximately two-thirds into the process, for Group 3. Table 3.2 summarizes the results.
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Table 3.2. Estimated powers for testing H0 versus HA: a two-step-intensity with λ1 = 1, λ2 = 3,
and change point at τ (failure-truncated sampling).

Simulation 7 8 9 10 11 12 13 14 15

Groupa

1 2 3

n = 10 n = 20 n = 40 n = 10 n = 20 n = 40 n = 10 n = 20 n = 40 Overall Maximum
Test (4.9540)b (10.0085) (19.9476) (4.0297) (7.0081) (13.9469) (5.9691) (12.9367) (25.9515) Average Deficit

Z 0.2650 0.4010 0.5997 0.3057 0.5030 0.7495 0.2106 0.2781 0.4116 0.4138 0.1164
ZB 0.3008 0.5274 0.8218 0.2949 0.4866 0.7833 0.2796 0.4665 0.7359 0.5218 (2) 0.0084
R 0.3154 0.5314 0.8234 0.3072 0.4886 0.7841 0.3015 0.4796 0.7407 0.5302 (1) 0
L 0.2722 0.4060 0.5998 0.3110 0.5075 0.7495 0.2219 0.2859 0.4123 0.4184 0.1118
PDB 0.3249 0.5091 0.7837 0.3256 0.5464 0.8039 0.2794 0.4237 0.6883 0.5205 (3) 0.0097

a Combinations of [Group (sample size, location of τ)] are as follows: [1(10, 5)(20, 10)(40, 20)], [2(10, 4)(20, 7)(40, 14)], and [3(10, 6)(20, 13)(40, 26)].
b The estimated mean number of occurrences in [0, τ ].

For this simulation study, we include an abrupt change in each simulated process. Results in

Table 3.2 enhance the utility of the proposed bidirectional tests a major step forward, because the

Z-test has the lowest estimated power in nearly all the circumstances. The position of inferiority in

power for Z is as high as a net of 32% as compared with that of the backward test ZB (Table 3.2).

Additional highlights are listed below:

• A small sample size (n = 10) or early location of change, set approximately one-third into the

process, gives the PDB-test an edge.

• The ZB-test outperforms Z for both the middle and late τ settings.

• The R-test is consistently the winner for almost all the cases conducted, followed closely by

ZB, and then the PDB-test.

• As per an averaged power-based ranking, we consider the result as a convincing three-way tie

where the powers are (0.5302, 0.5218, 0.5205) for (R,ZB, PDB), respectively. The correspond-

ing overall averaged power is only 0.4138 for Z.

Therefore, for testing H0 : β = 1 versus HA, where the distribution under HA is a two-step-
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intensity of the form λ(t) = 1 for 0 < t ≤ τ , and λ(t) = 3 for τ < t < ∞ with various values of

τ , the dual bidirectional PDB-test, built into the structure, is equally competitive for detecting an

abrupt change in a Poisson process. Of course, the conventional Z-test clearly is not set for these

situations, which frequently arise in real-world applications.

In Table 3.3, we reverse the trend of the intensity function to the following: λ(t) = 3 for

0 < t ≤ τ , and λ(t) = 1 , for τ < t < ∞. For Group 1, the location of change occurs at

τ = 5/3, 10/3, and 20/3 for n = 10, 20, and 40, respectively. For Group 2, jump points are set at

τ = 4/3, 7/3, and 14/3. They are set at τ = 6/3, 13/3, and 26/3, again, approximately two-thirds

into the process for Group 3.

Table 3.3. Estimated powers for testing H0 versus HA: a two-step-intensity with λ1 = 3, λ2 = 1,
and change point at τ (failure-truncated sampling).

Simulation 16 17 18 19 20 21 22 23 24

Groupa

1 2 3

n = 10 n = 20 n = 40 n = 10 n = 20 n = 40 n = 10 n = 20 n = 40 Overall Maximum
Test (4.9900)b (10.0543) (20.0057) (3.9686) (7.0276) (14.0181) (5.9243) (12.9471) (25.9747) Average Deficit

Z 0.2917 0.5379 0.8177 0.3140 0.5162 0.7809 0.2614 0.4398 0.7105 0.5189 (3) 0.0057
ZB 0.2859 0.4392 0.6372 0.2565 0.3202 0.4545 0.2876 0.4694 0.7225 0.4303 0.0943
R 0.2999 0.5411 0.8189 0.3231 0.5220 0.7836 0.2673 0.4399 0.7106 0.5229 (2) 0.0017
L 0.2819 0.4400 0.6364 0.2501 0.3175 0.4522 0.2849 0.4731 0.7228 0.4287 0.0959
PDB 0.3071 0.5317 0.8018 0.3065 0.4799 0.7226 0.2960 0.4995 0.7764 0.5246 (1) 0

a Combinations of [Group (sample size, location of τ)] are as follows: [1 (10, 5/3) (20, 10/3) (40, 20/3)], [2 (10, 4/3) (20, 7/3) (40, 14/3)], and [3 (10, 6/3) (20, 13/3)
(40, 26/3)].
b The estimated mean number of occurrences in [0, τ ].

A straightforward reversal of a (1, 3) trend to (3, 1) for (λ1, λ2) revives the power of Z to a close

third place (Table 3.3):

• If the location of change is set approximately two-thirds into the process, the PDB-test has

an edge for this decreasing trend, although in general, the advantage of a small sample size

at 10 diminishes. Interestingly enough, Z ranks the last in this setting of change.

• If the location of change is set approximately one-third or halfway into the process, the ranking

is R, Z, and PDB. The L-test happens to be the worst.
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• In this study, we consider the result as a convincing three-way tie where the powers are

(0.5246, 0.5229, 0.5189) for (PDB, R, Z), respectively. The corresponding overall averaged

power is 0.4287 for L, the lowest.

So far, the demonstrated asymmetry has been more than offset by a dual bidirectional testing

concept, delivered by PDB.

3.3.1.3 Nonmonotonic Three-Step-Intensity

This simulation study (Table 3.4) involves two sets with three groups under each set. All the groups

have a common sample size of 36. In Set A, a three-step-intensity of the form λ(t) = 1 for 0 < t ≤ τ1,

λ(t) = 3, for τ1 < t ≤ τ2, and λ(t) = 1, for τ2 < t < ∞ is considered with various values of τ1 and

τ2. Combinations of [Group (location of τ1, τ2)] are as follows: [A1 (12, 16)], [A2 (9, 12)], and [A3

(18, 21)]. In short, for Set B, the corresponding λ(t) is (λ1, λ2, λ3) = (3, 1, 3) with various values

of τ1 and τ2. Along these lines, combinations of [Group (location of τ1, τ2)] are as follows: [B1 (4,

16)], [B2 (3, 12)], and [B3 (6, 15)].
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Table 3.4. Estimated powers for testing H0 versus HA: a three-step-intensity with λi and change
points at τj , where i = 1, 2, and 3; j = 1, 2 (failure-truncated sampling).

Simulation 25 26 27 28 29 30

Groupa Groupb

λ1 = 1, λ2 = 3, and λ3 = 1 λ1 = 3, λ2 = 1, and λ3 = 3

1 2 3 1 2 3

n = 36 n = 36 n = 36 n = 36 n = 36 n = 36
(11.9792)c (8.9939) (17.9402) (12.0539) (8.9952) (17.9703) Overall Maximum

Test (11.9541)d (8.9872) (8.9373) (11.9918) (8.9619) (8.9219) Average Deficit

Z 0.1476 0.0831 0.1873 0.3239 0.1866 0.3685 0.2161 (3) 0.0543
ZB 0.1235 0.1500 0.1425 0.2724 0.3216 0.2335 0.2072 0.0632
R 0.0584 0.0569 0.1267 0.5234 0.4317 0.4256 0.2704 (1) 0
L 0.2150 0.1740 0.2006 0.0654 0.0734 0.1468 0.1458 0.1246
PDB 0.1393 0.1111 0.1703 0.3862 0.3216 0.3485 0.2461 (2) 0.0243

a Combinations of [Group (location of τ1, τ2)] are as follows: [1 (12, 16)], [2 (9, 12)], and [3 (18, 21)].
b Combinations of [Group (location of τ1, τ2)] are as follows: [1 (4, 16)], [2 (3, 12)], and [3 (6, 15)].
c The estimated mean number of occurrences in [0, τ1].
d The estimated mean number of occurrences in (τ1, τ2].

This nonmonotonic intensity function with three steps provides additional insight into the power

study. In the case where (λ1, λ2, λ3) = (1, 3, 1), the second segment has a mean occurrence of about

12, 9, and 9, respectively, for each pair of τ1 and τ2 (Table 3.4). The unit rate of the middle segment

(λ2 = 3) is three times that of its adjacent segments (λ1 = λ3 = 1). The total number of expected

occurrences for its neighbors are set as either the same or twice as many, which would take the

middle segment a relatively small timescale to run its course. Therefore, testing a hypothesis such

as this may be perceived as driving over a speed bump. Along these lines, the other case may be

perceived as entering a lower road ready for a new asphalt pavement installation.

As expected, most of the estimated powers are low, and the asymmetrical performances continue.

In these settings, L takes the first place in Set A, but the last for Set B, and vice versa for the

R-test. In the end, PDB stands firm between R and Z, because the losses of L in Set B are quite

significant.
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3.3.2 Time-Truncated Sampling

The following types of alternative distribution are evaluated again in a time-truncated setting: a

PLP with β ̸= 1 and an NHPP with a two/three-step-intensity function. Tables from 3.5 to 3.8

below represent the counterparts of tables from 3.1 to 3.4.

Results summarized in Table 3.5 are essentially the same as that in Table 3.1. Again, values at

β = 1 are coherent among tests and the analytical result of Z (1.31), which will be excluded from

further power comparisons.

Table 3.5. Estimated powers for testing H0 versus HA: a power law process with β = (0.2 − 2.0),
respectively, and n = 40 (time-truncated sampling).

Simulation 1 2 3 4 5 6

β Overall Maximum
Test 0.2 0.6 0.8 1.0 1.2 1.5 2.0 Average Deficit

Z (Analytical∗) 1.0000 0.9423 0.4341 0.1000 0.2887 0.8036 0.9970
Z 1.0000 0.9421 0.4333 0.0956 0.2933 0.8061 0.9976 0.7453 (1) 0
ZB 0.9999 0.6621 0.2521 0.0974 0.1826 0.5008 0.9126 0.5850 0.1603
R 1.0000 0.9421 0.4367 0.0959 0.1767 0.4986 0.9112 0.6608 0.0845
L 0.9999 0.6626 0.2482 0.0972 0.2992 0.8069 0.9977 0.6690 (3) 0.0763
PDB 1.0000 0.9265 0.3969 0.1023 0.2564 0.7522 0.9947 0.7211 (2) 0.0242

a Computed analytically based on the power function of the Z-test.
b Top three tests per the averaged power.

Table 3.6. Estimated powers for testing H0 versus HA: a two-step-intensity with λ1 = 1, λ2 = 3,
and change point at τ (time-truncated sampling).

Simulation 7 8 9 10 11 12 13 14 15

τ

1/2 1/3 2/3

n = 10 n = 20 n = 40 n = 10 n = 20 n = 40 n = 10 n = 20 n = 40 Overall Maximum
Test (2.4974)a (5.0104) (10.0414) (1.4367) (2.8547) (5.7344) (3.9709) (8.0146) (16.0109) Average Deficit

Z 0.3845 0.5745 0.7913 0.3029 0.4872 0.7333 0.3606 0.5199 0.7313 0.5428 (2) 0.0019
ZB 0.2383 0.3937 0.6556 0.1504 0.2308 0.3731 0.3354 0.5453 0.8192 0.4157 0.1290
R 0.2395 0.3946 0.6539 0.1515 0.2305 0.3704 0.3368 0.5477 0.8176 0.4158 0.1289
L 0.3881 0.5787 0.7924 0.3036 0.4926 0.7351 0.3579 0.5222 0.7325 0.5447 (1) 0
PDB 0.3505 0.5493 0.7950 0.2363 0.4121 0.6832 0.3712 0.5709 0.8365 0.5338 (3) 0.0109

a The estimated mean number of occurrences in [0, τ ].
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Results summarized in Table 3.6 are mostly opposite to that in Table 3.2:

• Late location of change, set approximately two-thirds into the process, gives the PDB-test an

edge opposite to that of the failure-truncated setting.

• The Z-test outperforms ZB (1.68) for both the middle and early τ settings − the tables are

turned at a reversed setting of τ , if the sampling scheme is different.

• The L-test is the winner for the cases where the early or middle location of change is placed.

• Overall, we consider the result as a convincing three-way tie where the powers are (0.5447,

0.5428, 0.5338) for (L,Z, PDB), respectively. The corresponding overall averaged power is

0.4157 for ZB. The top three, (R,ZB, PDB), get replaced in this time-truncated setting.

Table 3.7. Estimated powers for testing H0 versus HA: a two-step-intensity with λ1 = 3, λ2 = 1,
and change point at τ (time-truncated sampling).

Simulation 16 17 18 19 20 21 22 23 24

τ

1/2 1/3 2/3

n = 10 n = 20 n = 40 n = 10 n = 20 n = 40 n = 10 n = 20 n = 40 Overall Maximum
Test (7.4821)a (15.0265) (29.9529) (5.9942) (12.0198) (24.0673) (8.5675) (17.1495) (34.2712) Average Deficit

Z 0.2325 0.3963 0.6590 0.3423 0.5503 0.8244 0.1479 0.2281 0.3754 0.4173 0.1254
ZB 0.3768 0.5640 0.7951 0.3536 0.5151 0.7350 0.2948 0.4892 0.7298 0.5392 (2) 0.0035
R 0.2338 0.3970 0.6561 0.3463 0.5529 0.8240 0.1505 0.2287 0.3733 0.4180 0.1247
L 0.3801 0.5685 0.7963 0.3563 0.5198 0.7362 0.2992 0.4966 0.7319 0.5427 (1) 0
PDB 0.3500 0.5493 0.7881 0.3791 0.5705 0.8317 0.2395 0.4325 0.6708 0.5346 (3) 0.0081

a The estimated mean number of occurrences in [0, τ ].

A straightforward reversal of a (1, 3) trend to (3, 1) for (λ1, λ2) for the time-truncated sampling

pushes the power of Z to the last place (Table 3.7). The asymmetrical patterns repeat themselves:

• If the location of change is set approximately one-third into the process, the PDB-test has an

edge for this decreasing trend.
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• If the location of change is set approximately two-thirds or halfway into the process, the

ranking is L,ZB, and PDB. The R-test happens to be the worst.

• In this study, we consider the result as a convincing three-way tie where the powers are (0.5427,

0.5392, 0.5346) for (L,ZB, PDB), respectively. The corresponding overall averaged power is

0.4173 for Z, the lowest.

Again, the demonstrated asymmetry suffered here for the conventional Z-test is equally dramatic

as that based on the failure-truncated sampling. Results summarized in Table 3.8 are mostly the

same as that of Table 3.4 with one exception: the final rankings are PDB, L, and ZB.

Table 3.8. Estimated powers for testing H0 versus HA: a three-step-intensity with λi and change
points at τj , where i = 1, 2, and 3; j = 1, 2 (time-truncated sampling).

Simulation 25 26 27 28 29 30

Groupa Groupb

λ1 = 1, λ2 = 3, and λ3 = 1 λ1 = 3, λ2 = 1, and λ3 = 3

1 2 3 1 2 3

n = 40 n = 40 n = 40 n = 40 n = 40 n = 40
(8.0170)c (6.6579) (13.3302) (17.1474) (11.9949) (24.0037) Overall Maximum

Test (24.0011)d (20.0126) (20.0044) (5.7180) (4.0055) (3.9910) Average Deficit

Z 0.1543 0.0442 0.3235 0.1648 0.1343 0.1626 0.1639 0.0377
ZB 0.1572 0.3258 0.0424 0.1635 0.1710 0.1326 0.1654 (3) 0.0362
R 0.0082 0.0279 0.0270 0.2779 0.2198 0.2126 0.1289 0.0727
L 0.3054 0.3438 0.3405 0.0473 0.0838 0.0810 0.2003 (2) 0.0013
PDB 0.1760 0.2476 0.2608 0.1902 0.1662 0.1691 0.2016 (1) 0

a Combinations of [Group (location of τ1, τ2)] are as follows: [1 (1/3, 2/3)], [2 (1/4, 1/2)], and [3 (1/2, 3/4)].
b Combinations of [Group (location of τ1, τ2)] are as follows: [1 (1/3, 2/3)], [2 (1/4, 1/2)], and [3 (1/2, 3/4)].
c The estimated mean number of occurrences in [0, τ1].
d The estimated mean number of occurrences in (τ1, τ2].

Time-truncated sampling studies have given us added awareness of what stands for performance

in hypothesis testing when its symmetry is threatened with respect to the composed elements in the

settings for an alternative distribution. We, therefore, see merit in both of the simulation schemes.

Anatomy based on a body of performance data, consolidating the above eight tables (from 3.1 to
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3.8), provides additional insights into the behavior of all the tests − an overview.

3.4 An Overview

It is to be mentioned that the test with the lowest score of maximum power-deficit is the superlative

one, which is provided for each of the tests under scrutiny. Firstly, pattern recognition of power

asymmetries is bested by Figure 3.5, which also serves as a structure and performance overview of

all the simulations conducted in this study. Furthermore, all the maximum power-deficits, made for

performance assessment and asymmetry confirmation, are presented in Table 3.9.
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Table 3.9. Maximum power-deficit overview.

Failure-truncated Time-truncated

Z ZB R L PDB Z ZB R L PDB

Simulation Table 3.1 Table 3.5

1 0 0.0002 0 0.0002 0 0 0.0001 0 0.0001 0
2 0.0001 0.2810 0 0.2811 0.0204 0 0.2800 0 0.2795 0.0156
3 0.0064 0.1822 0 0.1881 0.0347 0.0034 0.1846 0 0.1885 0.0398
4 0.0040 0.1125 0.1160 0 0.0373 0.0059 0.1166 0.1225 0 0.0428
5 0.0002 0.3018 0.3015 0 0.0608 0.0008 0.3061 0.3083 0 0.0547
6 0 0.0965 0.0961 0 0.0033 0.0001 0.0851 0.0865 0 0.0030

Table 3.2 Table 3.6

7 0.0599 0.0241 0.0095 0.0527 0 0.0036 0.1498 0.1486 0 0.0376
8 0.1304 0.0040 0 0.1254 0.0223 0.0042 0.1850 0.1841 0 0.0294
9 0.2237 0.0016 0 0.2236 0.0397 0.0037 0.1394 0.1411 0.0026 0
10 0.0199 0.0307 0.0184 0.0146 0 0.0007 0.1532 0.1521 0 0.0673
11 0.0434 0.0598 0.0578 0.0389 0 0.0054 0.2618 0.2621 0 0.0805
12 0.0544 0.0206 0.0198 0.0544 0 0.0018 0.3620 0.3647 0 0.0519
13 0.0909 0.0219 0 0.0796 0.0221 0.0106 0.0358 0.0344 0.0133 0
14 0.2015 0.0131 0 0.1937 0.0559 0.0510 0.0256 0.0232 0.0487 0
15 0.3291 0.0048 0 0.3284 0.0524 0.1052 0.0173 0.0189 0.1040 0

Table 3.3 Table 3.7

16 0.0154 0.0212 0.0072 0.0252 0 0.1476 0.0033 0.1463 0 0.0301
17 0.0032 0.1019 0 0.1011 0.0094 0.1722 0.0045 0.1715 0 0.0192
18 0.0012 0.1817 0 0.1825 0.0171 0.1373 0.0012 0.1402 0 0.0082
19 0.0091 0.0666 0 0.0730 0.0166 0.0368 0.0255 0.0328 0.0228 0
20 0.0058 0.2018 0 0.2045 0.0421 0.0202 0.0554 0.0176 0.0507 0
21 0.0027 0.3291 0 0.3314 0.0610 0.0073 0.0967 0.0077 0.0955 0
22 0.0346 0.0084 0.0287 0.0111 0 0.1513 0.0044 0.1487 0 0.0597
23 0.0597 0.0301 0.0596 0.0264 0 0.2685 0.0074 0.2679 0 0.0641
24 0.0659 0.0539 0.0658 0.0536 0 0.3565 0.0021 0.3586 0 0.0611

Table 3.4 Table 3.8

25 0.0674 0.0915 0.1566 0 0.0757 0.1511 0.1482 0.2972 0 0.1294
26 0.0909 0.0240 0.1171 0 0.0629 0.2996 0.0180 0.3159 0 0.0962
27 0.0133 0.0581 0.0739 0 0.0303 0.0170 0.2981 0.3135 0 0.0797
28 0.1995 0.2510 0 0.4580 0.1372 0.1131 0.1144 0 0.2306 0.0877
29 0.2451 0.1101 0 0.3583 0.1101 0.0855 0.0488 0 0.1360 0.0536
30 0.0571 0.1921 0 0.2788 0.0771 0.0500 0.0800 0 0.1316 0.0435

Averagea 0.0678 (3) 0.0958 0.0376 (2) 0.1228 0.0329 (1) 0.0736 (3) 0.1070 0.1354 0.0434 (2) 0.0385 (1)

a Averaged maximum power-deficit under all the simulations.

3.4.1 Road Map

Figure 3.5 provides a detailed study plan and key results, outlined underneath:
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• Summarizing tables with like settings described in the adjacent twigs are stacked in four large

branches. An ordered pair, (3.1 : 3.5), stands for Table 3.1 first then Table 3.5, and so forth.

• (3.1 : 3.5) = (F : T) indicates the corresponding sampling scheme, failure-truncated (F) or

time-truncated (T) sampling, and so forth for more than two tables. Likewise, in the second

branch, (I : D : I : D) symbolizes the respective trend order (a) associated with a step-function-

intensity: monotonically increasing (I), or decreasing (D); (b) adopted by an orderly array of

tables: 3.2, 3.3, 3.6, and 3.7.

• Consequently, each twig also stacks executed simulations by the same order as structured,

where the total number of simulations accrued are affixed with divided cells.

• Each cell houses the best and worst test of each simulation, denoted as, say, R(L) − the worst

test is in the open parenthesis. Additionally, ZR(L) means that Z and R are tied at the first

place; “T” represents a case with more than two ties.
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Table

(3.1 : 3.5) = (F : T) : PLP

β = 0.2 − Ta (T) | T (T)

β = 0.6 − RZ (ZBL)
a |ZR (ZBL)

β = 0.8 − RZ (ZBL) |RZ (ZBL)

β = 1.2 − LZ (ZBR) |LZ (ZBR)

β = 1.5 − LZ (ZBR) |LZ (ZBR)

β = 2.0 − ZL (ZBR) |LZ (ZBR)

(3.2 : 3.3 : 3.6 : 3.7) = (F : F : T : T) = (I : D : I : D)

n = 10, τ = Mb − PDB (Z) |PDB (L) |L (ZB) |L (Z)

n = 20, τ = M − R (Z) |R (ZB) |L (ZB) |L (Z)

n = 40, τ = M − R (Z) |R (L) |PDB (R) |L (R)

n = 10, τ = E − PDB (ZB) |R (L) |L (ZB) |PDB (Z)

n = 20, τ = E − PDB (ZB) |R (L) |L (R) |PDB (ZB)

n = 40, τ = E − PDB (L) |R (L) |L (R) |PDB (ZB)

n = 10, τ = L − R (Z) |PDB (Z) |PDB (ZB) |L (Z)

n = 20, τ = L − R (Z) |PDB (Z) |PDB (Z) |L(Z)

n = 40, τ = L − R (Z) |PDB (Z) |PDB (Z) |L (R)

(3.4 : 3.8) = (F : T) : Over a speed bump c

(τ1, τ2) = (13 ,
2
3) − L (R) |L (R)

(τ1, τ2) = (14 ,
1
2) − L (R) |L (R)

(τ1, τ2) = (12 ,
3
4) − L (R) |L (R)

(3.4 : 3.8) = (F : T) : Enter a lower road c

(τ1, τ2) = (13 ,
2
3) − R (L) |R (L)

(τ1, τ2) = (14 ,
1
2) − R (L) |R (L)

(τ1, τ2) = (12 ,
3
4) − R (L) |R (L)

a T = a tie for at least three; RZ (ZBL) = best (worst).
b Location of change: (a) E = early into a process, (b) M = middle, and (c) L = late.
c Over a speed bump = (λ1, λ2, λ3) = (1, 3, 1); Enter a lower road = (λ1, λ2, λ3) = (3, 1, 3).

Figure 3.5. Structure overview − simulation: failure-truncated sampling (Table 3.1 − 3.4); time-
truncated sampling (Table 3.5 − 3.8).

3.4.2 Diagnosis of Power Asymmetries

The performance board posted on Figure 3.5 is only for depicting that both R and L conquer the

entire road map, evidenced by numerous pairs of R(L) and L(R) – a sign of power asymmetries. In

practice, if a practitioner did find themselves in one of those scenarios, we think they would struggle

to choose among these alternatives – especially if they led to disparate outcomes.
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We’ve seen R and L championing in one alternative setting, but also being turned against the

very setting altered with just one of the composed elements (Figure 3.5). Figure 3.6 reinforces this

claim, where the sign of one set of the maximum power-deficits has been reversed to enhance the

existences of power asymmetries. Recall that both tests own two parallel components outsourced

from Z and ZB, embedded with power asymmetries themselves (Figure 3.7), which have been

discussed.

0 5 10 15 20 25 30

-0.4

-0.2

0.0

0.2

0.4

Simulation

M
ax

im
um

 P
ow

er
-D

ef
ic

it 

R L

(a)

0 5 10 15 20 25 30

-0.4

-0.2

0.0

0.2

0.4

Simulation

M
ax

im
um

 P
ow

er
-D

ef
ic

it 

R L

(b)

Figure 3.6. Maximum power-deficit-based performance comparisons for tests of R and L for (a)
failure-truncated sampling and (b) time-truncated sampling.
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Figure 3.7. Maximum power-deficit-based performance comparisons for tests of Z and ZB for (a)
failure-truncated sampling and (b) time-truncated sampling.
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As the first line of defense against power asymmetries, we consolidate R (1.108) and L (1.109)

to assemble a hybrid. Performance data justify that the strategy works: Table 3.9, Figures 3.8

and 3.9. Most importantly, patterns presented in Figure 3.8 indicate that the power asymmetries

diminish to the utmost for PDB (1.110), and meanwhile Figure 3.9, a graphic version of Table 3.9,

is simple and yet powerful in defending a claim that PDB is competitive.
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Figure 3.8. Maximum power-deficit-based performance comparisons for tests of R, L, and PDB for
(a) failure-truncated sampling and (b) time-truncated sampling.
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Figure 3.9. Box-plots for all 60 maximum power-deficits.

3.5 Conclusions

Lastly, we are ready to sum up the proposed cocktail of coherent bidirectional tests, (Z,ZB) → [R,L]

→ {PDB}, visualized via reliability graphics and justified by the following, for power symmetry and

repairable systems reliability:

• There are a lot of power asymmetries going on as per the simulation results. Every setting

composes an element from each of the following components: (a) An intensity differentiated

by the type of function, trend, and location/number of change point(s), (b) sample size, and

(c) sampling schemes.

• The asymmetrical characteristics of the basic pair (Z, ZB) carry over into the empowered
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bidirectional version [R,L]. We’ve seen either test championing in one alternative setting, but

also being turned against the very setting altered with just one of the composed elements.

• We assemble a hybrid from the empowered pair to restore power symmetry, which is p-value

induced with the dual purpose of filtering out the bad and enhancing the good. Namely, it is

coherent with no tests expended on the journey from Z to PDB.

• A user-friendly version of the test, adapted for modern practitioners, makes the p-values

much more attainable. Henceforth, there is a so-called “robust” test that may possess power

symmetry – essential quality assurance certified first in this study.

• In this study we focus on repairable systems, but many, if not most, of the concepts we present

apply more broadly.

In closing, a cocktail of coherent tests, which is rooted in a basic pair of tests, (Z,ZB), that are

more complementary than competitive, and are bound together with a common set of critical values.

Both tests are exact tests. Another unified partners of an empowered pair of tests, [R,L], form a

second bidirectional test. A hybrid, {PDB}, of the empowered pair, characterizes the test as the only

tool possessing the unique feature of having an intelligible version, grounded in practicality that is

free of either the system sample size or the sampling schemes. It is, therefore, capable of producing a

one-size-fits-all test, proven to be a safe bet for practitioners doing the repairable systems reliability

work. Cox (1955) [21] discusses the use of a test statistic attributed to Laplace, which yields a UMPU

test of constant versus increasing intensity based on the time-truncated framework for moderate or

large sample sizes (Rigdon and Basu 2000 [81]). To further substantiate the applicability of PDB,

next Chapter is to address the competitiveness between these tests, developed generations apart.

The results, building upon the performance of the legendary Laplace test, would be of practical

significance to practitioners or statistical consultants helping with the projects through to their
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completions. We then will extend the statistical process control architecture to a panel of coherent

control charts fit for group sequential testing and multisystem.
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CHAPTER 4

THE PDB-TEST VERSUS THE LAPLACE TEST

4.1 Motivation

Cox (1955) [21] discusses using a test statistic attributed to Laplace, L, which yields a UMPU test

of constant versus increasing intensity based on the time-truncated framework for moderate or large

sample sizes (Rigdon and Basu 2000 [81]). The notation L and the name “Laplace test” result from

the fact that it is suggested much earlier by Laplace as a test of randomness (Bain and Engelhardt

1991 [9]). A slightly different form of the argument is required if the observed time period is taken up

to a preassigned number of events − a failure-truncated case (Cox and Lewis 1966 [22]). Extended

research and applications of the Laplace test are presented in, for example, Ascher and Feingold

(1978) [6], Bastos et al. (1990) [13], Gaudoin (1992) [38], Kim et al. (1992) [64], Ho (1993 [49],

1998 [51]), and Roche-Carrier et al. (2020) [83]. Here, the Laplace test will be referred to as the

LP -test, or LP , because it coincides with a different test introduced underneath.

According to the Chapter 3, we open the door to an option between a cocktail of tests, (Z, ZB)

→ [R,L] → {PDB}, and a solo one-size-fits-all test, certified first as robust with essential quality

assurance in addition to a user-friendly version for the practitioners conducting the work. Two

bidirectional tests [R,L] are first established to empower a basic pair of tests (Z, ZB), documented

as tests with asymmetrical performances (Ho 1993 [49]). Progressing by filtering out the bad

and enhancing the good, they assemble a hybrid, {PDB}, from the empowered pair to restore

power symmetries that are thought to be automatic and required for quality assurance. To further

substantiate the applicability of a p-value induced dual bidirectional test, we challenge the legendary

Laplace test, the mainstream and a classic for the repairable systems reliability and more, to a duel.
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4.1.1 Theoretical Results

Consider an NHPP with intensity function of the form λ(t|Θ) = α exp(βt), LP yields a UMPU test

of H0: β = 0 versus HA: β > 0 (Cox 1955 [21]). Under H0, conditional on N = n for the time-

truncated sampling, and by the Central Limit Theorem, the distribution of LP is approximately

normal. Along these lines, the test based on Z is UMP test for H0: β = 1 versus HA: β > 1 in

the PLP setting, where the intensity function is λ(t|Θ) = (β/θ)(t/θ)β−1, and β > 0 and θ > 0

(Bassin 1969 [12]; Crow 1974 [23], 1982 [24]; Finkelstein 1976 [37]; Lee and Lee 1978 [65]; Bain

and Engelhardt 1980 [8]). Another statistic ZB, which is a reversed version of Z, is called the

backward test by Ho (1993) [49]. Theoretical results of the functions of the test statistics for the

above hypotheses and the relevant distributions of the order statistics are summarized in Table 4.1.

Table 4.1. Functions for the test statistics (Lp, Z, and ZB) and the p-value proxies (R, L, and
PDB), failure-truncated and time-truncated sampling with size n. The cumulative failure times (ti’s
and t) are recognized as the main series of events.

Statistic Failure-truncated Time-truncated

Lp lp = (
∑n−1

i=1 ti/(n− 1)− tn/2)/(tn/
√

12(n− 1)) lp = (
∑n

i=1 ti/n− t/2)/(t/
√
12n)

Z z = 2
∑n−1

i=1 ln(tn/ti) z = 2
∑n

i=1 ln(t/ti)

ZB zB = 2
∑n−1

i=1 ln(tn/(tn − ti)) zB = 2
∑n

i=1 ln(t/(t− ti))

P -value

R = r 1− [Fχ2(2n−2)(r)]
2 1− [Fχ2(2n)(r)]

2

L = l 1− [1− Fχ2(2n−2)(l)]
2 1− [1− Fχ2(2n)(l)]

2

PDB = p 1− (1− p)2 1− (1− p)2

4.1.2 Simulation Studies

The performance of both LP and Z-test are discussed for smooth alternatives and step functions

with one to three (regular or irregular) jumps in articles of Bain et al. (1985) [10] and Engelhardt

et al. (1990) [33]. The above authors present their results for the power of tests against increasing

intensity alternatives for the time-truncated sampling. A power study for both the time-truncated
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and the failure-truncated cases for LP , Z, and ZB indicates that their results cannot be interpreted

symmetrically to alternatives that are decreasing step-function intensities (Ho 1993). As per another

simulation study of a cocktail of tests in Chapter 3, (Z,ZB) → [R,L] → {PDB}, the asymmetrical

characteristics of the basic pair (Z,ZB) carry over into the empowered bidirectional version [R,L],

where either test championing in one alternative setting, but also being turned against the very

setting altered with just one of the composed elements set in the study. Hence, an alternative,

{PDB}, accommodating essential quality assurance for the practitioners conducting the work, be-

comes available, which rationalizes our urge for to conduct a power contest between tests of PDB

and LP .

Simulation studies are an essential tool for statistical research, aimed better to understand

the behavior and performance of the calculated statistics, evidenced by the above studies delivering

results such as power asymmetries appeared to be not answerable beforehand by theories or real data

alone. The distributions of the order statistics and p-values are known, however, the theoretical

functional forms quantifying the dependence between the tests of the basic pair and that of the

empowered pair hindering a complete analytical approach for obtaining the exact p-values of [R,L]

and {PDB}, are yet to be explored. For the sake of self-containedness, theoretical results for the order

statistics of a random sample of size 2 from a χ2(k) and from U(0, 1), respectively, are reproduced

from Chapter 2 and are listed in Table 4.1. To further assess the utilities of the p-value proxies, we

generate samples of performance data, measured by the mean absolute deviation (MAD) and their

corresponding variance, between the empirical cumulative probabilities (p = 0.005− 0.995) of PDB

and their proxies for sample sizes n = 6 (10) 46, failure-truncated sampling, and summarized the

results in Table 4.2 for quality assurance before the implementations. Results surrogated by the

order statistics reveal that the degree of dependence between the test statistics is generally minor,

especially for moderate to small p-values. In particular, for p ≤ 0.1 where a statistical significance
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threshold is normally set, the MADs are confirmed to be ≈ 0.5% for all the cases, which hopefully

would be acceptable for most of the modern practitioners. Consequently, this user-friendly test

version can be used for sample sizes beyond 50 for the anticipated power comparisons between PDB

and LP . Again, the empirical null distributions of the test statistics estimated by the simulations

and the theories of the order statistics jointly make this option possible.

Table 4.2. Mean absolute deviation (variance) between the empirical cumulative probabilities (p =
0.005 − 0.995) of PDB and their proxies for sample sizes n = 6 (10) 46, failure-truncated sampling.

p
n

6 16 26 36 46

0.0050 0.0055 0.0055 0.0054 0.0054 0.0055
0.0100 0.0111 0.0110 0.0108 0.0109 0.0110
0.0250 0.0285 0.0280 0.0274 0.0277 0.0279
0.0500 0.0578 0.0573 0.0558 0.0563 0.0565
0.1000 0.1178 0.1154 0.1147 0.1148 0.1145
0.2000 0.2380 0.2330 0.2311 0.2305 0.2314
0.3000 0.3550 0.3462 0.3451 0.3439 0.3446
0.4000 0.4663 0.4564 0.4545 0.4527 0.4535
0.5000 0.5715 0.5613 0.5579 0.5552 0.5574
0.6000 0.6697 0.6570 0.6552 0.6529 0.6548
0.7000 0.7583 0.7461 0.7449 0.7424 0.7445
0.8000 0.8385 0.8276 0.8267 0.8243 0.8260
0.9000 0.9087 0.9003 0.8999 0.8991 0.9000
0.9500 0.9415 0.9357 0.9357 0.9346 0.9357
0.9750 0.9587 0.9544 0.9536 0.9532 0.9533
0.9900 0.9705 0.9668 0.9661 0.9659 0.9657
0.9950 0.9752 0.9719 0.9713 0.9713 0.9710

MAD

(All p) 0.0287 0.0253 0.0247 0.0239 0.0245

(1.07e-03) (8.67e-04) (8.30e-04) (7.85e-04) (8.20e-04)

(p ≥ 0.9) 0.0090 0.0073 0.0076 0.0072 0.0078
(1.43e-04) (9.79e-05) (1.01e-04) (9.49e-05) (1.05e-04)

(p ≤ 0.1) 0.0053 0.0047 0.0044 0.0044 0.0043
(5.07e-05) (3.81e-05) (3.50e-05) (3.52e-05) (3.32e-05)
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4.2 Power Comparisons

The following power study is consistently for testing H0: a simple HPP versus HA: a more general

NHPP with a two-sided nominal level of α = 0.1, where the distribution under HA will be a known

NHPP. Proxies developed above are used only for simulations of sizes above 50. The structure of

the Monte Carlo simulations starts with a failure-truncated sampling scheme with 104 iterations for

each alternative distribution. Tables from 4.3 to 4.7 summarize the results of this part. As the study

unfolds, we then extend some of the structures to a time-truncated sampling scheme to complete

the power comparisons. To bridge the gap by following in the footsteps of Bain et al. (1985) [10],

and Engelhardt et al. (1990) [33], every setting in the simulation composes an element from each of

the components: (a) an intensity differentiated by type, trend, and the location/number of change

point(s), (b) sample size, and (c) sampling schemes. Three types of alternative distribution to

be evaluated are: a PLP with β ̸= 1 and an NHPP with a two/three-step-intensity function as

organized in the simulation flowchart (Figure 4.1). Composed elements associated with each setting

will be furnished as a footnote wherever applicable.

Sampling

Failure Time

PLP 2-Step 3-Step

Increasing Decreasingβ > 1β < 1 Over a speed bump Enter a lower road

F: Table 3.3 F: Table 3.3 F: Table 3.4 F: Table 3.5 F: Table 3.6
F: Table 3.7
T: Table 3.8

Figure 4.1. Simulation flowchart: (Sampling) schemes → {(F)ailure-truncated sampling, (T)ime-
truncated sampling} → {PLP, (2-step) intensity, (3-step) intensity}, with simulation results from
Tables 4.3 to 4.8.
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4.2.1 Power Law Process

In each case of the first simulation set, HA is a PLP with a β = (0.1 − 3.0), respectively, and the

total number of failures simulated/observed are n = 5, 15, 25, and 40, respectively, listed in Table

4.3 which summarizes the estimated powers. In addition to a measurement of the averaged power, a

competitive indicator, termed as power-deficit, where the absolute difference between two estimated

powers is quantified for additional performance assessments.

Table 4.3. Estimated powers for testing H0 versus HA: a power law process with β = (0.1 − 3.0)
for n = 5, 15, 25, and 40.

β Overall Power
n Test 0.1 0.2 0.5 0.8 1.0 1.2 1.5 2.0 3.0 Average Deficit

Simulation 1 2 3 4 5 6 7 8

5
PDB 0.9918 0.9188 0.4498 0.1627 0.1011 0.0994 0.1375 0.2368 0.5164 0.4391 (1)a 0
LP 0.9319 0.7898 0.3512 0.1410 0.1020 0.1139 0.1597 0.2921 0.5754 0.4193 (2) 0.0198

Simulation 9 10 11 12 13 14 15 16

15
PDB 1.0000 0.9999 0.8147 0.2268 0.0990 0.1335 0.3275 0.7213 0.9861 0.6512 (1) 0
LP 1.0000 0.9963 0.6951 0.1980 0.1008 0.1486 0.3504 0.7325 0.9845 0.6381 (2) 0.0131

Simulation 17 18 19 20 21 22 23 24

25
PDB 1.0000 1.0000 0.9420 0.3031 0.1003 0.1843 0.5303 0.9277 1.0000 0.7359 (1) 0
LP 1.0000 1.0000 0.8737 0.2602 0.1019 0.1906 0.5277 0.9251 1.0000 0.7221 (2) 0.0138

Simulation 25 26 27 28 29 30 31 32

40
PDB 1.0000 1.0000 0.9910 0.3875 0.0988 0.2394 0.7266 0.9937 1.0000 0.7922 (1) 0
LP 1.0000 1.0000 0.9674 0.3349 0.1013 0.2447 0.7145 0.9904 1.0000 0.7814 (2) 0.0108

a Rankings per the averaged power.

First, values at β = 1 are coherently close to 0.1 for all cases, which will be excluded from further

power comparisons. Power-deficit-based performance comparisons depicted in Figure 4.2 conclude

that PDB is a clear winner in round one, where the sign of one set of the power-deficits has been

reversed to facilitate the comparisons. In the contests with PLP settings, the maximum power-

deficit for PDB is about 0.06 and about 0.12 for LP on multiple occasions. Interestingly enough,

LP is consistently a laggard regardless of sample sizes for a decreasing PLP (β < 1) alternative –

the first sign of minor power asymmetries shared by both tests of the empowered version, [R,L], at
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the same PLP settings in Chapter 3.

It is encouraging that at β = 0.2, a speedy improvement for the system, it only takes 5 samples

for the PDB to confirm the development with an estimated power of 0.9188 versus 0.7898 for LP .

On the other hand, at β = 1.5 as the system is deteriorating, the sample size at 40 lifts the power

to about 72% for both from the low thirties, where n is only 15 (Table 4.3). Recalled that the PLP

is a widely used point process for repairable systems reliability, and the Z is proven as a UMP test.

Therefore, PDB has an edge in this setting, and the race continues for an alternative with pieces of

HPPs, divided by one or two change points – a step-function intensity.
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(b) n = 15

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

β

P
ow

er
-D

ef
ic

it 

PDB LP

(c) n = 25
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(d) n = 40

Figure 4.2. Power-deficit-based performance comparisons for testing H0 versus HA: a PLP with
β ̸= 1 for (a) n = 5, (b) n = 15, (c) n = 25, and (d) n = 40.

4.2.2 Two-Step-Intensity

First, we consider two triplets of samples (10, 20, 40) and (60, 80, 100). For each triplet, a two-step-

intensity of the form λ(t) = 1 for 0 < t ≤ τ , and λ(t) = 3 for τ < t < ∞ is considered with various
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values of τ to form three groups per triplet. Combinations of [Group (sample size, location of τ)]

are as follows: [1 (10, 5) (20, 10) (40, 20)], [2 (10, 4) (20, 7) (40, 14)], and [3 (10, 6) (20, 13) (40,

26)]; [1 (60, 30) (80, 40) (100, 50)], [2 (60, 24) (80, 28) (100, 35)], and [3 (60, 36) (80, 52) (100, 65)].

Table 4.4 summarizes the estimated powers for alternatives of all the increasing two-step-intensity

functions. In this settings, the maximum power-deficit for PDB is about 0.09 and about 0.07 for LP

with a random pattern. If the location of change is set approximately two-thirds into the process,

the PDB-test has an edge on this increasing trend. LP , however, shows higher powers for jumps set

earlier in the process. Power gains for either are not impressive.

Table 4.4. Estimated powers for testing H0 versus HA: a two-step-intensity with change point at τ
and λ1 = 1, λ2 = 3.

Simulation 33 34 35 36 37 38 39 40 41

Groupa

1 2 3

n = 10 n = 20 n = 40 n = 10 n = 20 n = 40 n = 10 n = 20 n = 40 Overall Power
Test (4.9540)c (10.0085) (19.9476) (4.0297) (7.0081) (13.9469) (5.9691) (12.9367) (25.9515) Average Deficit

PDB 0.3249 0.5091 0.7837 0.3256 0.5464 0.8039 0.2794 0.4237 0.6883 0.5205 (2) 0.0293
LP 0.3403 0.5544 0.8223 0.3716 0.6403 0.8965 0.2893 0.4136 0.6204 0.5498 (1) 0

Simulation 42 43 44 45 46 47 48 49 50

Groupb

1 2 3

n = 60 n = 80 n = 100 n = 60 n = 80 n = 100 n = 60 n = 80 n = 100 Overall Power
Test (29.9955) (39.9916) (49.9304) (24.0712) (28.0569) (35.0610) (36.0166) (52.0049) (64.9710) Average Deficit

PDB 0.9124 0.9646 0.9869 0.9175 0.9706 0.9901 0.8635 0.9102 0.9583 0.9415 (2) 0.0012
LP 0.9351 0.9752 0.9914 0.9661 0.9944 0.9987 0.8449 0.8570 0.9217 0.9427 (1) 0

a Combinations of [Group (sample size, location of τ)] are as follows: [1 (10, 5) (20, 10) (40, 20)], [2 (10, 4) (20, 7) (40, 14)],
and [3 (10, 6) (20, 13) (40, 26)].
b Combinations of [Group (sample size, location of τ)] are as follows: [1 (60, 30) (80, 40) (100, 50)], [2 (60, 24) (80, 28) (100,
35)], and [3 (60, 36) (80, 52) (100, 65)].
c The estimated mean number of occurrences in [0, τ ].
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Table 4.5. Estimated powers for testing H0 versus HA: a two-step-intensity with change point at τ
and λ1 = 3, λ2 = 1.

Simulation 51 52 53 54 55 56 57 58 59

Groupa

1 2 3

n = 10 n = 20 n = 40 n = 10 n = 20 n = 40 n = 10 n = 20 n = 40 Overall Power
Test (4.9779)c (9.9276) (20.0133) (4.0009) (7.0411) (14.0155) (5.9026) (12.9583) (25.9786) Average Deficit

PDB 0.3047 0.5260 0.7923 0.3156 0.4759 0.7376 0.2999 0.5027 0.7782 0.5258 (2) 0.0284
LP 0.3450 0.5725 0.8350 0.3288 0.4677 0.6859 0.3385 0.5613 0.8537 0.5542 (1) 0

Simulation 60 61 62 63 64 65 66 67 68

Groupb

1 2 3

n = 60 n = 80 n = 100 n = 60 n = 80 n = 100 n = 60 n = 80 n = 100 Overall Power
Test (29.9727) (40.0649) (49.9598) (23.9800) (27.9779) (34.9649) (36.0462) (51.9412) (65.0260) Average Deficit

PDB 0.9068 0.9656 0.9878 0.8847 0.9337 0.9717 0.9137 0.9651 0.9873 0.9462 (2) 0.0090
LP 0.9392 0.9796 0.9925 0.8817 0.9032 0.9487 0.9674 0.9876 0.9974 0.9552 (1) 0

a Combinations of [Group (sample size, location of τ)] are as follows: [1 (10, 5/3) (20, 10/3) (40, 20/3)], [2 (10, 4/3) (20, 7/3)
(40, 14/3)], and [3 (10, 6/3) (20, 13/3) (40, 26/3)].
b Combinations of [Group (sample size, location of τ)] are as follows: [1 (60, 30/3) (80, 40/3) (100, 50/3)], [2 (60, 24/3) (80,
28/3) (100, 35/3)], and [3 (60, 36/3) (80, 52/3) (100, 65/3)].
c The estimated mean number of occurrences in [0, τ ].

A straightforward reversal of a (1, 3) trend to (3, 1) for (λ1, λ2) yields Table 4.5. Again, combi-

nations of [Group (sample size, location of τ)] are: [1 (10, 5/3) (20, 10/3) (40, 20/3)], [2 (10, 4/3)

(20, 7/3) (40, 14/3)], and [3 (10, 6/3) (20, 13/3) (40, 26/3)]; [1 (60, 30/3) (80, 40/3) (100, 50/3)], [2

(60, 24/3) (80, 28/3) (100, 35/3)], and [3 (60, 36/3) (80, 52/3) (100, 65/3)]. In these settings, the

maximum power-deficit for PDB is about 0.08, and about 0.05 for LP with a random pattern as well.

In contrast to the previous observations, if the location of change is set approximately two-thirds

into the process, LP has a slight edge on this decreasing trend – a so-called symmetrical performance

justified by PDB showing higher powers for jumps set earlier in the process. Figure 4.3(a) presents

the results of the power-deficit-based performance comparisons for alternatives, including both the

increasing and decreasing two-step-intensity functions. LP is slightly better per the overall power

averages and power deficits presented in both tables and Figure 4.3(a) – we consider LP wins by a

narrow margin.
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Figure 4.3. Power-deficit-based performance comparing tests of PDB and LP for (a) two-step-
intensity, (b) three-step-intensity, and (c) all simulations (failure-truncated sampling, FTS; time-
truncated sampling, TTS).

4.2.3 Nonmonotonic Three-Step-Intensity

Here, in Table 4.6, we consider a triplet of samples (36, 72, 144), where a three-step-intensity of

the form λ(t) = 1 for 0 < t ≤ τ1, λ(t) = 3, for τ1 < t ≤ τ2, and λ(t) = 1, for τ2 < t < ∞ is

considered with various values of τ1 and τ2 to form three groups for each sample size in the triplet.

Combinations of [Group (location of τ1, τ2)] are labeled as follows: for n = 36, [1 (12, 16)], [2 (9,

12)], and [3 (18, 21)]; for n = 72, [1 (24, 32)], [2 (18, 24)], and [3 (36, 42)]; for n = 144, [1 (48,

64)], [2 (36, 48)], and [3 (72, 84)]. The maximum power-deficit for PDB is 0.0478, and 0.1351 for
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LP (Table 4.6).

Table 4.6. Estimated powers for testing H0 versus HA: a three-step-intensity with λi and change
points at τj , where i = 1, 2, and 3; j = 1, 2.

Simulation 69 70 71 72 73 74 75 76 77

λ1 = 1, λ2 = 3, and λ3 = 1

Groupa Groupb Groupc

1 2 3 1 2 3 1 2 3

n = 36 n = 36 n = 36 n = 72 n = 72 n = 72 n = 144 n = 144 n = 144
(11.9792)d (8.9939) (17.9402) (23.9276) (18.0683) (35.9773) (48.0819) (35.9723) (72.1291) Overall Power

Test (11.9541)e (8.9872) (8.9373) (24.0007) (18.0437) (18.0044) (48.0964) (36.0197) (35.9708) Average Deficit

PDB 0.1393 0.1111 0.1703 0.1720 0.1500 0.2008 0.2551 0.2362 0.2646 0.1888 (1) 0
LP 0.1287 0.1133 0.1968 0.1159 0.1642 0.2447 0.1200 0.2495 0.3124 0.1828 (2) 0.0060

a Combinations of [Group (location of τ1, τ2)] are as follows: [1 (12, 16)], [2 (9, 12)], and [3 (18, 21)].
b Combinations of [Group (location of τ1, τ2)] are as follows: [1 (24, 32)], [2 (18, 24)], and [3 (36, 42)].
c Combinations of [Group (location of τ1, τ2)] are as follows: [1 (48, 64)], [2 (36, 48)], and [3 (72, 84)].
d The estimated mean number of occurrences in [0, τ1].
e The estimated mean number of occurrences in (τ1, τ2].

Similarly, in Table 4.7, the corresponding λ(t) is (λ1, λ2, λ3) = (3, 1, 3) with various values

of τ1 and τ2 as well to form three groups for each sample size in the same triplet, (36, 72, 144).

Combinations of [Group (location of τ1, τ2)] are as follows: for n = 36, [1 (4, 16)], [2 (3, 12)], and

[3 (6, 15)]; for n = 72, [1 (8, 32)], [2 (6, 24)], and [3 (12, 30)]; for n = 144, [1 (16, 64)], [2 (12, 48)],

and [3 (24, 60)]. The maximum power-deficit for PDB is 0.0069, and 0.5873 for LP – a technical

knockout! Figure 4.3(b) is a graphical version of Tables 4.6 and 4.7 combined, which depicts that

the dual bidirectional PDB-test is competitive for detecting abrupt change(s) in a series of events,

that frequently arise in real-world applications.
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Table 4.7. Estimated powers for testing H0 versus HA: a three-step-intensity with λi and change
points at τj , where i = 1, 2, and 3; j = 1, 2.

Simulation 78 79 80 81 82 83 84 85 86

λ1 = 3, λ2 = 1, and λ3 = 3

Groupa Groupb Groupc

1 2 3 1 2 3 1 2 3

n = 36 n = 36 n = 36 n = 72 n = 72 n = 72 n = 144 n = 144 n = 144
(12.0539)d (8.9952) (17.9703) (23.9902) (17.9669) (35.9775) (48.1045) (35.8948) (71.8981) Overall Power

Test (11.9918)e (8.9619) (8.9219) (23.9291) (18.0270) (18.0046) (48.0327) (35.9661) (35.9918) Average Deficit

PDB 0.3862 0.3216 0.3485 0.5659 0.4769 0.5023 0.8269 0.7480 0.7467 0.5470 (1) 0
LP 0.2405 0.2603 0.3554 0.2385 0.3546 0.4231 0.2396 0.5219 0.5457 0.3532 (2) 0.1938

a Combinations of [Group (location of τ1, τ2)] are as follows: [1 (4, 16)], [2 (3, 12)], and [3 (6, 15)].
b Combinations of [Group (location of τ1, τ2)] are as follows: [1 (8, 32)], [2 (6, 24)], and [3 (12, 30)].
c Combinations of [Group (location of τ1, τ2)] are as follows: [1 (16, 64)], [2 (12, 48)], and [3 (24, 60)].
d The estimated mean number of occurrences in [0, τ1].
e The estimated mean number of occurrences in (τ1, τ2].

A serious setback for LP happens at the following setting: (λ1, λ2, λ3) = (3, 1, 3) for n = 144

with values of τ1 and τ2 as [1 (16, 64)]. This nonmonotonic intensity function with three steps

provides additional insight into the power study. Surprisingly, for a large sample size of 144, LP is

not prepared for these situations, while PDB enjoys a relatively high power of 0.8269 (Table 4.7).

These pieces of HPPs would certainly be declared as an HPP by the LP approximately 76% of the

time with unexpected consequences, should the data be real, say, reliability data. Moreover, for the

same setting and by increasing the sample size from 36 to 144 (Table 4.7), the estimated power for

PDB jumps from 0.3862 to 0.8269 while LP stalls at about 0.24.

Table 4.8. Estimated powers for testing H0 versus HA: a three-step-intensity with λi and change
points at τj , where i = 1, 2, and 3; j = 1, 2, time-truncated sampling.

Simulation 87 88 89 90 91 92 93 94 95

λ1 = 3, λ2 = 1, and λ3 = 3

Groupa

1 2 3 1 2 3 1 2 3

n = 40 n = 40 n = 40 n = 80 n = 80 n = 80 n = 120 n = 120 n = 120
(17.1474)b (11.9949) (24.0037) (34.3850) (24.0245) (47.9409) (51.3958) (35.9425) (72.0252) Overall Power

Test (5.7180)c (4.0055) (3.9910) (11.3578) (7.9981) (8.0061) (17.1903) (12.0553) (11.9601) Average Deficit

PDB 0.1902 0.1662 0.1691 0.2630 0.2179 0.2132 0.3456 0.2679 0.2776 0.2345 (1) 0
LP 0.1503 0.1730 0.1869 0.1366 0.2250 0.2208 0.1459 0.2633 0.2703 0.1969 (2) 0.0376

a Combinations of [Group (location of τ1, τ2)] are as follows: [1 (1/3, 2/3)], [2 (1/4, 1/2)], and [3 (1/2, 3/4)].
b The estimated mean number of occurrences in [0, τ1].
c The estimated mean number of occurrences in (τ1, τ2].
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Filled with curiosity, we extend the above settings by considering a triplet of samples (40, 80,

120) for the time-truncated sampling. Similarly, in Table 4.8, the corresponding λ(t) is (λ1, λ2, λ3)

= (3, 1, 3) with various values of τ1 and τ2 also to form three groups for each sample size in the

triplet. Combinations of [Group (location of τ1, τ2)] are as follows: [1 (1/3, 2/3)], [2 (1/4, 1/2)],

and [3 (1/2, 3/4)]. In contrast to the above results, the maximum power-deficit for PDB is 0.0178

and 0.1997 for LP , respectively, which catch our attention. For example, for n = 120 with values

of τ1 and τ2 as [1 (1/3, 2/3)]. In this case, where (λ1, λ2, λ3) = (3, 1, 3), the change points to

partition the entire process into three pieces of equal length on a timescale. The unit rate of the

middle segment (λ2 = 1) is a third of its adjacent segments (λ1 = λ3 = 3). Thus, the total number

of the expected occurrences for its neighboring segments is three times as many. Consequently, the

middle piece takes about 17 out of 120 (Table 4.8). Therefore, testing a hypothesis like this may be

perceived as hitting a pothole, a minor setback for both tests, where the estimated power is only

0.3456 and 0.1459 for PDB and LP , respectively. Moreover, for the same setting and by tripling the

sample size from 40 to 120 (Table 4.8), the estimated power for PDB jumps from 0.1902 to 0.3456

while LP stalls at about 0.15 for all three simulations.

Thus, time-truncated sampling studies have given us added awareness of what stands for perfor-

mance in hypothesis testing for a series of events. We, therefore, see merit in both of the simulation

schemes. Anatomy based on a body of performance data, consolidating the above six Tables (from

4.3 to 4.8), provides additional insights into the behavior of both tests.

4.3 The Verdict

Firstly, Figure 4.4 serves as a structure and performance overview of all the simulations conducted

in this study. Summarizing tables with like settings described in the adjacent twigs are stacked in six

large branches: (a) an ordered pair, “(4.3) : (n = 5 : 15 : 25 : 40) : PLP,” symbolizes the respective
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Table

(4.3) : (n = 5 : 15 : 25 : 40) : PLP

β = 0.1 − PDB | Ta | T | T

β = 0.2 − PDB | PDB | T | T

β = 0.5 − PDB | PDB | PDB | PDB

β = 0.8 − PDB | PDB | PDB | PDB

β = 1.2 − LP | LP | LP | LP

β = 1.5 − LP | LP | PDB | PDB

β = 2.0 − LP | LP | PDB | PDB

β = 3.0 − LP | PDB | T | T

(4.4) = (F) = (I) : (n = 10 : 20 : 40 : 60 : 80 : 100)

τ = Mb − LP | LP | LP | LP | LP | LP

τ = E − LP | LP | LP | LP | LP | LP

τ = L − LP | PDB | PDB | PDB | PDB | PDB

(4.5) = (F) = (D) : (n = 10 : 20 : 40 : 60 : 80 : 100)

τ = M − LP | LP | LP | LP | LP | LP

τ = E − LP | PDB | PDB | PDB | PDB | PDB

τ = L − LP | LP | LP | LP | LP | LP

(4.6) = (F) : (n = 36 : 72 : 144) : Over a speed bump c

(τ1, τ2) = (13 ,
2
3) − PDB | PDB | PDB

(τ1, τ2) = (14 ,
1
2) − LP | LP | LP

(τ1, τ2) = (12 ,
3
4) − LP | LP | LP

(4.7) = (F) : (n = 36 : 72 : 144) : Enter a lower road c

(τ1, τ2) = (13 ,
2
3) − PDB | PDB | PDB

(τ1, τ2) = (14 ,
1
2) − PDB | PDB | PDB

(τ1, τ2) = (12 ,
3
4) − LP | PDB | PDB

(4.8) = (T) : (n = 40 : 80 : 120) : Hitting a pothole c

(τ1, τ2) = (13 ,
2
3) − PDB | PDB | PDB

(τ1, τ2) = (14 ,
1
2) − LP | LP | PDB

(τ1, τ2) = (12 ,
3
4) − LP | LP | PDB

a T = a tie.
b Location of change: (a) E = early into a process, (b) M = middle, and (c) L = late.
c Over a speed bump = (λ1, λ2, λ3) = (1, 3, 1); Enter a lower road (F) = (λ1, λ2, λ3) = (3, 1, 3) = Hitting a pothole (T).

Figure 4.4. Structure overview − simulation: failure-truncated sampling (F: Tables 4.3 − 4.7);
time-truncated sampling (T: Table 4.8).

sample size conducted in Table 4.3 for a PLP alternative, and so forth; (b) “(4.4) = (F) = (I)”

indicates the corresponding sampling scheme conducted in Table 4.4 is a failure-truncated sampling

scheme (F). (Likewise, use T otherwise.) And, “(I)” notes that the trend adopted in the simulation
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for the intensity is monotonically increasing (or otherwise, use “D” for the decreasing trend); (c)

Consequently, each twig also stacks executed simulations by the same order as structured, where the

total number of simulations accrued are affixed with divided cells; (d) each cell houses the winner

of each simulation, denoted as, say, LP . Additionally, “T” represents a tie.

Table 4.9. Power-deficit overview.

Table 4.3

Simulation PDB LP Simulation PDB LP Simulation PDB LP Simulation PDB LP

1 0 0.0599 9 0 0 17 0 0 25 0 0
2 0 0.1290 10 0 0.0036 18 0 0 26 0 0
3 0 0.0986 11 0 0.1196 19 0 0.0683 27 0 0.0236
4 0 0.0217 12 0 0.0288 20 0 0.0429 28 0 0.0526
5 0.0145 0 13 0.0151 0 21 0.0063 0 29 0.0053 0
6 0.0222 0 14 0.0229 0 22 0 0.0026 30 0 0.0121
7 0.0553 0 15 0.0112 0 23 0 0.0026 31 0 0.0033
8 0.0590 0 16 0 0.0016 24 0 0 32 0 0

Table 4.4 Table 4.5

Simulation PDB LP Simulation PDB LP Simulation PDB LP Simulation PDB LP

33 0.0154 0 42 0.0227 0 51 0.0403 0 60 0.0324 0
34 0.0453 0 43 0.0106 0 52 0.0465 0 61 0.0140 0
35 0.0386 0 44 0.0045 0 53 0.0427 0 62 0.0047 0
36 0.0460 0 45 0.0486 0 54 0.0132 0 63 0 0.0030
37 0.0939 0 46 0.0238 0 55 0 0.0082 64 0 0.0305
38 0.0926 0 47 0.0086 0 56 0 0.0517 65 0 0.0230
39 0.0099 0 48 0 0.0186 57 0.0386 0 66 0.0537 0
40 0 0.0101 49 0 0.0532 58 0.0586 0 67 0.0225 0
41 0 0.0679 50 0 0.0366 59 0.0755 0 68 0.0101 0

Table 4.6 Table 4.7 Table 4.8

Simulation PDB LP Simulation PDB LP Simulation PDB LP

69 0 0.0106 78 0 0.1457 87 0 0.0399
70 0.0022 0 79 0 0.0613 88 0.0068 0
71 0.0265 0 80 0.0069 0 89 0.0178 0
72 0 0.0561 81 0 0.3274 90 0 0.1264
73 0.0120 0 82 0 0.1223 91 0.0071 0
74 0.0439 0 83 0 0.0792 92 0.0076 0
75 0 0.1351 84 0 0.5873 93 0 0.1997
76 0.0133 0 85 0 0.2261 94 0 0.0046
77 0.0478 0 86 0 0.2010 95 0 0.0073

Averagea PDB LP

0.0138 (1) 0.0347 (2)

aAveraged power-deficit under all the simulations.

Furthermore, Table 4.9 accrues all the power-deficits made for performance assessment. Graphic

versions of Table 4.9 are presented in Figure 4.3(c) and Figure 4.5, which undoubtedly claim that

PDB is robust and competitive.
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Figure 4.5. Box-plots for power-deficits: (a) all the power-deficits and (b) power-deficits excluding
zeros.

4.4 Applications

The motivation and goal of this study is to extend the existing tools and present an alternative

accommodating essential quality assurance for the practitioners conducting the work. A straight-

forward application of the proposed cocktail of tests is to extend a single bidirectional control chart

(Ho 1998) to a panel of control charts, because good graphics are vital in data analysis. They are

essential in communicating the analysis to others.

For illustration, consider the failure times of an aircraft generator shown in Table 4.8 of Rigdon

and Basu (2000) [81]. These failure times, ti (= 10, 55, 166, 205, 341, 488, 567, 731, 1308, 2050,

2453, 3115, 4017, and 4596) were read from a figure in Duane (1964) [31]. A panel of two control

charts, PDB-chart and Lp-chart for the above data set, are presented in Figure 4.6. The control

charts are both for testing H0 : β = 1 (the system’s reliability remains stable) versus HA, with

an applicable 90% control limit proxies. In general, for a real data set, the distribution under HA

would be an unknown NHPP indicating that the system’s reliability has grown or decreased during

the observed period.
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In this application, the data are real, one of the tests is an approximated normal test while

the other is a proxy. First, both control charts produce the same key result, indicating the first

out-of-control signal at t9 – an indication of the techniques’ applicability, reliability, and quality

assurance. Additionally, the Lp-chart confirms a decreasing (improving) trend for the reliability

data. This is one of the best ways to get the message over clearly without misunderstanding.
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Figure 4.6. Panel of (a) PDB-chart and (b) LP -chart for failure times of an aircraft generator.

4.5 Conclusions − An All-Purpose Test

We have already witnessed the tug-of-war between the opponents for powers through 95 simulations

which, on the contrary, pose some practical concerns for the practitioners conducting the Laplace

test. Every scenario in the study involves a known underlying alternative distribution, 104 data sets

with fixed sample size, and a test. The associated outcome is recorded as significant or otherwise.

Unlike in a real-data application, the scenario is reproduced 104 times in the same fashion for a

simulation-based study, and a relative frequency of significant outcomes is reported as an estimated
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test power. In our study, the sample size is extended for each scenario to include a plausible range for

power trend analyses. In addition to presenting a significant result building upon the performance of

the legendary Laplace test, what is outlined below would be of practical significance to practitioners

doing the repairable systems reliability work or to statistical consultants helping with the projects

through to their completions.

• Three key factors are essential to point out: data distribution, sample size, and the test per-

formed. For instance, at one point, the LP -test bears a deficit in power at a magnitude of

0.5873. At a relatively large sample size of 144, a process having three pieces of HPPs would

indeed be declared as an HPP by the LP approximately 76% of the time, should the data be

real, say, reliability data. Recall that, for the same scenario and by increasing the sample size

from 36 to 144 (Table 4.7), the estimated power for PDB jumps from 0.3862 to 0.8269 while

LP stalls at about 0.24. The implication is that increasing sample size typically increases

power to a degree, if there are no mismatches between the adopted test and the true underly-

ing distribution of the data. However, the underlying models are mostly unknown beforehand

but usually determined by the outcomes of the tests, p-values, for instance. Therefore prac-

titioners practicing multiple tests would find themselves struggling with the scenarios leading

to disparate outcomes, should the data be real. Thus, this study provides additional insights

and leads off a future work galvanizing the issues.

• On a more positive note, it is encouraging that at β = 0.2 for a PLP alternative distribution,

a speedy improvement for the system, it only takes 5 samples for the PDB to confirm the

statistical significance of the development of a new system with an estimated power of 0.9188

versus 0.7898 for LP . Similarly, at β = 1.5 as the system is deteriorating, increasing the

sample size to 40 lifts the power to about 72% for both tests from the low thirties, where n

is only 15. Of course, both scenarios would appear circumstantial, should the data be real
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and solo. Here, they are backed by the implementations of 104 independent and identical

processes, which obviously reinforce the importance, the interconnectedness, and the essential

reliability and quality assurance of the roles played by the distribution of the data, sample

size, and the test performed.

• The gap is now bridged. A cocktail of coherent tests, (Z,ZB) → [R,L] → {PDB}, which

is rooted in a basic pair of tests, (Z,ZB), that are more complementary than competitive

and are bound together with a common set of critical values. Both tests are the exact tests.

Another unified and coherent p-value proxies, partners of an empowered pair of tests, [R,L],

form a second bidirectional test. A hybrid, {PDB}, of the empowered pair, characterize the

test as the only tool possessing the unique feature of having an intelligible version, grounded

in practicality, that is free of either the system sample size or the sampling schemes. Now, we

declare that PDB is a so-called all-purposes test, supported by 95 simulations. It is a safe bet

for practitioners doing applicable real-world case studies.

Furthermore, functions for p-value proxies are capable of producing an all-in-one control chart, to

be considered in the aforementioned areas of applications by extending the statistical process control

architecture to a panel of coherent control charts fit for group sequential testing and multisystem.
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CHAPTER 5

PANEL OF BIDIRECTIONAL CONTROL CHARTS

5.1 Motivation

Data used to track the reliability growth trend of repairable systems occur naturally in a sequential

fashion. It should be obvious that the chronological order in which the events occur is an extremely

important aspect of a stochastic process, if a significant time trend is to be objectively identified.

It is thus desirable to study some basic properties of repeated significance tests on series of events

which come in different forms. Statistical process/quality control is a sophisticated concept, because

it recognizes that variability will be present and requires only that the pattern of variability remain

the same. A variable (or process) that continues to be described by the same distribution when

observed over time is said to be in statistical control, or simply in-control. We are already quite

advanced in the art of thinking statistically when we describe a variable as stable or in-control if

its distribution does not change with time. The control chart was invented by Walter A. Shewhart

working for Bell Labs in the 1920s. Books by Montgomery (1985) [71], Ryan (1989) [84], James

(1991) [60], Grant and Leavenworth (1996 [40]), Xie et al. (2002) [97], Smith (2003) [87], DeVor et

al. (2006) [28], Wheeler (2010) [94], Luko (2018) [67], Oakland and Oakland (2018) [74], Hardwick

(2019) [41], Chandra (2020) [17], and Tran (2021) [91] review much of the work in this area.

Control charts, first developed in the 1920s and 1930s, provide a mechanism for recognizing

whether the process is in control. A control chart will be effective if it shows a point outside the

control limits almost as soon as the process goes out of control. A basic element of control charting

is that data have been collected from the process of interest at a sequence of time points. Depending

on the aspect of the process under investigation, some statistic is chosen. The value of this statistic

is then calculated for each sample in turn. A traditional control chart then results from plotting
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these calculated values over time. If the points on the chart all lie between the two control limits,

the process is deemed to be in control. That is, the process is believed to be operating in a stable

fashion reflecting only natural random variations. An out-of-control “signal” occurs whenever a

plotted point falls outside the limits. This is assumed to be attributable to a significant trend

(increasing or decreasing) in the intensity of the process. Designs of control limits so that an in-

control process generates very few false alarms, whereas a process not in control quickly gives rise

to a point outside the limits are discussed in, but not limited to, Macgregor (1988) [68], Saniga

(1989) [85], Montgomery and Mastrangelo (1991) [73], Box and Kramer (1992) [13], Vander et al.

(1992) [92], Montgomery et al. (1994) [72], Tatum(1996) [89], Willemain and Runger (1996) [95]

Crowder et al. (1997) [25], Palm et al. (1997) [75], Ho (1998) [51], Woodall and Montgomery

(1999) [96], Zou et al. (2006) [101], Riaz and Does (2009) [80], Qiu and Zou (2010) [78], Ashton

et al. (2015) [7], Colin and Vanhoucke (2015) [20], and Qiu (2020) [77]. Additional statistical

process control charting techniques designed for specific purposes are presented in, for example,

Ali (2020 [1], 2021 [2]), Centofanti et al. (2021) [15], Zhao and Castillo (2021) [99], Yang and Qiu

(2021) [98], and references therein.

Also, there is a strong analogy between the logic of control charting and hypothesis testing. The

null hypothesis (H0) here is that the process is in control. When an in-control process yields a point

outside the control limits (an out-of-control signal), a type I error has occurred. Appropriate choice

of control limits (corresponding to specifying a rejection region in hypothesis testing) will set this

error probability at a desired level. For example, Ho (1998) [51] presents a dual process control chart

combining graphical and numerical descriptions of data to monitor the repairable systems reliability,

claimed as an all-purposes mechanism for monitoring stochastic processes to identify instability and

unusual circumstances. We extend the statistical process control architecture to an all-in-one panel

of coherent bidirectional control charts fit for group sequential testing and multisystem.
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5.2 The Preliminaries

Suppose we assume that the successive occurrence times of a specific process follow a PLP, and let

t1, . . . , tn be the first n successive times of events. These times are measured from the beginning of

the observation period (cumulative length of time over which the events occur), so t1 < t2 < · · · < tn.

The following theoretical results (Bassin 1969 [12]; Crow 1974 [23], 1982 [24]; Finkelstein 1976 [37];

Lee and Lee 1978 [65]; Bain and Engelhardt 1980 [8]; Bain and Engelhardt 1991 [9]; Ho 1998 [51])

are useful for constructing the control limits:

β̂n = n/

n−1∑
i=1

ln(tn/ti). (5.1)

And, if the process is an HPP, the observed test statistic, 2n/β̂n, should continue to be described

by a chi-square distribution with 2n − 2 degrees of freedom by drawing the (1 − α)100% control

limits at

LCLα = Lower control limit = χ2
α/2(2n− 2), and (5.2)

UCLα = Upper control limit = χ2
1−α/2(2n− 2). (5.3)

The next step in examining the process is to plot the statistic [= 2n/β̂n or 2
∑n−1

i=1 ln(tn/ti)] against

the time order in which the measurements were recorded. Since it requires at least two repose times

for the statistical process control at each stage, cumulative sums of log ratios (CSLR, Ho 1998 [51])

can be defined by:

S2 = 2 ln(t2/t1) (5.4)

S3 = 2[ln(t3/t1) + ln(t3/t2)] = 2
2∑

i=1

ln(t3/ti) (5.5)

...

Sl = 2[ln(tl/t1) + · · ·+ ln(tl/tl−1)] = 2

l−1∑
i=1

ln(tl/ti) = Sl−1 + 2(l − 1) ln(tl/tl−1). (5.6)
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These cumulative sums are plotted over time. That is, at time l of the ith stage, plot a

point at height Sl. At the current time point r in the current stage i, the plotted points are

(2, S2)i, (3, S3)i, . . . , (r, Sr)i, if i > 1. If at current time r, either Sr ≤ χ2
α/2(2r − 2) or Sr ≥

χ2
1−α/2(2r− 2), the process is judged to be out of control. The first inequality suggests the process

has shifted to an increasing time trend at time r − 1. Similarly, the second inequality suggests the

process has shifted to a decreasing time trend.

Ho (1993) [49] recommends that parallel tests, termed as Z and ZB (forward and backward,

respectively), be performed on the same data set to guard against the step-function intensities of

both kinds (increasing and decreasing). Based on this idea, Ho (1998) [51] adds the backward

cumulative sums of log ratio (BCSLR) at each time point l,

SB
l = 2

l−1∑
i=1

ln[tl/(tl − ti)] (5.7)

to guard against the change-point Poisson process with an increasing intensity function. Again,

these backward test statistics designed for the backward processes are also plotted over time along

with the previously defined Sl’s in the same control chart. Therefore, at the current time point r,

the plotted points are {(l, Sl)}r1 and {(l, SB
l )}r1 for the forward process and the backward process,

respectively. If at current time, the first signal of either S(·)
r ≤ χ2

α/2(2r−2) or S(·)
r ≥ χ2

1−α/2(2r−2),

indicates the process is out of control at the rth time point. Of course, the out-of-control signal

sent by SB
r in a so-called dual process control chart should be interpreted in a reversed order.

The dual process control, built into the structure, serves as a springboard for a straightforward

extension to a panel of coherent bidirectional control charts. The baseline control chart reviewed

above will be referred to as the (Z,ZB)-chart, consistently with that of Ho (1993 [49], 1998 [51]),

and Chapter 3, where a cocktail of tests are studied. The potential benefits of this work are options

among a pool of control charts labeled with the corresponding test statistic(s) such as a Z-chart,

(R,L)-chart, PDB-chart, and so forth.
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We certified PDB, a solo one-size-fits-all test, as robust with essential quality assurance in addi-

tion to a user friendly version, grounded in practicality, for the practitioners conducting the work.

Therefore, this user-friendly version of the test can be used for the control limits. Per Table 5.1,

functions for p-value proxies are inverted and added for the corresponding control limit(s) along

with the R code (e.g., Kerns 2010 [63]). Table 5.1 has so many simple yet profound implications.

The functions are not abstract - rather, grounded in practicality. Consequently, these user-friendly

versions of the tests make the p-values much more attainable, which will be factored into the design

of the control charts as the study unfolds.
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Table 5.1. Functions for the test statistics (Z and ZB), the p-value proxies (R, L, and PDB),
(1−α)100% control limits (Z, ZB, R, L, and PDB) with R code, and m.l.e. of β for both sampling
schemes of size n. The cumulative failure times (ti’s and t) are recognized as the main series of
events.

Statistic Failure-truncated Time-truncated

Z z = 2
∑n−1

i=1 ln(tn/ti) z = 2
∑n

i=1 ln(t/ti)

ZB zB = 2
∑n−1

i=1 ln(tn/(tn − ti)) zB = 2
∑n

i=1 ln(t/(t− ti))

P -value

R = r 1− [Fχ2(2n−2)(r)]
2 1− [Fχ2(2n)(r)]

2

L = l 1− [1− Fχ2(2n−2)(l)]
2 1− [1− Fχ2(2n)(l)]

2

PDB = p 1− (1− p)2 1− (1− p)2

Control Limits

Z χ2
α/2(2n− 2), χ2

1−α/2(2n− 2) χ2
α/2(2n), χ

2
1−α/2(2n)

ZB χ2
α/2(2n− 2), χ2

1−α/2(2n− 2) χ2
α/2(2n), χ

2
1−α/2(2n)

R χ2√
1−α

(2n− 2) χ2√
1−α

(2n)

L χ2
1−

√
1−α

(2n− 2) χ2
1−

√
1−α

(2n)

PDB 1−
√
1− α 1−

√
1− α

R Code

Z qchisq(α/2, 2n− 2), qchisq(1− α/2, 2n− 2) qchisq(α/2, 2n), qchisq(1− α/2, 2n)

ZB qchisq(α/2, 2n− 2), qchisq(1− α/2, 2n− 2) qchisq(α/2, 2n), qchisq(1− α/2, 2n)

R qchisq(sqrt(1− α), 2n− 2) qchisq(sqrt(1− α), 2n)

L qchisq(1− sqrt(1− α), 2n− 2) qchisq(1− sqrt(1− α), 2n)

PDB 1− sqrt(1− α) 1− sqrt(1− α)

β (m.l.e.) n/
∑n−1

i=1 ln(tn/ti) n/
∑n

i=1 ln(t/ti)

5.3 Panel of Fully Sequential Control Charts

In this section, the control charts are consistently for testing H0 : β = 1 (the system’s reliability

remains stable) versus HA, with applicable 90% control limit proxies, where the distribution will be

a known NHPP indicating that the system’s reliability has grown or decreased during the observed

period. Here, fully sequential control charts are about stability: complete visualization, continuous

attention, quick action for a significant change, about charting an essential path forward, a very

large category of control charts.
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5.3.1 Single System

The test based on Z is UMP for the PLP setting. First, a panel of (Z,ZB)-chart, (R,L)-chart,

and PDB-chart for a simulated PLP with β = 0.2 and n = 10 is presented in Figure 5.1. It is

encouraging that at β = 0.2, a speedy improvement for the system, it only takes 5 samples for all

the bidirectional charts to confirm the development of the system. On the other hand, at β = 2.0 as

the system is deteriorating, both ZB and R stay in-control for the entire period of 10 observations,

while Z and L go out of control at the eighth sample and at the tenth for PDB (Figure 5.2).
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Figure 5.1. Panel of (a) (Z,ZB)-chart, (b) (R,L)-chart, and (c) PDB-chart for a PLP with β = 0.2
for n = 10.
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Figure 5.2. Panel of (a) (Z,ZB)-chart, (b) (R,L)-chart, and (c) PDB-chart for a PLP with β = 2.0
for n = 10.

We claim that the transformation from a cocktail of tests to a panel of coherent control charts

is rooted in simplicity and practicality, yet is profound enough to modernize the landscape and

infrastructure of the control charts. So, the charting continues for an alternative with pieces of

HPPs, divided by one or two change points – a step-function intensity.

Again, a panel of (Z,ZB)-chart, (R,L)-chart, and PDB-chart for a simulated NHPP with λ(t),

where (λ1, λ2) = (1, 3) and the combination of [sample size, location of change point] is [20, 15].

Figure 5.3 appears interesting: (a) the base pair (Z,ZB) and its empowered pair [R,L] display

almost the same pattern, and (b) Z and L stay in-control while all the others are able to detect an

out-of-control before the process ends.

Consequently, a conventional Z-chart alone would fail to do the job, which justifies the utility

and merits for a panel of control charts safeguarding power symmetry as per the work of Chapter

3.
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Figure 5.3. Panel of (a) (Z,ZB)-chart, (b) (R,L)-chart, and (c) PDB-chart for an NHPP with λ(t),
where (λ1, λ2) = (1, 3) and the combination of [sample size, location of change point] is [20, 15],
where t15 = 0.8971 and t20 = 0.9836.

Lastly, a panel of (Z,ZB)-chart, (R,L)-chart, and PDB-chart for a simulated NHPP with λ(t),

where (λ1, λ2, λ3) = (3, 1, 3) and the combination of [sample size, locations of change point] is [144,

49, 96], where t49 = 15.1941, t96 = 63.3500, and t144 = 79.1885. In this case, all three HPP pieces

have approximately the same number of occurrences of about 48, as per the locations of the change

points. The unit rate of the middle segment (λ2 = 1) is a third of that of its adjacent segments

(λ1 = λ3 = 3). The total number of the occurrences for its neighboring segments is set exactly the

same, which would take the middle segment approximately three times as long to run its course.

Therefore, testing a hypothesis such as this may be perceived as entering a relatively lower and

longer road ready for a new asphalt pavement installation.
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Figure 5.4. Panel of (a) (Z,ZB)-chart, (b) (R,L)-chart, and (c) PDB-chart for an NHPP with λ(t),
where (λ1, λ2, λ3) = (3, 1, 3) and the combination of [sample size, locations of change point] is [144,
49, 96], where t49 = 15.1941, t96 = 63.3500, and t144 = 79.1885.

Figure 5.4 summarizes the results of a fully sequential testing for all five tests with n = 144:

(a) all charts consistently send out-of-control signals around the events at the mid-fifties without

false alarms during the first piece of HPP for a fixed 90% control limits; (b) again, the base pair

(Z,ZB) and its empowered pair [R,L] share the same pattern; (c) ZB and L become in-control

again after about 110 events; (d) in contrast, proxy of the control limit of the PDB-chart is a

horizontal line, reflecting patterns of the observed test statistics by bouncing up and down above

the limit throughout the course of the first HPP, and leveling off shortly after absorbing the first

process change. This added visual effect applies to the patterns of the p-values, which is just a slight

upward translation of Figure 5.4(c), as per the proxy function.

5.3.2 Multisystem

Recall that the PLP is a widely used point process for repairable systems reliability, and the Z is

proven as a UMP test. Therefore, a solo Z-chart can be used for multiple systems following a PLP

with β = 2.0 and 0.2 with n = 10 (Figure 5.5a), so is the PDB-chart (Figure 5.5b). Charts for

multisystem in the panel (Figure 5.5) are labeled accordingly as Multi-Z-chart, and so forth. For

Multi-Z-chart, the improving system at β = 0.2 inflates Z, and vice versa for at β = 2.0. At β = 0.2,

Z goes out of control at the fifth time-point, and at the eighth at β = 2.0. For Multi-PDB-chart,
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the first out of control happens at the fifth time-point at β = 0.2 and the tenth at β = 2.0.

2 4 6 8 10

0
20

40
60

80

Sequential Test 

O
bs

er
ve

d 
Te

st
 S

ta
tis

tic

90% Control Limit
β = 0.2 β = 2.0

(a) Multi-Z-chart

2 4 6 8 10
0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sequential Test 

O
bs

er
ve

d 
Te

st
 S

ta
tis

tic

90% Control Limit = 0.0513
β = 0.2 β = 2.0

(b) Multi-PDB-chart

Figure 5.5. Panel of (a) Multi-Z-chart and (b) Multi-PDB-chart for PLPs with β = 0.2 and β = 2.0.

In general, Figures from 5.1 to 5.5 conclude the following: (a) for a PLP, all tests provide

consistent results; (b) for the two-step intensity, Z and L are at odds with the majority failing to

reject an HPP at α = 0.1, should only a fixed sample test be performed; (c) for the three-step

intensity, ZB and L stay out-of-control during only a mid-portion of the process; (d) R and PDB

present the findings consistently for these four data sets; (e) only the basic (Z,ZB)-chart is able to

show the directions of the trend.

In short, results of a panel of control charts presented so far are comprehensive and agreeable to

the known underlying distributions, and by extension, real applications. Recall that, fully sequential

control charts are about stability: complete visualization, continuous attention, quick action for a

significant change, about charting an essential path forward, and a very large category of control

charts. However, one may face the dilemma of performing a fixed-sample-size hypothesis testing or
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a fully sequential approach (Figure 5.4). Therefore, the urge for additional options continues.

5.4 Panel of Group Sequential Control Charts

It is often more efficient and reliable to make a special effort to analyze interim results at periodic

intervals, say every few time points (or months). If each analysis coincides with a meeting of program

organizers then prompt action can follow. This well-known group sequential approach has been the

state-of-the-art in designing clinical trials because of ethical as well as practical considerations.

The general method of performing repeated significance tests at different stages of time during

the accumulation of a body of data can be implemented in a straightforward fashion, because PDB

is a p-value induced dual bidirectional test statistic, possessing the unique feature of having proxies

that are free of either the sample size or the sampling schemes and is able to restore power symme-

tries that are thought to be automatic and required for quality assurance. In other words, the proxy

of any level of control limit is a simple straight line, universally applicable under all kinds of mode

of sampling scheme, sequential testing, number of systems/components, and alternative/underlying

distribution. Group sequential control charts that follow are about multiple comparisons: relation-

ship, multisystem, multi-components of a single system, about interim analysis of a single system

with big data.

5.4.1 GS-PDB-Chart and Multi-GS-PDB-Chart

Panels for a series of novel group sequential control charts, centering on the hybrid, {PDB}, will

be first presented for the following data sets, closing milestones of DJIA and NASDAQ, 1/1/1982 -

12/31/2021:

(1)https://en.wikipedia.org/wiki/Closing_milestones_of_the_Dow_Jones

_Industrial_Average

(2)https://en.wikipedia.org/wiki/Closing_milestones_of_the_Nasdaq_Composite
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First, a panel of control charts is presented with a pair of Z-charts in Figure 5.6a: (1) DJIA

and (2) NASDAQ, respectively. Here, during a span of 40 years, DJIA accomplishes 194 milestones

while NASDAQ has 252, equally spaced by the number of sequential tests marked in the x-axis of

the Z-chart. Likewise, the ZB-charts in Figure 5.6b: (1) DJIA and (2) NASDAQ, respectively, point

to a reversed direction of exits for the same trend of an out-of-control signal. The corresponding

years are added to show that at any fixed period of observation time, the number of events of

interest varies among the systems considered. Consequently, the only control chart, capable of

accommodating multiple systems without additional adjustments of the control limits, is the PDB-

chart. They are presented in Figure 5.6c: (1) 40 groups (per year) and (2) 20 groups (every 2 years)

of sequential testing, respectively, for both the DJIA and NASDAQ. The new chart is to be referred

to as a GS-PDB-chart, where straightforward pattern recognitions and comparisons among systems

become effortless.
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Figure 5.6. Panel of control charts for the milestones of DJIA and NASDAQ from January 1, 1982
to December 31, 2021: (a) Z-chart for (1) DJIA and (2) NASDAQ; (b) ZB-chart for (1) DJIA and
(2) NASDAQ; (c) Multi-GS-PDB-chart for both with (1) 40 groups (per year) and (2) 20 groups
(every 2 years).
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5.4.2 GS-(PDB, βa)-chart and Multi-GS-(PDB, βa)-chart

5.4.2.1 The Basics

It is to be mentioned that we open the door to an option between a cocktail of tests, (Z, ZB) →

[R,L] → {PDB}, and a solo one-size-fits-all test, which is here to facilitate the development of a

panel of coherent bidirectional control charts capable of charting multiple systems. Recall that, for

the Z-chart, we plot the statistic [= 2n/β̂n or 2
∑n−1

i=1 ln(tn/ti)] against the time order in which

the measurements were recorded for the failure-truncated sampling. Thus, the trend information

presented in a Z-chart can be added to a PDB-chart and a GS-PDB-chart for both sampling schemes

by:

• Adding the corresponding β curve, adjusted by βa = β− 1 to a PDB-chart, to be referred as a

(PDB, βa)-chart. Thus, the reference line becomes βa = 0 for all the (PDB, βa)-chart with the

minimum value setting at −1 (or −0.5) for the y-axis. The time-trend becomes: increasing

(βa > 0), decreasing (βa < 0), or random (βa = 0), where the reference line is the x-axis.

• Repeating Step (a) for a GS-PDB-chart, and likewise, the final chart is to be referred to as a

GS-(PDB, βa)-chart.

Consequently, a panel of GS-(PDB, βa)-charts, 40 groups, for (a) DJIA and (b) NASDAQ from

January 1, 1982 to December 31, 2021 is presented in Figure 5.7. In general, values of β̂n obtained

in the burn-in period may be discarded without jeopardizing the clarity of the overall trend of the

system, and the pair can be pooled into an all-in-one: (a) control chart, termed as a Multi-GS-(PDB,

βa)-chart (Figure 5.8); (b) panel of coherent control charts that follows.
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Figure 5.7. Panel of GS-(PDB, βa)-chart, 40 groups, for (a) DJIA and (b) NASDAQ from January
1, 1982 to December 31, 2021, eliminating the first set of all the plots at g = 1 (burn-in period).
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Figure 5.8. Multi-GS-(PDB, βa)-chart, 40 groups, for DJIA and NASDAQ from January 1, 1982 to
December 31, 2021, eliminating the first set of the plots at g = 1 (burn-in period).

5.4.2.2 Application with Pairwise Comparisons

For general multisystem applications, we consider the failure times for air-conditioning equipment

on 13 aircraft that were given by Proschen (1963) [76], shown in Table 5.3 of Rigdon and Basu

(2000) [81]. Without loss of generality, the top three data sets in terms of the number of failure

times (planes 3, 6, and 7) are listed in Table 5.2 for a panel of Multi-GS-(PDB, βa)-charts with

t = 2500, set as the present time of observation. Figure 5.9 summarizes the results with a panel of

multisystem control charts of (a) All 3 planes together, and three pairwise charting of: (b) 3 versus

6, (c) 3 versus 7, and (d) 6 versus 7. All control charts have the same group size, g = 10.
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Table 5.2. Top three data sets in terms of the number of failure times for air-conditioning equipment,
planes 3, 6, and 7.

Plane Failure Times

3 90 100 160 346 407 456 470 494 550
570 649 733 777 836 965 983 1008 1164
1474 1550 1576 1620 1643 1705 1835 2043 2113
2214 2422

6 23 284 371 378 498 512 574 621 846
917 1163 1184 1226 1246 1251 1263 1364 1383
1397 1411 1482 1493 1507 1518 1534 1624 1625
1641 1693 1788

7 97 148 159 163 304 322 464 532 609
689 690 706 812 1018 1100 1154 1185 1401
1447 1558 1597 1660 1678 1869 1887 2055 2079
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Figure 5.9. Panel of Multi-GS-(PDB, βa)-charts for (a) All 3 planes together, and three pairwise
charting of: (b) 3 versus 6, (c) 3 versus 7, and (d) 6 versus 7. All control charts have the same
group size, g = 10.
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Figure 5.10. Panel of Multi-GS-(PDB, βa)-charts for (a) All 3 planes together, and three pairwise
charting of: (b) 3 versus 6, (c) 3 versus 7, and (d) 6 versus 7. All control charts have the same
group size, g = 20, eliminating the first set of all the plots at g = 1 (burn-in period).

Again, information collected for the burn-in period may be discarded without jeopardizing the

authenticity of the graphs as demonstrated in Figure 5.10, where the group size has been doubled
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to g = 20, eliminating the first set of all the plots at g = 1. Figures 5.9 and 5.10 have a fixed group

length (= t/g) throughout the entire observation period, which is not required in practice for the

proxy of the PDB – Another selling point for the proposed all-in-one panel of bidirectional control

charts!

5.5 An Overview

In Figure 5.11, we write about two core categories of control charts: fully sequential charts and

group sequential charts. Group sequential charts are about multiple comparisons: relationship,

multisystem, multi-components of a single system, about interim analysis of a single system with

big data. Fully sequential charts are about stability: complete visualization, continuous attention,

quick action for a significant change, about charting an essential path forward, a very large category

control charts. Control charts based on the PDB-test are expansive; they are practical, simple,

flexible, and run across both categories: PDB-chart, Multi-PDB-chart, and Multi-(PDB, βa)-chart in

the fully sequential category; GS-PDB-chart, GS-(PDB, βa)-chart, Multi-GS-PDB-chart, and Multi-

GS-(PDB, βa)-chart in the other category. Thus, control charts of the following fashion: multi-

(Z,ZB), or -(R,L)-chart; GS-Z,ZB, R, or L-chart are possible but may become counterproductive,

and are recommended for references only unless the associated tests are known to be the most

powerful for the underlying distribution. In general, control charts having a natural affinity for

each other, mapped in Figure 5.11, form a panel, facilitating timely and handy diagnostic features.

The structure overview also simplifies the sharing of new resources – a kind of one-stop shop for

bidirectional control charts.
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Figure 5.11. Structure overview for panels of control charts.

5.6 Conclusions − An All-in-One Panel of Bidirectional Charts

This work, in essence, represents a transformation and modernization of the fundamentals and

classics in statistical process control. The coherence, utility, and merit of the entire structure

development are elaborated with panels of relevant control charts based on a variety of data sets

possessing a combination of: simulated or real, small or large, with known or unknown underlying

distribution. Also, a supporting tool box, adapted to the simplified version, includes a structure

overview and all the functions and R code for the test statistics (Z and ZB), the βa curve, the

p-value proxies (R, L, and PDB), and the (1 − α)100% control limits (Z,ZB, R, L, and PDB) for
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both sampling schemes with size n.

The backbone of the transformation is a cocktail of coherent bidirectional tests, (Z, ZB) →

[R,L] → {PDB}. Each all-in-one panel consists of a group of affiliated control charts, fit for group

sequential testing and multisystem. The testing tools start with a basic pair of tests, (Z,ZB), that

are more complementary than competitive, and are bound together with a common set of control

limits. Both tests are exact test. Another unified and coherent control limit proxies, partners of

an empowered pair of tests, [R,L], form a second bidirectional control chart. And, a series of novel

group sequential control charts, centering on a hybrid, {PDB}, of the empowered pair, characterize

the test as the only tool possessing the unique feature of having an intelligible version that is free

of the system sample size and the sampling schemes, and is able to restore power symmetries that

are thought to be automatic and required for quality assurance.

These control charts are rooted in the p-value proxies, which are grounded in practicality and

simplicity, and are inverted for the corresponding (1 − α)100% control limit − a simple straight

line, universally applicable under all kinds of mode of sampling scheme, sequential testing with

flexible group length, number of systems/components, and alternative/underlying distribution. In

particular, Multi-GS-(PDB, βa)-chart, the flagship, is a dual bidirectional and a one-size-fits-all

control chart, to be considered in equipment performance assessments of repairable systems, and

by extension, other applications − A big scope for our future work.
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CHAPTER 6

RELIABILITY GRAPHICS FOR QUALITY ASSURANCE

6.1 Introduction

Suppose we assume that the successive occurrence times of a specific process follow an NHPP,

and let T1 < T2 < · · · < Tn be the first n successive times of events. These times are measured

from the beginning of the observation period (cumulative length of time over which the events

occur), so T1 < T2 < · · · < Tn, denoted by {Ti}. The cumulative times are recognized as the

main series of events. The corresponding series of inter-event times is referred to as {ti}, where

ti = Ti − Ti−1, i = 1, 2, . . . , n, and T0 = 0. The reliability data associated with any repairable

systems and all the NHPP data with similar nature can be abbreviated as {Ti} or {ti}, referred to

as the reliability graphics in general, provide firsthand information on the reliability data concerning

the functions of intensity, mean, and more.

This work is about creating self-evident and perceivable graphs, or what we call graphics, for

the repairable systems and, by extension, other applications. In the words of Faraway (2021) [36],

good graphics are vital in data analysis. They help us avoid mistakes and suggest the form of the

modeling to come. They are also crucial in communicating our analysis to others. Many in our

audience or readership will focus on the graphs. This is our best opportunity to convey our message

without misunderstanding. In some cases, the graphics can be so convincing that the formal analysis

becomes just a confirmation of what has already been seen. In this chapter, we start the development

by showing a simple dot-plot. A complementary graph that follows cumulates all the dot-jumps

up to each time-point of occurrences and leaves us an often mysterious but meaningful footprint to

shed any light on. Its mystery lies in the sequence of the slopes and/or curvature associated with

each corresponding hill edging up. Both plots, full of diagnostic elements, are equivalent to the
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so-called “prior” in the Bayesian data analysis.

6.2 Fingerprinting Graphics

Reliability is a crucial concern for all products. Rapid technological advances, the development

of highly sophisticated products, intense global competition, and greater customer expectations

have continually placed increasing pressure on manufacturers to design and build higher reliability

products. Informally, reliability may be defined as (Doganaksoy et al. 2021 [29]) “quality over time.”

Most systems and some parts are repaired when a failure occurs. For repairable systems, this may

involve replacing a failed component or subsystem, which typically generates a sequence of failure

times, {Ti} or {ti}, on the same unit. Most importantly, a careful study of field reliability issues,

such as those described in Dalal et al. (1989) [26], usually suggests the correct data, graphics,

and analyses at the right time, coupled with prompt action, could have avoided the severity of the

catastrophe.

For pattern recognition, data size for the intended graph matters. The NHPP is a classical

point process supporting a growing body of theories, methods, and applications for the occurrences

of natural phenomena. Restricted by the systems’ lives, most reliability data sizes are inevitably

and relatively small in contrast to the occurrences of the natural phenomena. To better address the

utility and power of the graphing techniques presented hereafter, we first adopt the seismological

data of Japan from https://en.wikipedia.org/wiki/List_of_earthquakes_in_Japan. We then use

multiple sets of real reliability data of various sizes, small to moderate, to further elaborate on the

merits of all the developed reliability graphics.

6.2.1 The IET-plot

To produce an inter-event time plot, termed as the IET-plot, for {ti} of size n, label the x-axis as

Time-Point, equally spaced from 0 to n, and y-axis as Inter-Event Time with scaling values starting
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close to the minimum of ti’s for a better eye-ball identification of the pattern and potential change-

point(s), reflected by the heights of the inter-event times. Figure 6.1 is the IET-plot for a total

of 59 main shocks that occurred in Japan between January 1, 1902 and December 31, 2021 with

magnitudes of 6 or higher on the Richter scale. The graph maps the sequence of the inter-event

times (in years), which may be interpreted as the so-called genetic code of seismicity in Japan.

The plot sends a clear concern to the seismologists with an increasing intensity trend – half of the

significant earthquakes occurred during the last 20 years!
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Figure 6.1. IET-plot for a total of 59 major earthquakes, occurred in Japan during January 1, 1902
and December 31, 2021 with magnitudes of 6 or higher on the Richter scale.

A back-to-back comparison of the perceived alarming trend is again presented in an IET-plot of

53 main shocks that occurred in China during the same observation period and range of magnitudes
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(Figure 6.2). These graphics are vital in data analysis. They would help the experts with the form

of the modeling to come.
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Figure 6.2. IET-plot for a total of 53 major earthquakes, occurred in China during January 1, 1902
and December 31, 2021 with magnitudes of 6 or higher on the Richter scale.

For general multisystem reliability graphics, we consider the failure times for the air-conditioning

equipment on 12 of the 13 aircraft given by Proschen (1963) [76], shown in Table 5.3 of Rigdon and

Basu (2000) [81]. We exclude Aircraft 11, where only one data point was recorded. In Figure 6.3,

a single panel summarizes the corresponding 12 IET-plots. The panel facilitates an opportunity

to get initial individual and/or aggregated messages without misunderstanding. Of course, some

reliability data require additional diagnostic graphics to confirm the findings.
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(l) Aircraft 13

Figure 6.3. Panel of 12 IET-plots for the failure times of air-conditioning equipment on 12 aircraft.

6.2.2 The CT-plot

An alternative is to produce a cumulative time plot, termed as the CT-plot, for {Ti} of size n, by

labeling the x-axis as Time-Point, equally spaced from 0 to n, and the y-axis as Cumulative Time.

In an IET-plot, we see a sequence of bouncing musical notes, while the counterpart, a CT-plot,

transforms all of them into uphill stairs needed to climb to reach the top of a mountain. The CT-

plot cumulates all the jumps up to each time-point and leaves us with a mysterious but meaningful

footprint to shed light on. The CT-plots corresponding to the IET-plots above are shown in Figures

from 6.4 to 6.6. These two fingerprinting graphics are views or summaries of the raw data rather
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than the data themselves. Data used to track the reliability growth trend of repairable systems occur

naturally in a sequential fashion. It should be evident that the chronological order in which the

events occur is a vital aspect of a stochastic process, if a significant time trend is to be objectively

identified. We are, therefore, motivated to drill down, brush, and investigate values with other

dynamic graphics.
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Figure 6.4. CT-plot for a total of 59 major earthquakes, occurred in Japan during January 1, 1902
and December 31, 2021 with magnitudes of 6 or higher on the Richter scale.

119



0
20

40
60

80
10
0

12
0

 

 

Time-Point

C
um

ul
at

iv
e 

Ti
m

e 
(in

 y
ea

rs
)

0 10 20 30 40 50 53

Figure 6.5. CT-plot for a total of 53 major earthquakes, occurred in China during January 1, 1902
and December 31, 2021 with magnitudes of 6 or higher on the Richter scale.
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Figure 6.6. Panel of 12 CT-plots for the failure times of air-conditioning equipment on 12 aircraft.

6.3 Motivating Examples − Power Asymmetries

The asymmetrical characteristics of the basic pair (Z,ZB) carry over into the empowered bidirec-

tional version (R,L). We have seen either test of the empowered pair, [R,L], championing in one

alternative setting, but also being turned against the very setting altered with just one of the com-

posed elements in Chapter 3. They help us avoid mistakes and suggest the form of the graphics to

come.
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Figure 6.7. Panel of (a) IET-plot and (b) CT-plot for a simulated data, {Ti}, of an NHPP with
n = 20, change-point at τ = T10 = 10.00, and a two-step-intensity λ(t), where (λ1, λ2) = (1, 5).
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(b) R-chart
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Figure 6.8. Panel of (a) Z-chart, (b) R-chart, (c) L-chart, and (d) PDB-chart, all are at a 90% control
limit for testing H0 : β = 1, for a simulated data, {Ti}, of an NHPP with n = 20, change-point at
τ = T10 = 10.00, and a two-step-intensity λ(t), where (λ1, λ2) = (1, 5).

First, a panel of IET-plot and CT-plot for a simulated data, {Ti}, of an NHPP with n = 20,

change-point at τ = T10 = 10.00, and a two-step-intensity λ(t), where (λ1, λ2) = (1, 5), is presented

in Figure 6.7. As expected, two slopes shown in Figure 6.7(b) follow a piecewise linear function

of two, where the first appears to be steeper than the second for an increasing two-step-intensity

function. Also, the location of the change-point is where the piecewise line bends.

Implementations of the cocktail of tests and the proxies outlined in Table 5.1 for the simulated

data yield a panel of coherent Z-chart, R-chart, L-chart, and PDB-chart (Figure 6.8). The control
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charts are all for testing H0: β = 1 (the system’s reliability remains stable) versus HA, with an

applicable 90% control limit proxies. In general, the distribution under HA would be an unknown

NHPP indicating that the system’s reliability has grown or decreased during the observed period.

The R-chart stays in-control until the 14th time-point, while all the others are consistently at the

15th, marked with (14) and (15), respectively, in the graphics. In this case, the IET- and CT-plots

in Figure 6.7, are so convincing that the analysis becomes just a confirmation of what has already

been seen. Therefore, these fingerprinting graphics may be perceived as the so-called “prior” in the

Bayesian data analysis and as a crucial diagnostic tool for the complete data analysis.
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Figure 6.9. Panel of (a) IET-plot and (b) CT-plot for the reversal of a simulated data, {Ti}, of
an NHPP with n = 20, change-point at τ = T10 = 10.00, and a two-step-intensity λ(t), where
(λ1, λ2) = (1, 5).
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Figure 6.10. Panel of (a) Z-chart, (b) R-chart, (c) L-chart, and (d) PDB-chart, all are at a 90%
control limit for testing H0 : β = 1, for the reversal of a simulated data, {Ti}, of an NHPP with
n = 20, change-point at τ = T10 = 10.00, and a two-step-intensity λ(t), where (λ1, λ2) = (1, 5).

To substantiate the existence of power asymmetries, we reproduce Figure 6.7 based on the

reversed data, {Tn − Tn−i}, for i = 1, . . . , n, and T0 = 0 (Figure 6.9). Again, the two slopes shown

in Figure 6.9(b) follow a piecewise linear function of two, where the second is steeper than the first

for a decreasing two-step-intensity function. For the reversed process, the Z-chart stays in-control

until the 12th time-point, while all the others are consistently at the 11th, per the ordering of

the reversed sequence presented in Figures 6.9 and 6.10. The change-point is set at the middle

point for both data sets with reversed trends. Clearly, it justifies that we need a single frame to
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consolidate all the information accrued, including asymmetrical performances caught by the cocktail

of bidirectional tests.

6.4 Panel of OR-Charts

6.4.1 Simulated Data

We are ready to propose a control chart, including both the original and its reversed version in

a single frame, termed as an OR-Z-chart, and so forth by replacing Z with the test adopted.

We recommend that a panel of the OR-Z-, R-, L-, and PDB-charts be presented for unified and

comprehensive analysis. The panel in Figure 6.11 summarizes the results of the simulated data based

on the proposed graphing technique. Note that, for the reversal, the first out-of-control signals for

(Z,R,L, PDB) are (12, 11, 11, 11). They are converted back to (8, 9, 9, 9), time-points in line with

the original sequence. In contrast, we recall that the original sequence’s first out-of-control signals

for (Z,R,L, PDB) are (15, 14, 15, 15).
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Figure 6.11. Panel of (a) OR-Z-chart, (b) OR-R-chart, (c) OR-L-chart, and (d) OR-PDB-chart,
all are at a 90% control limit for testing H0 : β = 1, for a simulated data, {Ti}, of an NHPP with
n = 20, change-point at τ = T10 = 10.00, and a two-step-intensity λ(t), where (λ1, λ2) = (1, 5).

To best elaborate the outcomes, we recall the raw data, {ti} = {1.2745, 1.8448, 0.2944, 0.8828,

0.9517, 0.4641, 1.4548, 0.5572, 1.1324, 1.1467, 0.2103, 0.0600, 0.4679, 0.1288, 0.1280, 0.0316

, 0.2782, 0.1043, 0.1387, 0.0757}: an NHPP with n = 20, change-point at τ = T10 = 10.00

on a continuous time scale, and a two-step-intensity λ(t), where λ1 = 1 and λ2 = 5. In other

words, two pieces of HPPs form a single NHPP, divided at the change-point, T10 = 10.00. Clearly,

the inter-event times in the second HPP (data highlighted in bold), or the so-called regime, are

considerably smaller than those of the first one. And, the OR-R-chart stays in-control until the
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14th time-point for the original process, indicating that the changes are not significant until after

the t14 is included in the test statistic. Consequently, per the R-test and a 90% control limit, the

first HPP ends at T13, one-step-back from the 14th time point, which is the detected change-point

location, three steps away from the true τ = T10 = 10.00. All the other tests are one step slower

than R.

As for the reversed version, depicted in Figure 6.11, the first out-of-control signals for (Z,R,L, PDB)

are (8, 9, 9, 9), marked above the corresponding x-axis, in line with the ordering of the original

sequence. Again, for instance, the OR-R-chart stays in-control until the 9th time-point for the

reversed process, indicating that the changes are not significant until after the t9 is included in the

test statistic. Analogously, per the R-test and a 90% control limit, the second (or last) HPP begins

at T10, one-step forward from the 9th, which is the detected change-point location, exactly at the

true τ = T10 = 10.00. L and PDB join R for the same outstanding performance!

To sum up:

• What is to be done? Look reality in the eye from the graphics and act upon it.

• It takes a longer time to detect a change-point for an NHPP with an increasing two-step-

intensity function than a decreasing one − Beware of power asymmetries! Perceived that the

test statistic tracks the balance of a checking account, which takes more number of small

deposits to feel the significance of the increase as the balance is already high. On the other

hand, a single deposit of $1, 000 to an account with a balance of $99 would be a fascinating

eye-opener! − Look at data from a different angle.

• A first forwardly detected out-of-control signal at the kth time-point indicates the HPP ends

at Tk−1, the location of a change-point.

• A first backwardly detected out-of-control signal at the kth time-point indicates the HPP
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begins at Tk+1.

• The ZB-test, a member of the bidirectional tests, is excluded from the panel, because it is a

backward version of Z (Ho 1993) at every time-point of the sequential test.

Change detection is a classic research area in statistical process control (Montgomery 2007).

Numerous approaches have been developed for change detection (Hinkley 1971 [45]; Barry and

Hartigan 1993 [11]; Wardell et al. 1994 [93]; Hawkins 2001 [42]; Hawkins et al. 2003 [44]; Zou et al.

2009 [100]; Hawkins and Deng 2010 [43]; Holland and Hawkins 2014 [59]; Cia et al. 2019 [19]; Dong et

al. 2019 [30]; Eryilmaz and Kan 2019 [35]; Qiu 2020 [77]; Chen et al. 2021 [18]; Jin et al. 2022 [61]).

The graphics discussed above apply the concepts to address the issues of power asymmetries based

on simulated data with a known distribution. A glance at the complexities of real reliability data

analysis, where the underlying parametric distributions are unknown, is forthcoming.
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Figure 6.12. Panel of (a) OR-Z-chart, (b) OR-R-chart, (c) OR-L-chart, and (d) OR-PDB-chart, all
are at a 90% control limit for testing H0 : β = 1, for air-conditioning equipment on aircraft 1 to 4.
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Figure 6.13. Panel of (a) OR-Z-chart, (b) OR-R-chart, (c) OR-L-chart, and (d) OR-PDB-chart, all
are at a 90% control limit for testing H0 : β = 1, for air-conditioning equipment on aircraft 5 to 8.
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Figure 6.14. Panel of (a) OR-Z-chart, (b) OR-R-chart, (c) OR-L-chart, and (d) OR-PDB-chart, all
are at a 90% control limit for testing H0 : β = 1, for air-conditioning equipment on aircraft 9, 10,
12, and 13.
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6.4.2 Real Data

6.4.2.1 Aircraft 13

For general multisystem reliability graphics, we extend Figures 6.3 and 6.6 to figures from 6.12 to

6.14, which summarize the corresponding 12 OR-Z-, R-, L-, and PDB-charts for air-conditioning

equipment on the 12 aircraft. Scattered results associated with Aircraft 13 seem straightforward

and are used first as the main focus of the application, designed to optimize the utility of the

proposed graphics in this study. We reproduce a panel of graphics by consolidating the following in

Figure 6.15: The IET-plot, CT-plot, and all the OR-Z-, R-, L-, and PDB-charts for air-conditioning

equipment on Aircraft 13, termed as a complete graphics panel. The graphics feature the following:
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Figure 6.15. Graphics panel of (a) IET-plot, (b) CT-plot, (c) OR-Z-chart, (d) OR-R-chart, (e)
OR-L-chart, and (f) OR-PDB-chart for air-conditioning equipment on Aircraft 13.
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• The IET-plot shows that the pattern of the inter-event times appears to be random.

• The upward slope of the aggregated stairs in the CT-plot appears to be a straight line, rein-

forcing the message sent by the IET-plot.

• With a 90% control limit, all the dual-bidirectional control charts show no out-of-control

signals, indicating that the reliability data follow an HPP.

The above characterization provides critical baseline information for analyzing all the other aircraft.

6.4.2.2 Aircraft 8

With the urge for additional pattern recognition, we recall the PLP, which has a monotonic intensity

function: constant (Figure 6.15), increasing, or decreasing; and add a CT-plot of multisystem,

termed Multi-CT-plot. Figure 6.16 is a Multi-CT-plot for comparisons of three simulated PLPs with

n = 20, at β = 0.5, 1, and 2: time-truncated sampling, all set at T = 1. Three monotonic patterns

are observed: a straight line segment for β = 1; a curve concave upward for β < 1 (decreasing);

concave downward otherwise. Again, the mystery of a non-constant monotonic intensity lies in

the concavities and/or curvature of the observed curves presented in Figures 6.4 and 6.5 for large

seismological data sets. The accrued shapes of the CT-plots for monotonic intensity functions will

facilitate the initial assessments of a reliability data analysis.
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Figure 6.16. Multi-CT-plot for comparisons of intensity functions of three simulated PLPs with
n = 20, at β = 0.5, 1.0, and 2.0: time-truncated sampling, all set at T = 1.

We are ready to present a complete graphics panel of Aircraft 8 (Figure 6.17), facilitating

analyses of all the other aircraft:

• The IET-plot depicts an increasing pattern cycle: from t3 to t8; t9 to t17; t18 to t24. The

CT-plot reflects three connected segments from curves that concave downward − Both plots

can exchange information and support each other.

• In the OR-Z-chart, the sequence of the observed test statistics follows a similar pattern

mimicking that of the CT-plot for the original process. In contrast, traces of the reversed

process are hollowed out, forming upward concavities (a decreasing trend) − They share

findings of reliability trends from both directions in a single chart.
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• L signals its only out-of-control at the 10th time-point, while all the others stay in-control

based on the original process. For the reversal, the first out-of-control signals are: L at the

19th time-point, and all the others are at the 18th time-point − They are interconnected with

power asymmetries and, consequently, offer a broad perspective on the data analysis.
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Figure 6.17. Graphics panel of (a) IET-plot, (b) CT-plot, (c) OR-Z-chart, (d) OR-R-chart, (e)
OR-L-chart, and (f) OR-PDB-chart for air-conditioning equipment on Aircraft 8.

The above analyses of Aircraft 8 provide a case study of the proposed graphics panel beyond a

simple HPP (Aircraft 13). All the observations listed above indicate that every graph is a strong

advocate for at least one of the others in a complete graphics panel. For instance, per the last point

above, L detects multiple change-points for Aircraft 8, supported by both plots (Figure 6.17 (a)
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and (b)), which are more complementary than competitive.

Data of all the remaining aircraft can be analyzed in the same fashion, except that towering

dots/bars in an IET-plot often get our first attention, because they dwarf all of the others in a data

set, and consequently, would squeeze and mask the curvature of the curves in the corresponding

CT-plot due to the scaling of the y-values, especially if the data are small. For example, the

IET-plot of Aircraft 2 shows two dominating failure times, and one of them occurs at the first

time-point (Figure 6.3 (b)), which suppresses the appearance of the curvature anticipated in the

CT-plot (Figure 6.6(b)).

6.5 Conclusions

There is always at least one story to tell in a graph, not to mention a panel of graphics:

• First, beware of power asymmetries! Look at data from a different angle, because system

safety and reliability are at risk.

• We start the development by showing a simple IET-plot that shows that approximately 50%

of the 120 years of large earthquakes occurred in Japan during the most recent 20 years. Dot-

plots appear in various forms, and an IET-plot is indeed one of them. Towering dots/bars

quickly get our first attention and/or concern, which allows us to get the first line of defense

set in time. If the reliability data analysis were a film in the making, the IET-plot would

be a film score, which encompasses an enormous variety of styles of music, depending on the

nature of the films they accompany.

• In an IET-plot, we see a sequence of bouncing musical notes, while the counterpart, a CT-

plot, transforms all of them into stairs edging up, needed to climb to reach the top of a

mountain. A CT-plot cumulates all the dot-jumps up to each time-point and leaves us an

often mysterious but meaningful footprint to shed any light on. The mystery of valuable
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diagnostic elements is buried in the sequence of the slopes and/or curvature (Figures 6.4 and

6.5) associated with each corresponding hill. For instance, two slopes shown in Figure 6.7(b)

follow a piecewise linear function of two, where the first appears to be steeper than the second

for an increasing two-step-intensity function and vice versa (Figure 6.9(b)). Consequently, the

above algorithm can be used to identify a nonmonotonic multi-step-intensity function, coupled

with a Multi-CT-plot for comparisons of multisystem. Moreover, in a CT-plot, change-points

of the process correspond to locations where the slopes change, if the patterns follow what

has been described. The CT-plot has the edge over the IET-plot for plotting large data sets

and multisystem.

• The degree of uncertainties and ambiguities projected by the characteristics and nature of the

data delivered by the fingerprinting graphics could invite subjective expert opinions. Relia-

bility engineering and technologies in these areas are well-advanced enough to incorporate the

concepts and methodologies of statistical process control charts to efficiently consolidate all

the valuable information in the graphics, built with the support of sound theories and meth-

ods. Along this line of argument, we then launch elaborated graphics panels of the OR-charts,

recording the behaviors of the air conditioning equipment on 12 aircraft. Each all-in-one panel

consists of a group of affiliated dual-bidirectional OR-charts, fit to safeguard power symmetry.

The PDB, declared as a so called all-purpose test, is a safe bet for practitioners doing applica-

ble real-world case studies. The OR-charts, incorporating both processes of the original and

its reversal in a single frame marking the first out-of-control signals from both directions in

the charts, are a significant leap for modern reliability data science.

• In short, the graphics panel starts with an assortment of appetizers, including a set of two

complimentary plots, {IET-plot and CT-plot}, followed by a cocktail of dual-bidirectional
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control charts: {OR-Z-chart, OR-R-chart, OR-L-chart, and OR-PDB-chart}, designed to

gain a broad perspective on the data analysis. Each of these graphics can coherently exchange

information, support one another, share findings of reliability trends and the change-point(s)

from both directions, and even interconnected with power asymmetries.

Graphics play a vital role in modern data science. In essence, this work represents a transforma-

tion and modernization of the fundamentals and classics in reliability data analysis. The coherence,

utility, and merit of the entire structure development are elaborated with panels of relevant graphics

based on a variety of data sets possessing a combination of: simulated or real, small or large, with

known or unknown underlying distribution, and are supported by two fingerprinting plots considered

as the so-called “prior” in the Bayesian data analysis. In summary, a cocktail of bidirectional tests

is a social lubricant in the saga of absorbing reliability graphics to make it easier to collaborate on

future technologies, projects, and ideas in reliability engineering and, by extension, other real-world

case studies.
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