
UNLV Theses, Dissertations, Professional Papers, and Capstones 

August 2023 

Development of a MetaPGS for Accurate Prediction of Development of a MetaPGS for Accurate Prediction of 

Osteoporotic Fracture Osteoporotic Fracture 

Xiangxue Xiao 
University of Nevada, Las Vegas 

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations 

 Part of the Biostatistics Commons 

Repository Citation Repository Citation 
Xiao, Xiangxue, "Development of a MetaPGS for Accurate Prediction of Osteoporotic Fracture" (2023). 
UNLV Theses, Dissertations, Professional Papers, and Capstones. 4858. 
http://dx.doi.org/10.34917/36948209 

This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital 
Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that 
is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to 
obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons 
license in the record and/or on the work itself. 
 
This Dissertation has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and 
Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact 
digitalscholarship@unlv.edu. 

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F4858&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/210?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F4858&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.34917/36948209
mailto:digitalscholarship@unlv.edu


 
 

 

 

 

DEVELOPMENT OF A METAPGS FOR ACCURATE PREDICTION 

OF OSTEOPOROTIC FRACTURE 

 

 

By 

Xiangxue Xiao 

Bachelor of Medicine – Clinical Medicine 
Henan University of Science and Technology 

2013 
 

Master of Public Health – Epidemiology and Biostatistics 
Tulane University 

2016 
 

 

A dissertation submitted in partial fulfillment  
of the requirements for the  

 
Doctor of Philosophy – Public Health 

 
 
 

Department of Epidemiology and Biostatistics 
School of Public Health 
The Graduate College 

 

University of Nevada, Las Vegas 
August 2023 

  



 

ii 
 

  

  
 

Dissertation Approval 

The Graduate College 
The University of Nevada, Las Vegas 

        
May 15, 2023

This dissertation prepared by  

Xiangxue Xiao  

entitled  

 
Development of a MetaPGS for Accurate Prediction of Osteoporotic Fracture 

is approved in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy – Public Health 
Department of Epidemiology and Biostatistics 
 
 
 
 
Qing Wu, M.D.     Alyssa Crittenden, Ph.D.  
Examination Committee Chair                       Vice Provost for Graduate Education &  

                                                                             Dean of the Graduate College 
Ann Vuong, Dr.P.H. 
Examination Committee Member 
        
Soumya Upadhyay, Ph.D. 
Examination Committee Member 
 
Fatma Nasoz, Ph.D. 
Graduate College Faculty Representative 

 



 iii 

Abstract 

Introduction: Early identification of individuals at high-risk for osteoporotic fractures who may 

benefit from preventive intervention is essential. However, the predictive accuracy of the 

currently used fracture risk assessment tool remains suboptimal. The first aim of this research is 

to construct genome-wide polygenic scores for the femoral neck (𝑃𝐺𝑆_𝐹𝑁𝐵𝑀𝐷!"#$%") and total 

body BMD (𝑃𝐺𝑆_𝑇𝐵𝐵𝑀𝐷!"#$%") and to estimate their potential in identifying individuals with a 

high risk of osteoporotic fractures. The second aim is to validate the predictive performance of 

two previously established PGSs (𝑃𝐺𝑆_𝐹𝑁𝐵𝑀𝐷!"#$%" and 𝑃𝐺𝑆_𝑇𝐵𝐵𝑀𝐷!"#$%") in an external 

cohort of 9,000 postmenopausal women of European ancestry. The third aim is to develop and 

evaluate a novel approach called metaPGS, which combines genetic information from multiple 

fracture-related traits to further improve the predictive accuracy of genetic information in 

fracture risk assessment. 

Methods: The first manuscript constructed genome-wide PGS for femoral neck and total body 

BMD. We externally tested the PGSs, both by themselves and in combination with available 

clinical risk factors, in 455,663 European ancestry individuals from the UK Biobank. The 

predictive accuracy of the developed genome-wide PGS was also compared with previously 

published restricted PGS employed in fracture risk assessment. The PGSs developed in the first 

study were then externally validated in the second study using the Women’s Health Initiative 

(WHI) study data. The magnitude of the association between each PGS and Major Osteoporotic 

Fractures (MOF)/Hip Fractures (HF) risk was assessed by using the Cox Proportional Hazard 

Model. To investigate whether adding PGS would improve the predictive ability of FRAX, we 

formulated four models: (1) Base model: FRAX risk factors; (2) Base model + 
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𝑃𝐺𝑆_𝐹𝑁𝐵𝑀𝐷!"#$%"; (3) Base model + 𝑃𝐺𝑆_𝑇𝐵𝐵𝑀𝐷!"#$%"; (4) Base model + metaPGS. The 

reclassification ability of models with PGS was further assessed using the Net Reclassification 

Improvement (NRI) and the Integrated discrimination improvement (IDI). In the third study, to 

develop the novel metaPGS combining PGSs of multiple fracture-related traits/diseases, we first 

derived individual PGS from genome-wide association studies of 16 fracture-related traits. Then, 

we employed an elastic-net logistic regression model to examine the association between the 16 

PGSs and fractures while controlling for covariates such as age, sex, and the first four principal 

components. The optimal metaPGS model was chosen based on the highest area under the 

receiving-operating characteristic curve (AUC). The metaPGS was constructed by combining the 

11 most significant individual PGSs selected using the elastic regularized regression model. We 

evaluated the predictive power of the metaPGS alone and in combination with clinical risk 

factors recommended by guidelines. The ability of the models to reclassify fracture risk was also 

assessed using NRI and IDI. 

Results: In the first study, for each unit decrease in PGSs, the genome-wide PGSs were 

associated with up to 1.17-fold increased fracture risk. The genome-wide total body PGS 

(𝑃𝐺𝑆_𝑇𝐵𝐵𝑀𝐷!"#$%") (HR: 1.17; 95%CI 1.15-1.19, p<0.0001) showed a significantly higher 

association with fractures compared to the restricted total body BMD (𝑃𝐺𝑆_𝑇𝐵𝐵𝑀𝐷&') (HR: 

1.03; 95%CI 1.01-1.05, p=0.001). In the reclassification analysis, compared to the FRAX base 

model, the models with 𝑃𝐺𝑆_𝐹𝑁𝐵𝑀𝐷(), 𝑃𝐺𝑆_𝑇𝐵𝐵𝑀𝐷&', 𝑃𝐺𝑆_𝐹𝑁𝐵𝑀𝐷!"#$%", and 

𝑃𝐺𝑆_𝑇𝐵𝐵𝑀𝐷!"#$%" improved the reclassification of fracture by 1.2% (95% CI, 1.0% to 1.3%), 

0.2% (95% CI, 0.1% to 0.3%), 1.4% (95% CI, 1.3% to 1.5%), and 2.2% (95% CI, 2.1% to 

2.4%), respectively. The second study failed to validate the findings discovered in the first study. 

The results showed that these PGSs were not significantly correlated with MOF or HF in the 
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WHI cohort. Additionally, incorporating genetic information into the FRAX tool showed 

minimal improvement in the predicted probabilities of hip fracture risk for elderly Caucasian 

women. In the third study, the metaPGS had a significant association with incident fractures 

(HR: 1.22, 95% CI: 1.19 - 1.27), which was stronger than previously developed bone mineral 

density (BMD)-related individual PGSs. The metaPGS had comparable predictive power to 

established risk factors such as age, body weight, and early menopause. The association between 

the metaPGS and incident fractures remained significant after adjusting for clinical risk factors, 

indicating added predictive value beyond established clinical risk factors. Adding the metaPGS 

to the FRAX model improved the discrimination of fractures from non-fracture cases. 

Conclusions: The findings indicate that integrating PGS data into clinical diagnosis has the 

potential to enhance the efficacy of screening programs at a population level. The metaPGS 

approach shows promise for stratifying fracture risk in the European population, as it combines 

genetic data from various fracture-related traits, improving fracture risk prediction. 
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Chapter 1 Introduction 

1.1 Osteoporotic fracture 

Osteoporosis is a major health issue, particularly among older individuals, characterized by a 

decrease in bone mineral density (BMD) and a decline in the structure integrity of bone tissue 

(Sözen, Tümay, Özışık, & Başaran, 2017a). This condition weakens bones and increases the risk 

of fractures, which can occur spontaneously or after minor trauma (NIH Consensus Development 

Panel on Osteoporosis Prevention, Diagnosis, and Therapy, 2001). As the most relevant sequelae 

of osteoporosis, the worldwide prevalence of osteoporotic fracture has surpassed 200 million 

(Cooper, Campion, & Melton, 1992), with an estimated 8.9 million fractures occurring annually, 

over 1.5 million of which take place in America (Johnell & Kanis, 2006c). The lifetime risk of 

osteoporotic fracture is approximately 50% in women and around 30% in men aged 50 years and 

older (Nguyen, Nguyen D., Ahlborg, Center, Eisman, & Nguyen, 2007). Notably, the incidence 

rate of fracture increases exponentially with age (Ensrud, 2013). Given the rapidly aging 

population, previous studies have highlighted fragility fracture as a prevalent and severe skeletal 

disorder that is expected to increase in prevalence in the coming decades. It is projected that the 

incidence of hip fracture (HF) will rise from 1.7 million in 1990 to 6.3 million in 2050 (Cooper 

et al., 1992; Gullberg, Johnell, & Kanis, 1997). 

1.2 Pathogenesis of osteoporosis and risk factors of osteoporotic 

fracture  

Osteoporosis is a systemic skeletal disorder characterized by an imbalance in bone remodeling 

(Feng & McDonald, 2011), where osteoclasts continuously break down bone tissue while 
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osteoblasts rebuild it (Florencio-Silva, Sasso, Sasso-Cerri, Simões, & Cerri, 2015). If bone 

resorption outpaces bone formation, bone loss occurs (Manolagas, 2000), which weakens bone 

tissue microarchitecture and increases bone fragility.  

The loss of BMD, typically associated with the aging-related decline in physiological function, is 

a primary contributor to increased susceptibility to fractures (Pouresmaeili, Kamalidehghan, 

Kamarehei, & Goh, 2018). Estrogen deficiency accelerates bone turn-over, leading to a decline 

in BMD and the deterioration of the bone structure, which raises the risk of fractures (Cheng, 

Chen, & Chen, 2022) Fragility fractures often arise as a result of compromised bone strength and 

are commonly caused by falls from a standing position or routine activities of daily living (Li et 

al., 2017). The pathogenesis of osteoporosis-related fractures is multifactorial (Clifford J. 

Rosen, ) and Figure 1 depicts this process. Other hormones, such as growth hormone, 

testosterone, and insulin, also play a role in regulating bone mass (Giustina, Mazziotti, & 

Canalis, 2008). Alongside aging and sex steroid deficiency, several clinical risk factors, 

including low body weight, physical inactivity, cigarette smoking, alcohol consumption, and 

limited sun exposure, increase the likelihood of fragility fractures (Pisani et al., 2016). 

Inadequate intake of calcium, vitamin D, and protein can impede the attainment of peak bone 

mass and its preservation later in life (Mitchell, P. J., Cooper, Dawson-Hughes, Gordon, & 

Rizzoli, 2015). The utilization of certain medications, particularly glucocorticoids, can also 

impede bone quality and micro-architectural integrity by reducing the bone formation and 

hastening bone loss, resulting in secondary osteoporosis (Cosman et al., 2014a). Notably, a 

positive family history of fracture is a significant risk factor for fracture, implying a critical 

relationship between an individual's genetic constitution and susceptibility to disease (Pisani et 

al., 2016). 
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Figure 1-1 Pathogenesis of osteoporosis-related fractures 

 

 

1.3 Current fracture risk assessment tool 

Previous investigations have indicated that targeting individuals at high risk of fracture or those 

with a prior fracture can reduce the likelihood of subsequent fractures by an estimated 30-60% 

(Black & Rosen, 2016; Delmas, Rizzoli, Cooper, & Reginster, 2005). As a result, the assessment 

of fracture risk plays a crucial role in the management of osteoporosis and the prevention of 

fractures. By precisely identifying individuals at increased risk, appropriate interventions can be 

implemented to mitigate the likelihood of sustaining a fracture.  

Several fracture risk assessment models have been developed in recent years, utilizing well-

established risk factors. In the United States, the Fracture Risk Assessment Tool (FRAX) (Kanis, 

Johnell, Oden, Johansson, & McCloskey, 2008a) is the most employed assessment tool for 

determining fracture risk. FRAX incorporates 12 risk factors, such as anthropometric factors, 
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lifestyle factors, and comorbidities, which can be used either with or without femoral neck BMD 

(as outlined in Table 1) to estimate 10-year probabilities of major osteoporotic fracture (MOF: 

including hip, clinical spine, forearm, and humerus fracture) and hip fractures (HF) (Kanis et al., 

2008a). 

 

 Table 1-1 Risk factors included in the Fracture Risk Assessment Tool (FRAX) 

 

The prognostic efficacy of FRAX has been extensively evaluated in previous validation studies 

conducted independently (Azagra et al., 2012; Bolland et al., 2011; Ensrud et al., 2009; Ettinger 

et al., 2013; Leslie, W. D. et al., 2011a; Leslie, William D. et al., 2010; Sandhu et al., 2010a; 

Tamaki et al., 2011). However, FRAX’s predictive accuracy is suboptimal in terms of 

discrimination and calibration. A prior meta-analysis reported that the median area under the 

curve (AUC) value of FRAX with BMD for predicting HF and MOF was 0.78 and 0.69, 

 FRAX 
Risk factors (inputs) Age 

Gender 
Femoral neck BMD 
Bodyweight 
Height 
History of prior fracture 
Parental history of hip fracture 
Current smoking 
Chronic glucocorticoid use 
Rheumatoid arthritis 
Secondary osteoporosis 
Alcohol (3 or more units/d) 

Output 10-year risk of hip fracture 
10-year risk of major osteoporotic fracture 

Websites http://www.shef.ac.uk/FRAX 
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respectively (Nguyen, Tuan V. & Eisman, 2017). In general, discrimination in HF was better 

than MOF, but AUC values for infrequent outcomes such as HF tend to be overoptimistic.  

Most validation studies have suggested that the FRAX model underestimates the fracture risk. 

For instance, a validation study conducted on 1,422 postmenopausal women reported that FRAX 

consistently underestimated the risk of fracture (Bolland et al., 2011). In a Spanish cohort, FRAX 

accurately predicted only 46% of MOF and 41% of actual HF cases (Azagra et al., 2012). FRAX 

also underestimated fracture risk in White men. Results of the Canadian Multicenter 

Osteoporosis Study cohort showed that FRAX underestimated the risk of fracture in men 

(predicted 5.4% vs. observed 6.4%) (Leslie, W. D. et al., 2011b). Similarly, in another validation 

study on 5,891 men from the Osteoporotic Fractures in Men (MrOS) cohort, the FRAX’s 

predicted 10-year probability of HF was 1.4% compared to the observed risk of 3%, with 

moderate discrimination ability (AUC: 0.76 for HF and 0.69 for MOF) (Ettinger et al., 2013). 

The study also revealed remarkably poor sensitivity of FRAX in the prediction of MOF. Taking 

the predicted 10-year risk of 20% as a cut-off value to define high versus low risk, only 15 (4%) 

out of 373 men who sustained a fracture during the follow-up had FRAX predicted 10-year risk 

of at least 20% (Ettinger et al., 2013). Although FRAX was calibrated for specific countries, its 

performance on US data was also concerning, with an AUC value for fracture discrimination no 

better than chance, especially for men (AUC 0.54) (Sandhu et al., 2010b).  

1.4 Genetic advances in osteoporotic fracture 

A twin study has demonstrated that the heritability of the liability to fracture may account for up 

to 50% of the variance (Michaëlsson, Karl, Melhus, Ferm, Ahlbom, & Pedersen, 2005). Unlike 

the Mendelian traits, which arise from variation in a single gene or a small set of genes with 
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substantial effects, the genetic etiology of fragility fracture has been established as polygenic in 

nature, with numerous small-effect genes contributing to the outcome. The systematic screening 

of the genome, made possible through Genome-wide association studies (GWAS), has facilitated 

the identification of genetic variants that are linked to fracture risk. To date, several GWASs 

have been conducted to investigate vertebral fracture, with the initial GWAS meta-analysis 

(GWAMA) revealing one locus on chromosome 16q24 (rs11645938) that was associated with 

the risk of radiographic vertebral fractures (Oei et al., 2014). A more recent GWAMA also 

identified a locus located on chromosome 2q13 to be significantly associated with clinical 

vertebral fractures (Alonso et al., 2018). In 2018, Trajanoska et al. conducted the largest GWAS 

on osteoporotic fractures and identified 15 fracture loci (Trajanoska, Katerina et al., 2018).  

Due to the limited number of loci discovered through GWAS for dichotomous disease as a direct 

outcome (Visscher, Brown, McCarthy, & Yang, 2012), various fracture-related endophenotypes 

such as BMD (Estrada et al., 2012), heel BMD (Kemp et al., 2017a), lean mass (Zillikens et al., 

2017) and handgrip strength (Matteini et al., 2016) have been widely used as alternatives to 

explore the genetic basis of fracture. BMD has been found to be highly heritable, with 

heritability estimates ranging from 50% to 80%, and has been the most extensively studied trait 

in GWASs related to osteoporosis (Arden, Baker, Hogg, Baan, & Spector, 1996a; Arden & 

Spector, 1997a). The initial GWAS conducted on 8,557 individuals identified two variants that 

were associated with both lumbar spine and femoral neck BMD (Richards et al., 2008). 

Collaborative studies subsequently identified a growing number of genetic variants. The first 

GWAS meta-analysis (GWAMA) of the GEnetic Factors for OSteoporosis consortium identified 

13 novel loci associated with BMD (Rivadeneira et al., 2009), followed by a second GEFOS 

GWAMA, which replicated the majority of the known BMD-related loci and identified an 
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additional 32 novel loci (Estrada, Karol et al., 2012). Among the BMD-associated loci, 14 were 

also associated with osteoporotic fractures. Recent GWASs have also used BMD estimated from 

heel ultrasound (eBMD) as the trait of interest. The first study on eBMD identified 203 loci 

associated with eBMD (Kemp et al., 2017b), while the most recent one identified 518 loci, 301 

of which were novel (Morris et al., 2019b). Besides the great genetic influence on BMD, twin, 

and family studies have also shown that other bone parameters like geometry (𝒉𝟐=30-70%) 

(Demissie et al., 2007), bone ultrasound measure (𝒉𝟐=40-50%) (Arden, Baker, Hogg, Baan, & 

Spector, 1996b), and high-resolution peripheral quantitative computed tomography (HR-pGCT) 

measures of bone microarchitecture (𝒉𝟐=20-80%) are also highly heritable (Karasik et al., 2017). 

To date, over 20 GWAS have been published for different bone parameters. 

1.5 Polygenic score 

GWASs have indicated that common single-nucleotide polymorphisms (SNPs) play a crucial role 

in determining susceptibility to common diseases. It is hoped that for each disease, there will be a 

considerable number of susceptibility SNPs that individually show only a modest association with 

the disease. However, when combined, they could explain a considerable proportion of the 

variance in disease incidence within the general population. At present, the only available method 

for assessing the genetic predisposition to a disease or trait at an individual level is through the use 

of a polygenic score (PGS).  

PGS are typically constructed using the summary statistics of a GWAS, with various approaches 

and algorithms available to generate them. The traditional approach (Dudbridge, 2013) involves 

calculating the sum of genome-wide significant risk alleles (typically with p<5*10-8) associated 

with a phenotype of interest in each individual. These risk alleles are weighted by the effect size 

estimated from the GWAS on the phenotype. However, this approach is not optimal because it 
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fails to account for linkage disequilibrium (LD) between genetic markers or simply discords 

potential informative SNPs that could be useful for constructing more accurate PGS.  

Previous research has demonstrated that utilizing whole genome-wide PGS rather than a limited 

number of genome-wide significant SNPs can result in significantly higher predictive power 

(Khera, Amit V. et al., 2018). To capture additional predictive capacity, researchers have 

developed several novel algorithms to aggregate SNP effects across the entire genome (Choi, Mak, 

& O'Reilly, 2020). These advanced PGS can extend to loci with only small associations that do 

not meet genome-wide significance threshold and account for correlations in effect size resulting 

from LD. For instance, the Pruning and Thresholding (P+T) method is an approach used to 

construct PGS while accounting for LD. This method involves selecting an independent subset of 

variants from the GWAS to be used as a standard PGS. The pruning process begins by selecting 

the most significant variant and then excluding all markers in LD with this index variant that have 

an r2 value above a predetermined cutoff. The most significant remaining marker is then selected 

as a second index variant, and the process continues until all index variants have been identified 

at a specific significance level. More advanced methods like Bayesian and variable reduction 

models can model the joint effect of all markers (Vilhjálmsson et al., 2015). These models use 

approaches commonly employed in regression analysis with correlated data and to predictor 

selection. Bayesian models integrate a prior probability distribution for the parameters of interest 

with the observed data to derive a posterior distribution. These models incorporate LD information 

from a reference panel and apply shrinkage to marker effects. To accurately capture the genetic 

architecture of the trait, prior distributions are chosen that consider the LD structure and overall 

heritability of the genome.  
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In addition to the techniques used in constructing a PGS based on a single set of GWAS summary 

statistics for one trait or disease, recent analytical advancements have led to the development of a 

more powerful genomic risk score called “metaPGS” (Inouye et al., 2018). This approach utilizes 

multiple sets of GWAS summary statistics, potentially overcoming limitations of power and 

heterogeneity that exist in single PGS construction. In other fields metaPGS has been shown to 

outperform single PGS. For instance, in the case of coronary artery disease (CAD), the meta-score 

combining multiple CAD-related PGSs has been demonstrated to enhance risk prediction beyond 

that of any individual PGS (Inouye et al., 2018). By using the joint predictive power of multiple 

PGS in a single regression model, the metaPGS approach can exploit genetic correlations between 

the outcome trait and a multitude of traits.  

1.6 The current utility of polygenic risk scores in fracture prediction 

Genomic risk prediction has an advantage over established risk factors since it can be used to 

estimate disease risk from birth, enabling preventive strategies to be initiated before the 

emergence of conventional risk factors and their discriminative capacity. However, there has 

been limited translational success in using genetic information for fracture prediction in clinical 

practice. 

Previous attempts to improve fracture assessment models by incorporating BMD-related PGSs 

showed consistent ability to identify individuals at high risk but provided limited improvement in 

risk reclassification. Simulation studies suggested that a genetic profile consisting of up to 50 

genetic variants could improve the accuracy of fracture prediction by 10% points of AUC (Tran 

et al., 2011), while recent studies in postmenopausal women of Korean background found that a 

genetic profile of 39 SNPs could enhance the precision of non-vertebral fracture prediction and 

define the risk threshold (Lee, Seung Hun et al., 2013). However, the predictive power of 
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previous BMD-related PGSs for fracture has been limited due to the heterogeneity of the fracture 

phenotype and the assumption of independence between contributing loci in the traditional PGS 

method, which is biased in the presence of LD and can significantly reduce the predictive 

performance of models. As a result, prior PGSs explained only a small fraction of the 

interindividual differences in genetic risk and had weak predictive power. Moreover, since 

fragility fracture is a multifactorial disease, PGS derived from only one trait, such as BMD, may 

not sufficiently capture the genetic components of fracture. Hence, the current strategy of 

constructing fracture using a simple method and a single trait has limitations.  

Two directions have been proposed to improve the predictive power of genetic profiles for fracture 

assessment but not yet explored in the field. The first direction involves using more advanced PGS 

algorithms such as P+T, Bayesian, and Variable Reduction models to increase the predictive value 

of a single PGS. The second direction involves integrating genetic information from multiple 

fracture-related traits and risk factors of fragility fracture to generate a metaPGS. This multi-trait 

extension approach has been used in other fields and may further enhance the predictive accuracy 

of genetic profiles for fracture assessment. 

1.7 Study aims and hypotheses 

While fracture prediction models have advanced osteoporosis research, there is still a need for 

improvement. Genetics plays a significant role in the risk of many common diseases and can 

provide advantages in predicting disease risk from birth. However, genetic profiling is not 

currently included in fracture assessment models. Previous studies have suggested the potential 

of PGS for fracture risk prediction, but their predictive power has been limited. Recent 

advancements in PGS construction have overcome power and heterogeneity limitations, and the 

objective of this dissertation is to develop a well-powered genetic predictor that utilizes GWAS 
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summary statistics for multiple fracture-related traits. Additionally, the goal is to create a 

genetic-enhanced, individualized risk assessment tool that can accurately identify the at-risk 

population early in life. Therefore, the dissertation will be structured around three separate 

research aims and corresponding hypotheses, which are outlined below: 

• Aim 1: To construct a BMD-related genome-wide polygenic score and to estimate the 

potential in identifying individuals at high-risk for osteoporotic fractures. 

• Aim 2: To validate the clinical usefulness of genome-wide PGS in improving the 

accuracy of the FRAX in an external cohort of postmenopausal women. 

• Aim 3: To develop and evaluate a novel metaPGS to improve the predictive accuracy of 

genetic information in fracture risk assessment. 
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Chapter 2 Manuscript 1 

 

“The Clinical Utility of the BMD-related comprehensive 
Genome-wide polygenic score in identifying individuals with a 
high risk of osteoporotic fractures” 
 

2.1 Abstract 

2.1.1 Purpose 

This study sought to construct genome-wide polygenic scores (PGS) for femoral neck and total 

body bone mineral density (BMD) and to estimate their potential in identifying individuals with 

a high risk of osteoporotic fractures. 

2.1.2 Methods 

Genome-wide polygenic scores were developed and validated for femoral neck and total body 

BMD. We externally tested the PGSs, both by themselves and in combination with available 

clinical risk factors, in 455,663 European ancestry individuals from the UK Biobank. The 

predictive accuracy of the developed genome-wide PGS was also compared with previously 

published restricted PGS employed in fracture risk assessment. 

2.1.3 Results 

For each unit decrease in PGSs, the genome-wide PGSs were associated with up to 1.17-fold 

increased fracture risk. Out of four studied PGSs, 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝟖𝟏 (HR: 1.03; 95%CI 1.01-1.05, 

p=0.001) had the weakest and the 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 (HR: 1.17; 95%CI 1.15-1.19, p<0.0001) 

had the strongest association with an incident fracture. In the reclassification analysis, compared 
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to the FRAX base model, the models with 𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝟔𝟑, 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝟖𝟏, 

𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅, and 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 improved the reclassification of fracture by 

1.2% (95% CI, 1.0% to 1.3%), 0.2% (95% CI, 0.1% to 0.3%), 1.4% (95% CI, 1.3% to 1.5%), 

and 2.2% (95% CI, 2.1% to 2.4%), respectively.  

2.1.4 Conclusions 

Our findings suggested that an efficient PGS estimate enables the identification of strata with up 

to a 1.7-fold difference in fracture incidence. Incorporating PGS information into clinical 

diagnosis is anticipated to increase the benefits of screening programs at the population level. 

2.1.5 Keywords 

Disease and Disorders of/related to Bone; Fracture Risk Assessment; Genetic Research; Human 

Association Studies; Osteoporosis.

2.2 Introduction 

Osteoporosis is an age-related, devastating bone disease characterized by low bone mineral 

density (BMD) and structural deterioration of bone tissue (Sözen, T., Özışık, & Başaran, 2017a), 

resulting in an increased risk of fracture. As the world population ages rapidly, bone fracture is 

becoming a major public health issue. Each year, osteoporosis is responsible for more than 8.9 

million fractures globally, of which more than 1.5 million occur in the United States (Johnell & 

Kanis, 2006a). In 2025, osteoporotic fractures are projected to increase to over 3 million in the 

US (Burge et al., 2007). The increasing fracture incidence renders early identification and 

preventive intervention a vital goal. 

Several fracture predictive tools have been developed in recent years. In the United States, the 

Fracture Risk Assessment Tool (FRAX) is the most widely used fracture prediction tool, which 
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is well-established and validated to predict 10-year probabilities of major osteoporotic fracture 

(MOF) and hip fracture (HF) on the basis of 12 clinical risk factors (Kanis, Johnell, Oden, 

Johansson, & McCloskey, 2008b). However, the performance of FRAX in discriminating 

fracture and non-fracture cases is too often unsatisfactory, which certainly indicates that there is 

still room for improvement (Briot et al., 2014a; Crandall, Schousboe, Morin, Lix, & Leslie, 

2019a; Sornay-Rendu, Munoz, Delmas, & Chapurlat, 2010a).  

The predisposition to osteoporotic fracture is attributable to the complex interaction between 

genetic and non-genetic factors (Trajanoska, K. & Rivadeneira, 2019a). As a major determinant 

of fracture risk, BMD measured by dual-energy X-ray absorptiometry (DXA) has been proven to 

be highly heritable (Andrew, Antioniades, Scurrah, Macgregor, & Spector, 2005a; Arden & 

Spector, 1997b; Michaëlsson, K., Melhus, Ferm, Ahlbom, & Pedersen, 2005a; Ralston, S. H. & 

Uitterlinden, 2010a; Wagner, Melhus, Pedersen, & Michaëlsson, 2012) and has thus been widely 

investigated in Genome-wide association studies (GWAS) (Estrada, Karol et al., 2012; Kim, 

2018; Medina-Gomez et al., 2018a). Numerous BMD-associated genetic variants, mainly single 

nucleotide polymorphism (SNPs), have been discovered in the past decade (Estrada, Karol et al., 

2012; Kim, 2018; Morris et al., 2019a). As a result, the polygenic score (PGS), calculated 

according to GWAS summary statistics and an individual’s genotype profile, is often used to 

quantify the genetic propensity of individuals to a disease/trait (Lewis & Vassos, 2020). 

Prior studies have demonstrated the potential use of BMD-decreasing PGS in predicting fracture 

risk; however, they provided only limited predictive power (Eriksson, J. et al., 2015; Nethander 

et al., 2020a; Warrington, Kemp, Tilling, Tobias, & Evans, 2015; Xiao, X. & Wu, 2021). A PGS 

based on 62 femur neck-related SNPs revealed a hazard ratio (HR) of 1.20 for incident fracture 

per one standard deviation (SD) increase (Ho-Le, Center, Eisman, Nguyen, & Nguyen, 2017a). 
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Another study derived a similar PGS from 63 BMD-related SNPs was also reported to have a 

significant association with fracture risk in adults (Mitchell, J. A., Chesi, Elci, McCormack, Roy, 

Kalkwarf, Lappe, Gilsanz, Oberfield, Shepherd, Kelly, Grant, & Zemel, 2016). However, 

previously published genetic risk scores included genetic variants restricted to those that reached 

genome-wide significant levels (p < 5*𝟏𝟎4𝟖). Due to the polygenic nature of BMD, previously 

established “restricted PGSs” were not able to sufficiently capture the underlying genetic 

predisposition, thus failing to provide a comprehensive assessment of genomic information in 

fracture risk prediction. PGSs calculated from millions of variants across the genome and 

accounting for linkage disequilibrium (LD) between variants was proven to outperform 

traditional PGS in the risk prediction of several diseases, such as cardiovascular disease, type II 

diabetes, and breast cancer (Agerbo et al., 2015; Inouye et al., 2018; Mavaddat et al., 2019). 

However, whether a novel BMD-related genome-wide PGS derived from an improved PGS 

algorithm would significantly increase the predictive power of the genetic components in 

fracture prediction remains unclear. Therefore, we aimed to build more robust and generalizable 

genome-wide PGSs for BMD to provide a more comprehensive fracture risk evaluation. We 

compared the accuracy of the genome-wide PGS with previously published PGS in fracture risk 

assessment. We also aimed to assess the added value of PGS beyond FRAX in fracture 

prediction. We hypothesized that genome-wide PGSs would outperform previously published 

“restricted PGS” in assessing fracture risk and that combining genome-wide PGS with FRAX 

could better identify individuals at high risk of osteoporotic fracture. 
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2.3 Methods 

2.3.1 Study cohort 

UK Biobank (UKB) is a large-scale, population-based observational study consisting of 502,617 

individuals aged 40-69 recruited from across the United Kingdom between 2006 and 2010 

(Sudlow, Cathie et al., 2015). A total of 488,251 participants were genotyped using Affymetrix 

arrays (Bycroft, Clare et al., 2018). The genotype data were quality controlled and imputed using 

the Haplotype Reference Consortium (McCarthy et al., 2016a). At recruitment, a standardized 

socio-demographic questionnaire, medical history, and other lifestyle factors were collected. 

Individual records were linked to the Hospital Episode Statistics (HES) records and the National 

Death and Cancer Registries. Compared to the general population, the UKB participants were 

healthier, less obese, and less likely to smoke and drink alcohol (Fry et al., 2017). Since the 

PGSs were derived based on predominately White GWAS participants and the people of non-

European ancestry comprised only a small proportion of the UKB, we restricted the analysis to 

452,936 white British individuals so as to analyze individuals with a relatively homogeneous 

ancestry.  

2.3.2 Fracture event ascertainment 

Fracture cases were identified through the Hospital Episodes Statistics linked through NHS 

Digital, with a hospital-based fracture diagnosis irrespective of mechanism within the primary 

(data field #41202; n= 435,968) or secondary (n= 435,972) diagnosis field (Appendix A). 

Fractures of the skull, face, hands, and feet, as well as pathological fractures due to malignancy, 

atypical femoral fractures, periprosthetic, and healed fractures were excluded from the analysis. 

The incident fracture cases were defined as having the date of ICD-10–identified fractures after 

the initial assessment visit. The follow-up time was calculated from the enrollment date to the 
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first fracture observed or the subjects’ death. People who did not experience a fracture or death 

were followed until 12 years after enrollment.  

2.3.3 Ascertaining conventional risk factors 

Age, sex, height, weight, body mass index (BMI), previous fracture, current smoking status, 

glucocorticoid use, rheumatoid arthritis, and secondary cause of osteoporosis (Type 1 diabetes 

and menopause before age 45 years) were ascertained from the initial assessment visit (Appendix 

B). Previous fractures were defined as those reported by a questionnaire at enrollment or from 

ICD-10 codes that occurred before the baseline visit. Gender was self-reported and verified by 

genotype, and Individuals with discordant sex between self-report and genotype were excluded.  

2.3.4 Data processing and quality control 

Genotyping of the UKB samples was performed using Affymetrix, UK BiLEVE Axiom, and the 

Affymetrix UKB Axiom array. The Wellcome Trust Centre for Human Genetics performed the 

genotype imputation using the Haplotype Reference Consortium (HRC) and the UK10K 

haplotype resources, which yielded a total of 96 million imputed variants. Quality control was 

performed for the UKB genotype data: SNPs with minor allele frequency less than 0.1% were 

missing in a high fraction of subjects (>0.01) and have Hardy-Weinberg equilibrium p-value < 

1*𝟏𝟎4𝟔 were removed. Individuals who have a high rate of genotype missingness (> 0.01) were 

also excluded from PGS construction. After quality control, a total of 11.5 million variants were 

retained for analysis.  

2.3.5 Polygenic score tuning 

The summary statistics of two comprehensive GWA studies conducted among European 

predominantly cohorts for femoral neck BMD (Estrada, Karol et al., 2012) and total body BMD 
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(Medina-Gomez et al., 2018a) were used to derive PGSs. UKB samples were not included in any 

of the two discovery GWASs. The UKB dataset was split into a tuning set (n=3,000) and a 

testing set (n=452,936). For the tuning set, we randomly selected 1000 prevalent fracture cases 

and 2000 non-fracture cases of European ancestry. A set of candidate PGSs was derived for each 

trait by using the Pruning and Thresholding (P+T) method and the LDPred2 computational 

algorithm in the tuning set. 

The P+T method PGSs were built using a p-value and linkage disequilibrium-driven clumping 

procedure in PLINK 1.90b. Twenty-four candidate PGSs were identified as having combinations 

of the p-value (1.0, 0.5, 0.05, 5 × 10−4, 5 × 10−6, and 5 × 10−8) and 𝒓𝟐 (0.2, 0.4, 0.6, and 0.8) 

thresholds for each trait.  

The LDPred2 computational algorithm was used to generate seven candidate PGSs for each trait. 

Based on seven hyper-parameter values of ρ (1, 0.3, 0.1, 0.03, 0.01, 0.003, and 0.001), seven sets 

of candidates PGSs were generated using the LDPred2 computational algorithm grid mode. Each 

set of PGSs tested a grid of hyper-parameter values, where 102 combinations of hyper-

parameters ρ (the proportion of causal variants) and 𝒉𝟐 (the SNP heritability) were tuned. For 

each ρ value, we chose the best model according to the Z-score from the regression of the 

fracture by the PGS, with age, sex, and BiLEVE/UKB genotyping array and the first four 

principal components (PCs) being adjusted for. The PGS construction was restricted to the 

HapMap3 variants only, as LDpred2 suggested (Privé, Arbel, & Vilhjálmsson, 2020a). 

Together 31 candidate PGSs were derived. The association between PGS and fracture was 

further evaluated in odds ratios (OR) per standard deviation of PGS using logistic regression 

adjusted for age, sex, and BiLEVE/UKB genotyping array and the first four principal 
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components (PCs). The femoral neck BMD-related PGS (𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅) and total body-

related PGS (𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅) with the maximum predictive ability (AUC) with fracture 

were determined to be the best-performing ones and were carried forward into subsequent 

analyses in the independent UKB testing set. For femoral-neck BMD and total body BMD, 𝝆 

thresholds of 0.03 and 0.13, respectively, provided the most optimal discrimination of fracture 

cases and controls and were chosen to derive the genome-wide PGSs in the UKB testing set for 

the subsequent analyses. We additionally calculated two previously published femoral neck and 

total body-related PGSs from Estrada et al. (𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝟔𝟑) and Xiao et al., 

(𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝟖𝟏) in the UKB testing set so as to compare the predictive value of the genome-

wide PGS with the “restricted PGS” in assessing fracture risk (Figure 2-1). Since the PGSs were 

BMD-related, greater PGS is associated with higher BMD and lower fracture risk. 

 

Figure 2-1 Study Design and Workflow 
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2.3.6 Statistical analysis 

Demographic and baseline clinical characteristics of the UKB testing set are presented as mean ± 

standard deviation (SD) for continuous variables and frequencies (%) for categorical variables. 

All PGSs were standardized to zero-mean and unit-variance. The primary outcome was an 

incident fracture that occurred after the baseline visit.  

To gauge the potential clinical impact of PGSs, we binned the UKB testing set into 100 

groupings based on the percentile of the PGSs and determined the prevalence of fracture within 

each bin, stratified by sex. The predicted probability of incident fracture based solely on PGSs 

was also examined by gender. We additionally compared the observed risk gradient with the 

PGS-predicted risk across percentile bins. For each individual, the 10-year predicted probability 

of disease was calculated using a simple logistic regression model that includes PGS only. The 

predicted prevalence of disease within each percentile bin was calculated as the average 

probability of all individuals within that bin predicted solely by PGS. To illustrate the different 

cumulative incidences of fracture in individuals with distinct genetic predispositions, we grouped 

individuals according to different quantile ranges of PGSs: ≤1%, 1-5%, 5-20%, 20-40%, 40-

60%, 60-80%, 80-95%, 95-99%, and >99%. The cumulative incidence of fracture by each PGS 

group was then derived using the cumulative incidence function (CIF), with the competing 

mortality risk accounted for.   

The association between incident fracture risk and each PGS was first assessed using multiple 

logistic regression models. The discriminatory accuracy of each model was also evaluated using 

the c-index. Next, we used the Cox proportional hazard modeling to estimate the HRs of PGSs 

on incident fractures. The Cox proportional hazard model’s proportionality assumption was 

visually inspected beforehand using the Schoenfeld Residual test (SCHOENFELD, 1982a) and 
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the linearity assumption was checked using the Martingale Residual test (THERNEAU, 

GRAMBSCH, & FLEMING, 1990a). The UKB testing set satisfied both the proportional 

hazards and linearity assumptions. Additionally, we examined fracture incidence according to 

the PGS category in the UKB testing set. We compared the effect of the top percentiles (1%, 5%, 

10%, and 20%) with the remaining percentiles (99%, 95%, 90%, and 80%) of each PGS. Using 

Cox proportional hazard models. The predictive performance of each PGS was also assessed 

using the C-index. All analyses were adjusted for age, sex, and the first four principal 

components (PCs).  

We also investigated the predictive value of PGS beyond the existing fracture assessment tool. 

The association between PGS with fracture risk, adjusted for the FRAX risk factors, including 

age, body weight, height, previous fracture, current smoking, glucocorticoids, and rheumatoid 

arthritis, was assessed using Cox proportional hazard models. The model with only FRAX risk 

factors included was set as the base model. In total, five models were formulated as follows: 

Model 1 – FRAX base model; Model 2 – FRAX + 𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝟔𝟑; Model 3 – FRAX + 

𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝟖𝟏; Model 4 – FRAX + 𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅; and Model 5 – FRAX + 

𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅. The magnitude of the association between each PGS and fracture risk was 

assessed by the HRs and its corresponding 95% confidence intervals. In addition, net 

reclassification improvement (NRI) comparing the nested models was calculated separately for 

individuals with and without fractures. We designated “high risk” as predicted MOF risk ≥ 20% 

and “low risk” as predicted MOF risk < 20%, based on the National Osteoporosis Foundation's 

recommended fixed intervention cutoff. The Integrated discrimination improvement (IDI) was 

also calculated to incorporate both the direction of change in the calculated risk and the extent of 

change. All statistical analyses were conducted using R version 4.0.3 software and SAS. 
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We later discovered a more recent femoral neck BMD-associated GWAS, which reported more 

SNPs and has better coverage of the genome (Zheng et al., 2015). Therefore, we conducted a 

sensitivity analysis that tuned and validated a new PGS using summary statistics of this GWAS. 

The effect of this PGS (PGS_FNnew) on fracture risk was also assessed using both logistic 

regression and the Cox proportional hazard models, adjusted for age, sex, and the first four PCs. 

2.4 Results 

2.4.1 Characteristics of the UKB testing set 

The characteristics of the UKB participants in the testing set (N=455,663) are shown in 

Appendix C, comprising 17,351 fracture cases and 441,196 non-fracture cases in total. There 

were 5,720 prevalent fracture cases at the time of recruitment and 11,649 incident cases of 

fracture during a mean follow-up of 6.2 years. In the UKB testing set, the four PGSs were 

moderately correlated, with correlation coefficients ranging from -0.03 to 0.43. Separated 

multiple linear regressions were conducted to examine the association between PGSs and the 

corresponding measured BMD. As shown in Appendix D, all four PGSs were significantly 

associated with a higher level of BMD  

2.4.2 Fracture risk by PGS groups 

In the UKB testing cohort, a lower PGS, which predicts a lower BMD, was associated with 

higher fracture risk. Our results showed that, for both men and women, the 𝑃𝐺𝑆_𝐹𝑁𝐵𝑀𝐷(), 

𝑃𝐺𝑆_𝐹𝑁𝐵𝑀𝐷!"#$%", and 𝑃𝐺𝑆_𝑇𝐵𝐵𝑀𝐷!"#$%" percentile among fracture cases were higher than 

among healthy controls. The distribution of 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝟖𝟏; however, it did not show a big 

difference between fracture cases and non-cases (Figure 2-2A & Appendix E 1A). Similarly, the 

predicted probability of incident fracture was significantly higher among women than among 
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men, and a sharp decrease can be observed in the right tail of the 𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝟔𝟑, 

𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅, and 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 distributions. Individuals with higher BMD-

related PGS have a lower risk of fracture (Figure 2-2B & Appendix E 1B). Based only on the 

PGSs, the shape of the observed risk gradient was consistent with predicted risk, except for 

PGS_tbbmd81 (Figure 2-2C & Appendix E 2-1C.). The crude 10-year cumulative fracture 

incidence by nine PGS groups was shown in Figure 2-3. With competing mortality risk 

accounted for, significant differences were observed across 𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝟔𝟑, 

𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅	and	𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 groups (p<0.0001). The crude fracture incidence 

was significantly higher among individuals with low PGS (Figure 2-3). Detailed cumulative 

incidence of fracture by each PGS group is listed in Appendix F.    
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Figure 2-2 Risk for Incident Fracture According to Genome-wide PGSs. 

A. B. C. 

   

   
(A) PGSs percentile among fracture cases versus controls in the UK Biobank testing set. Within each boxplot, the 
horizontal lines reflect the median, the top and bottom of each box reflect the interquartile range, and the 
whiskers reflect the maximum and minimum values within each group. (B) Predicted Probability of Incident 
Fracture by PGSs: Risk gradient for fractures according to the PGS percentiles. 100 groups of the testing dataset 
were derived according to the percentile of each of the two PGSs. (C) Predicted versus Observed prevalence of 
incident fracture according to PGS percentiles. 
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Figure 2-3 Cumulative Incident Function Plot for Fracture According to Decile of the 

Genome-Wide Polygenic Score (PGS) in UKB Testing Set. Shaded Regions Denote 95% 

Confidence Intervals.  

  

  
 

2.4.3 PGSs association with incident fractures 

Multiple logistic regression results show that, in the UKB testing set, each of the four GPSs was 

strongly associated with incident fracture (p<0.0001), with an OR ranging from 1.03 to 1.27. A 

comparison of the genome-wide PGS with previously published PGS from Estrada et al., 

(𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝟔𝟑) and Xiao et al. (𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝟖𝟏) in the UKB testing set is given in Figure 

2-4A, showing that the genome-wide PGS of total body BMD had a substantially greater 

association with fracture risk in terms of OR, whereas the genome-wide PGS of femoral neck 
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BMD (𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅) didn’t show a significantly higher association with fracture 

compared to the restricted PGS (𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝟔𝟑). For total body BMD related PGS, the 

genome-wide PGS (𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅) outperformed the restricted PGS (𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝟖𝟏) 

with OR estimates per standard deviation decrease at 1.03 (95% CI, 1.01 – 1.05) and 1.27 (95% 

CI, 1.25 – 1.30) of the 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝟖𝟏 and 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅, respectively.  
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Figure 2-4 Relative Performance of Individual Polygenic Scores (PGS) for Fracture. 4A: 

Results from Cox Proportional Hazard Models; 4B: Results from Multivariate Logistic 

Regression Models.  

A. 

B. 

*Separated logistic/Cox proportional hazard regression was conducted for each PGS; each estimate was adjusted for 
age, sex, and the first four principal components. 

 

The Cox proportional hazard regression results showed attenuated but significant associations 

between each PGS and fracture risk. For every one-unit decrease of PGSs, the restricted PGS and 

the genome-wide PGSs were associated with up to 1.13-fold and 1.17-fold increased fracture 

risk, respectively. Out of four studied PGSs, 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝟖𝟏 (HR: 1.03; 95%CI 1.01-1.05, 

p=0.001) had the weakest and the 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 (HR: 1.17; 95%CI 1.15-1.19, p<0.0001) 
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had the strongest association with an incident fracture. Models that include genome-wide PGSs 

had higher c-indices than models with restricted PGSs (0.651 versus 0.644) (Figure 2-4B).  

We also estimated the OR and HR and corresponding 95% CI for individuals in the bottom 1%, 

5%, 10%, and 20% of the PGSs, compared with the remaining individuals. Results from Cox 

proportional hazard regression showed that individuals in the bottom 1% distribution of 

𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝟔𝟑 , 𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 , and 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 had 1.33-, 1.25-, and 1.47-

fold increased fracture risk, respectively, compared to their corresponding remaining individuals. 

In contrast, individuals with extreme 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝟖𝟏 values did not show a significantly higher 

risk of fracture. Similar results were observed when applying multiple logistic regression models 

(Appendix G).  

The Cox proportional hazard model showed that, after adjusting for FRAX risk factors available 

in the UKB testing set, all four PGSs were significantly associated with incident fractures. Out of 

four PGSs, 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 had the strongest association with incident fracture. The HRs of 

𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝟔𝟑 , 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝟖𝟏, 𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 , and 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 for 

incident fracture were 1.13 (95% CI, 1.11 – 1.15), 1.03 (95% CI, 1.01 – 1.05), 1.11 (95% CI, 

1.09 – 1.14), and 1.16 (95% CI, 1.15 – 1.19), respectively. Compared to the FRAX base model, 

the association between clinical risk factors and incident fracture risk did not attenuate in all four 

PGS models (Table 2-1).  

The sensitivity analysis showed similar but attenuated results. PGS tuning results show that PGS 

derived using ldpred2 with 𝝆 thresholds of 0.03 provides the most optimal discrimination of 

fracture cases and controls and were chosen to derive the genome-wide PGSs in the UKB testing 

set for the subsequent analyses. The OR and HR of PGS_FNnew for incident fracture were 1.06 
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(95%CI, 1.05-1.08) and 1.04 (95%CI, 1.03-1.04), respectively. Since the effect of PGS_FNnew 

on fracture risk is smaller than 𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅, PGS_FNnew was not included in the 

subsequent analyses.  
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Table 2-1. Hazard Ratio of Significant Predictive Variables for Incident Fractures in Models with and without PGSs.  

Variable Model 1:  
FRAX Base Model 
 
 
HR per 1 unit (95% 
CI)  

Model 2:  
FRAX + 
𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝟔𝟑 
 
HR per 1 unit (95% 
CI) 

Model 3:  
FRAX + 
𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝟖𝟏 
 
HR per 1 unit  
(95% CI) 

Model 4:  
FRAX + 
𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 
 
HR per 1 unit  
(95% CI)  

Model 4:  
FRAX + 
𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 
 
HR per 1 unit  
(95% CI)  

Age 1.03 (1.02-1.03) 1.03 (1.02 – 1.03) 1.03 (1.02 – 1.03) 1.03 (1.02 – 1.03) 1.03 (1.02 – 1.03) 
Sex (women vs. men) 2.83 (2.70 - 2.94) 2.83 (2.70 - 2.94) 2.83 (2.70 – 2.94) 2.83 (2.70 – 2.94) 2.81 (2.63 – 2.94) 
Body weight 1.01 (1.01 – 1.01) 1.01 (1.01 – 1.01) 1.01 (1.01 – 1.02) 1.01 (1.01 – 1.02) 1.01 (1.01 – 1.02) 
Height 0.98 (0.98 – 0.99) 0.98 (0.98 – 0.99) 0.98 (0.98 – 0.99) 0.98 (0.98 – 0.99) 0.98 (0.98 – 0.99) 
Oral glucocorticoid 1.10 (0.87 – 1.22) 1.11 (0.88 – 1.39) 1.10 (0.86 – 1.37) 1.09 (0.87 – 1.39) 1.09 (0.86 – 1.39) 
Type 1 diabetes 1.49 (1.30 – 1.69) 1.48 (1.30 – 1.69) 1.48 (1.30 – 1.69) 1.47 (1.28 – 1.69) 1.46 (1.27 – 1.67) 
Early menopause 1.02 (0.97 – 1.08) 1.02 (0.97 – 1.07) 1.02 (0.93 – 1.03) 1.02 (0.93 – 1.03) 1.02 (0.93 – 1.03) 
Rheumatoid arthritis 1.10 (1.01 – 1.19) 1.10 (1.01 – 1.19) 1.10 (1.01 – 1.19) 1.10 (1.02 – 1.20) 1.10 (1.01 – 1.20) 
Current smoking 1.51 (1.43 – 1.59) 1.50 (1.43 – 1.59) 1.50 (1.43 – 1.59) 1.51 (1.43 – 1.59) 1.51 (1.43 – 1.59) 
PGS NA 1.13 (1.11 – 1.15) 1.03 (1.01 – 1.05) 1.11 (1.09 – 1.14) 1.16 (1.15 – 1.19) 
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2.4.4 Model evaluation 

The fracture discrimination ability of PGSs over clinical risk factors was assessed using the 

concordance index (c-indices) (Appendix H). Compared to the base model, models with PGSs 

showed moderate improvement in discriminating fracture cases and controls. The 

𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝟔𝟑 and the 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 improved the discrimination from 0.678 to 0.683 

and from 0.678 to 0.686, respectively. In the reclassification analysis, compared to the FRAX 

base model, the models with 𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝟔𝟑 , 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝟖𝟏, 𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 , and 

𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 improved the reclassification of fracture by 2% (95% CI, 1.5% to 2.4%), 

0.2% (95% CI, 0.1% to 0.3%), 1.4% (95% CI, 1.3% to 1.5%), and 2.2% (95% CI, 2.1% to 

2.4%), respectively. The 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 showed the greatest improvement in terms of 

reclassification. For the model that included 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅, 395 individuals were 

correctly reclassified up to the high-risk group, and 325 individuals who did not experience a 

fracture were correctly reclassified from the high-risk group to the low-risk group. The 

continuous NRI showed that improvement in fracture reclassification contributed by 

𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝟔𝟑 , 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝟖𝟏, 𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 , and 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 were 

11.8%, 2.1%, 7.1%, and 13.2%, respectively (Table 2-2). 



 32 

Table 2-2 Reclassification Table of 10-Year Osteoporotic Fracture Stratified by Event Status. Results of Reclassification 

Analysis: Percent of Reclassification Compared with FRAX Base Model. 

Reclassification 
  

Non-fracture Group 
 

Fracture Group 
 

NRI  
(category) 

 
p 

Value 

 
NRI  

(continuous) 

 
p  

Value 

 
IDI 

 
p  

Valu
e 

 Reclassification 
down 

Reclassification 
up 

Reclassification 
up 

Reclassification 
down 

      

𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝟔𝟑 0.040 0.026 0.010 0.013 0.012 
(0.010 to 0.013) 

0 0.114 
(0.108 to 0.120) 

0 0.013 
(0.012 to 0.014) 

0 

𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝟖𝟏 0.011 0.010 0.004 0.004 0.002 
(0.001 to 0.003) 

<0.01 0.021 
(0.015 to 0.027) 

<.01 0.002 
(0.001 to 0.023) 

0.83 

𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 0.043 0.028 0.013 0.015 0.014 
(0.013 to 0.015) 

0 0.071 
(0.065 to 0.077) 

0 0.014 
(0.013 to 0.023） 

<0.0
1 

𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 0.063 0.034 0.015 0.022 0.022 
(0.021 to 0.024) 

0 0.132 
(0.125 to 0.138) 

0 0.032 
(0.002 to 0.032） 

0.00
4 

*Significant results are in boldface. NRI=net reclassification improvement; IDI=integrated discriminative improvement; 95% confidence intervals are given 
within brackets. 
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2.5 Discussion 

Early identification of high-risk individuals is crucial in enhancing fragility fracture screening 

and facilitating preventive interventions (Kanis, 1994b). PGS has the advantage that it can be 

assessed well before any clinical risk factors emerge. As fragility fracture has a sizable heritable 

component because of its polygenicity nature, utilizing thousands of genetic variants discovered 

from GWAS to predict risk holds promise for risk stratification and therefore helps facilitate 

primary prevention.  

Prior studies focused mainly on the predictive ability of PGS derived using genome-wide 

significant SNPs, resulting in mixed findings. This study systematically derived and validated 

genome-wide PGS of femoral neck BMD and total body BMD, incorporating information from 

the entire genome system. To compare the predictive ability of genome-wide PGSs to restricted 

PGSs, we additionally calculated two previously published PGSs based on 63 femoral neck 

BMD- and 81 total body BMD-related SNPs, respectively. We quantified the strengths of 

associations of four PGSs with fracture outcomes in 450,000 UKB participants and demonstrated 

that PGS accurately predicted striking differences in fracture risk. For the total body BMD, our 

results showed that the LDpred2 approach, which builds a risk prediction model based on the 

entire genome, yielded better predictive performance than the approach that includes only 81 

variants that reached a genome-wide significance level. However, femoral neck BMD-related 

PGS calculated using the LDpred2 method showed no improvement over the restricted PGS. 

Whether including more SNPs would improve the predictive ability of PGS remains 

controversial. For many phenotypes, genome-wide PGSs outperform those PGSs calculated by 

using genome-wide significant variants only, in line with the evidence that much of the genetic 

predisposition of a disease/trait is explained by the low-level effect SNPs (Speed et al., 2017; 
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Yang et al., 2010). However, in some cases, including millions of SNPs with negligible effect 

size in the polygenic score does not affect the predictions (Allegrini et al., 2019; Chung et al., 

2019; Fritsche et al., 2019; Khera, A. V. et al., 2018). In a prior study, Khera et al. constructed 

30 genome-wide PGSs for five common diseases using up to 7 million SNPs. Results show that 

genome-wide PGSs had lower c-statistics than PGSs based on genome-wide significant SNPs 

only (Janssens & Joyner, 2019).  

In our study, individuals in the top 1% of total body BMD PGS had an HR of 1.47 compared to 

the remaining individuals. This level of effects may be sufficient to justify the use of PGSs for 

clinical screening of individuals in order to detect those in the extreme tail, which may be useful 

for monitoring and preventive treatment. Several studies have investigated the potential for risk 

scores based on GWAS-level significant variants in improving fracture risk prediction accuracy 

and reported weak to no evidence for added value from these scores (Ho-Le, Center, Eisman, 

Nguyen, & Nguyen, 2017b; Lee, S. H., Lee, Ahn, Kim, Lim, Kim, Cho, Kim, Kim, Kim, Kim, 

Koh, & Kang, 2013a; Nethander et al., 2020b). More recently, Lu et al. derived a genome-wide 

PGS (gSOS) of heel ultrasound measurements (speed of sound) using a statistical learning 

approach (LASSO) and demonstrated that gSOS was more predictive of major osteoporotic 

fracture and hip fracture than most clinical risk factors. Additionally, they also derived a FRAX-

gSOS and demonstrated that it could refine the risk prediction by employing a positive net 

reclassification index ranging from 0.024 to 0.072 (Lu, Forgetta, Keller-Baruch, Nethander, 

Bennett, Forest, Bhatnagar, Walters et al., 2021b).  

However, as a well-used metric of fracture risk that is incorporated into the FRAX algorithm, the 

genome-wide PGS for BMD has never been studied. In the current study, we generated more 

accurate genome-wide PGSs that can possibly capture a larger proportion of total variance in 
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BMD. BMD-related genome-wide PGSs remained significantly associated with incident fracture 

risk, even after accounting for FRAX clinical risk factors. Moreover, adding genome-wide PGS 

to the FRAX clinical risk score has successfully demonstrated significant improvement in 

predictive accuracy for fracture. The PGS refined risk discrimination and reclassified up to 2% 

of individuals to a higher or lower fracture risk category. Notably, for total body BMD, in 

comparison to the restricted PGS, the genome-wide PGS showed significantly better ability in 

reclassifying individuals who will and will not sustain a fracture.  

There are several limitations in the current study worth noting. First, only European ancestry 

individuals were considered in this study; therefore, the specific PGS calculated here may not 

have optimal predictive power in other ethnic groups due to different allele frequencies, LD 

patterns, and effect sizes of common variants across populations of different ethnic backgrounds. 

Thus, our findings may not generalize to other ethnic groups. Second, due to the limited data 

availability, we failed to include all 12 clinical risk factors included in FRAX; consequently, a 

comprehensive evaluation of PGS with complete adjustment was not conducted. Third, the UKB 

participants were generally younger and healthier than the general population, with a lower 

incident rate of fracture; this non-random ascertainment is likely to deflate disease prevalence. 

2.6 Conclusions 

In summary, we constructed two genome-wide PGS for BMD based on the UKB dataset and 

demonstrated that an efficient PGS estimate enables the identification of strata with up to a 1.5-

fold difference in fracture incidence. This finding calls for personalized screening and prevention 

strategies that incorporate the PGS information into clinical diagnosis, thus considerably 

increasing the benefits of population-wide screening programs. 
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Chapter 3 Manuscript 2 

 
“Validation of a genome-wide polygenic score in improving 
fracture risk assessment beyond the FRAX tool in the Women's 
Health Initiative Study” 
 

3.1 Abstract 

3.1.1 Purposes  

Previous study has established two polygenic scores (PGSs) related to femoral neck bone 

mineral density (BMD) (𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅) and total body BMD (𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅) that 

are associated with fracture risk. However, these findings have not yet been externally validated 

in an independent cohort. This study aimed to validate the predictive performance of the two 

established PGSs and to investigate whether adding PGSs to the Fracture Risk Assessment Tool 

(FRAX) improves the predictive ability of FRAX in identifying women at high risk of major 

osteoporotic fracture (MOF) and hip fractures (HF). 

3.1.2 Methods  

The study used the Women's Health Initiative (WHI) cohort of 9,000 postmenopausal women of 

European ancestry. Cox Proportional Hazard Models were used to assess the association between 

each PGS and MOF/HF risk. Four models were formulated to investigate the effect of adding 

PGSs to the FRAX risk factors: (1) Base model: FRAX risk factors; (2) Base model + 

𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅; (3) Base model + 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅; (4) Base model + metaPGS. The 
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reclassification ability of models with PGS was further assessed using the Net Reclassification 

Improvement (NRI) and the Integrated discrimination improvement (IDI). 

3.1.3 Results 

The study found that the PGSs were not significantly associated with MOF or HF after adjusting 

for FRAX risk factors. The FRAX base model showed moderate discrimination of MOF and HF, 

with a C-index of 0.623 (95% CI, 0.609 to 0.641) and 0.702 (95% CI, 0.609 to 0.718), 

respectively. Adding PGSs to the base FRAX model did not improve the ability to discriminate 

MOF or HF. Reclassification analysis showed that compared to the model without PGS, the 

model with  𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 (1.2%, p = 0.04) and metaPGS (1.7%, p = 0.05) improve the 

reclassification of HF, but not MOF. 

3.1.4 Conclusions 

The findings suggested that incorporating genetic information into the FRAX tool has minimal 

improvement in predicting HF risk for elderly Caucasian women. These results highlight the 

need for further research to identify other factors that may contribute to fracture risk in elderly 

Caucasian women.

3.2 Introduction 

Osteoporosis is a common bone disease that increases predisposition to fractures (Sözen, T., 

Özışık, & Başaran, 2017b). Worldwide, osteoporotic fractures have become a critical public 

health issue with a high post-fracture disability and mortality rate, resulting in social and 

economic burdens (Johnell & Kanis, 2006b). Early detection of the high-risk population could 

lead to efficacious preventive and therapeutic interventions.  
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Prior studies have demonstrated the polygenic nature of fractures (Andrew, Antioniades, 

Scurrah, Macgregor, & Spector, 2005b; Arden & Spector, 1997c; Michaëlsson, K., Melhus, 

Ferm, Ahlbom, & Pedersen, 2005b; Ralston, S. H. & Uitterlinden, 2010b). The predisposition to 

osteoporotic fracture is attributable to a complex interaction between genetic and non-genetic 

factors (Trajanoska, K. & Rivadeneira, 2019b). Many assessment tools have been developed to 

identify susceptible individuals with a higher propensity to get clinically relevant fractures that 

merit an intervention (Collins, Mallett, & Altman, 2011; Kanis, Johnell, Oden, Johansson, & 

McCloskey, 2008c; Nguyen, N. D., Frost, Center, Eisman, & Nguyen, 2008). However, the 

personalized genetic predisposition of experiencing a fracture was not incorporated into any of 

those tools. The Fracture Risk Assessment Tool (FRAX) is the most widely used risk 

stratification tool in North America. FRAX was used to assess the 10-year probability of major 

osteoporotic fracture (MOF) and hip fracture (HF) on an individual level using 12 clinical risk 

factors (Kanis et al., 2008c). Nonetheless, the performance of FRAX in terms of fracture 

discrimination is unsatisfactory (Briot et al., 2014b; Crandall, Schousboe, Morin, Lix, & Leslie, 

2019b; Sornay-Rendu, Munoz, Delmas, & Chapurlat, 2010b). 

In the past decade, advanced genome-wide association studies (GWAS) have identified millions 

of genetic variants associated with either fracture or fracture-related traits (Estrada, K., 2012; 

Medina-Gomez et al., 2018b; Zheng et al., 2015). As a highly heritable (50-85%) skeletal 

measure (Ralston, Stuart H. & Uitterlinden, 2010) that predicts fracture risk, bone mineral 

density (BMD) has been comprehensively investigated in several GWASs, with many common 

genetic variants been discovered (Estrada, K. et al., 2012; Medina-Gomez et al., 2018b; Zheng et 

al., 2015). Moreover, extensive cohort resources have enabled the genetic prediction of such 

heritable clinical risk factors from genotypes through polygenic scores (PGS), which capture 
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information from many single nucleotide polymorphisms (SNPs) assayed from genome-wide 

genotyping. We previously developed and validated two genome-wide PGSs related to the 

femoral neck (𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅)	and total body BMD (𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅) in the UK 

Biobank (UKB) cohort (Xiao, Xiangxue & Wu, 2022). Both genome-wide PGS was proven to be 

significantly associated with incident fracture risk, even after accounting for FRAX clinical risk 

factors (Xiao, Xiangxue & Wu, 2022) However, the UKB participants were generally younger 

and healthier than the general population. Our prior findings thus lack generalizability outside of 

the UKB cohort. Also, since not all 12 clinical risk factors in FRAX were available in the UKB, 

a comprehensive evaluation of PGS with complete adjustment was not conducted.  

The objective of this  study was twofold: firstly, to conduct a comprehensive validation of the 

predictive power of two previously established genome-wide PGSs in an external cohort and, 

secondly, to develop a PGS for BMD by combining the information of both 

𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 and 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 using a meta-analytic strategy. The study aimed 

to assess the PGSs’ ability to stratify fracture risk and to determine if combining PGSs with 

FRAX would enhance the accuracy of identifying individuals at high risk of osteoporotic 

fracture.  

3.3 Methods 

3.3.1 Study cohort 

The Women's Health Initiative (WHI) study is a nationwide health study aimed at preventing 

heart disease, breast cancer, and osteoporotic fractures in postmenopausal women. In this study, 

we used genotype and phenotype data of four WHI sub-studies (the WHI Genomics and 

Randomized Trials Network (GARNET), the National Heart Lung and Blood Institute (NHLBI), 
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the Population Architecture using Genomics and Epidemiology (PAGE), and the Women's 

Health Initiative Memory Study (WHIMS)) acquired through the Database of Genotype and 

Phenotype (dbGap). As the genetic models were primarily developed and trained using samples 

of European ancestry, we limited this study to only include Caucasian women to ensure a 

relatively homogeneous ancestry. Participants who were taking medication that affected BMD 

(n=0) and participants who did not have complete information regarding FRAX risk factors were 

excluded from this study (n=797). Overall, the data analysis included 9,203 eligible women. 

3.3.2 Ethics approval 

This study was approved by the Database of Genotype and Phenotype (dbGap) (https 

://www.ncbi.nlm.nih.gov/proje cts/gap/cgi-bin/study .cgi?study id=phs00 0200.v12.p3) and the 

institutional review board at the University of Nevada, Las Vegas. The data was fully 

anonymized before we accessed them, and UNLV IRB waived the informed consent. 

3.3.3 Fracture and outcome ascertainment 

The primary outcome of this study was MOF, which were defined as a composite of hip, 

humerus, forearm, and clinical vertebral fractures in accordance with the FRAX definition. The 

follow-up time for WHI participants was calculated from the date of their baseline visit until the 

occurrence of the first fracture or until the subject's death. Self-reported fractures were identified 

by questionnaires. People who did not experience a fracture or death were followed up until the 

end of the WHI main study, was 12 years after enrollment. 

3.3.4 Clinical risk factors ascertainment 

Information regarding age, race, exercise, smoking status, alcohol intake, previous fragility 

fractures, familial history of fracture, frequency of falls, medication use were collected at 
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baseline using a standard medical questionnaire. Heavy drinking was defined as consume more 

than three alcoholic drinks per day. Smoking status was categorized following the American 

Heart Association (AHA) guidelines as “never”, “past”, and “current”. Height was measured in 

centimeters in standing position, and weight was measured in kilograms using a balance beam.  

3.3.5 Genotype imputation 

The genotype data used in this study were obtained from blood samples and acquired through 

dbGap. Genotyping was performed using either the Illumina (Illumina, San Diego, California) or 

Affymetrix 6.0 Array Set Platform (Affymetrix, Santa Clara, California). Genotype imputation 

was carried out using the Sanger Imputation Server, employing the Haplotype Reference 

Consortium (HRC) reference panel and the Positional Burrows-Wheeler Transform (PBWT) 

imputation algorithm. 

3.3.6 Polygenic scores 

𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 and 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 were quantified using LDpred2 with optimal 

hyperparameters determined previously (Xiao, Xiangxue & Wu, 2022). For femoral neck BMD 

and total body BMD, 𝝆 thresholds of 0.03 and 0.13, respectively, were used to derive the 

genome-wide PGSs for each individual in the WHI cohort. Since the PGSs were BMD-related, 

greater PGS is projected to be associated with higher BMD and lower fracture risk.  

To construct the metaPGS for BMD, we used the existing 𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 and 

𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 scores. The metaPGS was calculated as follows: 

𝑷𝑮𝑺𝒊𝒎𝒆𝒕𝒂 =
𝜷𝟏𝒁𝒊𝟏 + 𝜷𝟐𝒁𝒊𝟐

@𝜷𝟏𝟐 + 𝜷𝟐𝟐 + 𝟐𝜷𝟏𝜷𝟐𝝆𝟏,𝟐
 



 42 

where 𝒁𝒊𝟏, 𝒁𝒊𝟐, are the standardized 𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 and 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 for the 𝒊th 

individual, respectively. 𝜷𝟏 and 𝜷𝟐 are the univariate log odds ratios for each score (estimated 

using logistic regressions), and 𝝆𝟏,𝟐 is the Pearson correlation between the 𝒊th and 𝒋th scores.  

3.3.7 Statistical analysis 

The 𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 and 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 were standardized with a mean of zero and a 

standard deviation (SD) of one to enable a standardized comparison of effects. The study 

categorized participants into three groups based on the percentile distribution (≤10%, 10-90%, 

and >90%) of each PGS to show the cumulative fracture incidence in individuals with distinct 

genetic profiles. The observed 10-year incidence of MOF by PGS groups was calculated using 

the cumulative incidence function (CIF), accounting for the competing mortality risk. 

To investigate whether adding PGS would improve the predictive ability of FRAX, we 

formulated four models: (1) Base model: FRAX risk factors; (2) Base model + 

𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅; (3) Base model + 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅; (4) Base model + metaPGS. The 

magnitude of the association between each PGS and MOF/HF risk was assessed using hazard 

ratios (HRs) and corresponding 95% confidence intervals estimated from the Cox Proportional 

Hazard Models. Model comparison was performed using the likelihood ratio test. The Cox 

proportional hazard model's proportionality assumption was visually inspected and examined 

using the Schoenfeld residual test (SCHOENFELD, 1982b) The linearity assumption was 

checked using the martingale residual test (THERNEAU, GRAMBSCH, & FLEMING, 1990b). 

All three PGSs (𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅, 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅, and metaPGS) were evaluated both 

as continuous and categorical variables in the survival analyses. 
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The performance of four models in identifying individuals at risk of sustaining a fracture was 

evaluated using the Area Under the Curve (AUC) and tested for statistical significance using the 

DeLong test (DeLong, DeLong, & Clarke-Pearson, 1988). The Net Reclassification 

Improvement (NRI) was used to assess the reclassification ability of each model by estimating 

the predicted risk of fracture for each individual and categorizing them into three risk groups. 

High risk was defined as a predicted MOF risk ≥ 20% (HF risk ≥ 3%), while low risk was 

defined as a predicted MOF risk < 20% (HF risk < 3%), based on the National Osteoporosis 

Foundation's recommended intervention cutoff (Cosman et al., 2014b). The NRI was used to 

determine how well the models with PGSs reclassified subjects compared to the base FRAX 

model. The Integrated discrimination improvement (IDI) was used to measure the direction and 

extent of the change in the predicted risk. Statistical analyses were conducted in SAS 9.4 (SAS 

Institute, Inc., Cary, NC, USA). 

3.4 Results 

3.4.1 Sample characteristics 

The study analyzed a total of 9,203 women who were followed for an average of 12 years. Out of 

these, 1,255 (13.6%) women sustained at least one MOF during the follow-up period, with 600 

(6.5%) experiencing HF. The average duration of follow-up for women who experienced at least 

one MOF was 6.7 years. The baseline characteristics of the participants were compared between 

fracture status groups and presented in Table 3-1. Older age, lower body mass index and had 

higher alcohol consumption were associated with a higher likelihood of fracture. Participants 

who experienced fractures also had a higher prevalence of prior fractures, family history of HFs, 
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and falls in the past 12 months. The distribution of 𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅, 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅, 

and metaPGS in the WHI cohort was generally normal. 

 

 

Table 3-1 Characteristics of 9,203 Women Stratified by Major Osteoporosis Fracture 

(MOF) and Hip Fracture (HF) Status  

 Subjects without fracture 
(N=7,948) 

Subjects with MOF 
(N=1,255) 

P  
value 

Subjects with HF 
(N=600) 

P  
value 

Age (year), mean (SD) 66.96 ± 6.40 69.07 ± 5.74 <0.01 70.18 ± 5.00  <0.01 
Weight (kg), mean (SD) 75.62 ± 15.79 73.24 ± 15.11 <0.01 72.07 ± 15.23 <0.01 
Height (cm), mean(SD) 161.36 ± 5.96 161.40 ± 6.10 0.81 161.76 ± 6.13 0.10 
Body mass index (kg/m2), mean 
(SD) 

29.00 ± 5.79 28.10 ± 5.59 <0.01 27.50 ± 5.42 <0.01 

Smoking, n (%) 
    Never 4,033 (50.74%) 651 (51.87%)  

0.70 
323 (53.83%)  

0.31     Past 3,209 (40.37%) 491 (39.12%) 230 (38.33%) 
    Current 706 (8.88%) 113 (9.00%) 47 (7.83%) 
≥ 3 alcohol drinks per day, n (%) 
    Yes  119 (1.49%) 22 (1.75%) 0.46 9 (1.50%) 0.99 
    No 7,829 (98.50%) 1,233 (98.25%) 591 (98.50%) 
Rheumatoid arthritis, n (%) 
    Yes 376 (4.73%) 72 (5.74%) 0.14 43 (7.17%) 0.01 
    No 7,572 (95.27%) 1,183 (94.26%) 557 (92.83%) 
Previous fragility fracture, n (%) 
   Yes 3,454 (43.46%) 697 (55.54%) <0.01 330 (55.00%) <0.001 
   No 4,494 (56.54%) 558 (44.46%) 270 (45.00%) 
Familial history of fracture, n (%) 
   Yes 1,150 (14.47%) 230 (18.33%) <0.01 119 (19.83%) <0.01 
   No 6,798 (85.53%) 1025 (81.67%) 481 (80.17%) 
𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅, mean (SD) 0.08 ± 0.80 0.03 ± 0.81 0.04 0.04 ± 0.82 0.30 
𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅, mean (SD) -0.62 ± 0.79 -0.68 ± 0.79 0.02 -0.69 ± 0.79 0.06 
MetaPGS, mean (SD) 0.32 ± 0.81 0.26 ± 0.80 <0.01 0.27 ± 0.80 0.12 

 

3.4.2 Crude 10-year cumulative incidence by PGSs 

Figure 3-1 presents the crude 10-year cumulative incidence of MOF and HF according to three 

PGS groups. After accounting for competing mortality, there were borderline significant 

differences observed across the group of 𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 for MOF (p = 0.05), but not for 

HF (p = 0.71). Similar results were observed across the groups of 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 (MOF: 
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p=0.02) and metaPGS (MOF: p=0.04). Individuals with lower 𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅, 

𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅, and metaPGS had higher incidences of MOF and HF
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Figure 3-1 Cumulative Incident Function Plot for Fracture According to Decile of the Genome-Wide Polygenic Score (PGS) in 

WHI. Shaded Regions Denote 95% Confidence Intervals.  

 

   

   
*Cumulative Incident for MOF and HF according to the percentile distribution (10%, 10-90%, and >90%) of 𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅, 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅, and 
metaPGS, respectively. 

P = 0.05 P = 0.02 P = 0.04 

P = 0.71 P = 0.39 P = 0.62 
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3.4.3 Association between PGSs and fracture 

The Cox Proportional Hazard model showed that when treating PGSs as continuous variables, all 

𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅, 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅, and metaPGS were not significantly associated with 

MOF or HF after adjusting for FRAX risk factors (Tables 3-2 & 3-3). We next used PGS groups 

and included PGS in Cox regression models as categorical variables. The results were similar. 

Individuals in the top 10% of metaPGS distribution had no increased MOF risk compared with 

the bottom 10% of the individuals (HR: 0.84, 95% CI, 0.65 – 1.10). Compared to the women in 

the high 𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅, 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅, and metaPGS groups, women in the low 

PGS groups did not show a significantly higher risk of MOF (Table 3-4). Similar findings with 

HF outcomes were also observed (Table 3-5). 



 48 

Table 3-2 Results of Cox Proportional Hazard Regression Analyzing the Effect of Baseline 

Variables on Major Osteoporosis Fracture (MOF) the Women's Health Initiative (WHI) 

Cohort. 

Variable Model 1:  
FRAX Base Model 
HR (95% CI) in 
MOF 

Model 2:  
FRAX + 
𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 
HR (95% CI) in MOF 

Model 3:  
FRAX + 
𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 
HR (95% CI) in MOF 

Model 4:  
FRAX + 
𝐦𝐞𝐭𝐚𝐏𝐆𝐒 
HR (95% CI) in 
MOF 

Age 1.07 (1.06 – 1.08) 1.07 (1.06 – 1.08) 1.07 (1.06 – 1.08) 1.07 (1.06 – 1.08) 

Body weight 0.99 (0.99 – 1.00) 0.99 (0.99 – 1.00) 0.99 (0.99 – 1.00) 0.99 (0.99 – 1.00) 

Height 1.02 (1.01 – 1.03) 1.02 (1.01 – 1.03) 1.02 (1.01 – 1.03) 1.02 (1.01 – 1.03) 

Previous osteoporotic 
fracture 

1.51 (1.34 – 1.70) 1.50 (1.33 – 1.69) 1.51 (1.34 – 1.70) 1.51 (1.34 – 1.70) 

Parental history of hip 
fracture 

1.22 (1.05 – 1.42) 1.22 (1.05 – 1.42) 1.22 (1.05 – 1.43) 1.22 (1.05 – 1.42) 

Rheumatoid arthritis 1.24 (0.96 – 1.60) 1.24 (0.96 – 1.60) 1.24 (0.96 – 1.60) 1.24 (0.96 – 1.60) 

Current smoking 1.43 (1.15 – 1.77) 1.43 (1.15 – 1.77) 1.42 (1.15 – 1.77) 1.43 (1.15 – 1.77) 

Daily drinking > 3 1.09 (0.69 – 1.72) 1.09 (0.69 – 1.72) 1.09 (0.69 – 1.73) 1.09 (0.69 – 1.72) 

Secondary osteoporosis 1.03 (0.90 – 1.18) 1.03 (0.90 – 1.18) 1.03 (0.90 – 1.17) 1.03 (0.90 – 1.18) 

PGS NA 0.96 (0.90 – 1.04) 1.02 (0.95 – 1.10) 1.01 (0.94 – 1.09) 

*Significant results are in boldface 
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Table 3-3 Results of Cox Proportional Hazard Regression Analyzing the Effect of Baseline 

Variables on Hip Fracture (HF) in the Women's Health Initiative (WHI) Cohort. 

Variable Model 1:  
FRAX Base Model  
HR (95% CI) in HF 

Model 2:  
FRAX + 
𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 
HR (95% CI) in HF 

Model 3:  
FRAX + 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 
HR (95% CI) in HF 

Model 4:  
FRAX + 𝒎𝒆𝒕𝒂𝑷𝑮𝑺 
HR (95% CI) in HF 

Age 1.12 (1.11 – 1.14) 1.12 (1.11 – 1.14) 1.13 (1.11 – 1.15) 1.13 (1.11 – 1.14) 
Body weight 0.99 (0.98 – 1.00) 0.99 (0.98 – 1.00) 0.99 (0.98 – 1.00) 0.99 (0.98 – 1.00) 
Height 1.04 (1.02 – 1.05) 1.04 (1.02 – 1.05) 1.04 (1.02 – 1.05) 1.04 (1.02 – 1.05) 
Previous osteoporotic 
fracture 

1.45 (1.22 – 1.71) 1.45 (1.22 – 1.71) 1.45 (1.22 – 1.72) 1.45 (1.22 – 1.71) 

Parental history of hip 
fracture 

1.30 (1.06 – 1.60) 1.30 (1.06 – 1.60) 1.31 (1.06 – 1.61) 1.30 (1.06 – 1.61) 

Rheumatoid arthritis 1.72 (1.25 – 2.38) 1.72 (1.25 – 2.38) 1.72 (1.25 – 2.38) 1.72 (1.25 – 2.38) 
Current smoking 1.56 (1.13 – 2.15) 1.56 (1.13 – 2.15) 1.55 (1.13 – 2.14) 1.56 (1.13 – 2.14) 
Daily drinking > 3 0.85 (0.42 – 1.70) 0.85 (0.42 – 1.71) 0.85 (0.42 – 1.72) 0.85 (0.42 – 1.71) 
Secondary 
osteoporosis 

1.13 (0.94– 1.36) 1.13 (0.94 – 1.36) 1.12 (0.93 – 1.35) 1.13 (0.93 – 1.35) 

PGS NA 1.01 (0.91 – 1.12) 1.09 (0.98 – 1.21) 0.96 (0.86 – 1.06) 

*Significant results are in boldface 
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Table 3-4 Hazard Ratio for Major Osteoporotic Fractures (MOF) in low vs. high PGS 

groups: Results of Cox Proportional Hazard Models adjusted for FRAX clinical risk 

factors.   

Variable Model 1:  
FRAX Base Model  
HR (95% CI) in 
MOF 

Model 2:  
FRAX + 
𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 
HR (95% CI) in MOF 

Model 3:  
FRAX + 
𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 
HR (95% CI) in MOF 

Model 4:  
FRAX + 𝐦𝐞𝐭𝐚𝐏𝐆𝐒 
HR (95% CI) in 
MOF 

Age 1.07 (1.06 – 1.08) 1.07 (1.06 – 1.08) 1.07 (1.06 – 1.08) 1.07 (1.05 – 1.08) 

Body weight 0.99 (0.99 – 1.00) 0.99 (0.99 – 1.00) 0.99 (0.99 – 1.00) 0.99 (0.99 – 1.00) 

Height 1.02 (1.01 – 1.03) 1.02 (1.01 – 1.03) 1.01 (1.00 – 1.03) 1.02 (1.01 – 1.03) 

Previous osteoporotic 
fracture 

1.51 (1.34 – 1.70) 1.50 (1.33 – 1.69) 1.52 (1.35 – 1.71) 1.50 (1.33 – 1.69) 

Parental history of hip 
fracture 

1.22 (1.05 – 1.42) 1.22 (1.05 – 1.42) 1.22 (1.05 – 1.42) 1.22 (1.05 – 1.42) 

Rheumatoid arthritis 1.24 (0.96 – 1.60) 1.24 (0.96 – 1.60) 1.24 (0.96 – 1.60) 1.24 (0.96 – 1.60) 

Current smoking 1.43 (1.15 – 1.77) 1.43 (1.15 – 1.77) 1.40 (1.13 – 1.74) 1.43 (1.15 – 1.78) 

Daily drinking > 3 1.09 (0.69 – 1.72) 1.09 (0.69 – 1.72) 1.10 (0.69 – 1.73) 1.09 (0.69 – 1.71) 

Secondary osteoporosis 1.03 (0.90 – 1.18) 1.03 (0.90 – 1.18) 1.04 (0.91 – 1.18) 1.03 (0.90 – 1.18) 

PGS  

    <10% NA Ref. Ref. Ref. 

    10 – 90% NA 0.92 (0.77 – 1.11) 0.88 (0.74 – 1.04) 0.93 (0.78 – 1.12) 

    >90% NA 0.84 (0.64 – 1.09) 0.85 (0.66 – 1.10) 0.84 (0.65 – 1.10) 

*Significant results are in boldface 
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Table 3-5 Hazard Ratio for Hip Fractures (HF) in low vs. high PGS groups: Results of Cox 

Proportional Hazard Models adjusted for FRAX clinical risk factors.   

Variable Model 1:  
FRAX Base Model 
HR (95% CI) in HF 

Model 2:  
FRAX + 
𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 
HR (95% CI) in HF 

Model 3:  
FRAX + 
𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 
HR (95% CI) in HF 

Model 4:  
FRAX + 𝒎𝒆𝒕𝒂𝑷𝑮𝑺 
HR (95% CI) in HF 

Age 1.12 (1.11 – 1.14) 1.12 (1.11 – 1.14) 1.12 (1.11 – 1.14) 1.12 (1.11 – 1.14) 
Body weight 0.99 (0.98 – 1.00) 0.99 (0.98 – 1.00) 0.99 (0.98 – 1.00) 0.99 (0.98 – 1.00) 

Height 1.04 (1.02 – 1.05) 1.04 (1.02 – 1.05) 1.04 (1.02 – 1.05) 1.04 (1.02 – 1.05) 

Previous osteoporotic 
fracture 

1.45 (1.22 – 1.71) 1.45 (1.23 – 1.72) 1.45 (1.22 – 1.71) 1.45 (1.22 – 1.71) 

Parental history of 
hip fracture 

1.30 (1.06 – 1.60) 1.30 (1.06 – 1.61) 1.30 (1.05 – 1.60) 1.30 (1.06 – 1.60) 

Rheumatoid arthritis 1.72 (1.25 – 2.38) 1.72 (1.25 – 2.38) 1.72 (1.25 – 2.38) 1.72 (1.25 – 2.38) 

Current smoking 1.56 (1.13 – 2.15) 1.56 (1.14 – 2.15) 1.56 (1.13 – 2.14) 1.56 (1.13 – 2.15) 

Daily drinking > 3 0.85 (0.42 – 1.70) 0.86 (0.42 – 1.72) 0.85 (0.42 – 1.70) 0.85 (0.42 – 1.71) 
Secondary 
osteoporosis 

1.13 (0.94– 1.36) 1.13 (0.94 – 1.36) 1.13 (0.94 – 1.36) 1.13 (0.94 – 1.36) 

PGS  

    <10% NA Ref. Ref. Ref. 

    10 – 90% NA 1.02 (0.78 – 1.33) 0.99 (0.77 – 1.27) 1.02 (0.79 – 1.31) 

    >90% NA 1.23 (0.86 – 1.75) 1.07 (0.74 – 1.54) 1.12 (0.78 – 1.60) 

*Significant results are in boldface 

3.4.4 Model evaluation 

To evaluate the ability of 𝑃𝐺𝑆_𝐹𝑁𝐵𝑀𝐷!"#$%", 𝑃𝐺𝑆_𝑇𝐵𝐵𝑀𝐷!"#$%", and metaPGS to 

discriminate fractures over FRAX, the study used the concordance index (C-index), as shown in 

Table 3-6. The FRAX base model showed moderate discrimination of MOF and HF, with C-

index values of 0.623 (95% CI, 0.609 to 0.641) and 0.702 (95% CI, 0.609 to 0.718), respectively. 

However, no improvement was observed in discriminating MOF and HF when PGSs were added 

to the base FRAX model.



 52 

Table 3-6 Concordance index (and 95% confidence interval) of predicted and observed 

fracture risk for the model with and without PGS 

 Model 1:  
FRAX Base 
Model  
HR (95% CI) in 
HF 

Model 2:  
FRAX + 𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 
HR (95% CI) in HF 

Model 3:  
FRAX + 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 
HR (95% CI) in HF 

Model 4:  
FRAX + 𝒎𝒆𝒕𝒂𝑷𝑮𝑺 
HR (95% CI) in HF 

 C-index C-index p-value C-index p-value C-index p-value 
MOF 0.623 (0.609 – 

0.641) 
0.623 (0.608 – 

0.641) 
0.72 0.623 (0.609 – 

0.641) 
0.60 0.623 (0.602 – 

0.641) 
0.92 

Hip fracture 0.701 (0.609 – 
0.718) 

0.702 (0.609 – 
0.718) 

0.98 0.702 (0.609 – 
0.723) 

0.33 0.702 (0.611 – 
0.785) 

0.63 

 

In the reclassification analysis, compared to the FRAX base model, models with 

𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 (0.37%, p = 0.33), 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 (0.5%, p = 0.14), or metaPGS 

(0.05%, p = 0.99) did not improve the reclassification of MOF (Table 3-7). The model 

incorporated 𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 correctly reclassified five individuals (0.45%) to the high-risk 

group, and eighteen (0.27%) individuals who did not experience a MOF were correctly 

reclassified to the low-risk group. For the model including metaPGS, two (0.18%) individuals 

were correctly reclassified to the high-risk group, and seven (0.11%) women who did not 

experience a MOF were correctly reclassified to the low-risk group. The continuous NRI 

revealed that the improvement in MOF reclassification contributed by 𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅, 

𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅, and metaPGS overall were 0.63% (p = 0.87), 0.88% (p = 0.81), and 1.54% 

(p=0.68), respectively. Better reclassification provided by PGSs was observed in HF prediction. 

𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 and metaPGS improved the reclassification of HF significantly by 1.2% (p 

= 0.04) and 1.7% (p=0.05). In the context of HF prediction, the FRAX+metaPGS model 

correctly reclassified 6 out of 600 (1.1%) participants with HF upward to the high-risk group, 

and 58 out of 8,603 (0.8%) women who did not experience HF were correctly reclassified 

downward to the low-risk group. Additionally, the inclusion of 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 to the base 

FRAX model let to a significant increase in IDI of 1.93% (p=0.01) for predicting HF. However, 
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the overall improvement in fracture event reclassification provided by the PGSs models was 

minimal. 
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Table 3-7 Reclassification table of 10-year MOF and HF stratified by event status. 

Reclassification 
  

Non-fracture group 
 

Fracture group 
 

NRI  
(category) 

 
p  

 
NRI  

(continuous) 

 
p  
 

 
IDI 

 
p  
 

 Reclassification 
down 

Reclassification 
up 

Reclassification 
up 

Reclassification 
down 

      

𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 
MOF 18 (0.27%) 19 (0.29%) 5 (0.45%) 7 (0.64%) 0.37% 0.33 0.63% 0.87 0.49% 0.08 
HF 13 (0.18%) 25 (0.35%) 1 (0.18%) 0 (0%) -0.17% 0.42 -1.11% 0.87 0.10% 0.76 

𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 
MOF 9 (0.14%) 5 (0.1%) 6 (0.54%) 4 (0.36%) 0.5% 0.14 0.88%  0.81 0.14% 0.69 
HF 102 (1.42%) 113 (1.57%) 8 (1.45%) 6 (1.09%) 1.2% 0.04 6.25% 0.36 1.93% 0.01 

𝒎𝒆𝒕𝒂𝑷𝑮𝑺 
MOF 7 (0.11%) 9 (0.14%) 2 (0.18%) 3 (0.27%) 0.05% 0.99 1.54% 0.68 0.06% 0.46 
HF 58 (0.8%) 62 (0.8%) 6 (1.1%) 3 (0.5%) 1.7% 0.05 1.48% 0.83 0.76% 0.06 

*Significant results are in boldface. NRI=net reclassification improvement; IDI=integrated discriminative improvement 
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3.5 Discussion 

Implementing individual-level genome-wide PGSs summarizing the underlying genetic 

predisposition of certain diseases in the clinical setting holds excellent promise. Previously, we 

developed and internally validated two genome-wide BMD-related PGSs using data from the UKB 

cohort (Xiao, Xiangxue & Wu, 2022). Our findings indicated that both PGSs were significantly 

associated with incident fractures, even after being adjusted for FRAX clinical risk factors (Xiao, 

Xiangxue & Wu, 2022). In the current study, we replicated the two BMD-associated PGSs from 

previous work (Xiao, Xiangxue & Wu, 2022) and additionally derived a third PGS -- metaPGS 

combining the effect of the two established PGSs and evaluated their predictive effect in an 

independent WHI postmenopausal women sample. We examined whether the PGSs could stratify 

individuals into different risk strata within this external validation cohort and the predictive ability 

of each PGS beyond the FRAX tool.  

Our findings showed that both the BMD-related genome-wide PGSs and the metaPGS did not 

perform as well and were not significantly associated with fractures in the WHI cohort. 

Moreover, adding genetic information to the FRAX tool was associated with minimal 

improvements in predicted probabilities for elderly Caucasian women only HF. These findings 

were in discordance with our previous research findings (Xiao, Xiangxue & Wu, 2022), of which 

PGSs calculated based on genome-wide significant loci showed significant association with 

fractures and provided minor improvement of fracture prediction beyond the base model 

consisting of convention clinical risk factors. Previous studies have produced mixed results 

regarding the effectiveness of polygenic scores in improving fracture prediction accuracy. For 

example, Thao et al. reported that genetic profiling of 63 BMD-related genetic variants could 

enhance fracture prediction performance when compared to the Garvan fracture risk calculator 
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(Ho-Le, Center, Eisman, Nguyen, & Nguyen, 2017c). Our prior work demonstrated that 

incorporating genetic information from 81 BMD-related genetic variants could improve fracture 

prediction performance beyond FRAXA (Xiao, Xiangxue & Wu, 2021). A more recent study 

generated and validated a genome-wide PGS for speed of sound (SOS) also reported a consistent 

association with fracture risk (Lu et al., 2021). However, Eriksson and colleagues reported only 

minor improvements in fracture prediction when adding a PGS to a base model consisting of age, 

height, and weight (Eriksson, Joel et al., 2015) 

The performance of PGS in different cohorts is affected by many factors. The PGSs may have 

been overfitted to the training sample, meaning that it is too closely tied to the specific 

individuals and variants used in the training sample. This inconsistency can result in poor 

performance when applied to a validation sample. Compared to the UK Biobank genotype data, 

WHI genotyping data has fewer SNPs and less genome coverage. The hyper-parameters tuned in 

UKB might not be as optimal in WHI due to heterogeneity between the training and testing 

cohorts. Also, the allele frequencies of SNPs will vary by population, together with the causal 

variants and their effect sizes (Martin et al., 2017; Martin et al., 2019). Moreover, genotyping 

imputation is one way to introduce variability in calculated PGSs at the individual level without 

changing the underlying genetic model (Chen, S. et al., 2020). The UKB carried out imputation 

on the genotype data using SHAPEIT3 and IMPUTE4, whereas the WHI was imputed using 

Positional Burrows-Wheeler Transform (PBWT) imputation algorithm. Lastly, while genetics 

plays a role in determining traits and conditions, other factors such as the environment, lifestyle, 

and sociodemographic characteristics can also influence the expression of these traits. So, even 

individuals with similar ancestry may have different risks for certain conditions based on these 

other factors, affecting the accuracy of genetic risk predictions. (Mostafavi et al., 2020).  
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This study comprehensively validated the predictive power of two previously established 

genome-wide PGSs, as well as a metaPGS that combined information from these two PGSs. 

Additionally, we assessed the ability of PGSs to stratify fracture risk and to determine if 

combining PGSs with FRAX would enhance the accuracy of identifying individuals at high risk 

of osteoporotic fracture. It is essential to acknowledge the limitations of this study. First, the 

sample size of current study is relatively small to replicate findings discovered in a cohort of half 

million (UKB); Second, fracture risk of WHI may not be fully captured by the PGS calculated 

using the hyper-parameters derived in other cohorts. Finally, our study only included individuals 

of European ancestry, which may limit the generalizability of our findings. 

3.6 Conclusions 

Early detection of high-risk individuals could lead to efficacious preventive and therapeutic 

interventions. However, based on the hyper-parameters derived in the UKB, we could not 

replicate our prior findings in this external independent WHI cohort. The two BMD-related 

genome-wide PGSs and the metaPGS were not significantly associated with fractures in the WHI 

cohort. Adding genetic information to the FRAX tool was associated with minimal 

improvements in predicted hip fracture probabilities among elderly Caucasian women.  
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Chapter 4 Manuscript 3 

 
“Enhanced Fracture Risk Prediction: A Novel Multi-Trait 
Genetic Approach Integrating Polygenic Scores of Fracture-
Related Traits” 
 

4.1 Abstract 

4.1.1 Purposes 

Current polygenic scores (PGS) have limited predictive power for fracture risk. To improve 

genetic prediction, we developed and evaluated a novel approach called metaPGS, which 

combines genetic information from multiple fracture-related traits. 

4.1.2 Methods 

We first derived individual PGS from genome-wide association studies of 16 fracture-related 

traits. Then, we employed an elastic-net logistic regression model to examine the association 

between the 16 PGSs and fractures while controlling for covariates such as age, sex, and the first 

four principal components. The optimal metaPGS model was chosen based on the highest area 

under the receiving-operating characteristic curve (AUC). The metaPGS was constructed by 

combining the 11 most significant individual PGSs selected using the Elastic regularized 

regression model. We evaluated the predictive power of the metaPGS alone and in combination 

with clinical risk factors recommended by guidelines. The ability of the models to reclassify 

fracture risk was also assessed using Net Reclassification Improvement (NRI) and Integrated 

Discrimination Improvement (IDI). 
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4.1.3 Results 

The metaPGS had a significant association with incident fractures (HR: 1.22, 95% CI: 1.19 - 

1.27 per standard deviation of metaPGS), which was stronger than previously developed bone 

mineral density (BMD)-related individual PGSs. The metaPGS had comparable predictive power 

to established risk factors such as age, body weight, and early menopause. The association 

between the metaPGS and incident fractures remained significant after adjusting for clinical risk 

factors, indicating added predictive value beyond established clinical risk factors. Adding the 

metaPGS to the FRAX model improved the discrimination of fractures from non-fracture cases. 

4.1.4 Conclusions 

The metaPGS is a promising approach for stratifying fracture risk in the European population, 

improving fracture risk prediction by combining genetic information from multiple fracture-

related traits. Our findings support the potential clinical utility of the metaPGS for fracture risk 

assessment and personalized prevention strategies.

4.2 Introduction 

Osteoporosis is a prevalent skeletal disorder characterized by decreased bone mineral density 

(BMD) and increased susceptibility to fractures, especially in the hip, spine, and wrist (Sözen, 

Tümay, Özışık, & Başaran, 2017b). Osteoporotic fractures can lead to significant morbidity, 

mortality, and healthcare expenses (Nazrun, Tzar, Mokhtar, & Mohamed, 2014), with an estimated 

2 million cases and $19 billion in costs annually in the United States alone (Singer et al., 2015; 

Wright et al., 2014). Given the global aging population, the incidence of osteoporosis is projected 

to increase (Reginster & Burlet, 2006), underscoring the importance of early identification of 

individuals at high risk of primary fractures. 
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The risk of osteoporotic fracture has a high heritability, with genetic liability up to 46% 

(Sigurdsson, Halldorsson, Styrkarsdottir, Kristjansson, & Stefansson, 2008). Genetic factors 

substantially contribute to fracture risk (Zhu, Bai, & Zheng, 2021). Genome-wide association 

studies (GWAS) over the past decade have identified single nucleotide polymorphisms (SNPs) 

associated with bone strength-related traits (Zhu et al., 2021). Around 15 genomic loci and 

thousands of SNPs be robustly associated with fractures (Trajanoska, K. et al., 2018), and many 

more genetic associations have been reported for fracture-related traits/risk factors (Jiang et al., 

2018; Matteini et al., 2016; Zillikens et al., 2017). 

Bone mineral density (BMD) is the most critical predictor of osteoporosis and fracture (Kanis, 

1994a). Polygenic score (PGS) derived from GWAS summary statistics for BMD has been used 

to quantify an individual's genetic liability to fractures (Ho-Le et al., 2017c; Lee, S. H., Lee, Ahn, 

Kim, Lim, Kim, Cho, Kim, Kim, Kim, Kim, Koh, & Kang, 2013b; Lu, Forgetta, Keller-Baruch, 

Nethander, Bennett, Forest, Bhatnagar, Walters et al., 2021a; Mitchell, J. A. et al., 2016; Xiao, 

Xiangxue & Wu, 2021). Previous studies have highlighted the potential of BMD-related PGS for 

risk prediction of fracture (Ho-Le et al., 2017c; Mitchell, J. A. et al., 2016). Nevertheless, the 

clinical utility of PGS in fracture prediction is limited, with a marginal additive effect of PGS on 

clinical factors. 

A multi-PGS extension, metaPGS, has been developed to improve predictive performance by 

combining multiple PGSs into one score (Inouye et al., 2018). It has been applied to many other 

complex diseases and was proven to significantly increase the predictive accuracy of coronary 

artery disease (Inouye et al., 2018), ischemic stroke (Abraham et al., 2019), type 2 diabetes 

(Chen, X. et al., 2021), and breast cancer (Läll et al., 2019). In fracture prediction, an individual's 

estimated genetic propensity was typically derived based on the GWAS summary statistics of a 
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single trait, BMD. Considering that fragility fracture is a multifactorial disease influenced by 

various physiological factors beyond BMD (Clifford J. Rosen, ), PGS depending on only one 

trait may not be sufficient to capture the genetic components of fracture. If a particular 

disease/trait is causally involved in the etiology of fracture, the PGS for that disease/trait as a 

genetic proxy should predict fracture occurrence, and a metaPGS may be particularly useful in 

fracture prediction. Integrating genetic information of multiple fracture-related traits into 

metaPGS can improve predictive accuracy. 

Therefore, this study aimed to develop and validate a multi-trait metaPGS to integrate genetic 

information of multiple fracture-related traits to improve predictive accuracy. To evaluate the 

predictive value of metaPGS beyond the currently available fracture prediction tool, we examined 

the potential clinical use of metaPGS beyond the existing Fracture risk assessment tool (FRAX), 

an algorithm predicting 10-year probabilities of major osteoporotic fracture (MOF) and hip 

fracture (HF) based on 12 clinical risk factors (Kanis et al., 2008b). By improving the accuracy of 

genetic risk prediction for osteoporotic fractures, metaPGS could aid in identifying high-risk 

individuals and implementing preventive measures. 

4.3 Methods 

4.3.1 Study cohort 

The UK Biobank (UKB) is a large-scale population-based observational study comprising 

502,617 individuals aged between 40-69 years, recruited from the United Kingdom between 

2006 and 2010 (Sudlow, C. et al., 2015). A standardized socio-demographic questionnaire, 

medical history, and other lifestyle factors were collected at recruitment. Individual records were 

linked to the Hospital Episode Statistics (HES) records and the national death and cancer 
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registries as the underlying genetic models were developed and trained primarily using European 

ancestry samples, including individuals of white British ancestry in the current study, allowed for 

a better representation of the genetic architecture in that population and resulted in more accurate 

predictions. Thus, the current study only included individuals of white British ancestry to 

examine a relatively homogeneous group. 

4.3.2 Fracture events ascertaining 

Fracture cases were identified using the baseline questionnaire of self-reported fracture incidents 

fractures within the past five years. Hospital Episodes Statistics linked through NHS Digital, 

with a hospital-based fracture diagnosis irrespective of mechanism within the primary or 

secondary diagnosis field. All the incident fracture cases were identified through the hospital 

episode statistics. Fractures of the skull, face, hands, and feet, pathological fractures due to 

malignancy, atypical femoral fractures, and periprosthetic and healed fractures were excluded 

from the analysis. Based on the date of the ICD-10 record, fractures sustained after the initial 

assessment visit was defined as incident cases (N=13,623).  

4.3.3 Data processing and quality control 

A total of 488,251 participants were genotyped using Affymetrix arrays (Bycroft, C. et al., 

2018). The genotype data were quality controlled and additionally imputed using the Haplotype 

Reference Consortium (HRC) (McCarthy et al., 2016b) and the UK10K haplotype resources, 

yielding a total of 96 million imputed variants. SNPs with minor allele frequency less than 0.1% 

and SNPs that are missing in a high fraction of subjects (>0.01), Hardy-Weinberg equilibrium p 

value > 1*𝟏𝟎4𝟔. Individuals with a high rate of genotype missingness (> 0.01) were excluded 
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from PGS construction. A total of 450,395 individuals and 11.5 million variants passed the 

quality control standards and remained for subsequent analysis.  

4.3.4 Individual PGS tuning 

GWAS summary statistics were available for 16 complex traits/diseases related to fracture risk. 

PGSs were generated with the estimated effect sizes from the most recent literature on large 

GWAS (Appendix I). To minimize the risk of over-fitting due to overlapping samples between 

the GWAS discovery set and the UKB validation set, the selected GWAS did not include UKB 

samples. GWASs for femoral neck BMD (Estrada, K. et al., 2012), total body BMD (Medina-

Gomez et al., 2018b), hand grip strength (HGS) (Matteini et al., 2016), appendicular lean mass 

(ALM) (Zillikens et al., 2017), whole body lean mass (WBLM) (Zillikens et al., 2017), vitamin 

D (VD) (Jiang et al., 2018), serum calcium concentration (SCC) (O'Seaghdha et al., 2013), 

homocysteine (HC) (van Meurs et al., 2013), thyroid stimulating hormone level (TSH) (Teumer 

et al., 2018), fasting glucose (FG) (Lagou et al., 2021), fasting insulin (FI) (Lagou et al., 2021), 

type 1 diabetes (T1D) (Robertson et al., 2021), type 2 diabetes (T2D) (Vujkovic et al., 2020), 

rheumatoid arthritis (RA) (Ha, Bae, & Kim, 2021), inflammatory bowel disease (IBD) (Liu et al., 

2015a), hip bone size (HBS) (Styrkarsdottir et al., 2019), and coronary artery disease (CAD) 

(Nikpay et al., 2015) were selected for individual PGS derivation. 

We randomly selected 1000 fracture cases and 2000 non-fracture cases for individual PGS 

tuning. Based on GWAS summary statistics of 16 fracture-related phenotypes and a linkage 

disequilibrium reference panel of 503 European samples from 1000 Genomes (phase 3, version 

5), a set of candidate PGSs were derived for each phenotype/trait using the Pruning and 

Thresholding (P+T) method and the LDPred2 computational algorithm (Privé, Arbel, & 

Vilhjálmsson, 2020b).  
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Using the P+T method, twenty-four candidate PGSs were calculated with combinations of P 

value (1.0, 0.5, 0.05, 5 × 10−4, 5 × 10−6, and 5 × 10−8) and 𝒓𝟐 (0.2, 0.4, 0.6, and 0.8) thresholds 

for each trait. The LDPred2 computational algorithm grid mode was used to generate seven 

candidate PGSs based on seven hyper-parameter values of ρ (1, 0.3, 0.1, 0.03, 0.01, 0.003, and 

0.001). The PGS construction was restricted to the HapMap3 variants only, as LDpred2 

suggested. 

For each of the 16 phenotypes, 31 candidate PGS were derived for each individual in the UKB 

tuning set. As the risk of fractures increases with age due to the weakening of bones, and women 

are at higher risk for osteoporosis-related fractures than men, the association between each PGS 

and the fracture was further evaluated in terms of odds ratios (OR) per standard deviation of PGS 

using logistic regression adjusted for age, sex, and BiLEVE/UKB genotyping array and the first 

four principal components (PCs). The most optimal model for the largest magnitude odds ratio 

was selected as the one representative PGS for each trait and carried forward into subsequent 

analyses.  

4.3.5 Derivation of the metaPGS 

Each representative PGS determined from the previous step was standardized to have a zero 

mean and unit standard deviation. We then split the remaining UKB European ancestry dataset 

into a training set (n=135, 119) and a testing set (n=315,276). Using the UKB training set, we 

employed elastic-net logistic regression (Zou & Hastie, 2005) to model the association between 

the 16 PGSs and fracture, adjusting for age, sex, and the first four PCs. A range of models with 

different penalties was evaluated using 10-fold cross-validation. In terms of the highest area 

under the receiving-operating characteristic curve (AUC), the best model was selected as the 



 65 

final model to generate metaPGS and held fixed for validation in the UKB testing set. The 

metaPGS was calculated using a weighted average of the standardized individual PGSs: 

𝑷𝑮𝑺𝒊𝒎𝒆𝒕𝒂 =
𝜶𝟏𝑷𝑮𝑺𝒊𝟏 +⋯+ 𝜶𝟏𝟔𝑷𝑮𝑺𝒊𝟏𝟔

𝜶𝟏 +⋯+ 𝜶𝟏𝟔
 

where 𝑃𝐺𝑆:',…,	𝑃𝐺𝑆:'( are the 16 zero mean and unit variance standardized PGSs for the 𝑖;< 

individual; 𝛼',…,	𝛼'= are the coefficients (log odds ratio) for each of the 16 PGSs (Figure 4-1.)
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Figure 4-1 Study design and workflow. a. Derivation of individual PGSs in the UKB 

training set (n=135,119) using GWAS summary statistics for individual traits. b. The 

metaPGS for fracture was then derived by integrating individual PGSs using the elastic-net 

cross-validation. c. Validation of the metaPGS for fracture will be performed in the UKB 

validation set (n=315,276).  

 

PGS, polygenic score; FNBMD, femoral neck bone mineral density; TBBMD, total body bone mineral density; 
HGS, hand grip strength; ALM, appendicular lean mass; WBLM, whole body lean mass; VD, vitamin D; SCC, 
serum calcium concentration; HC, homocysteine; TSH, thyroid stimulating hormone level; FG, fasting glucose; FI, 
fasting insulin; T1D, type 1 diabetes; T2D, type 2 diabetes; RA, rheumatoid arthritis; IBD, inflammatory bowel 
disease; HBS, hip bone size; CAD, coronary artery disease.  

a. Derivation of individual PGSs 

 

b. Derivation of metaPGS for fracture 

 

c. Validation of the metaPGS 

 

 

GWAS summary statistics for individual traits UKB training set  
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4.3.6 Statistical analysis 

The demographic and clinical characteristics of the UKB testing set were described using mean 

and standard deviation (SD) for continuous variables and the frequency and percent for 

categorical variables. The primary outcome of this study was incident fractures. All PGSs in the 

UKB testing set were standardized to facilitate interpretability to have unit variance. To illustrate 

the different cumulative incidences of fracture in individuals with distinct genetic 

predispositions, we grouped individuals according to different quantile ranges of metaPGS: ≤1%, 

1-5%, 5-20%, 20-40%, 40-60%, 60-80%, 80-95%, 95-99%, and >99%. The cumulative 

incidence of fracture by metaPGS groups was then derived using the cumulative incidence 

function (CIF), with the competing mortality risk accounted for. 

The separate prediction of each of the 16 trait-specific PGSs was examined by fitting a series of 

simple logistic regression models. To account for multiple testing across the individual PGSs 

tested in separate logistic regression models (single-PGS models), we used 10,000 permutations 

to find the significance threshold to control the false discovery rate P values. Using the UKB 

training set, we employed elastic-net logistic regression (Zou & Hastie, 2005) to model the 

association between the 16 PGSs and fracture, adjusting for age, sex, and the first four PCs. 

Based on significant individual PGSs selected from the Elastic regularized regression model, 

metaPGS was derived for each individual in the UKB testing set. Two previously developed 

BMD-related PGSs (PGS_FNBMD (Ho-Le et al., 2017c) and PGS_TBBMD (Xiao, Xiangxue & 

Wu, 2021)) were also included in the subsequent analysis for comparison purposes.  

All scores (PGS_FNBMD, PGS_TBBMD, and metaPGS) were evaluated using logistic 

regression and Cox proportional hazard regression. C-indexes were derived for the logistic 

regression, as well as for the Cox models using age as the time scale. Additionally, we examined 
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the fracture incidence according to the PGS category in the UKB testing set. We compared the 

effect of top percentiles (1%, 5%, 10%, and 20%) with the remaining percentiles (99%, 95%, 

90%, and 80%) of each PGS using Cox proportional hazard models. All regression models were 

controlled for age, sex, and the first four PCs.  

We also investigated the predictive value of metaPGS beyond the existing fracture assessment 

tool and compared its performance with two previously developed BMD-related PGSs 

(PGS_FNBMD (Ho-Le et al., 2017c) and PGS_TBBMD (Xiao, Xiangxue & Wu, 2021)). The 

association between each PGS with fracture risk, adjusted for the FRAX risk factors, including 

age, body weight, height, previous fracture, current smoking, glucocorticoids, and rheumatoid 

arthritis, was assessed using Cox proportional hazard models. The model with only FRAX risk 

factors was set as the base model. Four models were formulated: 1) Model 1 – FRAX base 

model; 2) Model 2 – FRAX + 𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫; 3) Model 3 – FRAX + 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫; and 4) 

Model 4 – FRAX + 𝒎𝒆𝒕𝒂𝑷𝑮𝑺. The magnitude of the association between each PGS and 

fracture risk was assessed by the hazard ratio and its corresponding 95% confidence intervals.  

In addition, net reclassification improvement (NRI) was adopted to compare the reclassification 

ability of the models with PGSs to those without PGS. We designated "high risk" as the 

predicted MOF risk ≥ 20% and "low risk" as the predicted MOF risk < 20%, based on the 

National Osteoporosis Foundation's recommended fixed intervention cutoff (Cosman et al., 

2014c). The Integrated discrimination improvement (IDI) was also calculated to incorporate both 

the direction of change in the calculated risk and the extent of change. All statistical analyses 

were conducted using R version 4.0.3 software and SAS 9.4 (SAS Institute, Inc., Cary, NC, 

USA). 
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4.4 Results 

The characteristics of the UKB testing set are shown in Table 4-1. The overall UKB testing set 

consists of 315,276 individuals, of which 8,787 were incident fracture cases and 306,489 were 

non-fracture cases. Figure 4-2 shows correlations between 16 individual PGSs, with strong 

correlations observed between HC and SCC, SCC and CAD, CAD and IBD, ALM and WBLM, 

T1D and TSH, TSH and TBBMD, TBBMD, and RA. The metaPGS was derived based on 11 

significant individual PGSs selected from the Elastic regularized regression model (model 

weights are shown in Figure 4-3).  

 

 

Table 4-1 Participant Characteristics of the UK Biobank validation cohort (N=315,279). 
 

 
UKB (N=315,279) 

Fracture 
(n=8,787) 
(2.79%) 

Non-fracture 
(n=306,489) 

(97.21%) 
Age at assessment, yrs. 56.77 ± 8.02 59.86 ± 7.20 56.68 ± 8.02 
Height (cm) 168.67 ± 9.25 166.16 ± 8.85 168.75 ± 9.25 
Weight (kg) 78.17 ± 15.90 74.05 ± 15.31 78.29 ± 15.91 
Body mass index (BMI) (𝒌𝒈/𝒎𝟐) 27.40 ± 4.77 26.77 ± 4.89 27.41 ± 4.76 
Current smoker 32,885 (10.43%) 1,022 (11.63%) 31,863 (10.04%) 
Fractures in the past 5 years 47,576 (10.44%) 19,262 (9.25%) 28,314 (11.44%) 
Oral glucocorticoid user 1,628 (0.52%) 48 (0.55%) 1,580 (0.52%) 
Rheumatoid arthritis 7,524 (2.39%) 403 (4.59%) 7,121 (2.23%) 
Type 1 diabetes 2,971 (0.94%) 142 (1.62%) 2,829 (0.92%) 
Menopause before age 45 years 24,631 (7.81%) 1,421 (14.12%) 23,390 (7.63%) 
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Figure 4-2 Correlations between 16 trait-specific individual PGSs in the UKB derivation 

set. 

*𝐩 < 𝟎. 𝟎𝟓, ** 𝐩 < 𝟏𝟎6𝟑, *** 𝐩 < 𝟏𝟎6𝟏𝟎 

Pearson correlation coefficients and p-values for each pair of PGSs. PGS, polygenic score; FNBMD, femoral neck 
bone mineral density; TBBMD, total body bone mineral density; HGS, hand grip strength; ALM, appendicular lean 
mass; WBLM, whole body lean mass; VD, vitamin D; SCC, serum calcium concentration; HC, homocysteine; TSH, 
thyroid stimulating hormone level; FG, fasting glucose; FI, fasting insulin; T1D, type 1 diabetes; T2D, type 2 
diabetes; RA, rheumatoid arthritis; IBD, inflammatory bowel disease; HBS, hip bone size; CAD, coronary artery 
disease.  
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Figure 4-3 Associations of 16 trait-specific PGSs with the fracture outcome in the UKB 

derivation set.  

 

Estimates per standard deviation increase of each individual PGS evaluated in logistic regression (univariate) and 
elastic-net logistic regression adjusted for age and sex. 'inactive' indicates that the elastic-net estimated odds ratio 
was negligible (between 0.999 and 1.001, shown as a blue dot). CI, confidence interval. 

 

We assessed the crude 10-year cumulative fracture incidence by nine PGS groups (Figure 4-4). 

With competing mortality risk accounted for, significant differences in the 10-year risk of 

fracture were observed across metaPGS deciles (p<0.0001). The top and bottom 1% of the 

metaPGS showed a substantial difference in the cumulative fracture incidence. A comparison of 

the metaPGS with its individual components (PGS_FNBMD and PGS_TBBMD) is shown in 

Figure 4-5. Results show that metaPGS had a greater association with fracture risk compared to 
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the two individual PGSs. All three PGSs were strongly associated with incident fracture 

(p<0.0001), with an odds ratio (OR) ranging from 1.15 to 1.35. The metaPGS was associated 

with an incident fracture with a hazard ratio (HR) of 1.22 (95% CI 1.19 – 1.27) per standard 

deviation of metaPGS, which was stronger than PGS_FNBMD (HR=1.10, 95% CI 1.08 – 1.12) 

and PGS_TBBMD (HR=1.15, 95% CI 1.12 – 1.18) (Figure 4-5.). Using cox proportional hazard 

models, we also assessed the HRs for the top 1%, 5%, 10%, and 20% decile vs. the remaining 

percentiles of the PGSs. The results showed that the bottom 1% of the population had a 1.36-fold 

(95% CI: 1.15-1.61) increased fracture risk than the remaining population (Table 4-2).  
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Figure 4-4 Cumulative Incident Function Plot for Fracture According to Decile of the 

metaPGS in UKB Testing Set. Shaded Regions Denote 95% Confidence Intervals.  



 74 

Figure 4-5 Relative Performance of PGS_FNBMD, PGS_TBBMD, and metaPGS for 

fracture. 5A: Results from Cox Proportional Hazard Models; 5B: Results from 

Multivariate Logistic Regression Models.  

A.  

 

B.  

 
 

 

Table 4-2 Hazard Ratios (HR) and 95% Confidence Intervals (CI) for Incident Fracture 

Per 1 SD Decrease in PGS_FNBMD, PGS_FNBMD, and metaPGS, respectively: Results 

from Cox Proportional Hazard Models for The UKB Validation Cohort. 

  PGS_FNBMD PGS_TBBMD metaPGS 
High PGS definition Reference group HR (95% CI) HR (95% CI) HR (95% CI) 
Bottom 20% of distribution Remaining 80% 1.20 (1.14 – 1.25) 1.25 (1.19– 1.32) 1.27 (1.20 – 1.33) 
Bottom 10% of distribution Remaining 90% 1.20 (1.12 – 1.28) 1.29 (1.22 – 1.37) 1.30 (1.23 – 1.39) 
Bottom 5% of distribution Remaining 95% 1.33 (1.22 – 1.45) 1.32 (1.22 – 1.43) 1.34 (1.23 – 1.45) 
Bottom 1% of distribution Remaining 99% 1.31 (1.08 – 1.59) 1.46 (1.25 – 1.72) 1.36 (1.15 – 1.61) 
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The clinical utility of a PGS depends on its performance in combination with established risk 

factors and genetic risk models. We next evaluated the predictive value of metaPGS while 

adjusting for established risk factors. We examined seven FRAX risk factors available in the 

UKB data. As expected, established risk factors were positively associated with incident fracture, 

current smoking, and sex being the strongest risk factors (Table 4-3). Adjusting for these risk 

factors only modestly attenuated the association of the metaPGS with incident fracture. The 

metaPGS had the strongest association with incident fracture. The HRs of PGS_FNBMD, 

PGS_TBBMD, and metaPGS for incident fracture were 1.09 (95% CI, 1.08– 1.11), 1.15 (95% 

CI, 1.14 – 1.18), and 1.21 (95% CI, 1.18– 1.25), respectively. Compared to the FRAX base 

model, the association between clinical risk factors and incident fracture risk did not attenuate in 

all four PGS models.   
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Table 4-3 Hazard Ratio for the hazard function for significant predictive variables for incident fractures in the FRAX model 

and FRAX models with PGS_FNBMD, PGS_TBBMD, and metaPGS. 

Variable Model 1:  
FRAX Base Model 
 
HR per 1 unit (95% CI)  

Model 2:  
FRAX + PGS_FNBMD 
 
HR per 1 unit (95% CI) 

Model 3:  
FRAX + PGS_TBBMD 
 
HR per 1 unit (95% CI) 

Model 4:  
FRAX + metaPGS 
 
HR per 1 unit (95% CI)  

Age 0.97 (0.96 – 0.97) 0.97 (0.96 – 0.97) 0.97 (0.96 – 0.97) 0.97 (0.96 – 0.97) 
Sex (women vs. men) 1.57 (1.49 – 1.68) 1.57 (1.49 – 1.68) 1.56 (1.49 – 1.68) 1.56 (1.49 – 1.68) 
Body weight 0.98 (0.98 – 0.99) 0.98 (0.98 – 0.99) 0.98 (0.98 – 0.99) 0.98 (0.98 – 0.99) 
Height 1.00 (0.99 – 1.01) 1.00 (0.99 – 1.00) 1.00 (0.99 – 1.00) 1.00 (0.99 – 1.00) 
Oral glucocorticoid 0.93 (0.70 – 1.24) 0.93 (0.70 – 1.24) 0.93 (0.70 – 1.23) 0.92 (0.69 – 1.23) 
Type 1 diabetes 0.63 (0.53 – 0.74) 0.63 (0.53 – 0.75) 0.64 (0.54 – 0.76) 0.64 (0.54 – 0.76) 
Early menopause 1.17 (1.10 – 1.25) 1.17 (1.10 – 1.24) 1.17 (1.10 – 1.24) 1.17 (1.10 – 1.24) 
Rheumatoid arthritis 0.95 (0.86 – 1.05) 0.95 (0.86 – 1.05) 0.95 (0.86 – 1.05) 0.95 (0.86 – 1.06) 
Current smoking 1.66 (1.56 – 1.79) 1.66 (1.56 – 1.79) 1.66 (1.56 – 1.79) 1.66 (1.56 – 1.79) 
PGS NA 1.09 (1.08 – 1.11) 1.15 (1.14 – 1.18) 1.21 (1.18 – 1.25) 
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In the reclassification analysis, compared to the FRAX base model, the models with 

PGS_FNBMD, PGS_TBBMD, and metaPGS improved the reclassification of fracture by 0.9% 

(95% CI, 0.04% to 1.58%), 1.36% (95% CI, 0.52% to 2.19%), and 1.41% (95% CI, 0.58% to 

2.24%), respectively (Table 4-4). Moreover, the metaPGS showed the greatest improvement in 

terms of reclassification. For the model that included metaPGS, 13799 (6.9%) individuals were 

correctly reclassified up to the high-risk group, and 13530 (4.3%) individuals who did not 

experience a fracture were correctly reclassified from the high-risk group to the low-risk group. 

The continuous NRI showed that improvement in fracture reclassification contributed by 

PGS_FNBMD, PGS_TBBMD, and metaPGS were 10.1%, 15.9%, and 16.8%, respectively.  
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Table 4-4 Reclassification table of 10-Year Osteoporotic Fracture Stratified by Event Status. Results of Reclassification 

Analysis: Percent of reclassification compared with FRAX base model. 

Reclassification 
  

Non-fracture group 
 

Fracture group 
 

NRI  
(category) 

 
p 

 
NRI  

(continuous) 

 
p  
 

 
IDI 

 
p  

 Reclassifi
cation 
down 

Reclassific
ation up 

Reclassifi
cation up 

Reclassifica
tion down 

      

𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 2.8% 2.8% 4.4% 3.5% 0.92% 
(0.25% to 1.58%) 

0.007 10.08% 
(7.71% to 12.45%) 

<0.00
1 

0.04% 
(0.01% to 0.11%） 

0.16 

𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 4.4% 4.4% 7.0% 5.6% 1.36% 
(0.52% to 2.19%) 

0.002 15.88% 
(13.51% to 18.25%) 

<0.00
1 

0.11% 
(0.04% to 0.11%） 

<0.00
1 

metaPGS 4.3% 4.3% 6.9% 5.4% 1.41% 
(0.58% to 2.24%) 

<0.00
1 

16.82% 
(14.46% to 19.19%) 

<0.00
1 

0.12% 
(0.04% to 0.11%） 

<0.00
1 

*Significant results are in boldface. 
NRI=net reclassification improvement; IDI=integrated discriminative improvement; 95% confidence intervals are given 
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4.5 Discussion 

The present study developed and evaluated a novel metaPGS for fracture risk prediction by 

combining genetic information from multiple fracture-related traits. The ability of the metaPGS to 

predict fracture risk was evaluated alone and in combination with the clinical risk score 

recommended by guidelines. The metaPGS demonstrated a significant association with incident 

fractures, with a hazard ratio of 1.22 per standard deviation of metaPGS, which was significantly 

more potent than previously established BMD-related individual PGSs. The predictive power of 

the metaPGS was comparable to established risk factors such as age, body weight, and early 

menopause. Adding the metaPGS to the existing FRAX model improved the discrimination of 

fractures from non-fracture cases, suggesting that the metaPGS can help stratify fracture risk in 

the European population and for developing personalized prevention strategies. 

Our study contributes to the use of genomic information to stratify individuals for fracture risk. 

Pleiotropy, a phenomenon in which a single gene or genetic variant influences multiple traits or 

diseases, has been well-documented in previous research (Bulik-Sullivan et al., 2015). Since 

genetic variants can affect multiple traits simultaneously, independent PGSs for fracture risk are 

expected to overlap significantly. To overcome this challenge, we employed elastic net regularized 

regression to combine multiple PGSs and estimate their contributions to fracture risk prediction 

while minimizing collinearity. The resulting metaPGS combines genetic information from 11 of 

16 bone-related traits and disorders, resulting in a robust and strongly associated predictor of 

fracture risk. 

Compared to existing individual PGSs, the new metaPGS showed a more significant association 

with fracture and a more remarkable risk discrimination ability. Moreover, the metaPGS has 

comparable predictive power to some established risk factors. By combining metaPGS with the 
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current fracture risk assessment tool, our findings suggested added value of metaPGS beyond 

established clinical risk factors. The predictive ability of metaPGS was largely independent of 

established risk factors for fracture, implying that the metaPGS captured residual risk not 

quantified by the established risk factors. In addition, the results of reclassification analyses 

indicated that adding metaPGS to the FRAX model improved discriminating fractures and non-

fractures cases, and its performance in fracture risk reclassification is better than the two previously 

developed BMD-related PGSs (Xiao, Xiangxue & Wu, 2023).  

There are several limitations worth mentioning. The predictive performance of the metaPGS for 

fracture is limited if compared with some diseases, such as CAD (Inouye et al., 2018). The reasons 

could be that fragility fracture is more heterogeneous than other diseases and that the GWAS 

sample size for mechanistically defined fracture is also limited. The sample size of older 

individuals (>75 years) in the UKB is relatively small, limiting our ability to model fracture risk 

in the age strata where most events occur. Furthermore, the duration of follow-up in UKB is 

relatively limited, and because of the limited covariates available in the UKB, we could not assess 

the predictive value of the metaPGS beyond the full FRAX model. Fourth, since the metaPGS was 

derived and tested in individuals of European ancestry, it may not have equivalent predictive power 

for other ethnic groups due to variations in allele frequencies, linkage disequilibrium patterns, and 

effect sizes of common polymorphisms across different ancestries. Lastly, since a family history 

of fracture was not available in the UKB, we could not examine whether the association of the 

metaPGS with fracture risk would be affected by family history. 

Our study developed and evaluated a novel approach for fracture risk prediction, the metaPGS, 

which combines genetic information from multiple fracture-related traits. Despite challenges in 

phenotypic heterogeneity and GWAS power, our study presents a powerful fracture genomic risk 
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score to date and assesses its potential for risk stratification in the context of established risk 

factors and clinical guidelines. The metaPGS provides added value to established clinical risk 

factors and has potential clinical utility for personalized prevention strategies. Future studies 

should validate the metaPGS in other populations and evaluate its clinical utility. The metaPGS 

is a promising approach for fracture risk prediction that overcomes the limitations of single PGSs 

and represents a significant step towards using genomic information to help stratify individuals 

for fracture risk.  
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Chapter 5 Conclusions 
With an overall objective to leverage the predictive power of genetic information in fracture risk 

assessment, this dissertation included three distinct but ancillary studies following the multiple-

paper dissertation format. The first and third studies used data from the UKB data, and the 

second used data from the WHI study. 

The first study highlighted the importance of early identification of individuals at high risk of 

fragility fracture using PGS. PGS can be assessed before clinical risk factors emerge, and 

employing thousands of genetic variants discovered from GWAS can help with risk stratification 

and primary prevention. The study developed and validated genome-wide PGS for femoral neck 

BMD and total body BMD and compared their predictive ability to restricted PGS based on a 

limited number of SNPs. The results showed that genome-wide PGS accurately predicted 

fracture risk, and the LDpred2 approach, which includes the entire genome, had better predictive 

performance than the approach that only included genome-wide significant variants. However, 

the femoral neck BMD-related PGS showed no improvement over the restricted PGS. The study 

suggests that PGS can be useful for the clinical screening of individuals in order to detect those 

at high risk, which may be useful for monitoring and preventive treatment. Moreover, adding 

genome-wide PGS to the FRAX clinical risk score improved predictive accuracy for fracture and 

successfully reclassified up to 2% of individuals to a higher or lower risk category. However, 

there are limitations to the study, such as the limited data availability and the inclusion of only 

European ancestry individuals. 

The second study discussed the implementation of genome-wide PGSs in the clinical setting for 

predicting the risk of certain diseases. Specifically, the paper focuses on the development and 

validation of three PGSs related to BMD using data from the UKB cohort. The paper then 
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evaluates the performance of these PGSs in an independent validation cohort of postmenopausal 

women from the WHI and compares their predictive ability to the FRAX, which uses clinical 

risk factors to predict fracture risk. The study's findings show that the BMD-related PGSs and 

the metaPGS did not perform as well in the WHI cohort and were not significantly associated 

with fractures. Furthermore, adding genetic information to the FRAX tool only led to minimal 

improvements in predicting hip fracture probabilities among elderly Caucasian women. The 

study suggests that the performance of PGSs in different cohorts can be affected by factors such 

as overfitting, differences in genotyping data, allele frequencies, and environmental and lifestyle 

factors that can influence the expression of certain traits and conditions. Overall, the study 

highlights the importance of validating PGSs in independent cohorts to assess their 

generalizability and potential for clinical use. The findings suggest that PGSs may not provide 

significant improvements in fracture risk prediction beyond conventional clinical risk factors, but 

further research is needed to explore their potential utility in other disease contexts. 

The third study developed a novel metaPGS (meta polygenic score) to predict fracture risk by 

combining genetic information from multiple fracture-related traits. The metaPGS was evaluated 

alone and in combination with the clinical risk score recommended by guidelines. The results 

showed that the metaPGS demonstrated a significant association with incident fractures and was 

more potent than previously established individual PGSs for bone mineral density. Adding the 

metaPGS to the existing FRAX model improved the discrimination of fractures from non-

fracture cases, suggesting that the metaPGS can help stratify fracture risk in the European 

population and for developing personalized prevention strategies. The study highlights the use of 

genomic information to stratify individuals for fracture risk and presents a powerful fracture 

genomic risk score to date. However, the predictive performance of the metaPGS is limited if 
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compared with some diseases, and future studies should validate the metaPGS in other 

populations and evaluate its clinical utility. 
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Appendix A. ICD10 Codes Used to Identify Fracture Cases 

M80.8 Other osteoporosis with pathological fracture： 
M8080: Other osteoporosis with pathological fracture (Multiple sites) 
M8081: Other osteoporosis with pathological fracture (Shoulder region) 
M8082: Other osteoporosis with pathological fracture (Upper arm) 
M8085: Other osteoporosis with pathological fracture (Pelvic region and thigh) 
M8086: Other osteoporosis with pathological fracture (Lower leg) 
M8088: Other osteoporosis with pathological fracture (Other) 
M8089: Other osteoporosis with pathological fracture (Site unspecified) 
M80.9 Unspecified osteoporosis with pathological fracture： 
M8090: Unspecified osteoporosis with pathological fracture (Multiple sites) 
M8091: Unspecified osteoporosis with pathological fracture (Shoulder region) 
M8092: Unspecified osteoporosis with pathological fracture (Upper arm) 
M8093: Unspecified osteoporosis with pathological fracture (Forearm) 
M8094: Unspecified osteoporosis with pathological fracture (Hand) 
M8095: Unspecified osteoporosis with pathological fracture (Pelvic region and thigh) 
M8096: Unspecified osteoporosis with pathological fracture (Lower leg) 
M8097: Unspecified osteoporosis with pathological fracture (Ankle and foot) 
M8098: Unspecified osteoporosis with pathological fracture (Other) 
M8099:  Unspecified osteoporosis with pathological fracture (Site unspecified) 
S22.0 Fracture of thoracic vertebra： 
S2200: Fracture of thoracic vertebra (closed) 
S2201: Fracture of thoracic vertebra (open) 
S32.0 Fracture of lumbar vertebra： 
S3200: Fracture of lumbar vertebra (closed) 
S42 Fracture of shoulder and upper arm： 
S4220: Fracture of upper end of humerus (closed) 
S4221: Fracture of upper end of humerus (open) 
S4230: Fracture of shaft of humerus (closed) 
S4231: Fracture of shaft of humerus (open) 
S4240: Fracture of lower end of humerus (closed) 
S4241: Fracture of lower end of humerus (open) 
S52 Fracture of forearm： 
S5200: Fracture of upper end of ulna (closed) 
S5201:  Fracture of upper end of ulna (open) 
S5210: Fracture of upper end of radius (closed) 
S5211: Fracture of upper end of radius (open) 
S5220: Fracture of shaft of ulna (closed) 
S5221: Fracture of shaft of ulna (open) 
S5230: Fracture of shaft of radius (closed) 
S5231: Fracture of shaft of radius (open) 
S5250: Fracture of lower end of radius (closed) 
S5251: Fracture of lower end of radius (open) 
S5260: Fracture of lower end of both ulna and radius (closed) 
S5261: Fracture of lower end of both ulna and radius (open) 
S5290: Fracture of forearm, part unspecified (closed) 
S72 Fracture of femur： 
S7200: Fracture of neck of femur (closed) 
S7201: Fracture of neck of femur (open) 
S7210: Pertrochanteric fracture (closed) 
S7211: Pertrochanteric fracture (open) 
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S7220: Subtrochanteric fracture (closed) 
S7221: Subtrochanteric fracture (open) 
S7230: Fracture of shaft of femur (closed) 
S7231: Fracture of shaft of femur (open) 
S7240: Fracture of lower end of femur (closed) 
S7241: Fracture of lower end of femur (open) 
S7280: Fractures of other parts of femur (closed) 
S7290: Fracture of femur, part unspecified (closed) 
S7291: Fracture of femur, part unspecified (open) 
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Appendix B. UK Biobank Data Field IDs Used to Ascertain 

Conventional Risk Factors 

Field ID Description 
21022 Age at recruitment 
34 Sex 
50 Standing height 
12144 Height 
21002 Weight 
21001 Body mass index (BMI) 
2463 Fractured/broken bones in last 5 years 
20116 Smoking status 
20003 Treatment/medication code (define glucocorticoid use) 
131848 Date M05 first reported (seropositive rheumatoid arthritis) 
131850 Date M06 first reported (other rheumatoid arthritis) 
130706 Date E01 first reported (insulin-dependent diabetes mellitus) 
3581 Age at menopause (last menstrual period) 
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Appendix C. Participant Characteristics of the UK Biobank 

Testing Set (N=455,663) 

 
 

UKB (N=455,663) 
Male 

(n=208,271) 
(45.71%) 

Female 
(n=247,392) 

(54.29%) 
Age at assessment, yrs. 56.76 ± 8.02 56.99 ± 8.11 56.58 ± 7.95 
Height (cm) 168.66 ± 9.25 175.84 ± 6.78 162.63 ± 6.25 
Weight (kg) 78.16 ± 15.91 86.18 ± 14.30 71.40 ± 13.95 
Current smoker 47,486 (10.42%) 25,392 (12.19%) 22,094 (8.93%) 
Body mass index (BMI) (𝒌𝒈/𝒎𝟐) 27.39 ± 4.77 27.85 ± 4.24 27.01 ± 5.14 
Fractures in the past 5 years 47,576 (10.44%) 19,262 (9.25%) 28,314 (11.44%) 
Oral glucocorticoid user 2,426 (0.53%) 1,069 (0.51%) 1,354 (0.55%) 
Rheumatoid arthritis 10,964 (2.41%) 3,612 (1.73%) 7,352 (2.97%) 
Type 1 diabetes 4,336 (0.95%) 2,517 (1.21%) 1,819 (0.74%) 
Menopause before age 45 years 35,657 (7.83%) NA 35,657 (7.83%) 
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Appendix D. Association Between Polygenic Scores (PGSs) and 

measured BMD in the UKB Testing Set: Results of Multiple 

Linear Regression Analysis (N=38,204) 

BMD sites PGSs Regression 
Coefficient (SE)  

P-values Standardized regression 

Femoral neck 
BMD 

𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝟔𝟑 0.026 (0.0006) <0.0001 0.184 
𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 0.030 (0.0007) <0.0001 0.199 

Total body 
BMD 

𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝟖𝟏 0.005 (0.0006) <0.0001 0.036 
𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 0.041 (0.0006) <0.0001 0.264 

*Separated multiple linear regressions were conducted for each PGS; each estimate was adjusted for age, sex, and 
the first four principal components. 
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Appendix E. Risk for Incident Fracture According to Restricted PGSs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. B. C. 

   

   
(A) PGSs percentile among fracture cases versus controls in the UK Biobank testing set. Within each boxplot, the 
horizontal lines reflect the median, the top and bottom of each box reflect the interquartile range, and the whiskers reflect 
the maximum and minimum values within each group. (B) Predicted Probability of Incident Fracture by PGSs: Risk 
gradient for fractures according to the PGS percentiles. 100 groups of the testing dataset were derived according to the 
percentile of each of the two PGSs. (C) Predicted versus Observed prevalence of incident fracture according to PGS 
percentiles. 
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Appendix F. The cumulative incidence of fracture by PGS groups using the cumulative 

incidence function. 

 CIF 
 1 year  2 years  3 years 4 years 5 years 6 years 7 years 8 years 9 years 10 years 11 years 12 years 
𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝟔𝟑 

<1% 2.50% 6.54% 8.27% 10.01% 12.14% 14.67% 19.94% 23.46% 27.97% 32.28% 36.01% 39.15% 
1-5% 2.38% 4.88% 7.21% 9.56% 12.19% 15.07% 18.19% 21.21% 25.53% 28.90% 33.82% 37.13% 
5-20% 1.89% 3.85% 5.91% 8.25% 10.53% 13.40% 16.29% 19.74% 23.20% 26.84% 30.79% 33.77% 
20-40% 1.64% 3.89% 6.21% 8.32% 10.55% 13.01% 15.85% 18.87% 22.10% 25.28% 28.81% 31.43% 
40-60% 1.63% 3.90% 6.20% 8.31% 10.55% 13.01% 15.82% 18.85% 22.10% 25.28% 28.81% 31.42% 
60-80% 1.79% 3.90% 5.95% 8.16% 10.38% 12.89% 15.40% 18.36% 21.00% 24.43% 27.53% 29.64% 
80-95% 1.44% 3.34% 5.28% 7.13% 9.10% 11.23% 13.63% 16.11% 18.51% 21.75% 24.76% 26.83% 
95-99% 1.33% 3.03% 4.96% 6.85% 8.87% 10.86% 12.91% 15.35% 17.85% 20.43% 23.27% 25.29% 
>99% 1.63% 2.57% 3.77% 5.73% 7.26% 8.93% 11.06% 13.00% 15.65% 18.75% 21.92% 23.53% 

𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝟖𝟏 
<1% 1.67% 3.98% 7.64% 9.55% 12.19% 14.60% 18.28% 21.97% 24.92% 27.38% 30.58% 32.30% 
1-5% 1.70% 3.98% 6.09% 8.91% 11.63% 14.38% 16.90% 20.09% 23.58% 26.16% 29.29% 31.45% 
5-20% 1.99% 4.16% 6.02% 8.10% 10.18% 12.73% 15.43% 17.77% 20.56% 24.09% 27.07% 29.33% 
20-40% 1.67% 3.66% 5.89% 7.89% 10.25% 12.69% 15.38% 18.27% 21.15% 24.41% 27.98% 30.40% 
40-60% 1.55% 3.76% 5.77% 7.91% 9.90% 12.30% 14.91% 18.14% 21.23% 24.15% 27.37% 29.77% 
60-80% 1.61% 3.29% 5.26% 7.25% 9.32% 11.73% 14.29% 17.27% 20.02% 23.38% 26.90% 29.54% 
80-95% 1.61% 3.60% 5.45% 7.40% 9.31% 11.53% 13.97% 16.62% 19.53% 23.09% 26.54% 28.86% 
95-99% 1.76% 3.34% 5.35% 7.79% 10.07% 12.20% 13.83% 16.67% 19.94% 23.09% 26.37% 27.63% 
>99% 0.47% 2.60% 4.97% 6.16% 8.58% 10.78% 13.71% 15.42% 17.14% 20.56% 24.23% 27.17% 

𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 
<1% 2.89% 5.36% 7.84% 9.92% 12.65% 16.27% 19.09% 24.76% 26.72% 29.34% 33.26% 36.09% 
1-5% 2.51% 4.51% 6.97% 10.25% 12.27% 15.31% 18.73% 21.74% 25.53% 29.09% 34.00% 36.55% 
5-20% 1.83% 3.96% 6.39% 8.84% 11.51% 14.21% 16.84% 19.92% 23.46% 26.98% 30.57% 33.63% 
20-40% 1.60% 3.65% 5.91% 7.95% 10.05% 12.52% 15.35% 18.30% 21.43% 24.69% 28.04% 30.41% 
40-60% 1.70% 3.93% 5.81% 7.82% 9.82% 12.04% 14.67% 17.65% 20.49% 23.74% 26.99% 29.47% 
60-80% 1.60% 3.34% 5.28% 7.21% 9.22% 11.62% 13.97% 17.03% 19.62% 22.87% 26.20% 28.30% 
80-95% 1.38% 3.15% 4.84% 6.55% 8.62% 10.75% 12.82% 14.92% 17.28% 20.37% 23.38% 25.28% 
95-99% 1.64% 3.67% 5.00% 6.66% 8.47% 10.56% 13.32% 15.29% 18.26% 21.16% 23.80% 25.78% 
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>99% 0.78% 2.07% 3.37% 5.20% 6.78% 9.14% 10.98% 12.83% 14.41% 17.31% 19.41% 20.47% 
𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 

<1% 2.42% 5.96% 9.69% 13.07% 16.47% 19.32% 23.14% 26.78% 32.15% 34.26% 38.09% 41.15% 
1-5% 2.58% 4.95% 7.53% 10.75% 14.35% 17.91% 21.14% 24.21% 27.71% 31.48% 35.57% 39.07% 
5-20% 2.05% 4.51% 6.93% 9.11% 11.54% 14.32% 17.11% 20.87% 24.27% 27.79% 31.91% 34.64% 
20-40% 1.57% 3.53% 5.65% 7.95% 10.23% 13.04% 15.91% 18.94% 22.08% 25.56% 29.27% 31.72% 
40-60% 1.66% 3.81% 5.67% 7.77% 9.76% 12.22% 14.77% 17.55% 20.17% 23.49% 26.74% 29.26% 
60-80% 1.52% 3.27% 5.29% 7.09% 9.21% 11.18% 13.45% 15.83% 18.52% 21.68% 24.40% 26.34% 
80-95% 1.34% 2.94% 4.47% 6.08% 7.49% 9.35% 11.53% 14.00% 16.67% 19.50% 22.50% 24.61% 
95-99% 1.48% 2.69% 4.31% 6.01% 7.45% 8.64% 10.67% 12.93% 14.70% 17.38% 19.57% 21.13% 
>99% 1.34% 2.95% 3.75% 4.57% 5.93% 8.39% 10.58% 12.52% 14.45% 16.93% 19.42% 20.52% 
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Appendix G. Odds Ratios (OR), Hazard Ratios (HR), and Their Corresponding 95% 

Confidence Intervals (CI) for Incident Fracture Per 1 SD Decrease in PGS. Results from 

Multiple Linear Regression and Cox Proportional Hazard Models in the UKB Testing 

Set. 

High PGS definition Reference group Odds ratio (95% CI) P-value Hazard ratio (95% CI) P-value 
𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝟔𝟑 
    Bottom 20% of distribution Remaining 80% 1.35 (1.28 – 1.41) <0.0001 1.21 (1.16 – 1.27) <0.0001 
    Bottom 10% of distribution Remaining 90% 1.39 (1.32 – 1.47) <0.0001 1.27 (1.20 – 1.33) <0.0001 
    Bottom 5% of distribution Remaining 95% 1.41 (1.32 – 1.52) <0.0001 1.30 (1.22 – 1.39) <0.0001 
    Bottom 1% of distribution Remaining 99% 1.59 (1.39 – 1.85) <0.0001 1.33 (1.16 – 1.54) <0.0001 
𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 
    Bottom 20% of distribution Remaining 80% 1.32 (1.25 – 1.37) <0.0001 1.20 (1.15 – 1.25) <0.0001 
    Bottom 10% of distribution Remaining 90% 1.35 (1.28 – 1.43) <0.0001 1.20 (1.14 – 1.27) <0.0001 
    Bottom 5% of distribution Remaining 95% 1.41 (1.32 – 1.54) <0.0001 1.25 (1.16 – 1.35) 0.002 
    Bottom 1% of distribution Remaining 99% 1.59 (1.35 – 1.85) <0.0001 1.25 (1.06 – 1.47) <0.0001 
𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝟖𝟏 
    Bottom 20% of distribution Remaining 80% 1.02 (0.98 – 1.08) 0.27 1.02 (0.98 – 1.07) 0.26 
    Bottom 10% of distribution Remaining 90% 1.02 (0.96 – 1.09) 0.46 1.06 (1.01 – 1.12) 0.05 
    Bottom 5% of distribution Remaining 95% 1.08 (0.99 – 1.16) 0.09 1.13 (1.04 – 1.22) 0.002 
    Bottom 1% of distribution Remaining 99% 1.08 (0.90 – 1.27) 0.41 1.14 (0.96 – 1.35) 0.14 
𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅 
    Bottom 20% of distribution Remaining 80% 1.47 (1.43 – 1.54) <0.0001 1.28 (1.23 – 1.33) <0.0001 
    Bottom 10% of distribution Remaining 90% 1.59 (1.51 – 1.69) <0.0001 1.31 (1.25 – 1.37) <0.0001 
    Bottom 5% of distribution Remaining 95% 1.69 (1.59 – 1.82) <0.0001 1.36 (1.28 – 1.45) <0.0001 
    Bottom 1% of distribution Remaining 99% 1.89 (1.64 – 2.17) <0.0001 1.47 (1.30 – 1.67) <0.0001 
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Appendix H. Concordance Index and the Corresponding 95% 

Confidence Intervals of Predicted and Observed Fracture Risk 

for the Model with and without PGS. 

 C-index 95% CI P-value 
Model 1 

(Base model) 
 

0.663 
 

0.658 – 0.668 
 

NA 
Model 2 

(Base model + 𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝟔𝟑) 
 

0.668 
 

0.662 – 0.672 
 

<0.001 
Model 3 

(Base model + 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝟖𝟏) 
 

0.663 
 

0.660 – 0.672 
 

<0.001 
Model 4 

(Base model + 𝑷𝑮𝑺_𝑭𝑵𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅) 
 

0.665 
 

0.661 – 0.672 
 

0.007 
Model 5 

(Base model + 𝑷𝑮𝑺_𝑻𝑩𝑩𝑴𝑫𝒍𝒅𝒑𝒓𝒆𝒅) 
 

0.668 
 

0.661 – 0.673 
 

<0.001 
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Appendix I. Sources of Genome-Wide Association Studies 

(GWAS) Summary Statistics used for the metaPGS 

construction. 

Phenotype/Trait Individual PGS Reference 
Femoral neck BMD PGS_FNBMD Estrada et al., (Estrada, Karol 

et al., 2012) 
Total body BMD PGS_TBBMD Medina-Gomez et al., 

(Medina-Gomez et al., 2018a) 
Hand grip strength PGS_HGS Matteini et al., (Matteini et 

al., 2016) 
Appendicular Lean Mass PGS_ALM Zillikens et al., (Zillikens et 

al., 2017) 
Whole Body Lean Mass PGS_WBLM Zillikens et al., (Zillikens et 

al., 2017) 
25-Hydroxy Vitamin D PGS_VD Jiang et al., (Jiang et al., 

2018) 
Serum Calcium Concentration PGS_SCC O'Seaghdha et al., al., 

(O'Seaghdha et al., 2013) 
Homocysteine  PGS_HC Van Meurs et al., (van Meurs 

et al., 2013) 
Thyroid Stimulating Hormone 
Level 

PGS_TSH Teumer et al., (Teumer et al., 
2018) 

Fasting Glucose PGS_FG Lagou et al., (Lagou et al., 
2021) 

Fasting Insulin PGS_FI Lagou et al., (Lagou et al., 
2021) 

Type 1 Diabetes PGS_T1D Robertson et al., (Robertson et 
al., 2021) 

Type 2 Diabetes PGS_T2D Vujkovic et al., (Vujkovic et 
al., 2020) 

Rheumatoid Arthritis PGS_RA Ha et al., (Ha et al., 2021) 
Inflammatory Bowel Disease PGS_IBD Liu et al., (Liu et al., 2015b) 
Hip Bone Size PGS_HBS Styrkarsdottir et al., 

(Styrkarsdottir et al., 2019) 
Coronary Artery Disease PGS_CAD Nikpay et al., (Nikpay et al., 

2015) 
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Appendix J. UNLV IRB approval for study 1 and 2 

 

 
 

UNLV Biomedical IRB - Administrative Review 
Notice of Excluded Activity 

 
 
DATE: September 9, 2020 

TO: Qing Wu 

FROM: UNLV Biomedical IRB 

PROTOCOL TITLE: [1649226-1] Development of Genomic-enhanced Risk Prediction of Fragility 
Fracture 

SUBMISSION TYPE: New Project 

ACTION: EXCLUDED - NOT HUMAN SUBJECTS RESEARCH 
REVIEW DATE: September 9, 2020 

REVIEW TYPE: Administrative Review 

 

Thank you for your submission of New Project materials for this protocol. This memorandum is notification that 
the protocol referenced above has been reviewed as indicated in Federal regulatory statutes 45CFR46. 

 
The UNLV Biomedical IRB has determined this protocol does not meet the definition of human subjects research 
under the purview of the IRB according to federal regulations. It is not in need of further review or approval by 
the IRB. 

 
We will retain a copy of this correspondence with our records. 

 
Any changes to the excluded activity may cause this protocol to require a different level of IRB review. Should any 
changes need to be made, please submit a Modification Form. 

 
If you have questions, please contact the Office of Research Integrity - Human Subjects at IRB@unlv.edu or call 
702-895-2794. Please include your protocol title and IRBNet ID in all correspondence. 

 
 

Office of Research Integrity - Human Subjects 

4505 Maryland Parkway . Box 451047 . Las Vegas, Nevada 89154-1047 
(702) 895-2794 . FAX: (702) 895-0805 . IRB@unlv.edu 

 
 

Generated on IRBNet 
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Appendix K. UNLV IRB approval for study 3 

 

 
 

UNLV Biomedical IRB - Expedited Review 
Modification Approved 

 
 
DATE: February 25, 2020 

TO: Qing Wu, M.D, Sc.D 
FROM: UNLV Biomedical IRB 

PROTOCOL TITLE: [829476-9] Validating the genomics-integrated model for osteoporosis 
prediction in Women’s Health Initiative Study 

SUBMISSION TYPE: Revision 

ACTION: APPROVED 

APPROVAL DATE: February 11, 2020 

REVIEW TYPE: Expedited Review 

 

Thank you for submission of Revision materials for this protocol. The UNLV Biomedical IRB has APPROVED 
your submission. This approval is based on an appropriate risk/benefit ratio and a protocol design wherein the risks 
have been minimized. All research must be conducted in accordance with this approved submission. 

 
Modifications reviewed for this action include: 

 
1. Addition of developing personalized WHO FRAX to the research study. 

 
Should there be any change to the protocol, it will be necessary to submit a Modification Form through ORI - 
Human Subjects. No changes may be made to the existing protocol until modifications have been approved. 

 
ALL UNANTICIPATED PROBLEMS involving risk to subjects or others and SERIOUS and UNEXPECTED 
adverse events must be reported promptly to this office. Please use the appropriate reporting forms for this 
procedure. All FDA and sponsor reporting requirements should also be followed. 

 
All NONCOMPLIANCE issues or COMPLAINTS regarding this protocol must be reported promptly to this 
office. 

If you have questions, please contact the Office of Research Integrity - Human Subjects at IRB@unlv.edu or call 
702-895-2794. Please include your protocol title and IRBNet ID in all correspondence. 

Office of Research Integrity - Human Subjects 

4505 Maryland Parkway . Box 451047 . Las Vegas, Nevada 89154-1047 
(702) 895-2794 . FAX: (702) 895-0805 . IRB@unlv.edu 

Generated on IRBNet  
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Appendix L. Copyright Approval for Study 1 
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