
UNLV Theses, Dissertations, Professional Papers, and Capstones

December 2023

Scalable Algorithm Design and Performance Analysis for Graph Scalable Algorithm Design and Performance Analysis for Graph

Motifs Discovery Motifs Discovery

Md Abdul Motaleb Faysal
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Faysal, Md Abdul Motaleb, "Scalable Algorithm Design and Performance Analysis for Graph Motifs
Discovery" (2023). UNLV Theses, Dissertations, Professional Papers, and Capstones. 4877.
http://dx.doi.org/10.34917/37200503

This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital
Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that
is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to
obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons
license in the record and/or on the work itself.

This Dissertation has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and
Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F4877&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F4877&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.34917/37200503
mailto:digitalscholarship@unlv.edu

SCALABLE ALGORITHM DESIGN AND PERFORMANCE ANALYSIS FOR GRAPH MOTIFS
DISCOVERY

By

Md Abdul Motaleb Faysal

Bachelor of Science – Computer Science and Engineering
Bangladesh University of Engineering & Technology

2014

Master of Science – Computer Science
University of New Orleans

2020
A dissertation submitted in partial fulfillment

of the requirements for the

Doctor of Philosophy – Computer Science

Department of Computer Science
Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas
December 2023

ii

Dissertation Approval

The Graduate College

The University of Nevada, Las Vegas

November 13, 2023

This dissertation prepared by

Md Abdul Motaleb Faysal

entitled

Scalable Algorithm Design and Performance Analysis for Graph Motifs Discovery

is approved in partial fulfillment of the requirements for the degree of

Doctor of Philosophy – Computer Science

Department of Computer Science

Shaikh Arifuzzaman, Ph.D. Alyssa Crittenden, Ph.D.
Examination Committee Chair Vice Provost for Graduate Education &

 Dean of the Graduate College

Laxmi Gewali, Ph.D.

Examination Committee Member

Wolfgang Bein, Ph.D.

Examination Committee Member

Cy Chan, Ph.D.

Examination Committee Member

Brian Labus, Ph.D.

Graduate College Faculty Representative

Abstract

Discovering motifs or structural patterns, such as communities, is a significant graph application utilized for
classifying groups in social and business networks, identifying similar proteins, detecting anomalous behavior
in the cybersecurity domain, and finding critical entities in rumor propagation or infectious disease spreading.
Existing state-of-the-art techniques for community discovery face challenges related to scalability, performance
limitations, and methodological inaccuracies. The objective of this doctoral dissertation is to introduce novel
parallel algorithms and propose high-performance computing architecture designs to address the performance
constraints of current community detection approaches when processing large-scale social and biological
data. This research focuses on two main categories of community discovery problems: i) global community
discovery and ii) local community discovery. We identify two notable sequential approaches, one from each
category, and develop and implement parallel algorithm solutions for both. Our parallel algorithm design for
global community discovery achieves a substantial speedup of up to 25× compared to the original sequential
approach, leveraging hybrid memory parallelism. Furthermore, we conduct comprehensive benchmarking
and performance analysis of software hash accumulation on two prominent community discovery approaches.
Based on our findings, we propose a generalized accelerator design for hash accumulation and simulate the
proposed architecture, achieving up to a 5.6× speedup. For the local/goal-oriented community discovery
approach, we design an innovative parallel algorithm based on shared memory parallelism, demonstrating a
remarkable speedup ranging from 20× to 55× for massive graphs with millions of vertices and billions of
edges.

iii

Acknowledgements

I express my deepest gratitude to my Ph.D. supervisor, Dr. Shaikh Arifuzzaman, whose brilliance and
unwavering support have been instrumental throughout this doctoral journey. His guidance, endless
suggestions, and tireless efforts, even during his busy schedule, have been invaluable. I appreciate his
commitment to refining my writing and providing assistance during challenging times, not only in the
academic realm but also for my overall well-being. Dr. Arifuzzaman’s mentorship has played a pivotal role in
my successful attainment of this doctoral degree.

I extend my thanks to the Computer Architecture Group (CAG) at Berkeley Lab for facilitating the logistics
that led to significant research outcomes. I am particularly indebted to John Shalf, the department head of
computer science at Berkeley Lab, for initiating our collaborative research and offering me the position of
graduate affiliate. His mentorship and the opportunities provided, including three consecutive summer in-
ternships, have significantly shaped my understanding of algorithmic performance on computing architectures.

Dr. Cy Chan, a research scientist of the CAG group at Berkeley Lab and a brilliant mind to work with, shaped
the trajectory of my research in a significant extent. I value his mentorship which helped me grow as an
aspiring researcher. I am grateful for getting the opportunity for all of those weekly brainstorming sessions
where I was awed by his scholarly excellence that set the stepping stones of this doctoral research

I acknowledge the significant contribution of Dr. Maximilian Bremer to my doctoral research. His in-depth
technical knowledge never ceases to amaze me. During the tenure of our research collaboration with the
CAG group at Berkeley Lab, Dr. Bremer was the person I interacted with mostly for research and technical
guidance. He is a brilliant scholar and an amazing person. I feel fortunate to be able to work with and learn
from him.

Dr. Doru Thom Popovici’s contribution to my doctoral research, especially in shaping the narrative for
my defense, has been significant. His valuable feedback and mentorship during my summer 2023 research
internship at Berkeley Lab have enhanced both my technical and presentation skills.

iv

I am very much thankful to Dr. Wolfgang Bein - Professor of Computer Science at UNLV, Dr. Laxmi Gewali
- Professor of Computer Science at UNLV, and Dr. Brian Labus - Professor of the School of Public Health at
UNLV for their approval to serve on my Ph.D. dissertation committee and for their constructive feedback,
which greatly contributed to organizing and improving my doctoral work.

I would like to express my gratitude to Farzad Fatollahi-Fard, FPGA computer system engineer of the
Computer Science Department at Berkeley Lab and Matthew Avery Toups, former IT Director of the
Computer Science Department at the University of New Orleans for extending constant technical support
during the tenure of my doctoral research.

Finally, I acknowledge the generous support from various research facilitating bodies. This dissertation project
has received partial funding from the U.S. Department of Energy, Office of Science, Advanced Scientific
Computing Research under Award Number DE-AC02-05CH11231, the National Science Foundation (NSF)
under Award Number 2323533, the Nevada State of Higher Education (NSHE), the Louisiana Board of
Regents RCS Grant LEQSF(2017-20)-RDA-25, and the University of New Orleans (UNO) ORSP SCORE
award 2019.

v

Dedication

To my family and friends

vi

Table of Contents

Abstract iii

Acknowledgements iv

Dedication vi

List of Tables xi

List of Figures xiii

List of Algorithms xvii

Chapter 1 : Introduction 1
1.1 Scope of Research . 3
1.2 Summary of Research Findings . 8

Chapter 2 : A Distributed Memory Parallel Information-Theoretic Community Discovery 10
2.1 Introduction . 10
2.2 Descriptions of the Static Community Detection Approaches 11

2.2.1 Motivation for Parallel Algorithm Design for Information-Theoretic Community
Discovery . 13

2.3 Problem Specification . 14
2.3.1 The Map Equation . 18
2.3.2 Sequential Infomap Algorithm . 19

2.4 Challenges in Distributing Computation/Data . 20
2.4.1 Vertex bouncing problem . 20
2.4.2 Inconsistent update ordering . 21
2.4.3 Inactive vertices . 22

2.5 Solution Strategies: Our Heuristics . 23
2.5.1 Solution to Vertex Bouncing Problem . 23
2.5.2 Solution to Inconsistent Update Ordering . 23

vii

2.5.3 Solution to Inactive Vertices Problem . 23
2.5.4 Our Parallel Algorithm Design of Distributed Infomap 24

2.6 Experimental Setup . 26
2.7 Implementation . 26
2.8 Performance Comparison . 26
2.9 Dataset . 27
2.10 Evaluation . 27

2.10.1 Quality analysis of the Detected Modules . 27
2.10.1.1 Convergence of the Objective Function 28
2.10.1.2 Modularity . 28
2.10.1.3 Conductance . 29

2.10.2 Distributed Performance Analysis . 30
2.10.2.1 Workload Balancing . 30
2.10.2.2 Speedup and Parallel Efficiency . 31

2.11 Literature Review . 34
2.12 Concluding Remarks . 36

Chapter 3 : HyPC-Map, A Hybrid Memory Parallel Infomap 37
3.1 Introduction . 37
3.2 Algorithmic Analysis and Performance Profiling . 38
3.3 Optimizing Computational Kernels . 39
3.4 Overview of the Algorithm . 41
3.5 Experimental Settings . 45

3.5.1 Computational Infrastructure . 45
3.5.2 Datasets Used in Experiments . 45

3.6 Performance Evaluation . 46
3.6.1 Quality Analysis of Discovered Communities . 46
3.6.2 Convergence of the Objective Function . 46
3.6.3 Modularity . 47
3.6.4 Conductance . 47
3.6.5 Normalized Mutual Information . 48
3.6.6 Parallel Performance . 49

3.6.6.1 Speedup Gain . 49
3.6.6.2 Scalability Analysis . 50
3.6.6.3 Comparison with state-of-the-art techniques 50

3.6.6.3.1 Comparison with other community discovery strategies 52
3.7 Concluding Remarks . 55

viii

Chapter 4 : Fast Infomap with Accelerated Hash Accumulation 56
4.1 Introduction . 56
4.2 Background . 58

4.2.1 Components of A Parallel Infomap Algorithm . 58
4.2.2 Motivation for Accelerator . 58
4.2.3 Pin and ZSim . 61

4.3 Methodology . 62
4.3.1 Hash Accumulation . 62
4.3.2 Gather CAM Entries . 63
4.3.3 Sorting and Merging . 63

4.4 Evaluation . 64
4.4.1 Utilizing Limited CAM Capacity . 64
4.4.2 Validation of Native vs Baseline . 64
4.4.3 Performance Evaluation . 67

4.5 Related Work . 71
4.6 Concluding Remarks . 74

Chapter 5 : Fast Parallel Index Construction for k-truss-based Local Community Detection 76
5.1 Introduction . 76
5.2 Background . 79

5.2.1 Preliminaries . 80
5.2.2 Index Construction Method . 81

5.3 Methodology . 81
5.3.1 Overview of the parallel algorithm . 81
5.3.2 Algorithm Complexity Analysis . 86
5.3.3 Optimization of Compute Kernel . 86

5.4 Performance Evaluation . 87
5.4.1 Experimental Settings . 87
5.4.2 Effect of Compute Kernel Optimization . 87
5.4.3 Performance Analysis . 89

5.5 Community Search . 94
5.5.1 Parallel Community Search Methodology . 96
5.5.2 Performance Evaluation . 98

5.6 Other Related Work . 101
5.7 Concluding Remarks . 101

Chapter 6 : Conclusion 102

ix

Appendix A : Publications from Dissertation Research 104
A.1 Co-authorship . 105

Bibliography 107

Curriculum Vitae 119

x

List of Tables

1.1 Listing the summary of the outcome of this doctoral research 9

2.1 Classification of the community detection approaches based on methodology 11
2.2 Symbols and Their Descriptions Utilized in Our Parallel Infomap Work 15
2.3 Network dataset for our experiments. We used several social and information networks. . . . 27
2.4 Modularity and Conductance of the networks for the sequential Infomap 27
2.5 Speedup factors on various social and information networks 33

3.1 Performance micro-benchmark of insertion and read operations between c++ map vs un-
ordered_map . 40

3.2 Scale-free network datasets used for our experiments that exhibit power-law degree distribution 46
3.3 Scalability of HyPC-Map in terms of the quality metrics: Modularity 49
3.4 Scalability of HyPC-Map in terms of the quality metrics: Conductance 49
3.5 Demonstrating scalability of HyPC-Map in terms of Normalized Mutual Information (NMI)

for different number of processors. 49
3.6 Speedup comparison with sequential (1-core/process) execution of our HyPC-Map (column 2)

and with original sequential implementation of Infomap [113] by Rosvall et al. [114] (column
3). 50

3.7 Comparison of HyPC-Map with state-of-the-art techniques 51
3.8 Relative efficiency 𝜀𝑟 between GossipMap and HyPC-Map 52
3.9 Execution performance comparison between HipMCL [13] and HyPC-Map. MLE: Memory

Limit Exceeded . 55

4.1 Scale-free network datasets used for our experiments that exhibit power-law degree distribution 64
4.2 Machine configurations for Native vs Baseline validation 66
4.3 Runtime comparison in different iterations between Baseline and Native using single process-

ing core for the YouTube social network . 66
4.4 Runtime comparison between baseline and native in different iterations using 2 processing

cores for the YouTube social network . 66

xi

4.5 Time spent on hash operations for Baseline vs ASA . 66

5.1 Notations and abbreviations to describe the work of our parallel EquiTruss 79
5.2 Listing of different algorithmic implementations/optimizations and corresponding descriptions 79
5.3 The social and information network datasets used for our experiments of sequential and

parallel EquiTruss approaches . 87
5.4 Comparison of the total runtime for key computational phases (SpNd, SpEdge, and SmGraph)

in the construction of the Index. This comparison is conducted in a single-threaded envi-
ronment, contrasting our implementations with the respective computational phases of the
original Java implementation by Akbas et al. [2]. 89

5.5 Quantifying the count of supernodes and superedges within summary graphs across vari-
ous networks. The findings are verified under both sequential and parallel conditions, and
comparisons are made against the C++ implementation of the work by Akbas et al. [2]. . . . 90

5.6 Contrast between the elapsed time for the slowest execution (1-thread) and the fastest execution
time (128-thread) in seconds, along with the associated speedup (X) for various optimized
versions of our parallel EquiTruss. 90

5.7 Speedup comparison between sequential and parallel execution of community search (Algo-
rithm 11) and state-of-the-art sequential community search by Akbas et al. [2] on experiment
datasets. 100

xii

List of Figures

1.1 Demonstration of community discovery using a protein-protein interaction network 2
1.2 Demonstration of the primary categories (global, local) of community discovery 2
1.3 The scope of this doctoral dissertation . 4

2.1 Describing the correlation between the regularity of information and the compression achieved
by Shannon’s Entropy theorem . 17

2.2 The distributed graph processing encounters the vertex bouncing problem when vertices 𝑢
and 𝑣 share a close affinity and belong to the same community 21

2.3 Calculating community membership information in a distributed setting involving two processes 22
2.4 Non-uniform communities arise due to incorrect synchronization 22
2.5 Consistent communities in two distributed processes (Process 1 and Process 2) due to syn-

chronization based on priority ordering . 24
2.6 Comparison of MDL after convergence between sequential and distributed Infomap 28
2.7 Illustration of preserved community quality in the distributed setting using modularity score 29
2.8 Illustration of the preserved quality of discovered communities in the distributed setting using

conductance . 30
2.9 Workload imbalance resulting from naïve vertex distribution across MPI processes 31
2.10 Balanced workload across processes resulting from workload distribution by Metis partitioner 32
2.11 Reduction of processing time for networks of different sizes from a single process to 512

processes in distributed Infomap . 32
2.12 Parallel efficiency obtained against different numbers of MPI processes 33

3.1 Runtime scalability for large networks with the PageRank kernel processed in parallel using
shared-memory parallelism (OpenMP) within each MPI process 39

3.2 Speedup factor achieved for different networks . 40
3.3 Operational kernels in our initial implementation of the distributed (MPI) Infomap algorithm 42
3.4 Runtime improvement of the operational kernels in Infomap achieved through the imple-

mentation of a cache-friendly data structure and the combination of distributed and shared
memory parallelism . 42

xiii

3.5 Runtime improvement of the operational kernel of Infomap by using cache-optimized kernel
and multi-threading . 43

3.6 Illustration of the quality of discovered communities in terms of MDL 47
3.7 Illustration of the quality of discovered communities in terms of modularity 48
3.8 Illustration of community quality in terms of conductance 48
3.9 Illustrating the scalability of the execution time for Orkut, LiveJournal, and Pokec network . 51
3.10 Runtime comparison for LiveJournal network between GossipMap and HyPC-Map (single-

thread distributed and multi-thread distributed) . 53
3.11 Runtime comparison for soc-Pokec network between GossipMap and HyPC-Map (single-

thread distributed and multi-thread distributed) . 53
3.12 Runtime comparison for wiki-topcats network between GossipMap and HyPC-Map (single-

thread distributed and multi-thread distributed) . 54
3.13 We observe similar MDL for 3 different networks after the convergence of both the GossipMap

and HyPC-Map . 54

4.1 The kernel breakdown of the Infomap application in native execution for large networks
(Pokec and Orkut) . 59

4.2 A further breakdown of the FindBestCommunity kernel shows hash operations taking 50% to
65% of the kernel computation time . 59

4.3 Generalized ASA micro-architecture block diagram . 63
4.4 Illustration of the degree distribution in scale-free social networks characterized by a power-

law degree distribution . 65
4.5 Harnessing the power-law degree distribution inherent in real-world networks to minimize

Content-Addressable Memory (CAM) storage needs . 65
4.6 Comparison of speedup between Baseline and Accelerator for Hash Accumulation (ASA)

across various networks . 67
4.7 Breakdown of the execution time for the simulated kernel (FindBestCommunity) in the Amazon

network . 68
4.8 Breakdown of the execution time for the simulated kernel (FindBestCommunity) in the DBLP

network . 68
4.9 Performance comparison metric (total instructions) for large networks (Orkut, soc-Pokec, and

YouTube) . 69
4.10 The average number of instructions per core decreased from Baseline to ASA for the Amazon

network . 70
4.11 The average number of instructions per core decreased from Baseline to ASA for the DBLP

network . 70

xiv

4.12 The decrease in the number of mispredicted branches from Baseline to ASA for large networks
(Orkut, soc-Pokec, and YouTube) . 71

4.13 The average reduction in the number of branch mispredictions per core from Baseline to ASA
for the Amazon network . 71

4.14 The average reduction in the number of branch mispredictions per core from Baseline to ASA
for the DBLP network . 72

4.15 Reduction in the average cycles retired per instruction (CPI) from Baseline to ASA for the
large networks (Orkut, soc-Pokec, and YouTube) . 72

4.16 The average CPI (Cycles Retired per Instruction) per core decreases from Baseline to ASA
for the Amazon network . 73

4.17 The average CPI (Cycles Retired per Instruction) per core decreases from Baseline to ASA
for the DBLP network . 73

5.1 Percentage breakdown of compute kernel timing for our initial implementation based on
EquiTruss . 78

5.2 Visualization of the construction process of the summary graph by EquiTruss 83
5.3 Functional components in the Baseline version of the parallel EquiTruss algorithm 88
5.4 Enhancement in single-threaded execution time through speedup of the primary operational

kernel . 88
5.5 Demonstrating the scalability and reduction in runtime across 3 distinct design phases of the

parallel EquiTruss algorithm for the Orkut network . 91
5.6 Illustrating the scalability and reduction in runtime across 3 distinct design phases of the

parallel EquiTruss algorithm for the LiveJournal network 92
5.7 Demonstrating the scalability and reduction in runtime across 3 distinct design phases of the

parallel EquiTruss algorithm for the YouTube network . 92
5.8 Reduction in execution time for the SpNode kernel on the billion-size Friendster network

utilizing C-Opt. EquiTruss and Aff. EquiTruss . 93
5.9 Breakdown of execution time for the major compute kernels (SpNode, SpEdge, SmGraph) on

the Orkut network . 93
5.10 Breakdown of execution time for the major compute kernels (SpNode, SpEdge, SmGraph) on

the LiveJournal network . 94
5.11 Demonstrating parallel efficiency with 3 distinct designs of the parallel EquiTruss on the

Orkut network . 94
5.12 Demonstrating parallel efficiency with 3 distinct designs of the parallel EquiTruss on the

LiveJournal network . 95
5.13 Demonstrating parallel efficiency with 3 distinct designs of the parallel EquiTruss on the

YouTube network . 95

xv

5.14 Illustrating runtime scalability of our parallel community search (Algorithm 11) for larger
networks (LiveJournal and Orkut) using increasing number of threads 98

5.15 Illustrating runtime scalability of our parallel community search (Algorithm 11) for mid-size
networks (DBLP and YouTube) using increasing number of threads 99

5.16 Illustrating parallel efficiency for 3 different networks (YouTube, LiveJournal, and Orkut) for
community search using Algorithm 11 . 99

xvi

List of Algorithms

1 Sequential Infomap . 20
2 Distributed Infomap . 25

3 Hybrid Infomap . 44

4 FindBestCommunity . 60
5 FindBestCommunity_ASA . 62

6 Construct Index for EquiTruss [2] . 82
7 Construct SuperNode(s) in parallel . 84
8 Create SuperEdge(s) in parallel . 85
9 Construct SuperGraph in parallel . 85
10 vertex 𝑞 ∈ 𝐺(𝑉 ,𝐸) to list of supernode(s) ∈ 𝔾(𝕍 ,𝔼) . 96
11 Community Search in parallel . 97

xvii

Chapter 1: Introduction

Graph (Network) is a powerful abstraction for representing underlying relations and structures in large
complex systems. Finding structural patterns within a graph is required to analyze entities based on their
relations/interactions in social, biological, and communication networks. Some examples include grouping
people in social networks based on mutual interests or similar backgrounds, classifying cells or biological
units that perform similar kinds of activities in biological networks, e.g., clustering brain cells based on
their interconnection and activity to perform a specific operation of the body, classifying proteins that might
be responsible for cancer or other diseases, detecting internet anomaly, e.g., detecting fraudulent websites,
building efficient product recommendation system by grouping customers based on their purchase habits,
connecting research community based on collaboration network and so on.

Community discovery is a fundamental technique for finding structural patterns in graphs (e.g., social, biolog-
ical, and communication networks) and has been widely used in many scientific domains [59, 97, 26, 114, 98].
Scalable algorithms are required [106, 16, 13, 155, 8] to process the massive networks available nowadays. A
wide variety of applications extensively use community discovery. Some applications are finding similar
proteins, detecting anomalous behavior in the cyber-security domain, finding critical points/entities in rumor
propagation or infectious disease spreading, and classifying groups in social and business networks based on
their activities [81, 85, 114]. A few definitions pertaining to the problem of community discovery along with
an illustrative example are presented below.

Definition 1 (Graph:) A graph is defined as 𝐺 = (𝑉 ,𝐸), where 𝑉 is a set of vertices 𝑣 and 𝐸 is a set of
edges (links) (𝑢, 𝑣), with 𝑢, 𝑣 ∈ 𝑉 .

Definition 2 (Community:) A community in a network is a set of entities that share some closely correlated
action/similarity with the other entities of that set. The problem of community detection pertains to seeking
community assignment 𝐶𝑢 for each vertex 𝑢 ∈ 𝑉 in graph 𝐺 where the vertices in the same community/group
share the same community membership.

In this dissertation, the terms graphs and networks will be used interchangeably. Generally, networks exhibit
natural divisions into sets of vertices with dense connectivity (edges) within each set and sparse connectivity

1

across vertices of different sets [107, 55, 96]. The task of identifying these group structures is known
as community discovery (see Figure 1.1). Various forms of the community discovery problem exist (see
Figure 1.2). Many algorithms [59, 43, 34, 97, 26, 114, 106] focus on finding global disjoint communities,
breaking down the entire network into distinct sets of vertices. In contrast, some algorithms [137, 2] explore
local overlapping communities, where a vertex may simultaneously belong to multiple communities. In
local community discovery, the objective is to identify other member vertices within the community or
communities of a given query vertex.

(a) (b)
Figure 1.1: Demonstration of community discovery using a protein-protein interaction network. (a) Repre-
sentation of a yeast protein-protein interaction network [19]. Each vertex (blue circles) represents distinct
proteins, and the arcs (blue lines) denote interactions between proteins. (b) Proteins grouped by community
detection based on functional similarities. Proteins within the same group share the same color and exhibit
similar biological properties. Visualizations created using Gephi [18].

Disjoint Community Membership Overlapping Community Membership

Figure 1.2: Demonstration of the primary categories (global, local) of community discovery. The sub-figure
on the left illustrates distinct communities (oval shapes), with each vertex (dark circles) potentially belonging
to only one community at a time. The sub-figure on the right illustrates overlapping communities, where
certain vertices (highlighted in dark gray) belong to multiple communities simultaneously.

2

The concept of community discovery is not recent. Many community discovery approaches have been
designed more than a decade ago. Since then, the size of the graphs has increased by several orders of
magnitude. The computational capability of modern computers also increased manifolds. In recent years, we
see supercomputers have emerged with exascale computing capability. We need novel parallel algorithms to
utilize modern high-performance computing resources to process the high volume of data with high throughput.
The goal of this doctoral dissertation is to design novel parallel algorithms and propose high-performance
computing architecture for overcoming performance limitations in existing community detection approaches.
The research delves into the two categories (global and local) of community detection problems, identify two
outstanding sequential algorithms, one from each category, and design parallel algorithm solution for both of
the sequential algorithms. We identify the scalability issues in current community discovery approaches, pose
them as research questions, and then discuss the outcomes by answering those questions as the constituent
parts of my doctoral dissertation. The research questions are the following.

1. What are the current limitations in existing approaches that perform global community discovery and
how do we contribute to overcoming the limitations?

2. How do we address the issue of low speedup from a synchronous parallel community discovery
algorithm that is inherently sequential?

3. Many graph kernels are memory-bound. Can we identify the instructions/operations limiting perfor-
mance and use software-hardware co-design for certain graph operations to overcome low throughput
in our community detection algorithm?

4. What are the limitations/challenges in existing local community discovery approaches? How can we
overcome those challenges in our research?

1.1 Scope of Research
In this section, we illustrate the scope of my doctoral research. In the latter part of this section, we discuss our
solution approaches to the research questions by the order of their listing.

In Figure 1.3, we show the three major components of this doctoral dissertation. Those components are
designing a parallel algorithm for global disjoint community discovery, simulating accelerator design
for speeding up hash accumulation in community discovery, and designing a parallel algorithm for local
overlapping community discovery. There are two phases for global community discovery. First, we choose
a community discovery approach known as Infomap [114, 81]. Studies [81, 3] show that Infomap detects
community with higher accuracy than other approaches. For our global community detection approaches,
we first design a distributed memory Infomap, and then design a hybrid (distributed + shared) memory
parallel Infomap that delivers better scalability. Second, we perform extensive profiling and instrumentation

3

Parallel Global
Community Discovery

Distributed Infomap

Hybrid Infomap

Accelerator-aided
Community Discovery

Parallel Local
Community Discovery

Performance Modeling

Accelerated Hash
Accumulation

Parallel EquiTruss

Community Search

Scope of
Dissertation

Figure 1.3: The scope of this doctoral dissertation. The research scope encompasses novel parallel algorith-
mic techniques for local overlapping community discovery, combining heuristics and parallel computing
frameworks for global community discovery and software-hardware co-design for accelerator-aided global
community discovery

on two parallel community discovery approaches, HipMCL [13], and HyPC-Map [49]. We perform
roofline modeling and notice a significant performance gap between expected and true performance. We
observe both of these approaches are dependent on a high volume of hash operations. Traditional software
hash (key-value) accumulation suffers from low throughput due to branch misprediction and high CPI
rate (cycles retired per instruction). Therefore, we propose a generalized accelerator design for fast hash
accumulation. Finally, unlike global community discovery, there is not much research conducted on the
problem of scalable algorithm design for local community discovery. However, the problem of local
community discovery has its own application domain where a user may be interested in the community
of a query vertex/entity. K-truss [35] oriented index construction facilitates the efficient formulation of
local overlapping communities and query-based community search. Therefore, we design a novel parallel
algorithm for k-truss-based index construction and use that index structure for parallel local community search.

Response to Q1 (work published [46]): The global community detection problem has received high attention
recently among research communities for the need to process the massive volume of graph data. The challenges

4

in global community detection algorithms are as follows. i) Most of the approaches for discovering global
communities [59, 43, 34, 97, 26, 114] were developed more than a decade ago and did not foresee the massive
growth of information. ii) Several parallel algorithms in CPU [25, 14, 124, 154, 128, 129, 147, 118, 58] and
GPU [33, 95] platforms have been developed for the modularity maximization-based Louvain [26] community
detection approach. Fortunato et al. [57] demonstrated in their study that there is a resolution-limit problem in
modularity-maximization-based community discovery strategies. There is a highly scalable parallel algorithm
called HipMCL [13] for protein clustering based on Markov clustering [43]. HipMCL does not perform well in
processing scale-free social networks [49]. iii) Community discovery using an information-theoretic approach
[114], known as Infomap delivers a better quality solution in the LFR (Lancichinetti–Fortunato–Radicchi)
benchmark [82] as observed by Lancichinetti et al. [81] and Aldecoa et al. [3]. However, the algorithm is
highly sequential. There are existing parallel designs that have low scalability [15, 16] and poor speedup
despite using up to 4 thousand processing cores [149]. We observe there are scopes of improvement in
state_of_the_arts parallel Infomap and design a highly scalable distributed memory parallel Infomap [46]
algorithm for the CPU platform. Our contributions are the following.

i) We design an MPI-based distributed-memory parallel algorithm for community detection for Infomap.
Our design has a similar speedup to this work [149] while using a lower number of processing cores
demonstrating better parallel efficiency.

ii) The algorithm follows a synchronous memory parallel approach. Therefore, despite the distributed
computation, our algorithm can maintain the quality of the discovered community of the sequential
approach. Detailed quality comparisons are presented in our work [46].

iii) We apply problem-specific heuristics to overcome the challenges in distributed graph processing.
iv) We use the Metis partitioner [77] for efficient load balancing resulting in high scalability of up to 512

MPI processes.

Response to Q2 (work published [49]): During our development of the study [46], we observe low scalability
due to workload imbalance across MPI processes and high communication overhead during synchronization
among the MPI processes. Therefore, we design a hybrid memory parallel algorithm [49] that combines shared-
memory and distributed-memory parallelism while reducing synchronization overhead. Our contributions are
the following.

i) Our approach is hybrid, i.e., we combine both distributed-memory and shared-memory parallelism. It
demonstrates better speedup than relevant literature (e.g., [16, 150, 46]), and achieves 25× speedup
compared to the sequential algorithm [114]

ii) We have performed extensive bench-marking and analyzed memory subsystems to use cache-optimized
data structures resulting in efficient compute kernels.

5

iii) We achieve better speedup than state-of-the-art techniques without sacrificing the solution quality (less
than 2% impact on modularity and conductance) while achieving scalability of up to 1280 processing
cores.

Response to Q3 (work published [51]: In our performance analysis, we decompose the various computational
kernels of the Infomap approach. We identify a critical and time-consuming phase in determining the
community membership of a vertex, which involves computing and aggregating flow information from
neighboring vertices. Both sequential [114] and parallel implementations [15, 16, 46, 49] of Infomap rely on
software hash tables to store data about neighboring vertices. However, software hash accumulation is highly
resource-intensive and a significant bottleneck in hardware resource utilization, leading to issues such as stalls
due to branch misprediction [151]. We show that introducing an accelerator for hash accumulation with fast
Content-Addressable Memory (CAM) can effectively address the challenges associated with software hash
tables, bridging the gap between achievable and utilized hardware resources. Notably, none of the existing
works [114, 15, 16, 149] on Infomap community detection has explored hardware acceleration for speeding
up hash operations. Building on Chao et al.’s [151] Accelerator for Hash Accumulation (ASA) designed for
SpGEMM computation, we extend and adapt the ASA architecture for use in the context of Infomap. The
contributions of our software-hardware co-design are summarized below.

i) We extend the ASA interface introduced by Chao et al. [151] to accelerate SpGEMM computation and
showcase its effectiveness in an application involving a substantial number of hash operations. To our
knowledge, this represents the first instance where an accelerator is employed to enhance the speed of
hash operations for Infomap community discovery.

ii) In the context of the Infomap application, ASA reduces branch misprediction by 59%, the CPI rate
by 21%, and the total number of instructions by 24% through the elimination of resource-intensive
software hash accumulation and collision handling operations.

iii) We illustrate that the limited capacity of on-chip Content-Addressable Memory (CAM) poses no
hindrance in managing large social and biological networks. Our observations indicate that a core-local
on-chip CAM size of 8KB can process over 99% of the vertices effectively.

Response to Q4 (work published [54]): In various real-world scenarios, there is often a greater interest
in determining the communities to which an entity (a vertex in a graph) belongs, rather than identifying
the independent disjoint communities of the entire graph. For example, a user within a social network may
be more concerned about the social groups or communities in which they actively participate, rather than
all communities present in the network. This entity-centered personalized search is more meaningful, as
the communities a user engages with provide valuable social and behavioral context. While the former
problem typically applies a global criterion or optimization function to uncover all eligible communities,
the latter problem generally constructs and maintains an index-based structure with the aim of retrieving

6

community subgraphs containing the query vertex. We refer to the latter problem as local or goal-oriented
community search. A notable distinction between these problems lies in the fact that in global community
discovery, a vertex may belong to only one community at a time (resulting in disjoint communities), whereas
in local community discovery, a vertex may belong to more than one community simultaneously (resulting
in overlapping communities) (see Figure 1.2). Consequently, we propose a parallel k-truss-induced index
construction for local community search. We identify a k-truss-induced community discovery technique
[2] capable of detecting local communities in polynomial time. Previous studies primarily explored k-truss-
induced local community formation [2, 69] in a serial setting, rendering them unsuitable for large graphs. To
the best of our knowledge, our work represents the initial attempt to parallelize this algorithmic approach,
accompanied by extensive performance analysis. Our choice of the k-truss-oriented index construction,
EquiTruss, as the fundamental building block for local community search is motivated by the following
considerations.

• The identification of graph motifs based on cliques is excessively restrictive for real-world scenarios,
compounded by the fact that it poses a problem that is not polynomially tractable.

• The k-core problem involves finding the maximal subgraph where each vertex has at least k adjacent
vertices. Despite being polynomially solvable, the k-core approach suffers from the drawback of lacking
cohesion, which is a crucial property for community subgraphs [35].

• The k-truss, serving as a more relaxed variant of the clique, can be computed in polynomial time.
Unlike primitive features such as vertex sets or edge sets, k-truss employs a higher-order graph motif
based on triangle connectivity as the foundational element for formulating a community, thus enabling
a comprehensive representation of multiple overlapping communities.

• Recent advancements in k-truss-based goal-oriented community search have been noted [69, 2]. Despite
the seeming promise of k-truss-oriented community search formulations, they face challenges in
harnessing the processing power of modern multi-core or many-core platforms for handling massive
networks within a shorter time frame.

• Studies [126, 72, 140] have explored parallel k-truss decomposition in shared-memory systems. How-
ever, these studies specifically address the problem of k-truss decomposition, which is only a sub-
problem within the broader context of the k-truss-oriented formulation for local community search.

We developed a parallel algorithm for local community search based on k-truss in multiple phases. First, we
implemented a sequential algorithm for truss-based local community search using C++ following the work
[2]. We identified three key computational kernels: i) determining support, which involves calculating the
number of triangles associated with an edge, ii) truss decomposition, which entails categorizing the edges
of the original graph into various groups or subsets based on their trussness, and iii) constructing an index

7

substructure known as EquiTruss [2] from the distinct k-truss groups.

In contrast to the extensively studied parallelization of k-truss decomposition, the EquiTruss problem has
been overlooked in the context of parallel algorithms, despite its demonstrated computational complexity as
discussed in a subsequent chapter (Chapter 5). Therefore, this doctoral dissertation exclusively concentrates
on the parallel algorithmic design for solving the EquiTruss problem. Our approach commences with
the implementation of a parallel connected component (CC) algorithm [123] to construct EquiTruss in
parallel, denoted as Baseline EquiTruss. Subsequently, we enhance the storage and retrieval of neighborhood
information to optimize cache-locality, termed as Optimal EquiTruss. Finally, we employ a cutting-edge
sampling-based parallel connected component algorithm [130] to construct supernodes in EquiTruss, referred
to as Afforest EquiTruss. This version surpasses the performance of the initial two versions. Our contributions
are summarized as follows:

i) We develop a parallel index construction method for k-triangle-induced structures (EquiTruss) using
OpenMP. This innovative algorithm utilizes triangle connectivity and k-trusses as conditions for
constructing the super graph. To the best of our knowledge, our approach is the first parallel algorithm
designed for building such index structures, specifically tailored for facilitating local community search.

ii) Our parallel EquiTruss incorporates the Afforest algorithm [130], a state-of-the-art connected com-
ponents approach. Additionally, we utilize the Shiloach-Vishkin (SV) algorithm [123] for parallel
connected components, presenting a comparative analysis of the performance of these two approaches.

iii) The summary graph is constructed through a combination of parallel super node creation and parallel
super edge generation, resulting in a speedup of up to 30× on the NERSC Perlmutter compute node
compared to its sequential counterpart and up to 55× when compared to the Baseline EquiTruss.

Our experiments demonstrate a significant performance improvement, with speedups from 20𝑥 to 55𝑥 for
graphs with hundreds of millions to billions of edges, using NERSC 𝑃𝑒𝑟𝑙𝑚𝑢𝑡𝑡𝑒𝑟 compute nodes. Such a
capability leads to a fast and efficient analysis of the underlying structure and behavior of large-scale graphs.

1.2 Summary of Research Findings
This dissertation write-up is organized as follows. In this chapter (Chapter 1), we discuss the research problem
and our motivation in brief. Later, in Chapter 2, we present our novel distributed algorithm design for Infomap
community discovery. In Chapter 3, we further improve the parallel performance of our distributed Infomap by
combining both shared memory and distributed memory parallelism. In Chapter 4, we propose a generalized
accelerator design for high-throughput hash accumulation. Finally, in Chapter 5, we present a novel parallel
algorithm for local community discovery. In Table 1.1, we summarize the outcomes of our research on
parallel algorithm designs.

8

Table 1.1: Listing the summary of the outcome of this doctoral research

Contribution Chapter Methodology Performance
Distributed Infomap 2 MPI-based distributed parallelism 5.1×
Hybrid-Memory Infomap 3 (Distributed + shared)-memory parallelism 25×
Accelerator-aided Infomap 4 Accelerator for Fast Hash 5.6×
Parallel EquiTruss 5 Parallel Index Construction 30 × −55×

9

Chapter 2: A Distributed Memory Parallel Information-
Theoretic Community Discovery

There exist various approaches for uncovering communities in a network (graph). Despite their approximating
nature, community discovery grounded in the principles of Information Theory has demonstrated a stan-
dardized level of accuracy. The information-theoretic algorithm recognized as Infomap, conceived a decade
ago for community detection, failed to anticipate the tremendous growth of social and biological networks,
multimedia, and massive-scale datasets. For the identification of communities in extensive networks, we have
developed a distributed-memory-parallel Infomap within the MPI framework. Our design achieves scalability
of up to 512 MPI processes, enabling the processing of networks with millions of edges while maintaining a
quality comparable to the sequential Infomap.

2.1 Introduction
Though community identification has emerged as a prominent method in network analysis, there lacks a
precise definition of the term "community" within the context of network analysis. As defined by Porter et al.
[107], Fortunato et al. [55], and Newman et al. [96], community detection, sometimes referred to as network
clustering, involves dividing the vertices of an observed network into groups such that connections are
dense within groups but sparser between different groups. This study focuses on global disjoint community
discovery. The objective of global community discovery is to partition the vertices of a network into disjoint
groups, where each vertex may belong to one community/group at a time. Several algorithms exist for
discovering global communities. The global community detection algorithms that are computationally
feasible for real-world applications are primarily approximation algorithms, as determining the exact number
of communities based on optimization techniques poses an NP-hard problem [55, 38]. These approximation
algorithms can be categorized based on the methodology being used. Henceforth in this chapter, when we
mention community discovery, we specifically refer to global disjoint community discovery to keep the
discussion concise.

The categorization of community detection methodologies, as outlined in Table 2.1, is centered around static
networks. Arzum et al. [74] presented a concise overview of community detection methodology categories.

10

Table 2.1: Classification of the community detection approaches based on methodology

Category Methodology Drawbacks
Optimization Optimizing quality metrics -Suffers from resolution limit
Methods -Modularity, Conductance

Statistical Network generative models -Accuracy suffers
Inference -Stochastic Block Model -Computationally expensive

Spectral Methods Based on spectral properties -Computationally inefficient
-Eigenvalue & eigenvector -Unreliable for sparse network

Information Uses dynamic process -Complex logic
Theoretic Approach -Random walk, MDL -Computationally expensive

Our approach is tailored for static networks, where network attributes (e.g., vertices, links) remain unchanged
over time. Table 2.1 enumerates the categories specifically addressing static networks. It is crucial to note that
the applicability of these methods is not confined to static networks; there are existing works that integrate
the capacity to handle dynamic networks in optimization methods, such as the work by Halappanavar et
al. [63] and the study by Tiago et al. [106] based on stochastic block modeling (SBM). Additionally, the
categories outlined in Table 2.1 face a common challenge of striking a balance between speed and accuracy.
To sustain high accuracy, most of these categories must compromise speed. When processing extensive
dynamic networks segmented into snapshots at different time frames, these categories demand a substantial
amount of time to execute the same algorithm repeatedly on each snapshot.

In section 2.2 we discuss in brief the methodologies of the community detection strategies mentioned in table
2.1.

2.2 Descriptions of the Static Community Detection Approaches
In Fortunato et al.’s comparative study of community detection [56], there are descriptions of 12 algorithms,
which can be classified into 4 major groups.

• Optimization methods hinge on optimizing a quality function for community discovery within a network.
Modularity serves as a prevalent optimization function, aiming to maximize the difference between
structural patterns within an actual network and another network with a random structural pattern. Due
to its NP-hard nature, approximation algorithms, coupled with heuristics, are employed to optimize
this quality function. Depending on how the optimization function is formulated, the optimization
approaches can operate as either divisive or agglomerative, commonly known as the top-down or bottom-
up approaches, respectively. Among the 12 different approaches for community detection studied in

11

the work by Fortunato et al. [56], 5 of them utilize the modularity maximization approach in one form
or another to detect communities. The initial approach in this realm is modularity maximization based
on edge betweenness, as outlined in the work of Girvan and Newman [59, 99]. Another well-known
algorithm employing modularity maximization is the Louvain method, proposed by Blondel et al. [26].
Techniques based on modularity optimization encounter a challenge known as the resolution limit, as
mentioned by Fortunato et al. [57], where the algorithm tends to overlook very small communities
beside larger ones, often considering the small community as part of the larger one.

• Another category of community detection is based on statistical inference. Stochastic block modeling
stands out as one such approach, elucidated in the works of Tiago et al. [106, 105, 104] and Newman et
al. [75]. This approach stems from the concept that a network can be represented by a generative model,
where the model parameters dictate the properties of the network. While it is impractical to find the
exact parameters that generated a specific real-world network, statistical inference can be employed to
determine these parameters. Various statistical processes such as Markov Chain Monte Carlo (MCMC)
or Bayesian Inference can be applied to ascertain the partitioning of the network.

• Spectral methods leverage the spectral properties of the network. The underlying concept is that well-
defined communities exhibit eigenvector components with similar values. The eigenvalue spectrum of
the Laplacian matrix and the adjacency matrix is harnessed for community detection. A projection of
vertices into a metric space is achieved by utilizing eigenvectors as coordinates. A restricted number of
eigenvectors, denoted as 𝑛, is taken into consideration. Each network vertex is treated as a geometric
point in an Euclidean n-dimensional space, with coordinates representing the eigenvector components
for that vertex. These points are subsequently grouped using conventional clustering techniques such as
K-means clustering. The works by Newman et al. [97, 98], and Donetti et al. [41] present community
detection based on spectral methods.

• The information-theoretic approach to community detection involves considering the dynamics of a
random walk to unveil the network’s community structure. This strategy relies on principles from
information theory and statistics. The minimum entropy theorem is applied to compress data generated
by the dynamic process, leveraging the notion that higher regularity in information corresponds to
more compressible data. Additionally, statistical concepts such as Minimum Description Length
(MDL) are employed to represent the overall quality of the compressed information across the entire
network. For a network having more prominent structural patterns (communities), there is an increased
opportunity to compress the information for that network, ultimately revealing the communities during
the compression process. Rosvall et al. [114] have presented a method for discovering communities
using an information-theoretic approach.

Among the four categories mentioned above, the modularity optimization method, or more specifically, the
Louvain method, is more popular than others because of its easily comprehensible nature. However, as

12

mentioned earlier, the modularity maximization strategy is not only NP-hard, but it also has the resolution
limit problem that may affect the accuracy of the detected communities in a network. The study conducted by
Fortunato et al. [56] reveals the information-theoretic algorithm of community detection by Rosvall et al.
[114] to have the highest accuracy in the LFR [82, 80] benchmark. There is an MDL-based quality function
named the Map equation by the authors in the study [114]. Fortunato et al. [56] named that algorithm as
Infomap.

2.2.1 Motivation for Parallel Algorithm Design for Information-Theoretic Community Dis-
covery

The various community detection approaches detailed in Section 2.2 share a common characteristic—they are
all sequential in nature. These algorithms were developed over a decade ago when the size of networks rarely
exceeded a million vertices. However, with the substantial growth of social networks, multimedia-capturing
devices, and cost-effective storage, networks now encompass billions of vertices and edges. The sample
networks utilized by Fortunato et al. [56] for the LFR [82] benchmark had thousands of vertices. During the
comparison of these algorithms, execution time performance was not a significant consideration. In today’s
context, when evaluating algorithms for massive datasets, the efficiency of the algorithm becomes crucial,
not just its accuracy. The sequential nature of the methods outlined in Section 2.2 significantly impacts
computational efficiency. Modern computers are equipped with multiple processing cores that inherently
support parallel computing. Recent state-of-the-art techniques focus on devising algorithms capable of
leveraging shared-memory parallelism or distributed-memory parallelism. Sequential algorithms are now
being reworked to process network data in parallel, utilizing numerous threads or processing cores.

In this undertaking, we propose the development of a parallel algorithm for the Infomap approach [114].
Several factors motivate our effort to craft a parallel algorithm for Infomap. Firstly, despite its approximate
nature, this algorithm demonstrates remarkable accuracy. Additionally, it surpasses the Louvain method
[26] in accuracy, as indicated in Fortunato et al.’s study [56], and avoids the resolution limit issue inherent
in modularity optimization techniques like the Louvain method. Unfortunately, there is a limited body of
research focused on devising an efficient parallel algorithm for Infomap. Contemporary methods are emerging
for crafting parallel algorithms based on statistical inference, such as Stochastic Block Modeling (SBM).
Further details on these parallel algorithms will be discussed in the literature review section. Our objective is
to formulate an efficient and scalable parallel algorithm for Infomap to process extensive networks more
rapidly and with greater accuracy in community discovery.

We devised a distributed-memory parallel Infomap algorithm exhibiting high scalability with 512 MPI
processes. Achieving such scalability involved enhancements in computation strategy, communication,
and workload balance across various phases. Initially, we adopted a straightforward partitioning approach,

13

distributing an equal number of vertices among processes for community computation in each iteration.
However, the uneven degree distribution of real-world network vertices prompted us to adopt the Metis [78]
graph partitioning strategy based on approximately even edge-cuts to ensure proper load balancing among
working processes. To address challenges inherent in distributed graph processing algorithms, we developed
several heuristics to handle issues arising in graph processing across distributed environments. To summarize,
we made the following contribution

• We developed a distributed-memory parallel algorithm for community detection using the information-
theoretic approach, implemented with the Message Passing Interface (MPI).

• We employed a graph partitioning strategy based on vertices to distribute the workload among processes,
achieving scalability up to 256 processes. Subsequently, we enhanced our load-balancing approach
by incorporating the Metis [78] graph partitioner, allowing for edge-cut-based partitioning across
MPI processes. This refinement elevated the scalability to 512 processes, ensuring a higher execution
speedup.

• We devised several heuristics to expedite the processing of extensive networks across distributed
platforms, all the while preserving a level of accuracy akin to the sequential Infomap. These heuristics
can be extended to address analogous graph computation challenges in a distributed environment.
Further discussion on these heuristics will be presented in a subsequent section.

2.3 Problem Specification
We present the symbols and notations utilized in Table 2.2. Specific notations and definitions related to
information theory will be elaborated upon in their respective sections.

Infomap employs a conventional data compression technique on a dynamic process, specifically a random
walk. It leverages the dual nature between compressing a dataset and extracting significant patterns or
structures within the data. This duality is explored in the field of statistics known as MDL or Minimum
Description Length statistics [112, 60]. The data of interest in this context is the network flow. The trace of
the flow can be represented as a binary codeword. If an optimal code can efficiently describe the locations
traced by a path on a network, it simultaneously addresses the duality problem of identifying the structural
features of that network. Therefore, Infomap seeks a method to assign codewords to vertices, considering the
dynamics of the network. This leads us to the core of information theory, where Shannon’s source coding
theorems, also known as Shannon’s minimum entropy theorem [120], can be employed to determine the
limits on how effectively we can compress the information.

Shannon’s minimum entropy theorem can be mathematically expressed as follows:

14

Table 2.2: Symbols and Their Descriptions Utilized in Our Parallel Infomap Work

Symbol Description
𝐺(𝑉 ,𝐸) Graph 𝐺 with vertex set 𝑉 and edge set 𝐸
𝑀 Total number of communities in a graph
𝐿 Average length of the codeword for a move within the network
𝐿𝑜𝑙𝑑 Average codeword length in the previous iteration of two consecutive iterations
𝐿(𝑀) Average length of the computed codeword at a particular time with 𝑀 communities
𝑞↷ Sum of exit probability of the random walk for each module
𝑝𝑖↻ Stay probability of the random walk within a module 𝑖
𝑄 Probability distribution of the module entering rate (distinct from the quality function

modularity, also denoted by the symbol Q)
𝐻(𝑄) Average code length for moves between modules (inter-module entropy)
𝑝𝑖 Probability distribution of the random walk within module 𝑖
𝐻(𝑝𝑖) Average code length of the random walk within the module
𝜏 Threshold value for the Infomap algorithm to halt execution
𝑢 → 𝑣 Vertex 𝑢 is moving to the community of vertex 𝑣
𝑣 → 𝑢 Vertex 𝑣 is moving to the community of vertex 𝑢
𝐶𝑢 Current community membership 𝐶 of vertex 𝑢
𝐶𝑝 ← 𝐶𝑢 Assignment of the community membership of vertex 𝑝 to the community of vertex 𝑢
𝐶𝑣 ← 𝐶𝑝(= 𝐶𝑢) Vertex 𝑝 belongs to the community of vertex 𝑢. Assignment of the community of

vertex 𝑝 to vertex 𝑣
𝑃1, 𝑃2 Two arbitrary MPI processes with rank 1 and rank 2
𝑒𝑖𝑖 Fraction of edges within the same community
𝑎2𝑖 Expected value of the metric 𝑒𝑖𝑖 for a random network showing no community structure
|𝐸𝑐

𝑖𝑛
| Number of edges within the same community in a network

|𝐸𝑐
𝑜𝑢𝑡
| Number of edges spreading from one community to another in a network

𝐻 =
𝑛
∑

𝑖=1
𝑝𝑖 × log2(𝑋) (2.1)

or,

𝐻 =
𝑛
∑

𝑖=1
𝑝𝑖 × log2(1∕𝑝𝑖) (2.2)

or,

𝐻 = −
𝑛
∑

𝑖=1
𝑝𝑖 × log2(𝑝𝑖) (2.3)

To comprehend the functioning of Shannon’s minimum entropy and its application for optimal information
compression, we resort to the following example [1] on information entropy. Let’s consider two machines
generating information in the form of events. Machine 1 generates four events A, B, C, and D with the
following probabilities:

15

𝑃 (𝐴) = 0.25

𝑃 (𝐵) = 0.25

𝑃 (𝐶) = 0.25

𝑃 (𝐷) = 0.25

Machine 2, on the other hand, generates the same four events with the following probabilities:
𝑃 (𝐴) = 0.50

𝑃 (𝐵) = 0.125

𝑃 (𝐶) = 0.125

𝑃 (𝐷) = 0.25

In order to determine which machine is producing more information between the two, we can formulate the
problem using a decision tree, as depicted in Figure 2.1. This illustration helps us identify which machine
produces more information and which produces less. Suppose both machines generated 100 events each
within a timeframe, and we want to determine how many questions are needed to correctly guess all the 100
events. In Equation 2.1, there is a term 𝑋. If we express it in terms of probability, the number of possible
outcomes of an event is equal to the inverse of the probability of that event, i.e., 𝑋 = 1∕𝑝. This transformation
leads to Equation 2.2 from Equation 2.1. From Equation 2.2, for machine 1, the average number of questions
𝑄𝑛 needed to determine a particular event is:

𝑄𝑛 = 𝑝𝐴 × log2(1∕𝑝𝐴) + 𝑝𝐵 × log2(1∕𝑝𝐵) + 𝑝𝐶 × log2(1∕𝑝𝐶) + 𝑝𝐷 × log2(1∕𝑝𝐷)

𝑄𝑛 = 0.25 × 2 + 0.25 × 2 + 0.25 × 2 + 0.25 × 2

𝑄𝑛 = 2

For machine 2, the average number of questions required to determine the exact event that occurs can be
expressed as:

𝑄𝑛 = 𝑝𝐴 × log2(1∕𝑝𝐴) + 𝑝𝐵 × log2(1∕𝑝𝐵) + 𝑝𝐶 × log2(1∕𝑝𝐶) + 𝑝𝐷 × log2(1∕𝑝𝐷)

𝑄𝑛 = 0.5 × 1 + 0.125 × 3 + 0.125 × 3 + 0.25 × 2

𝑄𝑛 = 1.75

Since both machines generate 100 events each, for machine 1, we need to ask 200 questions to determine the
outcomes of the 100 events, and for machine 2, we need to ask 175 questions to determine the outcomes of
the 100 events. This example illustrates that machine 1 is producing more information than machine 2. The
reason for machine 2 producing less information is the regularity of the information it generates. Based on the
probability of event A for machine 2, it is more likely for machine 2 to be generating event A more than other

16

events. In other words, event A is more regular than other events in machine 2. As a result, the information
produced by machine 2 is compressed, on average, to 1.75 questions compared to 2 questions in machine
1. This aspect highlights the significance of Shannon’s minimum entropy theorem, where the regularity of
information can be leveraged to compress that information. The theorem establishes a theoretical limit on
how much information can be compressed without physically encoding the information and then compressing
that code.

Is it AB?

Is it A? Is it C?

Y N

Y N Y N

Machine 1

P (A) = 0.25
P (B) = 0.25
P (C) = 0.25
P (D) = 0.25

Is it A?

Is it C?

Is it D?Y

N

Y

N

Y N

Machine 2

P (A) = 0.50
P (B) = 0.125
P (C) = 0.125
P (D) = 0.25

Figure 2.1: Describing the correlation between the regularity of information and the compression achieved by
Shannon’s Entropy theorem. On the left, we have the information generated by machine 1, and on the right,
we have the information generated by machine 2. This information represents, on average, the number of
questions needed to correctly guess the exact event produced by each machine.

As Infomap seeks efficient codewords, one direct approach for assigning codewords to vertices is through
Huffman coding. This method provides shorter codewords for common events and longer codewords for
rare ones. The resulting codewords for all vertices create a codebook. Within this codebook, each Huffman
codeword uniquely represents a specific vertex, and the lengths of the codewords are determined by the
ergodic node visit frequencies of a random walk. The average node visit frequencies for an infinite-length
random walk can be computed using Google’s PageRank algorithm [27].

Imagine there is a significant structural pattern in a network, and our objective is to unveil these structural
patterns, often referred to as "modules." The movement of a random walker in the network can be described
through two distinct types of moves. One involves the random walker moving within a structural pattern,
traversing from one vertex to another within the same module. The other involves the random walker transition-
ing across different modules. A relatable analogy for understanding how Infomap operates based on the random
walk is akin to traffic patterns within and between cities. Traffic within a city tends to stay longer within its

17

bounds, traveling rarely across cities. Similarly, the goal of discovering a city (structure or community within
a network) is to identify the region where traffic (random walk) experiences maximum flow. Maximizing flow
within a cluster and minimizing flow among clusters ensures the accuracy and quality of detected communities.

In alignment with this concept, the codebook of the vertices can be divided into two parts. The codewords
representing moves across modules are designated as the index codebook. Conversely, the codewords
representing successive moves within a module are labeled the module codebook. The lengths of codewords
in the index codebook are derived from the relative rates at which a random walker enters each module, while
the lengths for each module codebook are derived from the relative rates at which a random walker visits
each node in the module or exits the module. By employing multiple codebooks, the task of minimizing the
description length of paths taken is transformed into determining the optimal partitioning of the network
concerning flow dynamics.

Although the Huffman coding process is explained to elucidate the coding structure, the ultimate goal of
community detection is not to encode a specific path through the network. Instead, the objective is to uncover
the modular structure of the network concerning flow and leverage the inference-compression duality to
achieve this. There is no necessity to devise an optimal code for a given partition to estimate its efficiency.
Detecting the optimal community structure of a network becomes the challenge of computing the theoretical
limit for different partitions and greedily selecting the one that yields the shortest code length. The optimization
function enabling us to compute this theoretical limit is known as the Map Equation.

2.3.1 The Map Equation

The optimization function representing the code length is known as the Map Equation. The objective of this
optimization is to minimize the code length across all potential assignments of vertices into communities.
Rooted in the concept of MDL (Minimum Description Length), which asserts [60] that any regularity in
information can be exploited for compressing said information, the Map Equation is formulated as presented
in Eq. 2.4 by Rosvall et al. [114].

𝐿(𝑀) = 𝑞↷𝐻(𝑄) +
𝑚
∑

𝑖=1
𝑝𝑖↻𝐻(𝜌𝑖) (2.4)

In this equation, the right side consists of two main parts. The first part, 𝑞↷𝐻(𝑄), can be further divided
into two terms. The initial term, 𝑞↷, signifies the summation of the exit probability of the random walk for
each module in the network. The term 𝐻(𝑄) represents the average code length of movements between the
modules, with 𝑄 denoting the probability distribution of the module entering rate. This average code length
of movements is referred to as the index code length.

18

The second part on the right side of the Map Equation is ∑

𝑚∈𝑀 𝑝𝑖↻𝐻(𝜌𝑖), where 𝑝𝑖↻ denotes the stay
probability of the random walk within module 𝑚. This parameter can be computed by summing the visit
probability of the random walk and the exit probability of the random walk for that module. The term 𝐻(𝜌𝑖)
corresponds to the average code length of the random walk within the module, known as the module code
length. The variable 𝜌𝑖 represents the probability distribution of the code of module 𝑚. For a more detailed
representation of the Map Equation, refer to Eq. 2.5.

𝐿(𝑀) = (
∑

𝑚∈𝑀
𝑞𝑚) log (

∑

𝑚∈𝑀
𝑞𝑚) − 2

∑

𝑚∈𝑀
𝑞𝑚 log 𝑞𝑚 −

∑

𝛼∈𝑉
𝑝𝛼 log(𝑝𝛼)+

∑

𝑚∈𝑀
(𝑞𝑚 +

∑

𝛼∈𝑚
𝑝𝛼) log(𝑞𝑚 +

∑

𝛼∈𝑚
𝑝𝛼)

(2.5)

In this context, 𝑞𝑚 represents the exit probability of module 𝑚 and is determined by the relative weight of links
exiting the module 𝑚. The summation ∑

𝑚∈𝑀 𝑞𝑚 corresponds to the total relative weight of links between
modules. The term 𝑝𝛼 denotes the visit probability of a vertex 𝛼 during the random walk, where 𝑉 stands
for the set of all vertices in the network. Additionally, 𝑝𝑚 signifies the visit probability of a module 𝑚 and is
computed as ∑𝛼∈𝑚 𝑝𝛼. For a more in-depth understanding, interested readers are recommended to explore
the appendix section of the original work on Infomap [114].

2.3.2 Sequential Infomap Algorithm

Algorithm 1 outlines the procedural steps of the sequential Infomap. Lines 1 − 5 detail the notation employed
within the algorithm. Lines 6 − 7 calculate the vertex visit rate (i.e., PageRank) using the power iteration
method. The algorithm initiates with the number of communities equal to the number of vertices, denoted as
𝑁 ← |𝑉 |. Here, 𝑀 signifies the set of modules, and 𝑚𝑖 denotes an individual module/community. Initially,
𝑚𝑖 has only one member vertex, but its composition may evolve as the algorithm progresses. The set 𝑀
encompasses all the modules 𝑚𝑖 (line 8). A vertex 𝑣 is associated with a single module at a given time. Lines
9 − 11 compute the initial exit probability 𝑞𝑖 for each module 𝑚𝑖. Line 12 calculates the initial code length
based on Equation 2.4. Subsequently, lines 13 − 27 depict the community discovery procedure iterating
through multiple cycles. Line 14 retains the current code length at the outset of an iteration. Each vertex in
the vertex set 𝑉 is randomly selected for community optimization (lines 15 − 16). Among all neighboring
modules of a vertex, the one minimizing the code length is chosen (lines 17 − 18). Line 20 describes
the creation of supernodes, comprising one or more vertices. Analogous to the individual vertex module
optimization, the supernode-level optimization phase unfolds in lines 21 − 25. This process continues until
the change in code length falls below a user-defined threshold 𝛾 (line 27). The return value of the algorithm
is the number of discovered communities (line 28).

The sequential Infomap algorithm has demonstrated superior accuracy compared to many algorithms in
various community detection comparative studies [81, 3, 85]. However, its scalability is constrained in the

19

Algorithm 1: Sequential Infomap
Data: A graph 𝐺(𝑉 ,𝐸), 𝑁 ← |𝑉 |

Result: Set of communities 𝑀 , where 𝑀 ≪ 𝑁
1 𝑚𝑖, ith module
2 𝑞𝑖, exit probability of module 𝑚𝑖
3 𝛾 , the minimum threshold for code length improvement
4 𝐿𝑜𝑙𝑑 , code length of previous iteration
5 𝐿, code length of current iteration
6 Initialize vertex visit rate, 𝑝𝑣𝑖 ← 1∕𝑁
7 Compute ergodic vertex visit rate 𝑝𝑣𝑖 by PageRank
8 𝑀 ← {∀𝑚𝑖|(𝑣𝛼 ∈ 𝑚𝑖)&(𝑣𝛼 ∉ 𝑚𝑗), 𝑉 =

∑𝑁
1 𝑣}

9 for 𝑖 = 1 to |𝑀| do
10 Calculate exit probability 𝑞𝑖
11 Initial code length 𝐿 ← 𝐿(𝑀)
12 do
13 𝐿𝑜𝑙𝑑 ← 𝐿
14 for 𝑗 = 1 to 𝑁 do
15 Select randomly each vertex, 𝑣𝑗
16 𝑚𝑛𝑒𝑤 ← 𝐹 𝑖𝑛𝑑𝐵𝑒𝑠𝑡𝑀𝑜𝑑𝑢𝑙𝑒(𝑣𝑗)
17 Compute 𝐿 cumulatively
18 𝑀 ← 𝐶𝑟𝑒𝑎𝑡𝑒𝑆𝑢𝑝𝑒𝑟𝑁𝑜𝑑𝑒()
19 for 𝑗 = 1 to |𝑀| do
20 Select randomly each SuperNode 𝑚𝑗
21 𝑚𝑛𝑒𝑤 ← 𝐹 𝑖𝑛𝑑𝐵𝑒𝑠𝑡𝑀𝑜𝑑𝑢𝑙𝑒(𝑚𝑗)
22 𝑚𝑗 ← {𝑚𝑛𝑒𝑤|∀𝑣𝑗 ∈ 𝑚𝑗}
23 Compute 𝐿 cumulatively
24 while (𝐿𝑜𝑙𝑑 − 𝐿) > 𝛾
25 return |𝑀|

serial paradigm. The parallelization of the Infomap algorithm poses non-trivial challenges, which we will
elaborate on in the following section, along with the heuristics employed to mitigate them.

2.4 Challenges in Distributing Computation/Data
While distributing computation and data among processing units, our map-based approach presents the
following challenges and issues.

2.4.1 Vertex bouncing problem

The issue arises when two vertices with a strong affinity are assigned to two different processes. Each vertex
attempts to move to the community of the other vertex. In sequential execution, the first chosen vertex
would move to the community of the other, and when the second vertex is selected, it recognizes the shared

20

community, avoiding unnecessary moves. However, in distributed execution, both vertices lack awareness
of the other’s community assignment, leading to additional moves. This problem is illustrated in Figure
2.2, where vertices 𝑢 and 𝑣 are distributed across processes 𝑃1 and 𝑃2—resulting in unnecessary movements
between their communities.

s

t

u v

w

x

Cs

Ct

Cu Cv

Cw

Cx

Process 1 Process 2

Figure 2.2: The distributed graph processing encounters the vertex bouncing problem when vertices 𝑢 and
𝑣 share a close affinity and belong to the same community. Despite this affinity, as they are partitioned
into different processes (with vertex 𝑢 in process 1 and vertex 𝑣 in process 2), both processes independently
compute the same community update.

2.4.2 Inconsistent update ordering

We adopt a synchronous parallel approach, and maintaining consistent community assignments during
synchronization poses a challenge due to varying synchronization orders across processes. To illustrate,
consider a scenario with 7 vertices (𝑝, 𝑞, 𝑟, 𝑠, 𝑡, 𝑢, 𝑣) divided into two processes, 𝑃1 and 𝑃2, where vertices 𝑝,
𝑣, 𝑠 are in process 𝑃1, and vertices 𝑞, 𝑟, 𝑡, 𝑢 are in process 𝑃2 as depicted in Figure 2.3. The two large circles
represent the two different processes, and the gray circles inside represent individual vertices. The arrows
denote the direction of moves between communities. A vertex without an arrow (e.g., 𝑠) indicates that no
suitable move was found in a particular iteration. Based on one possible processing order of the vertices,
the following are the moves of the vertices from their current module to another module. 𝑝 ⟶ 𝑢, 𝑡 ⟶ 𝑝,
𝑣 ⟶ 𝑝, 𝑞 ⟶ 𝑟. In this context, the notation 𝑝 ⟶ 𝑢 signifies that vertex 𝑝 moves to the community of
vertex 𝑢, denoted by 𝐶𝑢. If the described moves are executed in the exact order mentioned, the following
community assignments will result from the execution of those moves in the sequential algorithm.

𝐶𝑝 ← 𝐶𝑢, 𝐶𝑡 ← 𝐶𝑝(= 𝐶𝑢), 𝐶𝑣 ← 𝐶𝑝(= 𝐶𝑢), 𝐶𝑞 ← 𝐶𝑟 (2.6)

The community assignments in process 𝑃1 are 𝐶𝑝 ← 𝐶𝑢 and 𝐶𝑣 ← 𝐶𝑝 (= 𝐶𝑢). The notation 𝐶𝑝 (= 𝐶𝑢)
signifies that the current community of vertex 𝑝 is the same as the community of vertex 𝑢. In process 𝑃2, the
community assignments are 𝐶𝑡 ← 𝐶𝑝 and 𝐶𝑞 ← 𝐶𝑟. After synchronization across processes 𝑃1 and 𝑃2, the

21

s

t

u

v r

p

Process 1 Process 2

q

Figure 2.3: Calculating community membership information in a distributed setting involving two processes.
Process 1 (on the left) computes the community for vertices 𝑣 and 𝑝, while Process 2 (on the right) calculates
community membership for vertices 𝑞 and 𝑡.

following events occur. In process 𝑃1,

𝐶𝑝 ← 𝐶𝑢, 𝐶𝑣 ← 𝐶𝑝(= 𝐶𝑢), 𝐶𝑡 ← 𝐶𝑝(= 𝐶𝑢), 𝐶𝑞 ← 𝐶𝑟 (2.7)

In process 𝑃2,
𝐶𝑡 ← 𝐶𝑝, 𝐶𝑞 ← 𝐶𝑟, 𝐶𝑝 ← 𝐶𝑢, 𝐶𝑣 ← 𝐶𝑝(= 𝐶𝑢) (2.8)

Figure 2.4 depicts the resulting communities in two distinct processes. Due to the processing of updates in
different orders, the community assignment of Vertex 𝑡 is no longer consistent across the processes.

s

t

Cs

Cr

Cu

Process 1 Process 2

p, t,
u, v

q, r
Cp

s
Cs

Cu

p, u,
v

Cr

q, r

Figure 2.4: Non-uniform communities arise due to incorrect synchronization. In process 1 (left), community
𝐶𝑢 comprises 4 vertices 𝑝, 𝑡, 𝑢, 𝑣, whereas in process 2 (right), community 𝐶𝑢 consists of 3 vertices 𝑝, 𝑢, 𝑣.

2.4.3 Inactive vertices

The process of assigning vertices to communities continues over multiple iterations. In the initial few
iterations, most vertices change communities before stabilizing in their final positions. Once a vertex moves

22

to a community and remains there for several subsequent iterations, it is less likely to undergo further
changes. In later iterations, fewer updates to community assignments occur. This observation suggests that
in each iteration, considering all vertices for community updates involves redundant activities that waste
computational resources. It becomes essential to distinguish between vertices and select those more likely to
change communities in subsequent iterations.

2.5 Solution Strategies: Our Heuristics
We devised the following heuristics to address the challenges outlined earlier.

2.5.1 Solution to Vertex Bouncing Problem

To tackle the vertex bouncing problem, we implemented numeric ordering during the synchronization step.
In this approach, we accept one of the two moves illustrated in Figure 2.2—namely, 𝑢 → 𝑣 in process 𝑃1 or
𝑣 → 𝑢 in process 𝑃2—and discard the other. The decision to accept or discard a move is based on the numeric
values of the IDs of the current communities of vertices 𝑢 and 𝑣. We select the move from the community
with the lower ID to the community with the higher ID. For example, between the two communities 𝐶𝑢 and
𝐶𝑣, if the numeric value of the ID for community 𝐶𝑢 is less than the numeric value of the ID for community
𝐶𝑣, we allow the move of 𝑢 to 𝐶𝑣 while ignoring the move of 𝑣 to 𝐶𝑢.

2.5.2 Solution to Inconsistent Update Ordering

To ensure consistent community assignments for vertices across all processes, we implemented the priority-
based community assignment heuristic. In this scheme, the owner process of a vertex makes the decision
regarding the community assignment for that specific vertex. Each process respects the community assignment
information received for vertices processed by other MPI processes. This straightforward yet effective approach
addresses the challenge illustrated in Figure 2.4. Figure 2.5 showcases the communities resulting from the
same vertex moves as depicted in Figure 2.3.

2.5.3 Solution to Inactive Vertices Problem

To avoid recomputing the community assignments for vertices unlikely to change communities, we introduce
the distinction between Inactive Vertices, which are unlikely to change communities in the current iteration,
and Active Vertices, which may move to different communities in the next iteration. Importantly, there is no
deterministic way to decide which vertices will be active or inactive in the immediate next iteration. Empirical
observation suggests that vertices changing communities in one iteration are likely to do so in the immediate
next iteration. Moreover, their neighbors may also become active. Thus, before an iteration begins, we
create a prediction list of vertices that may become active, derived from the community assignments of the
immediate previous iteration. This prediction list includes vertices that changed communities in the previous

23

iteration and their immediate neighbors. Empirical observations indicate that when a vertex moves from
one community to another, its immediate neighbors contribute to over 95% of the quality improvement for
subsequent iterations [15].

s

t

Cs

Cr

Cu

Process 1 Process 2

p,
u, v

q, r
Cp

s
Cs

Cu

p, u,
v

Cr

q, r t
Cp

Figure 2.5: Consistent communities in two distributed processes (Process 1 and Process 2) due to synchro-
nization based on priority ordering.

2.5.4 Our Parallel Algorithm Design of Distributed Infomap

Algorithm 2 delineates our blueprint for the distributed-memory parallel Infomap using MPI. Lines 1 − 6
introduce the notations utilized throughout the algorithm. Lines 7− 8 calculate the PageRank using the power
iteration method. Similar to the sequential Algorithm 1, the distributed Algorithm 2 commences with each
vertex belonging to its exclusive community (line 9). At any juncture in the community discovery, a vertex
may belong to a solitary community (distinct from the intermediate computational phase involving different
MPI processes with diverse community membership information for a specific vertex). Lines 10−11 evaluate
the initial exit probability 𝑞𝑖 for the module 𝑚𝑖, and line 12 determines the initial code length following
equation 2.4. All MPI processes autonomously progress through the same computations described thus
far until they engage in the parallel computation of community discovery across multiple iterations (lines
13 − 31). Each MPI process operates on its individual Metis-partitioned vertex list concurrently (line 16),
randomly selecting all vertices (random walk) and striving to identify the optimal module that minimizes
the code length (lines 18 − 20). Subsequent to computing the new module information for its designated
sets of vertices, each MPI process synchronizes this information across all other MPI processes (line 21),
ensuring the precision of community membership for subsequent iterations. Up to this point, the community
discovery approach operates at the vertex level and spans multiple iterations. Following this, the community
established in the vertex level phase transforms into supernodes, where each supernode may encompass one
or more vertices (line 22). A parallel computation is executed to determine the optimal module for supernodes
(lines 23 − 29). Instead of vertices, each MPI process randomly designates its supernodes (lines 25 − 26).
Another synchronization of community information is conducted (line 30), this time at the supernode level.

24

The amalgamation of vertex-level and supernode-level community discovery persists until the algorithm
attains a user-specified threshold 𝛾 between the previous code length and the new code length (line 31).

Algorithm 2: Distributed Infomap
Data: A graph 𝐺(𝑉 ,𝐸), 𝑁 ← |𝑉 |

Result: Set of communities 𝑀 ∶ 𝑀 ≤ 𝑁 , usually 𝑀 ≪ 𝑁
1 𝑚𝑖, ith module
2 𝑞𝑖, exit probability of module 𝑚𝑖
3 𝛾 , the minimum threshold for code length improvement
4 𝐿𝑜𝑙𝑑 , code length of previous iteration
5 𝐿, code length of current iteration
6 𝑃 , number of MPI processes spawned
7 Initialize vertex visit rate, 𝑝𝑣𝑖 ← 1∕𝑁
8 Compute ergodic vertex visit rate (PageRank), 𝑝𝑣𝑖 , by power iteration
9 𝑀 ← {∀𝑚𝑖 | (𝑣𝑖 ∈ 𝑚𝑖) & (𝑣𝑖 ∉ 𝑚𝑗), (0 ≤ 𝑣𝑖 < 𝑁) & (𝑣𝑖 ∈ 𝑉)}

10 for 𝑖 = 0 to |𝑀| do
11 Calculate exit probability, 𝑞𝑖
12 Initial code length 𝐿 ← 𝐿(𝑀)
13 do
14 𝐿𝑜𝑙𝑑 ← 𝐿
15 for process 𝑝 = 0 𝑡𝑜 𝑃 − 1 in parallel do
16 Compute vertex indices range [𝑣𝑠𝑡𝑎𝑟𝑡, 𝑣𝑒𝑛𝑑] from 𝑚𝑒𝑡𝑖𝑠 − 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑒𝑑 vertex list
17 for 𝑗 = [𝑣𝑠𝑡𝑎𝑟𝑡, 𝑣𝑒𝑛𝑑] do
18 Select randomly each vertex, 𝑣𝑗
19 𝑚𝑛𝑒𝑤 ← 𝐹 𝑖𝑛𝑑𝐵𝑒𝑠𝑡𝑀𝑜𝑑𝑢𝑙𝑒(𝑣𝑗)
20 Compute 𝐿 cumulatively
21 Synchronize 𝑚𝑛𝑒𝑤 ∈ 𝑀 across 𝑃 processes
22 𝑀 ← 𝐶𝑟𝑒𝑎𝑡𝑒𝑆𝑢𝑝𝑒𝑟𝑁𝑜𝑑𝑒()
23 for process 𝑝 = 0 𝑡𝑜 𝑃 − 1 in parallel do
24 Compute SuperNode indices [𝑚𝑠𝑡𝑎𝑟𝑡, 𝑚𝑒𝑛𝑑] from 𝐴𝑐𝑡𝑖𝑣𝑒 SuperNodes
25 for 𝑗 = [𝑚𝑠𝑡𝑎𝑟𝑡, 𝑚𝑒𝑛𝑑] do
26 Select randomly each SuperNode 𝑚𝑗
27 𝑚𝑛𝑒𝑤 ← 𝐹 𝑖𝑛𝑑𝐵𝑒𝑠𝑡𝑀𝑜𝑑𝑢𝑙𝑒(𝑚𝑗)
28 𝑚𝑗 ← {𝑚𝑛𝑒𝑤 | ∀𝑣𝑗 ∈ 𝑚𝑗}
29 Compute 𝐿 cumulatively
30 Synchronize 𝑚𝑛𝑒𝑤 ∈ 𝑀 across 𝑃 processes
31 while (𝐿𝑜𝑙𝑑 − 𝐿) > 𝛾
32 return |𝑀|

25

2.6 Experimental Setup
The majority of the experiments and corresponding results presented in this study were conducted on the
Louisiana Optical Network Infrastructure (LONI) system [67]. The utilized computing cluster is QB2 [68],
boasting a peak performance of 1.5 Petaflops. It comprises 504 compute nodes, each equipped with 20
processing cores, totaling over 10, 000 Intel Xeon processing cores. The cluster also features a 2.8 PB Lustre
file system. Operating on the RedHat Enterprise Linux 6 Operating System, it incorporates a 56 Gb/sec (FDR)
InfiniBand and a 1 Gb/sec Ethernet network.

2.7 Implementation
Our implementation is developed in C++ using the MPI framework with the g++ compiler. The source
code of our implementation is available online [52]. The program supports networks in pajek (.net) format
[20]. The main phase of the algorithm, i.e., the greedy optimization phase, runs in multiple iterations. In
the initial iteration, each vertex represents its module. In each subsequent iteration, each process takes an
almost equal chunk of vertices from the active vertices list. Each process computes the change in Minimum
Description Length (MDL) for a potential move of that vertex along any of the links to which the vertex is
connected. It then greedily selects the move to a module that minimizes MDL the most. Each processor
compiles an information list of the vertices that have been moved from one module to another. During the
synchronization phase, each process sends and updates the community information based on the received
information. Each module is also transformed into what we term a "supernode," representing a group of
vertices with the same module ID. All inter-edges between a pair of supernodes are consolidated into a single
edge with a weight equal to the sum of all edges between that pair of supernodes. After creating a network
with supernodes, the greedy optimization for reducing MDL is executed again at the supernode level, similar
to the vertex-level optimization performed earlier. After each iteration, the list of active vertices for the
next iteration is computed. This process continues until no further reduction in MDL occurs in successive
iterations, i.e., until convergence is reached. The final output of the program includes the number of detected
communities along with the final compressed value of the MDL.

2.8 Performance Comparison
We conducted a qualitative comparison between our distributed implementation of Infomap and the one
designed by Bae et al. [15]. Additionally, we performed a parallel performance comparison against the
distributed implementations [16], demonstrating that our work surpasses that implementation in terms
of scalability. Unfortunately, the implementation by Zeng et al. [149] is not publicly available online.
Consequently, we had to rely on the data provided in their paper [149] to evaluate the superiority of our work
in terms of speedup gain in the subsequent discussion.

26

2.9 Dataset
We employed a network dataset of varying sizes, ranging from a network with 0.31 million vertices and
1.04 million edges to a larger network with 3 million vertices and 117 million edges. Table 2.3 provides a
concise overview of the dataset, where columns 2 and 3 indicate the number of vertices and edges in the
network, respectively. Our experiments with distributed Infomap utilized networks such as Amazon, DBLP,
YouTube, Wiki-topcats, and soc-Pokec, all sourced from SNAP [84]. The selection of these networks is based
on their well-defined community structures, making them suitable for the evaluation and comparison of our
implementation.

Table 2.3: Network dataset for our experiments. We used several social and information networks.

Network # Vertices # Edges Description
Wiki-topcats 1791489 28511807 Hyperlinks network from Wikipedia
soc-Pokec 1632803 30622564 Pokec online social network
Youtube 1134890 2987624 Youtube social network
DBLP 317080 1049866 CS bibliographical network
Amazon 334863 925872 Amazon co-purchased network

2.10 Evaluation

2.10.1 Quality analysis of the Detected Modules

Infomap consistently produces higher-quality communities compared to state-of-the-art techniques, as evident
in various benchmark studies [81, 3]. To assess the quality of the detected communities, we consider
Modularity, Conductance, and the convergence MDL value. Our comparison includes RelaxMap [15],
known for achieving community quality comparable to the original Infomap. Table 2.4 presents Modularity
and Conductance values for the shared memory-based Infomap [15]. While distributed-memory-based
implementations may achieve quality comparable to their sequential counterparts at best, our comparative
study with RelaxMap offers a meaningful qualitative analysis.

Table 2.4: Modularity and Conductance of the networks for the sequential Infomap

Network Modularity Conductance
soc-pokec 0.52 0.47
wiki-topcats 0.43 0.57
YouTube 0.39 0.56
DBLP 0.59 0.41
Amazon 0.77 0.23

27

2.10.1.1 Convergence of the Objective Function

The objective function of Infomap aims to minimize the Minimum Description Length (MDL). Achieving
improvements in MDL within a distributed implementation poses challenges compared to sequential or
shared-memory-based optimization. The compression outcome of a preceding move might not be accessible
to other processors, potentially influencing decisions regarding MDL changes—contrary to sequential or
shared implementations. Distributed implementations also face the risk of premature convergence, leading to
suboptimal MDL improvements, as noted in [16]. Our optimization of the objective function in Equation 2.5
yields MDL improvements comparable to those observed in [15]. Table 2.3 presents the initial MDL values
for the utilized networks. Figure 2.6 displays the converged MDL values. In all cases, the differences in MDL
are negligible, with the largest variance occurring in the network Wiki-topcats, where the final MDL value
exceeds that of [15] by only 0.39. This suggests that the detected communities after convergence closely
resemble those found in [15]. Importantly, our algorithm avoids issues of under-clustering or over-clustering.

Figure 2.6: Comparison of MDL after convergence between sequential and distributed Infomap.

2.10.1.2 Modularity

To assess the quality of the identified communities, we employed the modularity (Q) measure [99]. Modularity
is indicative of how effectively a network is partitioned into communities. For a given network, the modularity
score (Q) represents the fraction of edges within communities minus the expected value of the same quantity if
the edges were randomly distributed in a network with the same degree sequence. The mathematical definition
of this measure is provided in Equation 2.9.

𝑄 =
∑

𝑖
(𝑒𝑖𝑖 − 𝑎2𝑖) (2.9)

28

In the provided equation, 𝑒𝑖𝑖 represents the fraction of edges within communities, and 𝑎2𝑖 denotes the
expected value of the aforementioned quantity for a graph with the same degree sequence but random
edges. A positive decimal value of 𝑄 indicates that the number of edges within communities exceeds the
expected number. Typically, a value of 𝑄 in the range of 0.3-0.7 signifies significant community structure [85].

It is noteworthy that our approach does not optimize the modularity value for community detection, as is
common in other community detection mechanisms [99, 34, 26]. Instead, we utilize the modularity measure
(Q) as a quality metric to analyze the effectiveness of our detected communities, obtained by optimizing the
Map equation as outlined in Equation 2.4. In Table 2.3, we present the quality measurement metrics (i.e.,
modularity, conductance) and their corresponding values from [15] for the dataset.

To evaluate the quality of modularity concerning the increasing number of processors, we examined whether
the values fluctuate. Histogram plots in Figures 2.7a and 2.7b showcase modularity values across different
numbers of MPI processes. For instance, in Figure 2.7a at the bar corresponding to 256 MPI processes, the
modularity value is 0.58, with a difference of only 0.01 compared to sequential execution. Similarly, the
modularity score obtained for the network YouTube running on 512 MPI processes matches the modularity
score of the sequential execution, both being 0.39. Importantly, higher modularity values signify better
communities. In summary, the modularity values for different networks are comparable to those from
sequential or shared-memory-based Infomap implementations, and the quality of detected communities
remains consistent across an increasing number of processors.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 4 8 16 32 64 128 256 512

M
o
d
u
la

ri
ty

No. of MPI Processes

0.59 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58

DBLP Network

(a) DBLP Network

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 4 8 16 32 64 128 256 512

M
o
d
u
la

ri
ty

No. of MPI Processes

0.39 0.40 0.39 0.38 0.38 0.38 0.39 0.38 0.39 0.39

YouTube Network

(b) YouTube Network
Figure 2.7: Illustration of preserved community quality in the distributed setting using modularity score.
Changes in modularity values across different numbers of MPI processes for (2.7a) DBLP and (2.7b) YouTube
networks. The numeric value atop each histogram bar in each plot represents the modularity of the discovered
community in the run using the specified number of MPI processes on the x-axis. Higher modularity scores
indicate better quality of the discovered communities.

2.10.1.3 Conductance

According to the study conducted by Yang et al. [144], when a network comprises well-separated disjoint
communities, conductance provides the best quality analysis of the detected communities. For unweighted

29

networks, conductance measures the fraction of the total number of edges that point outside the community,
and for weighted networks, it is the fraction of the total weight of such edges. In a directed network,
𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒 = |𝐸𝑐

𝑜𝑢𝑡
|

|𝐸𝑐
𝑖𝑛
|+|𝐸𝑐

𝑜𝑢𝑡
|

, and for an undirected network, 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒 = |𝐸𝑐
𝑜𝑢𝑡
|

2|𝐸𝑐
𝑖𝑛
|+|𝐸𝑐

𝑜𝑢𝑡
|

. Inspired by the
concept of electric conductivity, where higher conductivity values indicate connected paths and 0 or less
conductivity means no connection or loosely coupled connection, high conductance implies that communities
are not well-separated and disjoint; the portions of intra-edges and inter-edges are not well-separated. On the
other hand, a low value of conductance indicates that communities are well-separated, and if not completely,
they are highly disjoint. The smaller the value of conductance, the better the quality of the discovered
community.

We employ similar concepts and plots as used for modularity in Section 2.10.1.3, with the only difference
being that smaller conductance values from shared/sequential Infomap indicate higher quality in the detected
communities. Figures 2.8a and 2.8b show minimal changes in conductance values across multiple MPI
processes for the DBLP network and some minor fluctuations (ranging 0.01 − 0.06) for the YouTube network
compared to the study by [15]. We conclude that the quality of the detected communities using our distributed
Infomap is comparable to the sequential Infomap.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 4 8 16 32 64 128 256 512

C
o
n
d
u
ct

a
n
ce

No. of MPI Processes

0.41 0.42 0.42 0.43 0.42 0.42 0.42 0.42 0.42 0.41

DBLP Network

(a) DBLP Network

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 4 8 16 32 64 128 256 512

C
o
n
d
u
ct

a
n
ce

No. of MPI Processes

0.56 0.57 0.59 0.58
0.62 0.60 0.61 0.60 0.58 0.58

YouTube Network

(b) YouTube Network
Figure 2.8: Illustration of the preserved quality of discovered communities in the distributed setting using
conductance. Change of conductance values across different numbers of MPI processes for (2.8a) DBLP
network and (2.8b) YouTube network. The numeric value on top of each histogram bar in each figure demon-
strates the conductance score for a specific number of MPI processes. The lower the value of conductance,
the better the quality of the discovered communities.

2.10.2 Distributed Performance Analysis

2.10.2.1 Workload Balancing

In our initial network dataset partitioning design across MPI ranks/processes, we adopted a naive approach of
distributing an approximately equal number of vertices across those ranks, as discussed earlier in Section 2.2.1.
Figure 2.9 illustrates a highly uneven workload across multiple ranks, where the horizontal bar with different
colors represents computation (various functions) or communication (different MPI data transfer calls). To

30

address this issue, we employed the Metis [77] graph partitioner to distribute the workload among processors.
The goal is not only to ensure a balanced workload among individual MPI ranks but also to minimize edge-cut
across the different partition sub-graphs, thereby reducing the vertex bouncing problem’s impact, as discussed
in Section 2.4. To achieve equal computational workload sharing, each processor receives a subset of vertices
and corresponding edges returned by the Metis partitioner. Consequently, each processor takes nearly an
equal amount of time to complete the algorithm’s execution, as depicted in Figure 2.10. Performance profiling
Figures 2.9 and 2.9 were generated using [122].

Figure 2.9: Workload imbalance resulting from naïve vertex distribution across MPI processes. Different
colors in each horizontal bar represent the time spent by different computation/communication kernels. There
are significant imbalances observed across different MPI processes

2.10.2.2 Speedup and Parallel Efficiency

We evaluate the speedup and time-performance using the networks listed in Table 2.3. Figure 2.11 illustrates
the runtime of our algorithm for three different networks with varying numbers of processors. We observe
substantial scalability, reaching up to 512 MPI processes for larger networks such as wiki-topcats and soc-
Pokec. In the case of a relatively large network like YouTube, we achieve scalability up to 256 MPI processes.
However, for smaller networks like Amazon and DBLP, the advantages of scalability are outweighed by
the increased MPI communication cost across a higher number of processes. The communication cost
is influenced by the interconnect infrastructure of the computation nodes, while the computation cost is
determined by the volume of computation required due to the size of the network dataset. Larger networks
involve more computation, providing the opportunity for higher scalability.

In Table 2.5, we present the maximum speedup achieved by our algorithm with varying numbers of MPI
processes compared to sequential execution. The maximum speedup gains are observed for larger graphs

31

Figure 2.10: Balanced workload across processes resulting from workload distribution by Metis partitioner.
Different colors in each horizontal bar represent the time spent by different computation/communication
kernels. There are no notable imbalances observed for different kernels across different MPI processes.

 100

 150

 200

 300

 400

 600

 800

 1200

 1600

 2400

 1 2 4 8 16 32 64 128 256 512

E
xe

cu
ti
o
n
 T

im
e

(s
ec

)

No. of Processes

youtube
wiki-topcats

soc-pokec

Figure 2.11: Reduction of processing time for networks of different sizes from a single process to 512
processes in distributed Infomap. The runtime scalability curves are drawn for the larger networks (YouTube,
wiki-topcats, and soc-pokec).

(wiki-topcats, soc-pokec) with 512 MPI processes, as depicted in Figure 2.11. For the YouTube network,
the maximum speedup gain is observed with 256 MPI processes. It’s crucial to note that the achievable
speedup from parallelizing a computational problem depends heavily on the type of problem being addressed.
For instance, a well-designed parallel Breadth-First-Search [30] can achieve high scalability and significant
speedup compared to sequential BFS traversal. However, the same may not hold true for Depth-First-Search.

32

In the case of the Infomap problem, we observe similar speedup gains compared to state-of-the-art techniques,
as demonstrated in the work of [149], even with the use of thousands of processors.
Table 2.5: Speedup factors on various social and information networks. For larger networks such as soc-pokec
and wiki-topcats, we observe better speedup due to having more computation.

Network Speedup
Amazon 1.64
DBLP 1.92
Youtube 2.80
wiki-topcats 4.25
soc-pokec 5.10

 0.02
 0.05

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 4 8 16 32 64 128 256 512

P
a
ra

lle
l
E
ff

ic
ie

n
cy

No. of Processes

Amazon
DBLP

Youtube
wiki-topcats

soc-pokec

Figure 2.12: Parallel efficiency obtained against different numbers of MPI processes. Larger networks
(soc-pokec, wiki-topcats) shows better parallel efficiency up to 512 MPI processes due to the reason of having
more computation compared to the smaller networks (Amazon, DBLP).

We utilized parallel efficiency measures to conduct a performance analysis of our distributed implementation.
The parallel efficiency, denoted as 𝜀, compares the parallel runtime to the best possible runtime assuming
perfect scalability [15]. The parallel efficiency is calculated using the formula 𝜀 = 𝑇𝑠𝑒𝑞

𝑝𝑇 (𝑝) , where 𝑝 represents
the number of parallel units, 𝑇 (𝑝) is the time with 𝑝 parallel units, and 𝑇𝑠𝑒𝑞 is the time of the sequential version.

Figure 2.12 illustrates parallel efficiency in the form of a histogram plot for various networks across different
numbers of MPI ranks in the distributed platform. The less the change in the histogram bar height, the lower
the efficiency gain obtained by increasing the number of processing units. In Figure 2.12, we observe that

33

the histogram bar for soc-Pokec has less change in height than others, followed by Wiki-topcats and the rest
for an increasing number of processes. As there is more computation to be performed for larger networks,
the parallel algorithm exhibits higher parallel efficiency than smaller ones. Parallel efficiency approaching 0
indicates that adding extra processing units or MPI processes for computation may not benefit the task of
parallel computation.

2.11 Literature Review
Research on the design of parallel algorithms to minimize computation time for computational problems has
gained significant attention in recent years. The emergence of supercomputers with thousands of processing
cores and the tremendous growth of big data due to advancements in information technology are playing
complementary roles in driving research in this direction. The development of parallel algorithms for graph
data analysis, as evidenced by various studies [29, 131, 11, 94, 10, 6, 7, 9], is a crucial outcome of this trend.
Parallelizing various community detection approaches mentioned in Table 2.1 in Chapter 2.1 is no exception.

Numerous sequential algorithms focus on modularity optimization [59, 34, 61, 92, 93, 108]. The work by
[34] is a swift implementation of Newman et al.’s work [59]. Guimerá [61] posited that finding the modularity
of a network is analogous to determining the ground-state energy of a spin system and demonstrated that
random graphs and scale-free networks can exhibit modularity. Claire et al.’s study [92] applied modularity
optimization in combination with Monte Carlo methods using simulated annealing. Andres et al.’s approach
[93] is also grounded in the combination of modularity optimization with simulated annealing. Radicchi
et al.’s work [108] follows the spirit of Girvan and Newman’s work [59], employing a divisive hierarchical
method based on the edge clustering coefficient, in contrast to edge betweenness in [59]. Blondel et al.’s
well-known community detection approach [26] also known as Louvain algorithm is based on modularity
maximization using a greedy agglomerative heuristic.

Various parallel implementations exist for the modularity-based approach of the Louvain method. Bhowmick
et al. [25] provided an OpenMP implementation. Hiroaki et al. [124] demonstrated a fast modularity-based
community detection by avoiding searching all the vertices in each iteration. Zhang et al. [154] introduced a
distributed framework that speeds up the convergence rate by considering the most suitable candidate vertices
to be processed in each iteration. GPU-based parallel Louvain is presented in the studies of Cheong et al. [33]
and Naim et al. [95]. Staudt et al. [128, 129] used a combination of the Louvain algorithm and breadth-first
search (BFS) for distributed-memory parallelization. Zeng et al. [147, 148] designed a parallel Louvain that
can achieve high scalability over thousands of CPU cores. Recent work on parallel implementations of the
Louvain algorithm includes Sattar et al. [118]. Sayan et al. [58] demonstrated a distributed+shared memory
(MPI + OpenMP) based approach to the Louvain algorithm.

34

The study by Guimera et al. [61] demonstrated that a random network with an irregular community structure
can still display a high modularity value. Consequently, relying on modularity for the process of detecting
communities may not deliver high-quality clusters, and the detected communities may not reflect the actual
communities. Another caveat of the modularity-based approach is that it may suffer from the resolution
limit problem, and therefore, it may struggle to detect small communities, as described by Fortunato et al. [57].

The application of statistical inference and generative models for community inference in a network has
garnered increased attention in recent years [111, 65, 100]. Among these models, the stochastic block model
(SBM) [5, 45, 66] stands out as the most popular, despite its not-so-recent origin. The basic idea is to partition
the network’s vertices into 𝐵 blocks, and a 𝐵 × 𝐵 matrix specifies the probabilities of edges existing between
the vertices of each block. This model generalizes the community structure [56] by accommodating assortative
connections. In this context, the task of detecting communities transforms into a process of statistical
inference for the parameters of the generative model, given the observed data. The problem of network
partitioning using a statistical inference model is discussed in the works of Tiago et al. [106, 104, 105].
Tiago’s work on the stochastic block model for partitioning (often referred to as partitioning in the context
of SBM) incorporates the degree-corrected model by Karrer et al. [76] for large-scale dynamic networks.
The algorithm exhibits sub-quadratic complexity of 𝑂(𝑁 ln2𝑁) for a sparse graph, where 𝑁 is the number
of vertices with 𝑁 ≈ 𝐸. The model presented by Peixoto [106] can function either as a greedy heuristic
when partitioning at the block level or as the Markov Chain Monte Carlo (MCMC) method when sampling
individual vertices. Peixoto provided an OpenMP-based implementation [103]. Another OpenMP-based
work with a modified heuristic for fast network processing has emerged [48]. Distributed parallelization
techniques [134, 133] on SBM in Python and mpi4py have also surfaced. Achieving raw performance
speedup through parallelization in native code is challenging when using a scripting language such as
Python. The significant computational slowness of Python compared to C or C++ has been highlighted by
comparing three different versions of the baseline algorithm in the study of the streaming graph challenge [73].

As Lancichinetti et al. [81] empirically demonstrated, Infomap excels at discovering high-quality communities.
This observation is further supported by a comprehensive comparative analysis conducted by Aldecoa et al.
[3]. Bae et al. proposed a shared memory-based parallel execution model for Infomap [15]. While this model
achieves high-quality communities similar to sequential Infomap, its scalability is limited, constrained by
the number of physical cores and memory in a single machine. Bae et al. also introduced an asynchronous
distributed memory-based implementation using the GraphLab framework [87] [16]. However, this distributed
implementation demonstrates scalability only up to 128 processing cores. Zeng et al. presented an MPI-based
distributed Infomap [149] that exhibits scalability for thousands of processors. Nevertheless, the achieved
speedup, given the substantial number of processors used, is relatively low. Their work lacks a comprehensive
quality analysis of the implementation compared to sequential Infomap, except for some small networks (e.g.,
DBLP, Amazon). It is crucial to emphasize that achieving high scalability in distributed community detection

35

is equally important as maintaining high quality. The exceptional quality of the detected communities is what
sets Infomap apart from other approaches for community discovery [81, 3].

2.12 Concluding Remarks
We introduced a distributed Infomap algorithm with the aim of ensuring that the quality of detected communi-
ties matches that of the sequential algorithm. The task of identifying high-quality community structures within
a distributed setting poses significant challenges. We successfully integrated heuristics to effectively address
these challenges. To achieve high scalability, we employed cutting-edge workload balancing techniques
across processes. In order to preserve accuracy, we implemented synchronization of module information
after each iteration. While recognizing the potential for further performance improvements through thor-
ough instrumentation and profiling of our implementation, we acknowledge the success of our approach in
maintaining community detection quality.

36

Chapter 3: HyPC-Map, A Hybrid Memory Parallel In-
fomap

The serial Infomap algorithm faces challenges in scaling for large graphs, given its inherent sequential nature.
Parallelizing the Infomap method is a complex undertaking. In this investigation, we present a hybrid (shared
+ distributed)-memory parallel approach for community detection in graphs using Infomap. Building upon
our previous work on distributed Infomap [47], this hybrid design addresses the limitations of processing
very large networks encountered in our distributed implementation. Through extensive micro-benchmarking
and analysis of hardware parameters, we identify and mitigate performance bottlenecks. Additionally, we
employ cache-optimized data structures to enhance cache locality. These optimizations collectively result in a
more efficient and scalable community detection algorithm, named HyPC-Map, showcasing a 16× speedup
(compared to its single-threaded execution) and a 25× improvement (against the original sequential Infomap
implementation), all while maintaining the quality of the discovered community.

3.1 Introduction
While the literature on the problem of discovering communities is extensive [59, 34, 97, 26, 114, 98, 75, 106],
it has recently garnered increased attention due to the proliferation of social (e.g., human contacts, social
media friendships, disease spreading), biological (e.g., protein interaction, genomics), and other graph-related
applications. The sheer volume of data that requires processing underscores the necessity for the development
of parallel computational strategies in both homogeneous and heterogeneous computing platforms. In
recent years, efforts have been made to parallelize various community detection algorithms. Among these
algorithms, the Louvain method [26] has attracted perhaps the highest amount of attention, despite its
resolution limit problem [57]. The Markov clustering technique [136] is another algorithm that has been
parallelized [13]. Combining both shared and distributed memory parallelism has demonstrated high scalability
in graph clustering applications, as seen in [13]. However, parallel algorithm design studies for Infomap
[15, 16, 149, 46] did not leverage this approach. Therefore, in this study, we introduce a hybrid memory
algorithm, which we call HyPC-Map, demonstrating that the hybrid-memory parallel model enhances
performance gains over both sequential Infomap and our distributed Infomap design (Chapter 2), while also

37

enabling the processing of significantly larger networks than our previous work [46]. We summarize our
contributions in this work as follows:

• We amalgamated both distributed-memory and shared-memory-based parallelism to formulate our
hybrid parallel algorithm. The Message Passing Interface (MPI) and Open Multi-Processing (OpenMP)
frameworks were employed to implement the respective parallelism. Our hybrid parallel algorithm
showcases superior scalability compared to related methods in the literature (e.g., [16, 150, 46]).

• We conducted thorough micro-benchmarking and scrutinized memory subsystems to pinpoint and
mitigate performance bottlenecks. These analyses enable us to refine the algorithm design. Additionally,
we leverage cache-optimized data structures to enhance cache locality.

• Our algorithm scales effectively to large graphs, surpassing the speedups achieved by state-of-the-art
techniques grounded in information theory, all while maintaining solution quality—specifically, the
quality of detected communities. Through experiments on diverse social and scientific graph datasets,
our algorithm exhibits speedups of up to 16x compared to its sequential execution and up to 25x
compared to the original sequential implementation by Rosvall [113].

3.2 Algorithmic Analysis and Performance Profiling
Our distributed Infomap algorithm achieves scalability with up to 512 MPI processes, as detailed in the
preceding chapter (Chapter 2). In specific computation kernels of the algorithm, the application of distributed
parallelism introduces notable communication costs across processes, which can outweigh the benefits of
distributed computation. However, we have observed that these parts of the algorithm can still gain advantages
from shared memory parallelism through the use of multiple threads. To substantiate our observation, we
initially parallelize the computation of the steady-state vertex visit rate (i.e., PageRank [27]) as depicted in
Algorithm 2, line 8, employing OpenMP threads within each distributed MPI process. Previously, each
MPI process sequentially computed the steady-state vertex visit rate using the power iteration method.
For larger networks, the results of OpenMP parallel PageRank computation have proven to be highly beneficial.

Figure 3.1 illustrates the breakdown of execution time for various networks after incorporating OpenMP
parallel PageRank computation. Smaller networks, such as Amazon and DBLP, lack sufficient computation to
fully leverage parallelism. Consequently, we did not observe significant performance gains beyond 16 − 32
processes, leading to the omission of scalability curves for these networks in Figure 3.1. However, for larger
networks, notable performance gains are evident with an increasing number of processors. For the YouTube
network, which has approximately 1.1 million vertices and around 3 million edges, the execution time for a
single MPI process is roughly 370 seconds, decreasing to around 70 seconds for 256 MPI processes. The
scalability curves for more substantial networks, such as Wiki-topcats with 1.7 million vertices and 28 million

38

 0

1k

2k

3k

4k

5k

6k

7k

 1 2 4 8 16 32 64 128 256

E
x
e
cu

ti
o
n
 T

im
e
 (

se
c)

No. of MPI Processes

YouTube
Wiki-topcats
LiveJournal

Orkut

Figure 3.1: Runtime scalability for large networks with the PageRank kernel processed in parallel using
shared-memory parallelism (OpenMP) within each MPI process.

edges, and LiveJournal with 4 million vertices and 34.6 million edges, exhibit steeper trends. For example,
the Wiki-topcats network achieves a processing time of 171 seconds for 256 processes, compared to 1630
seconds in the sequential algorithm. In the case of the LiveJournal network, the sequential processing time
is 2040 seconds, while the parallel processing time is 249 seconds for 256 processes. The largest network
in our experiment is the Orkut social network, comprising 3 million vertices and 117 million edges. The
sequential algorithm takes 6888 seconds to discover communities, whereas it takes only 615 seconds to achieve
the same result with 256 processes. This marks a significant performance boost over sequential execution time.

In Figure 3.2, we present the performance gain in terms of speedup. For smaller networks in our dataset,
the speedup gain aligns with state-of-the-art techniques. However, for a large network like LiveJournal, we
achieved a significantly better speedup (8.18×) compared to the work of Zeng et al. [149], which attains a
speedup of 3.05× despite utilizing thousands of processes. Their highest speedup, achieved for the UK-2007
network, is 6.02×, whereas our highest speedup is 11.15× with the largest network, Orkut. This observation
underscores the influence of network size on the speedup gain in our algorithm—larger networks exhibit
higher speedup gains, as evident from the curves in Figure 3.2.

3.3 Optimizing Computational Kernels
Our initial attempt to integrate OpenMP multithreaded parallelism within the distributed MPI processes
prompted us to conduct extensive profiling and instrumentation of the primary computational kernels in our
Infomap algorithm. The implementation can be deconstructed into five major kernels, visualized in Figure

39

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 1 2 4 8 16 32 64 128 256

S
p
e
e
d
u
p
 F

a
ct

o
r

No. of MPI Processes

Amazon
DBLP

Youtube
Wiki-topcats
LiveJournal

Orkut

Figure 3.2: Speedup factor achieved for different networks. For larger networks, we observe better speedup
such as 11.15× for the Orkut network.
Table 3.1: Performance micro-benchmark of insertion and read operations between c++ map vs unordered_-
map. There is a significant difference in insertion time between between c++ STL map and unordered_map
across different number of entries.

Number of Insertion Insertion Read Read
entries map (µs) unordered_ map (µs) unordered_

map (µs) map (µs)
2048 1904 1284 70 58
4096 3991 2586 110 123
8192 8499 5139 230 239
16384 16927 9764 462 465
32768 34916 19197 887 902
65536 75827 37914 1689 1810
131072 166398 76855 3936 3608

3.3 as a stack graph indicating the percentage of their runtime for different networks.

The PageRank kernel computes the ergodic node visit frequency using the PageRank [27] algorithm through
a power iteration method. The CreateSuperNode kernel generates super nodes from a group of vertices with
the same module ID, where edges between super nodes represent combined edges with a sum of edge weights.
The UpdateMembers kernel updates member vertices for each module/community after each iteration. The
FindBestModule kernel involves finding the community in the individual vertex phase and in the super node
phase.

40

From Figure 3.3, it is evident that the FindBestModule kernel is the most time-consuming part of the
algorithm, accounting for as much as 89% of the execution time (Orkut network) and up to 74% (YouTube
network). The performance of the data structure used inside the kernel significantly contributes to its efficiency.

To store, search, and process community memberships and the corresponding flows of the neighboring
adjacency list of a vertex, a key-value-based data structure (map) is employed instead of a regular array (or
vector). This choice is justified by the fact that one vertex may have neighboring vertices belonging to distinct
communities, or more than one neighboring vertex may collapse into a single community as the algorithm
progresses. The map data structure in C++ STL internally uses an RB-tree that maintains the ordering of the
key, while the unordered_map data structure uses an array and hashing for storage.

Micro-benchmark analysis (Table 3.1) revealed a significant difference in insertion performance between map
and unordered_map. The time taken for insertion of each entry (a key-value pair of integer and double value)
is nearly half for unordered_map compared to map for varying numbers of entries.

This observation led to a performance improvement for the FindBestModule kernel, reducing the execution
time from 1095 seconds to 1030 seconds for the Orkut network and from 55 seconds to 37 seconds for the
YouTube network. However, the FindBestModule kernel still dominates. In an effort to further optimize
this kernel, we selectively applied OpenMP multithreading within critical zones inside the kernel, resulting
in a substantial performance gain, as evident from Figure 3.5. The execution time of the FindBestModule
kernel decreased to 240 seconds from 1030 seconds for the Orkut network. Similar performance gains were
observed for other networks, as illustrated in Figure 3.5.

3.4 Overview of the Algorithm
Analyzing the distinctions between our distributed-memory parallel Infomap and the hybrid approach becomes
more comprehensible when examining Algorithm 3. Our parallel algorithm, HyPC-Map, is crafted using a
combination of both shared memory and distributed memory, drawing inspiration from the map equation
discussed in section 2.4 and the heuristics in section 2.5. Subsequently, we refine our algorithm through
micro-benchmarking and hardware profiling. HyPC-Map can be segmented into the following principal steps,
and the order of these steps is maintained during the actual computation.

1. Computing the ergodic node visit frequency (PageRank) for the network vertices inside each MPI
process using a combination of OpenMP-based parallelism.

2. Performing community optimization for each of the subgraphs inside each MPI process in parallel.
Each MPI process spawns 𝑡-number of OpenMP threads to compute communities for 𝑡-number of
vertices concurrently. This process continues for multiple iterations.

41

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Orkut LiveJournal Pokec Youtube

T
im

e
(%

)

Network

PageRank
CreateSuperNode

UpdateMembers
Others

FindBestModule

Figure 3.3: Operational kernels in our initial implementation of the distributed (MPI) Infomap algorithm. The
percentage breakdown of runtime for four different networks is depicted, highlighting the FindBestModule
kernel as the major portion of the execution time.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Orkut LiveJournal Pokec Youtube

T
im

e
 (

%
)

Network

PageRank
CreateSuperNode
UpdateMembers

Others
FindBestModule

Figure 3.4: Runtime improvement of the operational kernels in Infomap achieved through the implementation
of a cache-friendly data structure and the combination of distributed and shared memory parallelism.

3. Exchanging information about the discovered communities of its subgraph vertices with the rest of the
MPI processes by each MPI process. This phase is referred to as the vertex-level synchronization step.

42

 10

 200

 400

 600

 800

 1000

Orkut LiveJournal Pokec Youtube

T
im

e
(s

ec
)

Network

FindBestModule (map)
FindBestModule (unordered_map)
FindBestModule (multithreading)

1094

308
266

55

1031

251 234

37

240

64 54
10

Figure 3.5: Runtime improvement of the operational kernel of Infomap by using cache-optimized kernel and
multi-threading. Using cache-friendly data structure (unoreded_map) and multithreading both contribute
to the optimization. However, OpenMP parallelism delivers significant kernel optimization, e.g., reducing
FindBestModule runtime to 240 seconds from 1031 seconds of the unordered_map-based kernel.

4. Creating a super node of the modules it has with a combination of OpenMP parallelism for each MPI
process. The edges across distinct vertices of any two supernodes are replaced by a single edge with
accumulated edge weights.

5. Spawning 𝑡-number of threads by each MPI process to find communities of the 𝑡-number of supernode(s)
concurrently. This process continues for multiple iterations until no more improvement in the code
length occurs.

6. Synchronizing the community membership for the supernode(s) processed by each MPI process with
other MPI processes to maintain uniform community information across the MPI processes.

Algorithm 3 outlines the design of the hybrid memory parallel Infomap. Lines 1 − 7 introduce the notations
used in the algorithm. Lines 8 − 9 describe the calculation of PageRank through power iteration using
OpenMP parallelism. Line 10 initializes the set of modules, 𝑀 . Lines 11 − 12 compute exit probability 𝑞𝑖
in parallel using 𝑡 OpenMP threads. Line 13 initializes the code length. Lines 14 − 32 conduct community
discovery in multiple iterations until the change in code length falls below a certain threshold 𝛾 . For each
process, 𝑝, the corresponding vertex range is computed (lines 16 − 17) in parallel from the list of Active
vertices (details in Section 2.5). Community discovery for vertices occurs in lines 18 − 21, and community
discovery for supernodes takes place in lines 27 − 30 using 𝑡 OpenMP threads inside each MPI process. Line
23 describes the creation of the supernode object consisting of the vertices of a module. The synchronization

43

Algorithm 3: Hybrid Infomap
Data: A graph 𝐺(𝑉 ,𝐸), 𝑁 ← |𝑉 |

Result: Set of communities 𝑀 , where 𝑀 ≪ 𝑁
1 𝑚𝑖, ith module
2 𝑞𝑖, exit probability of module 𝑚𝑖
3 𝛾 , minimum threshold for codelength improvement
4 𝐿𝑜𝑙𝑑 , codelength of previous iteration
5 𝐿, codelength of current iteration
6 𝑃 , total MPI processes spawned
7 𝑡, total OpenMP threads spawned
8 Initialize vertex visit rate, 𝑝𝑣𝑖 ← 1∕𝑁
9 Compute ergodic vertex visit rate 𝑝𝑣𝑖 by PageRank in 𝑡 −𝑤𝑎𝑦 parallel

10 𝑀 ← {∀𝑚𝑖|(𝑣𝛼 ∈ 𝑚𝑖)&(𝑣𝛼 ∉ 𝑚𝑗), 𝑉 =
∑𝑁

1 𝑣}
11 for 𝑚𝑖 = 1 to |𝑀| in 𝑡 −𝑤𝑎𝑦 parallel do
12 Calculate exit probability, 𝑞𝑖
13 Initial codelength 𝐿 ← 𝐿(𝑀)
14 do
15 𝐿𝑜𝑙𝑑 ← 𝐿
16 for process p = 1 to P in parallel do
17 Compute vertex indices range [𝑣𝑠𝑡𝑎𝑟𝑡, 𝑣𝑒𝑛𝑑] from 𝐴𝑐𝑡𝑖𝑣𝑒 vertices list
18 for 𝑗 = [𝑣𝑠𝑡𝑎𝑟𝑡, 𝑣𝑒𝑛𝑑], 𝑡 −𝑤𝑎𝑦 parallel do
19 Select randomly each vertex, 𝑣𝑗
20 𝑚𝑛𝑒𝑤 ← 𝐹 𝑖𝑛𝑑𝐵𝑒𝑠𝑡𝑀𝑜𝑑𝑢𝑙𝑒(𝑣𝑗)
21 Compute 𝐿 cumulatively
22 Synchronize 𝑚𝑛𝑒𝑤 ∈ 𝑀 across 𝑃
23 𝑀 ← 𝐶𝑟𝑒𝑎𝑡𝑒𝑆𝑢𝑝𝑒𝑟𝑁𝑜𝑑𝑒(), 𝑡 −𝑤𝑎𝑦 parallel
24 for process p = 1 to P in parallel do
25 Compute SuperNode indices [𝑚𝑠𝑡𝑎𝑟𝑡, 𝑚𝑒𝑛𝑑] from 𝐴𝑐𝑡𝑖𝑣𝑒 SuperNodes list
26 for 𝑗 = [𝑚𝑠𝑡𝑎𝑟𝑡, 𝑚𝑒𝑛𝑑], 𝑡 −𝑤𝑎𝑦 parallel do
27 Select randomly each SuperNode 𝑚𝑗
28 𝑚𝑛𝑒𝑤 ← 𝐹 𝑖𝑛𝑑𝐵𝑒𝑠𝑡𝑀𝑜𝑑𝑢𝑙𝑒(𝑚𝑗)
29 𝑚𝑗 ← {𝑚𝑛𝑒𝑤|∀𝑣𝑗 ∈ 𝑚𝑗}
30 Compute 𝐿 cumulatively
31 Synchronize 𝑚𝑛𝑒𝑤 ∈ 𝑀 across 𝑃
32 while (𝐿𝑜𝑙𝑑 − 𝐿) > 𝛾
33 return |𝑀|

of the community memberships of the vertices occurs in lines 22 and 31. Line 33 returns the number of
communities |𝑀| after the algorithm converges.

44

3.5 Experimental Settings
We implement our algorithm using the C++ programming language, MPI, and OpenMP frameworks. The
code is compiled using the g++ compiler. The program is designed to support networks in Compressed
Sparse Row (CSR) format. The source code of our implementation is accessible online [52].

3.5.1 Computational Infrastructure

We used large compute clusters to perform experimentation on our algorithm. We list the key specifications
of those systems below.
LONI: The majority of our experiments were conducted on the LONI supercomputer [67]. Specifically, we
utilized the QB2 computing cluster [68], which boasts a peak performance of 1.5 Petaflops. QB2 comprises
504 compute nodes, each equipped with 20 processing cores, resulting in over 10, 000 Intel Xeon processing
cores and a 2.8 PB Lustre file system. The computing cluster operates on the RedHat Enterprise Linux 6
Operating System, features a 56 Gb/sec (FDR) InfiniBand, and utilizes a 1 Gb/sec Ethernet network.

For experiments involving the hybrid memory setting, we leveraged the LONI [67] clusters. To maximize
speedup gains in each computing node, we employed 10 OpenMP threads in each of the MPI processes. In
LONI clusters, each computing node consists of 20 processing cores. Consequently, we executed 2 MPI
processes per computing node, each with 10 OpenMP threads, to achieve optimal performance. Due to
the limitations on the number of computing nodes available for researchers in LONI, we were constrained
to using a maximum of 128 computing nodes and could not test hybrid performance beyond 256MPI processes.

NERSC Cori: To validate the micro-benchmark analysis and observations discussed in Section 3.3, we
employed both the Cori supercomputer at the National Energy Research Scientific Computing Center (NERSC)
and the LONI QB2 system.
In-house Server: To conduct the comparative analysis mentioned in Section 3.6.6.3, we utilized the compute
server designated for research purposes, generously provided by the Department of Computer Science at
the University of New Orleans (UNO). The experiments necessitated the installation of various third-party
libraries and dependencies, including the Graphlab PowerGraph framework [88]. Unfortunately, this setup
was not feasible on public servers due to user-privilege restrictions. The server is equipped with 32 Intel(R)
Xeon(R) CPU E5-2683 v4 processors, each running at a clock speed of 2.10 GHz. It comprises two sockets,
with each socket containing 16 processors, and boasts 512 GB of system memory.

3.5.2 Datasets Used in Experiments

We employed networks of varying sizes, ranging from approximately one million vertices and edges to over
a hundred million edges. Table 3.2 provides a concise overview of the datasets, with columns two and

45

three indicating the number of vertices and edges in each network, respectively. These datasets consist of
real-world networks exhibiting a power-law degree distribution, a common characteristic of social networks.
The presence of such a power-law distribution allows us to assess our algorithm’s performance in worst-case
scenarios. All the networks in our datasets were sourced from SNAP [84]. These networks, known for their
well-defined community structures, are suitable for evaluating and comparing our implementation using
various quality metrics.
Table 3.2: Scale-free network datasets used for our experiments that exhibit power-law degree distribution.
These are social and information networks with the largest one (Orkut) having 3M vertices and 117M edges.

Network # Vertices # Edges Modularity Conductance Description
Amazon 334863 925872 0.77 0.23 Co-purchase network
DBLP 317080 1049866 0.59 0.41 CS bibliographical network
Youtube 1134890 2987624 0.40 0.58 Youtube social network
soc-Pokec 1632803 30622564 0.34 0.66 Pokec social network
Wiki-topcats 1791489 28511807 0.40 0.58 Wikipedia hyperlinks
LiveJournal 3997962 34681189 0.47 0.53 LiveJournal social network
Orkut 3072441 117185083 0.42 0.55 Orkut social network

3.6 Performance Evaluation
We assess the performance of our algorithm by considering both solution quality and parallel scalability,
comparing it with other information-theoretic approaches and the Markov Clustering algorithm (MCL) for
community detection.

3.6.1 Quality Analysis of Discovered Communities

To assess the quality of the detected communities, we employed metrics such as modularity, conductance,
and convergence MDL. We conducted a comparison with the results obtained using the sequential Infomap.
The values of modularity and conductance for the sequential Infomap are provided in columns 4 and 5 of
Table 3.2.

3.6.2 Convergence of the Objective Function

The objective function of Infomap aims to minimize the Minimum Description Length (MDL). Achieving
MDL improvement in a hybrid memory setting poses similar challenges. In distributed implementations,
the risk of premature convergence can lead to less MDL minimization, as noted by [16]. Our optimization
of the objective function 2.4 yielded results closely aligned with the MDL improvement reported in [15].
Figure 3.6 illustrates the final converged values of MDL. The differences in MDL are minimal across all
cases, ranging from as low as 0.08% (Amazon) to a maximum of 3% (Wiki-topcats). Consequently, the

46

quality of the discovered communities post-convergence is comparable to that of RelaxMap [15]. The slight
differences in MDL can be attributed to the fact that the compression outcome resulting from the community
membership update for any preceding vertex may not be readily available to other processes in the distributed
execution until the synchronization step. The decision to update MDL can be influenced by this, unlike in
sequential/shared-memory implementations.

 0

 3

 6

 9

 12

 16

 20

 24

Amazon DBLP Youtube Pokec Wiki-top LiveJournal Orkut

M
in

im
u
m

 D
es

cr
ip

ti
on

 L
en

g
th

Networks

processor count = 1
processor count = 1280

12.612.6
13.613.6

17.517.5 16.816.9
15.916.3 16.916.9 16.817.0

Figure 3.6: Illustration of the quality of discovered communities in terms of MDL. The numeric value atop
each histogram bar in each figure represents the values of the quality metrics for 1 vs 1280 processors.

3.6.3 Modularity

For the dataset in Table 3.2, we provided the quality measurement metrics, such as modularity and conductance,
along with their corresponding values obtained from the sequential Infomap [15]. As depicted in Figure
3.7, we observe minimal variations in the values of modularity across different networks presented in the
figure. Specifically, we note no change in modularity for the DBLP network, no variation for the LiveJournal
network, and a difference of less than 2% for 1280 processing cores in the case of the Orkut network.

3.6.4 Conductance

We assessed the quality of the identified communities in a manner analogous to our evaluation for modularity,
extending our analysis to conductance. Examining Figure 3.8, we observe negligible distinctions between
executions with 1 processor and 1280 processors for both the DBLP and LiveJournal networks. In the
case of the Orkut network, the conductance value exhibits a variance of less than 2% for 1280 processors.
Consequently, we can infer that the quality of the discovered communities in our Infomap implementation
scales effectively with varying numbers of processors across different networks.

47

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

Amazon DBLP Youtube Pokec Wiki-top LiveJournal Orkut

M
od

u
la

ri
ty

Networks

processor count = 1
processor count = 1280

0.770.77

0.590.59

0.400.40
0.340.32

0.400.38

0.470.47
0.420.41

Figure 3.7: Illustration of the quality of discovered communities in terms of modularity. The numeric value
on top of each pair of histogram bars represents the values of the quality metrics for 1 vs 1280 processors.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

Amazon DBLP Youtube Pokec Wiki-top LiveJournal Orkut

C
on

d
u
ct

an
ce

Networks

processor count = 1
processor count = 1280

0.230.23

0.410.41

0.580.57

0.660.68

0.580.60
0.530.53 0.550.55

Figure 3.8: Illustration of community quality in terms of conductance. The numeric value on top of each pair
of histogram bars represents the values of the quality metrics for 1 vs 1280 processors.

3.6.5 Normalized Mutual Information

Normalized mutual information (NMI) serves as a metric for comparing the quality of discovered communities
against the ground truth communities in a given network. The mathematical expression is given by:

𝑁𝑀𝐼(𝑌 , 𝐶) = 2 × 𝐼(𝑌 ;𝐶)
|𝐻(𝑌)| + |𝐻(𝐶)|

(3.1)

48

where 𝑌 represents the truth community, 𝐶 represents the computed community, 𝐻(.) denotes entropy, and
𝐼(𝑌 ;𝐶) is the mutual information between 𝑌 and 𝐶 .

Similar to modularity and conductance, NMI serves as a metric to evaluate scalability in terms of quality for
different numbers of processors. The consistency of the quality across various processors is reported in Tables
3.3, 3.4, and 3.5, utilizing both real-world networks and synthetic networks with known truth partitions. As
NMI requires a known truth partition, we utilized static graphs from the MIT GraphChallenge network data
sets [139], as illustrated in Table 3.5.

Table 3.3: Scalability of HyPC-Map in terms of the quality metrics: Modularity

Network 1 20 40 80 160 320 640 1280

Amazon 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23
DBLP 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41
LiveJournal 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53
Orkut 0.55 0.51 0.55 0.55 0.54 0.56 0.54 0.56

Table 3.4: Scalability of HyPC-Map in terms of the quality metrics: Conductance

Network 1 20 40 80 160 320 640 1280

Amazon 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23
DBLP 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41
LiveJournal 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53
Orkut 0.55 0.51 0.55 0.55 0.54 0.56 0.54 0.56

Table 3.5: Demonstrating scalability of HyPC-Map in terms of Normalized Mutual Information (NMI) for
different number of processors.

NMI
Network # Vertices # Edges 1 20 40 80 160 320 640 1280

SG_50000 50000 1011755 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90
SG_500000 500000 10160671 0.85 0.85 0.86 0.86 0.87 0.87 0.87 0.88
SG_2000000 2000000 40670978 0.84 0.84 0.84 0.85 0.86 0.85 0.87 0.87

3.6.6 Parallel Performance

3.6.6.1 Speedup Gain

In Table 3.6, we present the achieved performance gain in terms of speedup. To the best of our knowledge,
our parallel implementation has attained superior speedup compared to state-of-the-art information-theoretic
approaches to community discovery. For smaller networks such as Amazon, DBLP, and YouTube, the speedup

49

Table 3.6: Speedup comparison with sequential (1-core/process) execution of our HyPC-Map (column 2) and
with original sequential implementation of Infomap [113] by Rosvall et al. [114] (column 3).

Network Speedup Speedup
(vs sequential self) (vs original Infomap)

Amazon 2.78 8.79
DBLP 3.66 7.00
Youtube 4.58 9.43
LiveJournal 8.19 25.11
Wiki-topcats 10.52 16.06
Soc-pokec 12.52 20.67
Orkut 16.16 21.42

gains are 2.78, 3.66, and 4.58, respectively. In the case of larger networks like Wiki-topcats, Soc-pokec, and
Orkut, the speedup gains are 10.52, 12.52, and 16.16, respectively. These speedups significantly surpass
those achieved by state-of-the-art implementations [149, 150]. Furthermore, we compare the speedup with
the original sequential implementation of Infomap [113] by Rosvall et al. [114]. We observe even more
substantial speedup, reaching as high as ∼ 25X for the LiveJournal network and ∼ 21.4X for the Orkut
network—both of which are large networks. This underscores the advantages of using cache-optimized
data structures and an efficient community optimization kernel that reduces sequential computation time.
The experiments encompass various numbers of MPI processes, ranging from 1 to 128, with each process
spawning 10 OpenMP threads. This configuration allows us to leverage all available processors within a
single QB2 [68] compute node. The highest speedup is achieved when utilizing 1280 processors (128 × 10).

3.6.6.2 Scalability Analysis

We present a runtime comparison of our implementation for three different large networks. For the Orkut
network in Figure 3.9, the runtime on a single processor, initially 2836 seconds, is reduced to 176 seconds with
1280 processors. For the LiveJournal network, the runtime decreases to 104.7 seconds with 1280 processors,
down from a single-processor runtime of 840 seconds. Similarly, for the Pokec network, the runtime is as low
as 63 seconds with 1280 processors, while the single-core runtime is 787 seconds.

3.6.6.3 Comparison with state-of-the-art techniques

In Table 3.7, we conducted a comprehensive comparison between HyPC-Map and state-of-the-art techniques,
including the original Infomap and parallel algorithms developed up to the time of this study. The table in-
cludes an overview of the strengths and weaknesses of each approach. We specifically considered GossipMap
and Distributed Infomap for comparison since both employ distributed-memory kernels. Despite employing
4096 processing units, Distributed Infomap achieves a maximum speedup of 6.02×. Its implementation is
not publicly available as well. Therefore, we opted to compare with GossipMap. GossipMap reformulates

50

 100

.5k

1k

1.5k

2k

2.5k

3k

 1 2 4 8 16 32 64 128 256 .5k 1k 1.6k

E
x
e
cu

ti
o
n
 T

im
e
 (

se
c)

Number of cores

Pokec
LiveJournal

Orkut

Figure 3.9: Illustrating the scalability of the execution time for Orkut, LiveJournal, and Pokec network.
Table 3.7: Comparison of HyPC-Map with state-of-the-art techniques

Work Name Type Strength Weakness
Infomap [114] Sequential High accuracy Computationally

expensive

RelaxMap [15] Shared-memory High accuracy Scalability limited
parallelism to a single node

Gossipmap [16] Asynchronous distributed Asynchronous Scalability up to
memory parallelism 128 parallel units

Distributed Infomap [46] Synchronous distributed Scales to 512 Speedup up to
memory parallelism processors ∼ 5X

Distributed Infomap [149] Synchronous distributed Scales to ∼ 4k Speedup up to
memory parallelism processors ∼ 6X

HyPC-Map [49] Synchronous hybrid High accuracy
memory parallelism & speedup

the map equation for incremental computation and local evaluation, leveraging an asynchronous gossiping
protocol for information approximation. The reported scalability for GossipMap is up to 128 parallel units.

We conducted experiments on our local computing server due to numerous dependencies for GossipMap, as
discussed in section 3.5.1. The comparison involved GossipMap, single-threaded distributed HyPC-Map,

51

and multi-threaded distributed HyPC-Map. Figures 3.10, 3.11, and 3.12 present runtime and scalability
comparisons for three different networks between GossipMap, single-threaded distributed HyPC-Map, and
multi-threaded distributed HyPC-Map.

Figure 3.10 highlights the efficiency of HyPC-Map, with single-processor runtimes of 730, 660, and 600
seconds compared to GossipMap’s runtimes of 6734, 4316, 5800 seconds for the LiveJournal, Pokec, and
Wiki-topcat networks, respectively. Table 3.8 details the runtime differences using 16 or 32 processing
units between the distributed and hybrid forms of HyPC-Map. The hybrid form achieves superior runtime
and parallel efficiency, reducing communication overhead during synchronization among fewer distributed
processes while using the same number of processing units.

Ultimately, the hybrid form of HyPC-Map surpasses GossipMap in both execution time and relative parallel
efficiency (𝜀𝑟 = 𝑝1𝑇 (𝑝1)

𝑝2𝑇 (𝑝2)
). The relative parallel efficiency of GossipMap decreases more significantly with an

increasing number of processing units. Here, 𝑇 (𝑝1) and 𝑇 (𝑝2) represent the execution times for 𝑝1 and 𝑝2
parallel units, respectively. Table 3.8 provides a detailed comparison between GossipMap and HyPC-Map in
terms of relative efficiency (𝜀𝑟) for various scenarios.

It is crucial to note that the primary goal of HyPC-Map is to achieve superior performance and scalability
for rapid community discovery. The hybrid form effectively bridges the gap between high communication
costs due to synchronization and reduced quality due to asynchronous community optimization. The quality
comparison between GossipMap and HyPC-Map in terms of MDL is illustrated in Figure 3.13, demonstrating
comparable values.

Table 3.8: Relative efficiency 𝜀𝑟 between GossipMap and HyPC-Map

GossipMap Dist. Hybrid
Network 𝑝1 𝑝2 𝑇 (𝑝1) 𝑇 (𝑝2) 𝜀𝑟 𝑇 (𝑝1) 𝑇 (𝑝2) 𝜀𝑟 𝑇 (𝑝1) 𝑇 (𝑝2) 𝜀𝑟
LvJrnl 16 32 760 727 0.52 279 267 0.52 177 135 0.66
Wiki-top 16 32 606 564 0.54 200 188 0.53 103 83 0.62
Pokec 16 32 697 544 0.64 198 189 0.52 119 96 0.62

3.6.6.3.1 Comparison with other community discovery strategies HipMCL [13] is a parallel community
discovery algorithm that utilizes the Markov Clustering algorithm (MCL) [136] as its core. Lancichinetti
et al. [81] conducted various comparisons among Infomap, Louvain, and MCL in their work, employing
different benchmarks such as GN, LFR, and random graphs. Demonstrated by Azad et al. [13], HipMCL,
as a state-of-the-art clustering technique, addresses the performance and memory limitations of MCL. Its
community optimization kernel employs SpGEMM (sparse matrix-matrix multiplication). The SpGEMM
kernel implements a sparse form of SUMMA [135] for distributed graph computation in adjacency matrix

52

 100
 800
1.5k

2.5k

3.5k

4.5k

5.5k

6.5k

 1 2 4 8 16 32

E
xe

cu
ti
on

 T
im

e
(s

ec
)

No. of Processors

LiveJournal network

Distributed HyPC-Map
Hybrid HyPC-Map

GossipMap

Figure 3.10: Runtime comparison for LiveJournal network between GossipMap and HyPC-Map (single-thread
distributed and multi-thread distributed).

 100
 600

1.5k

2.5k

3.5k

4.5k

 1 2 4 8 16 32

E
xe

cu
ti
on

 T
im

e
(s

ec
)

No. of Processors

Pokec network

Distributed HyPC-Map
Hybrid HyPC-Map

GossipMap

Figure 3.11: Runtime comparison for soc-Pokec network between GossipMap and HyPC-Map (single-thread
distributed and multi-thread distributed).

form, with the requirement that the number of MPI processes be a perfect square number to form a square
grid (e.g., 1 × 1, 2 × 2, 4 × 4).

In our comparison between HipMCL and HyPC-Map, we observed that HyPC-Map outperforms in terms of
memory requirement and runtime performance. HipMCL maintains three matrices in the SpGEMM kernel,

53

 100
 600

1.5k

2.5k

3.5k

4.5k

5.5k

 1 2 4 8 16 32

E
xe

cu
ti
on

 T
im

e
(s

ec
)

No. of Processors

Wiki-topcat network

Distributed HyPC-Map
Hybrid HyPC-Map

GossipMap

Figure 3.12: Runtime comparison for wiki-topcats network between GossipMap and HyPC-Map (single-thread
distributed and multi-thread distributed).

 0

 3

 6

 9

 12

 16

 20

 24

LiveJournal Pokec Wiki-topM
in

im
u
m

 D
es

cr
ip

ti
o
n
 L

en
g
th

Networks

MDL (GossipMap)
MDL (HyPC-Map)

16.83 16.88 16.92 16.85
15.73 15.99

Figure 3.13: We observe similar MDL for 3 different networks after the convergence of both the GossipMap
and HyPC-Map.

which is significantly higher than what HyPC-Map requires. Consequently, larger networks from our datasets
in this study could not be processed by HipMCL, utilizing all available 128 GB memory of the NERSC Cori
Haswell node, due to memory limit exceeding (MLE), as listed in Table 3.9. This limitation was observed
when using a single compute node (e.g., Youtube, Orkut) and four compute nodes (e.g., Orkut). HipMCL
takes a substantially longer time to process real-world social networks listed in Table 3.9, which follow a
power-law degree distribution. Despite utilizing all 32 processors of the Haswell compute node and multiple

54

compute nodes (e.g., 4, 16), HipMCL still lags behind the single-node runtime of HyPC-Map.

Fortunato et al. [57] discussed the resolution limit problem inherent in modularity-based community detection
strategies (e.g., Louvain). A parallel implementation of the modularity-based algorithm inherits this problem,
along with additional challenges arising from parallelization. Lancichinetti et al. [81] provided detailed
comparisons between sequential Louvain and Infomap in their work.
Table 3.9: Execution performance comparison between HipMCL [13] and HyPC-Map. MLE: Memory Limit
Exceeded

HyPC-Map (sec) HipMCL (sec)
Network 1 Compute Node 1 Compute Node 4 Compute Nodes 16 Compute Nodes
Amazon 3.50 85.18 50.61 20.24
DBLP 3.90 278.64 166.42 57.35
Youtube 21.14 MLE 9251.05 2545.89
soc-Pokec 82.05 MLE 37014.52 10792.05
Orkut 235.0 MLE MLE 35715.63

3.7 Concluding Remarks
HyPC-Map combines the advantages of both distributed- and shared-memory parallelism, resulting in superior
scalability performance compared to state-of-the-art techniques. Moreover, our algorithm exhibits greater
efficiency when using a single processing unit than other prominent map-based algorithms [113, 16]. HyPC-
Map achieves significantly higher parallel performance than other map-based parallel algorithms in the
literature. Despite achieving such speedup, HyPC-Map does not compromise on maintaining the quality. The
modularity, conductance, and MDL scores attest to the high quality of detected communities, which closely
resemble those found by sequential Infomap. We believe HyPC-Map holds potential for analyzing emerging
large-scale social, information, and scientific networks.

55

Chapter 4: Fast Infomap with Accelerated Hash Accumu-
lation

The information-theoretic community discovery method, commonly known as Infomap, is renowned for
providing superior quality results in the Lancichinetti–Fortunato–Radicchi (LFR) benchmark compared to
modularity-based algorithms. To address the computational challenges posed by the analysis of massive
graphs arising from the exponential growth of information in various domains such as bio-sciences, social
sciences, and business, parallel algorithms have been developed for Infomap. State-of-the-art techniques
in information-theoretic community discovery often rely on hash tables to store vertex neighborhood flow
information. However, these operations can be computationally expensive due to collision handling and CPU
branch mispredictions. Recently, the Accelerated Sparse Accumulation (ASA) hardware accelerator for hash
accumulation has been introduced, specifically designed for sparse matrix-matrix multiplication (SpGEMM).
We extend the interface of the ASA accelerator and demonstrate that, for state-of-the-art parallel Infomap,
utilizing the accelerator for hash accumulation with fast on-chip memory can overcome the performance
bottlenecks associated with software hash tables. This approach achieves a speedup of 5.56× while reducing
the number of branch mispredictions by 59%, the CPI rate by 21%, and the total number of instructions by
24%.

4.1 Introduction
Community discovery is a widely applied task involving the grouping or clustering of entities with similar
characteristics [59, 34, 108, 61, 92, 93, 97, 26, 114, 98]. Applications of community discovery span various
domains, such as identifying people with similar interests in social networks, marketing products based on con-
sumer categories, clustering proteins with similar functions, detecting web spam in cybersecurity, and more.
The significant expansion of social, biological, professional, and traffic networks in recent years has spurred
research into parallel algorithm designs for community discovery [106, 124, 95, 15, 16, 149, 118, 150, 13, 46].
The adoption of an information-theoretic approach, commonly referred to as Infomap [114], has been
demonstrated to yield higher-quality discovered communities in separate studies [81, 3] and experimental
LFR benchmarks [83]. Numerous shared-memory and distributed memory-based parallel algorithms have

56

been developed for Infomap [15, 16, 149, 46, 49].

The study discussed in Chapter 3 [49] devised a parallel version of Infomap, leveraging both shared-memory
and distributed-memory parallelism. This implementation achieved a speedup of 25× compared to the
sequential counterpart of Infomap [114]. An essential phase in determining the community membership
of a vertex involves computing and accumulating information regarding neighboring vertices. Whether
in sequential [114] or parallel implementations [15, 16, 46, 49], all versions of Infomap utilize software
hash tables for storing information about neighboring vertices. Subsequent sections will demonstrate that
software hash accumulation consumes up to 50 − 65% of the total execution time, representing a significant
performance bottleneck in hardware resource utilization, specifically due to stalls resulting from branch
misprediction.

We illustrate that an accelerator designed for hash accumulation with fast content-addressable memory (CAM)
can effectively address challenges in software hash tables and narrow the gap between achievable and utilized
hardware resources. To the best of our knowledge, none of the existing works [114, 15, 16, 149, 150, 46, 49]
on Infomap community detection has explored hardware acceleration to expedite hash operations. Chao
et al. [151] introduced an accelerator for hash accumulation (ASA) specifically tailored for SpGEMM
computation. In this paper, we extend the ASA interface [151] beyond its original SpGEMM context, enabling
any application with a high volume of hash lookup and accumulation to benefit from ASA. To showcase this,
we enhance the parallel Infomap [49] implementation with ASA-accelerated hashing operations, demonstrating
that hash operations achieve speedups ranging from 3.28× to 5.56× by utilizing ASA. The limited capacity of
the CAM may raise concerns when storing hash tables for large networks. However, real-world social and
metagenome networks exhibit power-law degree distributions and sparsity, as demonstrated in Figure 4.4
in Section 4.4 for social networks. Applications such as metagenome assembly [90] or clustering protein
sequences [86] deal with similar network characteristics. In Section 4.4, we demonstrate that the accelerator’s
memory’s limited capacity is not a hindrance when processing sparse networks, as 99% of the adjacency list
(vertex neighbors) fits entirely within an 8KB CAM. Following is the summary of our contribution:

• We extend the ASA interface initially designed for accelerating SpGEMM computation by Chao et al.
[151] and showcase its adaptability for applications involving a substantial volume of hash operations.
To our knowledge, this marks the first instance where an accelerator is employed to enhance hash
operations for Infomap community discovery.

• In the context of the Infomap application, ASA achieves a reduction of 59% in branch misprediction,
a decrease in the CPI rate by 21%, and a decline in the total number of instructions by 24%. This
is achieved by eliminating the computationally expensive software hash accumulation and collision
handling operations.

57

• We illustrate that the on-chip CAM’s limited capacity in ASA is not a hindrance when dealing with
large social and biological networks. As detailed in Section 4.4, we demonstrate that over 99% of the
vertices can be effectively processed using only 8KB of CAM per core.

4.2 Background
In this section, we provide some background on the application of the information-theoretic approach to
community detection and the motivation for an accelerator for hash accumulation.

4.2.1 Components of A Parallel Infomap Algorithm

In [49], an effective parallel implementation of Infomap, referred to as HyPC-Map, is introduced. HyPC-Map
consists of four primary compute kernels, which we will briefly outline to provide context for our subsequent
methods and contributions.
PageRank: This kernel calculates the ergodic vertex visit probability (PageRank) for all vertices, considering
teleportation. The PageRank [27] is computed through the power iteration method. The ergodic vertex visit
frequencies are utilized to determine both the module stay probability 𝑝𝑖

↻
and the exit probability of a vertex

𝑞𝑖↷ from module 𝑖.
FindBestCommunity: This compute kernel is tasked with greedily determining the optimal community for
each vertex. It functions in both the vertex-level phase and the super node-level phase. In the vertex-level
phase, it iterates through each vertex, selecting the merge with a neighboring vertex that maximally reduces
the MDL in Equation (2.4). In the super node-level phase, the groups of vertices produced in the vertex-level
phase are delivered to this kernel in the form of a structure known as a super node.
Convert2SuperNode: The sets of vertices produced during the vertex-level phase in the FindBestCommunity
kernel are denoted by a structure named a super node. Within a super node, the constituent elements encompass
all the vertices belonging to a specific group. These member vertices may exhibit connections to other super
nodes via edges. In cases where multiple vertices within one super node are linked to another super node, a
solitary super edge is established, amalgamating the associated edge weights.
UpdateMembers: Following the determination of new community memberships by the FindBestCommunity
kernel for an individual vertex or a set of vertices, the community membership field for each of the vertices is
subsequently revised.

4.2.2 Motivation for Accelerator

To analyze the computational costs of the primary kernels in parallel Infomap, we conducted experiments on
large networks, and the results are depicted in Fig. 4.1. The breakdown indicates that the FindBestCommunity
kernel (yellow bar) is the most time-consuming component in Infomap, constituting 70% to 90% of the entire
application. Moreover, we observe that software hash operations (orange bar) account for as much as 50% to

58

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

soc-Pokec Orkut

T
im

e
 (

%
)

Network

PageRank
Convert2SuperNode

UpdateMembers
Others

FindBestCommunity

Compute Kernel Breakdown (%) for Infomap

Figure 4.1: The kernel breakdown of the Infomap application in native execution for large networks (Pokec
and Orkut). The majority of time is spent on FindBestCommunity kernel.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

soc-Pokec Orkut

T
im

e
 (

%
)

Network

Partitioning
HashOperations
ModuleSelection

Others

FindBestCommunity Kernel Timing Breakdown (%)

Figure 4.2: A further breakdown of the FindBestCommunity kernel shows hash operations taking 50% to 65%
of the kernel computation time.

65% of the FindBestCommunity kernel (see Fig. 4.2). For simplicity, all plots shown in Fig. 4.1 and 4.2
represent single-core executions of the application.

This heavy reliance on software hash tables arises from how the Infomap implementation decides to change
modules for an arbitrary vertex. As discussed in the extended version of the Map Equation [114, 46], it

59

Algorithm 4: FindBestCommunity
Data: A vertex/supernode 𝑣𝑖 of graph 𝐺(𝑉 ,𝐸)
Result: New community 𝑚𝑛𝑒𝑤 for vertex 𝑣𝑖

1 std::unordered_map<pair<int, double≫ outFlowtoModules
2 std::unordered_map<pair<int, double≫inFlowFromModules
3 numModlinks ← 0
4 for (linkIt ← 𝑣𝑖.outLinks.begin() to 𝑣𝑖.outLinks.end()) do
5 newModId ← node.at(linkIt → first).modId
6 if (outFlowtoModules.count(newModId) > 0) then
7 outFlowtoModules[newModId] + = linkIt → second
8 else
9 outFlowtoModules[newModId] ← linkIt → second

10 inFlowFromMod[newModId] ← 0.0
11 numModLinks ← numsModLinks + 1
12 Accumulate incoming flow in inFlowFromModules (as in Ln. 4 − 11)
13 bestDiffCodelen ← 0.0
14 for (it ← outFlowtoModules.begin() to outFlowtoModules.end()) do
15 newModId ← it → first
16 outFlowToNewMod ← it → second
17 inFlowFromMod ← inFlowFromModules[newModId]
18 diffCodeLen ← calc(outFlowToNewMod, inFlowFromMod)
19 if (diffCodelen < bestDiffCodelen) then
20 bestDiffCodelen ← diffCodelen
21 bestModuletoMove ← newModId
22 return bestModuletoMove

is sufficient to keep track of the exit probability 𝑞𝑖↷ of a module 𝑖 and the stay probability of the module
∑

𝛼∈𝑖 𝑝𝛼 to determine the next possible move for a vertex or super node. The exit probability and the stay
probability are updated based on the incoming and outgoing flow information between modules. A closer
look at the FindBestCommunity kernel is provided in Algorithm 4.

In the module selection process for each vertex outlined in Algorithm 4, every vertex or supernode manages
a pair of hash tables to store incoming and outgoing flow from or to neighboring vertices or supernodes,
respectively. This flow information is vital for determining the best reduction in MDL during the processing
of each vertex. However, the frequent utilization of the hash table in this context makes it a computationally
expensive phase (orange bar) of the FindBestCommunity kernel. The software hash table, implemented
using the C++ standard library unordered map, faces challenges such as high latency-bound memory access
resulting from branch misprediction and collision chaining.

At the initiation of the FindBestCommunity phase (as outlined in Algorithm 4), each vertex is initially assigned
to its individual community or module. Throughout multiple iterations of FindBestCommunity, vertices may

60

undergo transitions from one module to another in a greedy optimization manner. Such transitions can occur
by following connecting edges or through random teleportation. Vertices may have neighboring vertices or
none, and these neighbors can belong to the same or different modules. The decision for a vertex to move to
another module is based on achieving the maximum compression of the minimum description length (MDL),
as described in Equation (2.4). The MDL minimization, associated with a vertex’s move to a module, is influ-
enced by the edge flow to or from other neighboring vertices [114]. This flow to or from a module is expressed
as a function of the ergodic node visit frequency of the vertex itself and the edge weight to or from that module.

In Algorithm 4, lines 1 − 2 declare two hash tables for storing the outgoing flow to other modules and the
incoming flow from other modules. Lines 4−11 iterate over the adjacency neighbors, storing and accumulating
the module ID and corresponding outgoing flow as a < key, value > pair. Line 12 performs similar actions for
the incoming flow from the modules to the current vertex. For simplicity, the flow coming from teleportation
is omitted from the presented algorithm snippet. Lines 14−21 iterate over the < key, value > pair, computing
the difference in code length for a module (newModId). The difference in code length is computed by the
function calc in line 18. If moving to a module reduces the code length by more than the reduction observed
so far, the change in code length is recorded along with the moduleId. This detailed examination of the
algorithm for FindBestCommunity reveals that most of the operations involve hash table insertions, lookups,
and accumulations of flow values.

4.2.3 Pin and ZSim

To simulate our hardware accelerator ASA, we utilize ZSim [115], a Pin-based simulation infrastructure
and tool. Pin is a program designed for instrumenting executables on Linux, Windows, and macOS for Intel
(R) IA-32, Intel64, and Itanium (R) processors. Pin acts as a dynamic instrumentation tool, intercepting
the application binary during execution and injecting instrumentation code snippets at specified locations.
It allows the inspection of program context information, such as register states, storing and restoring this
information when necessary to ensure the original execution flow remains unaffected by the instrumentation.
Pintools are commonly employed for hardware simulation, as they can capture a natively executed instruction
stream and then replay it on a simulated architecture.

Moreover, we implemented modifications in ZSim to simulate the ASA. A software representation of the
ASA architecture is directed through custom instrumentation of the xchg instruction, which is not commonly
generated by x86 compilers. We introduce xchg instructions with different registers to distinguish between
the insertion of key-value pairs into the CAM (content addressable memory) and loading data from the CAM.
These operations are assigned latencies and utilize relevant ports within ZSim’s out-of-order core model to
accurately replicate the time spent executing ASA instructions. Finally, ZSim reads the register values to

61

update the CAM state, a crucial aspect, for instance, in determining whether an ASA insertion might lead to
overflow.

4.3 Methodology
We introduced the FindBestCommunity kernel with software hash in Section 4.2. In this section, we outline
the design changes for the FindBestCommunity kernel using ASA. The corresponding pseudocode is provided
in Algorithm 5. Additionally, in Fig. 4.3, we illustrate the generalized block diagram of the ASA micro-
architecture. The original work on ASA [151] extensively covered the ASA micro-architecture for SpGEMM
computation. Here, we focus on the API calls relevant to our specific context.

Algorithm 5: FindBestCommunity_ASA
Data: A vertex/supernode 𝑣𝑖 of graph 𝐺(𝑉 ,𝐸)
Result: New community 𝑚𝑛𝑒𝑤 for vertex 𝑣𝑖

1 std::vector<pair<key, value≫ nonoverflowed_pairs
2 std::vector<pair<key, value≫ overflowed_pairs
3 tid ← omp_get_thread_num()
4 numModlinks ← 0
5 for (linkIt ← 𝑣𝑖.outLinks.begin() to 𝑣𝑖.outLinks.end()) do
6 k ← node.at(linkIt → first).modId
7 accumulate(tid, hash(k), k, linkIt → second)
8 gather_CAM(tid, nonoverflowed_pairs, overflowed_pairs)
9 if (!overflowed_pairs.empty()) then

10 sort_and_merge(nonoverflowed_pairs, overflowed_pairs)
11 Accumulate incoming flow (as in Ln. 5 − 10)
12 Iterate over the merged vector and record the module (bestModuletoMove) that minimizes code

length most
13 return bestModuletoMove

4.3.1 Hash Accumulation

The software hash accumulation in lines 4 − 11 of Algorithm 4 is substituted with the ASA accumulation
call in line 7 of Algorithm 5. As each thread possesses its own core-local CAM, the accumulate API call
takes four parameters: the thread ID (tid), the module ID (k), the hashed module ID (hash(k)) used to index
the CAM entry, and the flow value (𝑙𝑖𝑛𝑘𝐼𝑡 → 𝑠𝑒𝑐𝑜𝑛𝑑) accumulated in the corresponding CAM entry. The
accumulate call can yield three possible outcomes. If the key (k) is hashed to a unique index, a new entry is
created in the cache. If the key already exists in the cache, the passed argument value is added to the partial
sum. If the key is not found, and there is no space available in the cache, an entry is evicted based on an LRU
policy and stored in a queue buffer.

62

CPUs

Memory
Hierarchy

Hardware probing
and accumulation

Keys
Values

Software Sorting and Conditional Merging

Partial
Sum

Cache

Address Generator

Tail Pointer
Register

Boundary
Register

Value Hash Key

Software sort
and merge

Hardware
Gathering Software check vector size

and address

Merging All
nonzero entries

Overflow

Probing

Accumulation
Waiting
Buffer

Write
Back

+

Figure 4.3: Generalized ASA micro-architecture block diagram. Different modules of the architecture and
their functionalities are described in Chao et al. [151] and therefore skipped here for brevity.

4.3.2 Gather CAM Entries

The API call gather_CAM in line 8 of Algorithm 5 accepts the thread ID (tid) and references to the vectors
for copying the CAM entries back to memory. The vector 𝑛𝑜𝑛𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 receives the contents of the
CAM, while the vector 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 obtains the content of the overflowed queue buffer.

4.3.3 Sorting and Merging

In certain situations, an overflow may occur because of the restricted cache entries (CAM size). When
the overflow buffer 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 is not empty, the overflowed pairs are appended to the end of
𝑛𝑜𝑛𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤𝑒𝑑_𝑝𝑎𝑖𝑟𝑠 and subsequently sorted based on their keys. Following that, values associated
with identical keys are merged. This procedure is outlined in lines 9 − 10 of Algorithm 5.

63

4.4 Evaluation
We opt for C++ in our implementation and utilize the g++ 7.5.0 compiler for the construction and integration
of the ASA accelerator into HyPC-Map. The experiments and simulations are conducted on a Linux system
featuring an Intel 2.6 GHz 64−bit processor, equipped with 16 physical cores distributed across 2 sockets,
with 8 physical cores in each socket. To align the native configuration’s CPU clock frequency with that of
ZSim’s simulated CPUs, the scaling_governor is configured to performance, ensuring a consistent (non-turbo
mode) native CPU clock frequency. Our hardware architecture simulations are carried out using ZSim [115].
The datasets utilized in this paper are sourced from SNAP [84] and detailed in Table 4.1.
Table 4.1: Scale-free network datasets used for our experiments that exhibit power-law degree distribution.
These are social and information networks with the largest one (Orkut) having 3M vertices and 117M edges.

Network # Vertices # Edges
Amazon 334863 925872
DBLP 317080 1049866
YouTube 1134890 2987624
soc-Pokec 1632803 30622564
LiveJournal 3997962 34681189
Orkut 3072441 117185083

4.4.1 Utilizing Limited CAM Capacity

A balance exists between the on-chip memory cost of the ASA accelerator and the capacity to accommodate
hash table entries. Fortunately, owing to the power-law degree distribution observed in scale-free networks,
the majority of vertices have only a limited number of neighbors. A few vertices may possess more than
thousands of neighbors, as illustrated in Figure 4.4 for the three large social networks. In Figure 4.5, we
demonstrate that allocating 8KB of memory per core proves adequate to encompass the neighborhood lists
of 99% of the vertices across all the social networks depicted in the plots. This insight can be leveraged for
biological networks, as they exhibit analogous sparsity and degree distribution patterns.

4.4.2 Validation of Native vs Baseline

Before assessing the application performance of Infomap with hardware-accelerated hash compared to
software hash, we validate the simulated performance of Infomap with the software hash implementation
[49] (referred to as Baseline) using ZSim against its performance from native execution on the same machine
(without ZSim). The accuracy of ZSim [115] has been confirmed on an Intel Westmere architecture with an
average error of ∼ 10%. For our experiments, validation is conducted on an Intel Ivy Bridge architecture.
The configurations for native hardware and ZSim simulation are detailed in Table 4.2 in columns 2 and 3,
respectively. It’s important to note that the 𝐿3 cache size of 20MB for the Native configuration (column 2)

64

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

 1.04858×106

 4.1943×106

 0 100 200 300 400 500

O
cc

u
rr

en
ce

No. of Neighbors

Livejournal Network

(a) LiveJournal

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

 1.04858×106

 0 100 200 300 400

O
cc

u
rr

en
ce

No. of Neighbors

Pokec Network

(b) Soc-pokec
Figure 4.4: Illustration of the degree distribution in scale-free social networks characterized by a power-law
degree distribution. While a few vertices exhibit high neighbor counts, the majority of vertices (in this instance,
hundreds of thousands of them) have either one or a few neighbors. This is evident in the LiveJournal network
(Figure 4.4a) and the social Pokec network (Figure 4.4b).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Youtube Pokec LiveJournal Orkut

V
e
rt

e
x
 P

ro
ce

ss
e
d
 (

%
)

Network

CAM size = 1KB
CAM size = 8KB

99.15 99.96

93.09

99.98 97.64 99.98

82.70

99.88

Figure 4.5: Harnessing the power-law degree distribution inherent in real-world networks to minimize
Content-Addressable Memory (CAM) storage needs. The nature of power-law degree distribution enables
even modest-sized CAMs to store the majority of graph neighbor lists. For instance, a core-local CAM with
a capacity of 1KB can contain the neighbor lists of over 82% of the vertices of the Orkut network without
reaching overflow. Scaling up to a capacity of 8KB covers more than 99% of the vertices in the social network
datasets employed in this study.

cannot be replicated for Baseline (column 3) since ZSim requires power-of-2 cache sizes. The validation
results for single-core execution in native versus Baseline are presented in Table 4.3. The FindBestCommunity
kernel is executed for multiple iterations, and the runtime for each iteration is listed in each row of the table
for both native and Baseline executions, along with the percentage difference in column 4. The average error
is ∼ 12.7% between native and Baseline. Similarly, Table 4.4 presents execution times for native versus
Baseline execution for 2 processing cores. The disparity in runtime between Native and Baseline could arise
from differences in LLC (𝐿3) cache sizes or simulation errors induced by ZSim.

65

Table 4.2: Machine configurations for Native vs Baseline validation. The only difference is in L3 cache size
between Native and Baseline.

Item Native Baseline
Processor 8 cores, 2.6GHz 8 cores, 2.6GHz
L1 instruction cache 32KB 32KB
L1 data cache 32KB 32KB
L2 private 256KB private 256KB
L3 shared 20MB shared 16MB
Main Memory 𝐷𝐷𝑅3 − 1333MHz, 𝐷𝐷𝑅3 − 1333MHz,

𝐶𝐿 1600MT/s 𝐶𝐿10 1600MT/s

Table 4.3: Runtime comparison in different iterations between Baseline and native using single processing
core for the YouTube social network. The runtime difference (in %) is well within the limit as reported by
ZSim [115].

Iteration no. Native (sec) Baseline (sec) (% diff)
1 8.426 9.254 10
2 6.580 7.201 9
3 5.151 5.739 11
4 3.452 3.910 13
5 2.272 2.605 15
6 1.614 1.859 15
7 1.180 1.369 16

Table 4.4: Runtime comparison between baseline and native in different iterations using 2 processing cores
for the YouTube social network. The runtime difference (in %) is within the limit as reported by ZSim [115].

Iteration no. Native (sec) Baseline (sec) (% diff)
1 5.676 5.572 2
2 4.072 4.055 1
3 3.275 3.186 3
4 2.048 2.026 1
5 1.238 1.466 18

Table 4.5: Time spent on hash operations for Baseline vs ASA

Network Baseline (sec) ASA (sec)
Amazon 4.73 1.44
DBLP 7.35 1.86
YouTube 52.38 11.15
soc-Pokec 508.97 91.46
Orkut 1846.70 379.97

66

 0

 1

 2

 3

 4

 5

 6

Amazon DBLP YouTube soc-Pokec Orkut

S
p
e
e
d
u
p
 (

X
)

Networks

3.28

3.95

4.70

5.56

4.86

Baseline vs ASA Speedup for Networks

Figure 4.6: Comparison of speedup between Baseline and Accelerator for Hash Accumulation (ASA) across
various networks. ASA significantly reduces the time required for hash operations compared to the Baseline
software hash. In single-core experiments, the speedups are 3.28× for the Amazon network, 3.95× for the
DBLP network, 4.70× for the YouTube network, 4.86× for the Orkut network, and 5.56× for the soc-Pokec
network.

4.4.3 Performance Evaluation

The time spent on HashOperations is documented in Table 4.5, where Baseline is in column 2, and ASA
is in column 3. Additionally, in Fig. 4.6, we depict the speedup achieved by ASA over Baseline for hash
operations across various networks in single-core executions. The most substantial single-core performance
gain, 5.56×, is observed for the soc-Pokec network. Similarly, ASA demonstrates gains of 3.28×, 3.95×, 4.7×,
and 4.86× over Baseline for the Amazon, DBLP, YouTube, and Orkut networks, respectively. Figures 4.7 and
4.8 illustrate the performance breakdown of computational kernels between Baseline and ASA for multi-core
executions. We observe a (68 − 70)% reduction in HashOperations computation time from Baseline to ASA
for multi-core execution in the Amazon network (Figure 4.7). Similarly, we observe a (75 − 77)% reduction
in HashOperations time for the DBLP network (Figure 4.8).

The performance enhancement observed from Baseline to ASA can be attributed to two main factors. Firstly,
ASA reduces the average number of instructions compared to the software hash implementation. Software
hash tables involve collision chaining or linear probing logic to address collisions, which necessitates the
execution of additional instructions. ASA’s extension to the ISA provides a single CPU instruction for hash
lookup and accumulation. In Fig. 4.9, we observe a reduction of up to 24% in the total number of instructions
for the FindBestCommunity kernel for some larger networks. Figure 4.10 illustrates a 12% reduction for the
Amazon network, and Figure 4.11 shows a 15% reduction for the DBLP network in the average number of

67

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Baseline ASA Baseline ASA Baseline ASA Baseline ASA

T
im

e
 (

se
c)

Number of Cores

Partitioning
HashOperations

ModuleSelection
Others

0.46 0.46

4.73

1.44

3.76

3.58

0.44

0.48

0.47 0.47

2.37

0.75

1.87

1.78

0.32

0.32

0.51 0.47

1.21
0.37

0.96

0.87

0.21

0.20

0.46 0.47
0.61 0.19

0.47
0.43

0.16
0.16

8-Cores4-Cores2-Cores1-Core

Timing Breakdown of FindBestCommunity (Amazon)

Figure 4.7: Breakdown of the execution time for the simulated kernel (FindBestCommunity) in the Amazon
network. The timing breakdown illustrates the reduction in execution time for HashOperations across varying
numbers of processing cores. In the single-core setting, the HashOperations time decreases from 4.73 seconds
to 1.44 seconds. In 2-core setting, the HashOperations time decreases from 2.37 seconds to 0.75 seconds.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15

Baseline ASA Baseline ASA Baseline ASA Baseline ASA

T
im

e
 (

se
c)

Number of Cores

Partitioning
HashOperations

ModuleSelection
Others

0.44 0.44

7.35

1.86

6.48

6.06

0.51

0.52

0.45 0.45

3.88

0.94

3.31

3.15

0.32

0.33

0.44 0.45

1.94
0.44

1.67

1.62

0.23

0.24

0.49 0.49
1.00

0.24

0.83
0.79

0.18
0.18

8-Cores4-Cores2-Cores1-Core

Timing Breakdown of FindBestCommunity (DBLP)

Figure 4.8: Breakdown of the execution time for the simulated kernel (FindBestCommunity) in the DBLP
network. The timing breakdown illustrates the reduction in execution time for HashOperations across varying
numbers of processing cores. In the single-core setting, the HashOperations time decreases from 7.35 seconds
to 1.86 seconds. In 2-core setting, the HashOperations time decreases from 3.88 seconds to 0.94 seconds.

instructions per core from Baseline to ASA during multi-core executions for the FindBestCommunity kernel.
The aforementioned statistics for the reduced number of instructions in ASA include the instructions for

68

handling overflow (lines 9 − 10 of Algorithm 5). For the soc-Pokec network, it constitutes only 9.86% of the
ASA computation time (Table 4.5, column 3), and for the Orkut network, it represents only 13.31% of the
ASA computation time to handle overflow.

 0
 500
1.0k
1.5k
2.0k
2.5k
3.0k
3.5k
4.0k
4.5k
5.0k
5.5k
6.0k
6.5k
7.0k
7.5k
8.0k

YouTube soc-Pokec Orkut

In
st

ru
ct

io
n
s

(B
il
li
o
n
s)

Networks

Baseline
ASA

1.25x

1.31x

1.31x

Number of Instructions for FindBestCommunity

Figure 4.9: Performance comparison metric (total instructions) for large networks (Orkut, soc-Pokec, and
YouTube). The total number of instructions shows a reduction from the Baseline to ASA. In the case of the
soc-Pokec network, the total number of instructions decreases to 1.8 trillion with ASA from the original of 2.4
trillion in the Baseline.

Additionally, ASA’s performance improvement is largely attributed to a significant reduction in the number
of branch mispredictions in the software hash table. Branch mispredictions can incur substantial costs as
the CPU core needs to flush all partially executed instructions from the incorrect branch from its pipeline
and restart execution on the correct branch. Fig. 4.12 illustrates a reduction of up to 59% in the number of
mispredicted branches for larger networks. Fig. 4.13 showcases a 40% reduction for the Amazon network,
and Fig. 4.14 reveals a 46% reduction for the DBLP network in the average number of branch mispredictions
per core for experiments conducted with different numbers of processing cores.

Moreover, addressing collisions in a software hash table often leads to irregular memory access patterns
that are challenging for hardware prefetchers to predict, such as following pointers connecting entries that
hash to the same bucket. This situation can potentially cause memory latency stalls. Reducing the number of
branch mispredictions and irregular memory accesses resulting from hash collisions leads to a lower CPI for
ASA compared to the Baseline. Fig. 4.15 illustrates a (18 − 21)% reduction in CPI for some larger networks
(YouTube, soc-Pokec, and Orkut) in single-core execution. Similarly, in multi-core execution, Fig. 4.16 shows

69

 0

 5

 10

 15

 20

 25

 30

1-Core 2-Cores 4-Cores 8-Cores

B
il
li
o
n
 I

n
st

ru
ct

io
n
s

Number of Cores

Baseline
ASA

1.13x

1.13x

1.13x

1.13x

Number of Instructions FindBestCommunity

Figure 4.10: The average number of instructions per core decreased from Baseline to ASA for the Amazon
network. The reduction factor is 1.13× from Baseline to ASA and remains consistent across multi-core
executions.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1-Core 2-Cores 4-Cores 8-Cores

B
il
li
o
n
 I

n
st

ru
ct

io
n
s

Number of Cores

Baseline
ASA

1.18x

1.18x

1.17x

1.17x

Number of Instructions for FindBestCommunity

Figure 4.11: The average number of instructions per core decreased from Baseline to ASA for the DBLP
network. The reduction factor is 1.17×, and this improvement remains consistent across multi-core executions.

a 20% reduction in CPI rate for the Amazon network, and Fig. 4.17 demonstrates a 21% reduction in CPI rate
for the DBLP network, on average per core from Baseline to ASA.

70

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

YouTube soc-Pokec Orkut

B
ra

n
ch

 M
is

p
re

d
ic

ti
o
n
s

(B
il
li
o
n
s)

Networks

Baseline
ASA

1.89x

2.45x

2.40x

Branch Mispredictions for FindBestCommunity

Figure 4.12: The decrease in the number of mispredicted branches from Baseline to ASA for large networks
(Orkut, soc-Pokec, and YouTube). In the case of the Orkut network, it decreases to 11.55 billion in ASA from
the initial 27.69 billion in Baseline.

 0

 20

 40

 60

 80

 100

 120

 140

 160

1-Core 2-Cores 4-Cores 8-CoresN
u
m

b
e
r

o
f

M
is

p
re

d
ic

ti
o
n
 (

M
il
li
o
n
s)

Number of Cores

Baseline
ASA

1.65x

1.64x

1.64x

1.64x

Branch Misprediction for FindBestCommunity

Figure 4.13: The average reduction in the number of branch mispredictions per core from Baseline to ASA
for the Amazon network. The reduction factor is 1.64× and remains relatively consistent across multi-core
executions.

4.5 Related Work
Leveraging a hardware accelerator for efficient graph mining applications stands as a crucial aspect
of software-hardware co-design for graph algorithms. In a broader sense, the term graph data mining

71

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

1-Core 2-Cores 4-Cores 8-CoresN
u
m

b
e
r

o
f

M
is

p
re

d
ic

ti
o
n
 (

M
il
li
o
n
s)

Number of Cores

Baseline
ASA

1.84x

1.86x

1.85x
1.86x

Branch Misprediction for FindBestCommunity

Figure 4.14: The average reduction in the number of branch mispredictions per core from Baseline to ASA
for the DBLP network. The reduction factor is 1.86× and remains relatively consistent across multi-core
executions.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

YouTube soc-Pokec Orkut

C
y
cl

e
s

P
e
r

In
st

ru
ct

io
n
s

Networks

Baseline
ASA

1.25x

1.27x

1.23x

Average CPI for FindBestCommunity

Figure 4.15: Reduction in the average cycles retired per instruction (CPI) from Baseline to ASA for the large
networks (Orkut, soc-Pokec, and YouTube). In the case of the Orkut network, CPI decreases to 1.08 in ASA
from the initial 1.32 billion in Baseline

encompasses strategies aimed at discovering structural information, such as communities, cliques, motifs,
k-trusses, and other patterns within graphs. The process of graph data mining on real-world datasets
encounters challenges like the under-utilization of computing resources due to the random access patterns
inherent in the irregular graph structure and the significant load imbalance caused by the power-law degree

72

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

1-Core 2-Cores 4-Cores 8-Cores

C
y
cl

e
s

P
e
r

In
st

ru
ct

io
n
 (

C
P
I)

Number of Cores

Baseline
ASA

1.25x
1.24x 1.24x 1.23x

Average CPI for FindBestCommunity

Figure 4.16: The average CPI (Cycles Retired per Instruction) per core decreases from Baseline to ASA
for the Amazon network. The reduction factor is 1.24× and remains relatively consistent across multi-core
executions.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

1-Core 2-Cores 4-Cores 8-Cores

C
y
cl

e
s

P
e
r

In
st

ru
ct

io
n
 (

C
P
I)

Number of Cores

Baseline
ASA

1.27x 1.27x 1.26x 1.26x

Average CPI for FindBestCommunity

Figure 4.17: The average CPI (Cycles Retired per Instruction) per core decreases from Baseline to ASA
for the DBLP network. The reduction factor is 1.27× and remains relatively consistent across multi-core
executions.

distribution. Additionally, the set of potential patterns can grow exponentially with the size of the input
graph. All these factors underscore the need for a hardware accelerator in graph mining. While there exist
mature computational kernels and accelerators for various machine learning algorithms, the field of graph

73

data mining has yet to reach a similar level of maturity.

One accelerator for graph mining, Gramer [146], is grounded in the observation that a small fraction of vertex
and edge data generates the majority of random memory requests. Gramer implements an intelligent cache
hierarchy where the most frequently accessed data/pattern resides in the top level with a no-eviction policy,
and the second level is on-chip memory with a lightweight replacement policy. The challenge in this approach
lies in the identification and management of valuable data. Flexminer [32], another graph mining accelerator
equipped with its compiler program, operates on dedicated on-chip storage and memoizes reusable connectiv-
ity information on a connectivity map (c-map), yet it does not address the rapid accumulation of values against
keys. Another work, IntersectX [109], devises a stream-based ISA extension, following the observation that
many graph pattern mining applications rely on the intersection of two edge lists as a core computation.
Yet another accelerator named SISA [24] identifies a similar set of operations (union, intersection) and
designs a set-centric ISA extension to process with on-chip memory. Rao et al. [110] propose an accelerator,
SparseCore, for sparse tensor and graph pattern computation for streaming data or sparse vectors. Adam et al.
[12] propose a hardware accelerator with dedicated hardware units to manage the irregular data movements
of graph computation in Graph Neural Network (GNN), which can be applied to solve community detection
problems. Notably, none of the literature [146, 32, 109, 110, 24, 12] addresses the challenge of accelerat-
ing key-value matching and accumulation for vertex-neighborhood connectivity, a concern tackled in our work.

Yang et al. [145] developed a hash accelerator using FPGA on-chip SRAM, but its scalability is restricted to
16 processing engines (PE). In contrast, Zhang et al. [152] devised a hash accelerator through ISA extensions
and hardware modifications, managing most operations within the accelerator and only resorting to software
for rare cases. The study [152] introduced two implementations of the hash accelerator, namely, Flat-HTA
and Hierarchical HTA. However, Chao et al. [151] demonstrated that both versions could be surpassed by
ASA, as evidenced in their comparison involving the SpGEMM computation.

4.6 Concluding Remarks
Community discovery stands as a widely adopted application for uncovering prominent motifs in social and
relational networks. The integration of hardware accelerators to expedite specific aspects of the software
kernel profoundly influences hardware-software co-design. To our knowledge, our work marks the pioneer
effort to introduce a hardware accelerator for sparse accumulation in the context of information-theoretic
community discovery. We assert in this investigation that prevailing implementations of Infomap employing
a conventional software hash kernel encounter limitations with general-purpose CPUs. Our study reveals that,
in addition to algorithmic optimizations, there exists an untapped potential to achieve superior performance
throughput by employing an accelerator capable of executing specific computations more efficiently than
conventional general-purpose hardware. Existing accelerators tailored for graph pattern mining fall short in

74

addressing the acceleration of key-value lookup and accumulation. Through this research, we demonstrate
that the ASA accelerator not only accelerates the SpGEMM kernel but also enhances the performance of other
applications heavily reliant on hash lookup and accumulation. This improvement is achieved by mitigating
the number of branch mispredictions, average CPI, and the total number of instructions.

75

Chapter 5: Fast Parallel Index Construction for k-truss-
based Local Community Detection

Identifying cohesive subgraphs stands as a fundamental graph analysis kernel widely employed in the study
of social and biological networks. Various approaches, including clique identification, community discovery,
and truss decomposition, aim to unveil insightful substructures within a network. However, the computational
intractability of finding cliques poses challenges in identifying cohesive subgraphs within large networks.
One viable solution is k-truss decomposition, a more relaxed alternative to finding cliques that can be solved
in polynomial time. Unlike global community detection, which involves breaking down the entire graph
into disjoint communities, local or goal-oriented community search focuses on identifying the community
of interest for a specific entity. In this study, we propose a parallel k-truss-induced community discovery
technique capable of detecting local communities in polynomial time. Previous studies primarily explored
k-truss-induced local community formation in a serial setting, rendering them unsuitable for large graphs. In
this paper, we devise a parallel k-truss-induced local community construction method utilizing multi-core
parallelism. To the best of our knowledge, this marks the inaugural attempt to parallelize this algorithmic
approach, coupled with a thorough performance analysis. Our experiments reveal a notable performance
enhancement, with speedups ranging from 19× to 55× for graphs featuring hundreds of millions to billions of
edges, leveraging NERSC Perlmutter compute nodes.

5.1 Introduction
Community discovery stands as a widely adopted application for the categorization or clustering of entities
with shared attributes [26, 114, 98, 46, 49]. This application finds applications in various contexts, such as
identifying groups of individuals with similar interests in social networks, marketing products to consumer
groups based on their categories, clustering proteins with similar characteristics, and elucidating the
functionality of unknown proteins, as well as cyber-security tasks like web spam detection. In many
real-world scenarios, the emphasis is on ascertaining the communities to which an entity (represented as
a vertex in a graph) belongs, rather than uncovering the disjoint communities of the entire graph [2, 70].
For example, a user on a social network may be more interested in the social groups or communities they
engage with, rather than all communities within the network. This user-centric, personalized search is more

76

meaningful as the communities a user participates in provide insights into their social or behavioral context.
While the disjoint community problem typically employs a global criterion [50, 53] or optimization function
to unveil all eligible communities, the overlapping community problem involves constructing and maintaining
an index-based structure to retrieve community subgraphs containing the query vertex [2]. We refer to the
latter as a local or goal-oriented community search. A fundamental distinction between these problems is that
in global community discovery, a vertex is associated with only one community at a time (disjoint), whereas
in local community discovery, a vertex may simultaneously belong to multiple communities (overlapping). In
Chapter 1, we provided an illustration (Figure 1.2) depicting the difference between disjoint and overlapping
community membership.

Several models for goal-oriented local community discovery have been proposed based on graph motifs,
such as k-core [17, 117, 127], clique/quasi clique [36, 132], and k-truss [69, 137, 2]. A k-truss-oriented index
construction for local community search offers advantages over other methodologies. Notably, the commonly
used cohesive subgraph, clique [89], suffers from being excessively restrictive (encompassing every vertex
within a 1-distance) and exhibiting extremes of either too common (small clique) or too rare (large clique)
occurrences in real-world scenarios. Moreover, solving the clique problem is not polynomially tractable [28].
The k-core problem, while polynomially solvable, has the drawback of lacking cohesion, an essential property
of community subgraphs [35]. On the other hand, k-truss, a relaxed version of clique, can be computed
in polynomial time. Utilizing a higher-order graph motif of triangle connectivity as the fundamental unit
for defining a community, k-truss moves beyond primitive features like vertex sets or edge sets, enabling a
comprehensive model of multiple overlapping communities.

Recent investigations have explored goal-oriented community search based on k-truss [70, 2, 62]. A
key limitation of existing studies on k-truss-oriented index construction or community search lies in the
sequential nature of their algorithms. One essential sub-problem within this formulation of local community
search is k-truss decomposition, a well-explored challenge for parallel algorithm design. Numerous
works have addressed parallel k-truss decomposition in both shared-memory settings [126, 72, 140] and
distributed-memory settings [102, 31, 42]. GPU-based studies [138, 39, 4] for k-truss decomposition also
exist. Akbas et al. [2] proposed EquiTruss, a k-truss-based index structure outperforming TCP-Index by
Huang et al. [70] in the context of building an index for local community search. However, both studies are
sequential and exhibit limited scalability. In response, we introduce a shared-memory parallel algorithm
designed for a multicore setting using the EquiTruss formulation, specifically tailored for large graphs. We
observe that EquiTruss can be computationally expensive for larger graphs, as evident in Figure 5.1. While
parallel algorithms exist for k-truss decomposition, none have addressed parallel EquiTruss. Hence, our focus
in this study is on designing a scalable algorithm for the EquiTruss problem.

77

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Amazon DBLP LiveJournal Orkut

T
im

e
 (

%
)

Network

SupportComp.
TrussDecomp.

EquiTruss

Figure 5.1: Percentage breakdown of compute kernel timing for our initial implementation based on Equi-
Truss. The computational cost of computing EquiTruss (depicted in yellow) is comparable to that of k-truss
decomposition (in blue) for large graphs.
We parallelize the construction of EquiTruss using a connected component (CC) algorithm [123], denoted as
Baseline EquiTruss. Subsequently, we enhance execution time by introducing cache-optimized storage and
extraction of neighborhood information, referred to as C-Optimal EquiTruss. Finally, we leverage the state-of-
the-art sampling-based parallel connected component algorithm Afforest [130] to construct supernodes in
EquiTruss, denoted as Afforest EquiTruss, which surpasses the performance of the earlier two versions. Our
contributions are summarized as follows:

• We uniquely recognize the construction of the k-triangle-induced index (EquiTruss) as a connected com-
ponent problem on a graph, where edges are considered entities instead of vertices. The interconnection
between edges is established based on k-triangle connectivity.

• We develop a parallel approach for constructing the supergraph (index) of EquiTruss using OpenMP,
ensuring no loss of accuracy. As far as we know, our innovative algorithm stands as the initial parallel
algorithm designed for constructing such index structures to support local community searches.

• In our parallel implementations of EquiTruss, we employ the state-of-the-art connected components
approach, Afforest [130], along with the previously leading connected component approach, Shiloach-
Vishkin (SV) [123]. We provide a comparative analysis of their performance.

• We generate the supergraph using a combination of parallel supernode and parallel superedge formu-
lations, achieving a speedup of up to 30× on the NERSC Perlmutter compute node compared to the
sequential counterpart and up to 55× compared to the Baseline EquiTruss.

78

5.2 Background
Our parallel algorithm design follows the sequential EquiTruss approach [2]. The notations used in this
paper are outlined in Table 5.1. Additionally, Table 5.2 provides an overview of our various EquiTruss
implementations. Subsequently, we introduce a few pertinent definitions and discuss the EquiTruss index
construction strategy.

Table 5.1: Notations and abbreviations to describe the work of our parallel EquiTruss

Notation Description
G (V, E) A simple undirected graph, G
𝔾(𝕍 ,𝔼) A summary/supergraph 𝔾
𝕍 Set of supernode(s)
𝔼 An edge list of superedge(s)
𝜏 A dictionary storing trussness for edge 𝑒 ∈ 𝐸
Π A dict. for parent component ID of 𝑒 ∈ 𝐸
𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑒), |Δ|𝑒 No. triangles having 𝑒 as their constituent edge
𝑘 Trussness of an edge
Φ𝑘 An edge set of same trussness 𝑘
𝜈 A supernode satisfying 𝑘-triangle connectivity
Δ𝑠 ↔ Δ𝑡 Δ𝑠 and Δ𝑡 are triangle connected
𝑒 ↔ 𝑒′ Edges 𝑒 and 𝑒′ are triangle connected
𝑒
𝑘
↔𝑒′ Edges 𝑒 and 𝑒′ are k-triangle connected

CC Connected Component
SV Shiloach-Vishkin algorithm
LP Label Propagation algorithm

Table 5.2: Listing of different algorithmic implementations/optimizations and corresponding descriptions

Name Description
Original EquiTruss Our C++ implementation based on work [2]
Baseline EquiTruss Our shared-memory-parallel EquiTruss

based on Shiloach-Vishkin CC algorithm
C-Optimal EquiTruss Our memory and computation optimized

EquiTruss from its predecessor Baseline
Afforest EquiTruss Our shared-memory-parallel EquiTruss

based on Afforest [130] CC algorithm

79

5.2.1 Preliminaries

The task of constructing the EquiTruss index for an online community search assumes that the graph 𝐺(𝑉 ,𝐸)
is simple, undirected, and unweighted, where |𝑉 | represents the number of vertices and |𝐸| represents the
number of edges. The following definitions are pertinent to the context of EquiTruss.

Definition 3 (Triangle) Given vertices 𝑢, 𝑣, 𝑤 s.t. (𝑢, 𝑣), (𝑣,𝑤), and (𝑢,𝑤) are edges in 𝐸, a triangle Δ is a
set of the three edges forming a cycle, i.e., Δ = {(𝑢, 𝑣), (𝑣,𝑤) (𝑢,𝑤)} ⊆ 𝐸.

Definition 4 (Support) The support of an edge, 𝑒, is the number of triangle(s) having 𝑒 as their constituent
edge. We denote the support of 𝑒 as |Δ|𝑒 or support(e).

Definition 5 (k-truss [35, 71, 2]) A k-truss is a subgraph such that each edge has a support of at least 𝑘 − 2
within the subgraph. Formally, given a subgraph 𝐺′(𝑉 ′, 𝐸′) ⊆ 𝐺, 𝐺′ is a k-truss if |Δ|𝑒 ≥ 𝑘 − 2 for all
𝑒 ∈ 𝐸′. A maximal k-truss is a k-truss that is not a proper subgraph of another k-truss: formally, there exists
no subgraph 𝐺′′ such that 𝐺′ and 𝐺′′ are k-trusses and 𝐺′ ⊊ 𝐺′′.

Definition 6 (Trussness [71, 2]) Given an edge 𝑒 ∈ 𝐸, the trussness of an edge, 𝜏(𝑒) is defined to be the
largest 𝑘 such that there exists a k-truss in 𝐺 that contains 𝑒. The trussness of a graph 𝜏(𝐺) is defined as
min𝑒∈𝐸 𝜏(𝑒).

Definition 7 (Triangle Adjacency [71, 2]) Two triangles Δ1 and Δ2 are adjacent if they share a common
edge, i.e., Δ1 ∩ Δ2 ≠ ∅.

Definition 8 (Triangle Connectivity [71, 2]) Given 2 triangles Δ𝑠 and Δ𝑡 within 𝐺, they are triangle con-
nected, i.e., Δ𝑠 ↔ Δ𝑡 if there exists a sequence of triangles, Δ1,… ,Δ𝑛 in 𝐺 with 𝑛 ≥ 2 such that Δ1 = Δ𝑠,
Δ𝑛 = Δ𝑡, and for 1 ≤ 𝑖 < 𝑛, Δ𝑖 ∩Δ𝑖+1 ≠ ∅. If 𝑒 ∈ Δ𝑠 and 𝑒′ ∈ Δ𝑡, then 𝑒, 𝑒′ are triangle connected or 𝑒 ↔ 𝑒′.

If all edges in the path between 𝑒 ↔ 𝑒′ have trussness of k, then 𝑒
𝑘
↔ 𝑒′.

Definition 9 (k-truss Community [71, 2]) For an integer 𝑘 ≥ 3, a subgraph 𝐺′ ⊆ 𝐺 is a k-truss community
if 𝐺′ is a k-truss and for all 𝑒, 𝑒′ ∈ 𝐸′, 𝑒

𝑘
↔ 𝑒′.

The goal of the EquiTruss algorithm is to create a summary graph 𝔾(𝕍 ,𝔼) that will enable the fast construction
of the k-truss communities associated with a given vertex.

Definition 10 (Supernode) A supernode 𝜈 ∈ 𝕍 is a set of edges in 𝐸 such that

1. For all 𝑒1, 𝑒2 ∈ 𝜈, 𝜏(𝑒1) = 𝜏(𝑒2),

2. For all 𝑒1, 𝑒2 ∈ 𝜈, 𝑒1 ↔ 𝑒2 in the maximal k-truss of 𝐺,

3. The supernode 𝜈 is maximal, i.e., there does not exist an edge 𝑒 ∈ 𝐺 ⧵ 𝜈 such that 𝜏(𝑒) = 𝜏(𝜈) and
𝑒 ↔ 𝜈.

80

Note that due to the maximality requirement of the supernodes, the set of supernodes 𝕍 partitions 𝐸.

Definition 11 (Superedge) Given supernodes 𝜈1, 𝜈2 ∈ 𝕍 , we say there exists a superedge between them if
𝜈1 ↔ 𝜈2 in the 𝜅-truss where 𝜅 = min(𝜏(𝜈1), 𝜏(𝜈2)) and 𝜏(𝜈1) ≠ 𝜏(𝜈2).

5.2.2 Index Construction Method

In this section, we delve into the index construction phase of the EquiTruss approach, and the corresponding
pseudocode is outlined in Algorithm 6. The resulting index serves as the primary data structure for retrieving
all communities associated with a query entity (vertex). The algorithm takes a graph 𝐺(𝑉 ,𝐸) as input and
outputs a supergraph with supernodes connected by superedges. Additionally, a pre-computed dictionary 𝜏 is
provided, containing edges along with their corresponding k-trussness, derived from a k-truss decomposition
technique.

The initialization phase (lines 1−5) establishes an initially empty list of supernode IDs, which will be utilized
for superedge computation later in the algorithm. The entire edge set 𝐸 is then partitioned into subsets based on
their respective trussness values, denoted as 𝑘 (lines 4−5). An iterative traversal begins, ranging from 𝑘𝑚𝑖𝑛 ≥ 3
to 𝑘𝑚𝑎𝑥 (line 7). For each edge set Φ𝑘 with a specific trussness 𝑘, edges are retrieved (line 8), converted
into a supernode with a sequentially assigned supernode ID, and added to the set of supernodes 𝕍 (lines 9−11).

For an edge within a supernode 𝜈, a Breadth-First Traversal (BFS) is conducted to establish connections with
other edges belonging to the same supernode, adhering to k-triangle connectivity (lines 13 − 24). In other
words, all edges forming a triangle connection with the current edge 𝑒, sharing the trussness 𝑘 of 𝑒, are incor-
porated into the supernode 𝜈 containing 𝑒. This process is elucidated in lines 20−23 and 26−29 of Algorithm 6.

If an edge 𝑒′ establishes k-triangle connectivity with 𝑒 and 𝜏(𝑒′) > 𝑘, an entry is appended to the list of
supernodes connected to 𝑒 (lines 31 − 32). When the list for 𝑒′’s supernode is processed, a superedge entry is
generated to link the supernode containing 𝑒′ to the supernode containing 𝑒 (lines 17 − 19). A schematic
representation of supernodes, superedges, and the summary graph structure is provided in Figure 5.2.

5.3 Methodology

5.3.1 Overview of the parallel algorithm

We decompose our parallel index construction method into three distinct algorithmic components. Algorithm 7
elaborates on the procedure for concurrently generating the set of supernodes. Subsequently, in Algorithm 8,
we delve into our parallel algorithmic design for constructing the set of superedges denoted as 𝔼. Lastly, in
Algorithm 9, we expound on our parallel approach to crafting the supergraph 𝔾(𝕍 ,𝔼).

81

Algorithm 6: Construct Index for EquiTruss [2]
Data: A graph, 𝐺(𝑉 ,𝐸) and a dictionary of edges, 𝜏, with their k-truss values
Result: A supergraph, EquiTruss: 𝔾(𝕍 ,𝔼)

1 for 𝑒(𝑢, 𝑣) ∈ 𝐸 do
2 𝑒.𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ← 𝐹𝐴𝐿𝑆𝐸
3 𝑒.𝑙𝑖𝑠𝑡 ← ∅
4 if (𝜏(𝑒) = 𝑘) then
5 Φ𝑘 ← Φ𝑘 ∪ 𝑒

6 𝑠𝑝𝑁𝑑𝐼𝐷 ← 0
7 for 𝑘 = 𝑘𝑚𝑖𝑛 to 𝑘𝑚𝑎𝑥 do
8 while (∃𝑒 ∈ Φ𝑘) do
9 𝑒.𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ← 𝑇𝑅𝑈𝐸

10 Create a supernode 𝜈, where 𝜈.𝑠𝑝𝑁𝑑𝐼𝐷 ← 𝑠𝑝𝑁𝑑𝐼𝐷 + +
11 𝕍 ← 𝕍 ∪ {𝜈}
12 Initialize an empty queue, 𝑄
13 𝑄.𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑒)
14 while (𝑄 ≠ ∅) do
15 𝑒(𝑢, 𝑣) ← 𝑄.𝑑𝑒𝑞𝑢𝑒𝑢𝑒()
16 𝜈 ← 𝜈 ∪ {𝑒}
17 for 𝐼𝐷 ∈ 𝑒.𝑙𝑖𝑠𝑡 do
18 Create a superedge (𝜈, 𝜇), where 𝜇 is an existing supernode with 𝜇.𝑠𝑝𝑁𝑑𝐼𝐷 = 𝐼𝐷
19 𝔼 ← 𝔼 ∪ {(𝜈, 𝜇)}
20 for 𝑤 ∈ 𝑁(𝑢) ∩𝑁(𝑣) do
21 if 𝜏(𝑢,𝑤) ≥ 𝑘 and 𝜏(𝑣,𝑤) ≥ 𝑘 then
22 ProcessEdge((u, w), spNdID, Q)
23 ProcessEdge((v, w), spNdID, Q)
24 Φ𝑘 ← Φ𝑘 − {𝑒}

25 Procedure ProcessEdge((𝑢, 𝑣), 𝑠𝑝𝑁𝑑𝐼𝐷, &𝑄)
26 if (𝜏(𝑢, 𝑣) = 𝑘) then
27 if (𝑢, 𝑣).𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 = 𝐹𝐴𝐿𝑆𝐸 then
28 (𝑢, 𝑣).𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ← 𝑇𝑅𝑈𝐸
29 𝑄.𝑒𝑛𝑞𝑢𝑒𝑢𝑒((𝑢, 𝑣))

30 else
31 if (𝑠𝑝𝑁𝑑𝐼𝐷 ∉ (𝑢, 𝑣).𝑙𝑖𝑠𝑡) then
32 (𝑢, 𝑣).𝑙𝑖𝑠𝑡 ← (𝑢, 𝑣).𝑙𝑖𝑠𝑡 ∪ {𝑠𝑝𝑁𝑑𝐼𝐷}

Supernode Creation: In Algorithm 7, we illustrate the process of creating supernodes using the Shiloach-
Vishkin (SV) [123] approach for parallel connected components (CC). While there exist alternative methods
for parallel CC, such as Label Propagation [143, 116] or BFS, we opt for SV [123] for executing our
edge-induced CC to construct supernodes. SV offers linear work efficiency like LP but is independent of
the graph diameter (D). Variants [21, 125] of parallel CC using BFS exhibit linear work efficiency, but the
parallelism is constrained by the growing number of connected components. It is crucial to highlight that

82

1

0

2

3 6

54

8

7

9

10

3-truss edge
4-truss edge
5-truss edge

(a)

ν1

ν0

ν2

ν3

ν4

(0, 4)

ν0 (k = 3) ν1 (k = 4)

(0, 1), (0, 2), (0, 3)
(1, 2), (1, 3), (2, 3)

(2, 6), (2, 8)

ν2 (k = 3) ν3 (k = 4)

(3, 4), (3, 5), (3, 6), (4, 5)
(4, 6), (5, 6), (5, 7), (5, 10)

ν4 (k = 5)

(6, 7), (6, 8), (6, 9), (6, 10), (7, 8)
(7, 9), (7, 10), (8, 9), (8, 10), (9, 10)

(b)
Figure 5.2: Visualization of the construction process of the summary graph by EquiTruss. The presented graph
example is sourced from [2]. In Figure 5.2a, edges belonging to different k-trussness values are color-coded,
with the red edges representing members of the 5-truss subgraph but not the 4-truss (blue) or 3-truss (green)
subgraphs. Following Definition 8, supernodes 𝜈0, 𝜈1, 𝜈2, 𝜈3, and 𝜈4 are formed, as depicted in Figure 5.2b.
Superedges are subsequently established between these supernodes according to Definition 9.
our edge-based CC, incorporating k-triangle connectivity, aligns seamlessly with the SV formulation for
establishing supernodes. Additionally, we explore a cache-optimized variant of SV and the state-of-the-art
CC approach, Afforest [130], to showcase improved runtime in both sequential and parallel executions.

Algorithm 7 takes the original graph 𝐺(𝑉 ,𝐸) and a dictionary of edges with their 𝑘-trussness, 𝜏, as input.
The algorithm begins by initializing each edge to its own parent component (ln. 1 − 2) and grouping edges
based on their trussness (ln. 3 − 5). Similar to Algorithm 6, all different subsets of edges based on their
trussness are iteratively processed from 𝑘𝑚𝑖𝑛 ≥ 3 to 𝑘𝑚𝑎𝑥 (ln. 6). All edges under certain truss groups
are processed in parallel (ln. 10) to identify the other edges forming triangles with edge 𝑒(𝑢, 𝑣) (ln. 11).
We opted for the SV approach because it is highly amenable to parallelism and theoretically works well
independent of graph topology [130]. SV consists of two alternating phases, hooking and shortcut. The
hooking phase (ln. 12 − 20) connects the edge 𝑒1 (ln. 16) to the same parent component as 𝑒 if the condition
for 𝑘-triangle connectivity (ln. 15) is satisfied. A similar action is performed for edge 𝑒2 (ln. 18 − 19). In
either case, the boolean variable ℎ𝑜𝑜𝑘𝑖𝑛𝑔 is set (ln. 17, 20) to indicate a successful attempt to connect the
edge to the parent component of 𝑒, triggering another round of hooking and shortcut phases. The shortcut
phase (ln. 21 − 23) runs in parallel across all edges in a Φ𝑘 set, with continuous linking up (ln. 22 − 23) to
the parent until all edges under a specific component are directly connected to the root. It is important to
note that both the hooking and the shortcut phases have a benign race condition that does not affect correctness.

Creating Superedge: Algorithm 8 illustrates the design considerations for creating superedges in parallel.
A list or vector of subsets of superedges is allocated (ln. 1), with a size equal to the number of available
parallel threads. Each thread can contribute to its own subset of superedge(s), mitigating race conditions.
Both Algorithm 7 and Algorithm 8 are consecutively invoked on the same Φ𝑘 set. All edges in the Φ𝑘 set
are processed in parallel to identify their triangle-composing edges (𝑒1 and 𝑒2), retrieve their trussness from
𝜏, and compute the minimum trussness (ln. 3 − 8). A superedge is then established between the supernode

83

Algorithm 7: Construct SuperNode(s) in parallel
Data: A graph 𝐺(𝑉 ,𝐸) and a dictionary of edges with their k-truss values
Result: A dictionary of edges, Π, with each edge having their supernode ID/parent component ID

assigned
∕⋆ Each edge initially forms its own component ⋆∕

1 for 𝑒(𝑢, 𝑣) ∈ 𝐸 do
2 Π(𝑒) ← 𝑒

∕⋆ Group edge set, E, into different subsets based on their trussness, e.g., 𝑘 = 3, 4,… , 𝑘𝑚𝑎𝑥 ⋆∕
3 for 𝑒(𝑢, 𝑣) ∈ 𝐸 do
4 if (𝜏(𝑒) = 𝑘) then
5 Φ𝑘 ← Φ𝑘 ∪ 𝑒

∕⋆ Run ShiloachVishkin (SV) connected component for each Φ𝑘 set ⋆∕
6 for 𝑘 = 𝑘𝑚𝑖𝑛 to 𝑘𝑚𝑎𝑥 do
7 ℎ𝑜𝑜𝑘𝑖𝑛𝑔 ← 𝑡𝑟𝑢𝑒
8 while (ℎ𝑜𝑜𝑘𝑖𝑛𝑔) do
9 ℎ𝑜𝑜𝑘𝑖𝑛𝑔 ← 𝑓𝑎𝑙𝑠𝑒

∕⋆ Hooking phase for SV ⋆∕
10 for 𝑒(𝑢, 𝑣) ∈ Φ𝑘 in parallel do
11 Compute a list of all common neighbors, W, that make triangle(s) with 𝑒
12 for (𝑤 ∈ 𝑊) in parallel do
13 𝑒1 ← (𝑢,𝑤) ∈ 𝐸
14 𝑒2 ← (𝑣,𝑤) ∈ 𝐸
15 if (Π(𝑒) < Π(𝑒1) and Π(𝑒1) = Π(Π(𝑒1)) and 𝜏(𝑒) = 𝜏(𝑒1)) then
16 Π(Π(𝑒1)) ← Π(𝑒)
17 ℎ𝑜𝑜𝑘𝑖𝑛𝑔 ← 𝑡𝑟𝑢𝑒

18 if (Π(𝑒) < Π(𝑒2) and Π(𝑒2) = Π(Π(𝑒2)) and 𝜏(𝑒) = 𝜏(𝑒2)) then
19 Π(Π(𝑒2)) ← Π(𝑒)
20 ℎ𝑜𝑜𝑘𝑖𝑛𝑔 ← 𝑡𝑟𝑢𝑒

∕⋆ Shortcut phase for SV ⋆∕
21 for 𝑒 ∈ Φ(𝑘) in parallel do
22 while (Π(Π(𝑒)) ≠ Π(𝑒)) do
23 Π(𝑒) ← Π(Π(𝑒))

containing the current edge 𝑒 with trussness 𝑘 and the supernode containing the edge 𝑒1 or 𝑒2, where both have
a minimum trussness 𝑘1 < 𝑘 or 𝑘2 < 𝑘. A thread creating a superedge adds it to its subset of superedge(s) (ln.
10, 12).
Creating Supergraph (Index): Algorithm 9 addresses the parallel merging of the thread-local subset of
superedges, constructed in Algorithm 8, to form the supergraph 𝔾(𝕍 ,𝔼). A list, 𝑠𝑚_𝑔𝑟𝑎𝑝ℎ, is allocated with
a size equal to the total number of threads (ln. 1). Each thread possesses a thread-local vector of vectors
of superedge ID1, ID2, denoted as sm_graph_t (ln. 6), where the outer vector has entries equal to the total
number of threads, and ID1 and ID2 represent the supernode IDs. All superedges from each thread-local
subset, constructed in Algorithm 8, are hashed to the vector corresponding to the destination thread (ln.

84

Algorithm 8: Create SuperEdge(s) in parallel
Data: Φ(𝑘) set of current 𝑘 from Algo. 7
Result: A vector/list of thread local superedge subsets

1 Allocate vector<set<compID1, compID2≫sp_edges, a vector of size = number of threads
2 for 𝑒(𝑢, 𝑣) ∈ Φ(𝑘) in parallel do

∕⋆ W is the list of neighbor(s) forming triangle(s) with 𝑒 ⋆∕
3 for 𝑤 ∈ 𝑊 in parallel do
4 𝑡𝑖𝑑 ← 𝑔𝑒𝑡_𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑
5 𝑒1 ← (𝑢,𝑤) ∈ 𝐸
6 𝑒2 ← (𝑣,𝑤) ∈ 𝐸
7 𝑘 ← 𝜏(𝑒), 𝑘1 ← 𝜏(𝑒1), 𝑘2 ← 𝜏(𝑒2)
8 𝑙𝑜𝑤𝑒𝑠𝑡_𝑘 ← 𝑚𝑖𝑛(𝑘, 𝑘1, 𝑘2)

∕⋆ Create superedge downward, 𝑘 > 𝑘1 ⋆∕
9 if 𝑘 > 𝑙𝑜𝑤𝑒𝑠𝑡_𝑘 and 𝑙𝑜𝑤𝑒𝑠𝑡_𝑘 = 𝑘1 then

10 𝑠𝑝_𝑒𝑑𝑔𝑒𝑠[𝑡𝑖𝑑].𝑖𝑛𝑠𝑒𝑟𝑡({Π(𝑒1),Π(𝑒)})
∕⋆ Create superedge downward, 𝑘 > 𝑘2 ⋆∕

11 if 𝑘 > 𝑙𝑜𝑤𝑒𝑠𝑡_𝑘 and 𝑙𝑜𝑤𝑒𝑠𝑡_𝑘 = 𝑘2 then
12 𝑠𝑝_𝑒𝑑𝑔𝑒𝑠[𝑡𝑖𝑑].𝑖𝑛𝑠𝑒𝑟𝑡({Π(𝑒2),Π(𝑒)})

Algorithm 9: Construct SuperGraph in parallel
Data: A vector/list of thread local superedge subsets sp_edges from Algo. 8
Result: A complete list of superedges from merging thread local superedge subsets

1 Allocate, a list sm_graph of size = num_threads
2 Allocate vector<vector<{ID1, ID2} ≫combined_sm_graph_t(num_threads)
3 Allocate a contiguous buffer, final_sp_graph, of type <ID1, ID2>and size = total_num_sp_edges
4 Inside each thread 𝑡 in parallel
5 {
6 Allocate thread-local vector<vector<{ID1, ID2} ≫ sm_graph_t(num_threads)
7 for each 𝑠𝑢𝑝𝑒𝑟𝑒𝑑𝑔𝑒 ∈ 𝑠𝑝_𝑒𝑑𝑔𝑒𝑠[𝑡] do
8 𝐼𝐷1 ← 𝑠𝑢𝑝𝑒𝑟𝑒𝑑𝑔𝑒.𝐼𝐷1
9 𝐼𝐷2 ← 𝑠𝑢𝑝𝑒𝑟𝑒𝑑𝑔𝑒.𝐼𝐷2

10 𝑑𝑒𝑠𝑡_𝑡 ← (ℎ𝑎𝑠ℎ(𝐼𝐷1, 𝐼𝐷2))%𝑛𝑢𝑚_𝑡ℎ𝑟𝑒𝑎𝑑𝑠
11 𝑠𝑚_𝑔𝑟𝑎𝑝ℎ_𝑡[𝑑𝑒𝑠𝑡_𝑡] ← 𝑠𝑢𝑝𝑒𝑟𝑒𝑑𝑔𝑒

12 𝑠𝑚_𝑔𝑟𝑎𝑝ℎ[𝑡] ← 𝑠𝑚_𝑔𝑟𝑎𝑝ℎ_𝑡
13 for 𝑠𝑚_𝑡 ∈ 𝑠𝑚_𝑔𝑟𝑎𝑝ℎ do
14 Copy all 𝑠𝑚_𝑡[𝑡] into 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑠𝑚_𝑔𝑟𝑎𝑝ℎ_𝑡[𝑡]
15 sort 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑠𝑚_𝑔𝑟𝑎𝑝ℎ_𝑡[𝑡]
16 remove duplicates from 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑠𝑚_𝑔𝑟𝑎𝑝ℎ_𝑡[𝑡]

∕⋆ Parallel reduction ⋆∕
17 𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚_𝑠𝑝_𝑒𝑑𝑔𝑒𝑠+= 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑠𝑚_𝑔𝑟𝑎𝑝ℎ_𝑡[𝑡].𝑠𝑖𝑧𝑒()
18 }
19 Merge combined_sm_graph_t[t] into final_sp_graph in parallel
7 − 11). Subsequently, each thread combines (ln. 13 − 14) all its corresponding superedges, annotated by

85

all threads, into combined_sm_graph_t, which was allocated in ln. 2, and removes duplicates (ln. 15 − 16).
Finally, all threads merge their superedge(s) to obtain the final supergraph (ln. 19).

5.3.2 Algorithm Complexity Analysis

The time complexity for computing support/triangles is best achieved with (|𝐸|

1.5) [119]. In Algorithm 6,
supernodes are computed using BFS, which has a time complexity of (|𝑉 | + |𝐸|) for a graph 𝐺(𝑉 ,𝐸)
with the number of vertices |𝑉 | and the number of edges |𝐸|. However, for the edge-induced graph of
EquiTruss, where the constituent components of supernodes are edges from the original graph 𝐺(𝑉 ,𝐸),
the time complexity is (|𝐸| + |𝐸|

1.5), with |𝐸|

1.5 being the maximum number of triangles possible for a
graph with |𝐸| edges [44]. The time complexity of the CRCW (concurrent read, concurrent write) based
Shiloach-Vishkin CC is (|𝐸| log |𝑉 |

𝑝
+ log |𝑉 |) for 𝑝 parallel processing units [64]. In the case of Algorithm 7

for the edge-induced graph of EquiTruss, the time complexity using 𝑝 threads is (|𝐸|

1.5 log |𝐸|

𝑝
+ log |𝐸|). The

majority of component identification work for Afforest is proportional to (|𝑉 |) [130]. The edge-induced
graph of EquiTruss would take (|𝐸|) time, with an additional (|𝐸|

1.5) time complexity to compute triangles.
Therefore, the time complexity is (|𝐸|

1.5+|𝐸|

𝑝
) for 𝑝 parallel units. The space requirement for both groups of

Algorithm 6 and Algorithms 7, 8, 9 is proportional to the number of edges in the original graph 𝐺(𝑉 ,𝐸),
i.e., (|𝐸|) for storing the relevant dictionary and data structure. Additionally, there is an extra memory
requirement for storing the summary graph 𝔾(𝕍 ,𝔼), making the total space complexity (|𝐸| + |𝔼|).

5.3.3 Optimization of Compute Kernel

Our implementation of Baseline EquiTruss is decomposed into distinct computational kernels, as elucidated
in Section 5.4. These kernels encompass Support, Initialization, SpNode, SpEdge, SmGraph, and SpN-
odeRemap. Among these, the SpNode kernel (outlined in Algorithm 7) emerges as the most computationally
intensive, prompting our efforts to enhance its efficiency through several optimizations. To streamline
storage and operations, we leverage the CSRGraph class from the GAP Benchmark Suite [23]. Instead
of searching for trussness (𝑘) throughout the entire edge set in a dictionary/hashmap for each edge (as
denoted in lines 4, 15, and 18 in Algorithm 7), we narrow down the search to the neighborhood list
using CSR storage from GAP. Furthermore, we replace the hashmap employed for storing and retrieving
parent component/supernode IDs for the entire edge set with a contiguous memory buffer to enhance efficiency.

The connected component (CC) framework of Shiloach-Vishkin (SV) from GAP has been customized to
accommodate our unique scenario, where we consider an edge as an entity within the connected component,
deviating from the conventional use of vertices in SV connected components. In this adapted SV design,
further processing is skipped if Π(𝑒) = Π(𝑒1) (as seen in lines 15 or 18 in Algorithm 7). This adaptation
yields an optimal configuration for constructing SpNode through the Shiloach-Vishkin CC algorithm, denoted
as SpNode C-Optimal. Afforest [130] enhances the SV algorithm for CC by adjusting the convergence logic,

86

applied independently to distinct subgraphs. It employs component approximation through subgraph sampling
to minimize edge processing while ensuring an exact solution. The original SV algorithm’s two phases
(hooking and shortcut) are modified into corresponding link and compress phases to prevent concurrent
parallel units from overriding each other’s work. Similar to the SpNode C-Optimal, we have adapted the
Afforest implementation from GAP to suit our specific case in the connected component algorithm.

5.4 Performance Evaluation

5.4.1 Experimental Settings

Our algorithm was coded in C++, employing the OpenMP framework for multi-threading, and compiled
using the GNU g++ compiler. The computations were conducted on the Perlmutter CPU compute node at
the National Energy Research Scientific Computing Center (NERSC). This CPU node is equipped with 2
AMD EPYC 7763 CPUs, each featuring 64 cores and a base frequency of 2.45 GHz. Additionally, it has 512
GB of DDR4 memory and a memory bandwidth of 204.8 GB/s per CPU. The undirected network datasets, as
detailed in Table 5.3, were sourced from SNAP [84].
Table 5.3: The social and information network datasets used for our experiments of sequential and parallel
EquiTruss approaches

Network # Vertices # Edges
Amazon 334863 925872
DBLP 317080 1049866
YouTube 1134890 2987624
LiveJournal 3997962 34681189
Orkut 3072441 117185083
Friendster 65608366 1806067135

5.4.2 Effect of Compute Kernel Optimization

Figure 5.3 provides a breakdown of time percentages for operational kernels in the parallel EquiTruss
across different networks. It is evident from the illustration that the construction of supernodes (SpNode in
Figure 5.3) constitutes the most resource-intensive aspect of the overall algorithm. This kernel accounts
for up to 79% and 87% of the total index construction time for the YouTube and Orkut networks, respec-
tively. The second most resource-intensive kernel is the creation of superedges, as outlined in Algorithm
8, ranging from as low as 6% for the DBLP network to 10% for the YouTube network in terms of the overall time.

Figure 5.4 visually demonstrates the enhanced performance, measured in terms of speedup, achieved through
our optimizations in Algorithm 7 across SpNode Baseline, SpNode C-Optimal, and SpNode Afforest. The
supernode construction time notably decreases from 8655 seconds in the Baseline approach to 2093 seconds

87

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Orkut LiveJournal YouTube DBLP

T
im

e
 (

%
)

Network

Support
Init

SpNode
SpEdge

SmGraph
SpNodeRemap

Figure 5.3: Functional components in the Baseline version of the parallel EquiTruss algorithm. The distribution
of run time percentages in a single-threaded execution across four diverse networks is presented. Notably, the
SpNode kernel constitutes the predominant portion, ranging from (79 − 89)% of the overall execution time.

 0

 1

 2

 3

 4

 5

Orkut LiveJournal YouTube DBLP

S
p
e
e
d
u
p

Network

SpNode Baseline
SpNode C-Opt.

SpNode Aff.

1 1 1 1

1.98 2.0 2.07

1.66

4.13

3.07

3.62

2

Figure 5.4: Enhancement in single-threaded execution time through speedup of the primary operational
kernel. The improvement in single-threaded execution time, measured in terms of speedup, for the primary
operational kernel of EquiTruss is achieved by employing cache-optimized data structures and the Afforest
connected component algorithm.
in SpNode Aff. and 4371 seconds in SpNode C-Opt., resulting in speedups of 4.13× and 1.98× respectively, for
the Orkut network in a single-thread execution. The optimization of Afforest for connected components over
Shiloach-Vishkin (SV) exhibits significantly improved performance, as depicted by the blue bar in Figure 5.4.

88

Similarly, for the LiveJournal network, the supernode construction time reduces to 453 seconds in SpNode
Aff. and 696 seconds in SpNode C-Opt., compared to the Baseline SpNode computation time of 1393 seconds,
resulting in speedups of 3.07× and 2× respectively.

5.4.3 Performance Analysis

Comparison with State-of-the-art: We acquired the initial Java implementation of the sequential EquiTruss
proposed by Akbas et al. [2] to conduct a comprehensive comparison with our implementations. The runtime
evaluation is presented in Table 5.4. In the case of the LiveJournal network, the serial Java code’s index
construction phase (SpNd, SpEdge, and SmGraph) surpasses our Baseline by 3.3×, C-Opt. EquiTruss by 1.8×,
and Afforest EquiTruss by 1.3× in sequential settings. Our parallel versions (128-thread) exhibit substantial
improvements, being 11.55× faster (Baseline), 20.59× faster (C-Opt. EquiTruss), and 29.56× faster (Afforest
EquiTruss) than the sequential Java implementation. Notably, for larger networks like Orkut with 117𝑀 edges,
the sequential Java code encounters memory limitations, while all our implementations in Table 5.4 adeptly
handle billion-size graphs (e.g., com-Friendster). To assess the accuracy of the constructed supernodes
or supergraphs, we conducted a thorough comparison of the total number and constituent components
(constituent edges) of supernodes and superedges between the sequential Java code by Akbas et al. [2] and
our implementations in both sequential and parallel setups. Remarkably, the results are identical in all cases.
EquiTruss or parallel EquiTruss relies on deterministic sub-kernels: k-truss connected components. With no
approximation at any stage, the formulation of k-triangle connectivity ensures the exactness of the connected
components (supernodes). Consequently, we only report the number of supernodes and superedges in Table
5.5, as the accuracy remains consistently at 100% for all cases.
Table 5.4: Comparison of the total runtime for key computational phases (SpNd, SpEdge, and SmGraph) in
the construction of the Index. This comparison is conducted in a single-threaded environment, contrasting
our implementations with the respective computational phases of the original Java implementation by Akbas
et al. [2].

Network Baseline (sec) C-Opt. (sec) Aff. (sec) Akbas et al. [2] (sec)
Amazon 6.77 3.96 3.24 1.46
DBLP 10.92 7.37 6.57 2.33
LiveJournal 1549 851 608 467
Orkut 9631 5268 2990 MLE

Speedup: Table 5.6 presents the speedup enhancements for our parallel Baseline EquiTruss, an improved
version (C-Opt. EquiTruss) over the Baseline, and a superlative version Afforest EquiTruss. The speedup
for the Baseline is 13.92×, 27.31×, and 29.63× for YouTube, LiveJournal, and Orkut networks, respectively.
C-Opt. EquiTruss demonstrates 8.82×, 22.25×, and 22.61× speedup over the single-threaded counterpart
for YouTube, LiveJournal, and Orkut networks, respectively. Likewise, using Aff. EquiTruss, we observe

89

7.06×, 19.55×, and 18.27× speedup over the single-threaded counterpart for YouTube, LiveJournal, and Orkut
networks, respectively. In each case, the maximum speedup occurs when employing the maximum number
of threads (i.e., physical cores) in a compute node, which is 128. The Baseline version attains a superior
speedup, being less efficient but performing more computation than the other two versions. It’s noteworthy
that the Baseline version still achieves significantly lower run-time compared to our C++ implementation of
EquiTruss based on Akbas et al. [2] (Original EquiTruss in Table 5.2). Focusing on the speedup gain from
the sequential Baseline to our optimized version (Aff. EquiTruss) with 128 threads, it reaches 16.10×, 47.8×,
and 55.24× for YouTube, LiveJournal, and Orkut networks, respectively. These substantial speedup gains
underscore the effectiveness of our parallel implementation over the sequential versions.
Table 5.5: Quantifying the count of supernodes and superedges within summary graphs across various
networks. The findings are verified under both sequential and parallel conditions, and comparisons are made
against the C++ implementation of the work by Akbas et al. [2].

Network No. of Supernodes No. of Superedges
Amazon 115060 103513
DBLP 126904 105409
YouTube 400408 940550
LiveJournal 4765102 13405280
Orkut 17227001 76631446

Table 5.6: Contrast between the elapsed time for the slowest execution (1-thread) and the fastest execution
time (128-thread) in seconds, along with the associated speedup (X) for various optimized versions of our
parallel EquiTruss.

Base. Eq. C-Opt. Eq. Aff. Eq.
Network 1𝑡 128𝑡 (X) 1𝑡 128𝑡 (X) 1𝑡 128𝑡 (X)
Amzn. 7.26 0.52 13.86 4.45 0.46 9.7 3.74 0.40 9.16
DBLP 11.52 0.62 18.53 7.96 0.51 15.52 7.16 0.49 14.46
YouTb. 36.56 2.62 13.92 21.60 2.44 8.82 16.07 2.27 7.06
LvJrnl. 1.6k 58.34 27.31 895.03 40.21 22.25 651.69 33.33 19.55
Orkut 9.9k 334.89 29.63 5.5k 245.97 22.61 3.2k 179.64 18.27

Strong Scalability: Figures 5.5, 5.6, and 5.7 depict the strong scalability trends for an increasing number of
threads, ranging from 1 to 128. Each figure contains three distinct curves representing scalability for three
different design phases (Baseline EquiTruss, C-Opt. EquiTruss, and Aff. EquiTruss) of the parallel EquiTruss
solution. In Figure 5.5 for the Orkut network, the execution time diminishes from 3283 seconds to 179
seconds with Aff. EquiTruss using 128 threads. Likewise, Figure 5.6 illustrates the runtime scalability for the
LiveJournal network across the three design phases of the EquiTruss problem. The runtime decreases from
895 seconds with a single thread to 40 seconds with 128 threads for C-Opt. EquiTruss (blue curve). Finally,
Figure 5.7 showcases the execution time reduction from 36.56 seconds to 2.62 seconds for the YouTube

90

network using the Baseline version of EquiTruss.

Figure 5.8 exhibits strong scalability for the SpNode construction runtime concerning the billion-size
Friendster network. Due to a regular compute node’s 12-hour occupancy limit on NERSC Perlmutter
supercomputer, only the SpNode construction cost is shown. In this Figure, the SpNode computation time for
C-Opt. EquiTruss cannot be displayed for single-thread and 2-thread scenarios due to the occupancy hour limit.

In Figures 5.9 and 5.10, we illustrate the runtime reduction for the three major kernels outlined in Algorithm 7,
8, and 9 across our three different versions of parallel EquiTruss using 1, 8, 32, and 128 threads. The SpNode
kernel (light purple) dominates over the other two kernels, SpEdge (light green) and SmGraph (light blue), in
a single thread. However, it significantly diminishes along with the other two kernels as the number of par-
allel threads increases, becoming negligible with 128 threads for both example networks (Figures 5.9 and 5.10).

0
.5k
1k

2k

3k

4k

5k

6k

7k

8k

9k

10k

 1 2 4 8 16 32 64 128

E
x
e
cu

ti
o
n
 T

im
e
 (

se
c)

No. of Threads

Baseline EquiTruss
C-Optimal EquiTruss

Afforest EquiTruss

Figure 5.5: Demonstrating the scalability and reduction in runtime across 3 distinct design phases of the
parallel EquiTruss algorithm for the Orkut network. Notably, the sequential execution times decrease from
9924, 5561, and 3283 seconds to 334, 245, and 179 seconds, respectively, for the Baseline, C-Opt. EquiTruss,
and Afforest EquiTruss versions when utilizing 128 threads on the Orkut network.

Parallel Efficiency: Figures 5.11, 5.12, and 5.13 depict parallel efficiency using histogram plots for three
different networks. Parallel efficiency (𝜀) measures how well an algorithm scales in parallel, comparing
parallel runtime to the sequential runtime under the assumption of perfect scalability [15]. The formula for
parallel efficiency is given by 𝜀 = 𝑇𝑠𝑒𝑞

𝑝𝑇 (𝑝) , where 𝑝 is the number of parallel units, 𝑇 (𝑝) is the time with 𝑝
parallel units, and 𝑇𝑠𝑒𝑞 is the sequential runtime.

91

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 2 4 8 16 32 64 128

E
x
e
cu

ti
o
n
 T

im
e
 (

se
c)

No. of Threads

Baseline EquiTruss
C-Optimal EquiTruss

Afforest EquiTruss

Figure 5.6: Illustrating the scalability and reduction in runtime across 3 distinct design phases of the parallel
EquiTruss algorithm for the LiveJournal network. For instance, the execution times decrease from 1593, 895,
and 651 seconds to 58, 40, and 33 seconds, respectively, for the Baseline, C-Opt. EquiTruss, and Afforest
EquiTruss versions when utilizing 128 threads on the LiveJournal network.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 4 8 16 32 64 128

E
x
e
cu

ti
o
n
 T

im
e
 (

se
c)

No. of Threads

Baseline EquiTruss
C-Optimal EquiTruss

Afforest EquiTruss

Figure 5.7: Demonstrating the scalability and reduction in runtime across 3 distinct design phases of the
parallel EquiTruss algorithm for the YouTube network. For example, the execution times decrease from 6253,
3586, and 2093 seconds to 131, 102, and 90 seconds, respectively, for the Baseline, C-Opt. EquiTruss, and
Afforest EquiTruss versions when employing 128 threads on the YouTube network.
In each histogram plot, three bars are grouped together, representing our three versions of the EquiTruss imple-
mentation. In Figure 5.11, we observe 70% parallel efficiency for Aff. EquiTruss and 73% parallel efficiency
for C-Opt. EquiTruss using 2 threads for the Orkut network. For the same network, these corresponding

92

0
1k

5k

10k

15k

20k

25k

30k

35k

 1 2 4 8 16 32 64 128

E
x
e
cu

ti
o
n
 T

im
e
 (

se
c)

No. of Threads

SpNode (C-Opt. Eq.)
SpNode (Aff. Eq.)

Figure 5.8: Reduction in execution time for the SpNode kernel on the billion-size Friendster network utilizing
C-Opt. EquiTruss and Aff. EquiTruss. In the case of Aff. EquiTruss, the single-thread run-time of 34332
seconds diminishes to just 612 seconds when employing 128 threads.

 0

1k

2k

3k

4k

5k

6k

7k

8k

9k

10k

Base. Opt. Aff. Base. Opt. Aff. Base. Opt. Aff. Base. Opt. Aff.

T
im

e
 (

se
c)

Number of Threads

SpNode
SpEdge

SmGraph

8655

4371

2093

976

897

897

1942

864
407

219

227
227

128-Thread32-Thread8-Thread1-Thread

Figure 5.9: Breakdown of execution time for the major compute kernels (SpNode, SpEdge, SmGraph) on the
Orkut network. The time reduction for these kernels is depicted across varying thread counts (1, 8, 32, and
128). Specifically, the SpNode execution time decreases from 2093 seconds in the single-threaded setting to
407 seconds with 8 threads, further to 127 seconds with 32 threads, and eventually to 60 seconds with 128
threads for the Afforest EquiTruss on the Orkut network.
parallel efficiencies decrease to 22% and 27%, respectively, with 64 threads, and to 14% and 17%, respectively,
with 128 threads. The utilization of 128 threads across our diverse EquiTruss versions demonstrates the
potential for even greater scalability in a shared-memory system with a higher number of available threads.

93

 0

 100

 200

 300

 400
 500

 600

 700

 800

 900

1k

1.1k
1.2k

1.3k

1.4k

1.5k

Base. Opt. Aff. Base. Opt. Aff. Base. Opt. Aff. Base. Opt. Aff.

T
im

e
 (

se
c)

Number of Threads

SpNode
SpEdge

SmGraph

1393

696

453

157

155

155

302

140 86

38

41
41

128-Thread32-Thread8-Thread1-Thread

Figure 5.10: Breakdown of execution time for the major compute kernels (SpNode, SpEdge, SmGraph) on the
LiveJournal network. The time reduction for these kernels is depicted across varying thread counts (1, 8, 32,
and 128). Specifically, the SpNode execution time decreases from 696 seconds in the single-threaded setting
to 140 seconds with 8 threads, further to 42 seconds with 32 threads, and eventually to 16 seconds with 128
threads for the C-Opt. EquiTruss on the LiveJournal network.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4 8 16 32 64 128

P
a
ra

ll
e
l
E
ff
ic

ie
n
cy

 (
%

)

No. of Threads

Baseline EquiTruss
C-Optimal EquiTruss

Afforest EquiTruss

Figure 5.11: Demonstrating parallel efficiency with 3 distinct designs of the parallel EquiTruss on the Orkut
network. For instance, the parallel efficiencies are 38.89%, 37.66%, and 32%, respectively, for the baseline
EquiTruss, C-Opt. EquiTruss, and Afforest EquiTruss when utilizing 32 threads.
5.5 Community Search
Until the previous section (5.4), we have discussed the outcome of our parallel index construction for
community search. The goal of the constructed index is to facilitate the local community search in a coherent94

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4 8 16 32 64 128

P
a
ra

ll
e
l
E
ff
ic

ie
n
cy

 (
%

)

No. of Threads

Baseline EquiTruss
C-Optimal EquiTruss

Afforest EquiTruss

Figure 5.12: Demonstrating parallel efficiency with 3 distinct designs of the parallel EquiTruss on the
LiveJournal network. For instance, the parallel efficiencies are 37.75%, 36.41%, and 33.14%, respectively,
for the baseline EquiTruss, C-Opt. EquiTruss, and Afforest EquiTruss when utilizing 32 threads.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4 8 16 32 64 128

P
a
ra

ll
e
l
E
ff
ic

ie
n
cy

 (
%

)

No. of Threads

Baseline EquiTruss
C-Optimal EquiTruss

Afforest EquiTruss

Figure 5.13: Demonstrating parallel efficiency with 3 distinct designs of the parallel EquiTruss on the YouTube
network. For instance, the parallel efficiencies are 28.38%, 20.12%, and 16.84%, respectively, for the baseline
EquiTruss, C-Opt. EquiTruss, and Afforest EquiTruss when utilizing 32 threads.
manner. In this section, we discuss the methodology for our parallel community search. We then present the
outcome and comparison with sequential and parallel execution.

95

Algorithm 10: vertex 𝑞 ∈ 𝐺(𝑉 ,𝐸) to list of supernode(s) ∈ 𝔾(𝕍 ,𝔼)
Data: Graph 𝐺(𝑉 ,𝐸) in CSR format
Result: A dictionary of the list of supernode(s) for all the vertices 𝑣 ∈ 𝐺(𝑉 ,𝐸)

1 Allocate a vector of vectors of size = numVertices ∈ 𝐺(𝑉 ,𝐸)
2 for 𝑢 ∈ 𝐺(𝑉 ,𝐸) in parallel do
3 for 𝑣 ∈ neighbors(𝑢) do
4 𝑒 ← (𝑢, 𝑣)
5 Π𝑒 ← Π(𝑒)
6 vertex2SuperGraphNodes[u].push_back(Π𝑒)

5.5.1 Parallel Community Search Methodology

Before running the community search, we construct an auxiliary data structure where a mapping between
the original graph vertices to the summary graph supernode(s) (Algorithm 10). We allocate a vector of
size equal to the total number of vertices of the original graph (line 1). Each of those entries represents the
corresponding vertex and can be indexed by that vertex label. We can store and retrieve the supernode(s) that
the corresponding vertex belongs to in a vector of supernode ID(s). We traverse each vertex of the original
graph (line 2) in parallel, find their neighbor(s) (line 3), and corresponding edge (line 4). We then find the
supernode ID of that edge (line 5) and push the supernode ID to the vector of the corresponding vertex (line
6).

Next in Algorithm 11 we present our parallel approach to community search utilizing the summary graph
we constructed and described in Algorithms 6, 7, 8, and 9. The community search is conducted similarly to
the Breadth First Search (BFS) traversal on a graph. The community search function receives 2 arguments
- a query vertex 𝑞 and a trussness 𝑘. We allocate a vector with a size equal to the number of supernodes
(s) in the summary graph to track the visited supernode during the community search (line 1 in Algorithm
11). The supernode(s) to the query vertex 𝑞 is retrieved (line 2 in Algorithm 11) from the auxiliary data
structure 𝑣𝑒𝑟𝑡𝑒𝑥2𝑆𝑢𝑝𝑒𝑟𝐺𝑟𝑎𝑝ℎ𝑁𝑜𝑑𝑒𝑠 constructed in Algorithm 10. In line 3, we declare a vector of vector,
𝐶 , to store the retrieved edge IDs (constituent components of the community). In line 4, we traverse each of
the supernode(s). In lines 5 − 9 use the supernode, 𝑠𝑛𝐼𝐷, to access the index and corresponding supernode
structure in the summary graph stored in CSR format. If the trussness of the starting edge of the supernode,
𝜏(𝑒), is greater than or equal to the query trussness 𝑘, the BFS-based community search can proceed (line
10). To facilitate the parallel BFS, we use a vector (𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟) instead of a 𝑞𝑢𝑒𝑢𝑒 used in the traditional
BFS search (line 11). To prevent race conditions occurring from multiple threads reading/writing the same
𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟 vector, we keep an additional vector 𝑛𝑒𝑤_𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟 (line 12) for all threads to write their newly
found supernodes at the end of the BFS search. In line 13, 14, operations on 𝑠𝑛𝐼𝐷 are done to kickstart the
BFS search. We allocate a vector (line 15) to store all the supernode(s) (and corresponding edge IDs from
the original graph). The discovery of the new community will continue as long as there are newly found
supernode(s) (line 16). Each thread proceeds with its supernode (𝑠𝑝𝑛𝑑𝑈) in parallel (line 17), allocates its

96

Algorithm 11: Community Search in parallel
Data: A query vertex 𝑞 from the original graph 𝐺(𝑉 ,𝐸) and a trussness 𝑘
Result: A dictionary of edges grouped by their trussness, 𝐶

1 Allocate a global boolean vector 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 of size = num_of_SpNode
2 Get supernode(s) of vertex 𝑞, snIDs ← vertex2SuperGraphNodes[q]
3 vector<vector<int ≫ C ∕⋆ for storing all retrieved local communities ⋆∕
4 for (snID ∈ snIDs) do
5 Get the index (split_index) of the supernode (snID) from the CSR summary graph
6 startA ← splitters[split_index]
7 endA ← splitters[split_index + 1]
8 index ← sortedSNData[startA]
9 e(u, v) ← edgelist[index]

10 if (𝜏(𝑒) ≥ k and visited[snID] = False) then
11 vector<int> frontier
12 vector<int> new_frontier
13 visited[snID] ← true
14 frontier.push_back(snID)
15 vector<int> comm ∕⋆ for storing communities from all threads ⋆∕
16 while (!frontier.isEmpty()) do
17 for (spndU ∈ frontier) in parallel do
18 vector<int> local_new_frontier
19 vector<int> local_comm_edges
20 Store all the edge IDs between 𝑠𝑡𝑎𝑟𝑡𝐴 and 𝑒𝑛𝑑𝐴 to the 𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑚𝑚_𝑒𝑑𝑔𝑒𝑠 of the

master thread
21 for (spndV ∈ neighbors[spndU]) do
22 Get index (𝑠𝑝𝑙𝑡_𝑖𝑛𝑑𝑥) of supernode (𝑠𝑝𝑛𝑑𝑉) from summary graph
23 s_A ← splitters[splt_indx]
24 e_A ← splitters[splt_indx + 1]
25 indx ← splitters[s_A]
26 𝑒 ← edgelist[indx]
27 if (𝜏(𝑒) ≥ 𝑘 and visited[spndV] = False) then
28 Atomically capture 𝑠𝑝𝑛𝑑𝑉 and add it to 𝑙𝑜𝑐𝑎𝑙_𝑛𝑒𝑤_𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟
29 Store all the edge IDs between 𝑠_𝐴 and 𝑒_𝐴 to the 𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑚𝑚_𝑒𝑑𝑔𝑒𝑠 of the

corresponding thread
30 Add 𝑠𝑝𝑛𝑑𝑉 to 𝑙𝑜𝑐𝑎𝑙_𝑛𝑒𝑤_𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟
31 Copy thread-local local_new_frontier into new_frontier in parallel
32 Copy thread-local local_comm_edges into 𝑐𝑜𝑚𝑚 in parallel
33 Swap frontier with an empty vector
34 Swap frontier and new_frontier
35 Add 𝑐𝑜𝑚𝑚 to 𝐶

local vector (𝑙𝑜𝑐𝑎𝑙_𝑛𝑒𝑤_𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟) for storing the discovered thread-local supernode ID(s), and corresponding
edge ID(s) (line 18, 19). The master thread (thread 0) stores (line 20) the corresponding edge ID(s) in the range
𝑠𝑡𝑎𝑟𝑡𝐴 to 𝑒𝑛𝑑𝐴 to its thread local vector (𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑚𝑚_𝑒𝑑𝑔𝑒𝑠). For each neighboring supernode, 𝑠𝑝𝑛𝑑𝑉 (in
line 21), the range of edges of the original graph is accessed in lines 22 − 26 similar to lines 5 − 9. If the

97

trussness of the newfound supernode is ≥ 𝑘, we then atomically capture the corresponding supernode and add
the corresponding edges to the thread-local 𝑙𝑜𝑐𝑎𝑙_𝑛𝑒𝑤_𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟 and 𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑚𝑚_𝑒𝑑𝑔𝑒𝑠 (line 27− 30). The
reason for atomic capture is to prevent data duplication. It may happen that the same supernode, 𝑠𝑝𝑛𝑑𝑉 , and
corresponding edges have been discovered by multiple threads. After all the threads participating in parallel
community search reach the barrier point, all the thread-local frontier elements are copied in parallel to the
designated spot in the 𝑛𝑒𝑤_𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟 in line 31. Similarly, we compute the designated spot for each thread to
copy the thread-local community edges and then copy those edges in parallel to the vector 𝑐𝑜𝑚𝑚 (line 32).
We then swap 𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟 and 𝑛𝑒𝑤_𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟 for the next iteration of parallel BFS search in line 33, 34 and add
the discovered communities (𝑐𝑜𝑚𝑚) in the current BFS search phase to the global community vector 𝐶 in
line 35. While one might argue our choice of using regular parallel BFS search instead of direction-optimized
BFS [22], we like to point out that the direction-optimized BFS takes advantage of the entire graph traversal
where at a certain point all the leaf nodes try to locate its parent node (reverse search) in parallel. However,
our aim is not to conduct the traversal on the entire summary graph, rather it is limited to the search of the
supernodes having query vertex 𝑞 in their constituent edges and trussness ≥ 𝑘. Therefore, the parallel work
efficiency achieved from bottom-up search in [22] is not realizable in our case.

5.5.2 Performance Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 1 2 4 8 16 32 64 128

E
x
e
cu

ti
o
n
 T

im
e
 (

se
c)

No. of Threads

LiveJournal
Orkut

Figure 5.14: Illustrating runtime scalability of our parallel community search (Algorithm 11) for larger
networks (LiveJournal and Orkut) using increasing number of threads. While it takes on average 98 seconds
for community search on Orkut network using 1 thread, community search time reduces to 5.76 seconds using
128 threads.

We measure the performance of our parallel community search described in Algorithm 11 using DBLP,
YouTube, LiveJournal, and Orkut network. The data reported here are based on the average of 100 execution

98

 0

 0.05

 0.1

 0.15

 0.2

 1 2 4 8 16 32 64 128

E
x
e
cu

ti
o
n
 T

im
e
 (

se
c)

No. of Threads

DBLP
YouTube

Figure 5.15: Illustrating runtime scalability of our parallel community search (Algorithm 11) for mid-size
networks (DBLP and YouTube) using increasing number of threads. While it takes on average 0.18 second for
community search on YouTube network using 1 thread, the search time reduces to 0.007 seconds using 64
threads.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4 8 16 32 64 128

P
a
ra

ll
e
l
E
ff
ic

ie
n
cy

 (
%

)

No. of Threads

YouTube
LiveJournal

Orkut

Figure 5.16: Illustrating parallel efficiency for 3 different networks (YouTube, LiveJournal, and Orkut) for
community search using Algorithm 11. The parallel efficiencies are 82.34%, 79.38%, and 69.36%, respectively,
using 2, 4, and 8 threads for the Orkut network.
of Algorithm 11 where the query vertices are picked randomly from the set of the vertices and the trussness
of 3 is passed by default to allow the growth of the community to the maximum size possible for the given
query vertex in the graph. In Figures 5.14 and 5.15 we illustrate the runtime scalability of our parallel
local community search approach. As shown in Figure 5.14, the single thread runtime of 11.41 seconds

99

Table 5.7: Speedup comparison between sequential and parallel execution of community search (Algorithm
11) and state-of-the-art sequential community search by Akbas et al. [2] on experiment datasets.

Network Speedup Speedup
(vs sequential self) (vs Akbas et al. [2])

DBLP 9.30 5.70
YouTube 22.58 10.51
LiveJournal 16.91 11.91
Orkut 17.01 MLE

for LiveJournal network reduces to 1.17 seconds using 16 threads and to 0.77 seconds using 128 threads.
Similarly, the single thread runtime of 98 seconds reduces to 10.01 seconds and 5.76 seconds using 16 and
128 threads, respectively, for Orkut network. The single thread runtime of 0.18 seconds reduces to 0.013
seconds and 0.010 seconds using 16 threads and 128 threads, respectively, for YouTube network (Figure
5.15). We observe the minimum execution times of community search using 64 threads for YouTube (0.007
seconds) and LiveJournal (0.67 seconds) networks. The 128 thread execution times for YouTube is 0.010
seconds and for LiveJournal is 0.78 seconds. One possible reason for this could be there is not enough
work to perform when going from 64 thread to 128 threads. Another related reason is the Perlmutter regular
compute node has 2 AMD Milan CPUs, each having 64 cores. Going from 64 threads to 128 threads may
incur the interconnect delay due to remote memory access. This effect is also observed in the reduction
of execution runtime slowing down from 64 threads to 128 threads for DBLP and Orkut networks as well.
In Figure 5.16, we illustrate the parallel efficiency of Algorithm 11 for YouTube, LiveJournal, and Orkut
networks. The parallel efficiencies are 97%, 93.79%, and 82.33%, respectively, for YouTube, LiveJournal,
and Orkut networks using 2 threads. Similarly, the parallel efficiencies are 83.77%, 60.94%, and 61.18%,
respectively, for YouTube, LiveJournal, and Orkut networks using 16 threads. In Table 5.7, we show the
maximum speedup observed for parallel community search against the sequential execution of its own self in
column 2, and against the Java implementation of the community search in the work by Akbas et al. [2]. The
maximum speedup observed for YouTube network is 22.58× using 64 threads against the sequential execution
of Algorithm 11. The maximum speedup observed against the sequential community search in the study [2]
is 10.51×. Similarly, the maximum speedup observed for LiveJournal network is 16.91× and 11.91× against
the sequential execution of Algorithm 11 itself and against the java code from the study [2]. The reason
for a higher sequential runtime of Algorithm 11 can be attributed to extra code and memory allocation for
facilitating the parallel execution where each thread instantiates its own thread-local variable and merges to
the global shared-memory space. That extra code is avoided in the implementation of community search in
work [2]. We could not measure the speedup of the community search for Orkut network against the work [2]
because of their code running out of memory in 𝑃𝑒𝑟𝑙𝑚𝑢𝑡𝑡𝑒𝑟 node with 512 GB memory.

100

5.6 Other Related Work
Some early investigations [101, 40] into clique-based overlapping community exploration rely on the clique
percolation method, wherein, following the identification of k-cliques, all adjacent k-cliques (sharing 𝑘 − 1
nodes) are merged. Zhang et al. [153] introduce clique percolation clustering for detecting overlapping
communities in PPI networks. Kumpula et al. [79] propose a clique-based approach applicable to both
weighted and unweighted graphs. However, these approaches exhibit constraints related to clique size. Maity
et al. [91] extend the work of [101] to complete graphs but inherit the associated limitations. Community
search methods [121, 141] relying on maximal cliques face computational intractability. Local community
search techniques based on k-core structures [17, 142] optimize metrics such as density, modularity, or
conductance but struggle to exclude non-relevant vertices and cannot identify communities with overlapping
memberships. Cui et al. [37] propose an online community search using a community model named 𝛼-
adjacency-𝛾-quasi-k-clique, proven to be NP-hard [69], and the proposed approximation [37] does not offer
promising solution quality. Truss-based community search, such as TCP-Index [69], maintains trussness
information in groups of tree-structured indexes known as maximum spanning trees (MST). However, TCP-
Index has limitations, including the need to redundantly maintain constituent edges of a graph 𝐺 in multiple
MSTs, and a resource-intensive truss reconstruction phase during community search. The approach in [2]
circumvents these limitations by preserving an edge in a supernode structure but is constrained in scalability
due to the sequential nature of the algorithm.

5.7 Concluding Remarks
Developing parallel algorithms for local community discovery is less explored compared to global community
discovery. Previous studies have explored constructing community subgraphs using higher-order graph
primitives like cliques, quasi clique, or k-core. However, an alternative strategy, k-truss decomposition,
addresses inherent challenges such as computational intractability and lack of cohesiveness in these approaches.
Leveraging the promising cohesiveness of k-triangle-connected subgraph structures, we integrate it with
state-of-the-art parallel connected component methods in our formulation of the parallel EquiTruss algorithm
for shared-memory environments. The parallel EquiTruss algorithm demonstrates effective scalability on
large systems and datasets. It achieves a remarkable speedup of up to 55× when processing billion-size graphs
on 128 physical cores of the NERSC Perlmutter compute node with 512 GB of memory.

101

Chapter 6: Conclusion

Graph algorithms play a crucial role in analyzing relationships among entities, yet these algorithms often
suffer from being memory-bound with poor data locality. The continuous advancement of computing
platforms into the exascale era, accompanied by faster chips and supercomputers, exacerbates the growing
performance gap between computer memory and processing speed. This gap is particularly pronounced in
the context of graph algorithms, where the theoretical and actual performance disparities continue to widen.
Furthermore, many well-established graph algorithms still rely on sequential processing, struggling to handle
the ever-increasing size of modern graph datasets.

Community discovery, involving the identification of structural patterns or motifs in a graph, holds significance
in various domains such as social, biological, and professional network analysis. Unfortunately, existing
community discovery approaches, developed over the past decade, face scalability challenges when confronted
with massive-scale datasets. The primary objective of this dissertation research is to formulate novel and scal-
able algorithms for community discovery, capable of leveraging modern multicore/many-core architectures to
process extensive graph data efficiently. Two parallel algorithms are presented, each addressing a major type
of community discovery: global disjoint community discovery and local overlapping community discovery.
Empirical evidence demonstrates the substantial performance gains achieved by our parallel algorithms,
surpassing previous approaches. Throughout the design of these parallel algorithms, various challenges—both
problem-specific and common in parallel computing—arose. To tackle these challenges, we adopted a
three-pronged strategy: i) an algorithmic solution for parallel local community discovery, ii) a computational
heuristics + frameworks-based solution for parallel global community discovery, and iii) an accelerator-based
solution for a fast hash accumulator to enhance the efficiency of community discovery. Importantly, these
solution strategies offer applicability to other graph problems within the parallel computing domain. Rigorous
performance profiling of our algorithmic implementations guided the development of a software-hardware
co-design strategy, aimed at minimizing the performance gap between theoretical and actual computational
kernels. Insights gained from our performance modeling led to the proposal of a generalized architecture
design for an accelerator capable of mitigating low throughput issues associated with hash-based graph kernels.

In the future, I would like to utilize the findings of this dissertation research to design novel scalable solutions
for dynamically evolving relations among entities in analyzing social/traffic network data. Additionally,

102

I intend to explore GPU-based architecture for our parallel algorithms design for similar kinds of graph
algorithms that we delve into in this dissertation research. I intend to continue research on analyzing how
different algorithms and data structures are utilizing the HPC resources, what are their computational behavior,
and memory usage patterns. The categorization of different applications/algorithms based on their operation
behaviors, for instance, whether a certain application is CPU bound (heavily uses CPU’s processing power) or
memory bound (irregular memory access pattern or limited performance from memory bandwidth) can help to
determine what kind of computer architecture can be used to ensure maximum application performance. My
responsibilities as a graduate researcher comprised design, simulation, and empirical analysis on accelerators
(additional dedicated computing architecture in CPU for faster processing of certain operations) for graph
applications with applications fields in biological research, social network analysis, business predictions, etc.
My goal is to further expand the domain of applications and categorizations for high-performance architectural
design for exascale computing.

103

Appendix A: Publications from Dissertation Research

Parts of this dissertation work have been published in conferences and workshops on parallel processing,
big data analysis, and emerging high-performance computing architecture, as well as under preparation for
submission. The list of publications is mentioned below.

1. Refereed Conference & Workshop Contributions

[a1] Md Abdul Motaleb Faysal, Maximilian Bremer, Cy Chan, John Shalf, and Shaikh Arifuzzaman,
“Fast Parallel Index Construction for Efficient K-truss-based Local Community Detection in Large
Graphs”, International Conference on Parallel Processing (ICPP), 2023

[a2] Md Abdul Motaleb Faysal, Maximilian Bremer, Shaikh Arifuzzaman, Doru Popovici, John
Shalf and Cy Chan, “Fast Community Detection in Graphs with Infomap Method using Accel-
erated Sparse Accumulation”, Accelerators and Hybrid Emerging Systems (AsHES) in IEEE
International Symposium on Parallel and Distributed Processing Workshops (IPDPSW), 2023

[a3] Md Abdul Motaleb Faysal, Shaikh Arifuzzaman, Cy Chan, Maximilian Bremer, Doru Popovici
and John Shalf, “HyPC-Map: A Hybrid Parallel Community Detection Algorithm Using
Information-Theoretic Approach”, IEEE High Performance Extreme Computing (HPEC)
Conference, 2021

[a4] Md Abdul Motaleb Faysal and Shaikh Arifuzzaman, “Distributed Community Detection in
Large Networks using An Information-Theoretic Approach”, In proc. of 2019 IEEE International
Conference on BigData (BigData 2019), pages 4773–4782, IEEE, December 2019

2. Other Refereed Conference & Workshop Contributions
[b5] Md Abdul Motaleb Faysal and Shaikh Arifuzzaman, “Fast Stochastic Block Partitioning using

a Single Commodity Machine”, In proc. of 2019 IEEE International Conference on BigData
(BigData 2019), pages 3632–3639, IEEE, December 2019

[b6] Md Abdul Motaleb Faysal and Shaikh Arifuzzaman, “A Comparative Analysis of Large-scale
Network Visualization Tools”, In Proceeding of 2018 IEEE International Conference on BigData
(BigData 2018), pages 4837–4843, Seattle, WA, USA, IEEE, Dec 2018

104

[b7] Shaikh Arifuzzaman, Naw Safrin Sattar, Md Abdul Motaleb Faysal, “Parallel Algorithms for
Mining Large-scale Time-varying (Dynamic) Graphs” Nov 2018, In PDSW-DISCS Workshop in
SC’18, Dallas, TX, USA, Nov 2018

[b8] Naw Safrin Sattar, Md A. M. Faysal, Minhaz Zibran, Shaikh Arifuzzaman, and Md Rakibul
Islam. Data Mining in-IDE Activities: Why Software Developers Fail, In Proceedings of the 27th
International Conference on Software Engineering and Data Engineering (SEDE), USA, 2018.

3. Poster Presentation

[c9] Md Abdul M Faysal, Shaikh Arifuzzaman, “Scalable Algorithm Design and Performance
Analysis for Graph Motifs Discovery”, IEEE International Symposium on Parallel and Distributed
Processing (IPDPS) Ph.D. Forum, 2023

[c10] Shaikh Arifuzzaman, Md Abdul M Faysal, Hasan Arikan, Doru Popovici, Max Bremer, and John
Shalf, "Does One Size Fit All?: A Case Study of Performance Portability of Triangle Counting in
Graphs on Kokkos", Sustainable Research Pathways (SRP) Program, Summer 2023, Lawrence
Berkeley National Laboratory (LBNL)

[c11] Md A M Faysal, Shaikh Arifuzzaman, Cy Chan, Maximilian Bremer, Doru Popovici, John Shalf,
“Fast Hash Accumulation for Information-Theoretic Community Discovery”, 2021 CS Summer
Student Program (CSSP), Lawrence Berkeley National Laboratory (LBNL)

[c12] Md Abdul Motaleb Faysal and Shaikh Arifuzzaman, “Fast Stochastic Block Partitioning”,
InnovateUNO-2019, The University of New Orleans

The publication [a4] contributes in writing Chapter 2. The publications [a3] and [a2] constitute Chapter 3
and Chapter 4, respectively. The publication [a1] constitutes Chapter 5. Although, the publications [b5] and
[b6] are not included in this dissertation write-up, the research conducted as part of those publications worked
as the stepping stones for this doctoral research. Publication [b6] helped visualize and analyze networks
to gain valuable insights from different network topologies. In publication [b5] we investigated another
shared-memory parallel community discovery strategy to find similarity and dissimilarity with Infomap [114]
and Louvain [26] community discovery approaches. The publications [b7] and [b8] are also relevant to this
dissertation research.

A.1 Co-authorship
In this doctoral dissertation, I have presented my research conducted under the supervision of Dr. Shaikh
Arifuzzaman. The other mentors and collaborators during the span of my doctoral research are Maximilian
Bremer, Cy Chan, John Shalf, and Doru Thom Popovici from Lawrence Berkeley National Laboratory. In
this dissertation write-up, we have given citations to the work and ideas or techniques that are not products

105

of my work. Additionally, any contents from other research articles and materials that are presented in
this dissertation as part of the discussion of relevant background are given proper credit without claiming
ownership. If any concepts or ideas are well-known among the corresponding research community and if
tracing down the original intellectual source is impractical, we present the concepts/ideas by paraphrasing
while acknowledging the intellectual ownership belongs to their original creators.

While the findings of this dissertation are my direct intellectual contribution, I acknowledge the valuable
comments and feedback from my collaborators for shaping the direction and progression of this doctoral
research. My doctoral supervisor Dr. Shaikh Arifuzzaman abundantly guided and supervised by brainstorming
and making himself available whenever needed during the whole span of my doctoral research and ensuring
my timely progress towards the goal. As part of the research collaboration with the Lawrence Berkeley
National Lab (LBNL), some portion of this dissertation involved joint work with our collaborators/researchers
to make co-authored publications. Our work for Hash-based hardware accelerator design has constituent
parts of application software and a library interface with Zsim [115] simulator for architectural simulation.
Maximilian Bremer was the lead developer for that interfacing library (libasa). In our work of parallel
EquiTruss, Bremer and I also co-developed the capability/interface so that the parallel EquiTruss application
can invoke the functionalities/graph kernels of the GAP benchmarking suites [23]. Cy Chan mentored and
shared valuable research guidelines during my algorithm design for parallel equitruss [54]. John Shalf and Cy
Chan mentored the experimental phase for performance modeling for HipMCL [13] and HyPC-Map [49].
John Shalf provided us access to NERSC supercomputing resources (NERSC Cori and NERSC Perlmutter)
used during our experimental evaluations for the works [a1], [a2], and [a3]. Doru Popovici contributed to
the writing of the manuscripts for our publications [a2] and [a3] while providing valuable insights for the
formulation of the experimental evaluation.

106

Bibliography

[1] K. Academy, “Information entropy.” [Online]. Available: https://www.khanacademy.org/computing/
computer-science/informationtheory/moderninfotheory/v/information-entropy

[2] E. Akbas and P. Zhao, “Truss-based community search: A truss-equivalence based indexing
approach,” Proc. VLDB Endow., vol. 10, no. 11, p. 1298–1309, aug 2017. [Online]. Available:
https://doi.org/10.14778/3137628.3137640

[3] R. Aldecoa and I. Marìn, “Exploring the limits of community detection strategies in complex networks,”
Scientific Reports, vol. 3, p. 2216, Jul 2013. [Online]. Available: https://doi.org/10.1038/srep02216

[4] M. Almasri, O. Anjum, C. Pearson, Z. Qureshi, V. S. Mailthody, R. Nagi, J. Xiong, and W.-m. Hwu,
“Update on k-truss decomposition on gpu,” in 2019 IEEE High Performance Extreme Computing
Conference (HPEC), 2019, pp. 1–7.

[5] C. J. Anderson, S. Wasserman, and K. Faust, “Building stochastic blockmodels,” Social Networks,
vol. 14, no. 1, pp. 137 – 161, 1992, special Issue on Blockmodels. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0378873392900172

[6] S. Arifuzzaman and M. Khan, “Fast parallel conversion of edge list to adjacency list for large-scale
graphs,” in Proceedings of the 23rd High Performance Computing Symposium (HPC 2015), Alexandria,
VA, USA, April 2015, pp. 17–24.

[7] S. Arifuzzaman, M. Khan, and M. Marathe, “A space-efficient parallel algorithm for counting exact
triangles in massive networks,” in Proceedings of the 17th IEEE International Conference on High
Performance Computing and Communications (HPCC 2015), New York City, USA, August 2015, pp.
527–534.

[8] ——, “Fast parallel algorithms for counting and listing triangles in big graphs,” ACM Trans. Knowl.
Discov. Data, vol. 14, no. 1, Dec. 2019. [Online]. Available: https://doi.org/10.1145/3365676

[9] ——, “Fast parallel algorithms for counting and listing triangles in big graphs,” ACM Trans. Knowl.
Discov. Data, vol. 14, no. 1, Dec. 2019. [Online]. Available: https://doi.org/10.1145/3365676

[10] S. Arifuzzaman, M. Khan, and M. V. Marathe, “PATRIC: a parallel algorithm for counting triangles in
massive networks,” in Proceedings of the 22nd ACM International Conference on Information and
Knowledge Management (CIKM 2013), San Francisco, CA, USA, October 2013, pp. 529–538.

[11] S. Arifuzzaman and B. Pandey, “Scalable mining, analysis, and visualization of protein-protein interac-
tion networks,” International Journal of Big Data Intelligence (IJBDI), vol. 6, no. 3/4, 01 2019.

107

https://www.khanacademy.org/computing/computer-science/informationtheory/moderninfotheory/v/information-entropy
https://www.khanacademy.org/computing/computer-science/informationtheory/moderninfotheory/v/information-entropy
https://doi.org/10.14778/3137628.3137640
https://doi.org/10.1038/srep02216
http://www.sciencedirect.com/science/article/pii/0378873392900172
https://doi.org/10.1145/3365676
https://doi.org/10.1145/3365676

[12] A. Auten, M. Tomei, and R. Kumar, “Hardware acceleration of graph neural networks,” in 2020 57th
ACM/IEEE Design Automation Conference (DAC), 2020, pp. 1–6.

[13] A. Azad, G. A. Pavlopoulos, C. A. Ouzounis, N. C. Kyrpides, and A. Buluç, “HipMCL: a
high-performance parallel implementation of the Markov clustering algorithm for large-scale
networks,” Nucleic Acids Research, vol. 46, no. 6, pp. e33–e33, 01 2018. [Online]. Available:
https://doi.org/10.1093/nar/gkx1313

[14] D. A. Bader and K. Madduri, “Snap, small-world network analysis and partitioning: An
open-source parallel graph framework for the exploration of large-scale networks,” in 22nd
IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2008, Miami,
Florida USA, April 14-18, 2008. IEEE Computer Society, 2008, pp. 1–12. [Online]. Available:
https://doi.org/10.1109/IPDPS.2008.4536261

[15] S.-H. Bae, D. Halperin, J. West, M. Rosvall, and B. Howe, “Scalable flow-based community detection for
large-scale network analysis,” in 2013 IEEE 13th International Conference on Data Mining Workshops,
Dec 2013, pp. 303–310.

[16] S.-H. Bae and B. Howe, “Gossipmap: a distributed community detection algorithm for billion-edge
directed graphs,” in SC ’15: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, Nov 2015, pp. 1–12.

[17] N. Barbieri, F. Bonchi, E. Galimberti, and F. Gullo, “Efficient and effective community search,” Data
Mining and Knowledge Discovery, vol. 29, no. 5, pp. 1406–1433, Sep 2015. [Online]. Available:
https://doi.org/10.1007/s10618-015-0422-1

[18] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An open source software for exploring and
manipulating networks,” 2009. [Online]. Available: http://www.aaai.org/ocs/index.php/ICWSM/09/
paper/view/154

[19] V. Batagelj, “Protein-protein interaction network in budding yeast.” [Online]. Available:
http://vlado.fmf.uni-lj.si/pub/networks/data/bio/Yeast/Yeast.htm

[20] V. Batagelj and A. Mrvar, “Pajek— analysis and visualization of large networks,” in Graph Drawing,
P. Mutzel, M. Jünger, and S. Leipert, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp.
477–478.

[21] S. Beamer, K. Asanovic, and D. Patterson, “Direction-optimizing breadth-first search,” in SC ’12:
Proceedings of the International Conference on High Performance Computing, Networking, Storage
and Analysis, 2012, pp. 1–10.

[22] ——, “Direction-optimizing breadth-first search,” in SC ’12: Proceedings of the International Confer-
ence on High Performance Computing, Networking, Storage and Analysis, 2012, pp. 1–10.

[23] S. Beamer, K. Asanović, and D. Patterson, “The gap benchmark suite,” 2017.
[24] M. Besta, R. Kanakagiri, G. Kwasniewski, R. Ausavarungnirun, J. Beránek, K. Kanellopoulos,

K. Janda, Z. Vonarburg-Shmaria, L. Gianinazzi, I. Stefan, J. G. Luna, J. Golinowski, M. Copik,
L. Kapp-Schwoerer, S. Di Girolamo, N. Blach, M. Konieczny, O. Mutlu, and T. Hoefler, “Sisa:

108

https://doi.org/10.1093/nar/gkx1313
https://doi.org/10.1109/IPDPS.2008.4536261
https://doi.org/10.1007/s10618-015-0422-1
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://vlado.fmf.uni-lj.si/pub/networks/data/bio/Yeast/Yeast.htm

Set-centric instruction set architecture for graph mining on processing-in-memory systems,” in
MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture, ser. MICRO ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p. 282–297. [Online]. Available:
https://doi.org/10.1145/3466752.3480133

[25] S. Bhowmick and S. Srinivasan, A Template for Parallelizing the Louvain Method for Modularity
Maximization. New York, NY: Springer New York, 2013, pp. 111–124. [Online]. Available:
https://doi.org/10.1007/978-1-4614-6729-8_6

[26] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of communities in
large networks,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2008, no. 10, p.
P10008, Oct 2008. [Online]. Available: http://dx.doi.org/10.1088/1742-5468/2008/10/P10008

[27] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine,”
Comput. Netw. ISDN Syst., vol. 30, no. 1-7, pp. 107–117, APR 1998. [Online]. Available:
http://dx.doi.org/10.1016/S0169-7552(98)00110-X

[28] C. Bron and J. Kerbosch, “Algorithm 457: Finding all cliques of an undirected graph,” Commun. ACM,
vol. 16, no. 9, p. 575–577, sep 1973. [Online]. Available: https://doi.org/10.1145/362342.362367

[29] A. Buluc and K. Madduri, “Parallel breadth-first search on distributed memory systems,” in SC ’11:
Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage
and Analysis, 2011, pp. 1–12.

[30] A. Buluc and K. Madduri, “Parallel breadth-first search on distributed memory systems,” 2011.
[31] P.-L. Chen, C.-K. Chou, and M.-S. Chen, “Distributed algorithms for k-truss decomposition,” in 2014

IEEE International Conference on Big Data (Big Data), 2014, pp. 471–480.
[32] X. Chen, T. Huang, S. Xu, T. Bourgeat, C. Chung, and A. Arvind, “Flexminer: A pattern-aware

accelerator for graph pattern mining,” in 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA), 2021, pp. 581–594.

[33] C. Y. Cheong, H. P. Huynh, D. Lo, and R. S. M. Goh, “Hierarchical parallel algorithm for modularity-
based community detection using gpus,” in Euro-Par 2013 Parallel Processing, F. Wolf, B. Mohr, and
D. an Mey, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 775–787.

[34] A. Clauset, M. E. J. Newman, and C. Moore, “Finding community structure in very
large networks,” Phys. Rev. E, vol. 70, p. 066111, Dec 2004. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevE.70.066111

[35] J. Cohen, “Trusses: Cohesive subgraphs for social network analysis,” National security agency technical
report, vol. 16, no. 3.1, 2008.

[36] W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang, “Online search of overlapping communities,” in
Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’13. New York, NY, USA: Association for Computing Machinery, 2013, p. 277–288.
[Online]. Available: https://doi.org/10.1145/2463676.2463722

[37] W. Cui, Y. Xiao, H. Wang, and W. Wang, “Local search of communities in large graphs,” in
109

https://doi.org/10.1145/3466752.3480133
https://doi.org/10.1007/978-1-4614-6729-8_6
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1145/362342.362367
https://link.aps.org/doi/10.1103/PhysRevE.70.066111
https://link.aps.org/doi/10.1103/PhysRevE.70.066111
https://doi.org/10.1145/2463676.2463722

Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’14. New York, NY, USA: Association for Computing Machinery, 2014, p. 991–1002.
[Online]. Available: https://doi.org/10.1145/2588555.2612179

[38] B. DasGupta and D. Desai, “On the complexity of newman’s community finding approach for
biological and social networks,” Journal of Computer and System Sciences, vol. 79, no. 1, pp. 50 – 67,
2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0022000012000931

[39] T. A. Davis, “Graph algorithms via suitesparse: Graphblas: triangle counting and k-truss,” in 2018
IEEE High Performance extreme Computing Conference (HPEC), 2018, pp. 1–6.

[40] I. Derényi, G. Palla, and T. Vicsek, “Clique percolation in random networks,” Phys. Rev. Lett., vol. 94,
p. 160202, Apr 2005. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.94.160202

[41] L. Donetti and M. A. Muñoz, “Detecting network communities: a new systematic and efficient
algorithm,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2004, no. 10, p. P10012,
Oct 2004. [Online]. Available: http://dx.doi.org/10.1088/1742-5468/2004/10/P10012

[42] Z. Du, J. Patchett, O. A. Rodriguez, and D. A. Bader, in The 9th Annual Chapel Implementers and
Users Workshop (CHIUW).

[43] A. J. Enright, S. van Dongen, and C. A. Ouzounis, “An efficient algorithm for large-scale detection of
protein families.” Nucleic acids research, vol. 30 7, pp. 1575–84, 2002.

[44] M. S. Exchange, “Number of triangles in a graph based on num-
ber of edges.” [Online]. Available: https://math.stackexchange.com/questions/823481/
number-of-triangles-in-a-graph-based-on-number-of-edges

[45] K. Faust and S. Wasserman, “Blockmodels: Interpretation and evaluation,” Social Networks,
vol. 14, no. 1, pp. 5 – 61, 1992, special Issue on Blockmodels. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/037887339290013W

[46] M. A. M. Faysal and S. Arifuzzaman, “Distributed community detection in large networks using an
information-theoretic approach,” in 2019 IEEE International Conference on Big Data (Big Data),
2019, pp. 4773–4782.

[47] ——, “Distributed community detection in large networks using an information-theoretic approach,”
in 2019 IEEE International Conference on Big Data (Big Data), Dec 2019, pp. 4773–4782.

[48] ——, “Fast stochastic block partitioning using a single commodity machine,” in 2019 IEEE Interna-
tional Conference on Big Data (Big Data), 2019, pp. 3632–3639.

[49] M. A. M. Faysal, S. Arifuzzaman, C. Chan, M. Bremer, D. Popovici, and J. Shalf, “Hypc-map: A
hybrid parallel community detection algorithm using information-theoretic approach,” in 2021 IEEE
High Performance Extreme Computing Conference (HPEC), 2021, pp. 1–8.

[50] ——, “HyPC-Map: A hybrid parallel community detection algorithm using information-theoretic
approach,” in 2021 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 2021,
pp. 1–8.

[51] M. A. M. Faysal, M. Bremer, S. Arifuzzaman, D. Popovici, J. Shalf, and C. Chan, “Fast community
110

https://doi.org/10.1145/2588555.2612179
http://www.sciencedirect.com/science/article/pii/S0022000012000931
https://link.aps.org/doi/10.1103/PhysRevLett.94.160202
http://dx.doi.org/10.1088/1742-5468/2004/10/P10012
https://math.stackexchange.com/questions/823481/number-of-triangles-in-a-graph-based-on-number-of-edges
https://math.stackexchange.com/questions/823481/number-of-triangles-in-a-graph-based-on-number-of-edges
http://www.sciencedirect.com/science/article/pii/037887339290013W

detection in graphs with infomap method using accelerated sparse accumulation,” in 2023 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2023, pp. 601–
610.

[52] M. A. M. Faysal, “Hypc-map: A hybrid parallel community detection algorithm using
information-theoretic approach.” [Online]. Available: https://github.com/mfaysal101/hymap-sc

[53] M. A. M. Faysal and S. Arifuzzaman, “Distributed community detection in large networks using an
information-theoretic approach,” in 2019 IEEE International Conference on Big Data (Big Data).
IEEE, 2019, pp. 4773–4782.

[54] M. A. M. Faysal, M. Bremer, C. Chan, J. Shalf, and S. Arifuzzaman, “Fast parallel index construction
for efficient k-truss-based local community detection in large graphs,” ser. ICPP ’23. New
York, NY, USA: Association for Computing Machinery, 2023, p. 132–141. [Online]. Available:
https://doi.org/10.1145/3605573.3605637

[55] S. Fortunato, “Community detection in graphs,” ArXiv, vol. abs/0906.0612, 2010.
[56] ——, “Community detection in graphs,” Physics Reports, vol. 486, no. 3, pp. 75 – 174, 2010. [Online].

Available: http://www.sciencedirect.com/science/article/pii/S0370157309002841
[57] S. Fortunato and M. Barthélemy, “Resolution limit in community detection,” Proceedings of

the National Academy of Sciences, vol. 104, no. 1, pp. 36–41, 2007. [Online]. Available:
https://www.pnas.org/content/104/1/36

[58] S. Ghosh, M. Halappanavar, A. Tumeo, A. Kalyanaraman, H. Lu, D. Chavarrià-Miranda, A. Khan,
and A. Gebremedhin, “Distributed louvain algorithm for graph community detection,” in 2018 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), May 2018, pp. 885–895.

[59] M. Girvan and M. E. J. Newman, “Community structure in social and biological networks,”
Proceedings of the National Academy of Sciences, vol. 99, no. 12, pp. 7821–7826, 2002. [Online].
Available: https://www.pnas.org/content/99/12/7821

[60] P. D. Gr�̈�nwald, I. J. Myung, and M. A. Pitt, Advances in Minimum Description Length: Theory and
Applications (Neural Information Processing). The MIT Press, 2005.

[61] R. Guimerà, M. Sales-Pardo, and L. A. N. Amaral, “Modularity from fluctuations in random
graphs and complex networks,” Phys. Rev. E, vol. 70, p. 025101, Aug 2004. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevE.70.025101

[62] W. M. A. Habib, H. M. O. Mokhtar, and M. E. El-Sharkawi, “Discovering top-weighted k-truss
communities in large graphs,” Journal of Big Data, vol. 9, no. 1, p. 36, Apr 2022. [Online]. Available:
https://doi.org/10.1186/s40537-022-00588-1

[63] M. Halappanavar, H. Lu, A. Kalyanaraman, and A. Tumeo, “Scalable static and dynamic community
detection using grappolo,” in 2017 IEEE High Performance Extreme Computing Conference (HPEC),
Sep. 2017, pp. 1–6.

[64] Y. Han and R. A. Wagner, “An efficient and fast parallel-connected component algorithm,” J. ACM,
vol. 37, no. 3, p. 626–642, jul 1990. [Online]. Available: https://doi.org/10.1145/79147.214077

111

https://github.com/mfaysal101/hymap-sc
https://doi.org/10.1145/3605573.3605637
http://www.sciencedirect.com/science/article/pii/S0370157309002841
https://www.pnas.org/content/104/1/36
https://www.pnas.org/content/99/12/7821
https://link.aps.org/doi/10.1103/PhysRevE.70.025101
https://doi.org/10.1186/s40537-022-00588-1
https://doi.org/10.1145/79147.214077

[65] J. M. Hofman and C. H. Wiggins, “Bayesian approach to network modularity,” Phys. Rev. Lett., vol. 100,
p. 258701, Jun 2008. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.100.258701

[66] P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic blockmodels: First steps,” Social Networks,
vol. 5, no. 2, pp. 109 – 137, 1983. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/0378873383900217

[67] L. HPC, “Louisiana optical network infrastructure.” [Online]. Available: http://hpc.loni.org/resources/
hpc/system.php?system=QB2

[68] ——, “Qb2 cluster.” [Online]. Available: http://www.hpc.lsu.edu/docs/guides.php?system=QB2
[69] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, “Querying k-truss community in large and dynamic

graphs,” in Proceedings of the 2014 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’14. New York, NY, USA: Association for Computing Machinery, 2014, p.
1311–1322. [Online]. Available: https://doi.org/10.1145/2588555.2610495

[70] ——, “Querying k-truss community in large and dynamic graphs,” in Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data, ser. SIGMOD ’14. New
York, NY, USA: Association for Computing Machinery, 2014, p. 1311–1322. [Online]. Available:
https://doi.org/10.1145/2588555.2610495

[71] ——, “Querying k-truss community in large and dynamic graphs,” in Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data, ser. SIGMOD ’14. New
York, NY, USA: Association for Computing Machinery, 2014, p. 1311–1322. [Online]. Available:
https://doi.org/10.1145/2588555.2610495

[72] H. Kabir and K. Madduri, “Parallel k-truss decomposition on multicore systems,” in 2017 IEEE High
Performance Extreme Computing Conference (HPEC), 2017, pp. 1–7.

[73] E. Kao, V. Gadepally, M. Hurley, M. Jones, J. Kepner, S. Mohindra, P. Monticciolo, A. Reuther,
S. Samsi, W. Song, D. Staheli, and S. Smith, “Streaming graph challenge: Stochastic block partition,”
in 2017 IEEE High Performance Extreme Computing Conference (HPEC), Sep. 2017, pp. 1–12.

[74] A. Karataş and S. Şahin, “Application areas of community detection: A review,” in 2018 International
Congress on Big Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT), Dec 2018, pp.
65–70.

[75] B. Karrer and M. E. J. Newman, “Stochastic blockmodels and community structure in networks,” Phys.
Rev. E, vol. 83, p. 016107, Jan 2011. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevE.
83.016107

[76] ——, “Stochastic blockmodels and community structure in networks,” Phys. Rev. E, vol. 83, p. 016107,
Jan 2011. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevE.83.016107

[77] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning irregular
graphs,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 359–392, Dec. 1998. [Online]. Available:
http://dx.doi.org/10.1137/S1064827595287997

[78] ——, “A fast and high quality multilevel scheme for partitioning irregular graphs,” SIAM

112

https://link.aps.org/doi/10.1103/PhysRevLett.100.258701
http://www.sciencedirect.com/science/article/pii/0378873383900217
http://www.sciencedirect.com/science/article/pii/0378873383900217
http://hpc.loni.org/resources/hpc/system.php?system=QB2
http://hpc.loni.org/resources/hpc/system.php?system=QB2
http://www.hpc.lsu.edu/docs/guides.php?system=QB2
https://doi.org/10.1145/2588555.2610495
https://doi.org/10.1145/2588555.2610495
https://doi.org/10.1145/2588555.2610495
https://link.aps.org/doi/10.1103/PhysRevE.83.016107
https://link.aps.org/doi/10.1103/PhysRevE.83.016107
https://link.aps.org/doi/10.1103/PhysRevE.83.016107
http://dx.doi.org/10.1137/S1064827595287997

J. Sci. Comput., vol. 20, no. 1, pp. 359–392, Dec. 1998. [Online]. Available: http:
//dx.doi.org/10.1137/S1064827595287997

[79] J. M. Kumpula, M. Kivelä, K. Kaski, and J. Saramäki, “Sequential algorithm for fast
clique percolation,” Physical Review E, vol. 78, no. 2, aug 2008. [Online]. Available:
https://doi.org/10.1103%2Fphysreve.78.026109

[80] A. Lancichinetti and S. Fortunato, “Benchmarks for testing community detection algorithms on
directed and weighted graphs with overlapping communities,” Phys. Rev. E, vol. 80, p. 016118, Jul
2009. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevE.80.016118

[81] ——, “Community detection algorithms: A comparative analysis,” Phys. Rev. E, vol. 80, p. 056117,
Nov 2009. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevE.80.056117

[82] A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark graphs for testing community
detection algorithms,” Phys. Rev. E, vol. 78, p. 046110, Oct 2008. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevE.78.046110

[83] ——, “Benchmark graphs for testing community detection algorithms,” Physical Review E, vol. 78,
no. 4, oct 2008. [Online]. Available: https://doi.org/10.1103%2Fphysreve.78.046110

[84] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network dataset collection,” http://snap.
stanford.edu/data, Jun. 2014.

[85] J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining Social-Network Graphs, 2nd ed. Cambridge
University Press, 2014, p. 325–383.

[86] W. Li and A. Godzik, “Cd-hit: a fast program for clustering and comparing large sets of protein or
nucleotide sequences,” Bioinformatics, vol. 22, no. 13, pp. 1658–1659, May 2006.

[87] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein, “Distributed graphlab:
A framework for machine learning and data mining in the cloud,” Proc. VLDB Endow., vol. 5, no. 8,
pp. 716–727, Apr. 2012. [Online]. Available: https://doi.org/10.14778/2212351.2212354

[88] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein, “Graphlab: A new
parallel framework for machine learning,” in Conference on Uncertainty in Artificial Intelligence (UAI),
July 2010.

[89] R. D. Luce and A. D. Perry, “A method of matrix analysis of group structure,” Psychometrika, vol. 14,
no. 2, pp. 95–116, Jun 1949. [Online]. Available: https://doi.org/10.1007/BF02289146

[90] A. Madhavan, R. Sindhu, B. Parameswaran, R. K. Sukumaran, and A. Pandey, “Metagenome analysis:
a powerful tool for enzyme bioprospecting,” Applied Biochemistry and Biotechnology, vol. 183, no. 2,
pp. 636–651, Oct 2017. [Online]. Available: https://doi.org/10.1007/s12010-017-2568-3

[91] S. Maity and S. Rath, “Extended clique percolation method to detect overlapping community structure,”
2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI),
pp. 31–37, 2014.

[92] C. P. Massen and J. P. K. Doye, “Identifying communities within energy landscapes,” Phys. Rev.
E, vol. 71, p. 046101, Apr 2005. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevE.71.

113

http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1137/S1064827595287997
https://doi.org/10.1103%2Fphysreve.78.026109
https://link.aps.org/doi/10.1103/PhysRevE.80.016118
https://link.aps.org/doi/10.1103/PhysRevE.80.056117
https://link.aps.org/doi/10.1103/PhysRevE.78.046110
https://doi.org/10.1103%2Fphysreve.78.046110
http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://doi.org/10.14778/2212351.2212354
https://doi.org/10.1007/BF02289146
https://doi.org/10.1007/s12010-017-2568-3
https://link.aps.org/doi/10.1103/PhysRevE.71.046101
https://link.aps.org/doi/10.1103/PhysRevE.71.046101
https://link.aps.org/doi/10.1103/PhysRevE.71.046101

046101
[93] A. Medus, G. Acu�̃�a, and C. Dorso, “Detection of community structures in networks via global

optimization,” Physica A: Statistical Mechanics and its Applications, vol. 358, pp. 593–604, Dec 2005.
[Online]. Available: https://doi.org/10.1016/j.physa.2005.04.022

[94] M. A. Motaleb Faysal and S. Arifuzzaman, “A comparative analysis of large-scale network visualization
tools,” in 2018 IEEE International Conference on Big Data (Big Data), Dec 2018, pp. 4837–4843.

[95] M. Naim, F. Manne, M. Halappanavar, and A. Tumeo, “Community detection on the gpu,” in 2017
IEEE International Parallel and Distributed Processing Symposium (IPDPS), May 2017, pp. 625–634.

[96] M. Newman, “Communities, modules and large-scale structure in networks,” Nature Physics, vol. 8,
pp. 25–31, 12 2011.

[97] M. E. J. Newman, “Finding community structure in networks using the eigenvectors of matrices,”
Physical Review E, vol. 74, no. 3, Sep 2006. [Online]. Available: http://dx.doi.org/10.1103/PhysRevE.
74.036104

[98] ——, “Spectral methods for community detection and graph partitioning,” Physical Review E, vol. 88,
no. 4, Oct 2013. [Online]. Available: http://dx.doi.org/10.1103/PhysRevE.88.042822

[99] M. E. J. Newman and M. Girvan, “Finding and evaluating community structure in networks,” Phys.
Rev. E, vol. 69, p. 026113, Feb 2004. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevE.
69.026113

[100] M. E. J. Newman and E. A. Leicht, “Mixture models and exploratory analysis in networks,”
Proceedings of the National Academy of Sciences, vol. 104, no. 23, pp. 9564–9569, 2007. [Online].
Available: https://www.pnas.org/content/104/23/9564

[101] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering the overlapping community structure of
complex networks in nature and society,” Nature, vol. 435, no. 7043, pp. 814–818, Jun 2005. [Online].
Available: https://doi.org/10.1038/nature03607

[102] R. Pearce and G. Sanders, “K-truss decomposition for scale-free graphs at scale in distributed memory,”
in 2018 IEEE High Performance extreme Computing Conference (HPEC), 2018, pp. 1–6.

[103] T. Peixoto, “graph-tool.” [Online]. Available: https://graph-tool.skewed.de/
[104] T. P. Peixoto, “Entropy of stochastic blockmodel ensembles,” Phys. Rev. E, vol. 85, p. 056122, May

2012. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevE.85.056122
[105] ——, “Parsimonious module inference in large networks,” Phys. Rev. Lett., vol. 110, p. 148701, Apr

2013. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.110.148701
[106] ——, “Efficient monte carlo and greedy heuristic for the inference of stochastic block models,” Phys.

Rev. E, vol. 89, p. 012804, Jan 2014. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevE.
89.012804

[107] M. A. Porter, J.-P. Onnela, and P. J. Mucha, “Communities in networks,” ArXiv, vol. abs/0902.3788,
2009.

[108] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi, “Defining and identifying communities
114

https://link.aps.org/doi/10.1103/PhysRevE.71.046101
https://link.aps.org/doi/10.1103/PhysRevE.71.046101
https://link.aps.org/doi/10.1103/PhysRevE.71.046101
https://link.aps.org/doi/10.1103/PhysRevE.71.046101
https://doi.org/10.1016/j.physa.2005.04.022
http://dx.doi.org/10.1103/PhysRevE.74.036104
http://dx.doi.org/10.1103/PhysRevE.74.036104
http://dx.doi.org/10.1103/PhysRevE.88.042822
https://link.aps.org/doi/10.1103/PhysRevE.69.026113
https://link.aps.org/doi/10.1103/PhysRevE.69.026113
https://www.pnas.org/content/104/23/9564
https://doi.org/10.1038/nature03607
https://graph-tool.skewed.de/
https://link.aps.org/doi/10.1103/PhysRevE.85.056122
https://link.aps.org/doi/10.1103/PhysRevLett.110.148701
https://link.aps.org/doi/10.1103/PhysRevE.89.012804
https://link.aps.org/doi/10.1103/PhysRevE.89.012804

in networks,” Proceedings of the National Academy of Sciences, vol. 101, no. 9, pp. 2658–2663, 2004.
[Online]. Available: https://www.pnas.org/content/101/9/2658

[109] G. Rao, J. Chen, and X. Qian, “Intersectx: An accelerator for graph mining,” ArXiv, vol. abs/2012.10848,
2020.

[110] G. Rao, J. Chen, J. Yik, and X. Qian, “Sparsecore: Stream isa and processor specialization for
sparse computation,” in Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, ser. ASPLOS 2022. New York,
NY, USA: Association for Computing Machinery, 2022, p. 186–199. [Online]. Available:
https://doi.org/10.1145/3503222.3507705

[111] J. Reichardt and D. R. White, “Role models for complex networks,” The European Physical Journal B,
vol. 60, no. 2, pp. 217–224, Nov 2007. [Online]. Available: https://doi.org/10.1140/epjb/e2007-00340-y

[112] J. Rissanen, “Modeling by shortest data description,” Automatica, vol. 14, no. 5, pp. 465–471, Sep.
1978. [Online]. Available: http://dx.doi.org/10.1016/0005-1098(78)90005-5

[113] M. Rosvall and C. T. Bergstrom, “Source code of the original infomap.” [Online]. Available:
https://www.mapequation.org/code_old.html

[114] ——, “Maps of random walks on complex networks reveal community structure,” Proceedings
of the National Academy of Sciences, vol. 105, no. 4, pp. 1118–1123, 2008. [Online]. Available:
https://www.pnas.org/content/105/4/1118

[115] D. Sanchez and C. Kozyrakis, “Zsim: Fast and accurate microarchitectural simulation of thousand-core
systems,” SIGARCH Comput. Archit. News, vol. 41, no. 3, p. 475–486, jun 2013. [Online]. Available:
https://doi.org/10.1145/2508148.2485963

[116] P. Sao, O. Green, C. Jain, and R. Vuduc, “A self-correcting connected components algorithm,” in
Proceedings of the ACM Workshop on Fault-Tolerance for HPC at Extreme Scale, ser. FTXS ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p. 9–16. [Online]. Available:
https://doi.org/10.1145/2909428.2909435

[117] A. E. Sarıyüce, B. Gedik, G. Jacques-Silva, K.-L. Wu, and U. V. Çatalyürek, “Incremental k-core
decomposition: Algorithms and evaluation,” The VLDB Journal, vol. 25, no. 3, p. 425–447, jun 2016.
[Online]. Available: https://doi.org/10.1007/s00778-016-0423-8

[118] N. S. Sattar and S. Arifuzzaman, “Parallelizing louvain algorithm: Distributed memory
challenges,” in 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing
(DASC 2018), Athens, Greece, August 12-15, 2018, 2018, pp. 695–701. [Online]. Available:
https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00122

[119] T. Schank and D. Wagner, “Finding, counting and listing all triangles in large graphs, an experimental
study,” in Experimental and Efficient Algorithms, S. E. Nikoletseas, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 606–609.

[120] C. E. Shannon, “A mathematical theory of communication,” Bell System Technical Journal, vol. 27,
no. 3, pp. 379–423, 1948. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/j.

115

https://www.pnas.org/content/101/9/2658
https://doi.org/10.1145/3503222.3507705
https://doi.org/10.1140/epjb/e2007-00340-y
http://dx.doi.org/10.1016/0005-1098(78)90005-5
https://www.mapequation.org/code_old.html
https://www.pnas.org/content/105/4/1118
https://doi.org/10.1145/2508148.2485963
https://doi.org/10.1145/2909428.2909435
https://doi.org/10.1007/s00778-016-0423-8
https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00122
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1948.tb01338.x
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1948.tb01338.x
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1948.tb01338.x

1538-7305.1948.tb01338.x
[121] H.-W. Shen, X.-Q. Cheng, and J.-F. Guo, “Quantifying and identifying the overlapping community

structure in networks,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2009, no. 07,
p. P07042, jul 2009. [Online]. Available: https://doi.org/10.1088%2F1742-5468%2F2009%2F07%
2Fp07042

[122] S. S. Shende and A. D. Malony, “The tau parallel performance system,” Int. J. High
Perform. Comput. Appl., vol. 20, no. 2, p. 287–311, may 2006. [Online]. Available:
https://doi.org/10.1177/1094342006064482

[123] Y. Shiloach and U. Vishkin, “An o(log n) parallel connectivity algorithm,” J. Algorithms, vol. 3, pp.
57–67, 1982.

[124] H. Shiokawa, Y. Fujiwara, and M. Onizuka, “Fast algorithm for modularity-based graph clustering,” in
Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, ser. AAAI’13. AAAI
Press, 2013, p. 1170–1176.

[125] G. M. Slota, S. Rajamanickam, and K. Madduri, “Bfs and coloring-based parallel algorithms for
strongly connected components and related problems,” in 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, 2014, pp. 550–559.

[126] S. Smith, X. Liu, N. K. Ahmed, A. S. Tom, F. Petrini, and G. Karypis, “Truss decomposition on
shared-memory parallel systems,” in 2017 IEEE High Performance Extreme Computing Conference
(HPEC), 2017, pp. 1–6.

[127] M. Sozio and A. Gionis, “The community-search problem and how to plan a successful cocktail party,”
in Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, ser. KDD ’10. New York, NY, USA: Association for Computing Machinery, 2010, p.
939–948. [Online]. Available: https://doi.org/10.1145/1835804.1835923

[128] C. L. Staudt and H. Meyerhenke, “Engineering high-performance community detection heuristics
for massive graphs,” in 2013 42nd International Conference on Parallel Processing, Oct 2013, pp.
180–189.

[129] ——, “Engineering parallel algorithms for community detection in massive networks,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 27, no. 1, pp. 171–184, Jan 2016.

[130] M. Sutton, T. Ben-Nun, and A. Barak, “Optimizing parallel graph connectivity computation via
subgraph sampling,” in 2018 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2018, pp. 12–21.

[131] S. Szabó, “Parallel algorithms for finding cliques in a graph,” Journal of Physics: Conference Series,
vol. 268, p. 012030, jan 2011. [Online]. Available: https://doi.org/10.1088%2F1742-6596%2F268%
2F1%2F012030

[132] C. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and M. Tsiarli, “Denser than the densest subgraph:
Extracting optimal quasi-cliques with quality guarantees,” in Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ser. KDD ’13. New

116

https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1948.tb01338.x
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1948.tb01338.x
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1948.tb01338.x
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1088%2F1742-5468%2F2009%2F07%2Fp07042
https://doi.org/10.1088%2F1742-5468%2F2009%2F07%2Fp07042
https://doi.org/10.1177/1094342006064482
https://doi.org/10.1145/1835804.1835923
https://doi.org/10.1088%2F1742-6596%2F268%2F1%2F012030
https://doi.org/10.1088%2F1742-6596%2F268%2F1%2F012030

York, NY, USA: Association for Computing Machinery, 2013, p. 104–112. [Online]. Available:
https://doi.org/10.1145/2487575.2487645

[133] A. J. Uppal, G. Swope, and H. H. Huang, “Scalable stochastic block partition,” in 2017 IEEE High
Performance Extreme Computing Conference (HPEC), Sep. 2017, pp. 1–5.

[134] A. J. Uppal and H. H. Huang, “Fast stochastic block partition for streaming graphs,” 2018 IEEE High
Performance extreme Computing Conference (HPEC), pp. 1–6, 2018.

[135] R. A. van de Geijn and J. Watts, “Summa: Scalable universal matrix multiplication algorithm,” USA,
Tech. Rep., 1995.

[136] S. M. Van Dongen, “Graph clustering by flow simulation,” Ph.D. dissertation, University of Utrecht,
2000.

[137] J. Wang and J. Cheng, “Truss decomposition in massive networks,” Proc. VLDB Endow., vol. 5, no. 9,
p. 812–823, may 2012. [Online]. Available: https://doi.org/10.14778/2311906.2311909

[138] R. Wang, L. Yu, Q. Wang, J. Xin, and L. Zheng, “Productive high-performance k-truss decomposition
on gpu using linear algebra,” in 2021 IEEE High Performance Extreme Computing Conference (HPEC),
2021, pp. 1–7.

[139] . S. P. C. D. with Known Truth Partitions, “Mit graphchallenge data sets.” [Online]. Available:
https://graphchallenge.mit.edu/data-sets

[140] J. Wu, A. Goshulak, V. Srinivasan, and A. Thomo, “K-truss decomposition of large networks on a
single consumer-grade machine,” in 2018 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM), 2018, pp. 873–880.

[141] P. Wu and L. Pan, “Detecting highly overlapping community structure based on maximal clique
networks,” in 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining (ASONAM 2014), 2014, pp. 196–199.

[142] Y. Wu, R. Jin, J. Li, and X. Zhang, “Robust local community detection: On free rider effect and
its elimination,” Proc. VLDB Endow., vol. 8, no. 7, p. 798–809, feb 2015. [Online]. Available:
https://doi.org/10.14778/2752939.2752948

[143] D. Yan, J. Cheng, K. Xing, Y. Lu, W. Ng, and Y. Bu, “Pregel algorithms for graph connectivity
problems with performance guarantees,” Proc. VLDB Endow., vol. 7, no. 14, p. 1821–1832, oct 2014.
[Online]. Available: https://doi.org/10.14778/2733085.2733089

[144] J. Yang and J. Leskovec, “Defining and evaluating network communities based on ground-
truth,” Knowl. Inf. Syst., vol. 42, no. 1, pp. 181–213, Jan. 2015. [Online]. Available:
http://dx.doi.org/10.1007/s10115-013-0693-z

[145] Y. Yang, S. R. Kuppannagari, A. Srivastava, R. Kannan, and V. K. Prasanna, “Fasthash: Fpga-based
high throughput parallel hash table,” High Performance Computing, vol. 12151, pp. 3 – 22, 2020.

[146] P. Yao, L. Zheng, Z. Zeng, Y. Huang, C. Gui, X. Liao, H. Jin, and J. Xue, “A locality-aware energy-
efficient accelerator for graph mining applications,” in 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2020, pp. 895–907.

117

https://doi.org/10.1145/2487575.2487645
https://doi.org/10.14778/2311906.2311909
https://graphchallenge.mit.edu/data-sets
https://doi.org/10.14778/2752939.2752948
https://doi.org/10.14778/2733085.2733089
http://dx.doi.org/10.1007/s10115-013-0693-z

[147] J. Zeng and H. Yu, “Parallel modularity-based community detection on large-scale graphs,” in 2015
IEEE International Conference on Cluster Computing, Sep. 2015, pp. 1–10.

[148] ——, “A study of graph partitioning schemes for parallel graph community detection,”
Parallel Computing, vol. 58, no. C, pp. 131–139, Oct. 2016. [Online]. Available: https:
//doi.org/10.1016/j.parco.2016.05.008

[149] ——, “A distributed infomap algorithm for scalable and high-quality community detection,” in
Proceedings of the 47th International Conference on Parallel Processing, ser. ICPP 2018. New
York, NY, USA: ACM, 2018, pp. 4:1–4:11. [Online]. Available: http://doi.acm.org/10.1145/3225058.
3225137

[150] ——, “Effectively unified optimization for large-scale graph community detection,” in 2019 IEEE
International Conference on Big Data (Big Data). IEEE, 2019, pp. 475–482.

[151] C. Zhang, M. Bremer, C. Chan, J. Shalf, and X. Guo, “Asa: Accelerating sparse accumulation
in column-wise spgemm,” ACM Trans. Archit. Code Optim., may 2022, just Accepted. [Online].
Available: https://doi.org/10.1145/3543068

[152] G. Zhang and D. Sanchez, “Leveraging caches to accelerate hash tables and memoization,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO ’52. New York, NY, USA: Association for Computing Machinery, 2019, p. 440–452.
[Online]. Available: https://doi.org/10.1145/3352460.3358272

[153] S. Zhang, X. Ning, and X.-S. Zhang, “Identification of functional modules in a PPI network by clique
percolation clustering,” Comput Biol Chem, vol. 30, no. 6, pp. 445–451, Nov. 2006.

[154] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “Priter: A distributed framework for prioritizing iterative
computations,” IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 9, pp. 1884–1893,
Sep. 2013.

[155] S. Zhou, K. Lakhotia, S. G. Singapura, H. Zeng, R. Kannan, V. K. Prasanna, J. Fox, E. Kim, O. Green,
and D. A. Bader, “Design and implementation of parallel pagerank on multicore platforms,” in The
21st Annual IEEE High Performance Extreme Computing Conference, HPEC 2017, Waltham, MA,
USA, September 12-14, 2017. IEEE Computer Society, 2017, pp. 1–6, graph Challenge Student
Innovation Award. [Online]. Available: https://doi.org/10.1109/HPEC.2017.8091048

118

https://doi.org/10.1016/j.parco.2016.05.008
https://doi.org/10.1016/j.parco.2016.05.008
http://doi.acm.org/10.1145/3225058.3225137
http://doi.acm.org/10.1145/3225058.3225137
https://doi.org/10.1145/3543068
https://doi.org/10.1145/3352460.3358272
https://doi.org/10.1109/HPEC.2017.8091048

Curriculum Vitae

Please see the next page.

119

Md Abdul Motaleb Faysal, Ph.D.
https://mfaysal101.github.io faysal.cse101@gmail.com linkedin.com/faysal101
RESEARCH INTEREST

Parallel and Distributed Computing, Machine Architecture, Techniques for HPC Performance Modeling
and Simulation, Graph Algorithms, Community Discovery, Scalable Algorithm Design, Big Data Mining

EDUCATION
University of Nevada, Las Vegas (UNLV) Fall 2023
Ph.D. in Computer Science
Ph.D. Advisor: Dr. Shaikh Arifuzzaman
Dissertation: Scalable Algorithm Design and Performance Analysis for Graph Motifs Discovery
University of New Orleans (UNO) Fall 2017 - Summer 2022
Ph.D. Student in Computer Science
Transferred to UNLV (Fall’ 22)
University of New Orleans (UNO) Spring 2020
M.S. in Computer Science
Thesis: Accelerating the Information-Theoretic Approach of Community Detection Using Distributed
and Hybrid Memory Parallel Schemes
Bangladesh University of Engineering and Technology (BUET) July 2014
B.Sc. in Computer Science and Engineering
Thesis: Content-Based Image Retrieval using Relevance Feedback

WORK EXPERIENCE
Graduate Research Assistant, UNLV Fall 2022 - Fall 2023
Data-intensive Scalable Computing Group

• Designing parallel algorithm for k-triangle induced local community discovery delivering up to
55× speedup than the sequential approach

• Designing scalable algorithms for memory-bound applications capable of processing billion-size
sparse network datasets

Graduate Summer Intern/Affiliate, Berkeley Lab (LBNL) Summer ’20, ’21, ’22, ’23

• Fast community detection in graphs with Infomap method using Accelerated Sparse Accumulation
delivering 5.6× performance

• Improved 5× speedup of a billion-size graph clustering application
• Validation of performance portability of Kokkos framework in CPU/GPU
• Identified performance bottleneck of the SpGEMM approach
• Performance modeling of compute kernels in HPC platforms
• Software-hardware co-design in heterogeneous architecture

Graduate Research Assistant, UNO Fall 2017 - Spring 2022
Big Data and Scalable Computing Group

120

• Distributed-memory parallel community detection using an information-theoretic approach deliv-
ering up to 5× speedup

• Comparing network visualization tools and analytics
Software Engineer August 2014 - July 2017
ReliSource, Bangladesh
Role:

• Developed and maintained software solutions for health care management.
• Solved critical software issues hindering throughput in production line
• Developed IoT-based software solution for cold chain management.

TEACHING AND MENTORING
Guest Lecture, UNLV Fall ’23, Spring ’23, Fall ’22

• Guest lectures on undergraduate course CS302 (Data Structure)
• Guest lecture on graduate course CS789 (Graph Data Mining)
• Conducting quiz and grading programming assignment

Course Instructor, UNO Spring ’22, Fall ’20, Spring ’20
Courses taught:

• Introduction to Programming in C++
• Machine Structure and Assembly Language Programming
• Introduction to Computers

Teaching Assistant, UNO
• Course : Machine Structure and Assembly Language Programming

Mentoring at UNLV and UNO
• Mentored a UNLV undergrad CS student during summer internship ’23 at Berkeley Lab
• Mentored 2 undergrad students in UNO on graph algorithms research

PUBLICATIONS
• Md Abdul Motaleb Faysal, Maximilian Bremer, Cy Chan, John Shalf, and Shaikh Arifuzzaman.

2023. “Fast Parallel Index Construction for Efficient K-truss-based Local Community Detection in
Large Graphs.” In Proceedings of the 52nd International Conference on Parallel Processing (ICPP
’23). Association for Computing Machinery, New York, NY, USA, 132–141.

• M. A. M. Faysal, M. Bremer, S. Arifuzzaman, D. Popovici, J. Shalf and C. Chan, “Fast Community
Detection in Graphs with Infomap Method using Accelerated Sparse Accumulation,” 2023 IEEE In-
ternational Parallel and Distributed Processing Symposium Workshops (IPDPSW), St. Petersburg,
FL, USA, 2023, pp. 601-610.

• M. A. M. Faysal, S. Arifuzzaman, C. Chan, M. Bremer, D. Popovici and J. Shalf, “HyPC-Map:
A Hybrid Parallel Community Detection Algorithm Using Information-Theoretic Approach,” 2021
IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA, USA, 2021, pp.
1-8.

121

• M. A. M. Faysal and S. Arifuzzaman, “Distributed Community Detection in Large Networks using
An Information-Theoretic Approach,” 2019 IEEE International Conference on Big Data (Big Data),
Los Angeles, CA, USA, 2019, pp. 4773-4782.

• M. A. M. Faysal and S. Arifuzzaman, “Fast Stochastic Block Partitioning using a Single Com-
modity Machine,” 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA,
USA, 2019, pp. 3632-3639.

• M. A. Motaleb Faysal and S. Arifuzzaman, “A Comparative Analysis of Large-scale Network
Visualization Tools,” 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA,
USA, 2018, pp. 4837-4843.

• Sattar, Naw Safrin & Arifuzzaman, Shaikh & Faysal, Md Abdul Motaleb. (2018). “Parallel
Algorithms for Mining Large-scale Time-varying (Dynamic) Graphs.” In PDSW-DISCS Workshop
in SC’18, Dallas, TX, USA, Nov 2018

• Naw Safrin Sattar, Md A. M. Faysal, Minhaz Zibran, Shaikh Arifuzzaman, Md Rakibul Islam,
“Data Mining in-IDE Activities: Why Software Developers Fail”, ISCA 27th International Confer-
ence on Software Engineering and Data Engineering, SEDE 2018.

TECHNICAL SKILLS

Language C, C++, Java, C#, LATEX, Assembly, Python, PHP, Prolog
HPC Frameworks MPI, OpenMP, CUDA, TAU, Metis, ZSim, Hadoop
Other Frameworks Ant, JavaFX, JUnit, OpenGL, .NET
RDBMS MySQL, MSSQL, Oracle
Version Control Git, SVN, TFS
Others Intel Pin, Vtune, Valgrind, Amazon AWS, Matlab, Weka

RELEVANT GRADUATE COURSES
Applied Combinatorics & Graph Theory, Parallel & Sci Computing, Concurrent Programming, Cloud
Computing, Machine Learning, Advanced Machine Learning, Big Data Analytics and Systems, Categor-
ical Data Analysis, Network Penetration, Agile Software Engineering

AWARDS, GRANTS, HONORS

• Received travel award for International Conference on Parallel Processing (ICPP), 2023
• Research poster accepted in the Ph.D. forum in the International Parallel and Distributed Processing

Symposium (IPDPS), 2023
• Research proposal accepted and grant awarded for Summer Research Program under Sustainable

Horizon Pathways (SRP) program, 2023
• Contributed to research proposal for National Science Foundation (NSF) award (grant#2323533)

to work on algorithms for dynamic graph
• Student Volunteer SC’21, and SC’20
• Secretary, Bangladesh Student Association (BSA), UNO, 2021-22

122

PROJECT HIGHLIGHTS
HyPC-Map: A Hybrid Memory Parallel Infomap

• Uses a random process to discover the communities by using a graph’s regularity of information
from an information-theoretic formulation.

• Ensures the scalability up to 1280 processing cores while maintaining the accuracy of the sequential
approach

• Combines hybrid memory parallelism (MPI + OpenMP) to achieve 25× speedup
Fast Hash Accumulation: Accelerator Aided Community Discovery

• Hash accumulation is a major computation in community detection (Infomap, HipMCL, etc.)
• Accelerator aids faster hash accumulation for insertion and search
• Reduces branch misprediction and number of instructions in software hash
• Reduces performance gap in roofline modeling for hash-based graph kernels

Parallel EquiTruss: A k-truss-based Parallel Index Construction for Local Community Search
• The formulation breaks down the original graph into k-truss-based indexes
• The indexes are connected through k-triangle connectivity to build supergraph with supernodes and

superedges.
• Parallel EquiTruss uses Shiloach-Vishkin and Afforest Connected Components (CC) kernels to con-

struct indexes in parallel

123

	Scalable Algorithm Design and Performance Analysis for Graph Motifs Discovery
	Repository Citation

	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Scope of Research
	Summary of Research Findings

	A Distributed Memory Parallel Information-Theoretic Community Discovery
	Introduction
	Descriptions of the Static Community Detection Approaches
	Motivation for Parallel Algorithm Design for Information-Theoretic Community Discovery

	Problem Specification
	The Map Equation
	Sequential Infomap Algorithm

	Challenges in Distributing Computation/Data
	Vertex bouncing problem
	Inconsistent update ordering
	Inactive vertices

	Solution Strategies: Our Heuristics
	Solution to Vertex Bouncing Problem
	Solution to Inconsistent Update Ordering
	Solution to Inactive Vertices Problem
	Our Parallel Algorithm Design of Distributed Infomap

	Experimental Setup
	Implementation
	Performance Comparison
	Dataset
	Evaluation
	Quality analysis of the Detected Modules
	Convergence of the Objective Function
	Modularity
	Conductance

	Distributed Performance Analysis
	Workload Balancing
	Speedup and Parallel Efficiency

	Literature Review
	Concluding Remarks

	HyPC-Map, A Hybrid Memory Parallel Infomap
	Introduction
	Algorithmic Analysis and Performance Profiling
	Optimizing Computational Kernels
	Overview of the Algorithm
	Experimental Settings
	Computational Infrastructure
	Datasets Used in Experiments

	Performance Evaluation
	Quality Analysis of Discovered Communities
	Convergence of the Objective Function
	Modularity
	Conductance
	Normalized Mutual Information
	Parallel Performance
	Speedup Gain
	Scalability Analysis
	Comparison with state-of-the-art techniques
	Comparison with other community discovery strategies

	Concluding Remarks

	Fast Infomap with Accelerated Hash Accumulation
	Introduction
	Background
	Components of A Parallel Infomap Algorithm
	Motivation for Accelerator
	Pin and ZSim

	Methodology
	Hash Accumulation
	Gather CAM Entries
	Sorting and Merging

	Evaluation
	Utilizing Limited CAM Capacity
	Validation of Native vs Baseline
	Performance Evaluation

	Related Work
	Concluding Remarks

	Fast Parallel Index Construction for k-truss-based Local Community Detection
	Introduction
	Background
	Preliminaries
	Index Construction Method

	Methodology
	Overview of the parallel algorithm
	Algorithm Complexity Analysis
	Optimization of Compute Kernel

	Performance Evaluation
	Experimental Settings
	Effect of Compute Kernel Optimization
	Performance Analysis

	Community Search
	Parallel Community Search Methodology
	Performance Evaluation

	Other Related Work
	Concluding Remarks

	Conclusion
	Publications from Dissertation Research
	Co-authorship

	Bibliography
	Curriculum Vitae

