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Abstract 

During the reprocessing of nuclear fuel, the degradation of tributylphosphate 

(TBP) occurs as a result of radiolytic and thermal processes. These processes lead to 

the formation of minor amounts of dibutyl phosphate (HDBP). However, the presence of 

DBP poses a challenge in the partitioning of uranium (U), plutonium (Pu), and 

technetium (Tc) due to its chelating effects. The chelation of these elements by HDBP 

can interfere with their intended separation and purification, thereby impacting the 

efficiency and effectiveness of the reprocessing process. In this study, X-ray Absorption 

Fine Structure (XAFS) spectroscopy is employed to investigate the speciation of Tc 

following the extraction of Tc(IV) from both water (H2O) and 1M nitric acid (HNO3) using 

dibutyl phosphate (HDBP) in dodecane as the extracting system. The XAFS results 

revealed the formation of polymeric species containing Tc2O2 and Tc2O units. 

Specifically, the species extracted from H2O was proposed to have the formula 

[Tc2O2(DBP·HDBP)4] (1), while the species extracted from 1M HNO3 was proposed to 

have the formula [Tc2O(NO3)2(DBP)2(DBP·HDBP)2] (2). The interatomic Tc-Tc distances 

in the Tc2O2 and Tc2O units were found to be approximately 2.55(3) Å and 3.57(4) Å, 

respectively, resembling the distances observed in Tc(IV) dinuclear species. These 

findings suggest that the speciation of Tc(IV) in a HDBP/dodecane mixture involves the 

extraction of a species with a Tc2O unit in the case of (2), while the species observed in 

(1) may be attributed to the re-dissolution of a Tc(IV)-DBP solid. The reduction kinetics 

of Tc(VII) with hydrazine were monitored through UV-Vis spectroscopy. Respective 
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concentrations in the aqueous and organic each phase was calculated using liquid 

scintillation counting.  
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Chapter 1: Introduction  

Technetium (Tc), the first manmade element, has no stable isotopes. The two most 

common isotopes are 99mTc, an imaging agent used for medical diagnostics, and 99Tc, a 

significant fission product of the nuclear industry1. The isotope 99Tc is produced in a 

nuclear reactor (~2g / day for 100 MW of thermal energy) from the fission of 235U. In the 

context of hydrometallurgical reprocessing of the used nuclear fuel (UNF), several 

separation processes (e.g., CoDCon 2), like the PUREX process, have been 

considered3. PUREX is a separation process based on solvent extraction and utilizes 

tributyl phosphate (TBP, (C4H9O)3PO) as the extracting agent in a kerosene diluent 

contacted with a nitric acid solution of UNF as the aqueous feeding phase. In these 

processes, Tc is a problematic element as it follows uranium (U) and plutonium (Pu) and 

interferes with several separation segments. Technetium can be found in both Pu/U 

streams, and in such, Tc affects the overall performance of the process. A detailed 

review of Tc chemistry in the PUREX process is presented in 4. Another problematic 

species in the UNF reprocessing is dibutylphosphoric acid (HDBP, (C4H9O)2(OH)PO, 

Figure 1a) a radiolytic and thermal degradation product of TBP 5,6. Dibutylphosphate 

species can bind to metal ions as either the dibutylphosphate anion (DBP -), 

dibutylphosphoric acid (HDBP), or as dibutylphosphate dimers (DBP.HDBP -, Figure 1b) 

7. 
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Figure 1. a) Dibutylphosphoric acid. b) Dibutylphosphate dimer, (DBP.HDBP)-, 

coordinated to a metal (Mx+). 

 

 

In a typical PUREX process, U(VI), Pu(IV) and Tc(VII) are initially extracted into the 

organic phase by TBP, then are separately back-extracted with a fresh aqueous phase 

to achieve partitioning. This separation step is based on the fact that the trivalent 

actinides form weaker complexes with TBP, and are not extracted under PUREX 

conditions, hence, converting Pu(IV) to Pu(III) with a suitable reducing agent (i.e. 

hydrazine, ferrous sulfamate, hydroxylamine amine, acetohydroxamic acid 8–10) causes 

its stripping from the organic phase. 

Several modifications of the PUREX process have been proposed in which 

parameters such as HNO3 concentration, metal ion (U, Pu, Np, Tc) concentrations, and 

the nature of each reducing agent can vary. For example, the solution composition of 

the single-cycle flowsheet for the UNF reprocessing from WWER-440 reactor using 

N2H4 as the reducing agent is presented in Table 1 11. 
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Table 1. Solution parameters of single-cycle flow-sheet for the reprocessing of UNF 

from WWER-440. 

Product Solution composition 

 HNO3, M U, g.L-1 Pu, mg.mL-1 Np, mg.mL-1 Tc, mg.L-1 

(mM) 

Feed 3 210 2200 62 172 

(1.74) 

Raffinate 3.5 0.01 0.18 0.03 6.0 

(0.06) 

Extraction of 

U, Pu, Np, Tc 

- 86 900 25 70 

(0.71) 

Pu and Tc 

strip product 

1.5 0.03 4900 1.5 340 

(3.43) 

 

 

During this step, the behavior of Tc is poorly understood. In nitric acid, the 

heptavalent Tc may be reduced to lower valences (most likely IV) by various reducing 

agents 12–14.  Previous studies have shown that Tc(IV) species are not extractable by 

TBP but Tc(IV) can form kinetically stable complexes with DBP that can be extracted 15. 

Solvent extraction studies have shown that a TcO2+ oxocation complex with the formula 

TcO(DBP.HDBP)2 was extracted but no structural data has been reported. While the Tc-

phosphine complexes have been widely studied [16,17], the coordination chemistry of 
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Tc-alkylphosphate species has been not reported yet. The coordination chemistry of 

second row transition metal alkylphosphates are also not well developed. In solution, 

research have primarily focused on the speciation of TBP species (Zr, Mo, Ru) that are 

relevant to separation processes 18–20. In solid-state, research focused on the 

development of Zr layered materials that find applications in catalysis 21–23.  

The study of Tc-DBP species gives the opportunity to investigate the coordination 

chemistry of the transition metal alkylphosphates as well as to better understand the 

behavior of Tc in UNF reprocessing chemistry. Here, for the first time, using XAFS 

spectroscopy, we examine the speciation of Tc-dibutylphosphate species in dodecane 

and discuss the formation mechanism of these species. 
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Chapter 2: Experimental Methods  

2.1 Handling Technetium  

Technetium-99 is a weak beta emitter with E(max) = 292 keV. All manipulations 

were performed in radiochemistry laboratories designed and approved for chemical 

synthesis using efficient HEPA-filtered fume hoods, and following UNLV’s approved 

radioisotope handling and monitoring procedures. During manipulation of any solid 

technetium work, dosimeters, continuous air monitors, and quarterly bioassays were 

used to monitor the researcher’s internal dose.  

Solutions of technetium were prepared in either a 20mL glass scintillation vial or 

plastic 15mL centrifuge tube. During the reaction of technetium, nitric acid, and 

hydrazine, caps were left unsealed for a day inside the fume hood due to the explosive 

nature of the reaction. Extraction and centrifuging were done in a fume hood, in a tray, 

over an absorbent pad to prevent radiological contamination or spills. For spectroscopic 

and counting methods, preparation was done inside a radiation laboratory, inside a 

fume hood, labeled, and sealed before entering the spectrophotometer and LSC areas.  

2.2 Preparation of Technetium 

The technetium starting material, ammonium pertechnetate (NH4TcO4), was 

purchased from Oak Ridge National Lab and treated with H2O2 to oxidize any reduced 

forms of Tc 24.  Standardization of prepared aqueous NH4TcO4 solutions were conducted 

according to an established procedure 25. Solid KTcO4 was obtained after dissolution of 

NH4TcO4 in water and precipitation with an aqueous KOH solution. A KTcO4 stock 

solution (0.107 M) was prepared by dissolving solid KTcO4 in water (18.2 MΩ). 
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2.3 Liquid-Liquid Extraction 

Liquid-liquid extraction was employed for the separation and purification of 

reduced technetium (IV) species. For this extraction, a solvent mixture of 30% v/v HDBP 

in n-dodecane has been investigated. The HDBP and n-dodecane, with purities of 97% 

and 99% respectively, were acquired from Sigma Aldrich without further purification. A 

previous study has shown that the main impurity in HDBP (97 % from Sigma-Aldrich) is 

TBP (~2%) 26.The concentration of technetium in the organic phase was calculated from 

the difference in the aqueous phase before and after extraction seen in Table 2.  
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Table 2. Experimental conditions for sample 1 and sample 2. 

 Sample 1 Sample 2 

Aq. media reduction H2O 1 M HNO3 

Aq. media extraction H2O 1 M HNO3 

Organic media HDBP 30% (v/v) 

in dodecane 

HDBP  30% (v/v) 

in dodecane 

[Tc]aq before extraction 

(mM) 

4.99 4.99 

[Tc]aq after extraction 

(mM) 

0.01 0.51 

[Tc]org* (mM) 4.98 4.48 

*Calculated by difference: [Tc]org = [Tc]aq before extraction - [Tc]aq after extraction 

 

 

2.4 EXAFS Sample preparation 

Sample 1 was prepared without the addition of HNO3.  A suspension of 

TcO2·xH2O in water (3 mL) was prepared using the literature method 27. Deionized water 

(2.767 mL) and an aliquot of the KTcO4 stock solution (140 µL, 0.01498 mmol) were 

added in a vial. Then, hydrazine (93 µl, 2.90 mmol) was added to the vial. After the 

addition of hydrazine, an intense brown color was observed, and the vial left 
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undisturbed in the hood with the cap open. After a day at room temperature (RT), a 

brown suspended solid (TcO2·xH2O) was observed. For the extraction, the same volume 

(3 mL) of the 30% by volume solution of HDBP in n-dodecane was added to the 

TcO2·xH2O aqueous suspension. The tube was vortexed and centrifuged for splitting 

phases. A sample of the organic phase was collected for analysis by XAFS 

spectroscopy. The XANES analysis of the spectra (Figure S2), using the first derivative 

method, indicates an edge position of 21055.1 eV which is in agreement with the 

presence of Tc(IV) 28.  Sample 1 was analyzed by UV-visible spectroscopy and its 

spectrum exhibits bands at 380 and 510 nm (Figure S3). 

Sample 2 was prepared in ~1M nitric acid in a similar manner to Sample 1 using 

a method that produces Tc(IV) with an unknown structure 29. An aliquot of the KTcO4 

stock solution (140 µL) was diluted with 1M HNO3 (2.767 mL), then, hydrazine (93 µL) 

was added, and the vial left undisturbed at RT. After a day, when a brown solution was 

observed, extraction with HDBP/n-dodecane (30 % by volume) was performed in similar 

manner as above. After splitting phases, the aliquot of organic phase was collected and 

analyzed by XAFS spectroscopy. The analysis of the XANES spectrum (Figure S4), 

using the first derivative method, indicates an edge position of 21055.2 eV which is in 

agreement with the presence of Tc(IV). Sample 2 was analyzed by UV-visible 

spectroscopy and its spectrum exhibits bands at 370 nm and 499 nm (Figure S5). 
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2.5 Instrumentation 

2.5.1 Ultraviolet Visible Spectroscopy 

 UV-Vis(Ultraviolet-Visible) measurements were performed using a Varian Cary 

50 Scan UV spectrophotometer in Starna Cells 9-Q-10-GL14-C (1.4mL, 1cm, screw cap 

quartz) cuvette at room temperature. The instrument was used in a single beam mode 

using a blank reference solution for baseline correction. Measurements were taken from 

800nm to 200nm. Kinetic measurements were done by placing a cuvette with a Tc 

containing solution and monitoring the region at 400nm over the period of a day (Figure 

S1).  

2.5.2 Liquid Scintillation Counting 

Liquid Scintillation measurements were performed on a Beckman LS 6000 LSC 

(liquid scintillation counter) with a βeff of 66.3%. Aqueous technetium samples (10µL) 

were loaded into the LSC cocktail (10mL) and shaken vigorously. A specific activity of 

630 Bq/μgTc was used 30. Count times ranged from 1-10 minutes to achieve a β% error 

less than one.  

2.5.3 X-ray Absorption Fine Structure Spectroscopy 

XAFS measurements of samples were performed at the Argonne National 

Laboratory Advanced Photon Source at the BESSRC-CAT 12 BM-B station. The 

technetium sample (~18 µL) was placed in a Teflon NMR tube insert holder and covered 

with Kapton film. XAFS spectra were recorded at the Tc-K edge (21,044 eV) in 

fluorescence mode at room temperature using a 13 elements germanium detector. A 
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double crystal of Si [1 1 1] was used as a monochromator. The energy steps were 

0.6eV in the XANES region and 0.05 Å-1 in the EXAFS region. The energy was 

calibrated using a molybdenum foil (Mo-K edge = 20,000 eV). Six spectra were 

recorded in the 0-15 Å-1 k range and averaged. 

For the set of data, the EXAFS spectra were extracted using the Athena software 

31 and data analysis was performed using Winxas 32. For the fitting procedure, 

amplitude and phase shift functions were calculated by FEFF 8.2 33.  Input files were 

generated by Atoms 34 within Artemis. The uncertainty on the distances and 

coordination numbers found by EXAFS are respectively 1% and 25% 35.  Molecular 

representations were performed using the Avogadro software 36.  
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Chapter 3: Results and Discussions 

3.1 Sample 1 

3.1.1 Study of reaction in Sample 1 

 The reaction between TcO4- and N2H4 in H2O ([Tc] = 0.005M, [N2H4] = 1M) was 

monitored for 48 hours by UV-Vis spectroscopy in Figure 2. A blank sample of H2O 

was used as the background. The formation of the band at 400nm rises for the first 

six hours. Afterwards, the signal drops dramatically following 48 hours. The 

decrease is due to Tc(IV) precipitating out of solution in the form of TcO2. In Figure 

3, a pink solution is noticed when adding N2H4 to solution. After the reaction is 

complete, a clear solution is observed with a black suspension.  
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Figure 2. UV-Vis spectra and time dependence of the reduction of 0.005M Tc(VII) in 

water using 1M hydrazine over 48 hours.  

 

 

 

Figure 3. Reaction of TcO4- in with N2H4 in H2O at t=0 hours (left) and t=48 hours (right).  
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3.1.2 EXAFS – Sample 1 

 The EXAFS spectrum of Sample 1 was averaged, k3-weighed and the Fourier 

transform (FT) performed in the 3-12.5 Å-1 k range. The FT graph (Figure 1) shows three 

main peaks: Peak A centered at R + Δ ∼ 1.65 Å, Peak B at ∼ 2.20 Å and Peak C at ∼ 

3.05 Å. The position of peak A is similar to the one found for Tc(IV) species with Tc-O 

bonds and likely to indicate the presence of O atoms in the first coordination sphere of 

the absorbing Tc atom. For example, the peak characteristic of the Tc-O contribution on 

the FT of TcO2·xH2O is centered at R + Δ ∼ 1.7 Å 37. 

Peak B has an intense magnitude and might be caused by the presence of Tc 

atoms in the second coordination sphere of the absorbing atom. The FT of Sample 1 in 

the 1-2.8 Å domain is similar to the one for Tc species with Tc2O2 unit. Peak B was 

analyzed by Fourier filtering using the Tc-Tc scattering path calculated in TcO2 38. A 

window filter was performed on the FT between R +  = [1.65 - 2.45] Å. The FT was back-

transformed and the fit conducted using the Tc-Tc scattering path. The Debye-Waller 

Factor (DWF, 2, given in Å2) was fixed to the one reported for the Tc-Tc contribution in 

TcO2.xH2O (0.0030)39 and all the other parameters were allowed to vary. The result of the 

fit (Figure S6, Table S1) supports the presence of 0.7(2) Tc atoms at 2.57(3) Å. Peak C 

is also characteristic of atoms in the second coordination sphere and is due to Tc-P 

scatterings from [DBP] units coordinated to the Tc atom. This hypothesis indicates that 

Sample 1 would contain a dinuclear species with a Tc2O2 unit coordinated to [DBP] units.  

In order to evaluate this hypothesis, the EXAFS spectrum was fitted using the 

scattering paths calculated in a putative {Tc2O2(PO4)4} fragment (a) (Figure 5). The 
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fragment (a) was constructed using the {Tc-O-P} and {Tc2O2} metrics extracted from 

[TcCl4(TPPO)2]40 and [Tc2O2(HEDTA)2.6H2O]41 respectively. The acronyms TPPO and 

HEDTA stand for triphenylphosphine oxide and hydroxyethyl-ethylenediaminetriacetic 

acid, respectively.  

For the fit, the Tc0-Oa, Tc0-Ob, Tc0-Tca and Tc0-P (SS1) single-scattering paths 

and the Tc0-Ob-P (MS1) multi-scattering paths were used. The DWF for the Tc0-OA, Tc0-

OB and the Tc0-Tca scattering path were fixed to the one reported in the literature for 

TcO2·xH2O (Tc0-Oa: 0.003, Tc0-Ob: 0.006, Tc0-Tca: 0.003) 32. For the SS1 scattering 

path, the DWF was fixed to 0.006, a value similar the one found for the U-P scattering 

path in UO2(NO3)·2TBP (0.0054) 42. For MS1 and SS1, the value of the C.N were 

correlated (i.e., C.NMS1 = 2. C.NSS1). The ΔE0 was constrained to be the same value for 

each scattering path; all the other parameters were allowed to vary. The results of the fit 

(Figure 4, Table 2) indicate the environment of the absorbing atom to be constituted by 

0.5(1) Oa atoms at 1.84(2) Å, 4.3 ± 1.0 Ob atoms at 2.07(2) Å, 0.7(2) Tc atom at 2.55(3) 

Å and 5.0 ± 1.2 P atoms at 3.39(3) Å.  
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Figure 4. Fitted k3-EXAFS spectra (top) and Fourier transform (bottom) of the k3- 

EXAFS spectrum of Sample 1. Fit between k = 3 and 12.5 Å -1. Experimental data in 

black and fit in red dots. 
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Figure 5. Ball and stick representation of the {Tc2O2(PO4)4} fragment (a) used for the 

EXAFS analysis of Sample 1. Color of atom: Tc in blue; O in red and P in orange. Tc0 

represents the absorbing atom. 

 

 

Table 3. EXAFS fit parameters obtained by fit of the k3-EXAFS spectra for Sample 1. 

ΔE0 = 6.17 eV. Reduced-chi2 = 78.8. R = 9.56% 

Scattering Path C.N R (Å) 2 (Å2) 

Tc0-Oa 0.5 ± 0.1 1.84(2) 0.003* 

Tc0-Ob 4.3 ± 1.0 2.07(2) 0.006* 

Tc0-Tca 0.7 ± 0.2 2.55(3) 0.003* 

#Tc0-P (SS1) 5.0 ± 1.2 # 3.39(3) 0.006* 

#Tc0-Ob-P (MS1) 10.0 ± 2.4 # 3.54(4) 0.012* 

* Fixed parameter. # Correlated parameter. 

Tca

P

Tc0

Ob

Oa
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The EXAFS results are consistent with the presence of a Tc(IV) atom in an 

octahedral environment coordinated to 5.0 ± 1.2 [DBP] units. As mentioned (vide supra) 

the [DBP] units could be coordinated as DBP-, HDBP or DBP.HDBP-. The Tc-P distance 

(3.39(3) Å) is shorter than the one in [TcCl4(TPPO)2] (3.447 Å). This trend is also observed 

in U(VI) chemistry as the U-P distance in [UO2(TcO4)2(TPPO)3] (avg. 3.730 Å)43 is longer 

that the U-P distance in [UO2(DBP)2] (3.621 Å) 44. 

The presence of 0.7(2) Tc atom at 2.55(3) Å is consistent with the presence of the 

Tc2O2 unit. The Tc-Tc distance is ~0.2 Å longer than the one found by XRD in crystalline 

samples but comparable to the one found by EXAFS in amorphous or liquid samples for 

Tc(IV) species with a Tc2O2 unit (Table 3). Based on the EXAFS results and considering 

a neutral charge for extracted species 45, the formula [Tc2O2(DBP)4(HDBP)4] (1) is 

proposed (Figure 6).  
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Table 4. Interatomic Tc-Tc and Tc-O(L) distances (Å) in Tc(IV) species with a Tc2O2 unit 

found by EXAFS (bold) and XRD. 

Species Tc-Tc Tc-O(L) 

K4T2O2(C2O4)4.3H2O16 2.361(1) 2.020(1)-2.098(1) 

Tc2O2(H2EDTA)2.5H2O34 2.331(1) 2.004(4)-2.020(5) 

Tc(IV) in 5 M CO32-46 2.51(3) 2.01(2) 

Na2[Tc2O2][NTA]2.6H2O41 2.363(2) 2.034(3)-2.072(2) 

Tc(IV) in 0.1M glyoxylate in 2M NaOH32 2.582(4) 2.008(3) 

[TcnOy]4n-2y in 0.1 M SO42-47 2.51(2) 2.04(2) 

Sample 1 (This work) 2.55(3) 2.07(2) 
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Figure 6. Ball and stick representation of the [Tc2O2(DBP)4(HDBP)4] molecule. Color of 

atom: Tc in blue; O in red, C in dark grey, and P in orange. H atoms coordinated to C 

atoms are omitted for clarity. H atoms coordinated to O atoms are in light gray. 
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3.2 Sample 2 

3.2.1 Study of reaction in Sample 2 

The reaction between TcO4- and N2H4 in 3M HNO3 ([Tc] = 0.005M, [N2H4] = 1M) was 

monitored for 48 hours by UV-Vis spectroscopy in Figure 7. A blank sample of 3M HNO3 

was used as the background. Various concentrations of HNO3 solutions were subjected 

to monitoring, with the 3M HNO3 solution demonstrating the most favorable spectral 

characteristics, thereby serving as a representative proxy for 1M HNO3. A clear solution 

is observed at the start of the reduction in Figure 8. After, an induction effect is seen 

after 2 hours, and the solution turns brown. The formation of the band at 400nm rises 

for the 24 hours. Following this, the signal doesn’t fluctuate between 24 to 48 hours.  
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Figure 7. UV-Vis spectra and time dependence of the reduction of 0.005M Tc(VII) in 

3M HNO3 using 1M hydrazine over 48 hours. 

 

 

 

Figure 8.  Reaction of TcO4- with N2H4 in 1M HNO3 at t=0 hours (left) and t=48 hours 

(right).  
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3.2.2 EXAFS of Sample 2 

The EXAFS spectrum of the Sample 2 was averaged, k3-weighted and FT 

performed in the 3-12.5 Å-1 k range. The FT (Figure 9) shows 3 peaks: Peak A at R + Δ 

∼ 1.62 Å, Peak B at ∼ 2.25 Å and Peak C at ∼ 3.06 Å. While the position of these peaks 

are similar to those in Sample 1, the FT magnitude of Peak B and C in both samples are 

significantly different which indicate that the species in Sample 1 and 2 to exhibit different 

structures. Attempts to fit the Fourier filtering on peak B using Tc0-Tca scattering path did 

not provide satisfactory results, which indicate that the species does not contain a Tc2O2 

unit (Figure S7 and Table S2).  

Peak B is due to the presence of N atoms from nitrate ligands and fit of the Fourier 

filtering considering Tc-N scattering path did provide satisfactory results (Figure S8 and 

Table S3). As the intensity and FWHM of Peak C in Sample 2 are larger than the one of 

Peak C in Sample 1, the presence of Tc atoms in the second coordination sphere was 

considered. In this hypothesis, the species in Sample 2 would consist of a linear Tc-O-Tc 

unit coordinated to [DBP] units and nitrate ligands. To investigate this hypothesis, the 

EXAFS spectrum was fit using the scattering path calculated in a putative 

{Tc2O(PO4)3(NO3)} fragment (b) (Figure 10). The fragment (b) was constructed using the 

{Tc-O-P}, {Tc-O-Tc} and {Tc-NO3} metrics derived from [TcCl4(TPPO)2], 

[{TcCl3(DMSO)2}2O]33 and Cs[Zr(NO3)5]48 respectively.  
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Figure 9. Fitted k3-EXAFS spectra (top) and Fourier transform (bottom) of the k3- 

EXAFS spectrum of Sample 2. Fit between k = 3 and 12.5 Å -1. Experimental data in 

black and fit in red dots. 
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Figure 10. Ball and stick representation of the {Tc2O(PO4)3(NO3)} fragment (b) used for 

the EXAFS analysis of Sample 2. Color of atom: Tc in blue; O in red, N in purple and P 

in orange. Tc0 represents the absorbing atom. 

 

 

For the fit, the Tc0-Oa, Tc0-Ob, and Tc0-P single scattering paths as well as the 

Tc0-Ob-P (MS1) and Tc0-Oa-Tca (MS2 and MS3) multi-scattering paths were used. The 

DWF values were fixed and the values of the C.N for the Tc0-Oa-Tca scattering paths 

were correlated (i.e., C.N(MS2) = 2. C.N(MS3))). The ΔE0 was constrained to be the same 

value for each scattering path; all the other parameters were allowed to vary. The result 

of the fit (Figure 9, Table 5) indicates the environment of the absorbing atom to be 

comprised of 0.4(1) Oa atoms at 1.70(2) Å, 3.8 ± 1 Ob atoms at 2.11(2) Å, 0.7(2) N atoms 

at 2.70(3) Å, 2.8(7) P atoms at 3.36(3) Å and 0.7(2) Tc atoms at 3.57(4) Å. 

Attempt to fit the EXAFS spectra of Sample 2 using only Tc0-Oa, Tc0-Ob, Tc0-P 

and Tc0-Ob-P (MS1) scattering paths in a similar manner to Sample 1 results in higher 

value of the reduced-chi2 (297.01) which indicates that the model considering a Tc2O unit 

Tc0 Tca

N

Ob

P
Oa
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coordinated to DBP and nitrate ligands to be the most probable one (Figure S9, Table 

S4). 

The presence of a Tc atom at 3.57(4) Å is consistent with the presence of the Tc2O 

unit and comparable to the one found by EXAFS and XRD for Tc(IV) species with a Tc2O 

unit (Table 6). The Tc-N distance is comparable to the one found for nitrate ligand 

coordinated to Zr(IV) in bidentate mode (2.707 - 2.763 Å). The Tc-P distance in Sample 2 

(3.36(3) Å) is also comparable to the one in Sample 1 (3.39(3) Å) indicating the DBP 

possesses coordination mode in both samples. Based on the EXAFS results, the formula 

[Tc2O(NO3)2(DBP)4(HDBP)2] (2) is proposed (Figure 11). Similar to Sample 1, the 

presence of [DBP.HDBP]- dimers in (2) would lead to the formula 

[Tc2O(NO3)2(DBP)2(DBP.HDBP)2]. 
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Table 5. EXAFS fit parameters obtained by fit of the k3-EXAFS spectra for Sample 2. ΔE0 

= 4.28 eV. Reduced-chi2: 9.5. R = 5.64 % 

Scattering Path C.N R (Å) 2 (Å2) 

Tc0-Oa  (TcO4-) 0.4 ± 0.1 1.70(2) 0.001* 

Tc0-Ob 3.8 ± 1.0 2.11(2) 0.005* 

Tc0-N 0.7 ± 0.2 2.70(3) 0.003* 

Tc0-P 2.8 ± 0.7 3.36(3) 0.002* 

Tc0-P (MS1) 3.9 ± 1.0 3.44(3) 0.004* 

#Tc0-Oa-Tca (MS2) 1.4 ± 0.4  # 3.57(4)# 0.004* 

#Tc0-Oa-Tca (MS3) 0.7 ± 0.2  # 3.57(4)# 0.004* 

* fixed parameters. #correlated parameter 
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Table 6. Interatomic Tc-Tc and Tc-O(L) distances (Å) in Tc(IV) species with a Tc2O unit 

found by EXAFS (bold) and XRD. 

Species Tc-Tc Tc-O(L) 

[Tc2O(HSO4)4(H2O)2(OH)2]49 3.62(4) 2.03(2) 

[Tc2OCl10]4-50 3.61(2) / 

[{TcCl3(CH3CN)2}2O]33 3.5958(8) / 

[{TcCl3(DMSO)2}2O]33 3.6269 2.06(1)-2.12(1) 

[Tc2O(H2O)4Cl6]35 3.625(1) 2.116(4)-2.132(3) 

Sample 2 (this work) 3.58(4) 2.11(2) 
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Figure 11. Ball and stick representation of the [Tc2O(NO3)2(DMP)4(HDMP)2] 

molecule. Color of atom: Tc in blue, O in red, C in grey, N in purple and P in orange. 

H atoms coordinated to C atoms are omitted for clarity. H atoms coordinated to O 

atoms are in light gray. 

 

 

3.3 Sample 1 and Sample 2 interpretations  

Results for Samples 1 and 2 show that Tc(IV) dimeric species with Tc2O2 and Tc2O 

units, respectively, are formed in the extraction of Tc(IV) with HDBP from H2O and 1 M 

HNO3. The UV-visible spectra of sample 1 and 2 (Figure S2 and Figure S4) both exhibit 
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low energy bands (respectively at 499 nm and 510 nm) that are consistent with the 

presence of Tc(IV) dimeric species. Previous studies have shown that similar bands were 

observed in the spectra of Tc(IV) species with Tc2O2 unit (e.g., 503 nm in 

K4T2O2(C2O4)4.3H2O)16 and with Tc2O unit (e.g., 505 nm for [Tc2O(HSO4)4(H2O)2(OH)2]49). 

It was proposed that for Tc(IV) dimeric species, low energy band at ~500 nm could be 

due to a → * transition39. This suggests that the formulation of extracted species is 

related to the nature of the Tc(IV) species in the aqueous phase (vide supra). For Sample 

1, the Tc species in dodecane exhibits a similar core structure to that of the structural 

units in the TcO2·xH2O species in aqueous media. It has been proposed that the low-

soluble TcO2·xH2O exhibits a zigzag chain structure consisting of edge-sharing [TcO6] 

octahedra 28. In the zigzag chains of TcO2.xH2O, the Tc2O2 units with Tc-Tc distances (2.55 

Å) same as to those in Sample 1 (2.55 Å) are observed. In our studies, the reaction of a 

TcO2.xH2O aqueous suspension with HDBP results in the formation of a Tc(IV)-DBP solid 

(with a structure related to TcO2·xH2O) that subsequently dissolve in dodecane. The 

dissolution of the Tc(IV)-DBP solid is accompanied by fragmentation of the chain-structure 

and during this fragmentation the Tc2O2 unit is preserved51. This mechanism is similar to 

the one proposed for the formation of Zr(IV)-DBP polymeric species after the extraction 

of ZrOCl2.8H2O from 2M HNO3 with HDBP/TBP/dodecane. It was postulated that a solid, 

[Zr(HDBP)2(NO3)2(OH)2] with a chain-structure (Zr-Zr = ~3.1Å)52,53 is initially formed upon 

extraction of Zr(IV) with HDBP. Following its formation, the [Zr(HDBP)2(NO3)2(OH)2] solid 

undergoes a re-dissolution in the organic phase followed by dissociation of the chain into 

monomeric or polymeric species. 
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For Sample 2, results of our EXAFS spectroscopy indicate that a Tc(IV) species 

with the formula [Tc2O(NO3)x(H2O)6-x] is extracted with HDBP as 

[Tc2O(NO3)2(DBP)4(HDBP)2] or [Tc2O(NO3)2(DBP)2(DBP.HDBP)2]. In this domain of 

acidity, the Tc(IV) speciation in HNO3 would be comparable to the one in chloride media 

which indicates the species with Tc2O unit to be dominant in the pH domain 0.25-143. 

Previous studies have shown that polymeric species could be extracted from nitrate 

aqueous media with TBP and preserve their polynuclear nature in the organic media 

(Table 8). It has been shown that following extraction polymeric species could either 1) 

aggregate to form higher nuclearity complexes (i.e., Ce(IV)), 2) conserve their nuclearity 

(Th(IV), Hf(IV)) or 3) extract as colloidal species in the form of Pu(IV). Furthermore it has 

been shown that a Ru polymeric species with a Ru2O2 unit is present in dodecane after 

extraction of Ru(III) complexes with TBP from 1 M HNO354.  
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Table 7. Nature of species after extraction of M(IV) (M= Ce, Hf, Th, Pu) species with TBP 

from nitrate media.  

Species in aqueous 

 

Aqueous 

media 

Organic 

media 

Extracted species 

Ce(IV) dimers with 

[Ce-O-Ce]6+ unit 

3 M HNO3 dodecane/TBP Ce4O4.xNO3.yTBP 55 

 

[Hf4(OH)8.16H2O]8+ 7 M LiNO3 TBP Hfn(OH)2n(NO3)2n.nTBP 

(n=2,3,4) 

[Th4(OH)10(NO3)x]6-x 7 M LiNO3 TBP [Th4(OH)10(NO3)6].4TBP 

Pu(IV)-colloid 0.1 M 

HNO3 

TBP/dodecane Pu(IV)-TBP colloid56 
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Chapter 4: Conclusion and Future Work 

For the first time, the speciation of Tc after extraction of Tc(IV) from aqueous 

media (H2O and 1 M HNO3) by an alkylphosphate (i.e., HDBP) in n-dodecane has been 

investigated by XAFS spectroscopy. XAFS results show the formation of dimeric 

species with Tc2O2 and Tc2O units and the proposed formulae for extracted species are 

[Tc2O2(DBP)4(HDBP)4] or [Tc2O2(DBP∙HDBP)4] in the absence of nitrate and 

[Tc2O(NO3)2(DBP)4(HDBP)2] or [Tc2O(NO3)2(DBP)2(DBP∙HDBP)2]) in the presence of 

nitrates. The interatomic Tc-Tc distances found in these units are similar to those found 

in well-known Tc(IV) dinuclear species. The new structural data, first reported here, 

include the Tc-N and Tc-P distances for a nitrate and alkyl phosphate ligands 

coordinated to a Tc atom.  

The study shows that the speciation of Tc in the organic phase is closely related 

to its speciation in the aqueous extraction phase. For Sample 1, the extracted species 

exhibits a similar core structure to the species in water (TcO2.xH2O). The study of 

Sample 2 provides also insight into the speciation of Tc(IV) in nitric acid, and 

[Tc2O(NO3)x(H2O)6-x] is proposed to be the dominant species in 1 M HNO3. These 

results confirm the importance of the preparation methods of the Tc(IV) aqueous 

solution prior to extraction and how much they influence the Tc speciation in the organic 

extraction media. These observations outline the complexity of Tc separation chemistry 

and provide insight into behavior of Tc during the reprocessing of UNF. Any deviation 

during UNF processing that affect the reduction conditions of Tc(VII) (e.g., acidity) could 

potentially lead to the formation of either Tc dimeric species or monomeric nitrate 

species in the various streams. In order to predict Tc behavior, the consideration of such 
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Tc(IV) species in simulation scenario should be considered. First of all, the 

spectroscopic studies of Tc speciation in organic phases after extraction from HNO3 > 

3M would aim for a better understanding of the Tc behavior in the UNF reprocessing 

matrices. The structural data and semi-optimized model provided here provide support 

for such work. 
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Appendix 

 

 

  

 

 

 

 

 

Figure S1. UV-Vis spectra of KTcO4 (Tc(VII)) in water and aliquot of hydrazine reduced 

Tc in HNO3 in concentrated HCl.  
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Figure S2. Normalized XANES spectra of Sample 1. 
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Figure S3. UV-Visible spectra of Sample 1 after dilution 1:50 using HDBP-in dodecane. 
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Figure S4. Normalized XANES spectra of Sample 2. 
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Figure S5. UV-Visible spectra of Sample 2 after dilution 1:50 using HDBP-in dodecane.  
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Figure S6. Adjustment of filtered Fourier transform and back transformed k3-EXAFS 

spectra of the Sample 1 considering Tc0-Tc scattering. Fourier Filtering between R+  = 

1.65 and 2.45 Å ; adjustment between k = 3 and 12.5 Å -1.  Experimental data in black 

and fit in red dots. 
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Table S1. EXAFS fit parameters obtained by adjustment of filtered Fourier transform and 

back transformed k3-EXAFS spectra of the Sample 1. Fourier Filtering between R+  = 

1.65 and 2.45 Å.  ΔE0 =12.40 eV. Reduced-chi2  = 0.9 

Scattering C.N  R (Å) 2 (Å2) 

Tc0-Tc 0.7 2.57 0.003* 

* fixed parameters. #correlated parameter 

  



41 
 

 

  

 

Figure S7. Adjustment of filtered Fourier transform and back transformed k3-EXAFS 

spectra of the Sample 2 considering Tc0-Tc scattering. Fourier Filtering between R+  = 

2.05 and 2.45 Å. adjustment between k = 3 and 12.5 Å-1. Experimental data in black and 

fit in red dots. 
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Table S2. EXAFS fit parameters obtained by adjustment of filtered Fourier transform and 

back transformed k3-EXAFS spectra of the Sample 1. Fourier Filtering between R+  = 

2.05 and 2.45 Å ; ΔE0 =18.34 eV. Reduced-chi2  = 2068.55 

Scattering C.N  R (Å) 2 (Å2) 

Tc0-Tc 0.1 2.59 0.003* 

* fixed parameters.  
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Figure S8. Adjustment of filtered Fourier transform and back transformed k3-EXAFS 

spectra of the Sample 2 considering Tc0-N scattering. Fourier Filtering between R+  = 

2.05 and 2.45 Å. adjustment between k = 3 and 12.5 Å -1. Experimental data in black and 

fit in red dots. 
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Table S3. EXAFS fit parameters obtained by adjustment of filtered Fourier transform and 

back transformed k3-EXAFS spectra of the Sample 2 considering Tc0-N scattering. 

Fourier Filtering between R+  = 2.05 and 2.45 Å. ΔE0 = 11.37 eV. Reduced-chi2 = 604.18 

Scattering C.N  R (Å) 2 (Å2) 

Tc0-N 0.9 2.76 0.003* 

* fixed parameters.  
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Figure S9. Fitted k3-EXAFS spectra (top) and Fourier transform (bottom) of the k3- 

EXAFS spectrum of Sample 2 considering Tc-O and Tc-P scattering. Adjustment 

between k = 3 and 12.5 Å-1. Experimental data in black and fit in red dots. 
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Table S4. EXAFS fit parameters obtained by adjustment of the k3-EXAFS spectra for 

Sample 2. ΔE0 = 4.56 eV. Reduced-chi2 =297.01 

Scattering C.N  R (Å) 2 (Å2) 

Tc0-Oa 0.4 1.70 0.003* 

Tc0-Ob 4.3 2.11 0.005* 

Tc0-P # 11.2 3.38 0.006* 

Tc0-OP (MS1)# 22.4 3.52 0.012* 

* fixed parameters. #correlated parameter  
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