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Abstract

Understanding player behavior for responsible gambling research is a difficult task due to

the lack of data on players’ activities. Past studies in this area are largely limited to publicly

available behavioral data or aggregated players data. Problem gambling in gamblers is

typically identified only after they have already been addicted or have already been engaging

in problematic gambling behavior. Furthermore, “risky” gambling behavior has historically

been difficult to define due to the varying patterns of gambling activity that could potentially

be attributed to it.

In this dissertation we illustrate the methodology and algorithms used to engineer finan-

cial data for further analysis. We demonstrate the use of time-series analysis and anomaly

detection using statistical and unsupervised machine learning methods to detect anomalous

individual player behavior. This is accomplished using a custom metric (delta index) for

statistical analysis and the spectral residual algorithm for machine learning based anomaly

detection. We also demonstrate the use of longitudinal clustering using Gaussian Mixture

Models to identify changes in player behavior at 30 day time intervals. This method groups

players based on changes in behavior over time rather than their existing behavior in any

given time slice. Additionally, we demonstrate the use of this model to track individual

player behavior over time.

The behavior analysis methods illustrated in this dissertation can be generalized for

accepting additional behavioral features for further research in this area. Additionally, these

methods can be further adapted for use in other behavioral studies.
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Chapter 1

Introduction

Responsible gambling as a concept is essentially regulations and guidelines that are followed

by gambling service providers and governments to ensure that gambling remains a safe and

enjoyable experience. The objective is to prevent gambling from turning into an addiction

and ensuring players are aware of the risks involved with gambling and its addictive potential.

Since the concept of “risky behavior” is difficult to define, we require some quantifiable metric

or some statistical measure to identify this type of behavior. The most widely accepted

method of categorizing players based on their problem gambling severity is using the Problem

Gambling Severity Index (PGSI) [FW01]. This is a psychometric analysis that requires

players to take a short quiz to assess their gambling. However, requiring players to take a

test periodically to assess problem gambling severity is neither practical nor something that

all players would agree to. In order to overcome this limitation, an automated approach to

behavior evaluation may be an ideal methodology.

The primary concern regarding the application of data science and machine learning to

gambling behavior is the lack of ground truth that identifies “problem gambling”. Therefore

training a supervised machine learning model to determine such behavior is unfeasible.

Within the defined scope of this dissertation, we address three research questions:

1. Can we extract relevant gambling behavior features from structured financial data?

2. Can we model a time-series on these extracted features to obtain insight into behavior

patterns for individuals? Additionally, can we model machine learning based anomaly

detection techniques to identify spikes or fluctuations in individual player behavior?

1



3. Can we use longitudinal clustering to identify and monitor gambling behavior patterns

among groups of players?

Due to the limited availability of quantitative behavioral data on gambling financial

transactions and player behavior, statistical modeling and machine learning applications in

this area are severely limited. In our recent review on data science application to responsible

gambling [GAP+22], we found a limited number of studies. Most of these use some form of

supervised machine learning and statistical modeling on Behavioral Tracking Data (BTD)

for responsible gambling. The majority of reported BTD studies are based on online Euro-

pean gamblers with lack of representation for offline gamblers and those in non-European

jurisdictions. The dearth of publicly available data is further highlighted by the fact the

BTD reports are largely based on the same dataset from online European gamblers [CG17].

This dissertation is divided into 7 chapters including this introduction.

• In Chapter 2, we discuss gambling related harm and the applications of data science

and machine learning in the areas of problem gambling and responsible gambling. We

also briefly discuss our findings from a recent scoping review on the applications of

data science for responsible gambling.

• Chapter 3 provides a theoretical background of the tools and methods that are em-

ployed in this dissertation.

• In Chapter 4 we introduce the dataset that is used for player behavior modeling. The

methods and algorithms used for cleaning and obfuscation along with a descriptive

analysis of the data is also discussed here.

• In Chapter 5 we demonstrate the use of time-series for further analysis of the overall

data. Subsequently, we extract player behavior features from this data and model them

as a time series for identifying anomalies in player behavior. We demonstrate the use

of delta index and the machine learning based spectral residual algorithm for anomaly

detection in a time series.

• Chapter 6 demonstrates the use of longitudinal analysis using Gaussian Mixture Model

clustering on a sample of players. These methods enable us to observe common be-

2



havior patterns among groups of players and identify changes in these patterns over

time.

• Finally, in Chapter 7 we summarize our research and discuss additional avenues for

further development of this area of research.

3



Chapter 2

Gambling Related Harm

To understand the significance of this research, we must first understand the socio-economic

impact of gambling related harm. In this chapter, we define industry terms such as problem

gambling and responsible gambling and how they are related to gambling related harm. We

discuss methods and industry practices for gambling harm prevention and applications of

data science for responsible gambling. The following three aspects of gambling are discussed

in this chapter:

1. Problem Gambling (PG)

2. Responsible Gambling (RG) and gambling harm prevention

3. Data science and Machine Learning (ML) based solutions for responsible gambling and

harm prevention.

2.1 Problem Gambling (PG)

Any form of repetitive gambling that negatively impacts an individual’s day to day activity,

mental health, and financial security is called problem gambling. This also includes gamblers

who do not fulfil the threshold for some form of gambling mental disorder [AP00]. When a

gambler transitions from a recreational gambler to a problem gambler, they typically require

more severe forms of treatment including rehabilitation. However, problem gambling as a

term only refers to people suffering from the harmful effects of excessive gambling. The
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more clinically appropriate term for gamblers with a clinical gambling disorder is patholog-

ical gambler (not to be confused with problem gambler). Research shows that pathological

gamblers and problem gamblers demonstrate similar sensitivity to short-term rewards and

lower sensitivity to short-term losses [FBM17]. In other words, the psychological functioning

of pathological and problem gamblers is different from that of the average person. Addi-

tionally, the research suggests that the motive for gambling also differs between problem

gamblers and average gamblers. For example, people with relatively few or no observable

symptoms of gambling disorders tend to gamble for fun, enjoy it with friends and family,

or sometimes gamble for complimentary food and drinks. However, people with tendencies

for severe gambling problems reportedly gamble either for financial gain or to escape other

difficulties in their lives [GR20].

2.2 Responsible Gambling (RG) and Harm Prevention

To prevent gambling from turning into problem gambling, several systems and regulations to

prevent problem gambling have been put in place. These systems and frameworks designed

to prevent gambling related harm are broadly referred to as responsible gambling efforts.

However, there is no established definition for what responsible gambling actually is [Gha22].

From a moral perspective, people who consider gambling as an activity only engaged in by

the morally corrupt, deem the term ‘responsible gambling’ as an oxymoron [CBL+15].

In 2004, a framework was proposed to define guidelines for minimizing gambling related

harm called The Reno Model [BLS04]. This model aimed to describe a methodology for

stakeholders (consumers, gambling operators, healthcare providers, governments, etc.) to

address gambling related harm while still maintaining profitability. The authors emphasized

that there is a lack of evidence to show that responsible gambling initiatives have shown

any positive effect on problem gambling. This was their primary motive for proposing a

more actionable framework for RG. This model was criticized by adversaries for focusing

too strongly on individual responsibility towards problem gambling and not enough on the

responsibility shouldered by the industry [HS17]. It was argued that The Reno Model pan-

dered to operators and promoted regulatory-avoidance while advocating for a framework

5



that was backed by insufficient and contradictory evidence.

RG practices have broadly been argued as being focused on individual choice rather than

on industry practice. The goal of RG is allegedly to support an individual’s choice to gamble

with access to resources and opportunities related to problem gambling rather than to push

for regulatory reforms. Therefore, alternative frameworks to prevent gambling related harm

from a public health perspective were proposed by researchers. These frameworks comprised

the impact of gambling products and practices on a population rather than on individuals.

Although the goal is the same, advocates of the public health approach to harm prevention

argue that RG programs are not effective at mitigating problem gambling and need to be

replaced with a more holistic alternative [LR20]. A study by Griffiths and Delfabbro shows

that combining psychological, biological and sociological aspects of gambling provide a far

better understanding for research and clinical intervention for gambling related harm [GD01].

Both RG and public health approaches provide different perspectives towards addressing

gambling related harm with RG focusing more on the individual and public health focusing

more on regulation and consumer protection.

Although modern consumer spending is largely dominated by cashless digital payments,

land-based gambling primarily relies on cash. Since the COVID-19 pandemic, several Elec-

tronic Gaming Machines (EGM) have implemented cashless payment systems for gamblers

enabling data collection and user tracking within these machines. User tracking systems

present further opportunities for understanding players’ gambling activity and consequently

implementing systems for harm prevention [STC+23]. Player tracking can not only be uti-

lized in understanding gambling behavior, but also motivate the implementation of regula-

tions specifically for harm prevention [NS24].

2.3 Machine Learning (ML) for Responsible Gambling

With the modernization of payment systems used for online and land-based gambling, the

use of digital payments has increased significantly. Furthermore, regulatory changes in the

US have made digital gambling products more readily available to the public and to gam-

bling providers to align with the guidelines that were put in place for the COVID-19 pan-
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demic [SR21]. This opened the door to data collection and mining from active gamblers not

only on online platforms but also on casino floors where digital payment systems had begun

to proliferate. As player activity tracking increased, the interest and potential in utilizing

this data for gambling harm prevention by researchers in data science, public health and

hospitality also increased. The results for a scoping review that we performed on the use of

machine learning applications for RG are summarized in this section [GAP+22]. The next

two sub-sections discuss the use of machine learning in RG with the first sub-section focusing

on the use of supervised ML and the second sub-section focusing on unsupervised ML. From

this scoping review we found that ML studies for RG are limited in their scope as far as

generalization and reproducibility are concerned.

2.3.1 Studies using Supervised ML

The scoping review showed that supervised ML based studies on problem gambler classifi-

cation used a variety of different definitions for their target variable [GAP+22]. Some used

‘self-exclusion’ as a target variable to act as a proxy for problem gamblers. ‘Self-exclusion’

is a system that allows gamblers to voluntary ban themselves from any further gambling.

However, self-exclusion acts as a very weak indicator of PG because problem gamblers are

not guaranteed to use this system even when they are aware of being a problem gambler

thereby reducing its efficacy as a target variable for PG [Gai14]. Furthermore, not all par-

ticipants of the self-exclusion program are problem gamblers and may have other reasons for

self-exclusion [Phi14]. Several other studies have arbitrary definitions for PG using a com-

bination of factors such as cutoff scores on PGSI, changes in gambling limits, self-exclusion,

etc.

Only one out of the reviewed supervised ML studies used quantitative data obtained from

Electronic Gaming Machines (EGMs) from land-based betting offices [EBW+14]. However,

the data used in this study is not publicly available. All other studies relied on Behavioral

Tracking Data (BTD) based on online gamblers. This points to a lack of available data for

machine learning and AI applications for RG.

Commonly used ML models used in these studies are random forest, logistic regression,

neural networks, bayesian networks, and support vector machines. Some studies such as the

7



one by Philander [Phi14] compared 9 different supervised ML models to test their efficacy

for detecting problem gambling. The author of this study acknowledged that the use of self-

exclusion as a proxy for PG is inadequate at conclusively determining PG. Characteristics

such as session count, game types, betting amounts, and timestamps of gambling activity

were used to extract features using a variety of statistical computations applied to them.

The computations include but are not limited to standard deviation, mean, frequency, and

summation. The outcomes from these ML implementations were non-conclusive with either

insufficient metrics to accurately represent their performance or insufficient information to

accurately reproduce the models.

2.3.2 Studies using Unsupervised ML

All of the unsupervised ML studies in the scoping review, except for one, used similar BTD

as the supervised ML studies. Of these studies, half employed the k-means clustering algo-

rithm. Several other methods such as Density Based Spatial Clustering of Applications with

Noise (DBSCAN), SPPS two-step clustering, Hidden Markov Model (HMM), Chi-square

Automatic Interaction Detector (CHAID) were used in the other studies. The variables

used for clustering did not differ greatly from the supervised ML studies, however two of

the studies [PHGBCB18, CBHT+20] employed Latent Class Analysis (LCA) with auxiliary

variables to define the classes of players obtained from cluster analysis.
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Chapter 3

Background on Machine Learning

Machine Learning (ML) is an area of artificial intelligence (AI) that specifically deals with

development of algorithms to mimic the human reasoning process. Broadly speaking, there

are two categories under which ML algorithms can be classified:

1. Supervised

2. Unsupervised

In Chapter 2, we discussed various applications of ML algorithms for responsible gambling

and harm prevention. In this chapter, we discuss the theory behind these ML algorithms

and how they can be utilized to develop AI based solutions in the gambling domain.

3.1 Supervised Machine Learning

Given a data set that consists of inputs and their corresponding outputs, a human can learn

to identify patterns within these inputs that contributes to that output. Even though a direct

mathematical relationship between the inputs and outputs may not exist, a human can learn

to estimate an output based on prior experience showing a certain set of inputs mapped to

a certain output. For example, a music connoisseur can identify different instruments in

a musical concert despite the inability to mathematically quantify the difference between

the sound of a piano, and that of a cello. In the case of a machine, the data containing

the inputs and desired outputs is called training data [RN16]. We use this training data to
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provide examples to a machine in order to train it to estimate the output for unseen set of

inputs.

Mathematically, let us assume that we have an input X = {x1, x2, x3, ...xn} that maps

to an output Y . We assume that there exists a function f that can define this relationship:

f(X) =⇒ Y (3.1)

The objective of supervised machine learning is to find this function f such that it satisfies

the relationship in Equation 3.1. However, a single set of inputs and output is not sufficient

for a machine to understand this relationship. A dataset with labeled data containing k

inputs and their corresponding outputs can be represented as follows

X1

X2

X3

...

Xk



x11 x12 x13 . . . x1n

x21 x22 x23 . . . x2n

x31 x32 x33 . . . x3n

...
...

...
...

...

xk1 xk2 xk3 . . . xkn





Y1

Y2

Y3

...

Yk


Formally, we can define our entire data D as:

D = {(X1, Y1), (X2, Y2), (X3, Y3), . . . (Xk, Yk)}

Now that we have a formal definition of what our data is, we can proceed to mathemat-

ically formalize the idea of supervised machine learning. The following is the standard defi-

nition of supervised learning following Dorian Brown’s post on introduction to ML [Bro19].

Let R and C denote the input and output domain, i.e. X ∈ R and Y ∈ C, then the our

data set is:

D = {(X1, Y1), (X2, Y2), (X3, Y3), . . . (Xk, Yk)} ⊆ R× C (3.2)

Since we are interested in a function f that approximates the relationship between Xi

and Yi, we can formally define this as:

f : R =⇒ C

10



The function f is not necessarily unique. Suppose F represents the set of all such func-

tions; the ML is trying to find a function that minimizes the errors associated with the

mapping of the input to the output. This is done using a loss function L which computes

the loss for every f ∈ F . The value of L allows us to gauge the validity of the chosen f . Gen-

erally, the loss function indicates how well the chosen f reproduces the data D. Therefore,

we are interested in minimizing the loss function L.

min
f∈F

1

n

k∑
i=1

L(Xi, f(Xi)) (3.3)

Where f(Xi) denotes the output obtained from the chosen f function. Equation 3.3

denotes the core optimization problem that signifies the learning process for any supervised

ML algorithm.

3.1.1 Loss Functions

There are several different loss functions that can be applied to the optimization problem

depending on the architecture of ML in specific applications. Many historical statistical

learning tools such as regression use Mean Square Error (MSE) function as defined in Equa-

tion 3.4. This loss function is also called the L2 loss function and is applicable to regression

based algorithms. This function calculates the arithmetic mean of the square of the difference

between predicted values Ŷ and true values Y .

L =

∑k
i=1(Yi − Ŷi)

2

n
(3.4)

The term Yi − Ŷi is also called error.

Mean Absolute Error (MAE): MAE is a variation of MSE where absolute values of the

difference between the predicted and true value are calculated. This loss function is also

called L1 loss and is similarly applicable to regression-based ML algorithms. This function

is mathematically defined as:

L =

∑k
i=1 |Yi − Ŷi|

n
(3.5)
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The most important difference between MAE and MSE is the fact that MAE does not square

the error term meaning small errors and large errors are treated equally. Due to this nature

of MAE, it is well suited to noisy data since outliers will not disproportionately affect the

loss function.

Huber Loss (Smooth MAE): This is a combination of the above 2 loss functions where

MAE is applied when the error is high but MSE is applied when the error is low. This

ensures that large errors are not heavily penalized (in case of outliers) while still maintaining

the high sensitivity of MSE for errors not caused by outliers. Mathematically, the Huber

Loss function is defined as:

L =


1
2
(Y − Ŷ )2 |Y − Ŷ | ≤ δ

δ|Y − Ŷ | − 1
2
δ2 |Y − Ŷ | > δ

(3.6)

Where δ is a hyperparameter that determines the boundary at which an output is considered

an outlier. This parameter can either be tuned iteratively or can be pre-determined based

on the nature of outliers in the data.

Cross-Entropy Loss: This loss function is typically used in deep learning approaches for

prediction and classification. In case of the Binary Cross-Entropy loss function where the

target output is binary (between 0 and 1) then the following loss function is used:

L = −1

k

k∑
i=1

(Yi · log(Ŷi) + (1− Yi) · log(1− Ŷi)) (3.7)

If the target is categorical and non-binary, then the loss function used is called Categorical

Cross-Entropy and is represented as follows:

L = −1

k

k∑
i=1

Yi · log(Ŷi) (3.8)

3.1.2 Model Fit

A fundamental problem with this type of optimization is that it can potentially learn the

data too well. In other words, the model will perform extremely well when given the data
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that it was trained on but will do poorly when it encounters data that it has not encountered.

This concept is called over-fitting. The opposite of over-fitting is called under-fitting wherein

the function obtained from the optimization problem does not sufficiently represent the data.

(a) Good Fit. (b) Under Fit. (c) Over Fit.

Figure 3.1: Example of an estimated function f fitting the training data.

A visual example of this is given in Figure 3.1 where the line represents an estimated

function f and the points represent the data D that the function represents. Note that the

estimated f in Figure 3.1b is linear while the ones in Figures 3.1a and 3.1c are polynomial.

To prevent this phenomenon, we split D into three parts: DTR, DV A, DTE where DTR

is the training set, DV A is the validation set and DTE is the test set. The typical split

used is 80% training, 10% validation and 10% testing [Bro19]. The validation set is not

strictly required for all types of supervised learning models. It is only relevant when a model

has certain hyperparameters (rate of learning, training iterations, etc.) that need to be

tweaked. The idea is that we test various hyperparameters for the training a model (or

automatically adjust them) by using the validation set to evaluate the model performance.

Hyperparameters that perform the best are selected for that specific model type. The test

set is used to compare the performance of various ML algorithms when applied to a certain

dataset.

K-Fold Cross Validation: Cross-validation is a technique often used in machine learning

to test the efficacy of a model when used with unseen data. This is typically done to ensure

that a good fit is obtained regardless of the way the dataset is split and to validate the “skill”

of the model.

In this method, the data is split intoK folds or segments of about equal size. One of these
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segments is marked as the validation set, and the remaining K − 1 segments are considered

as the training set to train the model. This process is repeated K times, each time with a

different segment being picked as a validation set [JWHT21]. Empirically, K = 10 has been

found to be an optimal value to use [KJ13] to maintain reasonable bias and variance.

3.1.3 Artificial Neural Networks (ANN)

The idea of an Artificial Neural Network (ANN) comes from the way animal/human brains

function. It consists of several interconnected artificial neurons, which propagate signals

from input to output based on an activation function. This interconnected structure is

typically laid out as layers with the first layer being the input layer, the last layer being

the output layer, and one or many layers of neurons between these two layers called hidden

layers [Dre05]. ANNs with 2 or more hidden layers are also called deep neural networks.

Training an artificial neural network is done by passing some input into the network and

using a loss function to compare the output to a known output (ground truth). The value

of the loss function is then used to reconfigure the neural network to obtain a more accurate

output. This process is repeated iteratively until the network converges or stops changing.

The most commonly used loss function for ANNs is cross-entropy loss as described in

Section 3.1.1. Each neuron in the ANN uses an activation function to compute its out-

put. Let the input to a neuron zi in the network be a vector X ∈ R with multiple inputs

(x1, x2, x3, ...xn), and the activation function used to compute the output be σl, which is a

nonlinear function as defined by the following equation:

zi = σ(WiX + bi)

Where W ∈ R is a set of weights (w1, w2, w3, ...wn) and bi is the bias. Both are changed

iteratively through the training process. We can expand this equation as follows:

zi = σ(
N∑
j=1

(wjixj + bi)) (3.9)

Here, wji is the weight for the node i for input number j. We can think of wji as the weight

being assigned to an edge in the example graph shown in Figure 3.2.
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Figure 3.2: Artificial neural network with single hidden layer (by Glosser.ca on com-
mons.wikimedia.org).

The parameters of a network represented by the weights W and biases b are formally

denoted as θ. Therefore, the loss function used to calculate the error in the ANN is denoted

as a function of the dataset D and the parameters θ of the network: L(D, θ).

During the iterative training process using gradient descent algorithm to find a minimum,

the parameters of the network are tuned or adjusted based on the partial derivative of the

loss function with respect to the parameters in the previous training iteration. We can

mathematically denote this as:

θt+1 = θt − α
δL(D, θt)

δθ
(3.10)

Where θt is the value of the parameters of the ANN at iteration t. Learning rate α of the

ANN is a hyperparameter that is typically set before the training process begins. This can

be used to control the rate at which the parameters of the network change with each iteration

in the gradient descent process. Therefore, for any given weight in the network, the change

in weight at each iteration can be denoted as:

∆wji = −α
δL(D, θ)

δwji

(3.11)
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This method of updating the network parameters using gradient descent is called backpro-

pogation because the loss function propogates backwards from the output end of the network

towards the input end. The expectation is that the parameters of the network will converge

to a point that minimizes the errors. When the training is done, the network can be used to

predict outputs for new input data points.

3.2 Unsupervised Machine Learning

In Section 3.1, we examine the application of machine learning for learning a mapping

between a given set of inputs and their corresponding outputs using supervised learning.

Unlike supervised learning, where the data has predefined labels, unsupervised learning

algorithms are used to discover the inherent structure, relationships, and patterns present in

the data without any explicit guidance or labeled data. The primary goal of unsupervised

learning is to uncover hidden patterns, group similar data points together, or reduce the

dimensionality of the data for further analysis or visualization [Rom19].

Unsupervised learning algorithms are particularly useful when dealing with large, com-

plex datasets where manually labeling or annotating the data is impractical or infeasible.

They can uncover hidden patterns, structures, and insights that may not be immediately

apparent, providing a better understanding of the underlying data and supporting further

analysis or decision-making processes.

3.2.1 K-Means Clustering

K-Means is an unsupervised ML method for partitioning data into k clusters based on

their similarity to each other [SY20]. Similarity is measured using distance metric such as

Euclidean distance between data points. The algorithm can be generally broken up into the

following steps:

1. Initialization: The algorithm starts by randomly selecting k data points as the initial

cluster centers called centroids.

2. Assignment Step: Each data point is assigned to the cluster whose centroid is closest
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to it. The distance between a data point and a centroid is calculated using Euclidean

distance or other metrics such as the Manhattan distance.

3. Update Step: After all data points have been assigned to clusters, the centroids of

the clusters are recalculated by taking the mean of all the data points in each cluster.

4. Iteration: Steps 2 and 3 are repeated until the cluster assignments no longer change,

or a predefined maximum number of iterations is reached.

Mathematically, the objective of k-means clustering is to minimize the sum of squared dis-

tances between each data point and its assigned cluster centroid. This objective function

called Sum of Squared Errors (SSE) can be mathematically represented as follows:

J =
k∑

i=1

∑
x∈Ci

|x− µi|2

Where k is the number of clusters, Ci is the set of data points in the cluster i, x is a data

point, µi is the centroid of the cluster i and |x − µi|2 is the squared Euclidean distance

between x and µi. The algorithm works by iteratively minimizing this objective function.

This is done by reassigning data points to their nearest centroids, and recalculating the

centroids as the means of the data points in their respective clusters in every iteration.

One limitation of K-Means clustering is that it assumes that the clusters are roughly

spherical and have similar variance. Therefore, this clustering method is not optimal for

clusters with different shapes or distributions.

3.2.2 Clustering with Gaussian Mixture Model

A Gaussian Mixture Model (GMM) is a probabilistic model used for clustering, which as-

sumes that the data is generated from a mixture of several Gaussian distributions with

unknown parameters. Unlike K-Means clustering which assumes that the clusters are spher-

ical and have similar variance, GMM can model clusters having different shapes, sizes, and

densities [RBBL16]. Therefore, GMM is more flexible in representing non-spherical and

heterogeneous clusters. Additionally, GMM also assigns each data point a probability of

belonging to a certain component (cluster) allowing for uncertainty in assignments. GMM
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can also handle outliers better than K-Means by assigning low probabilities to data points

that are far from all Gaussian components.

In a GMM, we assume that the data points are generated from a mixture of K Gaussian

distributions, where each Gaussian distribution represents a cluster. The probability density

function of a GMM is given by:

p(x|θ) =
K∑
k=1

πkN (x|µk,Σk) (3.12)

Where x is the data point, θ = π1, . . . , πK , µ1, . . . , µK ,Σ1, . . . ,ΣK is the set of parameters, K

is the number of Gaussian components (clusters) and πk is the mixing coefficient or weight

of the k-th Gaussian component, such that
∑K

k=1 πk = 1.

N (x|µk,Σk) is the k-th Gaussian component with mean µk and covariance matrix Σk, given

by the equation:

N (x|µk,Σk) =
1

(2π)d/2|Σk|1/2
exp

(
−1

2
(x− µk)

TΣ−1
k (x− µk)

)
Where d is the dimensionality of the data.

The goal is to find the parameters θ that maximize the likelihood of the data, given by:

L(θ|X) =
N∏

n=1

p(xn|θ) (3.13)

Where X = x1, . . . , xN is the set of N data points.

This maximization problem is typically solved using the Expectation-Maximization (EM)

algorithm, which iteratively updates the parameters θ until they converge. The EM algorithm

for GMM consists of two steps:

1. Expectation Step (E-step): In this step, the algorithm computes the probability

that each data point belongs to each Gaussian component, given the current parameter

estimates. This is done using Bayes’ theorem:

γnk = p(znk = 1|xn, θ) =
πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj,Σj)
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Where γnk is the posterior probability that data point xn belongs to the k-th Gaussian

component, and znk is a latent variable that indicates the component that xn belongs

to.

2. Maximization Step (M-step): In this step, the algorithm updates the parameters

θ to maximize the expected log-likelihood of the data, given the posterior probabilities

computed in the previous step.

πk =
1
N

∑N
n=1 γnk

µk =
1
Nk

∑N
n=1 γnkxn

Σk =
1
Nk

∑N
n=1 γnk(xn − µk)(xn − µk)

T

Where Nk =
∑N

n=1 γnk is the effective number of data points assigned to the k-th

component.

The EM algorithm iterates between the E-step and M-step until convergence, typically when

the log-likelihood or the parameter values change by a small or insignificant amount. Af-

ter convergence, each data point is assigned to the Gaussian component with the highest

responsibility γnk, effectively clustering the data.
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Chapter 4

Dataset Creation and Analysis

Numerous studies have employed data science and machine learning techniques to aid in the

prevention and reduction of gambling-related harm, often referred to as responsible gambling.

These studies have shown promise in utilizing self-reported survey data and betting-related

behavioral tracking data to model the behavior of gamblers and proactively identify at-risk

groups or individuals [GAP+22]. However, the use of payment-related behavioral tracking

data has been less prevalent. Traditionally, financial institutions have used financial data

for fraud detection [AHM21] and customer risk assessment [CRC16] from a data analytics

perspective. These methods can potentially be adapted to provide insights into problematic

gambling behavior and risky financial behavior within the context of responsible gambling.

The lack of publicly available quantitative data on customer transactions has restricted

academic research in the application of machine learning for problem gambling. To alleviate

this issue, we obtained data from an online digital payments provider to facilitate further

research in this area. In this chapter, we discuss this data in detail and the steps taken to

formulate a dataset for player behavior modeling. Furthermore, we provide a descriptive

analysis of the data and its contents which was published in 2023 [PTG23].

The data discussed in this chapter were obtained from a single payments technology

provider (PTP) whose identity is not disclosed. The dataset consists of two types of trans-

actions: financial and non-financial. Non-financial transactions include user account-related

activities such as updating addresses, phone numbers, and other personally identifiable in-

formation associated with the customer’s account. However, due to the sensitive nature of
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this information, it is not included as part of our research and will not be disclosed. Instead,

the contents of the data and the descriptive analysis presented here focus exclusively on the

financial transactions found within the data.

We can describe a Payments Technology Provider (PTP) as an entity that serves as a

facilitator, connecting merchants with a customer’s financial institutions, such as banks or

credit cards. This relationship is better visualized in Figure 4.1.

Financial
Institution

Payments
Technology

Provider

Gambling
Merchant

Figure 4.1: Illustrating the role of PTP in financial transactions.

4.1 Technology Tools

We leverage Apache Spark for data operations and processing and Apache Parquet for data

storage. In this section we provide a description of these technologies and the motivation

behind using them for data cleaning, data obfuscation and dataset creation for big data.

4.1.1 Apache Spark

Apache Spark is a framework built in 2009 at the University of California, Berkeley to deal

with the computational challenges of big data. It leverages Resilient Distributed Datasets

(RDD) and Map-Reduce to distribute a computation workload over a cluster of multiple

nodes. The flavor of Apache Spark used in this research is Hadoop which was developed by

Yahoo. The Apache Hadoop framework is an open-source framework for distributed com-

puting which implements various systems such as a Hadoop distributed file system (HDFS)

for data storage, Hadoop YARN for job scheduling and resource management, and Hadoop

MapReduce which is a computation paradigm in the distributed environment. Apache Spark
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abstracts the Apache Hadoop framework to provide a general-purpose API to replace tradi-

tional data manipulation pipelines with distributed computing [ZXW+16].

One of the key features of Spark is its ability to perform in-memory computing. By storing

data in memory instead of reading from the disk every time, Spark can process data much

faster than traditional big data processing frameworks like Apache Hadoop MapReduce.

This in-memory capability allows Spark to efficiently perform iterative algorithms, such as

those used in machine learning and graph processing, which require multiple passes over the

same data [KKWZ15]. Additionally, it also facilitates data cleaning, transformation, and

aggregation for big data, which is what we leverage to formulate a dataset from this data.

4.1.2 Apache Parquet

Apache Parquet is an open-source, column-oriented data storage format designed for efficient

storage and retrieval of large datasets. Its use in big data processing is primarily preferred

due to its high performance in data storage and retrieval as compared to other row-oriented

formats such as CSV and JSON [Kie17].

Due to the storage of columns in contiguous memory locations, Parquet allows efficient

column wise operations and better compression owing to the singular datatype requirement

for each column in structured data [Voh16]. Parquet’s file structure consists of three main

components:

1. Header: Contains metadata about the file, such as the version, schema, and column

information.

2. Row groups: The data is divided into row groups, which are horizontal partitions of

the data. Each row group contains a subset of the rows and is stored independently.

3. Column chunks: Within each row group, the data is further divided into column

chunks. Each column chunk contains the values for a specific column within the row

group.

A simplified illustration of the parquet file structure is given in the following Figure 4.2
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File Header

Row Group 1

Column Chunk 1
(Column 1)

Column Chunk 2
(Column 2)

Row Group 2

Column Chunk 1
(Column 1)

Column Chunk 2
(Column 2)

Figure 4.2: Illustration of the parquet file structure as a block diagram.

This structure allows for efficient reading and writing of data, as well as enabling parallel

processing of row groups across multiple nodes in a distributed computing environment.

4.2 Data Cleaning & Obfuscation

In this section we describe the methods and technologies used for obfuscating and cleaning

the data before formulating a dataset to be used for analysis.

Initially, this data was obtained in the form of comma-seperated values (CSV) files. The

data contained personally identifiable information related to customers and merchants which

was only partially sanitized. Additionally, numerous invalid and null entries were also found.

Cleaning and analysis of this data was done on an Apache Spark cluster at the University

of Nevada, Las Vegas, after converting and storing the data in Apache Parquet format.
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4.2.1 Conversion to Parquet

The data was split into several CSV files containing extraneous lines in the beginning of the

file, which broke compatibility with the CSV format. While analyzing the files, we found that

there were exactly 7 rows of extraneous lines, which were first removed using Algorithm 1.

Algorithm 1: Clean transaction CSV

Input : input file.csv
Output: Number of rows cleaned

1 CleanTransactionFile(input file)
2 counter ← 0;
3 open input file in read mode as infile;
4 reader ← Open infile with CSV Reader;
5 index ← 7;
6 open “output.csv” in write mode as outfile;
7 writer ← Open outfile with CSV Writer;
8 foreach row in reader do
9 counter ← counter + 1;

10 index ← index - 1;
11 if index > 0 then
12 continue;
13 end
14 else if index = 0 then
15 writer.writerow(header) ; # header is a list of column headers.

16 continue;

17 end
18 writer.writerow(row);

19 end
20 return counter ;

Subsequently, each cleaned output file is then converted into parquet format using the

Spark API using Algorithm 2. Note that since there are multiple CSV files, each file is first

imported as a Spark dataframe and then concatenated using the union operation:

CSV1 ∪ CSV2 ∪ . . . CSVn

4.2.2 Data Contents

On performing a preliminary analysis of the data we found the following information:

• The recorded data contains 53,445,398 financial transactions of 251,043 unique cus-
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Algorithm 2: Convert and combine CSV to Parquet

Input : List of CSV Files
Output: Parquet File

1 ConvertToParquet(input files)
2 df ← None ;
3 foreach file in input files do
4 if df = None then
5 df ← Read file into Spark dataframe ;
6 end
7 else
8 df1← Read file into Spark dataframe ;
9 df ← df ∪ df1

10 end

11 end
12 df.write(“output.parquet”)

tomers and 206 unique merchants between January 01, 2015 to December 31, 2021.

• Out of these, 51,542,349 transactions were approved, 1,886,572 transactions were de-

clined, 15,648 transactions failed due to technical issues, and 829 transactions were

corrupted due to system errors. Corrupted data entries were automatically discarded

from the data by the CSV Reader from Algorithm 1, using exception handling.

• There are a total of 24,182,509 transactions labeled as deposits to the PTP digital wal-

let and 28,954,493 transactions labeled as withdrawals from the digital wallet. With-

drawals in this case can be assumed to be deposits to a gambling merchant. 308,396

transactions were wallet balance queries.

The columns present in the data are described in Table 4.1.

4.2.3 Data Obfuscation

The MerchantID and AccountID columns in the obtained data contained personally identifi-

able information that could be used to directly identify merchants and PTP account holders,

respectively. To create a usable and publishable dataset, it was necessary to obfuscate this

data. This was accomplished using a combination of SparkSQL and PostgreSQL.
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Table 4.1: Data columns and their descriptions

Column Description
ReqTimeUTC Timestamp of transaction
MerchantID Unique merchant ID
ServiceMethod Indicates, deposit/withdrawal/balance check
AccountID Unique customer account ID
MerchantTransactionID Unique transaction ID assigned by merchant
EncodedTransactionID Unique transaction ID assigned by PTP
TransactionType Indicates credit or debit for loyalty card
TransactionAmount Amount of transaction
Status Approved/Declined/Failed/Unknown
ErrorMessage Error shown for Declined/Failed/Unknown Status
FriendlyMessage Human readable version of ErrorMessage

Data is stored as a table called servicelog. The following steps were performed to

obfuscate the data:

1. Create a table containing the account IDs and the obfuscated account ID of the players

in the original data. The SQL queries for this step are as follows:

1 CREATE TABLE accountid(

2 account id SERIAL PRIMARY KEY,

3 accountidentifier VARCHAR(100) );

4 INSERT INTO accountid(accountidentifier) SELECT accountidentifier FROM

servicelog GROUP BY accountidentifier;

Note that the account_id column is an auto-generated column that starts at 1 and in-

crements by 1 every time a new entry is added to accountidentifier. This account_id

column acts as the obfuscated ID.

2. Create a similar table for merchant IDs as the previous step. The SQL queries used

are as follows:
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1 CREATE TABLE merchantcode(

2 merchantid SERIAL PRIMARY KEY,

3 merchantcode CHAR(20) );

4 INSERT INTO merchantcode(merchantcode) SELECT merchantid FROM

servicelog GROUP BY merchantid;

In this table, the merchantid column acts as the obfuscated ID for the corresponding

merchant ID in the original table.

3. Create a new table servicelog_public from the original servicelog table schema

but using the new obfuscated IDs as a foreign key:

1 CREATE TABLE servicelog public (

2 reqtimeutc TIMESTAMPTZ,

3 merchantid INTEGER,

4 servicemethod VARCHAR(100),

5 accountid INTEGER,

6 merchanttransactionid VARCHAR(100),

7 encodedtransactionid VARCHAR(100),

8 transactiontype VARCHAR(50),

9 transactionamount NUMERIC,

10 status VARCHAR(50),

11 errormessage VARCHAR(256),

12 friendlymessage VARCHAR(256),

13 FOREIGN KEY (merchantid) REFERENCES public.merchantcode (merchantid)

14 ON DELETE CASCADE,

15 FOREIGN KEY (accountid) REFERENCES public.accountid (account id)

16 ON DELETE CASCADE );

4. Now we insert data into the new table while joining it with the ID obfuscation tables

to generate a table with no personally identifiable information.
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1 INSERT INTO servicelog public

2 SELECT reqtimeutc,

3 merchantid,

4 servicemethod,

5 account id,

6 merchanttransactionid,

7 encodedtransactionid,

8 transactiontype,

9 transactionamount,

10 status,

11 errormessage,

12 friendlymessage

13 FROM servicelog

14 INNER JOIN merchantcode ON merchantcode.merchantcode = servicelog.

merchantcode

15 INNER JOIN accountid ON accountid.accountidentifier = servicelog.

accountidentifier

16 ORDER BY reqtimeutc;

The final servicelog_public table is what we use for dataset creation. This table is

exported to JSON format [PRS+16] for easy portability to other systems.

4.3 Descriptive Analysis

To understand the characteristics of the data, we performed and published a descriptive

analysis of the whole dataset [PTG23]. This descriptive analysis comprises the distribution

of the data, cash flow patterns and values, and stationarity analysis to identify any seasonality

patterns in the overall population of the dataset.

From the descriptive analysis, we found 3 main features that can be used to further

engineer relevant features for a machine learning approach to modeling:

1. Approved/Declined Transactions: The dataset comprises both approved and de-
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clined transaction. This information holds value not only for isolating approved trans-

actions but also for discerning patterns behind the declination of transactions.

2. Aggregated Value of Transactions: The value of transactions conducted over an

arbitrary period of time facilitates the identification of spending patterns for groups of

customers. Here, the value of the transaction refers to its monetary value indicating a

cash flow. Since we are only interested in cash flow, declined or failed transactions are

disregarded.

3. Frequency of Transactions: Frequency refers to the number of transactions con-

ducted over an aggregated period of time. For example, considering the frequency

of transactions over a month can provide insight into consumer activity within that

month for the PTP.

4.3.1 Distribution

By plotting the frequency of transactions per month from 2015 to the end of 2021 (entire

period of the data) in Figure 4.3, it is evident that most of the data in this dataset is present

in the period after 2019. This indicates that the PTP was either less active in the period

before 2019, or that this specific PTP’s business grew in 2019.

Figure 4.3: Frequency of transactions over the entire dataset [PTG23].
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Of all approved transactions higher than 0, 90% of the transactions were under $200.

The percentile figures for these transactions are illustrated in Table 4.2a.

Table 4.2: Percentile figures for all approved transactions [PTG23].

(a) Before outlier removal.

Index Amount (USD)
Minimum 0.01
10% 10.00
25% 20.00
50% 50.00
75% 100.00
90% 200.00
Maximum 100000.00

(b) After outlier removal.

Index Amount (USD)
Minimum 0.01
10% 10.00
25% 20.00
50% 40.00
75% 94.00
90% 108.95
Maximum 220.00

The maximum transaction amount is $100,000, while the minimum is $0.01, indicating

that although the transactions have a very wide range, the majority of transactions are still

under $200. In order to better understand this distribution, we use the interquartile range

rule to find and remove outliers from the data [Ros17]. The data after outlier removal is

represented in Table 4.2b. This does not mean that the outliers in this data are irrelevant;

only that removing outliers in this specific scenario better represents the majority population

in this dataset. This is also evident from the histogram presented in Figure 4.4, which shows

that the majority of transactions in the dataset are in the $10 to $30 range.

In the following Chapter 5 we continue the analysis of the data from the perspective of

a time-series.
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Figure 4.4: Histogram of transactions amounts without outliers [PTG23].
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Chapter 5

Time Series Modeling

From Figure 4.3 it is evident that this dataset can be viewed as a time series. A time series

is a sequence of data points indexed by time, typically measured at successive points in time

spaced at uniform intervals. It is a collection of observations made sequentially over time.

Mathematically, a time series can be denoted as a stochastic process yt, where t represents

the time index and yt represents the observed value at time t.

{yt}Tt=1

We can also define a time series as a mapping between time domain and real number domain

as follows:

x : T → Rk

where T ⊆ R and k ∈ N [Auf21].

Time series analysis helps describe and understand the behavior of data over time which

makes it widely applicable in various fields such as finance, economics, engineering, environ-

mental sciences and many others. Following are some historical and current examples of the

uses of time series analysis.

• Forecasting: Time series analysis is extensively used for forecasting future values

based on the patterns and trends observed in historical data. This is particularly

useful in areas such as

– Finance for forecasting stock prices, exchange rates and economic indicators [Tsa05].
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– Retail for forecasting sales and demand for inventory management [LVRK20,

Win60].

– Energy for forecasting energy consumption and production [PR22].

• Signal processing: Time series analysis is used in signal processing for tasks such as

noise removal, signal denoising, and signal compression [SM+05] particularly in fields

like telecommunications, audio/video processing, and radar systems.

• Process Control: In manufacturing and industrial processes, time series analysis is

used to monitor and control process variables over time. By analyzing the patterns

and deviations in the data, corrective actions can be taken to keep the process within

desired limits [FMG+23, OSBJ20].

• Environmental Studies: Time series analysis is used to study and model environ-

mental phenomena such as air pollution, water quality, and climate change patterns

based on historical data [DAS20, MPAM22, SSC23].

• Econometrics: Time series analysis is a fundamental tool in econometrics for an-

alyzing and modeling economic data, such as GDP, inflation, and unemployment

rates [FH21, LL22].

• Financial Risk Management: Time series analysis is used in risk management

for modeling and forecasting financial risks, such as value-at-risk (VaR) and expected

shortfall [KBHG24].

In this chapter we discuss the use of time-series analysis and anomaly detection to under-

stand the overall structure of the PTP data and to identify anomalous behavior patterns in

individual gamblers.

5.1 Stationarity of Data

Time series can be classified into two distinct types based on their behavior and character-

istics:
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1. Stationary Time Series: A time series is considered stationary if its statistical

properties, such as mean and variance, remain constant over time. Mathematically, a

stationary time series can be represented as:

yt = µ+ εt

where µ is the constant mean, and εt is a random error term (or white noise) with a

normal distribution with mean of zero and constant variance σ2.

2. Non-stationary Time Series: A time series is non-stationary if its statistical prop-

erties change over time. Non-stationarity can manifest in various forms, such as trend,

seasonality, or a combination of both.

(a) Trend: Trend: A time series exhibits a trend if there is a consistent upward

or downward pattern over time. The trend component can be modeled using a

function of time, such as a linear or polynomial function.

yt = f(t) + εt

where f(t) represents the trend component.

(b) Seasonality: A time series exhibits seasonality if there are recurring patterns

or fluctuations within a fixed period (e.g., yearly, quarterly, or monthly). The

seasonality component can be modeled using periodic functions, such as sine or

cosine waves.

yt = St + εt

where St represents the seasonal component.

In the case of our data set, we want to measure if there are any data points that are

susceptible to variations due to trends. A time-series may also be stationary around a

deterministic trend and can therefore be made stationary by removing this trend.
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5.1.1 Augmented Dickey-Fuller (ADF) Test

The ADF test is a statistical test used to determine if a given time series data is stationary

or not [Mus11]. It is based on the following regression equation:

∆yt = α + βt+ γyt−1 +

p−1∑
i=1

δi∆yt−i + ϵt (5.1)

Where yt is the time series being tested, ∆yt = yt − yt−1 is the first difference of the series,

t is the time trend, p is the number of lagged difference terms, α is the constant term also

known as drift, and ϵt is the error term.

The null hypothesis of the ADF test is that the time series is non-stationary (has a unit

root), which is represented by γ = 0 in Equation 5.1. The alternative hypothesis is that the

series is stationary, or γ < 0. We calculate the test statistic using the following equation:

ADF =
γ

se(γ)

Where se(γ) is the standard error of the estimated coefficient γ.

The calculated ADF statistic is then compared to critical values from the Dickey-Fuller

distribution. If the ADF statistic is less than the critical value, we reject the null hypothesis

and conclude that the time series is stationary.

5.1.2 Kwiatkowski–Phillips–Schmidt–Shin (KPSS) Test

Unlike the ADF test, which tests the null hypothesis of non-stationarity (unit root), the

KPSS tests the null hypothesis of stationarity [KPSS92]. The KPSS test is based on the

following equation:

yt = βt + rt + ϵt (5.2)

Where yt is the time series being tested, βt is a deterministic trend (a constant or a constant

plus time trend), rt is a random walk: rt = rt−1 + ut, with ut ∼ iid(0, σ2
u), ϵt is a stationary

error term.

The null hypothesis of the KPSS test is that the series is stationary, which implies that

rt = 0. The alternative hypothesis is that the series is non-stationary, or rt ̸= 0. The
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following equation is used to calculate the test statistic:

KPSS =

∑T
t=1 S

2
t

T 2σ̂2
ϵ

Where St =
∑t

i=1 r̂i is the partial sum of the residuals r̂t from the regression of yt on a

constant or a constant and time trend, T is the sample size, and σ̂2
ϵ is an estimator of the

long-run variance of ϵt. This can be computed using any non-parametric estimator.

The calculated KPSS statistic is then compared to critical values from the KPSS distri-

bution. If the KPSS statistic is greater than the critical value, we reject the null hypothesis

and conclude that the time series is non-stationary. The KPSS test complements the ADF

test, as it tests the opposite null hypothesis. Using both tests can provide more robust

conclusions about the stationarity of a time series.

5.1.3 Results of ADF & KPSS

For testing the stationarity of the the distribution in Figure 4.3, we apply both the ADF

and KPSS tests and compute the p-value for both. We use a threshold value of 0.05 for

rejecting the null hypothesis for both tests. The p-value, test statistic and critical values for

both tests are given in Table 5.1.

Table 5.1: ADF and KPSS results for frequency of transactions [PTG23].

(a) ADF Test

Index Value
Test Statistic -0.299447
p-value 0.925583
Lags Used 1.000000
No. of Observations 82.000000
Critical Value (1%) -3.512738
Critical Value (5%) -2.897490
Critical Value (10%) -2.585949

(b) KPSS Test

Index Value
Test Statistic 0.313977
p-value 0.010000
Lags Used 5.000000
Critical Value (10%) 0.119000
Critical Value (5%) 0.146000
Critical Value (2.5%) 0.176000
Critical Value (1%) 0.216000

The p-value for the ADF tests is 0.926 which means we can safely accept the null hypoth-

esis that the time-series plot of the data has a unit-root and is non-stationary. Additionally,

the p-value for the KPSS test is 0.01 which also suggests that the data is not stationary

around a constant mean or a deterministic trend.
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5.2 Player Behavior as Time Series

Previously, we discussed the problem of defining problem gambling due to the lack of quan-

titative evidence or metrics to define it. In this section, we discuss the modeling player

behavior variables or features as a time series. By applying statistical and machine learn-

ing based analytical tools, we observe changes in player behavior and identify actionable

anomalous characteristics.

5.2.1 Univariate Behavior Features

A univariate time series consists of a single variable or quantity measured over time. Modeling

behavior variables as a time series enables observing changes in the variable with respect to

time. This also allows us to detect trends and anomalies in the variable. From the variables

available in the data as illustrated previously in Table 4.1, there are certain distinctive

features that can be analyzed using time series. For this research we focus on three of these

features to demonstrate the use of time series analysis.

Table 5.2: Features from PTP for time series analysis.

Feature Description
Timestamp This is obtained from ReqTimeUTC and indicates the

time that the transaction was recorded.
Service Method Indicates whether a transaction was a withdrawal or

deposit which acts as a proxy for bets and winnings.
Transaction Amount Indicates the value of the transaction, i. e. money

transferred (bet or winning).

These three features from the data can allow use to model a time series for net loss,

frequency of betting and transaction amounts. However, before we attempt to plot these

variables as a time series, we need to address a fundamental problem:

Problem: A time series is a sequence of data points in chronological order typically taken

at equally spaced time intervals (e.g. sensor readings, stock market data, audio/video sig-

nals). However, our data does not have equally spaced transactions that can be plotted as

a continuous time series.

37



Solution: To make our data points continuous, we can aggregate them by equally spaced

time periods such as by day or by month. For example, we cane aggregate the data for

any arbitrary player by day, to have daily readings of their betting behavior. On days that

the player does not play, the aggregate number of transactions and monetary values of the

transactions can be considered to be zero. Similar aggregation can be performed by week,

month, year, or any desired period.

The solution is implemented using the Rapids library. The Rapids library, developed by

NVIDIA, is an open-source suite of software libraries and APIs designed to execute end-to-

end data science and analytics pipelines entirely on GPUs. Its goal is to accelerate data

science workflows using the power of GPUs, offering substantial speedups over CPU-based

implementations [Tea23]. Specifically, we employ the cuDF component of Rapids that is

designed for loading, joining, aggregating, filtering and manipulating data by leveraging the

Nvidia CUDA toolkit.

Algorithm 3: Read dataset and filter player data.

Input: “dataset.json”, accountID
Output: Player Dataframe

# Read dataset

1 df ← DaskDataframe(dataset, blocksize=228, orient=‘records’) ;

# Filter player by accountID

2 filtered ← df WHERE df.accountid = accountID;
3 filtered ← filtered WHERE filtered.servicemethod = ‘WITHDRAWAL’ AND

filtered.status = ‘APPROVED’ ;

# Filter features

4 playerDF ← SELECT ‘reqtimutc’, ‘transactionamount’ FROM filtered ;

Algorithm 3 describes the process for extracting a single player’s data from the dataset.

Note that the pseudocode for filtering and column selection has been converted to equivalent

SQL queries for readability. The algorithm first reads the dataset from the json file, then

filters it by accountID to get the intended player, and finally filters the features that are

relevant for plotting a time series. Once we have the player data, we first need to aggregate

the data by a fixed time period. In this case, we shall aggregate by day with all transaction

38



amounts summed together and number of transactions conducted in a day counted.

Algorithm 4: Aggregate data and impute values.

Input: Player Dataframe
Output: Aggregated Dataframe

1 agg data ← PlayerDF.groupby(PlayerDF[‘reqtimeutc’].year,
PlayerDF[‘reqtimeutc’].month,
PlayerDF[‘reqtimeutc’].day).aggregate(‘reqtimeutc’:count,
‘transactionamount’:sum);

# Rename Columns

2 agg data.rename columns(‘reqtimeutc’:‘freq’, ‘transactionamount’:‘debitamt’);

# Create new column for date

3 agg data[‘date’] ← agg data.year + agg data.month + agg data.day;

# Select date, freq and amt columns

4 agg data ← agg data[‘data’, ‘debitamt’, ‘freq’];
5 agg data.sort by (‘date’);

Algorithm 4 first aggregates a player by year, month, and day which is extracted from

the reqtimeutc column. This column is formatted as a timestamp and allows addressing of

each individual time component. While using the groupby method, we define the aggregate

functions to be applied to the reqtimeutc and the transactionamount columns. In this

case, we want to count the reqtimeutc column to compute the number of transactions that

are conducted in a day, and sum the transactionamount column to get the total amount of

money spent in the day. An example of the data generated by Algorithm 4 for an arbitrary

player is shown in Table 5.3.

Table 5.3: Example output for player aggregation using Algorithm 4

date debitamt freq
2015-11-25 30.0 2
2016-01-16 80.0 4
2016-01-17 150.0 9
2016-01-18 250.0 12
2016-01-19 20.0 1
2016-01-20 150.0 7
2016-01-21 110.0 8
...

...
...
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Note that in this output, there are no records for days when there is no player activity.

However, to plot this data as a time series, we require readings at equally spaced intervals.

To do this, we impute the values for missing days to be zero (no amount debited and no

transactions made) using Algorithm 5. We only consider 4 years or 365× 4 days of data for

this time series.

Algorithm 5: Impute missing values for aggregate data.

Input: AggregateData
Output: Periodic AggregateData

1 start date ← agg data.index(0); # First row

# Generate array of dates

2 foreach d in range(start date+ 4 ∗ 365) do
3 new index.append(d);
4 end
5 Convert new index to Pandas Index;
6 agg data.reindex(new index);

# Insert 0 in place of null

7 agg data[‘debitamt’].fillna(0);
8 agg data[‘freq’].fillna(0);

The resultant data from Algorithm 5 now can be considered as a time series with equally

spaced time intervals. If we apply this algorithm to the example from Table 5.3, then a

sample of the resultant output is given in Table 5.4. Note that days between 2015-11-25 and

2016-01-16 with no activity have been imputed.

Table 5.4: Example output for imputation using Algorithm 5

date debitamt freq
2015-11-25 30.0 2.0
2015-11-26 0.0 0.0
2015-11-27 0.0 0.0
2015-11-28 0.0 0.0
2015-11-29 0.0 0.0
2015-11-30 0.0 0.0
2015-12-01 0.0 0.0
...

...
...

The example in Table 5.4 does not show all values since the resultant output is quite
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large. A plot of this example has been illustrated in Figure 5.1. In this example plot we are

considering a single variable, i. e. the debit/withdrawal amount of the player per day.

Figure 5.1: Example plot of debit amount for output of Algorithm 5.

We can further redefine the aggregation to weekly, monthly, yearly or any arbitrary time

period using the Grouper function provided by Pandas [pdt23]. This is useful to identify

general trends or the overall behavior of a player for specific time periods. For example, if

we plot behavior by monthly aggregation, we can more easily observe trends in the behavior.

Figure 5.2: Example plot of withdrawals aggregated monthly.

The plot in Figure 5.2 shows the monthly aggregated withdrawals for the sample player

observed previously in Figure 5.1. In this figure we can clearly observe a trend in this

variable which is not evident in Figure 5.1. The trend here is calculated using the least

squares polynomial fit algorithm with a specified degree of 2. Spikes in this graph also

visually indicate drastic changes in player behavior.
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5.2.2 Anomaly Detection with Delta Index

To establish a statistical baseline for change in player behavior, we define a metric called

Delta Index. The mathematical representation of delta index is as follows.

delta index =
δvt
vt−1

(5.3)

Where δvt is

δvt = vt − vt−1

Delta index is used to compute the rate of change of a variable without the amplitude scaling

of the observed variable having a significant impact on the result. In other words the range

of delta index is not dependent on the magnitude of the domain. The range only represents

the factor by which the input variable has changed. For example, we can plot the delta index

of the monthly aggregate withdrawals of a player to observe significant changes or spikes in

the variable.

Figure 5.3: Delta index plot of the withdrawals of a sample player.

Figure 5.3 shows the delta index of the monthly aggregated withdrawals of a sample

player that was previously observed in Figure 5.2. The Amt Delta Threshold line in this

plot indicates the threshold at which delta index is considered significantly different from

the normal plot. In this example, we consider the threshold to be 1.5 ∗ σDI where σDI is the

standard deviation of the delta index.

The following steps are used to implement this method of anomaly detection for the PTP

dataset:
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1. Sampling: For this experiment, we consider 2 years of player activity from January

2019 to December 2020 (inclusive). From this time period, we extract the top 10% of

players based on transaction frequency over this entire period. The motivation behind

selecting this time period is based on the observation in Figure 4.3 where the years 2019

and 2020 show maximum player activity. We consider only the top 10% of gamblers

in order to only account for frequent gamblers from this dataset. This is based on the

assumption that 90% of the players using the payments platform provided by PTP are

not frequent gamblers.

2. Aggregation: We apply Algorithm 4 and Algorithm 5 to generate a time series of

each player’s daily activity.

3. Normalization: From preliminary analysis, we found that normalizing the data re-

sults in a more consistent result for threshold calculation. Therefore, we normalize

the desired variable to a value between 0 and 3. The normalized value for any given

variable v at time t is given by:

Normalized vt =
vt − vmin

vmax − vmin + α
(5.4)

Where vmin is the minimum value of v for the player in the stipulated time frame, vmax

is the maximum value, and α is a very small number (typically 10−5) added to the

denominator to prevent divide by zero error.

4. Delta Index (DI): In order to compute DI based on Equation 5.3 we need to know

vt−1 for the desired variable. For example, the DI of withdrawal amount wt for any

given time instant t for a player is given by:

wDI =
wt − wt−1

wt−1

From this equation, it is clear that we need to get wt−1 for each data point in the time

series. However, if wt−1 is 0 then the above equation will fail due to divide by zero

error. Therefore, we use the following equation to compute DI:

wDI =


wt−wt−1

wt−1
wt−1 > 0

wt wt−1 = 0

(5.5)
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5. Anomaly Detection: After computing the delta index for the variable, we set a

threshold at which the data point is considered an anomaly. For this experiment, we

use the standard statistical method of µ+(1.5∗σ) to determine the anomaly threshold.

We label all data points in the original time series as anomalies where the delta index at

that point exceeds the established threshold. This results in an output with 3 columns:

timestamp, DI of variable, and label. The label is a boolean with true for anomaly,

and false otherwise.

For a random player selected from the pool of sampled players, we can plot a time series

for any given behavior variable with the overlaid anomalies.

Figure 5.4: Withdrawals/bets for player 6612 with anomalies using DI algorithm.

We can see the behavior patterns of player 6612 based on their normalized withdrawal

amounts in Figure 5.4. This is based on daily aggregated withdrawals. The red markers at

various time points are the anomalies that were detected by the delta index method.

There are some limitations to this method for anomaly detection in a time series.

• This algorithm only considers a single prior value to determine the delta index which

limits its efficacy for longer time periods.

• Determining the optimum threshold for anomaly detection is difficult and statistical

methods only provide a general estimate over the entire range of the data which is

sensitive to data skewness.
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• Positive changes to a variable have significantly higher weight than negative changes

since negative changes are in the range 0 to −1.0 whereas positive changes do not have

an upper limit. For example, if a variable goes from 10 to 110 then the DI will be 10.0

whereas if it goes from 110 to 10 then the DI will be −0.9 which is a significantly lower

magnitude for a similar change.

5.2.3 Anomaly Detection with Spectral Residual

The Spectral Residual (SR) algorithm is an unsupervised ML technique used for anomaly

detection in time series data. It leverages the Fourier Transform to analyze frequency com-

ponents of the time series and detect deviations that signify anomalies. Historically, this

algorithm has been used for saliency detection in images by mimicking the way humans

recognize salient features of an image [HZ07]. It is particularly useful for scenarios in which

labeled anomalies are scarce or unavailable, and it provides a robust method for detecting

unusual events based on the own structure of the data.

In essence, the SR algorithm transforms the time series to the frequency domain to

isolate unusual components (anomalies), then transforms it back to the time domain to

identify when these anomalies occur. The process involves filtering out expected patterns

and focusing on unexpected deviations, making it effective for anomaly detection in time

series data [LGC+23]. The steps used in this are as follows.

1. Discrete Fourier Transform (DFT): First we apply DFT to the input time series.

The input time series is in the format {xt}Tt=1 where xt represents the value of the time

series at time t. The equation for DFT is given below:

X(f) =
T∑
t=1

xte
−2πift, for f = 0, 1, . . . , T − 1 (5.6)

This step decomposes the time series into its frequency components, allowing us to

analyze periodic patterns.

2. Log Amplitude Spectrum: Next, we compute the log amplitude spectrum of the

transformed time series. The amplitude spectrum is denoted by |X(f)| and is given
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by:

|X(f)| =
√

Re(X(f))2 + Im(X(f))2 (5.7)

The log amplitude spectrum is:

log |X(f)|

The log amplitude spectrum emphasizes the differences between significant frequencies

and noise, making it easier to identify unusual patterns.

3. Spectral Residual (SR): Now, we obtain the spectral residual by subtracting a

smoothed version of the log amplitude spectrum from itself. Let |X(f)|smooth denote

the smoothed log amplitude spectrum obtained using a moving average filter. The

spectral residual X̂(f) is given by:

X̂(f) = log |X(f)| − log |X(f)|smooth (5.8)

This step isolates the unexpected or anomalous components in the frequency domain

by removing the expected (smoothed) components.

4. Inverse Fourier Transform: The spectral residual X̂(f) is converted back to the

time domain using inverse DFT function:

x̂t =
T−1∑
f=0

X̂(f)e2πift (5.9)

Transforming back to the time domain allows us to see the anomalies in the original

time series context.

5. Anomaly Score Calculation: We then calculate the anomaly score St at each time

point. This can be done by computing the point-wise deviation between the original

time series and the reconstructed time series from the spectral residual:

St = |xt − x̂t| (5.10)

The anomaly score quantifies the extent of deviation at each time point, highlighting

potential anomalies.
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6. Anomaly Detection: Determining anomalies is done by setting a threshold for the

anomaly scores. This can be done using a fixed threshold, or a dynamic threshold

using statistical methods on the distribution of the scores. For our experiment, we use

a fixed threshold. This step identifies the specific time points in the time series where

anomalies occur based on their scores. The output of this algorithm has 3 columns:

timestamp, anomaly score, label.

The use of this algorithm for anomaly detection in a time-series was proposed by Mi-

crosoft. They also further proposed implementing a Convolutional Neural Network (CNN) at

the output of the SR algorithm to further improve efficacy of the SR algorithm [RXW+19].

However, we found that we could not replicate the results claimed by Microsoft on our

dataset. We suspect that this is due to the lack of a labeled dataset. In the paper published

by Microsoft, there are three datasets that were tested:

1. KPI The KPI dataset is provided by the AIOPS data competition. Various labeled

KPI curves are included that have been collected from Internet Companies such as

Sogou, Tencent, eBay, etc.

2. Yahoo The Yahoo dataset, released by Yahoo Labs is also used for time series anomaly

detection. This dataset includes both synthetic and real time-series curves. The syn-

thetic curves are simulated, while the real-time-series curves are based on actual traf-

fic from Yahoo services. Anomalies in the synthetic data are procedurally generated,

whereas anomalies in the real data are manually labeled. All time-series in this dataset

have a 1-hour interval.

3. Microsoft This dataset comes from Microsoft’s internal anomaly detection service. A

random selection of time-series, reflecting various KPIs such as revenues, active users,

and page views, is used for evaluation. Anomalies in this dataset are manually labeled

by customers or editors, and the time-series have a 1-day interval.

The results for these datasets as published by Microsoft are given in Table 5.5. Due

to the lack of labeled anomalies in our dataset, we cannot obtain a metric for testing the
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efficacy of this anomaly detection technique. Therefore, the results are subjective and require

interpretation by experts in the field of problem gambling.

Table 5.5: Results for SR algorithm as published by Microsoft [RXW+19].

KPI Yahoo Microsoft
F1-Score 0.666 0.529 0.484
Precision 0.637 0.404 0.878
Recall 0.697 0.765 0.334

Sampling, aggregation and normalization techniques for implementing the SR algorithm

are the same as the steps for anomaly detection using delta index as discussed in Section 5.2.2.

With the SR algorithm we can compute a saliency map or anomaly scores for any given time

series on which we apply a threshold. An example of anomaly scores for a random player

plotted over the transaction amount is given in Figure 5.5.

Figure 5.5: Anomaly score plot for monthly aggregate of player withdrawals.

The red plot line in Figure 5.5 corresponds to the anomaly score assigned to a specific

data point with the score value represented on the right-hand side y-axis. The original

withdrawal amount plot line is represented in blue with the values represented on the left

hand side y-axis. The x-axis represents the timestamp. This figure is plotted for monthly

aggregated player withdrawals for readability.

Finally, we plot the results of anomaly detection over the time series plot of the behavior

variable.

We illustrate the output of the SR based anomaly detection of a sample player 6612

in Figure 5.6. This is the same sample player that was previously show in Figure 5.4.

This serves as a comparison metric between the baseline Delta Index (DI) algorithm and
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Figure 5.6: Withdrawals/bets for player 6612 with anomalies using SR algorithm.

the Spectral Residual (SR) algorithm. Similar to Figure 5.4, the red markers mark the

anomalies that were detected by the SR algorithm. Although the interpretation of these

results is subjective, from this example, we can observe that the SR algorithm is better at

recognizing data points which show a more pronounced deviation from the rest of the data.

Whereas the DI algorithm is potentially more aggressive at marking anomalies based on

minor deviations from the data.

There are some limitations to the SR approach for time series anomaly detection.

• The SR algorithm can be sensitive to noise in the data, as it relies on transforming the

time series to the frequency domain and identifying residuals. Noisy data can lead to

false positives or missed anomalies.

• Although the SR algorithm is generally fast, its performance can degrade with ex-

tremely large datasets or very high-frequency data, as the computational cost of the

Fourier transform increases.

• The SR algorithm identifies points in the time series that are anomalous but does not

provide explanations or reasons for why a particular point is considered an anomaly.

This can be a limitation in applications where understanding the cause of anomalies

is important such as in identifying problem gambling behavior.
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Chapter 6

Longitudinal Clustering

Longitudinal clustering is a statistical technique used to identify groups of subjects or ob-

servations that follow similar trajectories over time. This method is particularly useful in

analyzing data collected at multiple time points, enabling the understanding of patterns of

change or development within different sub-populations.

Various methods for longitudinal clustering include Group-Based Trajectory Modeling

(GBTM), Growth Mixture Modeling (GMM), and Longitudinal K-Means (KML). These

methods differ in their approaches to modeling and clustering trajectories. For example,

GBTM focuses on identifying distinct trajectory groups within the data, while GMM allows

for variability within clusters by modeling individual trajectories as mixtures of different

distributions [TPvdH21].

In practical applications, longitudinal clustering is often used in medical research to

explore how different patient groups progress over time and how these trajectories are asso-

ciated with health outcomes. For instance, it has been used to study the relationship between

health behaviors and multimorbidity in older adults, identifying distinct behavioral patterns

that predict long-term health risks [SWH24]. It has also shown promise in observing the

effects of treatments for various ailments and diseases in clinical trials [Alb99].

In this chapter we discuss an application of GMM clustering on longitudinal slices of data

to not only observe behavior pattern changes among groups of gamblers, but also facilitate

tracking the behavior trajectory of individual players.
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6.1 Methodology

We perform longitudinal clustering on the PTP dataset using the following steps that will

be detailed in this section:

1. Filtering & Sampling: The data is filtered to include only approved transactions.

We are not interested in declined or failed transactions for this experiment as they do

not contribute to cash flow between player and merchant and therefore do not represent

betting behavior. To effectively cluster players based on their betting behavior, it is

also necessary to eliminate extraneous factors that may affect player behavior. For

example, location, area, income, age, and gender are all variables that may affect our

results. Since we do not have access to this information, we need to choose a subset

of players that can limit the effects of these factors on our result. Moreover, we also

limit the time frame between which players are considered. Sampling methodology is

explained in detail in Section 6.1.1.

2. Feature Selection: Features relevant to betting/gambling behavior are selected based

on prior published research in this area. The feature selection strategy and methodol-

ogy are explained in Section 6.1.2

3. Model Selection & Clustering: Prior research in clustering players based on gam-

bling behavior has shown that models with 4 components provide an optimal re-

sult [WTEL20, PFM+21]. We test this theory for our data using the Akaike Infor-

mation Criterion (AIC) score. We then cluster player behavior for every 30-day period

of time to observe overall changes in player behavior patterns over time. The method-

ology and code for this process is explained in Section 6.1.3.

6.1.1 Filtering & Sampling

To restrict the effect extraneous variables may have on our result, we limit the analysis to one

merchant at a time. From each merchant, we filter all withdrawals that have been approved.

This process has been described in Algorithm 6.
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Algorithm 6: Filter and sample player data for clustering.

Input: “dataset.json”, merchantID
Output: Merchant Dataframe

# Read dataset

1 df ← DaskDataframe(dataset, blocksize=228, orient=‘records’) ;

# Filter by specified merchant ID

2 filtered ← df WHERE df.merchantid = merchantID;
3 filtered ← filtered WHERE servicemethod = ‘WITHDRAWAL’ AND status ==

‘APPROVED’ ;

Longitudinal clustering is performed for discrete time intervals with data aggregated for

each interval. For this experiment, we chose an interval of 30 days starting from the first

transaction of each player from the specified merchant. However, we restrict our time frame

from January 2019 to December 2020. Since we are performing longitudinal clustering for 6

periods (each period being 30 days) we are only interested in extracting roughly 6 months

of transactions for each player.

Algorithm 7: Get players with first transaction between 2019-01-01 and 2020-06-
30.
Input: Filtered Dataset
Output: Sampled Dataframe

# Set start and end date for first transaction

1 start date ← 2019-01-01 ;
2 end date ← 2020-06-30 ;
3 merchant data ← Filtered Dataset from Algorithm 6 ;

# Get all first transaction dates for players.

4 first transactions ← merchant data.groupby(‘accountid’).aggregate(‘reqtimeutc’ :
‘min’);

5 first transactions.rename(‘reqtimeutc’ : ‘first transaction time’);

# Get player accounts with first transaction between start and end

date.

6 player accounts ← first transactions WHERE reqtimeutc ≥ start date AND
reqtimeutc ≤ end date ; # SparkSQL

7 merchant data ← merchant data WHERE accountid IN player accounts ;
# SparkSQL

8 sampled data ← merge(merchant data, first transactions, on=‘accountid’) ;
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Following is a description of the steps taken by Algorithm 7:

1. Set the start date to 2019-01-01 and the end date to 2020-06-30. Since we want to

limit the range of all transactions to between 2019-01-01 and 2020-12-31, setting the

end date to 2020-06-30 ensures that the last transaction conducted by any player in a

6 month period will never exceed 2020-12-31.

2. The first transaction dates for all players are first calculated and stored in a dataframe.

3. Account IDs for all player accounts having their first transaction between start date

and end date are filtered to create the player_accounts dataframe.

4. A filter is applied to the merchant_data dataframe to only keep players with account

IDs present in the player_accounts dataframe.

5. The merchant_data and first_transaction dataframes are then merged (INNER

JOIN) to create a new column in the original merchant data to indicate the first

transaction date of each of the players. We call the resultant dataframe sampled_data.

Following is a description of the steps taken by Algorithm 8:

1. A new column is generated in the sampled dataframe containing the start date for

each 30-day period. Note that the column for 6_months_after will contain the start

date for the 7th overall period (days 181-210) which we do not be consider for this

experiment.

2. The filtered_transactions dataframe is created which contains all transactions

between the first transaction of a player and the end of the last period.

3. For each 30 day period we filter transactions that lie between the start and end of that

period by referencing the month columns for each account ID and generate a dataframe

for that period. This dataframe is then appended to a list.

6.1.2 Feature Selection

As discussed in Section 2, the lack of publicly available quantitative gambling data has his-

torically proven to be a limiting factor for behavioral research in problem gambling. This has
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Algorithm 8: Create a dataframe for each 30-day period.

Input: Sampled Dataframe
Output: Dataframe for each period

# Generate columns for each 30 day period

1 foreach i in range(1, 7) do
2 column name ← “{i} months after”;
3 sampled data[column name] ← sampled data[first transaction time] +

DateOffset(days← 30 ∗ i);
4 end

# Get transactions between start date and 6 months later.

5 filtered transactions ← sampled data WHERE reqtimeutc ≥
‘first transaction time’ AND reqtimeutc ≤ ‘6 months after’ ;

6 filtered transactions.rename(‘first transaction time’ : ‘0 months after’);

7 monthly split ← empty list ;
8 foreach i in range(1, 7) do
9 each month ← filtered transactions WHERE reqtimeutc ≥

‘{i− 1} months after’ AND reqtimeutc < ‘{i} months after’ ;
10 monthly split.append(each month) ;

11 end

also contributed to the lack of research related to identifying features relevant to gambling

behavior obtainable from quantitative data. However, a recent white paper published by

Playtech discussed features that they found to effectively quantify problem gambling behav-

ior using internal metrics on their proprietary problem gambling detection product [Pla21].

Due to the proprietary nature of this study and the data used in it, it is difficult to establish

the validity of these findings.

Based on the Playtech study and consultation with experts in the field of responsible

gambling, we identified 5 features that can be extracted from our dataset. Since this dataset

is from a payment provider and not from a gambling merchant, using withdrawals toward

a gambling merchant is the best option for a proxy for bets in this study. The assumption

is that whenever a withdrawal is made towards a gambling merchant, the full withdrawal

amount will be used for betting; in either the short or the long term. However, this also has

limitation on accuracy. For example, a withdrawal of $100 could be used as two $50 bets. A

player may also make additional bets that are not captured if they use their account balance

from a prior win; thus not requiring a withdrawal.
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Table 6.1: Description of features selected for clustering

Feature Description Column Name
Frequency Number of bets. freq
Mean Frequency Average bets made per day. mean freq
STD Frequency Standard deviation of bets per day. std dev freq
Mean Bet Amount Average bet amount per day. avg bet amount
STD Bet Amount Standard deviation of bet amount per day. std dev bet

Table 6.1 describes the features that we extract from the dataset. More features can

potentially be extracted from a richer dataset, which will lend more robustness to the model.

Algorithm 9 is used to extract the features described in Table 6.1 from the dataset. Once

feature selection and extraction are complete, we perform model selection and clustering

which is demonstrated in the next subsection.

6.1.3 Model Selection & Clustering

At the beginning of this chapter we discuss the use of 4 components for clustering, which was

found to be an optimal number by previous studies. To verify this claim, we use the Akaike

Information Criterion (AIC) to score clustering performed with components ranging from 2

to 7. AIC is a statistical method used for model selection that balances the complexity of a

model against the goodness of its fit [BA98]. Mathematically, AIC is defined as:

AIC = 2k − 2 ln(L) (6.1)

Therefore, a lower AIC score indicates a better model.

From the AIC scores plotted for each period in Figure 6.1, we find that the optimal model

clusters vary significantly for each period. However, either 4 or 5 components is generally a

good number. Although 6 or 7 components would be better, we want to keep the number

of components as few as possible to maintain the resolution power of the model. Notably in

Figures 6.1b and 6.1c the AIC score for 4 and 5 components is quite low.

For this study, we assume a component number of 4 for all periods of the GMM clustering.
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Algorithm 9: Extract features from the dataframe generated by Algorithm 8.

Input: Dataframes for each period (monthly split)
Output: Feature Dataframes for each period

1 stats ← empty list;
2 foreach month in monthly split do
3 withdrawals ← month WHERE servicemethod = ‘WITHDRAWAL’;

# Frequency

4 freq ← withdrawals.groupby(accountid).size() ;

# Mean Frequency

5 mean freq ← freq ;
6 foreach row in mean freq do
7 row[freq] ← row[freq] /30 ;
8 end

# STD Frequency

9 daily freq ← withdrawals.groupby(accountid, reqtimeutc.year, reqtimeutc.month,
reqtimeutc.day).aggregate(transactionid : ‘count’);

10 daily freq.rename(‘transactionid’ : ‘daily freq’);
11 std dev freq ← daily freq.groupby(accountid);
12 std dev freq[daily freq] ← std dev freq[daily freq].std();
13 std dev freq.rename(‘daily freq’ : ‘std dev freq’);

# Mean Bet Amount

14 avg bet amt ← withdrawals.groupby(accountid)[transactionamount].mean();
15 avg bet amt.rename(‘transactionamount’ : ‘avg bet amt’) ;

# STD Bet Amount

16 std dev bet ← withdrawals.groupby(accountid)[transactionamount].std();
17 std dev bet.rename(‘transactionamount’ : ‘std dev bet’) ;

# Create dataframe for period

18 stats month ← merge(freq, mean freq, std dev freq, avg bet amount, std dev bet,
on=accountid);

19 stats.append(stats month) ; # Append to stats

20 end
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(a) AIC for 0-30 days. (b) AIC for 31-60 days.

(c) AIC for 61-90 days. (d) AIC for 91-120 days.

(e) AIC for 121-150 days. (f) AIC for 151-180 days.

Figure 6.1: AIC scores for GMM clustering with 2-7 components for each time period.
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6.2 Results

Using the features from Section 6.1.2 we cluster players for each 30 day period using the

GMM clustering method described in Section 3.2.2. We use the implementation of GMM

provided by the Scikit-learn library [PVG+11] for leveraging GPU computation and faster

deployment.

As discussed in Section 6.1.1, we restrict our analysis to one merchant at a time. For

this experiment, we picked the player with the highest number of unique account IDs to

represent a large population of players. The assumption made here is that picking players

from a single gambling merchant will limit the effect of extraneous variables related to the

demographics of the players.

6.2.1 Longitudinal Analysis

The selected gambling merchant for this study comprised 2283 unique players. We observed

that each subsequent 30-day period of play had fewer players than were observed in the first

30. This is illustrated in Table 6.2.

Table 6.2: Number of players in each period

Period Players
Month 1 (0-30 days) 2283
Month 2 (31-60 days) 2002
Month 3 (61-90 days) 1981
Month 4 (91-120 days) 1898
Month 5 (121-150 days) 1745
Month 6 (151-180 days) 1596

Note that we refer to each period as Month for the sake of brevity, but the actual period

length is 30 days.

For each period, we compute the statistics of each cluster and plot them using a box

plot to visualize the differences between the clusters. The box plot visualizations are plotted

using Z-score standardization of the features. Z-Score standardization is used to bring all

features in the data to a common scale, which makes them easier to visualize on a box plot.
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The mathematical formula for Z-Score is:

Z =
X − µ

σ
(6.2)

Where Z is the Z-score, X is the data point, µ is the mean of the variable for that period,

and σ is the standard deviation of that variable for that period.

Month 1

The cluster statistics for Month 1 are given in Table 6.3. In this table, the features are

represented by their column names as previously explained in Table 6.1. Here, µ for each

feature represents the average value of that feature for each cluster and σ indicates the

standard deviation of that feature within the cluster. We follow the same labeling pattern

throughout this analysis. The cluster numbers shown here do not represent clusters with

similar characteristics across each period. For example, the characteristics exhibited by

Cluster 2 in Month 1 may not be the same as the characteristics exhibited by Cluster 2 in

Month 2 or any other Month. The cluster numbers are simply used to differentiate between

clusters for each period.

Table 6.3: Cluster statistics for Month 1 of longitudinal clustering.

Cluster 0 1 2 3

freq
µ 53.21 10.42 13.58 37.38
σ 39.98 8.43 11.34 29.68

mean freq
µ 1.77 0.35 0.45 1.25
σ 1.33 0.28 0.38 0.99

std dev freq
µ 2.32 0.42 0.73 1.62
σ 1.7 0.42 0.66 1.19

avg bet amount
µ 29.94 39.21 395.1 108.82
σ 14.99 25.04 257.55 52.69

std dev bet
µ 15.07 14.07 190.14 73.36
σ 9.07 13.13 154.11 40.08

Count 523 911 305 544

Table 6.3 shows that the highest number of players are in Cluster 1. This cluster is

characterized by an average player betting frequency of 10.42 and an average bet amount of

39.21. However, the standard deviation of the bet amount is quite high at 25.04, meaning
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these are players with relatively average betting amounts, and about 10 transactions per

month. Cluster 2 contains the lowest number of players with relatively similar betting

frequency but very high average bet amounts. This indicates a cluster with high value

betting players. It is also characterized by a high standard deviation for bet amounts.

Clusters 0 and 3 are characterized by players having high betting frequency with about 2

withdrawals per day on average. Cluster 3 characterizes players with high betting amounts

and high frequency, which could potentially be characterized as “risky”. The characteristics

of these clusters can be visualized in Figure 6.2.

(a) Month 1, Cluster 0 (b) Month 1, Cluster 1

(c) Month 1, Cluster 2 (d) Month 1, Cluster 3

Figure 6.2: Box plot visualization of clusters for Month 1 of longitudinal clustering.
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Note that in Figure 6.2, the y-axis of the box plot indicates the Z-Score of the feature

values calculated using Equation 6.2. Therefore, 0 on the y-axis indicates the mean of that

feature, and positive or negative values indicate the distance of a point from the mean as a

factor of its standard deviation.

Month 2

Statistics for the clustering solution for Month 2 are given in Table 6.4.

Table 6.4: Cluster statistics for Month 2 of longitudinal clustering.

Cluster 0 1 2 3

freq
µ 43.91 11.96 26.22 35.68
σ 47.05 8.79 19.23 32.73

mean freq
µ 1.46 0.4 0.87 1.19
σ 1.57 0.29 0.64 1.09

std dev freq
µ 1.7 0.65 1.27 1.51
σ 2.11 0.49 0.95 1.37

avg bet amount
µ 21.28 565.27 170.18 59.77
σ 8.94 309.93 77.33 26.18

std dev bet
µ 9.67 252.5 111.77 32.28
σ 6.7 220.41 68.35 21.1

Count 696 137 379 790

It is evident when we compare Tables 6.4 and 6.3 that the cluster representation for

both these periods is similar, but the average bet amounts are relatively higher. Cluster 3,

containing 790 players, is characterized by players with approximately 1 transaction per day

with betting amounts around $60. Clusters 1 and 2 have players with very high average

betting amounts; however, Cluster 1 has a lower average frequency of betting, and Cluster 2

exhibits relatively higher betting frequency. It is also worth noting that the standard devia-

tion for Cluster 2 is closer to the mean betting amount than any other cluster. Cluster 0 in

this period represents players with relatively high betting frequencies but low average betting

amounts. The characteristics of these clusters as box plots are visualized in Figure 6.3.
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(a) Month 2, Cluster 0 (b) Month 2, Cluster 1

(c) Month 2, Cluster 2 (d) Month 2, Cluster 3

Figure 6.3: Box plot visualization of clusters for Month 2 of longitudinal clustering.
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Month 3

Cluster statistics for Month 3 are given in Table 6.5.

Table 6.5: Cluster statistics for Month 3 of longitudinal clustering.

Cluster 0 1 2 3

freq
µ 24.9 93.41 31.08 18.38
σ 18.54 88.61 25.27 14.45

mean freq
µ 0.83 3.11 1.04 0.61
σ 0.62 2.95 0.84 0.48

std dev freq
µ 1.01 4.36 1.18 0.94
σ 0.71 1.93 0.88 0.79

avg bet amount
µ 96.19 81.16 25.34 485.28
σ 48.56 74.24 11.81 343.25

std dev bet
µ 54.6 55.5 12.33 248.35
σ 41.03 58.96 8.83 250.33

Count 642 227 896 216

As compared to the previous two periods, in this period, Cluster 1 exhibits an unusually

high betting frequency for players with an average daily frequency of 3.11 and average over-

all frequency higher than 93. Cluster 2, having the maximum number of players, exhibits

similar behavior to the previous clusters with an average of 1 transaction per day and an

average bet amount around $25. Cluster 3 represents players with unusually high betting

amounts with a low average frequency of play, whereas Cluster 0 represents players betting

around $90 to $100 with an average frequency of about 25. Overall, the most interesting

clusters are Clusters 1 and 3, with Cluster 1 exhibiting very high transaction volume, po-

tentially highlighting gambling problems. The characteristics of these clusters as box plots

are visualized in Figure 6.4.

The most unique box plot of note is that of Cluster 1 in Figure 6.4b. This cluster shows

players with the highest deviation from mean values of features, whereas Clusters 0 and 3 in

Figures 6.4a and 6.4d show the least deviation of features from the mean. This potentially

indicates high fluctuation in player behavior within the cluster.
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(a) Month 3, Cluster 0 (b) Month 3, Cluster 1

(c) Month 3, Cluster 2 (d) Month 3, Cluster 3

Figure 6.4: Box plot visualization of clusters for Month 3 of longitudinal clustering.
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Month 4

Cluster statistics for the 4th month/period are shown in Table 6.6. This month shows a

significant shift in cluster statistics from prior months.

Table 6.6: Cluster statistics for Month 4 of longitudinal clustering.

Cluster 0 1 2 3

freq
µ 36.3 20.87 30.52 6.0
σ 53.21 18.48 26.96 0.0

mean freq
µ 1.21 0.7 1.02 0.2
σ 1.77 0.62 0.9 0.0

std dev freq
µ 1.52 1.01 1.38 1.0
σ 2.13 0.81 1.26 0.0

avg bet amount
µ 26.38 464.52 94.69 3750.0
σ 13.29 370.56 54.46 0.0

std dev bet
µ 12.56 251.8 54.65 1369.31
σ 9.75 205.95 40.02 0.0

Count 935 251 711 1

Cluster 3 in Table 6.6 shows exactly 1 player belonging to the cluster with a very high

average betting amount of $3750 and an average betting frequency of 6. This indicates that

this player conducted 6 withdrawals this month. The σ for all variables here is 0, since there

are no other players in this cluster. This clustering behavior is indicative of either one of two

possibilities: 1) The behavior exhibited by this player is an outlier and requires investigation

by a problem gambling expert. This is also indicative of the outlier detection capabilities of

this model. 2) The limitations of this dataset with regards to information about players is

misrepresenting the behavior of this player. Due to the lack of ground truth or labels in this

dataset, it is difficult to determine which of these possibilities is valid.

Similar to the previous periods, Cluster 0, with the highest number of players, exhibits

an average frequency of 36, which translates to approximately 1-2 transactions per day. The

average betting amount here is also relatively low and is the lowest among all clusters for

this period. Cluster 1 encompasses players with very high betting amounts and lower betting

frequencies than Cluster 0. Cluster 2 comprises players with betting frequencies similar to

Cluster 0 but with relatively higher betting amounts of around $94-$95. The characteristics

of these clusters as box plots are visualized in Figure 6.5.
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(a) Month 4, Cluster 0 (b) Month 4, Cluster 1

(c) Month 4, Cluster 2 (d) Month 4, Cluster 3

Figure 6.5: Box plot visualization of clusters for Month 4 of longitudinal clustering.
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Note that the box plot for Cluster 3 in Figure 6.5d is indicative of a single player.

Month 5

The clusters for Month 5 are similar to the clusters in Month 4, with one cluster having just 2

players with very high average bet amounts. Cluster statistics for this month are illustrated

in Table 6.7.

Table 6.7: Cluster statistics for Month 5 of longitudinal clustering.

Cluster 0 1 2 3

freq
µ 75.54 21.43 14.0 22.31
σ 91.74 17.19 14.14 17.77

mean freq
µ 2.52 0.71 0.47 0.74
σ 3.06 0.57 0.47 0.59

std dev freq
µ 3.69 0.95 0.36 1.12
σ 3.89 0.75 0.51 0.9

avg bet amount
µ 62.92 33.06 3458.33 264.33
σ 39.45 19.38 766.03 258.63

std dev bet
µ 36.26 16.13 1313.33 146.69
σ 27.9 13.79 224.34 155.8

Count 268 954 2 521

Cluster 2 in Table 6.7 is very similar to Cluster 3 from the previous month shown in

Table 6.6. However, this time there are 2 players exhibiting very high withdrawal amounts

with an average withdrawal frequency of 14. Cluster 1, having the highest number of players,

has a lower mean withdrawal frequency this time as compared to Cluster 0 in the previous

month which also had the highest number of players. The average bet amount for this

cluster also does not show any significant changes. Cluster 0 indicates players with very high

betting frequency and approximately double the average bet amount as compared to Cluster

1. Cluster 3 comprises players with relatively higher average bet amounts when compared

to Cluster 0 and 1 but with an average mean frequency nearly matching that of Cluster 1.

Figure 6.6 represents these clusters as box plots.

Cluster 2 in Figure 6.6c represents the behavior of the 2 outlier players with average bet

amounts and standard deviations of the bet amounts showing a very wide deviation from

the overall mean of the data. Similar to Month 4, this potentially represents outliers in the
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(a) Month 5, Cluster 0 (b) Month 5, Cluster 1

(c) Month 5, Cluster 2 (d) Month 5, Cluster 3

Figure 6.6: Box plot visualization of clusters for Month 5 of longitudinal clustering.
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data.

Month 6

The clustering statistics for Month 6 are found in Table 6.8. As compared to Months 4 and

5, Month 6 does not contain a cluster with outlier-like characteristics.

Table 6.8: Cluster statistics for Month 6 of longitudinal clustering.

Cluster 0 1 2 3

freq
µ 31.69 24.64 29.37 8.62
σ 52.96 19.54 25.82 6.88

mean freq
µ 1.06 0.82 0.98 0.29
σ 1.77 0.65 0.86 0.23

std dev freq
µ 1.16 1.31 1.63 0.53
σ 1.69 1.03 1.6 0.45

avg bet amount
µ 23.29 283.29 73.82 977.33
σ 10.31 193.26 35.89 615.87

std dev bet
µ 11.26 174.19 36.7 449.26
σ 8.23 114.56 24.04 470.27

Count 621 280 648 47

Cluster 3 for Month 6 as shown in Table 6.8 represents the lowest number of players having

the highest average bet amount and the lowest average frequency. However, the standard

deviation for the bet amounts is also quite high, indicating that the range of bets for this

category of players varies significantly. Clusters 1 and 2 exhibit relatively similar withdrawal

frequency with Cluster 1, showing higher average bet amounts than Cluster 2. Cluster 2 also

has the highest number of players; however, the number is very close to Cluster 0, which has

a withdrawal frequency quite close to Cluster 2, but exhibits lower average bet amounts. We

can infer that Clusters 0 and 2 signify the average player, with Cluster 3 representing high

value players with fewer play sessions and Cluster 1 representing high value players with

frequent gambling sessions. However, the bet values for Cluster 1 are still significantly lower

than Cluster 3. Box plots of these clusters are shown in Figure 6.7.

69



(a) Month 6, Cluster 0 (b) Month 6, Cluster 1

(c) Month 6, Cluster 2 (d) Month 6, Cluster 3

Figure 6.7: Box plot visualization of clusters for Month 6 of longitudinal clustering.
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6.2.2 Player Behavior Tracking

In addition to observing changes in overall player behavior across longitudinal time slices, lon-

gitudinal clustering also facilitates identifying changes in individual player behaviors across

these slices. For example, if we look at the singular player in Month 4, Cluster 3, we can

obtain the accountID of this player to track their behavior from Months 1 to 6.

Figure 6.8: Cluster transition diagram for Player 28886.

Figure 6.8 shows the movement of Player 28886 from Month 1 to 4, after which they have

no activity for subsequent months. Based on Table 6.3, Cluster 3 in Month 1 is characterized

by relatively higher average bet amounts of about $108 with an average of 1.25 bets per day.

Subsequently, Cluster 2 in Month 2 is characterized by average bet values of around $170

with an average of 0.87 bets per day. Cluster 3 in Month 3 is the cluster with the highest

average bet amounts of $485 and average betting frequency per day around 0.61. Finally,

we see the player in Cluster 3 for Month 4 as an outlier with a bet amount of $3750 for that

month with 6 total withdrawals made.
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For another example, we consider a random player that has played from Months 1 through

6 and observe their trajectory.

Figure 6.9: Cluster transition diagram for Player 226.

Player 226 starts at Cluster 0 for Month 1, characterizing players with high betting

frequencies of about 53 bets in the period and amounts averaging about $30. Subsequently,

this player moves to Cluster 0 for Month 2, also characterized by high betting frequencies of

43 bets per period and low average betting amounts of about $21. Month 3 Cluster 2 shows

a betting frequency of about 31 bets per period and average bet amount of $25. Month 4

Cluster 0 again shows very similar characteristics to Month 3 Cluster 2 and comprises the

highest number of players for that month. Month 1 Cluster 5 is also the majority player

cluster characterized by about 21 withdrawals per period with a mean bet amount of $33.

Finally, in Month 6, the player is part of Cluster 2, which is the majority player cluster,

characterizing about 30 bets per period and a relatively higher average bet amount of $73.

Based on this player’s trajectory, we can say that this player consistently belongs to the
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majority player class and exhibits average gambling behavior.

Based on the above two examples, we can consider this behavior transition between peri-

ods a state transition diagram. With more available data, this can potentially enable future

researchers to predict a player’s behavior trajectory using ML based forecasting techniques.
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Chapter 7

Conclusions and Future Work

In this chapter, we summarize the contents of this dissertation and discuss avenues for

future research. We provide an overview of what was discussed in the preceding chapters,

our studies and contributions, and the applicability of these contributions.

Chapters 2 focuses on our research in gambling-related harm and the applicability of

data science (primarily machine learning) in contributing towards this area. We discuss our

published scoping review and highlight the gaps in applications of supervised and unsuper-

vised ML in the areas of responsible gambling. Chapter 3 introduces the theory behind

machine learning and how it relates to our contributions in this dissertation. We discuss the

mathematics and theory behind supervised and unsupervised machine learning and review

the importance behind clustering data when faced with a lack of ground truth.

7.1 Data Engineering & Time Series Analysis

Lack of publicly available quantitative data for machine learning applications for problem

gambling are discussed briefly in Chapter 4. To alleviate this issue, we use data obtained

from an online digital payment provider (identity undisclosed) to facilitate research. The

data and analysis discussed in this chapter were also published in 2023. We describe the

contents of the data obtained from the Payments Technology Provider and the tools used

for cleaning and analysis.

The use of Apache Spark for distributed data processing is briefly discussed along with

its applicability for our dataset. Additionally, we describe the utility of Apache Parquet:
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an open-source, columnar data storage format, for our data. Data cleaning was started by

converting the obtained dataset to parquet format where a detailed algorithm of the process

was illustrated. Subsequently, we discuss the importance of data obfuscation and how it

pertained to the received dataset. The process followed for obfuscation along with the SQL

queries are discussed in detail.

The descriptive analysis of the data reviews its contents and overall distribution. We

demonstrated how a majority of the data contents are focused in the 2019-2021 time frame.

Furthermore, we establish the general distribution and percentile figures for the values of all

the transactions in the data.

In Chapter 5, we introduce the concept of time series and discussed its various applications

with a few examples. The concept of stationarity is also discussed along with the ADF and

KPSS tests, which can be used to identify the stationarity of data. We illustrate and analyze

these results of the test application on our dataset.

The problems related to modeling player behavior as a time series are discussed in this

section with the primary problem being the non-continuous nature of player transactions.

We devised a solution to this problem using aggregation at periodic time intervals to ensure

continuity in the data. The algorithms used for this process are also discussed here.

A statistical metric called delta index is introduced, which can be used to measure changes

in a time series. We discuss the use of this metric to detect anomalies in time series and also

its limitations.

Furthermore, we applied the unsupervised machine learning based Spectral Residual

algorithm to our time series data to detect anomalies in player behavior. The theory behind

this algorithm is discussed in detail, and we provide evidence from prior research of this

algorithm’s efficacy for anomaly detection. Due to the lack of labeled anomalies in our data,

we were unable to verify its efficacy for anomaly detection in player behavior modeled as a

time series, and we emphasize the subjectivity of the obtained result.
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7.2 Application of Longitudinal Clustering

In Chapter 6, we introduce the concept of longitudinal analysis and discuss its practical

application in the fields of medicine and clinical trials. The idea of applying clustering to

longitudinal slices of data is also discussed with different applicable clustering algorithms.

Furthermore, we discuss the methodology and results of our application of longitudinal

clustering to the PTP data.

Our methodology was broadly based on 3 steps: filtering and sampling, feature selection,

model selection and clustering. In the filtering and sampling section step, we first describe

the steps taken to filter data from a single merchant and for a specified time frame. In this

case we use a time frame of 2019-01-01 to 2020-06-30. The algorithm followed for this step

is discussed here in detail. Then we proceed to split this period into 6 slices of 30-days each

to get distinct 30-day periods for longitudinal clustering.

The lack of studies on quantitative gambling data is highlighted in the feature selection

step, resulting in a dearth of information on the optimal features to be used for quantify-

ing gambling behavior. We selected features based on a recent white paper published by

PlayTech on features they deem to provide optimal performance on their proprietary prob-

lem gambling software. We emphasize the proprietary nature of this study and the difficulty

in establishing the efficacy of their method. Advice from industry experts in problem gam-

bling was also considered for the feature selection process. Five features were described and

extracted from the PTP dataset. The algorithm for this selection and extraction process is

discussed.

Based on prior research on clustering players based on their gambling behavior, we de-

cided to use 4 components for our clustering process. To verify our decision, we employed the

AIC method to score GMM clustering performance with different numbers of components

ranging from 2 to 7. The results for each period were evaluated individually.

Finally, we discuss the results obtained from the application of these steps and provid a

detailed description of the cluster characteristics for each time slice. Furthermore, we also

demonstrate how the behavior of individual players can be tracked using our longitudinal

clustering method to determine changes in player behavior over time.

76



7.3 Future Research

One of the most important contributions that can be made for improving anomaly detection

in player behavior modeled as a time series is the availability of labeled data. However, the

process of identifying real anomalies in player behavior is not an easy task and will require

experts in problem and responsible gambling to compile such data. Availability of labeled

data can significantly improve anomaly detection using machine learning models especially

since data of this nature can enable the use of supervised learning techniques as opposed to

the unsupervised technique discussed in this dissertation.

The generalized nature of our proposed longitudinal clustering and time series anomaly

detection methods broadens the possibilities for further analysis of these methods using dif-

ferent or additional player behavior features. Due to the limitations of our current dataset,

we could not include more granular features in our analysis, which provides significant room

for improving the efficacy of our methods. This includes optimizing the number of compo-

nents, and modeling with dynamic components for each period. Further testing could also

include changing the size of the time slices to determine changes in behavior over shorter or

longer periods of time.

Our longitudinal clustering method can be further expanded to include player trajectory

forecasting by modeling the months and clusters as a finite state machine. However this will

require a significant amount of data to accomplish.
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