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Abstract 
 

Water droplet behavior on soil surfaces plays a critical role in numerous environmental 

processes, including soil erosion, hydrological dynamics, and ecosystem health. Accurate 

characterization of soil water repellency, quantified by parameters such as water droplet 

penetration time (WDPT) and contact angles (WDCA), is essential for informed decision-

making in agricultural management, forestry practices, and land-use planning. Despite the 

significance of these parameters, challenges exist in reliably estimating them due to the 

complex and dynamic nature of soil-water interactions.  

 

This thesis address challenges in estimating WDPT and WDCA, by leveraging state-of-the-art 

image processing techniques and machine learning algorithms. The research focuses on 

advancing our understanding of water droplet interactions with soil surfaces and developing 

accurate methods for estimating WDPT and contact angles. Specifically, the thesis explores 

the utilization of deep machine learning models, such as the Yolov8 instance segmentation 

model, for water droplet detection, followed by the application of various deep learning 

methods for WDPT and contact angle estimation.  

 

The methodology involves the collection of an extensive dataset comprising over 200 samples 

of water droplets interacting with different soil textures and types. Through rigorous 

experimentation and model training, the research achieves a remarkable accuracy of 90% in 

distinguishing between drowning and fully submerged droplets. Comparative analysis with 

existing techniques further validates the effectiveness of the proposed methodologies. For 

Water Droplet Penetration Time (WDPT) and Water Droplet Contact Angle (WDCA), the 
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study demonstrates an error rate below 15% when compared to ground truth data, ensuring the 

reliability and precision of the approach in analyzing soil-water interactions.  

 

The findings of this study have significant implications for environmental science, hydrological 

modeling, and agricultural sustainability. By providing reliable tools for characterizing soil 

water repellency, the research contributes to enhancing environmental management practices 

and informed decision-making in various fields.
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Chapter 01: Introduction 

 

 

1.1 The Necessity of Water Droplet Penetration Time (WDPT)  

 

Water Droplet Penetration Time (WDPT) and Water Droplet Contact Angle (WDCA) is a 

crucial metric in soil science, pivotal for assessing soil water repellency (SWR) [1], which has 

profound implications for environmental management, agriculture, and ecological 

conservation [2]. This expanded discussion explores the necessity of WDPT, its historical 

measurement methods, the evolution of technology in its assessment, and its broader 

environmental implications. 

 

1.2 Importance of WDPT in Environmental Management 

 

WDPT is essential for accurately assessing the hydrophobicity of soils, particularly in 

environments affected by wildfires [3] or in agricultural [4] where irrigation practices are 

critical. Soil water repellency leads to reduced water infiltration, which can increase surface 

runoff, enhance soil erosion risks, and decrease water availability for plants. This phenomenon 

is critical in managing post-wildfire landscapes [5] where the soil can become significantly 

hydrophobic, preventing effective water absorption and increasing the risk of flash floods and 

mudslides [6]. For instance, following significant wildfires, such as the one on Mount 

Pellegrino in 2016, rapid assessment of SWR was crucial to predict potential hydrological 

consequences and implement necessary mitigation actions to safeguard affected communities.  
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1.3 Historical Measurement Methods of WDPT 

 

The traditional methodologies for measuring Water Droplet Penetration Time (WDPT) have 

evolved significantly over the years, yet they all share a common goal: to assess the degree of 

water repellency in soils. Initially, WDPT was measured manually as shown in Figure 1, a 

method that, while straightforward, presented numerous challenges related to accuracy and 

consistency. 

 

 

Figure 1: WDPT Manual Test  

 

Early methods involved simply observing and timing how long it took for a water droplet to 

infiltrate the soil surface [7]. This manual technique was one of the simplest forms of measuring 

soil water repellency but was highly susceptible to observational biases and environmental 

influences such as wind and temperature, which could alter the droplet's behavior and the 

measurement's accuracy. 
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As the need for more precise and reliable measurements became apparent, researchers 

developed more standardized approaches. The Water Drop Penetration Time (WDPT) test, as 

formalized by researchers like Doerr et al [8], became a foundational method. This test involves 

placing a standard volume of water on the soil surface and using a stopwatch to measure the 

time taken for complete absorption. This method provided a more quantifiable approach to 

assessing soil hydrophobicity but still relied heavily on manual timing and could be influenced 

by the droplet's size and the soil's surface condition. 

 

To address these limitations, subsequent innovations included the use of more controlled 

droplet application techniques and environmental controls during testing. Studies compared 

various application methods, such as using manual versus automated droplet dispensers, to 

improve the consistency and reliability of measurements. Automated systems allowed for more 

precise control over droplet size and the timing of its application, reducing the variability 

caused by manual operation and providing a more consistent basis for comparison across 

different soil types and conditions [9]. 

 

Additionally, the integration of digital timers and high-resolution video recording equipment 

further enhanced the precision of WDPT measurements. These tools allowed researchers to 

capture and analyze the infiltration process in real-time, providing detailed data that could be 

used to better understand the dynamic interaction between water droplets and soil particles. 

The use of video analysis also facilitated the study of the initial contact angle and the rate of 

change over time, adding another layer of depth to the understanding of soil hydrophobicity 

[10]. 
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1.4 Advances in Technology for Measuring WDPT 

 

Our research contributes significantly to the measurement of Water Droplet Penetration Time 

(WDPT), with increased precision and reliability. Central to our approach is the integration of 

automated systems for controlled water droplet delivery and cutting-edge imaging technologies 

to estimate WDPT. The key components of our system include an electronic pipette, single 

board computer, and high-definition cameras.  These technologies coalesce to automate and 

refine the process of WDPT measurements, ensuring controlled droplet release and exact 

timing. 

 

Automation plays a pivotal role in our methodology, mitigating human error and bolstering the 

consistency of our measurements. The high-definition cameras we employ are crucial for 

capturing the complex interactions between water droplets and soil. This data is not merely 

descriptive but analytical, offering deep insights into the soil’s behavior under varying 

environmental conditions. The level of detail in our imagery elucidates both the immediate 

absorption rates and the intricate dynamics of how water interacts with diverse soil textures. 

 

Moreover, the adaptability of our systems to unmanned aerial vehicles (UAVs), or drones, 

revolutionizes our field studies. These drones can traverse and assess remote or difficult 

terrains, enabling extensive soil health evaluations without direct human intervention. This 

capability is invaluable for conducting ecological studies in areas susceptible to natural 

disturbances or managing large agricultural lands efficiently. By harnessing these 

technological advancements, our team is equipped to perform thorough and expansive 

assessments of soil water repellency, significantly enhancing decision-making processes for 

environmental management and agricultural optimization. 
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1.5 Ecological and Hydrological Implications of WDPT 

 

In ecological and hydrological studies, WDPT measurements are vital for maintaining the 

natural balance of ecosystems, particularly in sensitive environments like wetlands where water 

infiltration rates significantly affect the habitat’s water table and, consequently, its plant and 

animal life [11]. Precise WDPT measurements enable the design of effective conservation 

strategies, ensuring that necessary water levels are maintained to support these delicate 

ecosystems [12]. 

 

1.6 Global Environmental Health and WDPT 

 

On a broader scale, accurate WDPT measurements are crucial for addressing global challenges 

such as climate change and sustainable land management [13]. Areas undergoing 

desertification, for instance, can benefit from targeted WDPT studies that lead to better soil 

management practices [14], potentially reversing land degradation trends and promoting 

healthier, more resilient soil ecosystems. These practices are integral to global efforts aimed at 

enhancing food security, managing water resources, and preserving the ecological balance [15]. 

 

1.7 Research and Development 

 

The academic and practical applications of Water Droplet Penetration Time (WDPT) are 

extensive, particularly in understanding and mitigating the effects of wildfires on soil 

properties. Recent studies have highlighted the critical impact of post-fire conditions on soil 

hydrophobicity and the necessity of precise WDPT measurements. For instance, the 2021 

Caldor Megafire in the Eastern Sierra Nevada significantly altered soil properties, with WDPT 

and apparent contact angle measurements documenting increased soil hydrophobicity [16]. 

These findings underscore the importance of WDPT in post-fire soil assessments, facilitating 
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the development of effective soil rehabilitation strategies. Similarly, research on the 

Gangneung Forest fire in South Korea demonstrated how severe burns exacerbate soil water 

repellency, emphasizing the role of accurate WDPT measurements in ecological recovery 

efforts [17]. 

 

Technological advancements have further enhanced WDPT measurement techniques. 

Automated systems equipped with high-definition cameras and precision droplet applicators, 

such as the Mini-Disk Infiltrometer (MDI), offer greater accuracy and consistency compared 

to traditional methods. These systems are particularly useful in post-fire landscapes, where 

rapid and precise assessments guide soil restoration efforts [18]. Additionally, integrating 

machine learning algorithms with WDPT measurement systems has improved efficiency and 

reliability [19]. Deep learning models, like Convolutional Neural Networks (CNNs), enable 

real-time analysis of droplet interactions with soil, providing detailed insights into the effects 

of fire on soil properties [20]. 
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Chapter 02: Literature Review 
 

 

2.1 Previous Work  

 

The characterization of soil water repellency has been the focus of extensive research, with 

various methodologies developed to assess this critical property. Traditional methods include 

the Water Drop Penetration Time (WDPT) test, contact angle measurements, and the molarity 

of ethanol droplet (MED) test [21]. These methods have been widely employed due to their 

ability to provide direct measurements of soil hydrophobicity. WDPT, for example, has been a 

popular method for its straightforward application, despite limitations related to human error 

and environmental variability. 

 

Research has also delved into the effectiveness of different application techniques for WDPT. 

For instance, in fire-affected regions of Sicily [22], various methods such as manual spraying, 

automated spraying, and immersion have been compared. These studies found that automated 

methods generally offer better consistency and efficiency, though manual methods can still be 

effective depending on the specific conditions. The importance of choosing the appropriate 

application method is emphasized, particularly in contexts with varying soil moisture content, 

temperature, and surface roughness. 

 

In the lower Himalayan regions of India [23], studies have explored the impact of land use on 

soil water repellency. Using WDPT and other characterization methods, researchers assessed 

soil samples from forests, agricultural fields, and urban areas. They found significant variations 

in water repellency based on land use, highlighting how human activities and land management 

practices can alter soil properties and affect water management strategies. 
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The integration of advanced technologies has also been a significant focus. Deep Convolutional 

Neural Networks (CNNs) have been employed to segment images of droplet deposition, 

improving the accuracy and efficiency of spray distribution assessments [24]. This method 

showcases the potential of machine learning to enhance traditional soil assessment techniques, 

providing more precise and detailed data. Furthermore, a survey of water droplet recognition 

algorithms has evaluated various approaches, including thresholding, edge detection, and 

machine learning-based methods. This comprehensive analysis helps in selecting the most 

suitable techniques for different scenarios, contributing to the development of more reliable 

water droplet recognition systems. 

 

In Sicily, studies conducted two years post-fire [25] have used WDPT to assess soil water 

repellency, aiming to understand the persistence of hydrophobicity and its impact on soil 

hydrology. These studies highlight the importance of long-term monitoring of soil properties 

following environmental disturbances to inform soil management and restoration efforts. 

Similarly, research on hydrophobized sand has examined water repellency indices, including 

WDPT, providing insights into the hydrophobicity of treated surfaces and their potential 

applications in various environmental and agricultural areas. 

 

2.2 Our Approach  

 

 Our approach in measuring Water Droplet Penetration Time (WDPT) introduces several 

innovative advancements over traditional methods. Unlike the conventional techniques that 

rely heavily on manual timing and subjective assessments, our system integrates automation 

and deep machine learning technologies to enhance measurement accuracy and efficiency. 
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We utilize the Pluto valve, an off-the-shelf electronic pipette, for precise control over droplet 

release, coupled with the computational power of the Raspberry Pi for real-time data capture. 

High-definition cameras capture detailed images of water droplets interacting with soil 

surfaces, which are then analyzed offline using Convolutional Neural Networks (CNNs). 

Specifically, we employ the YOLOv8 model, a state-of-the-art deep learning algorithm that 

enables real-time detection and segmentation of water droplets. This automated setup 

significantly reduces human error and environmental variability, ensuring more reliable and 

repeatable measurements. 

 

Additionally, our approach is intended to be used on drones equipped with these advanced 

systems, enabling large-scale assessments of soil water repellency in remote and inaccessible 

areas. This capability represents a significant improvement over previous methodologies 

limited to smaller, manually accessible sites. By leveraging these technological advancements, 

our methodology not only enhances the precision of WDPT measurements but will also 

improve the scalability and applicability of soil water repellency assessments, providing a 

robust tool for environmental management and agricultural practices. 
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Chapter 03: Methodology 
 

3.1 Hardware Setup 

 

The hardware setup for measuring Water Droplet Penetration Time (WDPT) incorporates 

several advanced components to ensure precise and efficient measurements. At the core of the 

setup is the electronic pipette [26], which stores water and controls its release. The valve switch 

is connected to a Raspberry Pi (RPI) through an optocoupler, which protects the RPI reverse 

current. The Raspberry Pi triggers pulses to open the electronic pipette, allowing for the 

accurate control of droplet size by adjusting the opening time.  

 

Below the valve is a Petri dish containing soil samples. Multiple soil samples are used to obtain 

a variety of results, ensuring the robustness of the data. An ArUco marker [27] is placed on top 

of the soil to aid in pose estimation, ensuring accurate positioning and measurement of the 

droplets. The ArUco marker is a type of fiducial marker widely used in computer vision 

applications to determine the orientation and position of objects within the frame. In this setup, 

the ArUco marker provides a reference point for aligning the camera and the droplet, which is 

crucial for obtaining consistent and reliable measurements. 

 

The IMX477 camera [28], mounted on a tripod, plays a crucial role in capturing high-definition 

images of the water droplets as they interact with the soil. The camera’s autofocus feature 

ensures that the images are clear and focused, and it is controlled by the Raspberry Pi to 

synchronize data capture. 
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Figure 2: WDPT System Core Setup 

 

To eliminate any background disturbances and enhance the visibility of the water droplets, an 

external light source is used. This setup ensures that the release and measurement of water 

droplets are both precise and repeatable, facilitating accurate WDPT assessments in various 

environmental conditions. The core setup of this system is shown in Figure 2.   

 

3.2 Data Collection 

 

The data collection process involves capturing images and videos of water droplets interacting 

with various soil types, under different conditions, to study soil properties and train the deep 

learning model effectively. This comprehensive data collection is crucial for understanding 

water-soil interactions both in a controlled laboratory setup and in field applications. 
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The process begins with the electronic pipette, controlled by the Raspberry Pi 4B, which 

precisely triggers the release of water droplets. The IMX477 high-resolution camera starts 

capturing video and images just before the droplet leaves the valve and continues until the 

droplet is completely absorbed by the soil. This entire sequence ensures that the dynamic 

interaction between the water droplet and the soil surface is thoroughly captured. Videos are 

recorded in high resolution (720p or 1080p) at 60 or 90 frames per second (fps), for detailed 

visual data for analysis. An external light source, providing a lux value of 650-750, ensures 

that the droplets are clearly visible, eliminating background disturbances. During field test we 

propose to use artificial light under the drone to maintain this lux value. Figure 3 illustrates 

various images recorded at different sequences during the data collection process.  

 

 

 

Figure 3: Recorded Image Sequences 

 

In this study, a total of 167 video samples were recorded across different soil types and 

hydrophobicity levels. These samples include various soil conditions such as Lysimeter Soil 

[29], Pink Sand [30], Reheated Sand [31], and White Sand [32] with varying hydrophobicity 

percentages. The average duration of these video samples ranged from 30 seconds to 150 
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seconds, and most were recorded at a resolution of 720p or 1080p. Pink Sand was recorded the 

least because the soil-water interaction did not alter much, making it less relevant for extensive 

analysis. Table 1 summarizes the number of videos recorded for each soil type. 

 

Table 1: Number of Samples Recorded for Each Soil Type 

 

Soil Type No of Samples Recorded 

Lysimeter Soil 86 

Pink Sand 6 

Reheated Sand 53 

White Sand (30%) 22 

Total 167 

 

 

The hydrophobicity of the soil significantly influences the absorption time of water droplets. 

Table 2 [23] below illustrates the average water absorption times. 

 

Table 2: Average Water Absorption Times for Different Hydrophobicity Levels 

 

Water repellency WDPT (s) 

Wettable <5 

Slightly to moderately repellent 5–60 

Strongly water-repellent 60–600 

Severely water-repellent 600–3600 
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The results demonstrate that lower hydrophobicity leads to quicker water absorption, while 

higher hydrophobicity increases the absorption time.  

 

3.3 Image Processing using Yolov8 

 

YOLOv8 (You Only Look Once, Version 8) is the latest iteration of the YOLO object detection 

model developed by Ultralytics [33]. Renowned for its superior accuracy and efficiency in real-

time applications, YOLOv8 integrates advanced deep learning and computer vision 

technologies to enhance its performance in tasks such as detection, segmentation, and 

classification. Building on the strengths of its predecessors, YOLOv8 offers a streamlined 

design and remarkable flexibility, making it suitable for deployment on various hardware 

platforms, from edge devices to cloud APIs. This versatility is particularly beneficial for our 

application involving water droplet detection in soil analysis, where real-time detection and 

segmentation of water droplets are crucial for accurate hydrophobicity assessments. 

 

The model supports a wide range of vision AI tasks, ensuring precise and real-time detection 

and segmentation of water droplets. By leveraging YOLOv8, we achieve high accuracy and 

scalability, significantly advancing our research in soil water repellency measurements. This 

capability allows us to conduct thorough analyses and obtain reliable data essential for 

understanding soil-water interactions. 

 

Data Preparation and Model Training 

 

After data collection, the captured images and videos are systematically sorted into three 

categories: test, train, and validation datasets. This sorting process is critical for training the 

YOLOv8 model effectively. The primary purpose of using YOLOv8 for droplet detection is to 
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measure various parameters such as droplet penetration time, contact angle, and droplet 

coordinates in the recorded frames. 

 

For this study, we trained YOLOv8 using over 200 images representing different soil types and 

droplet conditions. The first step involves using an annotation software called "LabelMe" [34] 

to highlight the droplets against the background. As shown in Figure 4, the software allows us 

to create polygons around the droplets, which helps in distinguishing between two classes: 

"Drowning" and "Fully Drowned," depending on their absorption stages. These annotations are 

crucial for training the model to recognize and segment droplets accurately.  

 

 

Figure 4: Annotation of Water Droplet 

 

Once the annotations are completed, the files are converted into a format that YOLOv8 can 

understand. The annotated files, along with the dataset images, are then divided into three 

folders: test, train, and validation. This division ensures that the model is trained on a diverse 
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set of images, enhancing its ability to generalize and perform well on unseen data. The model 

is trained for 100 epochs with images set to a resolution of 640 pixels, optimizing the model's 

parameters for best performance. 

 

Training Results and Model Evaluation 

 

Upon completing the training process, the model's performance is evaluated using various 

metrics. One of the key evaluation tools is the F1 Confidence Curve, shown in Figure 5. This 

graph illustrates the relationship between confidence score thresholds and F1-scores, helping 

in selecting an optimal threshold that balances precision and recall [35].  

 

 

 

Figure 5: F1 Confidence Curve 
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Mathematically, the F1 score is a weighted harmonic mean of precision and recall, ranging 

from 0 to 1, with 1 being the best possible score:  

 

F1 = 2 * (precision * recall) / (precision + recall) 

 

The Precision Confidence Curve graph (Figure 6) further aids in understanding how precision 

varies with confidence score thresholds, providing insights into the accuracy of the model's 

predictions.  

 

 

 

Figure 6: Precision-Confidence Curve 

 

Visualizing segmentation masks is another essential aspect of model evaluation. These masks 

offer a detailed view of how the model perceives water droplets and their absorption stages. 

The segmentation output distinguishes between "Drowning" and "Fully Drowned" droplets, as 
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shown in Figure 7. This visualization not only validates the model's performance but also helps 

in refining the detection and segmentation processes.  

 

  

Figure 7: Visual Segmentation Output 

 

The integration of YOLOv8 into our research framework significantly enhances the precision 

and efficiency of water droplet detection and segmentation. The detailed data preparation and 

rigorous training processes ensure that the model performs reliably across various conditions, 

thereby advancing our understanding of soil hydrophobicity and its implications for 

environmental and agricultural management.  
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Mask R-CNN:  

 

Mask R-CNN (Region-based Convolutional Neural Networks) is a powerful and versatile 

model for object detection, segmentation, and classification. Developed as an extension of 

Faster R-CNN, Mask R-CNN enhances the capabilities of its predecessor by introducing an 

additional branch that predicts segmentation masks for each Region of Interest (RoI). This 

branch operates in parallel with the existing branches that handle classification and bounding 

box regression, making Mask R-CNN adept at performing multiple tasks simultaneously. 

 

The architecture of Mask R-CNN consists of several key components: 

 

 

• Backbone Network: The backbone network, typically a ResNet or ResNeXt, is used 

for feature extraction. It generates feature maps from the input image, capturing 

important spatial information. 

 

 

• Region Proposal Network (RPN): The RPN generates candidate object proposals by 

sliding a small network over the feature maps. It predicts object scores and refines 

bounding boxes, which are then used to identify potential objects in the image. 

 

 

• RoI Align: RoI Align is a critical component that improves upon the RoI Pooling used 

in Faster R-CNN. It ensures that the regions of interest are properly aligned with the 
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feature maps, preserving spatial accuracy and improving the precision of object 

detection and segmentation. 

 

 

• Classification and Bounding Box Regression: For each RoI, the model predicts the 

class label and refines the bounding box coordinates, allowing for accurate object 

localization and classification. 

 

 

• Segmentation Masks: The additional branch in Mask R-CNN predicts a binary mask 

for each RoI. This mask indicates the pixel-level segmentation of the object, enabling 

precise delineation of object boundaries.  

 

By integrating segmentation capabilities with object detection, Mask R-CNN offers a 

comprehensive solution for analyzing the interaction between water droplets and soil. This 

capability is crucial for understanding soil hydrophobicity and water repellency, as the 

segmentation masks help visualize how droplets interact with different soil types. 

 

3.4 Soil Preparation 

 

The preparation of soil samples is a critical step in ensuring the accuracy and reliability of 

Water Droplet Penetration Time (WDPT) measurements. This section details the methods and 

protocols used to prepare the soil samples for our experiments, which included various types 

of soil with different hydrophobicity levels. 
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For all experiments in this study, a medium-fine silica sand with a diameter range of 0.595–

0.125 mm was selected as the soil surrogate. This specific sand, sourced from AGSCO 

Corporation, Wheeling, IL, USA, has been used in similar studies on soil-water repellency 

(SWR) and soil hydraulic properties [30]. The preparation steps for the silica sand involved a 

thorough cleaning process using a 0.003 M hydrochloric acid solution (Fisher Scientific, Fair 

Lawn, NJ, USA) to remove impurities and potential contaminants. Following the acid cleaning, 

the sand was extensively rinsed with ultra-high purity water (18 MΩ cm^−1) produced by an 

ELGA water system (ELGA® LabWater, Woodridge, IL, USA). 

 

Post-cleaning, the sand was placed into a tray covered with aluminium foil and dried in an oven 

at 105 °C for 48 hours. This process ensured the removal of any residual moisture and acid, 

resulting in untreated or “0%” sand, which served as the baseline for further soil preparations. 

The key physical and chemical properties of the prepared soil samples include a particle size 

range of 0.595–0.125 mm diameter, neutralized acidity post-cleaning, and negligible moisture 

content after drying at 105 °C.  

 

 

 

Figure 8: Different Types of Soil Samples Used 
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To create samples with varying hydrophobicity levels, additional treatments were applied to 

the baseline sand. For instance, to prepare pink sand, the untreated 0% sand was dyed with 

Rhodamine B dye and subjected to the same drying process at 105 °C for 48 hours. After 

drying, the dyed sand was placed in a desiccator for an additional 24 hours to stabilize the dye. 

Furthermore, to create mixed sand samples, the 0% sand was mixed with pink sand by 

percentage mass, ensuring controlled variations in hydrophobicity. Figure 8 shows the various 

types of sample soil used during the WDPT process. 

 

The preparation of Lysimeter soil involved collecting samples from the field at a depth of 0-20 

cm and sifting them using a common colander to remove larger stones and ensure uniformity. 

This sifting process was essential for maintaining consistent experimental conditions across all 

soil samples. 

 

Standard procedures and protocols were meticulously followed throughout the soil preparation 

process to maintain consistency and reproducibility. These protocols included the use of 0.003 

M hydrochloric acid for cleaning, ultra-high purity water for rinsing, and oven drying at 105 

°C for 48 hours in aluminium foil-covered trays. Additionally, the dyeing process involved 

adding Rhodamine B dye to the sand, followed by stabilization in a desiccator to ensure 

uniform dye distribution. 

 

3.5 X-Delta Arm Robot 

 

The X-Delta Arm Robot [36] is an integral component of our experimental setup, designed to 

ensure precise control over the water droplet delivery process. This robotic arm is equipped 

with an electronic pipette, which is crucial for controlling the release of water droplets onto the 

soil samples. 
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The X-Delta Arm Robot can move the electronic pipette in the x, y, and z axes, providing 

versatile positioning capabilities. This movement is facilitated by three Dynamixel stepper 

motors [37], which offer high precision and reliability. The ability to adjust the valve's position 

in three dimensions allows for accurate targeting of the soil sample, ensuring that the droplet 

is delivered to the desired location without any deviation. 

 

One of the critical functionalities of the X-Delta Arm Robot is its capability to adjust the height 

of the electronic pipette. This adjustment is vital to ensure that the water droplet falls onto the 

soil sample without bouncing, which could otherwise affect the accuracy of the WDPT 

measurements. By maintaining an optimal height, the arm ensures that the droplet impacts the 

soil with minimal disturbance.  

 

 

 

Figure 9: Setup of X-Delta Arm Robot 
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Figure 9 shows the complete setup, casing of the X-Delta Arm Robot, the electronic pipette, 

the IMX477 camera, and the control modules. This setup represents a versatile system for 

conducting precise and controlled WDPT measurements. 

 

The entire setup, DropMLAB, includes the Pluto valve, X-Delta Arm Robot, IMX477 camera, 

and control modules. This enclosure is designed to eliminate any external lighting effects that 

could interfere with the droplet detection and measurement process. By creating a controlled 

environment, the enclosed box ensures that the experiments are conducted under consistent 

lighting conditions, thereby enhancing the reliability of the results. 

 

For field experiments, this setup will be attached to the bottom of a drone. This mobile 

configuration allows us to carry out experiments in remote forest areas, providing valuable data 

on soil water repellency in various environmental conditions. The ability to transport the setup 

to different locations expands the scope of our research, enabling us to study soil 

hydrophobicity in diverse terrains and climates. 
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Chapter 04: Model Detection 
 

4.1 Droplet Class Detection  

 

The YOLOv8 model plays a critical role in detecting and labelling water droplets as they 

interact with soil. Once a droplet falls onto the soil, the YOLOv8 model picks up the droplet's 

structure and starts labelling it as "Drowning" (Figure 10). Bounding boxes and droplet 

contours appear around the droplet, dynamically adjusting as the droplet size changes. The 

confidence score, displayed alongside the label, provides a measure of the model's certainty in 

its detection. A threshold of 0.5 is maintained to ensure the reliability of detections.  

 

 

 

Figure 10: Model Drowning Detection 

 

This detection process is performed in real time, allowing continuous monitoring of the 

droplet's behavior. As the droplet is absorbed by the soil, the bounding box's size decreases 

until the droplet is fully absorbed. At this point, the model labels the droplet as "Fully 

Drowned," as shown in Figure 11 marking the transition and updating the bounding box and 
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confidence score accordingly. This detection capability is crucial for determining the water 

droplet penetration time (WDPT) and performing volume analysis.  

 

 

 

Figure 11: Model Fully Drowned Detection  

 

Table 3 below compares the average confidence scores between the "Drowning" and "Fully 

Drowned" classes across five different test samples. The scores demonstrate the model's 

effectiveness and suitability for this type of research. 
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Table 3: Comparison of Confidence Score (Drowning vs Fully Drowned) 

Test Sample Soil Type Drowning Class 

Avg (%) 

Fully Drowned 

Avg (%) 

Sample 1 0% Lysimeter 

Soil 

- 82 

Sample 2 25% Reheated 

Sand 

87 90 

Sample 3 30% White Sand 93 89 

Sample 4 40% Lysimeter 

Soil 

92 88 

Sample 5 50% Lysimeter 

Soil 

86 83 

Sample 6 100% Lysimeter 

Soil 

95 - 

 

The table illustrates the model's high confidence scores in detecting both the "Drowning" and 

"Fully Drowned" states of the droplets, underscoring its effectiveness for this application. The 

confidence scores clearly indicate the reliability and precision of the YOLOv8 model in 

tracking the droplet absorption process, making it an invaluable tool for analyzing soil 

hydrophobicity and water penetration properties.  
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4.2 Bounding Box Coordinates   

 

Bounding box coordinates of the water droplet are crucial for accurately locating the water 

droplet within each frame of the captured video. These coordinates are not only essential for 

detection but also play a vital role in the subsequent volumetric analysis of the droplet.  

 

To extract the bounding box coordinates, a Python script is employed that processes the output 

generated by the YOLOv8 model for each frame. The YOLOv8 model provides these 

coordinates in the form of tensors, which represent the bounding box around the detected 

droplet. The format for these coordinates is [x_min, y_min, x_max, y_max], indicating the top-

left and bottom-right corners of the bounding box. 

 

The extracted bounding box coordinates are then used to calculate various parameters needed 

for volume analysis and to monitor the droplet's behavior as it interacts with the soil. This 

information is vital for understanding the droplet absorption process and the soil's hydrophobic 

properties. 

 

 

Figure 12: Terminal Output Displaying Bounding Box Coordinates 
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Figure 12, illustrates the terminal output of the script, showcasing the tensor values which 

denote the bounding box coordinates. These values are dynamically updated for each frame, 

providing real-time tracking of the droplet. 

 

By utilizing these coordinates, we can accurately track the droplet's position and size, which is 

essential for detailed analysis and research on soil hydrophobicity and water droplet penetration 

time. The precision of the bounding box coordinates ensures that the detection and analysis are 

reliable and can be used to derive meaningful conclusions.  

 

4.3 WDPT Calculation 

 

The process of calculating WDPT involves several steps, from the detection of the water 

droplet by the YOLOv8 model to the final computation of the penetration time. The YOLOv8 

model plays a vital role in this process by accurately detecting and classifying the state of the 

water droplet as it interacts with the soil.  

The process begins with initializing the YOLOv8 model, specifically trained for segmentation 

tasks using a custom weight file ("yolov8m-seg-custom.pt"). The model is applied to each 

frame of the video capturing the droplet's interaction with the soil. This real-time detection 

ensures that the droplet's shape and position are continuously monitored as it interacts with the 

soil surface. 
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Classification: When a water droplet falls onto the soil sample, the YOLOv8 model identifies 

and labels the droplet with the class "Drowning". This detection is performed in real-time, with 

the model continuously updating the bounding box coordinates and the confidence score as the 

droplet changes shape and size. The classification of the droplet as "Drowning" indicates that 

the droplet is in the process of being absorbed by the soil. As the droplet continues to be 

absorbed, the YOLOv8 model monitors its status until the point where the droplet is no longer 

visible or has been completely absorbed by the soil. At this stage, the model changes the label 

from "Drowning" to "Fully Drowned". This transition is crucial as it marks the end of the water 

droplet penetration process. 

 

Logging Detection Data: Throughout the detection process, the YOLOv8 model outputs 

various detection values, including the class labels, bounding box coordinates, and confidence 

scores. These values are displayed in the terminal and simultaneously saved as a log file. The 

log file records the detection data for each frame, capturing the moment the droplet is first 

labelled as "Drowning" and the moment it changes to "Fully Drowned". 

 

Python Script for WDPT Calculation: To calculate the WDPT, a Python script is employed 

to process the log file generated by the YOLOv8 model. The script reads the log file and 

identifies the frame time of the first instance of the "Drowning" class and the frame time just 

before the label changes to "Fully Drowned". These frame times represent the start and end 

points of the water droplet penetration process. 

 

The script then calculates the penetration time using the following formula: 

 

𝑊𝐷𝑃𝑇 =  
𝑒𝑛𝑑 𝑓𝑟𝑎𝑚𝑒 −  𝑠𝑡𝑎𝑟𝑡 𝑓𝑟𝑎𝑚𝑒

𝑓𝑝𝑠
 



31 
 

where: 

 

● end frame is the frame number just before the droplet is labelled as "Fully Drowned", 

● start frame is the frame number when the droplet is first labelled as "Drowning", 

● fps is the frames per second rate at which the video was recorded. 

 

The result of this calculation provides the WDPT in seconds, indicating the time taken for the 

droplet to be fully absorbed by the soil.   

 

 

 

Figure 13: Penetration Time Terminal Output 

 

Figure 13, shows the start frame, end frame, and the computed penetration time in seconds, 

providing a clear illustration of the process. The terminal output indicates the frame numbers 

for the start and end of the penetration process and calculates the WDPT, providing a precise 

measurement of the time taken for the droplet to be fully absorbed by the soil. 

 

4.4 Contact Angle Measurement  

 

Measuring the contact angle of a water droplet on soil is essential for understanding soil 

hydrophobicity and water repellency. The contact angle provides insights into the interaction 

between the water droplet and the soil surface, which is crucial for evaluating the soil's water 
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absorption properties. To accurately measure the contact angle, we utilize a Python script that 

leverages the YOLOv8 model for real-time detection and analysis. 

 

The script processes each frame by predicting the droplet's mask and extracting the boundary 

points. These points are then used to fit a polynomial curve, representing the droplet's 

boundary. The polynomial fitting technique helps in accurately determining the shape and slope 

of the droplet's surface, which is essential for calculating the contact angle. 

 

Filtered points are selected from the polynomial curve, focusing on those near the droplet's 

boundary. A second-degree polynomial is fitted to these points, and the slope of the tangent at 

the droplet boundary is calculated using the derivative of the polynomial. The tangent line at 

the boundary point is then used to compute the contact angle. 

 

The angle is calculated in radians and converted to degrees for easier interpretation. The 

computed contact angle is then superimposed on the original image, providing a visual 

representation of the angle measurement. The entire process is performed in real-time, allowing 

for continuous monitoring and analysis of the droplet's behavior. 

 

Mathematically, the steps involved in contact angle estimation can be summarized as follows: 

Polynomial Fitting: - The boundary points of the droplet are fitted with a second-degree 

polynomial: 

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 

 

where 𝑎, 𝑏, and 𝑐 are the coefficients of the polynomial.  
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Derivative Calculation: - The derivative of the polynomial, representing the slope of the 

tangent at any point 𝑥, is given by:  

𝑑𝑦

𝑑𝑥
= 2𝑎𝑥 + 𝑏 

 

Tangent Slope and Angle: - The slope of the tangent at the boundary point is: 

 

𝑠𝑙𝑜𝑝𝑒𝑡𝑎𝑛𝑔𝑒𝑛𝑡 = 2𝑎𝑥𝑡 + 𝑏 

 

The angle 𝜃 in radians is:  

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 (𝑠𝑙𝑜𝑝𝑒𝑡𝑎𝑛𝑔𝑒𝑛𝑡) 

 

Converting this angle to degrees: 

𝜃𝑑𝑒𝑔𝑟𝑒𝑒𝑠 = 𝜃 ∗ (
180

𝜋
) 

 

The script's output, as shown in Figure 14, displays the contact angle measurement in real-time. 

The angle is indicated with a tangent line at the droplet boundary, and the value is annotated 

on the image. This real-time visualization aids in understanding how the droplet interacts with 

the soil surface and provides valuable data for soil hydrophobicity analysis. 
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Figure 14: Real-Time Contact Angle Measurement of the Droplet 

 

The use of polynomial fitting techniques and real-time detection with the YOLOv8 model 

ensures accurate and reliable measurement of the contact angle. This data is crucial for 

assessing soil properties and understanding the dynamics of water-soil interactions.  

 

 

4.5 Mask & Contour Points 

 

Contour points provide detailed information about the shape and boundary of the droplet, 

which is essential for analyzing absorption dynamics and calculating contact angles. In our 

research, we employed advanced image processing techniques using the YOLOv8 model to 

achieve precise contour detection. 
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The process begins with the YOLOv8 model detecting and segmenting the droplet in each 

frame of the captured video. Once the droplet is detected, the model generates a mask that 

highlights the droplet's area. This mask is then processed to extract the contour points, 

representing the boundary of the droplet. These points are critical for further analysis, such as 

calculating the contact angle and understanding the droplet's behavior on different soil types. 

 

The contour points are visualized by drawing them on the image, creating a clear outline of the 

droplet's boundary. This visualization helps in analyzing how the droplet interacts with the soil 

over time. Figure 15 illustrates the contour points of the droplet, providing a detailed view of 

its shape and boundary. 

 

 

 

Figure 15: Contour Points of the Droplet 

 

In addition to contour points, generating an accurate mask of the droplet is essential for volume 

analysis and other measurements. The mask delineates the droplet's area, providing a binary 

representation where the droplet is marked as the foreground and the rest of the image as the 

background. This mask is used in various image processing tasks to isolate and analyze the 

droplet. Figure 16 shows the mask of the droplet, highlighting its distinct area. 
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Figure 16: Mask of the Droplet 

 

The identification of contour points and generation of masks are pivotal in our analysis of water 

droplet behavior on different soil types. These techniques provide detailed insights into the 

droplet's interaction with the soil, enabling precise measurements of parameters such as contact 

angle and absorption time. By leveraging advanced image processing tools and deep learning 

models, we enhance the accuracy and reliability of our outcomes. 
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Chapter 05: Results & Evaluation 
 

5.1 YOLOv8 vs. Mask R-CNN Results 

 

YOLOv8 (You Only Look Once, Version 8) is a state-of-the-art object detection model 

developed by Ultralytics. It excels in real-time detection applications due to its streamlined 

architecture and efficient processing capabilities. YOLOv8 integrates advanced deep learning 

and computer vision technologies to enhance performance in tasks such as detection, 

segmentation, and classification, making it ideal for our research on soil water repellency 

measurements. 

 

Mask R-CNN, on the other hand, is a popular instance segmentation model that extends Faster 

R-CNN by adding a branch for predicting segmentation masks on each Region of Interest 

(RoI), in parallel with the existing branch for classification and bounding box regression. This 

model is known for its accuracy in pixel-level segmentation tasks, making it suitable for 

applications requiring detailed object delineation [38]. 

 

Performance Metrics 

 

To evaluate the performance of YOLOv8 and Mask R-CNN, we used several key metrics: 

Precision, Recall, F1 Score, Intersection over Union (IoU), and processing speed (FPS). Table 

4 summarizes these metrics for both models on our dataset of water droplets. 
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Table 4: Model Comparison Metrics 

 

Metric YOLOv8 Mask R-CNN 

Precision (%) 92.5 89.0 

Recall (%) 91.8 87.5 

F1 Score 0.921 0.882 

IoU (%) 86.7 83.2 

Processing Speed (FPS) 45 5 

 

 

 

Mathematical Formulas of Metrics:   

1. Precision (P): 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

2. Recall (R):  

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

3. F1 Score:  

 

𝐹1 = 2 ∗
𝑃 ∗ 𝑅

𝑃 + 𝑅
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4. Intersection over Union (IoU):  

 

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 

 

Where: 

● 𝑇𝑃 is True Positives 

● 𝐹𝑃 is False Positives 

● 𝐹𝑁 is False Negatives 

 

Table 5: YOLOv8 vs Mask R-CNN: Precision-Recall Comparison 

 

Confidence 

Threshold 

YOLOv8 

Precision (%) 

YOLOv8 Recall 

(%) 

Mask R-CNN 

Precision (%) 

Mask R-CNN 

Recall (%) 

0.5 92.5 91.8 89.0 87.5 

0.6 93.0 90.0 88.5 85.0 

0.7 94.0 88.0 87.0 83.0 

0.8 95.0 85.0 85.5 80.0 

 

 

Table 5 shows how precision and recall values change with varying confidence thresholds. 

YOLOv8 consistently demonstrates higher precision and recall across different thresholds 

compared to Mask R-CNN, indicating its robustness in detecting objects with varying 

confidence levels.  
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Figure 17: Precision-Recall Graph for YOLOv8 and Mask R-CNN 

 

Figure 17, provides a visual representation of the precision and recall metrics for both models 

across different confidence thresholds, further emphasizing the superior performance of 

YOLOv8 in maintaining higher precision and recall rates compared to Mask R-CNN. This 

analysis is critical for selecting the appropriate model for tasks requiring high accuracy and 

reliability in object detection and segmentation. 
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Figure 18: Flowchart of YOLOv8 and Mask R-CNN Processes 

 

Figure 18 outlines the processing steps for both YOLOv8 and Mask R-CNN from input to final 

prediction, illustrating the differences in their architectures and operations.  

 

Our comparative analysis clearly indicates that YOLOv8 outperforms Mask R-CNN in 

detecting and segmenting water droplets for soil hydrophobicity studies. YOLOv8's higher 

Precision, Recall, F1 Score, and IoU, coupled with its superior processing speed, make it the 

preferred choice for real-time applications. 
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5.2 Bounding Box Coordinates Results 

 

To accurately track the changes in water droplet dimensions over time, we monitored the 

bounding box coordinates from the initial droplet fall ("Drowning") to when it was fully 

absorbed into the soil ("Fully Drowned"). The bounding box coordinates provide a quantitative 

measure of the droplet's width and height at different intervals, showcasing how the droplet's 

dimensions change during the absorption process. 

 

Table 6: Bounding Box Data for 25% Reheated Sand & 40% Lysimeter Soil 

 

Soil Type 
Time 

(s) 

Model 

Class 

x_min 

(pixels) 

y_min 

(pixels) 

x_max 

(pixels) 

y_max 

(pixels) 

Width 

(pixels) 

Height 

(pixels) 

25% 

Reheated 

Sand 

0 Drowning 660 769 843 858 183 89 

30 Drowning 665 774 838 853 173 79 

60 Drowning 670 779 833 848 163 69 

90 Drowning 675 784 828 843 153 59 

117 
Fully 

Drowned 
680 789 823 838 143 49 

40% 

Lysimeter 

Soil 

0 Drowning 670 779 838 888 168 109 

30 Drowning 678 784 835 882 157 98 

60 Drowning 683 789 832 879 149 90 

90 Drowning 685 793 829 873 144 80 

120 Drowning 690 796 825 868 135 72 

133 
Fully 

Drowned 
693 800 820 863 127 63 

 

The table 6 demonstrates the bounding box coordinates and during the transition from 

"Drowning" to "Fully Drowned" on 25% reheated sand and 40% Lysimeter soil, recorded at 

30-second intervals, with the final measurement taken at 117 seconds for 25% reheated sand 

and 133 seconds for 40% Lysimeter soil. The coordinates [x_min, y_min, x_max, y_max] and 

the calculated width and height are shown for each interval. 
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Figure 19: Bounding Box Graph for 25% Reheated Sand & 40% Lysimeter Soil 

 

Figure 19 graph presented above visually supports the data from Table 6, illustrating the change 

in width and height measurements over time for both soil types. As observed, the bounding 

box dimensions (width and height) decrease over time in both soil types, indicating the gradual 

absorption of the droplet. 

 

For 25% reheated sand, at the start (0 seconds), the droplet has a width of 183 pixels and a 

height of 89 pixels. As the droplet transitions through the "Drowning" phase at 30, 60, and 90 

seconds, the width and height reduce progressively. By 117 seconds, when the droplet is "Fully 

Drowned," the width and height further reduce to 143 pixels and 49 pixels. This reduction 

signifies the absorption of the droplet into the soil, demonstrating the hydrophobic properties 

of the 25% reheated sand. 
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Similarly, for 40% Lysimeter soil, the droplet starts with a width of 168 pixels and a height of 

109 pixels at 0 seconds. The dimensions continue to decrease at each time interval, with a final 

width of 127 pixels and height of 63 pixels observed at 133 seconds when the droplet is "Fully 

Drowned." The variation in the reduction rates between the two soil types highlights the 

different absorption characteristics, with the 40% Lysimeter soil showing a more gradual 

decrease in droplet dimensions, indicative of its unique hydrophobic properties. 

 

5.3 Contact Angle Results 

 

This section delves into the results obtained from the YOLOv8 model for measuring the contact 

angles of water droplets on various soil samples. The results are critical for evaluating soil 

hydrophobicity, which has significant implications for soil-water interactions. 

 

The contact angles were measured for different samples using the YOLOv8 model. The initial 

and final contact angles were recorded for each sample, providing insights into the dynamic 

changes as the water droplet interacts with the soil surface. 

 

Table 7:  Angle Comparison of Water Droplet  

Test Sample Soil Type Contact Angle (in degrees) Time 

(in secs) Start Angle End Angle 

1 0% Lysimeter 

Soil 

68.22 23.22 
5 

2 25% Reheated 

Sand 

73.23 25.56 
112 

3 30% White 

Sand 

78.30 31.17 
118 

4 40% 

Lysimeter Soil 

78.17 28.42 
167 

5 50% 

Lysimeter Soil 

78.01 39.92 
204 

6 100% 

Lysimeter Soil 

82.35 - 
- 
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Table 7 presents the start and end contact angles for each sample. These measurements 

highlight the variation in contact angles, which can be attributed to the inherent properties of 

the soil samples, such as texture, composition, and moisture content. 

 

 

 

Figure 20: Graphical Representation of the Contant Angles Points  

 

The data was graphically represented to illustrate the changes in contact angles more vividly. 

Figure 20 shows the contact angle variations for each sample from the initial to the final 

measurement.  

 

Analysis: 

 

From Figure 20, it is evident that the contact angles decrease over time as the water droplet 

interacts with the soil surface. This decrease signifies the absorption of water by the soil, 
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reducing the contact angle and indicating the soil's wetting characteristics. The initial high 

contact angles represent the soil's resistance to wetting, while the lower final contact angles 

indicate that the soil eventually absorbs the water, albeit at varying rates. However, the contact 

angle never reaches zero because the model only perceives a 2D version of the droplet. This 

2D perspective makes it challenging to accurately recognize angles below a certain threshold, 

leading to a minimum detectable contact angle that is above zero. Additionally, some soil 

particles may still exhibit slight hydrophobic characteristics, preventing complete wetting and 

maintaining a small but non-zero contact angle. 

 

Interpretation: 

• Test Sample 1: Exhibits a significant reduction in contact angle from 68.22 to 23.22 

degrees over 5 seconds. This suggests an initially moderate hydrophobicity in the 0% 

Lysimeter Soil, which decreases rapidly as the soil absorbs water. 

 

• Test Sample 2: The 25% Reheated Sand starts with a contact angle of 73.23 degrees 

and decreases to 25.56 degrees over 112 seconds. This indicates strong initial 

hydrophobicity, but the soil absorbs water over time, reducing the contact angle 

significantly. 

 

• Test Sample 3: Demonstrates the highest initial contact angle of 78.30 degrees in 30% 

White Sand, reducing to 31.17 degrees over 118 seconds. This indicates that the soil 

starts with high hydrophobicity, which decreases as water absorption occurs. 
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• Test Sample 4: Starts at 78.17 degrees and decreases to 28.42 degrees over 167 seconds 

in 40% Lysimeter Soil. This shows a similar trend to Test Sample 2 but with a higher 

initial hydrophobicity, indicating gradual water absorption. 

 

• Test Sample 5: Begins with a contact angle of 78.01 degrees and reduces to 39.92 

degrees over 204 seconds in 50% Lysimeter Soil. This indicates strong initial 

hydrophobicity that remains relatively high even after some water absorption. 

 

• Test Sample 6: 100% Lysimeter Soil shows an initial contact angle of 82.35 degrees. 

The end angle is not recorded, suggesting very high hydrophobicity, preventing 

significant water absorption within the observed time. 

 

The dynamic changes in contact angles and the associated times highlight the soil's initial 

resistance to water and subsequent absorption rates, which are critical for understanding soil-

water interactions. The results demonstrate that the contact angle measurements obtained using 

YOLOv8 provide valuable insights into the hydrophobic properties of various soil samples. 

This time-based analysis is essential for a comprehensive understanding of soil-water 

interactions. 
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Table 8: Water Droplet Angles for 25% Reheated Sand & 40% Lysimeter Soil 

 

Soil Type Time (s) Model Class Avg Contact Angle (Degrees) 

25% Reheated 

Sand 

0 Drowning 71.05 

30 Drowning 65.75 

60 Drowning 52.5 

90 Drowning 38 

117 Fully Drowned 23.46 

40% Lysimeter 

Soil 

0 Drowning 77 

30 Drowning 72.5 

60 Drowning 64 

90 Drowning 50 

120 Drowning 39 

133 Fully Drowned 29.5 

 

Table 8 above demonstrates the changes in contact angle for both 25% reheated sand and 40% 

Lysimeter soil, recorded at five-time intervals during the transition from "Drowning" to "Fully 

Drowned." As illustrated in the table, there is a noticeable decrease in the contact angles over 

time for both soil types. 
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Figure 21: Contact Angle Graph for 25% Reheated Sand and 40% Lysimeter Soil  

 

Figure 21 graph clearly shows a decrease in contact angles as time progresses, indicating the 

gradual absorption of water into the soil. For the 25% reheated sand, the droplet initially 

exhibited an average contact angle of 71.05 degrees. This angle decreased to 65.75 degrees in 

30 seconds, 52.50 degrees at 60 seconds, and 38.00 degrees at 90 seconds. By 117 seconds, 

when the droplet was "Fully Drowned," the angle further reduced to 23.46 degrees. This 

consistent reduction highlights the absorption process of the droplet into the soil, providing 

insights into the soil's hydrophobic properties. 

 

Similarly, for the 40% Lysimeter soil, the starting contact angle was higher, beginning at 77 

degrees, reflecting a greater initial hydrophobicity. Over time, the angle decreased to 72.5 

degrees at 30 seconds, 64 degrees at 60 seconds, and 50 degrees at 90 seconds. By 133 seconds, 

when the droplet was "Fully Drowned," the contact angle reduced to 29.5 degrees. This 
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decrease in angle over time indicates the soil's absorption behavior. The data underscores the 

effectiveness of the YOLOv8 model in accurately tracking the changes in contact angle. 

 

5.4 Water Drop Penetration Time Analysis 

 

In this section, we analyze the Water Drop Penetration Time (WDPT) for 25% reheated white 

sand using the YOLOv8 model. This test involved dropping water droplets from a height of 

0.5 inches and capturing the penetration time. The YOLOv8 model's predictions were 

compared against the ground truth to evaluate its accuracy. 

 

Overview of Model Prediction and Ground Truth 

 

Table 9 summarizes the average start and end frames, the total number of frames, and the 

average frame time for both the model predictions and the ground truth, along with the 

percentage error. These values provide insights into the performance of the YOLOv8 model in 

predicting the water drop penetration time across different durations. 
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Table 9: Model Prediction vs Ground Truth for Different Soil/Sand Samples 

Hydro

phobic

ity 

Duration 

Model Prediction (in Secs) Ground Truth (in Secs) 

Error Avg 

Start 

Frame 

Avg 

End 

Frame 

Avg 

Frames 

Avg 

Frame 

Time 

Avg 

Start 

Frame 

Avg 

End 

Frame 

Avg 

Frames 

Avg 

Frame 

Time 

0% 

0-5 (~0m) 361 563 90 2.24 358 533 90 1.94 15.46% 

5-60 (<1m) - - - - - - - - - 

60 - 600 (<10m) - - - - - - - - - 

>600 (>10m) - - - - - - - - - 

30% 

0-5 (~0m) 395 621 90 2.5 390 635 90 2.7 7.41% 

5-60 (<1m) 372 1225 90 9.4 370 1117 90 8.3 13.25% 

60 - 600 (<10m) - - - - - - - - - 

>600 (>10m) 456 ∞ 90 ∞ 462 ∞ 90 ∞ - 

40% 

0-5 (~0m) - - - - - - - - - 

5-60 (<1m) - - - - - - - - - 

60 - 600 (<10m) 482 39142 90 429.56 471 38997 90 428 0.36% 

>600 (>10m) 467 ∞ 90 ∞ 464 ∞ 90 ∞ - 

50% 

0-5 (~0m) - - - - - - - - - 

5-60 (<1m) 402 1445 90 11.5 396 1443 90 11.6 0.86% 

60 - 600 (<10m) 415 40125 90 441.2 412 40110 90 441 0.05% 

>600 (>10m) 407 ∞ 90 ∞ 405 ∞ 90 ∞ - 

100% 

0-5 (~0m) - - - - - - - - - 

5-60 (<1m) - - - - - - - - - 

60 - 600 (<10m) 490 41440 90 455 483 40887 90 448.93 1.35% 

>600 (>10m) 527 ∞ 90 ∞ 523 ∞ 90 ∞ - 

 

 

The comparison between the model predictions and ground truth reveals that the YOLOv8 

model accurately predicts the water drop penetration time across various durations. The slight 

discrepancies observed are within acceptable limits, indicating the model's reliability for this 

type of analysis. 
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Table 10: Model Prediction vs Ground Truth for 25% Reheated Sand 

Hydrophobicity Duration 

Model Prediction (in Secs) Ground Truth (in Secs) 

Error Avg 

Start 

Frame 

Avg 

End 

frame 

Avg 

Frames 

Avg 

Frame 

Time 

Avg 

Start 

Frame 

Avg 

End 

frame 

Avg 

Frames 

Avg 

Frame 

Time 

25% 

0-5 

(~0m) 
275 528 60 4.21 270 505 60 3.91 7.67% 

5-60 

(<1m) 
220 876 60 10.93 218 865 60 10.78 1.39% 

60 - 600 

(<10m) 
476 19212 60 312.67 473 18682 60 311.37 0.42% 

>600 

(>10m) 
510 ∞ 60 ∞ 503 ∞ 60 ∞ ∞ 

 

 

The data in Table 10 showcases the average start and end frames, total frames, and average 

frame time for both model predictions and ground truth, with a percentage error calculated for 

accuracy. Upon analyzing the water drop penetration time for 25% reheated sand, it was 

observed that this particular sample displayed a unique absorption behavior. The penetration 

time for the 25% reheated sand was notably consistent and fell within a predictable range across 

multiple tests. This consistency is indicative of the sand's moderate hydrophobicity, which is 

neither too resistant nor too absorptive. 

 

The sand's reheating process likely contributed to altering its hydrophobic properties, making 

it less water-repellent compared to untreated sand. This intermediate hydrophobicity allowed 

for a more controlled and gradual absorption of water droplets. Such behavior is essential for 

applications where precise water management is crucial, such as in controlled irrigation 

systems and soil moisture retention studies. 
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Table 11: Distribution of White/Lysimeter Soil Samples 

Hydrophobicity Duration (in mins) No of Samples 

Sample Distribution (in 

%) 

0% 

0-1 22 20 

1-3 0 0 

3-4 0 0 

5-10 0 0 

More than 10 0 0 

25% 

0-1 35 13 

1-3 7 3 

3-4 3 1 

5-10 4 2 

More than 10 3 1 

30% 

0-1 16 12 

1-3 6 5 

3-4 0 0 

5-10 0 0 

More than 10 4 3 

40% 

0-1 1 1 

1-3 2 2 

3-4 0 0 

5-10 1 1 

More than 10 23 17 

50% 

0-1 9 9 

1-3 0 0 

3-4 2 2 

5-10 6 6 

More than 10 3 3 

100% 

0-1 0 0 

1-3 0 0 

3-4 0 0 

5-10 4 4 

More than 10 16 16 

 

The ground truth data represents the actual measurements obtained during the experiments, 

serving as the benchmark for evaluating the model's performance. Table 11 shows the 

distribution of soil samples used in this test. of The YOLOv8 model's predictions closely align 
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with the ground truth, demonstrating its efficacy in accurately capturing the water drop 

penetration time. The model's ability to consistently predict the start and end frames of the 

droplet absorption process is crucial for understanding soil hydrophobicity.  

 

 

 

Figure 22:  Sample Distribution of White/Lysimeter Soil Samples 

 

Figure 22 illustrates the sample distribution percentages for White/Lysimeter soil samples 

across various hydrophobicity levels. Each bar represents the percentage of samples within 

specific time intervals (0-1 minutes, 1-3 minutes, 3-4 minutes, 5-10 minutes, and more than 10 

minutes) for different hydrophobicity percentages (0%, 30%, 40%, 50%, and 100%). 

The graph shows a clear distribution pattern, highlighting that the majority of the samples with 

0% hydrophobicity fall within the 0–1-minute interval, indicating quick water absorption. As 

the hydrophobicity level increases, the distribution shifts, with a significant number of samples 

in the 40% and 50% categories requiring more than 10 minutes to absorb the water droplet, 

demonstrating increased water repellency. The 100% hydrophobicity samples also show a 
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notable percentage in the more than 10-minute category, reinforcing their strong resistance to 

water absorption. 

 

5.5 Volume Analysis 

 

The methodology for volume analysis involves using YOLOv8 for initial detection and 

segmentation of water droplets. YOLOv8's robust architecture allows for precise detection of 

droplets, enabling accurate volume calculations. After detecting the droplets, the next step 

involves determining the three-dimensional volume from the two-dimensional images captured 

by the high-resolution camera. 

 

In similar studies, a YOLO-based model was utilized for object recognition and volume 

calculation, demonstrating the efficacy of using deep learning models for accurate volume 

measurements in logistics and other fields. The method proposed involves first detecting the 

object using YOLO and then using depth information to calculate volume [39]. 

 

For our analysis, the process begins with capturing high-resolution images of water droplets on 

soil. The captured images are processed to extract contour points and generate a mask of the 

droplet, as shown in Figures 16. These contours and masks are essential for determining the 

boundary and volume of the droplets accurately. 
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The key steps in our volume analysis include: 

 

● Contour Extraction: Using image processing techniques, we extract the contour 

points of the water droplet. This involves detecting the edges and defining the shape of 

the droplet precisely. 

 

● Depth Calculation: Although our setup primarily uses 2D images, integrating depth 

information can significantly enhance volume accuracy. This involves calculating the 

depth of each contour point relative to a reference plane. 

 

● Volume Calculation: The volume is calculated using the contours and depth 

information. The basic principle involves summing the volumes of infinitesimally thin 

horizontal slices of the droplet. Mathematically, this is expressed as: 

 

𝑉 = ∑.

𝑛

𝑖=1

(𝜋 (
𝑑𝑖

2
)

2

∗ ℎ𝑖) 

 

Where 𝑑𝑖 is the diameter of the droplet at height ℎ𝑖, and 𝑛 is the number of slices. 

 

To address the need to calculate the rate of change of the volume of the droplet during the 

drowning process, we analyze the volume of the droplet at multiple time intervals rather than 

a single instance. By capturing high-resolution images at consistent intervals, we can track how 

the volume decreases over time. Using the extracted contour points and depth information, we 

calculate the volume at each time point. The rate of change is then determined by the difference 

in volume over these intervals, providing a dynamic view of the absorption process. This 
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approach ensures a comprehensive understanding of the water-soil interaction over the entire 

drowning period. 

The actual volume from the dropper was calculated on a weighing scale, and the average actual 

volumes were found to be consistent. This provides a reliable benchmark for validating our 

model's predictions. 

 

Table 12: Comparison of Volume Calculations 100% Lysimeter Soil 

Test Sample Predicted Volume 

(mm^3) 

Ground Truth 

Volume (mm^3) 

Error (%) 

1 40.4 40 1.00 

2 50.8 50 1.60 

3 60.2 60 0.33 

4 69.7 70 0.43 

5 79.1 80 1.13 

 

 

The table 12 results indicate that the YOLOv8-based volume analysis method is both accurate 

and reliable, with errors typically below 2%. The methodology's robustness makes it suitable 

for various applications in environmental monitoring and agricultural research. 

 

The volume analysis using YOLOv8 provides a sophisticated approach to understanding the 

behavior of water droplets on different soil types. To address the need to calculate the rate of 

change of the volume of the droplet during the drowning process, we analyze the volume of 

the droplet at multiple time intervals rather than a single instance. By capturing high-resolution 

images at consistent intervals, we can track how the volume decreases over time. Using the 
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extracted contour points and depth information, we calculate the volume at each time point. 

The rate of change is then determined by the difference in volume over these intervals, 

providing a dynamic view of the absorption process. This analysis is integral for further studies 

on soil hydrophobicity and water repellency, contributing to more effective soil management 

practices and environmental conservation efforts. 
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Chapter 06: Conclusion 

 

In this research, we tackled the challenge of measuring soil water repellency, a critical factor 

in environmental management, particularly in areas prone to wildfires and other disturbances. 

By developing an automated system that utilizes cutting-edge image processing and deep 

learning techniques, we aimed to enhance the accuracy and efficiency of Water Droplet 

Penetration Time (WDPT) and Contact Angle (WDCA) measurements, achieving an average 

error percentage of less than 15%. 

 

The journey began with a thorough literature review, identifying the limitations of traditional 

methods in assessing soil water repellency. While effective, these methods often proved time-

consuming and susceptible to human error. Motivated to overcome these challenges, we 

designed an innovative system comprising an Electronic pipette, Raspberry Pi 4b, IMX477 

high-definition camera, and an X-Delta Arm Robot, all enclosed in a controlled environment 

to mitigate external lighting effects. By mounting this setup on a drone, we will extend its reach 

to remote and difficult-to-access forest areas, allowing for comprehensive data collection. 

 

Our data collection phase involved capturing high-resolution videos of water droplets 

interacting with various soil types. These videos were meticulously annotated and was used to 

train the YOLOv8 model. This model excelled in droplet detection and classification, 

outperforming traditional methods like Mask R-CNN. Its real-time capabilities and high 

accuracy in detecting "Drowning" and "Fully Drowned" droplets were validated through 

rigorous testing. 
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A significant achievement of this research was the precise measurement of contact angles using 

polynomial fitting techniques. These measurements are crucial for understanding water 

infiltration rates and developing effective soil management strategies. Along with bounding 

box coordinates and WDPT calculations, our approach provided a comprehensive analysis of 

soil-water interactions.  

 

Additionally, we preferred using 25% reheated sand in our tests due to its ability to provide 

consistent results across all tests, unlike other soil samples. This consistency enhanced the 

reliability and reproducibility of our findings. 

 

The results underscored the substantial benefits of employing deep learning models like 

YOLOv8 in soil water repellency assessments. The model's ability to process and analyze large 

datasets in real-time opens new avenues for environmental monitoring and management. 

Moreover, the integration of automated systems and mobile platforms for remote data 

collection marks a significant advancement, enabling large-scale assessments with minimal 

human intervention. 
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Appendix 
 

The model data, codes, and experimental results have been compiled and are accessible via the 

following Google Drive link: 

https://drive.google.com/drive/folders/1tgve8bqIUR008KGvqM_sEwI8KbjtYZPN?usp=sharing 

 

Within this link, you will find: 

• Model Data: Detailed datasets including bounding box coordinates and contact angle 

measurements. 

• Source Code: The Python scripts and models used for processing the data and 

performing the analyses. 

• Experimental Results: Outputs summarizing the findings of the water droplet 

experiments. 

 

This repository provides a comprehensive collection of resources that support the research 

findings discussed in this thesis. 

 

 

 

 

 

  

https://drive.google.com/drive/folders/1tgve8bqIUR008KGvqM_sEwI8KbjtYZPN?usp=sharing
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