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Abstract

In this work, we report on a series of natural language processing tools and models to improve the

efficiency and accuracy of information discovery from clinical trials and pharmacological studies.

Our main contributions are:

1. The development of an open-source platform Tri-AL that

• Enables dynamic tracking of clinical trials information over time,

• Excels in data visualization and user interaction with a particular emphasis on enhancing

the analysis and representation of race and ethnicity data to foster equity in clinical

research, and

• Includes a predictive model utilizing machine learning to decipher drug mechanisms of

action.

2. Heterogeneous Graph Neural Network for Gene-Chemical Entity Relation Ex-

traction: We created a supervised deep learning model that adapts a heterogeneous Graph

Neural Network to extract gene-chemical components. This model augments word repre-

sentations using message passing that accurately identifies gene-chemical named entities and

their relationships class.

3. Bipartite Graph Model for Evaluating Summarization Performance: We proposed

a bipartite graph model to evaluate the performance of large language models in summarizing

clinical trials. This model provides a robust framework to assess the accuracy and effectiveness

of automated summarization tools in the medical domain.
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Chapter 1

Introduction

Over the past few decades, the healthcare industry has experienced an exponential increase in the

volume of biomedical information, including an extensive array of medical data and scientific liter-

ature. This data is syntactically and semantically heterogeneous, varying significantly in structure

and meaning depending on the context in which it is used [PPS+23]. Research study [GGS23]

classifies the medical data into several key categories:

• Electronic Health Records (EHRs): Comprehensive digital records of a patient’s medical

history, including diagnoses, treatments, medications, immunization records, allergies, and

laboratory test results.

• Medical Imaging Data: Visual data from imaging studies used to diagnose and monitor

medical conditions, such as X-rays, CT scans, MRI scans, and ultrasound images.

• Laboratory Test Results: Data from tests performed on samples of blood, urine, tissue, or

other substances to detect or monitor diseases, including blood tests, urine tests, and biopsy

results.

• Genomic Data: Information about an individual’s genetic makeup, including DNA se-

quences and genetic variations, obtained through methods like whole genome sequencing.

• Clinical Trials Data: Data collected during clinical research studies to evaluate the effec-

tiveness and safety of medical interventions, including participant demographics, intervention

details, outcomes, and adverse events.

• Behavioral and Social Determinants Data: Information about behaviors and social
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factors that affect health outcomes, such as smoking status, alcohol consumption, race or

ethnicity, and education level.

• Clinical Notes and Narrative Text: Unstructured text data from clinician documentation

and patient communication, including progress notes, clinical summaries, and referral letters.

• Sensor and Wearable Data: Continuous or periodic health data collected from sensors

and wearable devices, such as activity levels from fitness trackers, sleep patterns from smart-

watches, and continuous glucose monitoring data.

Despite the richness of this data, extracting concise and actionable information from such resources

remains one of the most significant challenges in the healthcare community. The variability in data

formats, terminologies, and contexts can complicate data integration and analysis [SASK23].

1.1 The Impact of NLP on Medical Data

Natural Language Processing (NLP) has become an essential technology in medical data analysis.

It offers benefits by enabling the extraction and interpretation of complex unstructured text data

from various sources such as medical records, clinical trials, and other healthcare-related documents.

By automating the data extraction process, NLP significantly enhances the efficiency and accuracy

of data handling, which in turn, delivers real-world results by boosting research capabilities. This

improvement includes patient care and support for evidence-based medical practices. NLP enhances

clinical decision support by extracting and presenting critical information in a format that is easily

interpretable for healthcare providers. Real-time access to this information enables clinicians to

make informed decisions quickly to improve patient care outcomes. For example, NLP has been

used to flag potential drug interactions or to highlight important trends in a patient’s medical

history that might require immediate attention. Figure 1.1 illustrates the various NLP areas in the

biomedical domain.

1.2 Key Challenges in Clinical Trials and Electronic Health Records Analysis

In this work, we focus on several critical challenges associated with clinical trials and electronic

health records (EHRs). These challenges are fundamental obstacles to improving data analysis and

utilization in clinical research.
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Figure 1.1: NLP Areas on Medical Data

Tracking Clinical Trials Over Time: Monitoring the progress and outcomes of clinical trials

over extended periods is challenging due to the vast amount of data generated at different stages.

Ensuring that this data remains accurate, organized, and accessible is crucial for longitudinal studies

and decision making about ongoing and future research [MBR+23] [CLN+22].

Automating Information Extraction from Clinical Trials: Manual extraction of relevant

information from clinical trials is time-consuming and error prone. The diversity in report formats

and the complexity of the language used further complicate this task. Automating the extraction

process is essential to enhance efficiency and accuracy for analysis and decision-making [ABCED23].

Supporting Diversity and Inclusion in Clinical Trials: Ensuring that clinical trials in-

clude diverse and representative populations is vital to generalize the findings. It requires careful

analysis of demographic data and targeted efforts to recruit underrepresented groups, which are

often overlooked in clinical research [BSM+23] [MMMG23].

Measuring the Reliability of Applying Large Language Models for Clinical Trial

Summarization: The use of large language models (LLMs) to summarize clinical trial data

presents a significant challenge in accuracy. Summarization must capture essential details while

maintaining the information of the original data. Evaluating the performance of LLMs in this

context is critical to ensure that these tools can reliably assist in synthesizing complex medical

3



information [TTE+23] [VVVUB+23].

1.3 Motivation

NLP is a critical technology in clinical research, extraction of biomarkers, analysis of test results, di-

versity representation, and improvement of decision-making. These concepts are critical to advance

medical research and enhance patient care. These often need more comprehensive tools to manage

and analyze the vast amounts of unstructured data found in clinical trials and electronic health

records (EHRs). Although there are models and systems available to address these challenges, there

is currently a lack of comprehensive open-source systems that integrate all the necessary NLP tools

to tackle these issues effectively. In this work, we aim to bridge this gap by combining a set of

NLP tools designed to implement solutions that improve upon previous methods. By leveraging

these tools, we seek to automate the extraction of crucial data points from clinical trials, ensuring

that information such as biomarkers and test results are accurately captured and easily accessible.

Additionally, our approach addresses the need for more robust demographic data analysis to ensure

diversity and inclusion in clinical research. Through these efforts, we aim to enhance the preci-

sion and efficiency of data-driven decision-making in healthcare, ultimately contributing to more

equitable and effective medical research and practice.

1.4 Contributions

We have made several significant contributions to overcome the challenges outlined in the previous

section.

• Tri-AL, An Open Source System for Tracking Clinical Trials: We have developed an

open-source system called Tri-AL that tracks clinical trials on ClinicalTrials.gov over time.

Tri-AL, with its module for analyzing the race and ethnicity of participants in clinical trials,

provides an interactive interface and data visualization tools that can be directly applied in

exploring data features.

• Predicting Drug Mechanisms of Action: We have developed a supervised predictive

model that can determine the mechanisms of action for various drugs by leveraging machine

learning, deep learning, and language models. This model enhances our understanding of

drug functions and their interactions.
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• Heterogeneous Graph Neural Network for Gene-Chemical Entity Relation Ex-

traction: We created a supervised Deep Learning (DP) model that adapts a heteroge-

neous Graph Neural Network (GNN) to extract gene-chemical components. This model

augments word representations using message passing in the GNN and accurately identifies

gene-chemical named entities and their relationships class.

• Bipartite Graph Model for Evaluating Summarization Performance: We propose

a bipartite graph model to evaluate the performance of large language models in summariz-

ing clinical trials. This model provides a robust framework for assessing the accuracy and

effectiveness of automated summarization tools in the medical domain.

In this dissertation, we present our work across several detailed chapters. In Chapter 2, we provide

a comprehensive review of related work in the field, focusing on the use of NLP to address the

challenges mentioned above. This chapter covers various approaches and methodologies previously

employed, highlighting their strengths and limitations. Chapter 3 provides details of the medi-

cal databases and information sources used in this research including specifics on data selection,

preprocessing, and data integration. In Chapter 4, we describe the Tri-AL open-source system,

elaborating on its architecture, functionalities, and the different modules it comprises, such as

those for tracking clinical trials and analyzing participant demographics. Chapter 5 delves into

the DP model we adapted for medical data, specifically for the extraction of gene-chemical named

entities and their relationships, using a supervised deep learning approach with a heterogeneous

graph neural network. Chapter 6 introduces our innovative bipartite graph solution designed to

evaluate the performance of large language models in summarizing clinical trials, explaining the

model’s structure and evaluation metrics. Finally, in the last section, we conclude our findings,

discuss the implications of our work, and suggest future research directions to further advance the

field.
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Chapter 2

Background

Many NLP systems have been developed for electronic health records and medical datasets. This

section provides a comprehensive summary of related work and identifies the gaps that our research

aims to address. Initially, we review existing work on ClinicalTrials.gov, focusing on frameworks

designed to extract information, track clinical trial progression, and analyze the participants’ race/

ethnicity. We then delve into the tasks of Named Entity Recognition (NER) and Relation Extraction

(RE), highlighting the importance of performing these tasks jointly. We formulate NER and RE

tasks and overview their previous research on biomedical textual data, showcasing the efforts and

methodologies applied to these tasks. Additionally, we examine prior work involving the use of large

language models to summarize clinical and biomedical textual data, underscoring the necessity

of having robust and thorough validation methods to ensure the accuracy and reliability of the

summaries. Finally, we outline the metrics employed in this dissertation to evaluate the models,

ensuring a rigorous assessment of their performance. Through this review, we aim to set the stage

for our contributions and demonstrate how this dissertation addresses the existing gaps in the field.

2.1 Information Extraction on Clinical Trial Data

Numerous NLP systems have been developed to automate the extraction of information from

clinical trial data, particularly addressing the long, unstructured textual data features in clinical

trials, such as eligibility criteria. These criteria, which are divided into inclusion and exclusion

categories, define the specific characteristics that determine whether individuals can participate in

a study. Inclusion criteria specify participants’ traits, such as age range, gender, disease type and

stage, health status, previous treatments, and other demographic factors. In contrast, exclusion
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criteria outline characteristics that disqualify potential participants, including comorbid conditions,

contraindications, specific previous treatments, known allergies or adverse reactions, pregnancy,

active substance abuse, and other factors that might compromise the study’s integrity or participant

safety. [SCH23] highlights that inappropriate criteria can lead to insufficient recruitment, which

is a common reason for the failure of many clinical trials. By automating the extraction of these

criteria, NLP systems enhance the efficiency and accuracy of managing clinical trial data [TSM+20].

Previous research in this area is categorized into rule-based and ML-based systems

Rule-based Systems: Rule-based systems are a type of artificial intelligence (AI) system that

uses predefined logical rules to process data and make decisions. These systems rely on a set of

”if-then” rules, which are created by domain experts, to interpret and analyze input data to pro-

duce an output. Studies [HLW16], [WWL+11], [TPC+11], and [BTC+12] are rule-based proposed

systems to automate the information extraction from clinical trials eligibility criteria. For instance,

Valx [HLW16] is a system with an automated method designed to extract and normalize numeric

lab test comparison statements. The system leverages semantic knowledge from the Unified Med-

ical Language System (UMLS) [Bod04] and domain knowledge from the Internet. Valx operates

through a seven-step process, including text preprocessing, numeric and unit extraction, variable

identification, association filtering, measurement unit normalization, and heuristic rule-based verifi-

cation. An example of this rule-based system is this sentence: ”Participants must have a body mass

index (BMI) between 20 and 40 kg/m² and a fasting blood glucose level of less than 100 mg/dL.”

Valx processes this by first normalizing special symbols, correcting typos, and identifying sentences

with numeric values. It then extracts numeric expressions (20, 40, 100), units (kg/m², mg/dL),

and comparison operators (”between,” ”less than”). Using contextual and domain knowledge, Valx

identifies the variables ”body mass index (BMI)” and ”fasting blood glucose level.” Next, it asso-

ciates these numeric values with their respective variables and units, confirming ”BMI” with ”20

kg/m²” and ”40 kg/m²” and ”fasting blood glucose level” with ”¡ 100 mg/dL”. Valx then veri-

fies these associations through contextual information, ensuring unit consistency and correcting any

missing units. Finally, heuristic rules are applied to verify the structured numeric comparison state-

ments. The system was evaluated using clinical trial data for Type 1 and Type 2 diabetes. Another

rule-based system, EliXR system pipeline [WWL+11], developed to automate the semistructured

information extraction from clinical research eligibility criteria, integrates syntactic parsing and

tree pattern mining to discover common semantic patterns in texts from ClinicalTrials.gov. EliXR

combines the Unified Medical Language System’s (UMLS) semantic knowledge. This approach
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results in 175 semantic patterns forming 12 semantic role labels in a semantic network. Evaluated

by three independent raters on 396 sentence segments from 79 eligibility criteria, EliXR achieved

a high Fleiss’ kappa score of 0.88; Fleiss’ kappa score is a statistical measure used to assess the

reliability of agreement between multiple raters or judges when they categorize items into mutually

exclusive categories.

Hybrid Systems exist to extract critical information from electronic health records (EHRs)

and clinical trials. The rule-based component can identify specific medical terms and predefined

patterns (e.g., medication dosages, diagnostic codes), while the ML component analyzes the con-

text to recognize more complex relationships (e.g., identifying symptoms related to a condition

based on context). The hybrid systems integrated approach ensures comprehensive and accurate

extraction of critical patient data. As an example, the Criteria2Query [YRT+19] system utilizes

a hybrid information extraction pipeline combining machine learning and rule-based methods to

parse eligibility criteria text, transforming it into structured, computable representations that can

be executed as SQL queries within clinical databases. The system’s modular architecture includes

a systematic information extraction pipeline, a query formulation pipeline, and an interface for in-

teractive query review and execution in the ATLAS web application. Criteria2Query was evaluated

using 125 criteria from ClinicalTrials.gov and 52 user-entered criteria, achieving F1 scores of 0.795

for entity recognition and 0.805 for relation extraction, with high accuracy in negation and logic

detection. The system demonstrated its effectiveness in translating free-text criteria into executable

queries, significantly reducing the manual effort required for cohort definition and improving the

reproducibility and accuracy of clinical research.

As another hybrid tool, [TSM+20] proposes system frames eligibility criteria extraction as a

knowledge base population task and combines machine learning with context-free grammar (CFG)

techniques. The methodology involves a seven-step pipeline, including UMLS-based lexicon discov-

ery, semantic term annotation, sentence categorization, syntactic parsing, semantic pattern min-

ing, aggregation, and semantic role labeling. The system implements attention-based conditional

random field (CRF) architecture for named entity recognition (NER) and word2vec embedding

clustering for named entity linking (NEL). The contributions of this work include achieving a 0.753

end-to-end accuracy, implementing the first attention-based NER for criteria extraction with high

precision and recall, and creating a dataset of 121,221 clinical entities, attributes, and limits. The

system competes with existing tools like Criteria2Query and provides an open-source library for

further research and development.
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Machine Learning-based Systems: Machine learning (ML), language models, and large

language model systems for information extraction have become popular in handling the complex

and unstructured data found in clinical trial eligibility criteria or even the entire trials. For ex-

ample, Research conducted by [GGS+21] proposes and evaluates the effectiveness of the ExaCT

tool in semi-automating data extraction for systematic reviews of randomized trials. The study

highlights the challenge of conducting timely systematic reviews due to the rapid increase in clini-

cal trial publications and the labor-intensive nature of manual data extraction. ExaCT integrates

machine learning and text mining to identify and extract relevant data elements from full-text trial

publications. The methodology involved a prospective evaluation on a sample of 75 randomized

trials, with manual extraction and verification of 21 data elements by three reviewers to establish

a reference standard. ExaCT then processed these trials, identifying the presence of data elements

and extracting relevant sentences and fragments. The study measured the tool’s extraction accu-

racy, the relevance of provided sentences, and time savings compared to manual extraction. The

results showed that ExaCT correctly identified the reporting status of data elements with a median

accuracy of 91%, and at least one of the top five sentences provided by the tool was relevant in

88% of cases. Pertinent fragments were highlighted with a median relevance of 90%, and entirely

correct solutions were provided for 48% of data elements. Using ExaCT resulted in modest time

savings, with a total extraction time of 17.9 hours for 75 trials compared to 21.6 hours for manual

extraction.

Certain research studies [DBR19], [SMD+19], citehahn2020medical categorize papers in the

field of NLP techniques applied to clinical trials. Review study [HO20] focuses on the paradigm

shift from traditional Machine Learning (ML) techniques to Deep Neural Networks (DNNs). The

study highlights how DNNs have become the dominant approach for tasks such as named entity

recognition (NER) and relation extraction (REX) in the medical field, particularly for extracting

information about diseases and medications. The authors describe the advantages of DNNs over

previous ML methods, such as eliminating the need for manual feature selection and achieving

significantly higher performance metrics. Despite these advancements, the paper also acknowledges

challenges such as the need for large annotated datasets, the complexity of medical sublanguages,

and the computational demands of training DNNs. The survey emphasizes that while DNNs have

revolutionized medical NLP, they also present new challenges that require innovative solutions,

including transfer learning and domain adaptation to handle medical-specific language nuances

better.
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2.2 Tracking Clinical Trials Progression

Tracking the history of clinical trials is crucial for ensuring data integrity, regulatory compliance,

transparency, and accountability. It allows for accurate verification of data, adherence to ethical

and legal standards, and builds trust in research findings. Proper tracking facilitates the replication

and validation of studies, continuous monitoring of patient safety and efficacy, and aggregation of

data for meta-analyses, providing robust evidence on treatments. Additionally, it informs future

research designs, enhances their efficiency, and protects participants’ rights and well-being. Over-

all, it maintains the quality, reliability, and ethical standards of clinical research. Research papers

[Car22] and [SSM22] have provided frameworks to track the history of clinical trials while also en-

suring data security. [SSM22] presents a method to automate health technology assessment (HTA)

processes using R programming, focusing on maintaining data security and enhancing efficiency.

HTA involves evaluating medical, social, economic, and ethical issues related to health technology

use, which often require sensitive data, posing challenges for data sharing and model development.

The pipeline consists of three parts: an economic model constructed with pseudo data, an API

hosted on a server containing sensitive data, and an automated workflow that calls the API, re-

trieves results, and generates a report. The pipeline utilizes R packages like Plumber for creating

APIs and RMarkdown for report generation. The automated workflow enhances data security by

ensuring that sensitive data remains with the data owner, reducing the risk of data breaches. It

allows for scheduled or event-triggered updates, improving efficiency and reducing manual inter-

vention. The separation of data and model enhances transparency, allowing for greater scrutiny

and validation of the model. Additionally, handling the computational burden on a remote server

speeds up the analysis. The authors provide an example user interface built with the shiny package,

enabling non-technical stakeholders to interact with the model. The method has been validated

using example data and is available as open-source code on GitHub, inviting further collaboration

for validation and improvement. Research papers [Car22] and [SSM22] have provided frameworks

for tracking the history of clinical trials while also ensuring data security. [Car22] introduces a

novel R package, cthist, designed to automate the extraction of historical data from clinical trial

registries, specifically ClinicalTrials.gov and DRKS.de. The motivation behind developing cthist

stems from the challenges in accessing historical registry data, which traditionally required man-

ual, labor-intensive efforts. This limitation hindered the feasibility, accuracy, and reproducibility

of certain types of research, such as assessing changes in clinical trial enrollment goals over time
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or evaluating modifications in trial protocols. The cthist package provides six main functions to

facilitate this data extraction, offering users a streamlined process to retrieve and analyze histor-

ical versions of clinical trial entries. The methodology involves web scraping techniques to collect

data on various aspects of clinical trials, including recruitment status, start and completion dates,

enrollment figures, and outcome measures. Three case studies demonstrate the utility of cthist:

assessing changes in recruitment period lengths, identifying outcome measure modifications, and

correcting for variable follow-up times in meta-research.

Previous methods for tracking clinical trials lack visualization capabilities, customization for

specific diseases, and the ability to be extended with machine learning modules for other tasks.

However, Tri-AL, as explained in Chapter 4, addresses these needs by offering a comprehensive

tool that provides robust visualization, disease-specific customization, and integration with machine

learning for enhanced functionality.

2.3 Analyzing Race and Ethnicity

Having a system that provides analysis on the race and ethnicity of clinical trial participants on

ClinicalTrials.gov is crucial for ensuring diversity and inclusivity in medical research. Such a system

would address the current underrepresentation of minority groups, enhancing the generalizability

and reliability of clinical trial outcomes. By systematically tracking and reporting demographic

data, researchers and policymakers can identify and mitigate disparities, ensuring that all popula-

tion segments benefit from advancements in healthcare.

There is much research [FNTW21], [KSMB21], [TSW+22], and [XVL+23] working on race/eth-

nicity analysis in clinical trial data. For example, the research conducted by [TSW+22] examines

the historical and current state of racial and ethnic diversity in US clinical trials. The study ana-

lyzed detailed records from all US clinical trials registered in ClinicalTrials.gov between March 2000

and March 2020. The reporting of race and ethnicity for clinical trial enrollees is not strictly re-

quired for all trials on ClinicalTrials.gov. However, implementing Section 801 of the Food and Drug

Administration Amendments Act (FDAAA 801) in September 2007 and the Final Rule in January

2017 increased the number of trials required to report this information [ZTWC16]. Consequently,

the proportion of trials reporting race and ethnicity data on ClinicalTrials.gov rose significantly

after the 2007 establishment of the results database. Between 2008 and 2018, the reporting of any

race/ethnicity enrollment data increased from 26% (599 out of 2,334) to 91% (194 out of 213), with

an annual growth rate of 13.5%. The key findings indicate that only 43% of the 20,692 US-based
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trials with reported results included any race/ethnicity data. Among the trials that were reported,

the majority of participants were White (median 79.7%), with significantly lower representation of

Black (10%), Hispanic/Latino (6%), Asian (1%), and American Indian (0%) participants compared

to their respective proportions in the US population. The study found that industry and academic

funding were negatively associated with race/ethnicity reporting, while US government-funded tri-

als showed higher reporting rates and greater diversity among enrollees. Over the two decades,

there was a modest annual increase of 1.7% in the enrollment of minority groups. The lack of

diversity in clinical trials contributes to a data gap, which skews medical evidence and innovation,

potentially leading to biased therapeutic outcomes for minority populations. The study highlights

the need for improved and standardized reporting of race/ethnicity data to ensure the equitable

representation of all demographic groups in clinical research.

Study [XVL+23] provides a systematic review and meta-analysis of the demographic representa-

tion in U.S.-based COVID-19 clinical trials. The study analyzed data from 122 trials with 176,654

participants, focusing on including female, racial, and ethnic minority individuals. The findings

reveal that female participants and Black and Asian individuals were underrepresented in specific

trials, while Hispanic or Latino participants were often overrepresented, particularly in treatment

trials. The study underscores the ongoing challenges in achieving equitable representation in clinical

trials.

We designed a module within Tri-AL to address these challenges and provide a comprehensive

tool for analyzing participants’ race and ethnicity on ClinicalTrials.gov. This module enables

detailed tracking and reporting of demographic data, ensuring greater transparency and inclusivity

in clinical trials. Tri-AL helps identify and mitigate disparities in participant representation, by

visualizing and representing statistics of race and ethnicity of trials’ participants. We explain this

feature of the Tri-AL system in Chapter 4.

2.4 Named Entity and Relation Extraction

Information Extraction (IE) is fundamental to knowledge-based systems. It leverages NLP tech-

niques to uncover hidden information within unstructured texts. These systems are crucial in

converting raw text data into structured knowledge, enabling more effective information retrieval,

data analysis, and decision-making processes [Kum17].

Over the years, a multitude of knowledge-based systems have emerged, each tailored to assist

professionals in diverse fields. For example, a knowledge-based system for troubleshooting PCs
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offers automated solutions to identify and resolve computer issues [DAN18]. In the medical domain,

a similar system aids in diagnosing diabetes, providing clinicians with valuable insights and decision

support [DME+19]. These instances underscore the practicality and impact of knowledge-based

systems in various sectors, making the relevance of IE, NER, and RE more tangible.

IE is a complex process that involves two key subtasks: Named Entity Recognition (NER)

and Relation Extraction (RE). These tasks, when executed in sequence, play a pivotal role in

transforming unstructured data into structured knowledge.

Named Entity Recognition (NER): NER, the first subtask of IE, is the process of identifying

and categorizing named entities within a text. These entities can range from common categories like

locations, organizations, and persons to more specific ones like drug names, chemical compounds,

and biological proteins. NER is a crucial initial step in the development of a knowledge-based

system, as it structures the text by highlighting key elements that can be further analyzed [PPB17].

For instance, in a medical document, NER would identify terms like ’insulin,’ ’ diabetes,’ and

’pancreas,’tagging them as relevant entities.

Relation Extraction (RE): RE builds upon the entities identified by NER, focusing on

determining the relationships between these entities. RE aims to extract relational triples in the

format (Entity 1, Relation type, Entity 2). These triples, often referred to as (subject, relation,

object), encapsulate the semantic connections between entities within the text. For instance, in

the sentence ”Insulin regulates blood sugar levels,” an RE system would extract the triple (Insulin,

regulates, blood sugar levels). Identifying such relationships is crucial to build comprehensive

knowledge graphs that represent complex information in a structured manner [NIR+23]. In another

way of classification RE Sequences are categorized into three types [MB16]:

• Normal Sequences are those in which there are no triples with common subjects or ob-

jects. Each entity pair and their corresponding relationship are unique within the text. For

example, consider the medical text: ”Aspirin reduces inflammation. Penicillin treats bacterial

infections.” In this case, there are two distinct triples: (Aspirin, reduces, inflammation) and

(Penicillin, treats, bacterial infections).

• Single Entity Overlapped (SEO) Sequences contain at least two triples with a com-

mon subject or object. This overlap can create complexities in accurately identifying and

classifying the relationships due to the shared entities. For instance, in the text: ”Aspirin

reduces inflammation and is used to prevent heart attacks,” the entity ”Aspirin” is involved in
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two different relationships: (Aspirin, reduces, inflammation) and (Aspirin, is used to prevent,

heart attacks).

• Entity Pair Overlapped (EPO) Sequences involve at least two triples with the same

subject and object but different relation classes. This situation can cause confusion for clas-

sifiers, as the same entity pair participates in multiple types of relationships. As an example,

consider the text: ”Aspirin prevents heart attacks and also reduces the risk of stroke.” This

text generates the following triples: (Aspirin, prevents, heart attacks) and (Aspirin, reduces

the risk of, stroke).

The task of Relation Extraction (RE) can be classified into two main approaches: supervised and

unsupervised.

• Supervised Relation Extraction relies on labeled training data where experts explicitly

annotate the relationships between entities. This approach trains a model on these annotated

examples to learn patterns and relationships. Features are extracted from the text, such as

lexical, syntactic, and semantic information, to help the model understand the context and

nature of the relationships. The trained model can then highly predict relationships in a

new, unseen text. Still, this method requires significant annotated data, which can be time-

consuming and expensive.

• Unsupervised Relation Extractiondoes not require labeled training data. Instead, it aims

to discover relationships directly from the text through clustering, co-occurrence analysis, or

pattern mining. This approach leverages the assumption that entities frequently appearing

together or in specific patterns are likely related. Techniques such as dependency parsing

or Open Information Extraction (OpenIE) [PJC23] are often used to identify these patterns.

While unsupervised RE is more accessible when applied to new domains and large datasets,

it typically has lower accuracy. It may produce more irrelevant or spurious relationships

compared to supervised methods.

In this dissertation, we focus on supervised Relation Extraction (RE). There are two primary

types of supervised RE models: Joint Named Entity and Relation Extraction (JNERE) and pipeline

methods.
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2.4.1 Pipeline Methods

Pipeline methods, such as those described in source [CR11], operate in two distinct phases. The

system identifies all possible entity pairs within the text in the first phase. In the second phase, it

classifies the relationships between these pairs. However, pipeline methods have several drawbacks:

• Error Propagation: Errors in the Named Entity Recognition (NER) subtask can propagate

to the Relation Extraction (RE) subtask. For example, if the system misidentifies ”Warfarin”

(a medication) as a general term rather than a specific drug name, it might incorrectly classify

the relationships involving ”Warfarin.” This could lead to errors in identifying important

medical relationships, such as drug interactions or treatment protocols.

• Class Imbalance: Many entity pairs in medical texts may not belong to any predefined

relation class, leading to a highly imbalanced dataset where the ”no relation” class domi-

nates. For example, in a medical document, the majority of entity pairs such as ”aspirin”

and ”headache” might not have a direct relationship, making it difficult for the classifier

to accurately learn and distinguish between relevant medical relationships like ”treats” or

”causes.”

• Complexity: The large number of potential entity pairs in medical documents increases

the complexity of the problem. For instance, in a lengthy medical report, the number of

possible pairs, such as ”doctor-patient,” ”drug-disease,” and ”symptom-treatment,” can be

vast, making the classification task computationally intensive and challenging to manage

effectively.

• Ambiguity in Relations: The classifier can become confused when the same subject-

object pair can belong to multiple relation classes. For example, in the sentence ”Metformin

treats diabetes and is prescribed for managing blood sugar levels,” the subject-object pair

”Metformin-diabetes” has both a treatment and a prescription relationship. This ambiguity

can confuse the classifier, leading to incorrect or inconsistent relationship extraction.

These SEO and EPO sequences pose additional challenges for pipeline methods because they require

the classifier to handle overlapping and potentially conflicting relations.
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2.4.2 Joint Named Entity Relation Extraction (JNERE)

To address these challenges, JNERE was proposed. This approach simultaneously extracts entities

and their relationships from the text in a single, unified process. JNERE is often referred to by

various names in the literature, including joint named entities relation extraction, triple extraction,

and end-to-end relation extraction. By extracting entities and relations together, JNERE avoids

the error propagation and class imbalance issues inherent in pipeline methods. It also simplifies

handling overlapping sequences by considering the context and relations holistically. In summary,

while pipeline methods separate the tasks of entity recognition and relation classification, leading

to potential errors and complexity, JNERE integrates these tasks, offering a more robust solution

for extracting structured information from unstructured texts.

2.4.3 JNERE Task Formulation

In this dissertation, we focus on chemical components as the first named entity and genes as

the second named entity, aiming to jointly predict the relationships between them. In this task,

joint entity and relation extraction involves identifying all possible (Chemical,Relation-type,Gene)

triples within a text. For simplicity, these triples are denoted as (ch, r, g) throughout this discussion.

The objective function for this task is defined as follows:

|D|∏
j=1

 ∏
(ch,r,g)∈Tj

p((ch, r, g)|xj)

 (2.1)

where:

- xj is the tokenized sequence.

- |D| is the number of sequences in the training dataset.

- Tj represents the set of all triples in the jth sequence.

- p((ch, r, g)|xj) is the probability of identifying the triple (ch, r, g) in the tokenized sequence xj .

By applying the chain rule of probability, we can expand the objective function as follows:

|D|∏
j=1

 ∏
ch∈Tj

p(ch|xj)
∏

(r,g)∈(Tj |ch)

p((r, g)|ch, xj)

 (2.2)

Further expanding the function, we get:

|D|∏
j=1

 ∏
ch∈Tj

p(ch|xj)
∏

r∈(Tj |ch)

p(g|ch, r, xj)
∏

r∈(R\Tj |ch)

p(g∅|ch, r, xj)

 (2.3)
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where:

- ch ∈ Tj denotes the chemicals within the triples of sequence j.

- r ∈ (Tj |ch) represents the relations associated with the chemical ch.

- r ∈ (R \ Tj |ch) indicates all relations excluding those that involve the chemical ch.

- p(g|ch, r, xj) is the probability of the gene g given the chemical ch, relation r, and sequence

xj .

- The term p(ch|xj) represents the probability of identifying a chemical entity in the sequence

xj .

- The term p((r, g)|ch, xj) represents the probability of identifying the relation r and gene g

given the chemical ch in the sequence xj .

- p(g∅|ch, r, xj) is the probability of having no relation (null gene) given the chemical ch, relation

r, and sequence xj . Our aim is to maximize this objective function to accurately identify chemical

entities, their interactions, and the absence of interactions in the given text [WSW+20].

2.4.4 JNER Task Biomedical Domain Related Work

Several studies [ZZ22] [ZWB+17] [SYW+22] [LYC+20] [ZLC+19b] have applied joint Named Entity

Recognition and Relation Extraction (JNERE) in the biomedical domain, showcasing its effective-

ness in extracting complex information from scientific texts. The following studies serve as the

baselines for our model presented in Chapter 1, providing a basis for comparison with our results.

Figure 2.1 illustrates a classification of related work for the named entity and relation extraction

task, which we only focus on the JNERE methods.

Study [ZZ22] proposes a novel span-based approach to jointly extract entities and their relations

from biomedical text involving bacteria biotopes (BBs). The method addresses the challenge of

recognizing nested and discontinuous entities common in the BB corpus. The authors employ a

BERT model pre-trained on domain-specific corpora to encode sentences, capturing rich contextual

information [DCLT18a]. The span-based model considers all possible spans within a sentence as

potential entity mentions, computing relation scores between spans using their representations and

the context between them. The model involves several steps: preprocessing the text with Scis-

paCy [NKBA19] for sentence segmentation and tokenization, using BERT to generate contextual

embeddings for each token, and constructing span representations through max pooling over the

embeddings within each span. These representations are then used in feed-forward neural networks

to predict entity and relation types. A pruning strategy reduces the number of spans considered for
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Figure 2.1: Classification of Related Work on NERE Task

relation extraction, focusing on the most likely entity spans. The model utilizes multi-task learning,

simultaneously optimizing for entity recognition and relation extraction, enhancing both tasks’ per-

formance. Experimental results on the BB-rel+ner 2019 corpus [DBC+16] demonstrate the model’s

superior performance, significantly reducing the slot error rate (SER) compared to state-of-the-art

methods. The model’s effectiveness in recognizing nested entities and its generalizability to other

datasets, such as the CHEMPROT corpus [KKB+16], are highlighted, showcasing its potential for

broader applications in biomedical information extraction.

Research [SYW+22] presents a novel method for extracting biomedical entities and their rela-

tions from unstructured literature. The proposed method utilizes a machine reading comprehension

(MRC) framework to address the challenge of overlapping triplets, which are common in biomed-

ical datasets. They employ BERT for encoding sentences and introduced a tagging strategy for

overlapping triplets. The MRC4BioER model converts the joint extraction task into a sequence

of (Query, Context, Answer) tuples, allowing the model to focus on relation-specific semantic fea-

tures and effectively handle overlapping entities. The model was evaluated on the CHEMPROT

and DDIExtraction2013 datasets, demonstrating superior performance to existing joint extraction

methods. Specifically, MRC4BioER outperformed baseline methods such as NovelTagging and Cas-

Rel, achieving higher F1 scores in both CPI [KKB+16] and DDI extraction tasks [HZSBMD13].

Ablation experiments further confirmed the effectiveness of the proposed tagging scheme and the

overall MRC framework, showing significant improvements in handling sentences with multiple
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triplets.

The study [LYC+20] proposes a joint learning approach to extract entities and relations from

biomedical texts simultaneously. The method employs a novel tagging scheme designed to handle

overlapping ties, which are common in biomedical literature. The model integrates an Att-BiLSTM-

CRF architecture, which leverages attention mechanisms to enhance the long-distance dependencies

between related entities and focuses on critical words for accurate predictions. Additionally, the

model uses contextualized ELMo embeddings pre-trained on biomedical texts to improve perfor-

mance further. The model was evaluated on the DDI and CPI datasets, where it significantly

outperformed existing methods. Specifically, it achieved an F1-score of 0.751 on the DDI dataset

and 0.551 on the CPI dataset, marking substantial improvements in overlapping relation extraction.

The study [ZWB+17] proposes a novel tagging scheme to convert the joint extraction of enti-

ties and their relations into a tagging problem, facilitating the use of end-to-end models without

the need for complex feature engineering. The method employs a Bi-LSTM-CRF architecture,

leveraging the capabilities of Bi-directional Long Short-Term Memory (Bi-LSTM) networks to en-

code input sentences and Conditional Random Fields (CRF) to decode the tag sequence. This

approach effectively captures long-term dependencies in the data, enhancing the accuracy of entity

and relation extraction. The model was evaluated on a public dataset created using a distant super-

vision method, achieving superior performance compared to traditional pipelined and joint learning

methods. Specifically, the proposed model, LSTM-LSTM-Bias, outperformed other models with a

precision of 0.615, recall of 0.414, and an F1-score of 0.495, marking a significant improvement over

the best existing method, CoType [RWH+17], which had an F1-score of 0.463. The results validate

the effectiveness of the novel tagging scheme and the end-to-end model in extracting entities and

their relations from unstructured text.

The study [ZLC+19b] presents a novel multi-task learning approach to address the challenge of

extracting entity mentions and their relations from domain-specific biomedical texts. The frame-

work consists of a shared transformer encoder for named entity recognition (NER) and relation

extraction tasks, followed by separate mention recognition and relation extraction layers. The

mention recognition layer uses an enhanced BIOHD tagging schema to handle disjoint and over-

lapping entity mentions. In contrast, the relation extraction layer predicts relations by considering

Microorganism entities as central to all relations. The model is trained using a joint loss func-

tion combining both NER and relation extraction losses. The evaluation results underscore the

exceptional performance of the proposed model on the Bacteria Biotope (BB) rel+ner subtask. It

19



not only surpasses traditional pipeline and other joint extraction methods but also demonstrates

a significant improvement over baseline methods. The model achieves a Slot Error Rate (SER) of

0.947, precision of 0.493, and recall of 0.339, outperforming the Pipeline method by reducing the

SER by 0.525. For specific relation types, the model excels with an SER of 0.954 for all relation

classes, 0.982 for Exhibits, 1.318 for Lived in-geo, and 0.927 for Lived in-habitat.

2.5 Large Language Models for Medical Data

LLMs have found extensive applications in clinical trials, revolutionizing diverse processes with their

advanced capabilities. One significant use of LLMs is in summarizing complex clinical trial reports,

making it easier for researchers and practitioners to grasp essential findings and insights quickly.

Many researchers, such as [LHL+24] and [MEMR+24], have utilized LLMs for summarization.

Additionally, LLMs excel in information extraction, enabling the automated retrieval of relevant

data from vast amounts of clinical trial documents. This includes identifying key variables, patient

outcomes, and treatment effects. Notable studies, including those by [LPH+24] and [AAA+23],

have demonstrated the effectiveness of LLMs in information extraction. This section describes the

previous work in this area and our contribution.

The study [JWF+23] explores the use of LLMs like GPT-3 for clinical information extraction,

leveraging prompt-based learning to adapt pre-trained LLMs for tasks such as span identification,

token-level sequence classification, and relation extraction. By introducing new annotated datasets

based on the CASI dataset[MPL+14], the authors evaluate LLMs on diverse tasks, including clinical

sense disambiguation, biomedical evidence extraction, coreference resolution, and medication sta-

tus extraction. They employ a variety of techniques, including crafting specific prompt templates

and mapping LLM outputs to structured label spaces through resolver functions, significantly sim-

plifying the engineering effort required for these tasks. Additionally, weak supervision and model

distillation are used to train smaller, task-specific models, enhancing deployability and performance.

The results show that GPT-3 [AAA+23], combined with resolvers, outperforms existing zero-shot

methods and achieves an accuracy of 0.86 and a macro F1 score of 0.69 in clinical sense disam-

biguation. For biomedical evidence extraction, resolved GPT-3 demonstrates a token-level F1 score

of 0.61 and an abstract-level accuracy of 0.85, significantly higher than supervised baselines. In

coreference resolution, GPT-3 with guided prompts achieves a recall of 0.78 and precision of 0.58,

surpassing traditional deep learning models. Similarly, GPT-3 excels in medication extraction with

a recall of 0.87 and precision of 0.83 and medication status classification with a conditional ac-
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curacy of 0.85 and a macro F1 score of 0.69. Adding guided one-shot examples further enhances

performance, particularly in complex tasks involving multiple attributes.

The SEETrials system [LPH+24], utilizing GPT-4, was designed to automate the extraction

of data from oncology clinical trial abstracts. It comprises four modules: pre-processing, where

clinical trial abstracts from ASCO[oCO24], ASH [oH24] conferences, and PubMed are collected, and

tables in abstracts are converted to text; knowledge ingestion, which integrates oncology clinical

trial background knowledge into prompts to enhance the LLM’s analytical capabilities; prompt

modeling, which creates tailored prompts to guide the LLM in identifying and merging relevant

trial outcomes; and post-processing, where extracted data is refined and structured for subsequent

analysis tasks. The system was evaluated using a dataset of 245 multiple myeloma (MM) clinical

trial abstracts and 115 abstracts from breast, lung, lymphoma, and leukemia cancers. Performance

metrics included a precision of 0.958, a recall (sensitivity) of 0.944, and an F1 score of 0.951.

Significant heterogeneity in study outcomes across different therapy phases was noted, with I2

heterogeneity index scores exceeding 75% in several cases. The SEETrials system demonstrated

high accuracy and versatility, facilitating nuanced data comparisons and rapid dissemination of

clinical insights, potentially enhancing clinical decision-making and evidence synthesis in oncology.

The study [LHL+24], conducted by Pfizer, focused on utilizing LLMs to automate the genera-

tion of safety-related table summaries in clinical study reports (CSRs). The methodology involved a

challenge where multiple teams used generative pre-trained transformer (GPT) models with prompt

engineering to generate summaries from the safety tables of CSRs. The challenge, conducted over

six weeks, included training and testing phases using CSRs from a variety of clinical trials. Par-

ticipants used different techniques for table extraction, prompt engineering, and text generation,

and their outputs were evaluated on factual accuracy, lean writing, and provenance by both au-

tomated metrics and expert reviewers. Results showed variability in performance across teams,

particularly in factual accuracy and semantic similarity, indicating different levels of success in

accurately capturing and summarizing safety data. Some teams achieved high comprehension of

table structures and generated accurate summaries, while others faced issues like parsing errors

and factual inaccuracies. The evaluation highlighted areas for improvement, such as better table

ingestion methods, context addition, and fine-tuning of models. The study concluded that while

LLMs hold the potential for automating CSR summarization, human involvement remains crucial,

and ongoing research is needed to optimize these technologies for broader application in clinical

documentation.
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In this dissertation, we introduce a novel method utilizing bipartite graphs to quantify the

preservation of entity types in summaries generated by LLM compared to the original summaries.

This innovative approach allows for a detailed analysis of how well the generated summaries main-

tain the integrity and accuracy of critical medical entities, such as diseases, genes, and treatments,

which are crucial for clinical trials and medical research. We can systematically evaluate the degree

of entity type preservation by mapping entities from the original and generated summaries onto a

bipartite graph. This contribution not only provides a robust mechanism for assessing the quality

of LLM-generated summaries but also offers valuable insights into the potential and limitations of

LLMs in medical text summarization.

2.6 Metrics for Evaluation

In this section, we describe the metrics used in our dissertation to evaluate the performance of our

models, as well as all other metrics mentioned throughout this document. We focus on crucial eval-

uation metrics, including Precision, Recall, F1-Score, Slot Error Rate (SER), and ROUGE. Each of

these metrics offers a different perspective on the model’s performance, ensuring a comprehensive

evaluation of the model’s effectiveness.

Precision is a measure of the accuracy of the positive predictions made by a model. It is defined

as the ratio of correctly predicted positive observations to the total predicted positive observations.

High precision indicates a low false positive rate.

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)
(2.4)

Recall: also known as sensitivity or true positive rate, measures the model’s ability to identify

all relevant instances. It is defined as the ratio of correctly predicted positive observations to the

all observations in the actual class. High recall indicates a low false negative rate.

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)
(2.5)

F1-Score: The F1-Score is the harmonic mean of Precision and Recall. It provides a single

metric that balances the trade-off between Precision and Recall. The F1-Score is particularly useful

when you need to take both false positives and false negatives into account.

F1-Score = 2× Precision× Recall

Precision + Recall
(2.6)
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Slot Error Rate (SER): is a metric used to evaluate the performance of information extraction

systems, particularly those that extract structured data from unstructured text. In the context of

entity and relation extraction tasks, SER measures the number of incorrect, missing, or spurious

slots (i.e., pieces of information) extracted by the model. A ”slot” typically refers to an entity or

a relation between entities.

SER is calculated as follows:

SER =
Substitution Errors + Insertion Errors + Deletion Errors

Total Number of Slots in the Reference
(2.7)

Where:

• Substitution Errors: Instances in which the extracted slot is incorrect or does not match

the reference.

• Insertion Errors: Instances in which the model extracts an extra slot that should not be

present.

• Deletion Errors: Instances in which the model fails to extract a slot that is present in the

reference.

A lower SER indicates better performance, as the model has made fewer errors in extracting

the relevant information. This metric is particularly useful for evaluating tasks like the Bacteria

Biotope rel+ner subtask, where the precision and accuracy of extracting specific entities and their

relations are critical.

ROUGE-1: measures the overlap of unigrams (individual words) between the model-generated

summary and the reference summary. It evaluates how many unigrams from the reference summary

are present in the generated summary.

ROUGE-1 =

∑
S∈{Reference Summaries}

∑
w∈S Countmatch(w)∑

S∈{Reference Summaries}
∑

w∈S Count(w)
(2.8)

ROUGE-2: measures the overlap of bigrams (two consecutive words) between the model-

generated summary and the reference summary. It evaluates how many bigrams from the reference

summary are present in the generated summary.

ROUGE-2 =

∑
S∈{Reference Summaries}

∑
b∈S Countmatch(b)∑

S∈{Reference Summaries}
∑

b∈S Count(b)
(2.9)
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ROUGE-L: measures the longest common subsequence (LCS) between the model-generated

summary and the reference summary. It evaluates the longest sequence of words that appear in

both summaries in the same order, thus capturing sentence-level structure similarity.

ROUGE-L =
LCS(C,R)

Length(R)
(2.10)

where LCS(C,R) is the length of the longest common subsequence between candidate summary

C and reference summary R.

These ROUGE metrics provide a comprehensive evaluation of the quality of generated sum-

maries by considering both individual word matches and sequence-level matches, offering insights

into the relevance and coherence of the summaries.
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Chapter 3

Medical Databases

In this chapter, we describe the datasets used in this dissertation, including the ClinicalTrials.gov

[cli24], BioCreative VI, and BioCreative VII datasets known as CHEMPROT [WCH18] and Drug-

Prot [MML+21]. ClinicalTrials.gov provides a vast repository of electronic health reports from

clinical trials, encompassing a wide range of medical research data. These reports are essential

to understand various clinical studies’ scope, methodology, and results. On the other hand, the

BioCreative datasets, CHEMPROT (CPI) and DrugProt include PubMed data specifically curated

for named entity recognition and relation extraction tasks. These datasets focus on extracting

and identifying relationships between chemical compounds and proteins, as well as drugs and their

interactions, respectively. Combining these datasets enables a comprehensive analysis of clinical

and biomedical texts, supporting the development of robust models for information extraction and

summarization in the medical domain.

3.1 ClinicalTrials.gov

ClinicalTrials.gov is a comprehensive database of privately and publicly funded clinical studies con-

ducted worldwide, providing valuable information on diverse medical research. As of now, it hosts

information on approximately 456,000 clinical trials, making it one of the most extensive reposito-

ries of clinical trial data globally. This platform is crucial for researchers, healthcare professionals,

and patients, offering detailed descriptions of each study, including the objectives, methodologies,

participant eligibility criteria, locations, and outcomes. By facilitating access to this wealth of

information, ClinicalTrials.gov plays a pivotal role in advancing medical knowledge, promoting

transparency in research, and helping patients find studies they may be eligible to participate in
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Figure 3.1: Clinicaltrials.gov Tabular Data Sample

[cli24] [ZTW+11]. Figures 3.1 and 3.2 indicates one data sample from this dataset. It has both

tabular and large textual (eligibility criteria) data features. We describe each data field as follows:

• Study Title: A brief overview of the clinical study.

– Definition: The title of the clinical study, often including information about the con-

dition being studied and the intervention being tested.

– Description: Provides a brief overview of the study’s focus, helping users quickly un-

derstand the primary objective of the study.

• NCT Number: Unique identifier for the study.

– Definition: A unique identifier assigned to each clinical study registered on Clinical-

Trials.gov. The ”NCT” stands for National Clinical Trial.
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Figure 3.2: ClinicalTrials.gov Textual Data Fields

– Description: This number helps in uniquely identifying and referencing the study,

ensuring precise tracking and retrieval of study information.

• Study Status: Current phase of the study.

– Definition: Indicates the current phase of the study, such as ”Recruiting,” ”Com-

pleted,” ”Terminated,” etc.

– Description: This status helps users understand the current state of the study, includ-

ing whether it is actively enrolling participants or has concluded.

• Conditions: Medical conditions or diseases being studied.

– Definition: Lists the medical conditions or diseases being studied in the trial.

– Description: Helps users identify studies related to specific health issues, providing
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context about the scope of the research.

• Interventions: Treatments or therapies being tested.

– Definition: Details about the treatments, drugs, procedures, or therapies being tested.

– Description: Includes the type and nature of the intervention, outlining what is being

investigated to assess its impact on the condition.

• Sponsor/Collaborators: Organizations responsible for the study.

– Definition: The organization or individual responsible for the study and any additional

organizations collaborating on the study.

– Description: Includes pharmaceutical companies, research institutions, or government

bodies that are overseeing or funding the study.

• Study Design: Structure and methodology of the study.

– Definition: Provides information about how the study is structured, including the type

of study (e.g., interventional, observational), the number of participants, the allocation,

intervention model, and masking details.

– Description: Outlines the methodological approach of the study, helping users under-

stand how the research is conducted and its scientific rigor.

• Eligibility Criteria: Requirements for study participation.

– Definition: Describes the characteristics that participants must have to be included or

excluded from the study.

– Description: Helps determine who can participate in the study, ensuring that the study

population is appropriate for the research question.

• Locations: Geographic locations of the study sites.

– Definition: Lists the geographic locations where the study is being conducted, often

including the name of the institution and contact information.

– Description: This helps potential participants find study sites near them and provides

researchers with site details for collaboration.

• Outcome Measures: Goals of the study.
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– Definition: Defines what the study aims to measure to determine the effect of the

intervention, including primary and secondary outcome measures.

– Description: These outcomes help in evaluating the effectiveness and safety of the

intervention, guiding the study’s objectives and endpoints.

• Study Dates: Timeline of the study.

– Definition: Provides the start date, estimated primary completion date, and estimated

study completion date.

– Description: These dates give an idea of the study timeline and duration, helping users

understand the study’s schedule and progress.

• Contacts and Locations: Contact information for the study.

– Definition: Information about how to contact the study research staff and where the

study is being conducted.

– Description: Useful for potential participants and researchers looking to collaborate or

get more information about the study.

• Phase: Phase of the clinical trial.

– Definition: Indicates the phase of the clinical trial (e.g., Phase 1, Phase 2, Phase 3,

Phase 4).

– Description: Each phase has specific goals, such as assessing safety, efficacy, and side

effects, providing context about the study’s stage in the clinical trial process.

• Researcher View: Additional information for researchers.

– Definition: This tab provides additional information useful for researchers, including

detailed study protocol, statistical analysis plans, and other scientific data that may not

be included in the general public view.

– Description: Offers in-depth information for scientific scrutiny, aiding researchers in

understanding the study’s design and methodology.

• Results Posted/Not Posted: Status of study results.
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– Definition: Indicates whether the results of the study have been posted on ClinicalTri-

als.gov.

– Description: If results are posted, this section includes data on the study’s outcome

measures, adverse events, and other findings. If not posted, it may indicate that results

are pending or the study has not yet been completed.

• Record History: History of changes to the study record.

– Definition: This feature tracks the history of changes made to the study record.

– Description: Includes updates to the study status, amendments to the study proto-

col, changes in sponsor information, and other modifications since the study was first

registered. This helps provide transparency and allows users to see how the study has

evolved over time.

In Chapters 4 and 5 of this dissertation, we introduce our system designed to investigate data on

ClinicalTrials.gov for visualization, drug Mechanism of Action (MoA) classification, and clinical

trial summarization. Our approach leverages advanced data processing techniques to enhance the

understanding and accessibility of clinical trial information.

3.2 BioCreative VI and VII Datasets

For over a decade, BioCreative—a critical evaluation of text mining methodologies in molecu-

lar biology—has been dedicated to extracting annotated biomedical triples, such as (Chemical,

Interaction-type, Gene), from PubMed articles [KRL+15, KRA+17]. This initiative has signifi-

cantly advanced the field of biomedical text mining by providing robust datasets and challenges

that drive innovation and improve the accuracy of information extraction methods.

In our research, we assess the Bio-RIFRE system on two prominent public datasets: CHEMPROT

(CPI) [KRA+17] and DrugProt [MML+21]. These datasets are derived from the BioCreative VI

Track 5 and VII Track 1 challenges, respectively, and are designed to explore the interactions

between chemicals and genes/proteins. Both datasets are meticulously curated and manually an-

notated, facilitating the extraction of chemical-protein entity relations from PubMed abstracts,

which is crucial for understanding complex biological processes.

The CHEMPROT dataset serves as a gold standard for chemical-protein interaction (CPI)

extraction and comprises 2,420 PubMed abstracts. These abstracts are classified into five relation
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Table 3.1: BioCreative VI and VII datasets statistics [PRKL18]

Dataset Set # Abstracts # Relations
# Entities

Gene Chemical

CHEMPROT
Training 1020 4157 12752 13017

Development 800 2416 7568 8004
Test 600 3458 10019 10810

DrugProt
Training 3500 17274 43255 46274

Development 750 3761 9005 9853
Test 750 3491 9515 9434

categories: CPR 3 (upregulator), CPR 4 (downregulator), CPR 5 (agonist), CPR 6 (antagonist),

and CPR 9 (substrate). The dataset includes two main groups of entities: genes and chemicals,

totaling 30,339 gene entities and 31,831 chemical entities. This detailed classification supports

the development and evaluation of CPI extraction algorithms by providing clear and well-defined

interaction types.

The DrugProt dataset, published in 2021, extends the scope of relation extraction with a broader

set of interactions. It consists of 5,000 PubMed abstracts and encompasses thirteen distinct relation

classes: INDIRECT DOWNREGULATOR, INDIRECT UPREGULATOR, DIRECT REGULA-

TOR, ACTIVATOR, INHIBITOR, AGONIST, AGONIST-ACTIVATOR, AGONIST-INHIBITOR,

ANTAGONIST, PRODUCT-OF, SUBSTRATE, SUBSTRATE PRODUCT-OF, and PART-OF.

This dataset includes 61,775 gene entities and 65,561 chemical entities. The wide range of inter-

action types in DrugProt allows for a more comprehensive exploration of biochemical interactions,

enhancing the ability to train and evaluate sophisticated models for biomedical relation extraction.

Table 3.1 summarizes the statistics of both datasets, highlighting their extensive and varied nature.
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Chapter 4

An Open-Source Platform for Clinical

Trials Analysis

ClinicalTrials.gov is an extensive online repository managed by the National Library of Medicine.

It provides information about clinical studies on various interventions, such as drugs, devices,

and behavioral treatments. It is a crucial resource for scientists, medical researchers, pharma-

ceutical companies, and other institutions. However, managing the progression of clinical trials,

extracting research-specific information, and utilizing AI assistants for decision-making in various

domains, such as drug mechanism of action recognition, present substantial challenges when using

this database. A significant issue is the dataset website’s lack of visualization tools, which hinders

practical data interpretation and analysis. Without visual aids, identifying patterns and trends

within the data becomes exceedingly difficult. This deficiency complicates monitoring clinical trial

advancements and integrating AI-driven insights into research workflows. Consequently, researchers

and healthcare professionals need help fully leveraging this valuable resource’s potential, impeding

progress in critical areas of medical research [DCKH+19] [LHS23].

To address these issues, we developed the open-source platform Tri-AL to enhance data visual-

ization and analysis and facilitate comprehensive data extraction from textual fields. This platform

supports medical experts in their research by maintaining historical data and offering detailed di-

versity statistics, making it a valuable tool for clinical trial analysis and improving the efficiency of

drug development processes.
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4.1 Introduction

The ClinicalTrials database is utilized by scientists, medical researchers, pharmaceutical compa-

nies, and other public and private institutions. One critical use case of this database is to create

drug development pipeline observatories for various diseases. These reports summarize the cur-

rent state of drug development, comment on drug effectiveness and side effects, and inform na-

tional drug policies. Example observatories include those for Alzheimer’s Disease (AD) [CLN+22]

[MCT22], COVID-19 [PPH+20], Amyotrophic Lateral Sclerosis (ALS) [New22], and Parkinson’s

Disease [Par22]. There are also other motivations for investigating this database. For example,

one significant reason is to figure out the key indicators of the clinical trials problem in participant

recruitment; it is estimated that 80% of trials cannot meet their patient recruitment timeline or

fail to recruit a minimum number of participants required for completion [BMAZ+20]. The Text

Retrieval Conference (TREC) runs an annual challenge that uses the ClinicalTrials.gov data to

match participants to trials [Con22] to find a better way for better participant trial matching.

Additionally, there are other motivations for investigating this database. For example, identifying

key indicators of the clinical trials problem in participant recruitment is crucial, as it is estimated

that 80% of trials cannot meet their patient recruitment timeline or fail to recruit the minimum

number of participants required for completion [BMAZ+20]. The high failure rate of trials due to

recruitment issues leads to substantial financial and resource losses. To address this challenge, the

Text Retrieval Conference (TREC) runs an annual challenge using ClinicalTrials.gov data to match

participants to trials, aiming to improve participant trial matching and enhance the efficiency and

success rate of clinical trials [Con22].

Another critical concern is the recruitment of minorities. It is well known that sex, race,

and ethnicity significantly influence disease incidence, drug responses, and treatment outcomes

[GLCI+18, NMPO19]. However, as of 2014, less than 2 percent of cancer institute clinical trials

were allocated to minority populations [CJLD+14]. Additionally, even though African Americans

accounted for 21 percent of COVID-19 deaths, they only represented 3 percent of participants in

vaccine clinical trials [WFHST20]. Addressing these disparities is crucial for ensuring that clinical

trial results are representative and that all populations benefit equally from medical advancements.
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4.2 Problem Statement

The ClinicalTrials.gov website, as the database’s interface, has significant limitations in user cus-

tomization, data accessibility, and advanced analytics. tracking clinical trials over time requires

repeated manual data downloads, as most existing solutions lack robust mechanisms for historical

data tracking. The ClinicalTrials.gov interface has several notable drawbacks when it comes to

accessing and utilizing the data as follows:

Limited Filtering Options: The platform offers only basic filtering capabilities, which can

make it difficult for users to narrow down their searches to find specific trials or data points that

are most relevant to their needs.

Lack of Visualization Tools: ClinicalTrials.gov does not provide built-in visualization tools

for data analysis. Users cannot easily create charts, graphs, or other visual aids directly from the

database, which hinders the ability to quickly interpret and analyze the data.

Access to Latest Data Only: The platform only stores the most recent version of data for

each trial. This limitation means that historical data is not readily accessible, making it challenging

to perform longitudinal studies or track changes in trials over time.

Interface Usability: The user interface of ClinicalTrials.gov can be cumbersome and not

particularly user-friendly. This can pose a barrier to efficiently navigating and extracting data,

especially for users who are not highly familiar with the platform.

Inadequate Support for Advanced Analytics: The interface lacks support for advanced

analytics and data manipulation, limiting the ability to perform complex data analysis directly

within the platform.

Limited Reporting Features: The platform does not offer robust reporting features that

allow users to easily generate comprehensive reports based on their specific criteria or research

needs.

Insufficient Diversity Analysis Tools: There are limited tools available for analyzing and

reporting on the diversity of trial participants, such as sex/gender and race/ethnicity statistics.

This gap makes it harder to assess and address disparities in clinical trial representation.

Textual Data Extraction: Extracting specific information from textual fields within the

database can be challenging, as the interface is not optimized for detailed text retrieval or analysis.

Addressing these drawbacks requires developing additional tools and features that enhance the

usability, analytical capabilities, and data accessibility of ClinicalTrials.gov. We described related
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work in this area in section 2.1. Previous research in this area has highlighted the importance of an-

alyzing participant diversity, yet this often involves manual data analysis, which is time-consuming

and prone to errors. Additionally, search and information retrieval from clinical databases rely

heavily on advanced techniques like named entity recognition and transformer-based models, but

these methods are not seamlessly integrated with ClinicalTrials.gov for real-time data analysis and

reporting.

To address these drawbacks and challenges, we introduce Tri-AL (VisuAL ClinicAL TriALs), an

open-source data platform for visualization and analysis of ClinicalTrials.gov. Our primary purpose

is to provide automated tools that assist medical experts in developing reports and analyzing data.

This includes creating charts and tables and extracting information from textual fields. Another key

goal is maintaining historical data to examine trial changes over time concerning their phase, status,

and study outcomes. Historical analysis is crucial for evaluating trial feasibility and identifying

study design issues and intervention progression, as demonstrated in the recent analysis of SARS-

CoV-2 trials [HKC+22] [CLRZ18] [CLN+22]. For example, the estimated completion date of a

trial may change over time, making access to historical data vital for analyzing trials that take

longer than initially expected. Tri-AL also maintains sex/gender and race/ethnicity statistics for

US trials, facilitating diversity reports and trend analysis. Furthermore, Tri-AL is programmable,

allowing users to extract disease-specific information from textual fields such as the description of

the study design. Machine learning models can also be plugged into Tri-AL to generate additional

information, such as predicted labels. For example, in our extension of Tri-AL to Alzheimer’s

Disease, we implemented a deep learning model to predict the Mechanism of Action (MoA) of

drugs based on their descriptions extracted from trial data [NKC+22]. MoA reflects the physical

and chemical processes through which drugs interact with the human body, but it is not yet clear

for diseases like AD. Hence, this ML model is helpful for the researcher in deciding on the tested

drugs’ MoA. Notably, Tri-AL addresses several clinical trial data analysis technical challenges that

previous research does not address. This includes historical data tracking and extendable modules

for machine learning models and clinical information extraction. Moreover, Tri-AL’s open-source

architecture is designed for flexibility and customization, enabling users to adapt the platform to

their needs.

To summarize, the main contributions of Tri-AL are as follows:

• Tri-AL is an open-source interactive platform for ClinicalTrials.gov, featuring built-in charts

and tables for comprehensive data visualization.
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Figure 4.1: An Overview of the Tri-AL Architecture

• To facilitate historical analysis, Tri-AL captures the complete history of every field, including

trial status and study outcomes.

• Tri-AL offers detailed reports and statistics on the sex/gender and race/ethnicity demograph-

ics of US trials.

• Tri-AL is designed to be customized for a specific disease. It can be programmed to focus

on disease-specific information and extract related information from its textual fields. This

functionality is demonstrated through a case study on Alzheimer’s Disease.

4.3 System Overview

This section outlines the design of Tri-AL. The system architecture is depicted in Figure 4.1 and

is explained in detail below.

4.3.1 Data Configuration

We configure the data in two phases.
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Figure 4.2: Number of Updated AD Trials

Phase One involves the initial data download. ClinicalTrials.gov periodically uploads a com-

prehensive data backup in a single zip file, which we use to initialize the Tri-AL database. This

backup includes XML files for each trial, and to parse these XML files, we use the libxslt C libraries

and the lxml Python interface. Notably, this zip file is 2 GB, and when unzipped, the data expands

to 20 GB, highlighting the substantial initial setup required.

Phase Two manages the continuous import of new data into Tri-AL. While one method is to

download the entire backup from ClinicalTrials.gov daily, this approach is inefficient when updating.

Therefore, we utilize the ClinicalTrials.gov search tools and API for updates. The search tools allow

us to retrieve updates in formats such as comma-separated values (CSV) within a specific period.

However, these updates lack some fields present in the full data. To acquire these additional fields,

we use the API, querying with the IDs of the updated trials. This combined method enables us to

download complete copies of the updated trials, ensuring the Tri-AL database contains every trial

version along with a timestamp for historical analysis. For instance, figure 4.2 indicates changes in

the number of Alzheimer’s trials over time.
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…
<Struct Name="Study">
        <Struct Name="ProtocolSection">
          <Struct Name="IdentificationModule">
            <Field Name="NCTId">NCT05654389</Field>
            <Struct Name="OrgStudyIdInfo">
              <Field Name="OrgStudyId">Model of Care</Field>
            </Struct>
            <Struct Name="Organization">
              <Field Name="OrgFullName">The New Model of    
Care, Hail Health Cluster</Field>

…
<Field Name="Gender">All</Field>
            <Field Name="MinimumAge">18 Years</Field>
            <Field Name="MaximumAge">60 Years</Field>

…

… …nct_id min_age max_age

NCT05654389 18 60
… … …

Trial TableXML File

… … …

Figure 4.3: Inserting XML Data into SQL Tables

4.3.2 Database

The database underpinning the ClinicalTrials.gov website comprises 46 tables [Int24]. To manage

complexity and streamline data handling and analysis, we consulted with medical researchers to

identify the most crucial relations. For example, the original database includes tables, such as

”Milestone” and ”DropWithdrawal,” which provide supplementary details about trial milestone

periods and reasons for participant withdrawal in trials marked with a withdrawal status. Based on

feedback from medical researchers during the requirements-gathering phase, we decided to exclude

tables that contain non-essential data for the drug progression system’s goals.

Our simplified schema comprises six key data tables: Agent (interventions), Condition, Biomarker,

Sponsor, Country, and Trial. Additionally, the schema includes four system tables: Subscriber,

Newsletter, UpdatesLog, and HistoricalTrial. The Subscriber and Newsletter tables track users

who subscribe to receive our newsletter with information on newly added trials. For more details

on the database schema, refer to the ”models.py” file in the code [ALc24]. We use the Django

framework and SQLite 3 as the database backend due to its lightweight architecture, simplicity, and

ease of setup. Figure 4.3 indicates how the XML file is read from the data configuration module

and is stored in the trial table.

4.3.3 ML Module: Information Extraction

Tri-AL can extract disease-specific information from textual data fields by utilizing a set of pre-

defined named entities as parameters. The system employs a deep learning-based model, detailed

in Chapter 6, and a rule-based model explained in this chapter. For example, Table 4.1 delineates
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specific data features such as Biomarkers, Mini-Mental State Examination scores, CSF or PET

data, and Subject Characteristics that need to be extracted from specified data fields. The infor-

mation extraction module within Tri-AL allows users to define new columns in the Tri-AL database

and implement functions and models to populate these new columns with relevant data, thereby

enhancing the granularity and specificity of the extracted information for research and analysis

purposes. Algorithm 1 is designed to extract specific information related to the MiniMental State

Examination (MMSE) and the presence of Cerebrospinal Fluid (CSF) mentions from clinical trial

criteria. The Functions class contains two key methods: extract mmse and is csf. To facilitate

pattern matching, the extract mmse method preprocesses the trial criteria by replacing specific

Unicode characters and phrases with standardized symbols (line 3). It tokenizes the processed cri-

teria text into sentences and filters these sentences to identify those containing mentions of ‘mmse’

or ‘mini-mental state examination’(line 5). Using regular expressions, it extracts specific patterns

from these target sentences, such as numerical ranges and comparisons, and joins these patterns

into a single string, which is then returned (lines 7-12). The is csf method checks if the term

‘csf’ is mentioned in the trial criteria text, returning a boolean value indicating its presence (lines

14-15). Additionally, a Database class is defined to specify the structure of database columns for

storing extracted information, including a character field for mmse and a boolean field for csf. This

structured approach enables efficient extraction and storage of disease-specific information from

textual data, facilitating subsequent analysis and querying of clinical trial data related to AD.
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Table 4.1: List of the parameters for AD pipeline

Data Feature Keywords Example Field of Data in Clinical-
Trials.gov

Biomarkers Amyloid PET, CSF amyloid,
CSF Neurofilament light,
CSF GPAP, CSF Neuro-
granin, CSF p-tau 181, CSF
p-tau217, CSF p-tau 231, CSF
total tau, FDG-PET, vMRI,
Plasma Amyloid, Plasma
Neurofilament light, Plasma
p-tau 181, Plasma p-tau217,
Plasma p-tau 231, Plasma
total tau, Tau PET

Eligibility Criteria, Primary
Outcome, Secondary Out-
come, Other Outcome

Mini-mental State Examina-
tion

MMSE or mini-mental state
examination

Eligibility Criteria

CSF or PET CSF or PET Eligibility Criteria

Subject Characteristics Autosomal dominant AD
mutation carriers, Alzheimer
Dementia, preclinical-MCI
due to AD, MCI-mild AD
dementia, moderate AD
dementia-severe AD demen-
tia, MCI due to AD, mild
Ad dementia, mild-moderate-
severe AD dementia, severe
AD dementia, MCI to Moder-
ate Dementia, MCI, Healthy
Volunteers, Severe AD, Mild-
Moderate AD Dementia,
Prodromal/Prodromal-Mild,
Preclinical AD

Eligibility Criteria
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Algorithm 1: Extract MMSE and CSF Information from Trial Criteria

Data: Trial dictionary

Result: Extracted MMSE information as a string, CSF presence as a boolean

1 Function extract mmse(trial: dict) → str :

2 criteria ← trial[’criteria’];

3 criteria ← criteria.replace(’\u2212’, ’-’).replace(’greater than’,

’>’).replace(’less than’, ’<’).replace(’\u2264’, ’<=’).replace(’\u2265’,

’>=’);

4 sentences ← sent tokenize(criteria );

5 target sentences ← { sent | ’mmse’ in sent.lower() or ’mini-mental state

examination’ in sent.lower() };

6 results ← [ ];

7 foreach sentence in target sentences do

8 results.extend(re.findall(r’\d+\s?to\s?\d+’, sentence));

9 results.extend(re.findall(r’[¡¿]\s?\d+’, sentence));

10 results.extend(re.findall(r’¿=s?\d+’, sentence));

11 results.extend(re.findall(r’\d+ and \d+’, sentence));

12 end

13 return ’ | ’.join(results);

14 Function is csf(trial: dict) → bool :

15 return ’csf’ in trial[’criteria’].lower();

16 Class Database;

17 columns ← { ’mmse’: models.CharField(max length=50, null=True),

18 ’csf’: models.BooleanField(default=False) };

4.3.4 ML Module: MoA Prediction

The urgent need for a system to predict the Mechanism of Action (MoA) of Alzheimer’s Disease

(AD) drugs stems from the chaotic and fragmented nature of existing medical data repositories.

With vast amounts of unstructured, unlabeled, and sparse data spread across multiple sources, re-

searchers face significant challenges in efficiently organizing and accessing the information necessary

for effective analysis and development. A robust prediction system would streamline the process

of labeling and categorizing crucial data, such as MoA, thereby enhancing the accuracy and speed
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of research efforts. This system’s importance is further underscored in its ability to consolidate

disparate information into a cohesive framework, facilitating more targeted and efficient drug de-

velopment. The design and implementation of this MoA prediction module are detailed in Chapter

5 of this document.

4.3.5 System Dashboard

The Tri-AL user interface is meticulously crafted to meet the diverse needs of researchers, clinicians,

and biomedical scientists specializing in computer science. It includes advanced filtering options,

map-based exploration for geographical insights, and time-series visualizations for monitoring tem-

poral trends. The system leverages the plotly Python library to create dynamic plots, which are

then exported as HTML code and embedded as interactive visualizations within the dashboard.

The Tri-AL interface is organized into the following sections:

• Home Page: Figure 4.4 showcases the Tri-AL home page, which provides summary statistics

such as the total number of trials, the number of conditions or diseases studied, the specific

interventions and drugs tested, the countries with at least one trial, and a list of countries

with the highest number of trials. The home page also offers a breakdown of trial statuses

over a given period.

• Search Page: This section provides a comprehensive list of all trials in the database and

enables users to search for specific trials using trial IDs. Figure 4.5 illustrates this section

in the context of our extension of Tri-AL for analyzing Alzheimer’s disease trials. Each trial

is displayed with its status, phase, and the date of the last update. The search page also

includes filtering options by status, trial phase, and date of the last update.

• Detail Page: Tri-AL includes an information extraction module that allows users to extract

additional data from textual fields, which are then stored in new columns in the database.

Expert users are recommended to verify the automatically collected data to ensure accuracy.

The data extraction page provides a graphical interface where users can edit the data for any

given trial. Figure 4.6 demonstrates this with extracted data for Alzheimer’s disease trials,

including biomarkers and drug mechanisms of action (MoAs).

• Demographics Page: This page displays statistics on the race/ethnicity and sex/gender of

trial participants. Users can examine the proportion of trials that included participants iden-
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tified as White, Black, American Indian, Asian, and Latin. Furthermore, this page features

charts that illustrate the trends in race/ethnicity reporting over time.

Figure 4.4: The Tri-AL Dashboard

4.3.6 Diversity Reporting

Clinical trials with diverse participant pools are essential for identifying effective treatments for

minority populations. Consequently, numerous studies and regulations emphasize the importance

of evaluating the inclusion and diversity of trial participants. This section demonstrates Tri-AL’s

capabilities for analyzing race/ethnicity and gender/sex data, comparing the results with previous

studies to highlight changes in the reporting of minority data on ”ClinicalTrials.gov” over the past

two years.

Race and ethnicity definitions can vary across different organizations and regulatory bodies.

According to the NIH/OMB policy, race and ethnicity are categorized into five groups: American

Indian or Alaska Native, Asian (including Native Hawaiian or other Pacific Islander), Black or

African American, White, and Hispanic or Latino. On ”ClinicalTrials.gov,” the Baseline Measure-

ments field contains statistics about the race/ethnicity and sex/gender of participants. However,

this field is free-text, leading to a lack of standardization with 920 distinct values for race and ethnic-
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Figure 4.5: A Searchable List of AD Trials

Figure 4.6: Data Extracted from AD Trial Descriptions and Eligibility Criteria

ity. For instance, variations such as ”American Indian or Alaska native” versus ”American Indian

/ Alaska Native” occur due to differences in capitalization and separators. Tri-AL includes data

cleaning processes to standardize these entries according to NIH definitions, ensuring consistency
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Figure 4.8: Fraction of Trials Reporting Race/Ethnicity and Sex/Gender per Month from 2000-2022

and accuracy in the analysis.

Previous work analyzed the trials reporting ethnicity and race data up to 2020 [TSW+22]. To

provide a comparative analysis, Tri-AL was employed to generate similar statistics for the period

extending to 2022. This analysis focused on interventional trials conducted in the United States,
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totaling 30,405 trials. Of these, 16,532 trials (54%) reported at least one of the five race and

ethnicity groups, while 13,875 trials (46%) did not provide such information.

Figure 4.7 shows the percentage of trials that reported results for participants from each of the

five race-ethnicity groups. The bars on the left depict the results from previous work up to 2020,

whereas the bars on the right extend up to 2022, as computed by Tri-AL. It is important to note

that many trials submitted to ”ClinicalTrials.gov” from 2000 to 2022 were updated between 2020

and 2022. Therefore, instead of only considering the period from 2020 to 2022, a comparison is

made between the 2000-2020 totals from [TSW+22] and the 2000-2022 totals computed by Tri-AL.

The data reveal that most clinical trials report results for White, Black, and Asian participants.

Additionally, diversity has recently improved, with Asian, American Indian, and Latin race and

ethnicity groups being represented in a more significant fraction of trials. However, as shown in

the two right-most bars, only about half of the trials include all five groups.

In total, 5.5 million participants were in all trials with reported race/ethnicity data. Of these

participants, 58% were White, 22.5% Black, 11% Latin, 5.8% Asian, and 1% American Indian.

Figure 4.8 displays a time series chart showing the proportion of trials reporting participant

gender data (gray), any race/ethnicity data (orange), and data for all five race/ethnicity groups

(blue). This figure extends similar work from previous research [TSW+22] up to 2020, with Tri-AL

extending the series to include data from 2020-2022. The top line of gray points reveals that 99% of

trials submitted results between 2000 and 2022 included participant sex/gender distribution. How-

ever, race and ethnicity reporting was not mandated on ClinicalTrials.gov until the implementation

of the Food and Drug Administration Amendments Act (FDAAA 801) in September 2007 and its

final ruling in January 2017. The figure shows a significant increase in reporting following these

regulations.

For a final comparison with [TSW+22], Table 4.2 categorizes the number of trials by funding

type, primary purpose, phase, size, and study status. The first three columns correspond to data

from the previous work, covering the period from September 2007 to March 2020. The next three

columns present data from Tri-AL for the period from September 2007 to March 2022. Table 4.3

show the percentage difference between 2007-2020 and 2007-2022. Columns labeled T indicate the

total number of trials, while columns labeled Yes and No count the trials with and without reported

race/ethnicity, respectively. Each cell in Table 4.2 contains two numbers: the number of trials and,

in parentheses, the percentage within the given category. Each cell in Table 4.3 reports the change

in the number of trials (∆n%), with the number in parentheses indicating the percentage difference
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Table 4.2: Comparing study [TSW+22] and Tri-AL’s result from 2007-2022

[TSW+22] n(%) Tri-AL n(%)

Trial Feature T No Yes T No Yes

Funding
Industry 7,717 (46.0) 4,345 (48.3) 3,372 (43.3) 7819 (29.7) 3311 (30.1) 4508 (29.4)
Academic 5,669 (33.8) 3202 (35.6) 2476 (31.7) 16508 (62.8) 7127 (64.9) 9381 (61.3)
US Government 3394 (20.2) 1441 (16.0) 1953 (21.1) 1931 (7.3) 532 (4.8) 1399 (9.1)

Primary Purpose
Treatment 11877 (70.8) 6361 (70.8) 5516 (70.8) 18360 (69.9) 7733 (70.4) 10627 (69.5)
Basic Science 791 (4.7) 403 (4.5) 388 (5.0) 1218 (4.6) 474 (4.3) 744 (4.8)
Prevention 1289 (7.7) 688 (7.7) 601 (7.7) 2112 (8.0) 845 (7.7) 1267 (8.2)
Other 2319 (13.8) 1196 (13.3) 1123 (14.4) 4094 (15.5) 1596 (14.5) 2498 (16.3)
Missing 504 (3.0) 340 (3.8) 164 (2.1) 474 (1.8) 322 (2.9) 152 (0.9)

Phase
N/A 5660 (33.7) 3130 (34.8) 2528 (32.4) 9353 (35.6) 4077 (37.1) 5276 (34.5)
Phase 1 1316 (7.8) 563 (6.3) 753 (9.7) 1964 (7.4) 683 (6.2) 1281 (8.3)
Phase 1/2-2 5623 (33.5) 2913(32.4) 2710 (34.8) 8722 (33.2) 3270 (29.8) 5452 (35.6)
Phase 2/3-3 1844 (11.0) 979 (10.9) 865 (11.1) 2762 (10.5) 1178 (10.7) 1584 (10.3)
Phase 4 2337 (13.9) 1401 (15.6) 936 (12.0) 3413 (13) 1750 (15.9) 1663 (10.8)

Enrollment
0-9 2243 (13.4) 1341 (14.9) 902 (11.6) 3096 (11.7) 1388 (12.6) 1708 (11.1)
10-49 7280 (43.4) 4033 (44.9) 3247 (41.7) 11106 (42.2) 4799 (43.7) 6307 (41.2)
50-99 2958 (17.6) 1541 (17.1) 1417 (18.2) 4866 (18.5) 2055 (18.7) 2811 (18.3)
100-499 3499 (20.9) 1698 (18.9) 1801 (23.1) 5802 (22) 2214 (20.1) 3588 (23.4)
500-999 465 (2.8) 219 (2.4) 246 (3.2) 826 (3.14) 317 (2.8) 509 (3.3)
≥ 1000 335 (2.0) 156 (1.7) 179 (2.3) 562 (2.14) 197 (3.3) 365 (2.3)

Study Status
Completed 13358 (79.6) 7093 (78.9) 6265 (80.4) 21100 (80.3) 8812 (80.3) 12288 (80.3)
Ongoing 338 (2.0) 76 (0.8) 262 (3.4) 466 (1.7) 39 (0.3) 427 (2.7)
Stopped Early 3073 (18.3) 1812 (20.2) 1261 (16.2) 4663 (17.7) 2110 (19.2) 2553 (16.6)
Unknown 11 (0.1) 7 (0.1) 4 (0.1) 29 (0.1) 9 (0.08) 20 (0.1)

(∆%). Each value in the Table 4.3 is calculated by comparing the values from Table 4.2, the last

three columns in 2022 (num2022) with its corresponding value in 2020 from the first three columns

(num2020), using Equation 4.1 below.

∆n =
(num2022 − num2020)

num2020
(4.1)

Table 4.3 shows that the number of academically funded trials reporting race/ethnicity has

increased by 93.4%, while the number of such trials with industry and US government funding

has decreased by 32.0% and 56.9%, respectively. There are no significant changes (more than

20%) in the distribution of trials across different phases, primary purposes, and sizes. Regarding

study status, although the number of trials reporting race/ethnicity has increased by 63%, the

proportional percentage has decreased by 20.6% over the last two years.

4.4 System Performance

The performance evaluation of the XML parser selected for the Import Module is initiated by

comparing it with a popular Python parser from the ”BeautifulSoup” package, referred to as the
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Table 4.3: Differences between study [TSW+22] and Tri-AL’s result from 2007-2022

∆n% (∆%)

Trial Feature T No Yes

Funding
Industry 1.3 (-35.4) -23.8 (-37.7) 33.7 (-32.1)
Academic 191.2 (85.8) 122.6(82.3) 278.9 (93.4)
US Government -43.1 (-63.9) -63.1 (-70.0) -28.4 (-56.9)

Primary Purpose
Treatment 54.6 (-1.3) 21.6 (-0.6) 92.7 (-1.8)
Basic Science 54.0 (-2.1) 17.6 (-4.4) 91.8 (-4.0)
Prevention 63.8 (3.9) 22.8 (0.0) 110.8 (6.5)
Other 76.5 (12.3) 33.4 (9.0) 122.4 (13.2)
Missing -6.0 (-40.0) -5.3 (-23.7) -7.3 (-57.1)

Phase
N/A 65.2 (5.6) 30.3 (6.6) 108.7 (6.5)
Phase 1 49.2 (-5.1) 21.3 (-1.6) 70.1 (-14.4)
Phase 1/2-2 55.1 (-0.9) 12.3 (-8.0) 101.2 (2.3)
Phase 2/3-3 49.8 (-4.5) 20.3 (-1.8) 83.1 (-7.2)
Phase 4 46.0 (-6.5) 24.9 (1.9) 77.7 (-10.0)

Enrollment
0-9 38.0 (-12.7) 3.5(-15.4) 89.4 (-4.3)
10-49 52.6 (-2.8) 19.0 (-2.7) 94.2 (-1.2)
50-99 64.5 (5.1) 33.4 (9.4) 98.4 (0.5)
100-499 65.8 (5.3) 30.4 (6.3) 99.2 (1.3)
500-999 77.6 (12.1) 44.7 (16.7) 106.9 (3.1)
≥ 1000 67.8 (7.0) 26.3 (94.1) 103.9 (0.0)

Study Status
Completed 58.0 (0.9) 24.2 (1.8) 96.1 (-0.1)
Ongoing 37.9 (-15.0) -48.7 (-62.5) 63.0 (-20.6)
Stopped Early 51.7 (-3.3) 16.4 (-5.0) 102.5 (2.5)
Unknown 163.6 (0.0) 28.6 (-20.0) 400.0 (0.0)

”Baseline.” The chosen parser is written in the C language. Figure 4.9 presents the results, dis-

playing the data size on the x-axis (representing the number of trials that need to be parsed) and

the running time in seconds on the y-axis. The results indicate that the selected parser scales

significantly better than the baseline when handling larger data volumes.

Figure 4.9: Performance of Tri-AL Parser

.
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Chapter 5

Predicting the Mechanism of Action

for Alzheimer’s Disease Drugs

5.1 Introduction

The rise of online medical databases and reports has created a chaotic repository of unstructured,

unlabeled, and sparse data on diseases and treatments. This information is often scattered across

various locations due to clinical trials by different organizations or remains inaccessible due to sensi-

tivity concerns. The sheer volume of data poses significant challenges, highlighting the importance

of a system to predict labels for medical data, ensuring efficient organization and accessibility for

analysis and research. Consequently, experts must implement processing, classification, and ex-

traction pipelines to obtain information pertinent to their research, such as adverse drug reactions

[SG14] and cancer stage detection [AGR+18, CRH+14]. Furthermore, researchers often need to

gather additional information from other sources when developing reports on treatment and drug

development for specific diseases. For instance, in the Alzheimer’s Disease (AD) Drug Development

Pipeline reports [CMZ14, CLR+20], information from ”ClinicalTrials.gov” is useful for cataloging

details such as sponsors, disease phases, agents’ criteria, and key trial dates. However, it only

sometimes provides other crucial information, such as a drug’s Mechanism of Action (MoA) or

therapeutic purpose. Consequently, researchers must consult multiple resources, such as drug com-

panies’ websites, to fill in these gaps. Even then, they must use their expertise to decide how to

label some columns, like MoA or the therapeutic purpose of a drug.

This chapter aims to automate the analysis and classification of AD-drug text for information

not found on ”ClinicalTrials.gov”. Specifically, we focus on the MoA of a drug, which constantly
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evolves based on experimental data from various sources beyond ”ClinicalTrials.gov” and drug

manufacturer websites. To identify the best classifier for Alzheimer’s disease drug mechanisms of

action (AD-drug MoA), we explored various machine learning algorithms, including Random Forest

(RF), XGBoost, Logistic Regression (LR), Support Vector Machines (SVM), Decision Tree (DT),

and a Multi-layered Neural Network (NN) based on the BioBERT Encoder. Preliminary results on

AD drugs’ free-text indicate that the BioBERT-based NN achieved the highest F1 score of 0.97.

However, the Decision Tree algorithm, with an F1 score of 0.92, also performed well. Considering

the complexity trade-off, the Decision Tree’s output is reasonable.

The main contributions of our study can be summarized as follows: First, we recognize that

different information related to AD drugs is available across various resources. Therefore, we collect

and merge this data to create a contiguous dataset. Second, we evaluate different machine-learning

methods to identify the best model for classifying AD-drug texts. Our results indicate that the

Decision Tree algorithm is the most effective model for this classification task. This model can play

a crucial role in aiding the medical community in generating annual reports on AD-drug progression

[CLR+19].

5.2 Methods

Five different machine learning models, Random Forest (RF), XGBoost, Logistic Regression (LR),

Support Vector Machines (SVM), and Decision Tree (DT), were applied to classify the Mechanism

of Action (MoA) of AD drugs. This section provides an explanation of the dataset, a detailed

description of the models used, and a discussion of the experimental results achieved by these

methods.

5.2.1 Dataset

Background and finding texts for each drug were collected from the ALZFORUM Therapeutics

dataset (http://www.alzforum.org). Using the drugs’ targets from the website and the MOA classes

of medications provided by [CLR+19], [CLRZ18], a total of 233 labeled records were obtained.

The MOA of AD drugs is classified into two main categories: small molecules and Disease-

Modifying Therapies (DMT) Biologics. The dataset was divided into 75% (186 records) for

training and 25% (47 records) for testing. The dataset is imbalanced, with 175 records in the

first class and 59 in the second. To address this, the Synthetic Minority Over-sampling Technique
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(SMOTE) [CBHK02] was applied to the training set, resulting in 141 records for each class. The

overall text portion of the dataset comprises 124,180 words and 7,693 sentences.

5.2.2 Selecting the Best ML Algorithm

To achieve the best results, several machine learning algorithms were tested to determine which

one performs best. In this study, various machine learning algorithms were employed for docu-

ment classification. Decision Tree (DT) demonstrated high accuracy and practicality in selecting

important words. XGBoost, a Gradient Boosting-based Decision Tree algorithm, was noted for its

speed and performance. Random Forest (RF), which aggregates predictions from multiple Decision

Trees, effectively addressed overfitting issues. Logistic Regression (LR) modeled event occurrence

as a linear function of predictor variables, providing probabilistic outcomes. Lastly, the Support

Vector Machine (SVM) with an RBF kernel offered robust performance in text data classification,

ensuring reliable separation of data in higher dimensions while resisting overfitting.

Data preparation for ML models: First, we cleaned the data by eliminating stop words,

punctuation, extra white spaces, undesired characters, and words lacking meaningful information.

We then applied the Term Frequency-Inverse Document Frequency (TF-IDF) method to create a

matrix representation of the text. This method leverages two components: Term Frequency (TF),

which measures how often a term appears in a document; and Inverse Document Frequency (IDF),

which assesses how common or rare a term is across all documents. The TF-IDF value is computed

as follows:

tfijidfi = tfij × log2

(
N

dfi

)
(5.1)

where N is the total number of documents, tfij is the frequency of term i in document j, and

dfi is the number of documents containing term i. Using this method, the five machine learning

algorithms in our study showed promising results.

5.2.3 BioBERT-based NN Model

We opted for the BERT model to classify the Mechanisms of Action (MoA). BERT is a text encoding

model that has achieved state-of-the-art results across various tasks. It operates as a bidirectional

transformer network pre-trained on extensive language modeling tasks using large datasets. For

our specific needs, we employ BioBERT [LYK+20], a pre-trained model fine-tuned on biomedical
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Figure 5.1: Overview of BioBERT-based NN Model

texts from PubMed and PMC. BioBERT excels in tasks such as text mining, classification, and

other natural language processing (NLP) applications within the biomedical domain. Algorithm

25 indicates the step of our BioBERT-based NN model for MoA text classification. This model

is a fine-tuned version of BERT BASE, featuring 12 hidden layers and an embedding size of 768.

Transformers like BERT process words in a sentence simultaneously, which means the sequence of

words is not inherently preserved. They utilize Position Embeddings to retain positional informa-

tion. Combined with Word Embeddings, these embeddings create a single representation that the

model can process. Initially, BERT’s WordPiece tokenization breaks the input sentence into sub-

word tokens. For instance, the sentence ”Elevated blood glucose levels are linked to diabetes and

heart disease” is tokenized into Elev, ##ated, blood, gl, ##ucose, levels, are, linked, to, diabetes,

and, heart, disease. Each subword token is then converted into a 768-dimensional vector. The

first token in any sequence is a unique [CLS] token, representing the entire sequence. BioBERT

has a limitation of processing a maximum of 512 tokens per input sequence. To handle longer

documents, we use a sliding window approach, dividing the document into smaller segments. For

example, using a window size of 4, the sentence is split into Elev, ##ated, blood, gl, ##ucose,

levels, are, linked, to, diabetes, and, heart, disease. We then add [CLS] and [SEP] tokens at the

beginning and end of each window and input these segments into the BioBERT model. The output

of BioBERT is a list of embeddings, as shown in the following equation:

ei = BioBERT (ti) (5.2)

Where input text T into tokens: T = {t1, t2, . . . , tn} and ei ∈ R768 .

To classify these embeddings, we need a single [CLS] representation for each document. This
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representation is obtained by summing the [CLS] vectors from each window, as shown below:

CLS =

m∑
i=1

Ci (5.3)

where Ci represents the [CLS] token embedding from each window. Figure 5.1 illustrates the

detailed layers of the model. The BioBERT output is processed by a five-layer fully connected

sequential Neural Network to classify Mechanisms of Action (MoA). The architecture starts with

an initial layer of 768 neurons. Each subsequent layer has half the number of neurons as the

preceding one, with each neuron utilizing a Rectified Linear Unit (RELU) activation function.

This results in layers containing 768, 384, 192, and 96 neurons. The final layer, responsible for

classification, features two neurons and employs a softmax activation function to assign scores to

the classes.

5.2.4 Results

The previously mentioned dataset, comprising 141 records for training and 47 for testing, was

utilized in our experiments. We employed Python libraries such as Gensim for cleaning clinical

text [RS10], and Scikit-learn [PVG+11], along with Pandas [McK10] for model implementation.

Table 5.1 summarizes the results for each model, measuring Precision, Recall, F1-Score, Ac-

curacy, and ROC Area. A visual comparison of the models’ performance based on the ROC area

metric is provided in Figure 5.2. The findings indicate that, although the Decision Tree (DT)

model achieves higher accuracy compared to the Support Vector Machine (SVM) and Logistic

Regression (LR) models, SVM and LR demonstrate superior precision. This indicates that SVM

and LR are more cautious and accurate in their class predictions. The higher precision of SVM

and LR shows that their predictions are more aligned with the actual classes than those of DT in

various classifications. The application of TF-IDF enhanced performance, highlighting the models’

sensitivity to word presence or absence rather than contextual meaning. Figure 5.3 depicts the

DT process on the dataset, utilizing the Gini Index as the splitting criterion. This index measures

overall variance within the tree classes, making it a suitable criterion for node purity [BK18]. As

shown in the trained Decision Tree (DT) in Figure 5.3, the height of the tree is 4, and the word

”antibody” is chosen by the algorithm to separate the classes at the first level. Using TF-IDF for

feature extraction, when the score of ”antibody” is more than 0.017, the DT was able to correctly

classify 34 out of 40 total samples of the second class. Other words selected by the DT include

”delivered,” ”mild,” ”mimics,” and ”intracerebral.”
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Algorithm 2: BioBERT-NN Based Model

Data: Input text T
Result: Output probabilities from the neural network

1 Step 1: Tokenization;
2 Split the input text T into tokens: T → {t1, t2, . . . , tn};
3 Step 2: Initial Embedding;
4 for each token ti in {t1, t2, . . . , tn} do
5 Convert ti into an embedding vector ei of size 768: ti → ei ∈ R768;
6 end

7 Step 3: Transformation through Layers;
8 for each layer l in 1, 2, . . . , 12 (for BioBERT model) do
9 for each embedding vector ei do

10 Pass ei through the transformer layer l to obtain a new representation hli;
11 end

12 end

13 Step 4: Final Hidden States;
14 for each token ti do
15 The final representation of ti is the hidden state h12i : h12i ∈ R768;
16 end

17 Step 5: Neural Network;
18 Feed outputs into a five-layer fully connected sequential Neural Network;
19 Define the sequential model as follows:;

20 h(1) ← RELU(W (1) · CLS + b(1));

21 h(2) ← RELU(W (2) · h(1) + b(2));

22 h(3) ← RELU(W (3) · h(2) + b(3));

23 h(4) ← RELU(W (4) · h(3) + b(4));

24 output← Softmax(W (5) · h(4) + b(5));

25 return output
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Table 5.1: MoA classification results

Algorithms Precision Recall F1-score Accuracy

Random Forest 0.857 0.46 0.6 0.82

XGBoost 0.76 0.76 0.76 0.87

Logistic Regression 0.9 0.62 0.78 0.89

SVM 0.9 0.69 0.78 0.89

Decision Tree 0.86 1.00 0.92 0.95

BioBERT-based NN 0.95 1.00 0.97 0.96

In our evaluation, the BioBERT-based NN achieved the highest F1 score of 0.97, while the

Decision Tree algorithm, with an F1 score of 0.92, also showed promising results. Considering the

complexity trade-off, the Decision Tree’s performance is suitable.
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Figure 5.2: ROC Curve for ML Algorithms

5.2.5 Conclusion

This chapter makes an effort to automate information retrieval from ”ClinicalTrials.gov,” aiming to

generate potential candidates for expert verification, such as identifying the Mechanism of Action

(MoA) for a drug. The developed models will assist in predicting various categories typically

evaluated by experts. The intention is to support, rather than replace, the experts by providing

ideal candidates for their review, akin to the functionality of a spell checker. The success of this
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gini = 0.0
samples = 133
value = [133, 0]

gini = 0.0
samples = 1
value = [0, 1]

intracerebral <= 0.045
gini = 0.015

samples = 134
value = [133, 1]

gini = 0.0
samples = 1
value = [0, 1]

gini = 0.0
samples = 1
value = [1, 0]

gini = 0.0
samples = 4
value = [0, 4]

mimics <= 0.042
gini = 0.029

samples = 135
value = [133, 2]

mild <= 0.008
gini = 0.32
samples = 5
value = [1, 4]

delivered <= 0.038
gini = 0.082

samples = 140
value = [134, 6]

gini = 0.0
samples = 34
value = [0, 34]

antibody <= 0.017
gini = 0.354

samples = 174
value = [134, 40]

Figure 5.3: Decision Tree for Classifying MoA in AD Texts

work will be measured by its ability to highlight links that might have been overlooked or to save

experts’ time in suggesting MoAs for drugs. Their time can then be redirected toward making

significant advances in discovering new treatments or even a cure.
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Chapter 6

Joint Named Entities and Relation

Extraction

The development of automated systems for knowledge extraction from unstructured texts signif-

icantly reduces the time experts spend on manual data processing [KNC+22]. This automation

primarily involves two pivotal tasks utilizing natural language processing (NLP): Named Entity

Recognition (NER) and Relation Extraction (RE). NER Named Entity Recognition (NER) is a task

in NLP that involves identifying and classifying proper nouns in text into predefined categories.

These categories typically include names of people, organizations, locations, dates, numbers, and

sometimes more specialized categories like product names, events, or expressions of time. In a

biomedical context, it identifies specific entities such as genes, chemicals, and diseases within texts.

The goal of NER is to automatically scan entire documents and extract fundamental data points,

helping machines understand the text by highlighting which words (entities) carry essential infor-

mation. This task is crucial for applications such as information retrieval, content classification,

and data extraction for further processing or analysis.

Relation Extraction (RE) involves identifying and classifying semantic relationships between

entities within a text. This process helps construct a structured understanding of textual data by

linking identified entities (people, organizations, locations) through specific relationships. For ex-

ample, in the sentence ”Barack Obama was born in Hawaii,” an RE system would identify ”Barack

Obama” and ”Hawaii” as entities and classify the relationship between them as ”born in.” The

primary aim of relation extraction is to convert unstructured text into a structured format that

can be used in databases, knowledge graphs, or directly for tasks such as information retrieval,
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question answering, and summarization. RE frames these associations as triples in the form of

Entity-1, Relation-type, Entity-2 [ZSLW20]. This is critical in biomedical research, where under-

standing the relationships between diseases, drugs, and treatments in literature can lead to new

insights and discoveries. In addition, this function is particularly beneficial in clinical trials, as it fa-

cilitates the extraction of vital information from textual data, potentially leading to novel scientific

breakthroughs.

Types of Relational Tuples: Documents often contain multiple triples, categorized based

on entity overlap into three groups: ‘normal’ sequences with no overlapping entities, ‘single entity

overlap’ (SEO) where at least one triple shares an entity with another, and ’entity pair overlap’

(EPO) where at least two triples share the same entities but differ in their relation types [ZZH+18]

[EEH22]. EPO sequences, in particular, present intricate multi-label classification challenges. For

example, consider a biomedical text stating, ”Aspirin increased the expression of P53 and decreased

the expression of MDM2, significantly altering the P53/MDM2 ratio.” Here, the Chem-GENE pair

(”Aspirin,” ”P53”) is classified under both CPR:3 and CPR:4 relation types in the BioCreative

dataset [KRA+17].

Joint Named Entity and Relation Extraction (JNERE) is an NLP technique that simultane-

ously identifies named entities and their relationships within a text. Unlike pipeline methods that

perform NER and RE as separate tasks in sequential steps, JNER integrates both tasks into a single

model. This approach significantly enhances accuracy and efficiency by leveraging the interdepen-

dencies between entity recognition and relation extraction, capturing contextual information more

effectively and reducing the propagation of errors that often occur in pipeline methods. By jointly

modeling these tasks, JNERE can provide a more coherent and contextually accurate extraction

of information, particularly beneficial in complex text analysis scenarios, such as biomedical text

mining, when understanding the interactions between entities is as essential as identifying the en-

tities [LFM+19] [ZWB+17]. In Chapter 2, Section 2.4, we provide a comprehensive explanation of

this area.

In this chapter, we describe the application of the BioRIFRE model, which utilizes Graph

Neural Network (GNN) for joint-named entity and relation extraction [ZXC+21], specifically for

gene and chemical components named entities. This approach enhances the representation of words

and relationship nodes by iteratively augmenting them within the graph structure. We conducted

extensive tests using various encoders and discovered that BioBERT provides the best performance,

significantly outscoring other models. BioBERT’s advanced understanding of biomedical texts
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allowed it to achieve superior results in the relation extraction task compared to related work. The

model achieves a 0.69 F1-score state-of-art for the relation extraction task.

6.1 Method

This section provides a detailed overview of the Bio-RIFRE model’s architecture, thoroughly ex-

plaining each layer and component. The architecture, illustrated in Figure 6.1, consists of three

primary layers: the representation layer, the Graph Attention Network (GAN) layer, and the final

taggers. The word embedding layer transforms input words into continuous vector representations,

capturing semantic meanings and syntactic roles, and serves as the foundation for further process-

ing. The GAN layer, at the core of the model, processes these word embeddings using attention

mechanisms to focus on the most relevant parts of the input text and augment the words and rela-

tion classes’ representations. It constructs a graph where two types of nodes represent words and

relations. It dynamically assigns an edge between two node types if an entity has that relation in

the text, resulting in a comprehensive and augmented representation of the input text [ZC20]. The

final layer consists of specialized chemical and gene taggers that use the enhanced representations

from the GAN layer to accurately identify and classify chemical and gene entities within the text

by applying domain-specific knowledge. The trained model outputs hidden relation embedding

vectors from these layers, encapsulating the intricate relationships between paired entities within a

sentence, such as interactions between chemicals and genes. The model can effectively classify and

interpret the relationships by leveraging these embeddings, providing valuable insights for tasks

like information extraction and data mining in biomedical texts.

6.1.1 Words and Relation Representation

The initial layer of the model employs two distinct word embedding components to convert the

sentence and its relations into vector representations. For a sentence with N words, we use the

BioBERT model [LYK+19], which is an adaptation of the BERT, to produce word representation.

The BERT model, introduced by [DCLT18a], utilizes the encoder block from the transformer

architecture [VSP+17] to derive deep bidirectional representations by considering the context from

both sides of each word in a sequence [DCLT18a][ET21][HJ20].

To elaborate, BioBERT is specifically fine-tuned for biomedical text, leveraging the strengths

of the original BERT model. The BERT model itself revolutionized natural language processing
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Figure 6.1: An Overview of Bio-RIFRE Model
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by enabling deep contextual understanding through its bidirectional approach, where it reads the

text in both directions (left-to-right and right-to-left) to better capture the meaning of each word

based on its context. This method significantly enhances the model’s ability to understand the

nuances and complexities of language, particularly useful in specialized fields such as biomedical

text processing.

The BioBERT model has demonstrated superior performance compared to earlier unidirectional

models, and its pre-trained architecture enables us to use it without additional training. For relation

representations, for a sentence with M relations, we initialize one-hot vector representations for

each relation by random numbers. These relation vectors are intended to be trained in subsequent

layers, where their representations will be enriched with word embeddings.

As depicted in Figure 6.1, the representation layer outputs word tensors [t1, t2, . . . , tN ] and rela-

tion tensors [r1, r2, . . . , rM ], where N is the length of the sequence, and M is the number of relation

classes. These tensors are subsequently fed into the GAN layer, which refines them and incorporates

prior knowledge of potential relationships into both the word and relation representations.

6.1.2 Graph Attention Neural Networks

Graph Attention Networks (GANs) were introduced by [VCC+18] to apply a self-attention mech-

anism specifically to graph-structured data. This innovation marked a significant advancement in

how graphs are processed, allowing for more flexible and context-aware data representations within

a graph. Before the advent of GAN models, Convolutional Neural Networks (CNNs) [LBBH98]

had achieved remarkable success across various domains, most notably in image processing, where

their ability to capture spatial hierarchies in grid-like data structures proved highly effective. In-

spired by the success of CNNs, researchers sought to generalize convolutional techniques to handle

graph-structured data [HR20], which do not possess a regular grid-like structure.

Traditional CNNs, while powerful for structured data like images, struggle with the irregularity

and complexity of graph data. Graphs often represent entities and their relationships in a non-

Euclidean space, making direct application of CNNs impractical [VCC+18]. The challenge lies in

the inherent heterogeneity and the variable nature of graph node connections, contrasting with the

fixed uniform connectivity in image pixels.

GANs address this challenge by leveraging a self-attention mechanism that dynamically weighs

the importance of neighboring nodes when aggregating information. This approach allows GANs

to focus on the most relevant parts of the graph, enhancing the representation of each node based
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on its context within the network. The self-attention mechanism thus provides a more nuanced and

adaptable way of processing graph data, capturing intricate dependencies and relationships that

are often missed by traditional CNNs.

The introduction of GANs has opened new avenues for applying deep learning to graph-

structured data, including node classification, link prediction, and graph classification. By over-

coming the limitations of CNNs in handling non-grid-like data, GANs have enabled significant

advancements in various applications, ranging from social network analysis to biological network

modeling, where understanding complex relationships and interactions is crucial [WJS+19].

In this study, we utilize the model proposed by [ZXC+21]. Specifically, we consider two types

of nodes: word nodes and relation nodes, which are connected if they participate in at least one

triple. Each GAN layer of the model follows three steps to update the vector representations of

nodes using an attention mechanism, as detailed below.

Calculate Attention Weights:

Given a sentence containing N words and M relations, we denote the words as ti and the relations

as ri. Each word embedding ti and relation embedding ri are treated as nodes within a graph,

with connections established between them if they are neighbors. Figure 6.2 visually depicts the

relationships and connections between these nodes. This graph structure enables the model to

effectively capture and utilize the contextual interactions between words and their corresponding

relations.

For each pair of word-relation nodes in the graph, we calculate the attention weights, denoted

as α, using the following equations [VCC+18]:

aij = Wa[Wqti : Wkrj ] (6.1)

αij =
exp (aij)∑N
i exp (aij)

(6.2)

Here, Wa, Wq, and Wk are trainable parameters within the neural network, and [:] represents

the concatenation of two high-dimensional vectors. These attention weights help the model focus

on the most relevant word-relation pairs by assigning higher importance to certain connections,

thereby enhancing the contextual understanding of the graph structure.
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Figure 6.2: Graph Neural Network architecture

6.1.3 Augmenting the Representations:

After determining the attention weights for every pair of word-relation nodes, we proceed to update

the vector representation of each node within the graph. For each node ti, its vector representation

is updated by considering all the relation nodes and their corresponding significance to ti. This

update is performed using the following equation:

t′i = ti +
∑
j

αijrj (6.3)

In this equation, αij represents the attention weight between node ti and relation node rj .

Figure 6.3 illustrates the updating process for the first-word node (i = 1) within the GAN. This

method ensures that each node’s updated vector representation incorporates the influence of its

connected relation nodes, weighted by relevance.

We perform the same calculation to update each ri node, taking into account their attention to

all the other ui nodes:

r′i = ri +

N∑
j

αijWrtj (6.4)
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Figure 6.3: Schema of Word and Relation Node Updates in GAN

6.1.4 RE and Taggers

After updating the representations of words and relations in the final Graph Neural Network (GNN)

layer, we utilize the CasRel framework, as proposed by [ZXC+21], to detect all potential chemical

and gene entities within a given sequence. This model employs two sequential processes, the

Chemical Tagger and the Gene Tagger, to methodically identify and classify these entities.

First, the Chemical Tagger is applied to the sentence, identifying and tagging chemical entities

using a combination of the updated word and relation representations. The Chemical Tagger focuses

on detecting chemical names’ start and end positions within the text. Once the chemical entities

are tagged, their information is fed into the Gene Tagger.

Next, the Gene Tagger uses the tagged chemical entities as context to identify gene entities. It

operates similarly to the Chemical Tagger but is specifically tuned to recognize gene names. The

Gene Tagger also considers the relationships between the previously identified chemical entities and

the potential gene entities, ensuring accurate classification of both entity types.

This two-step tagging process, with each step leveraging the outputs of the previous one, allows

the model to identify and classify chemical and gene entities systematically, ensuring a comprehen-

sive understanding of the relationships within the sequence [ZXC+21].

The equations guiding these processes are crucial for transforming the initial word and relation

representations into meaningful entity tags. For instance, the Chemical Tagger utilizes the updated

vector representations from the GNN layer, applying specific rules and thresholds to determine the

presence of chemical entities. Similarly, the Gene Tagger builds upon this foundation, incorporating
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the identified chemical entities to enhance its tagging accuracy for gene names.

This cascading approach, enabled by the CasRel framework, enhances the model’s ability to

handle complex biomedical texts, accurately extracting and classifying critical information about

chemical and gene entities [ZXC+21].

Chemical Tagger

We use the updated ti embeddings from the final layer of the GAN network as input for the chemical

tagger. This tagger consists of two binary classifiers that are designed to pinpoint the first and last

word positions of chemical named entities within a given input sentence.

pstartchi = σ(Wstartt
′
i + bstart) (6.5)

pendchi = σ(Wendt
′
i + bend) (6.6)

Firstly, using Equations 6.5 and 6.6, we calculate the probability of each token in the input

being a named entity. pstartchi indicates the probability that the ith token in the sentence is the

starting position of the chemical, while pendchi represents the probability that the ith token is the

ending position of the chemical. The parameters Wstart, Wend, bstart and bend are trainable, and σ

is the activation function [WSW+20]. The goal of the chemical tagger is to minimize the following

likelihood function for the binary classifier:

pθ(ch|x) =
∏

t∈{startch, endch}

N∏
i=1

(pti)
I{yti=1}(1− pti)

I{yti=0} (6.7)

where θ represents the parameter set of the chemical tagger. For a given sentence x, Equation

6.7 computes the probability of each word being a chemical component, with t defining the start

or end tags as ystartchi or yendchi , and I{yti = 1} indicating if the binary classifier tag is true (1) or

false (0).

We merge the outputs from the GAN layer for word nodes (h) and relation nodes (r) with the

output from the chemical tagger (ch). This combined result is then processed through the tanh

activation function, resulting in the embedding vector w′
ijk. This vector is subsequently used as

the input for the Gene tagger’s binary classifier. The Gene tagger then identifies the start and

end positions of gene-named entities within the sentence and determines their relationships with

chemical-named entities. Equation (6.8) demonstrates the formulation of the input for the Gene
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tagger. The high-dimensional vector w′
ijk captures detailed information about the chemical-named

entities and their potential interactions with gene entities.

w′
ijk = tanh(Wh[chk; rj ;hi] + bh) (6.8)

Gene Tagger

The gene tagger identifies a list of potential gene candidates for a given chemical named entity by

iteratively considering all relations in the sentence. Equations 6.9 and 6.10 calculate the probability

of the ith position being the start or end of the gene span. Wstart, Wend, bstart, bend are trainable

parameters.

p
startg
i = σ(Wstartw

′
ijk + bstart) (6.9)

p
endg
i = σ(Wendw

′
ijk + bend) (6.10)

The likelihood for the gene binary classifiers follows a similar structure to that of the chemical

tagger described earlier. It utilizes the same definitions and principles outlined in the chemical

tagger subsection. The gene binary classifiers use this function to determine the probability of each

word being part of a gene named entity, ensuring consistency in the tagging approach.

pθ(g|x, ch, r) =
∏

t∈starts,ends

L∏
i=1

(pti)
I{yti=1}(1− pti)

I{yti=0} (6.11)

Finally, the loss function for the entire model can be defined using the method described in

[ZXC+21] by combining the likelihood functions of the chemical and gene taggers. It is equal to

taking log from equation 6.12:

L = log
∏

(ch,r,g)∈T

p((ch, r, g)|x) =
∑
ch∈Tj

log pθch(ch|x) +
∑

r∈Tj |ch

log pθg(g|x, ch, r)+

∑
r∈R\Tj |ch

log pθ0(g∅|x, ch, r)
(6.12)

6.2 Method Evaluation

Table 6.1 presents a comparison of different pre-trained BERT models based on their performance

metrics: F1 score (F1), Recall (R), and Precision (P). We tested several models, including SciBERT,
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SapBERT, BERT-based-cased, and BioBERT, to determine which model performs best in our

specific application. Based on our evaluation, BioBERT delivered the best results across all metrics,

making it the most suitable model for our application.

Table 6.1: Comparison of various pre-trained BERT models

Model F1 R P

SciBERT [BLC19] 0.41 0.46 0.37
SapBERT [JCL+20] 0.41 0.40 0.42

BERT-based-cased [DCLT18b] 0.60 0.59 0.61
BioBERT [LYK+19] 0.69 0.70 0.68

For the task of JNERE in biomedical texts, the model must accurately predict the start and end

positions of chemical-gene spans, ensuring that substrings are not considered valid named entities.

Additionally, it must correctly identify the relationships between chemical and gene entities. The

model’s performance is evaluated using Precision (P), Recall (R), and the Micro F1-score. Our

experiments with various pre-trained models indicated that the BioBERT model [LYK+19], pre-

trained on PubMed abstract datasets, is the most suitable for our needs.

We utilize the BioBERT-cased model pre-trained in PyTorch, with an embedding layer that

supports a maximum token size of 512. Consequently, the maximum sequence length is also 512,

and only triples where the chemical-gene entities fall within this length are considered, excluding

all inter-sequence triples.

For optimization, we employ Stochastic Gradient Descent (SGD) with early stopping set to 20

iterations to prevent overfitting. The learning rate is set at 0.1, and the batch size is 10. We compare

Bio-RIFRE with six baseline models that have evaluated their joint methods on the CPI dataset.

All the performance metrics are extracted from the recent studies by [ZZ21] and [SYW+22].

• Att-BiLSTM-CRF+ELMO [LYC+20] is an attention-based model designed for named en-

tity recognition and relation extraction. It employs a Convolutional Neural Network (CNN)

to capture character-level features and integrates a pretrained ELMO model in the embed-

ding layer to enhance word representations. These features are concatenated and fed into

two Bidirectional Long Short-Term Memory (BiLSTM) networks, followed by a Conditional

Random Field (CRF) layer to predict the final tags.

• Dygiepp [ZLC+19a] consists of two main layers built on top of the word embedding layer:

the mention recognition layer and the relation extraction layer. This model uses a CRF
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to calculate scores for identifying microorganism entities and determining their relationships.

The architecture is designed to effectively handle overlapping entities and complex relationship

types.

• SpanMB Bert [ZZ21] proposes a novel span-based framework that fine-tunes BERT to

derive contextual embeddings. It then calculates span scores to classify both entities and

relation types. This approach allows the model to consider spans of text as potential entities,

improving its ability to capture and classify complex biomedical relationships.

• MRC4BioER [SYW+22] transforms the task of joint named entity and relation extraction

into a Machine Reading Comprehension (MRC) task. In this model, sentences are treated as

the context, relations as the target query, and entity spans as the answer. The model uses

BERT for embedding representations and includes a tagging algorithm that addresses the

problem of overlapping entities by iteratively evaluating each span pair for different relation

classes.

• MRC4BioER (Zheng’s tagging) is a variation of the MRC4BioER model that utilizes

Zheng’s tagging schema [ZWB+17]. This schema provides a systematic approach to tagging

entities and relations, enhancing the model’s accuracy in recognizing complex biomedical

interactions.

• MRC4BioER (Lou’s tagging) is another variation of the MRC4BioER model that employs

Lou’s tagging schema [LYC+20]. This schema incorporates attention mechanisms and CRF

layers, further refining the model’s capability to accurately tag and classify biomedical entities

and their relationships.

6.2.1 Result

Table 6.2 showcases the performance of various models on the Chemical-Protein Interaction (CPI)

dataset. The results highlight that incorporating BERT in the embedding layer leads to a significant

improvement in model performance. Specifically, the SpanMB BERT model achieves a state-of-

the-art F1-score of 0.88 for the Named Entity Recognition (NER) task, indicating its exceptional

ability to identify chemical and gene entities within biomedical texts accurately.

Among the baseline models, MRC4BioER demonstrates the best performance for the Relation

Extraction (RE) task, with an F1-score of 0.66. This model converts the joint named entity
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Table 6.2: Evaluation of Bio-RIFRE on the CPI dataset

Model NER RE
F1 R P F1 R P

Att-BiLSTM-CRF+ELMo 0.811 0.798 0.825 0.551 0.512 0.595
Dygiepp 0.887 0.876 0.897 0.629 0.605 0.654

SpanMB Bert 0.888 0.883 0.893 0.646 0.615 0.680
MRC4BioER (Zheng’s tagging) - - - 0.615 0.539 0.717
MRC4BioER (Lou’s tagging) - - - 0.624 0.556 0.711

MRC4BioER - - - 0.660 0.617 0.70

Bio RIFRE 0.870 0.851 0.860 0.690 0.70 0.681

and relation extraction task into a Machine Reading Comprehension (MRC) task, which helps in

effectively identifying relationships between entities.

Although Bio-RIFRE does not achieve the highest F1-score in the NER task compared to the

SpanMB BERT model, it excels in the RE task with an F1-score of 0.69, surpassing all other baseline

models. This superior performance in the RE task suggests that Bio-RIFRE is particularly effective

at accurately classifying the relationships between chemical and gene entities once the spans are

correctly identified. This indicates that Bio-RIFRE has a robust mechanism for understanding and

categorizing the interactions between entities, which is crucial for detailed biomedical text analysis.

6.3 Discussion

The baseline models were compared based on their ability to manage sequences with overlapping

chemical-gene named entities and sequences with varying triples per sequence. The evaluation

demonstrated that Bio-RIFRE maintained its robustness even when applied to datasets with more

relation classes, as evidenced by its performance on the DrugProt dataset. The results of this

evaluation are presented in Table 6.2.

6.3.1 Chemical-Gene Overlapping

The Bio-RIFRE model was compared with various baseline models on different types of sequences,

including Normal, SEO, and EPO sequences. The MRCBioER variation models were the only

baseline models that provided results on these different sequence types. Figure 6.4 vividly illustrates

the F1-scores of the Bio-RIFRE model and three MRCBioER models. The results clearly show that

Bio-RIFRE significantly improved the F1-score by 3%, 2%, and 32% for Normal, SEO, and EPO

sequences, respectively. This notable improvement for EPO sequences underscores the model’s
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Figure 6.4: F1-score in Extracting Various Sequences

proficiency in the multi-labeling task, where it assigns different relation classes to triples with the

same chemical-gene named entities.

6.3.2 Different Numbers of Triples per Sequence

To evaluate the robustness of Bio-RIFRE compared to various baseline models, the model was

tested on a CPI test set containing different numbers of triples per sequence. For instance, N = 3

indicates that the model was evaluated on sequences with exactly three triples. Figure 6.5 presents

the results, demonstrating that the Bio-RIFRE model maintains robustness as the number of

triples per sequence increases, as evidenced by the model’s F1-score remaining relatively stable.

Additionally, when sequences contain more than five triples, Bio-RIFRE outperforms other baseline

models in identifying entities and their relationships.

6.3.3 More Relation Classes

Table 6.3 provides a detailed overview of the Bio-RIFRE model’s performance on the DrugProt

dataset. As this dataset is relatively new, there is limited research available for comparison. How-

ever, the results clearly indicate that the Bio-RIFRE model performs admirably, even with the

thirteen different relation classes present in the DrugProt dataset. Furthermore, the model’s per-

formance remains consistent and does not significantly change as the number of triples per sequence

increases, further highlighting its robustness.
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Figure 6.5: F1-score for Extracting Different Numbers of Triples (N) from Sequences

Table 6.3: Evaluation of Bio-RIFRE on DrugProt [PRKL18]

Number of Triples F1 R P

N = 1 0.727 0.811 0.6595
N = 2 0.716 0.758 0.752
N = 3 0.7163 0.701 0.732
N = 4 0.7281 0.6985 0.7602
N ≥ 5 0.7144 0.6624 0.7752
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Chapter 7

Evaluation of Large Language Models

in Clinical Data summarization

7.1 Introduction

In NLP area, the ability of LLMs to generate summaries has indicated significant advancements

in automated content extraction and understanding. Summarization techniques broadly fall into

two categories: extractive and abstractive. Extractive methods involve selecting and rearranging

existing sentences or phrases from the source text to form a concise summary, while abstractive

methods generate novel sentences that convey the core information in a more condensed and co-

herent manner.

The proliferation of abstractive summarization, mainly driven by deep learning models like

transformer-based architectures, introduces the challenge of effectively evaluating the quality and

reliability of these generated summaries. Unlike extractive methods, where overlap metrics like

ROUGE are widely used, abstractive summarization necessitates metrics that assess semantic co-

herence, informativeness, and syntactic correctness in generated text [Lin04].

The development of robust evaluation metrics tailored to abstractive summarization is crucial

for several reasons. Firstly, it ensures the reliability and comparability of summary generation

models across different datasets and tasks. Secondly, it facilitates the iterative improvement of

these models by providing actionable feedback on their outputs. Moreover, effective metrics can

help researchers and practitioners identify strengths and weaknesses in current approaches, guiding

future advancements in NLP and summarization technology.

For instance, recent studies [CY04] [ZKW+19] have proposed metrics such as BERTScore, which
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leverages contextual representation from transformer models to measure the similarity between gen-

erated and reference summaries more effectively than traditional n-gram overlap measures or other

metrics relying solely on surface-form overlaps like BLEU or METEOR [Gra15]. BERTScore com-

putes the cosine similarity between the embeddings of tokens, enhancing the ability to recognize

these semantic relationships. Compared to existing metrics, this method shows a higher correla-

tion with human judgment across tasks such as machine translation and image captioning. As

another example, research conducted by [CCP22] introduces InfoLM, an innovative metric devel-

oped to evaluate the quality of text summarization and data-to-text generation. InfoLM leverages

untrained metrics utilizing a pre-trained masked language model (PMLM) to evaluate texts by

comparing discrete probability distributions of tokens generated from the candidate and reference

texts. InfoLM is distinguished by its use of information theory measures, which allows it to adapt

the metric to different evaluation criteria without extensive retraining.

These advancements underscore the evolution towards more sophisticated evaluation frame-

works suited to the complexities of abstractive summarization tasks. While extractive summariza-

tion benefits from established evaluation metrics, the maturation of abstractive methods demands

innovative approaches reflecting content synthesis’s nature. To bridge the gap in summarization

metrics, we proposed a new metric that employs a novel evaluation approach using a bipartite

knowledge graph. This method examines the named entity class types and their placement within

the summaries by tracing their corresponding sentence numbers. This approach ensures that the

summaries not only capture essential information but also faithfully maintain the logical and se-

quential flow of the original narrative. Our assessment strategy enhances our understanding of the

summarization process by guaranteeing that the generated summaries preserve linguistic coherence

and semantic integrity.

7.1.1 Graph-based Summary Quality Metric

In our enhanced summarization evaluation method, we utilize bipartite knowledge graphs to analyze

the structure and order of named entities within summaries. Below is a detailed breakdown of the

process:

• Node Classification: Our bipartite graphs consist of two distinct types of nodes. The first

type represents named entity classes, categorizing entities according to their semantic roles

such as ‘Person‘, ‘Location‘, or ‘Organization‘. The second type corresponds to the sentence
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numbers within the text, indexing each sentence where entities appear.

• Entity Extraction Process: We perform named entity recognition in two passes to ensure

accuracy and completeness. The first pass scans the text to identify preliminary entity men-

tions and their classes. In the second pass, we refine these results, correcting misclassifications

and confirming each entity’s boundaries.

• Selection of Significant Entities: After identifying the entities and their classifications,

we focus on the top 20 percentile of entities based on their frequency and relevance to the

text’s central themes. For each of these entities, we record the sentence numbers where they

appear.

• Graph Construction: We then construct a bipartite graph for both the original text and

its summary. In this graph, we create edges between nodes representing entity classes and

sentence numbers. An edge is formed between an entity class node and a sentence number

node if that particular entity class is present in the corresponding sentence. Figure 7.1

indicates the graph overview.

• Graph Comparison for Evaluation: To assess the summary’s quality, we compare the

bipartite graph of the original text with that of the generated summary. This comparison

focuses on the similarity of the graphs in terms of structure and entity distribution. The key

aspect we measure is whether the summary preserves the order and structural context of the

named entity classes as they appear in the original text.

• Preservation of Order and Structure: By analyzing the correspondence between the

graphs’ configurations, we can quantitatively evaluate how well the summary maintains the

logical and sequential flow of entities. This provides a metric for assessing the preservation

of narrative structure and information integrity within the summarized content.

This methodology allows for a precise and structured evaluation of text summarization algo-

rithms, focusing particularly on their ability to maintain coherence and fidelity to the original

text’s structure. Through this approach, we gain deeper insights into the summarization process’s

effectiveness, ensuring that the essential elements of the original narrative are accurately reflected

in the summaries.
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7.2 Information-Theoretic Formulation of Bipartite Graphs Metric

We redefine the elements in the context of a bipartite graph where:

• xi represents a pair indicating a named entity class and its sentence number in the original

text T .

• yj similarly represents pairs of named entity classes and sentence numbers in the summary

S.

Entropy and Mutual Information

The entropy calculations now focus on the presence of specific entity-sentence pairs rather than

individual words or sentences, capturing the structured information:

H(T ) = −
∑
i

p(xi) log p(xi) (7.1)

H(S) = −
∑
j

p(yj) log p(yj) (7.2)

Here, p(xi) and p(yj) are the probabilities of each entity-sentence pair occurring in the original

text and the summary, respectively, estimated based on their frequencies.

Mutual Information Calculation

Mutual information measures how much information about the entity-sentence pairs in the original

text is preserved in the summary:

I(T ;S) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
(7.3)

Here, p(x, y) represents the joint probability that an entity-sentence pair x from the original

text and an entity-sentence pair y from the summary are the same.

Information Loss Evaluation

The information loss, particularly in terms of the structure and semantic integrity, is assessed by:

Information Loss = H(T )− I(T ;S) (7.4)
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This calculation reveals how much entity-related structural information is lost in the summa-

rization process.

By redefining these calculations to focus on bipartite graphs, this approach evaluates not only

the preservation of content but also how well the summary maintains the logical structure and

order of the original text, as represented by the entity-sentence relationships. This methodology is

particularly useful where the structural integrity of information is as crucial as the content itself.

Case Study: Enhancing Clinical Trial Summaries on ClinicalTrials.gov

In clinical research, the efficient summarization of trial details is crucial in sharing information

concisely with researchers, practitioners, and the public. On platforms such as ClinicalTrials.gov,

each clinical trial is accompanied by a ”Brief Summary” data field, which summarizes the trial’s

objectives, methodologies, and other key elements. However, not all entries on ClinicalTrials.gov are

complete, with some trials lacking a concise brief description. Recognizing this gap, the study cited

in [GKS+19] employs extractive summarization techniques to generate these brief summaries from

a more extensive ”Detailed Description” data field. This approach not only aims to provide greater

information in a more summarized form but also addresses the issue of missing brief summaries.

The main motivation behind this task is to enhance the accessibility and usability of clinical trial

data by condensing detailed narratives into informative, easy-to-digest summaries.

In an effort to improve the summarization of clinical trials listed on ClinicalTrials.gov, we have

employed the BART (Bidirectional and Auto-Regressive Transformers) model, a state-of-the-art

method known for its effectiveness in generating coherent and contextually relevant text summaries.

Recognizing that the structure of the summary is crucial for its utility and readability, we have

implemented a meticulous evaluation process for the summaries generated by the BART model.

This evaluation involves several key steps: First, we perform an initial quality check to assess the

factual accuracy and relevance of the content in the generated summaries compared to the original

detailed descriptions. This ensures that no critical information is misrepresented or omitted in the

summarization process. Second, we analyze the coherence and flow of the summaries, examining

how well the BART model maintains logical sequencing and connectivity between ideas, which is

vital for the reader’s comprehension.
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Bipartite Graph Generation

In our study, we structured the nodes of our bipartite graphs into two primary classes derived from

the data available on ClinicalTrials.gov. The entities we analyzed are classified into ten specific

types, collectively labeled as E = {e1, e2, . . . , e10}. These types encompass essential components

of clinical trials, including ’disease,’ ’medical condition,’ ’drug,’ ’device,’ ’dose or measurements,’

’clinical trial phase,’ ’population,’ ’time,’ ’medical procedure,’ and ’biomarker.’

• First phase: Employing the llama 2-70 billion model parameters [TMS+23] facilitated by

vLLM [KLZ+23], we extracted named entities from 1000 randomly chosen brief summaries.

This phase prioritized the extraction based on the frequency of occurrence of the entities.

• Second phase: Building on the identified key entity types, we then processed summaries

generated by the BART model for this dataset. We broke down each summary into individual

sentences for further analysis using llama 2-70 billion. A tailored prompt (Listing 7.1) was

applied to check for the presence or absence of each entity type across sentences. The result

for each document di was composed of two binary matrices—one representing the original

text T as the ground truth (matrix size: mi × 10), and the other for the BART-generated

summary (matrix size: ni × 10), with mi and ni indicating the number of sentences in the

respective summaries of document i.

Each document’s relationship between entity types and sentence numbers was mapped using

binary matrices, forming the basis for bipartite graph construction. We assigned G1i to represent

the graph of the original text and G2i for the graph of the generated summary.

Our analysis concentrated on documents in which the original and the BART-generated sum-

maries contained an equal number of sentences (n = m). We employed the Jaccard similarity

metric (outlined in Formula 7.6) to evaluate these graphs over D = 1000 trials. The resulting

average Jaccard similarity of 0.71 indicates that about 71% of the entity types and their sequential

placement in the text are preserved in the summaries [IH98]. This finding underscores the effec-

tiveness of our summarization method in maintaining essential details in the structured format of

clinical trial descriptions.

77



e1 e2 e3 e10…

…s1 s2 s3 sn

Figure 7.1: Overview of Bipartite Graph

Query 7.1: Prompt for Entity Types Extraction

1: # List of entity types for query

2: entity types = [

3: ”disease”, ”medical condition”, ”drug”, ”device”,

4: ”dose or measurements”, ”clinical trial phase”, ”population”,

5: ”time”, ”medical procedure”, ”biomarker”

6: ]

7:

8: # Template for constructing the question

9: question template = ”””Does the following sentence include any named entities of type ’{entity type

}’?:

10: ‘‘‘{sentence}‘‘‘”””

11:

12: # Example of how to format the question with a specific entity type and sentence

13: question = question template.format(entity type=entity types[i], sentence=sentence)

Proposition 7.2.1 Consider that the count of sentences in both the original and generated sum-

maries is equal, represented by the equality n = m. In this scenario, E(G) symbolizes the collection

of all edges within the graph G.

∑D
i=1 J(Gi1, Gi2)

D
for 1 ≤ i ≤ D (7.5)

J(G1, G2) =
|E(G1) ∩ E(G2)|
|E(G1) ∪ E(G2)|

(7.6)

78



Chapter 8

Conclusion

In this dissertation, we present a series of innovative computational models and systems designed

to enhance the analysis and interpretation of biomedical data and clinical trials. Each contribution

not only stands as an achievement in its field but also sets the stage for further research and

application development.

8.1 Overview of Work

This concluding chapter summarizes the key contributions and innovations presented throughout

our work, emphasizing their impact on medical informatics and clinical research. The provided

models not only address current challenges but also start numerous possibilities for future explo-

ration and application. Here, we reflect on our achievements and cast a forward-looking view on

the potential avenues for future work, aiming to expand further the capabilities and applications of

our developed technologies. This discussion sets the stage for ongoing enhancements and exploring

new frontiers in medical and pharmaceutical sciences.

8.1.1 Tri-AL: An Open-source System for Tracking Clinical Trials

Our development of Tri-AL marks a significant advancement in the monitoring and analyzing

clinical trials. This open-source system, capable of tracking clinical trials over time on ClinicalTri-

als.gov, integrates a module for analyzing the race and ethnicity of participants, which is crucial

for ensuring diversity and equity in clinical research. The system’s interactive interface and robust

data visualization tools greatly facilitate the exploration of data features, allowing researchers to

uncover trends and disparities in trial participation. Future enhancements to Tri-AL could include
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real-time data tracking and integration with additional biomedical databases, which would broaden

its applicability and utility. Furthermore, incorporating machine learning models to predict trends

in clinical trial data based on historical patterns could enhance its predictive capabilities, providing

early insights into emerging research areas or potential biases in trial recruitment.

8.1.2 Predicting Drug Mechanisms of Action

The supervised predictive model we developed for determining drug mechanisms of action utilizes

advanced Ml and DL language models to enhance our understanding of drug functions and their

interactions. This model not only accelerates drug development processes but also holds the poten-

tial to revolutionize therapeutic strategies by predicting adverse drug reactions and optimizing drug

combinations for personalized medicine. Expanding this model to cover more drug categories and

incorporating more diverse datasets, including real-world patient data, could improve its accuracy

and applicability in real-world scenarios. Additionally, integrating this model with electronic health

records (EHRs) could facilitate personalized drug recommendations, enhancing patient outcomes

and treatment efficiencies.

8.1.3 Heterogeneous Graph Neural Network for Gene-Chemical Entity Relation

Extraction

Implementing a heterogeneous Graph Neural Network (GNN) for extracting gene-chemical relation-

ships augments word representations using message-passing techniques, enhancing the accuracy of

identifying gene-chemical named entities and their relationships. Future work could extend this

model to encompass additional entity types and deeper relational contexts, incorporating more

complex layers of interaction, such as gene-environment interactions, which are crucial for un-

derstanding complex diseases. Exploring the application of this GNN model to other areas of

bioinformatics, such as protein-protein interactions and cellular pathway analysis, could also yield

significant benefits. This could involve developing dynamic GNNs that adapt to new discoveries in

genomics and proteomics, providing a continually evolving tool for biomedical research.

8.1.4 Bipartite Graph Model for Evaluating Summarization Performance

The bipartite graph model proposed for evaluating the performance of large language models in

summarizing clinical trials provides a robust framework to assess the accuracy and effectiveness of
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automated summarization tools. This model’s ability to evaluate summaries’ coherence and con-

text preservation can significantly contribute to clinical knowledge management systems, in which

precise and reliable summarization of vast amounts of literature is critical. Future research could

explore incorporating reinforcement learning to dynamically adjust summarization strategies based

on feedback, enhancing the model’s adaptability and accuracy. Testing this model across different

types of medical literature and clinical guidelines could validate its versatility and effectiveness

in various medical contexts, potentially leading to its integration into clinical decision support

systems.

Each of these projects demonstrates our commitment to pushing the boundaries of current

methodologies and highlights the potential for significant advances in the field of medical informat-

ics. As we continue to refine these models and systems, they will play a crucial role in enhancing

the accuracy and efficiency of biomedical research and healthcare delivery.
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[HZSBMD13] Maŕıa Herrero-Zazo, Isabel Segura-Bedmar, Paloma Mart́ınez, and Thierry Declerck.

The ddi corpus: An annotated corpus with pharmacological substances and drug–

drug interactions. Journal of biomedical informatics, 46(5):914–920, 2013.

85



[IH98] GI Ivchenko and SA Honov. On the jaccard similarity test. Journal of Mathematical

Sciences, 88:789–794, 1998.

[Int24] Clinical Trials Transformation Intiative. Aact database schema. https://aact.ctti-

clinicaltrials.org/schema, 2024.

[JCL+20] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and

Omer Levy. Spanbert: Improving pre-training by representing and predicting spans.

Transactions of the Association for Computational Linguistics, 8:64–77, 2020.

[JWF+23] Qiao Jin, Zifeng Wang, Charalampos S Floudas, Fangyuan Chen, Changlin Gong,

Dara Bracken-Clarke, Elisabetta Xue, Yifan Yang, Jimeng Sun, and Zhiyong Lu.

Matching patients to clinical trials with large language models. ArXiv, 2023.

[KKB+16] Jens Kringelum, Sonny Kim Kjaerulff, Søren Brunak, Ole Lund, Tudor I Oprea,

and Olivier Taboureau. Chemprot-3.0: a global chemical biology diseases mapping.

Database, 2016:bav123, 2016.

[KLZ+23] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao

Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management

for large language model serving with pagedattention. In Proceedings of the 29th

Symposium on Operating Systems Principles, pages 611–626, 2023.

[KNC+22] Mina Esmail Zadeh Nojoo Kambar, Pouyan Nahed, Jorge Ramón Fonseca Cacho,

Garam Lee, Jeffrey Cummings, and Kazem Taghva. Clinical text classification

of alzheimer’s drugs’ mechanism of action. In Proceedings of Sixth International

Congress on Information and Communication Technology, pages 513–521. Springer,

2022.

[KRA+17] Martin Krallinger, Obdulia Rabal, Saber A Akhondi, Martın Pérez Pérez, Jesús San-
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tonio López, Umesh Nandal, et al. Overview of the biocreative vi chemical-protein

interaction track. In Proceedings of the sixth BioCreative challenge evaluation work-

shop, volume 1, pages 141–146, 2017.

[KRL+15] Martin Krallinger, Obdulia Rabal, Florian Leitner, Miguel Vazquez, David Salgado,

Zhiyong Lu, Robert Leaman, Yanan Lu, Donghong Ji, Daniel M Lowe, et al. The

chemdner corpus of chemicals and drugs and its annotation principles. Journal of

cheminformatics, 7(1):1–17, 2015.

[KSMB21] Wan Yee Kong, Hamidreza Saber, Rohit Marawar, and Maysaa Merhi Basha. Racial

and ethnic trends in antiseizure medications trial enrolment: A systematic review

using clinicaltrials. gov. Epilepsy Research, 173:106613, 2021.

[Kum17] Shantanu Kumar. A survey of deep learning methods for relation extraction. arXiv

preprint arXiv:1705.03645, 2017.

86
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Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine learning

in python. Journal of Machine Learning Research, 12(85):2825–2830, 2011.
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