10-28-2009

PHEV parcel delivery truck model - development and preliminary results

R. Barnitt
National Renewable Energy Laboratory

Follow this and additional works at: https://digitalscholarship.unlv.edu/transport_pubs
Part of the Business Commons, Oil, Gas, and Energy Commons, and the Transportation Commons

Repository Citation
Available at: https://digitalscholarship.unlv.edu/transport_pubs/6

This Presentation is brought to you for free and open access by the Transportation at Digital Scholarship@UNLV. It has been accepted for inclusion in Publications (T) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
PHEV Parcel Delivery Truck Model – Development and Preliminary Results

Hybrid Truck Users Forum
October 28, 2009
Atlanta, Georgia

Robb Barnitt
NREL

NREL/PR-540-47096
Project Design

Laboratory Testing

Modeling and Simulation

Validation

Calibration

Stakeholders

In-use Evaluation
Route Visualization

- Latitude/longitude/speed data filtered, visualized using Google Earth to more completely understand vehicle usage
- Key considerations:
 - Screen out off-days
 - Day-to-day consistency
 - Route “zone” exclusivity

EMT/SPQ - LA

POC - Industry
Drive Cycle Analysis

- Drive cycle comparisons based on average speed and stops/mile lack resolution and precision.
- NREL performed comparative analysis of all 62 days of data over 55 drive cycle characteristics.

- Average driving speed
- Average cycle speed
- 0 mph time
- Average stop duration
- Stop time bins
- Idle time

- Aerodynamic speed
- Characteristic acceleration
- STDEV of speed
- Max., average, % time accelerations
- Max., average, % time decelerations
- and many more...

Robust Drive Cycle Characterization
- HTUF4 and NYCC represent “boundary cycles”
- OC Bus cycle most closely matches Custom POC data
Preliminary FE (ReFUEL)

<table>
<thead>
<tr>
<th>Drive Cycle</th>
<th>gHEV FE (mpg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTUF4</td>
<td>10.5</td>
</tr>
<tr>
<td>Orange County Bus</td>
<td>8.6</td>
</tr>
<tr>
<td>NYCC</td>
<td>6.8</td>
</tr>
</tbody>
</table>
Parcel Delivery Model Development

Propulsion
• Engine
• ESS, motors

Glider
• Frontal area, C_d
• Mass
• Axle weight fractions
• Wheels, tires

Auxiliary Loads
• Mechanical
• Electrical

Control Strategy

Gearing
• Transmission gear ratios
• Final drive ratio
Preliminary Simulation Results

- 60 kW is plenty for vehicle and route
- Daily distance traveled matters!

NYCC drive cycle

- 50 miles/day
- 100 miles/day
Preliminary Simulation Results

- Duty cycle matters!
- Daily distance traveled matters!
Preliminary Simulation Results

- Daily distance traveled matters!
- Diminishing returns: larger battery capacity with dVMT
Preliminary Simulation Results

- Duty cycle and dVMT influence capacity decision
- dVMT and lifetime mileage drive ROI
Key Points

- GPS-based route logging, when properly analyzed, allows for effective comparison of existing standard drive cycles and real-world data based drive cycles
 - Allows for selection of relevant drive cycles for chassis dyno test programs and vehicle simulations, and better matching of vehicle groups in field evaluations
- Validated vehicle platform model allows for more precise exploration of design-performance tradeoffs
- Knowledge of drive cycle, daily miles traveled is critical in assessing PHEV battery trade-offs
 - Increased capacity for improved daily fuel economy
 - Diminishing returns with daily distance traveled
 - Vehicle lifetime mileage also drives ROI
Future Work

1. Vocational and route power and energy requirements
 - Traction
 - Work site
2. AER and blended CD strategies
3. Engine usage changes and emissions impacts
4. Economics
5. Next two platforms.....
Thanks to:

Jeff Cox – South Coast AQMD
Jasna Tomic - CALSTART
Lee Slezak – US DOE Vehicle Technologies Program

Contact:

Robb Barnitt 303.275.4489 robb.barnitt@nrel.gov