Aug 20th, 10:10 AM - 10:35 AM

Biofuels-biomass group NV-REC

Kent Hoekman
Desert Research Institute

Chulsung Bae
University of Nevada, Las Vegas

Chuck Coronella
University of Nevada, Las Vegas

John Cushman
University of Nevada, Reno, jcushman@unr.edu

Yingtao Jiang
University of Nevada, Las Vegas, yingtao@egr.unlv.edu

See next page for additional authors

Repository Citation
Hoekman, Kent; Bae, Chulsung; Coronella, Chuck; Cushman, John; Jiang, Yingtao; Ma, Jian; Misra, Mano; Hemmers, Oliver; and Vasquez, Victor, "Biofuels-biomass group NV-REC" (2010). Nevada Renewable Energy Consortium Meeting. 7.
https://digitalscholarship.unlv.edu/nvrec/2010/aug20/7

This Event is brought to you for free and open access by Digital Scholarship@UNLV. It has been accepted for inclusion in Nevada Renewable Energy Consortium Meeting by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
Presenters
Kent Hoekman, Chulsung Bae, Chuck Coronella, John Cushman, Yingtao Jiang, Jian Ma, Mano Misra, Oliver Hemmers, and Victor Vasquez

This event is available at Digital Scholarship@UNLV: https://digitalscholarship.unlv.edu/nvrec/2010/aug20/7
Biofuels-Biomass Group
NV-REC

Kent Hoekman, Desert Research Institute
Chulsung Bae, Chemistry, UNLV
Chuck Coronella Chemical Engineering, UNR
John Cushman, Biochemistry & Molecular Biology UNR
Yingtao Jiang, Mechanical Engineering, UNLV
Jian Ma, Mechanical Engineering, UNLV
Mano Misra, Chemical Engineering, UNR
Oliver Hemmers, Chemistry, UNLV
Victor Vasquez, Chemical Engineering, UNR
Outline

- Task 1.1 Hydrothermal pretreatment of woody biomass
- Task 1.2 Thermal treatment of biomass
- Task 1.3 Algal-based biofuels
- Task 1.4 Chemically promoted mechanical dewatering of wastewater sludge
Tasks 1.1/1.2- Hydrothermal/thermal Pretreatment of Woody Biomass

- Participants
 - Faculty: Chuck Coronella, S. Kent Hoekman, Victor Vasquez, and Barbara Zielinska
 - Postdocs: Wei Yan, Amber Broch, Curt Robbins
 - Graduate students: Toufiq Reza, Tapas Acharjee, Joan Lynam,

- Builds off prior collaborative project with GTI and DRI

- Treat lignocellulosic biomass with hot compressed water or heat to produce carbonized solid with increased fuel value, reduced oxygen content
Background and Introduction

- Lignocellulosic biomass is a promising feedstock for production of heat, chemicals, fuels, and electrical power

- Large diversity biomass sources
 - Wood – forest waste, deliberate crops
 - Agricultural waste – corn stover, rice straw, others
 - Grasses – switchgrass, miscanthus, others
 - Other – green waste, municipal solid waste, etc.
Thermal Conversion of Biomass

- Three main approaches:
 - Combustion \rightarrow heat and electrical power
 - Gasification \rightarrow syngas \rightarrow fuels
 - Pyrolysis \rightarrow pyrolysis oil \rightarrow upgraded oils

- Large diversity of biomass sizes, shapes, compositions, and other parameters
 - Difficult to use different feedstocks in a single thermal conversion unit
Purpose of Pre-Treatment

- **Three main objectives:**
 1. **Homogenize feedstocks**
 - Reduce handling difficulties
 - Convert multiple materials into a single feedstock
 2. **Increase energy density**
 - Raw biomass contains about 40% oxygen
 - Higher energy density reduces transportation costs
 3. **Improve storage stability and logistics**
 - Address seasonality of some feedstocks

- **Overall Goal:** Convert biomass into biochar that resembles low grade coal
Biomass Pre-Treatment Processes

- Many different pre-treatment processes have been developed. Two are of interest here:

1. Torrefaction
 - Mild form of pyrolysis
 - Dry conditions, low O₂ levels

2. Hydrothermal Carbonization (HTC)
 - Also known as wet torrefaction
 - Treatment in hot, pressurized water
 - Produces gases, liquids, and solids

HTC Process diagram shows:
- Solid Biomass in a pressure vessel at 260°C
- Water (H₂O) input
- Recovered Solid (Bio-char) output
- Gas and Condensed Liquid outputs
- Processed material can be directed to a gasifier or pyrolyzer for energy/fuel production.
HTC Laboratory Process and Products

- **Process conditions:**
 - 2-L Parr pressure reactor
 - Water/Biomass ratio > 4/1
 - Temperatures: 220-280°C

- **Reaction Products**
 - Gas phase:
 - mostly CO₂
 - Traces of CO, CH₄, others
 - Aqueous-phase:
 - Degradation of hemi-cellulose
 - Sugars, furans, organic acids
 - Solid-phase:
 - Cellulose and lignin
 - Adsorbed organic compounds
 - Friable, brittle materials (suitable for pelletization)
Task 1.2- Thermal Treatment of Woody Biomass

- Carbonization (torrefaction) produces a soft friable solid
- Odor of “charcoal”

Raw loblolly pine

Treated at 260 °C
Task 1.2- Thermal Treatment of Woody Biomass

- Biomax 15 research unit
- Biomass undergoes gasification to produce synthetic gas (syngas) that is burned in the internal combustion engine to produce electricity
- Characterize a variety of raw and torrified wood feedstocks from Nevada
- Characterize biochar

Figure 1. Biomax 15 gasification unit at UNR.
Mass Balance of HTC Process

- Product fractions vary with process severity
 - Higher temperature → more gas; less solid
 - Higher temperature → more water
- Accurate mass balance is difficult to obtain
 - “Typically” 60% solid, 15% gas, 15% water, 10% water solubles
Composition and Properties of Biochar

- Biochar is the main desirable product of HTC process
- Impacts of HTC process on biomass properties
 - Decrease oxygen content
 - Increase carbon content
 - Increase energy density

Results from HTC Process at 270ºC

<table>
<thead>
<tr>
<th>Ultimate Analysis %</th>
<th>Loblolly Pine</th>
<th>Corn Stover</th>
<th>Rice Hulls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Feedstock</td>
<td>Biochar</td>
<td>Feedstock</td>
</tr>
<tr>
<td>C</td>
<td>51.4</td>
<td>68.3</td>
<td>43.1</td>
</tr>
<tr>
<td>H</td>
<td>5.9</td>
<td>5.1</td>
<td>5.3</td>
</tr>
<tr>
<td>N</td>
<td>0.23</td>
<td>0.37</td>
<td>0.75</td>
</tr>
<tr>
<td>S</td>
<td>0.04</td>
<td>0.03</td>
<td>0.09</td>
</tr>
<tr>
<td>O</td>
<td>42.1</td>
<td>25.9</td>
<td>40.1</td>
</tr>
<tr>
<td>Ash</td>
<td>0.39</td>
<td>0.27</td>
<td>10.9</td>
</tr>
<tr>
<td>Dry HV (Btu/lb)</td>
<td>8511</td>
<td>11793</td>
<td>7207</td>
</tr>
</tbody>
</table>
Coal-like properties of Biochar

Greater HTC severity increases heating value of biochar

Van Krevelen Diagram
Conclusions

- HTC process is an effective way to increase the value of biomass feedstocks
 - Improve storage and handling properties
 - Increase energy density (by 10-40%)
 - Can be applied to wide variety of biomass types

- “Leapfrogging” opportunities:
 - Co-firing biochar with coal to reduce carbon footprint of power plants
 - Use of biochar for soils improvement and carbon sequestration
 - Beneficial uses of water-soluble products
Acknowledgements:

- This work was performed under a subcontract to the Gas Technology Institute to support the technical goals of US DOE Cooperative Agreement DE-FG36-01GO11082
- Acknowledge Craig Einfeldt (formerly of Changing World Technologies) for assistance in conducting Parr pressure reactor experiments.

References:

Task 1.3- Algal-based Biofuels

- **Participants**
 - Faculty: John Cushman, Vera Samburova, Barbara Zielinska, Jian Ma, Oliver Hemmers, Chulsung Bae, and Chuck Coronella.
 - Postdoc: Sage Hiibel, Amber Broch

- Develop analytical methods for characterization of algal lipids

- Create culture collection of indigenous Nevada microalgae

- Investigate parameters affecting algal growth rates and compositions

- Production and characterization of algal biomass and biodiesel
Background and Introduction

- Algae are 10-30-fold more productive than land crops.
- Can be grown on non-arable land; do not compete with food; able to use a variety of water sources.
- Land area required to meet 50% of liquid transportation needs in U.S.

100% of existing farmland

Land Area needed Million Acres

- Corn
- Soybean
- Canola
- Jatropha
- Coconut
- Oil palm
- Microalgae 30% oil (by wt)
Task 1.3- Algal-based Biofuels

- Develop analytical methods for characterization of algal lipids
- TAG standards analyzed by UPLC/MS and ESI-MS/MS

<table>
<thead>
<tr>
<th>Name</th>
<th>Structure</th>
<th>MW</th>
<th>MW + NH₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glyceryl tridecanoate</td>
<td></td>
<td>554.8</td>
<td>572.9</td>
</tr>
<tr>
<td>Glyceryl tridecynoate</td>
<td></td>
<td>639.0</td>
<td>657.0</td>
</tr>
<tr>
<td>Glyceryl trimyristate</td>
<td></td>
<td>723.26</td>
<td>741.2</td>
</tr>
<tr>
<td>Glyceryl triocanooate</td>
<td></td>
<td>470.78</td>
<td>488.7</td>
</tr>
<tr>
<td>Tripalmitin</td>
<td></td>
<td>807.3</td>
<td>825.4</td>
</tr>
</tbody>
</table>

Vera Samburova, Barbara Zielinska
Create culture collection of indigenous Nevada microalgae

Sampling Locations at TMWRF

Las Vegas Wash
N and P Removal from Waste Water

- Algae grown on municipal or farm waste water can remove 80-99% of NH_x and PO_4

- Centrate is the liquid fraction of dewatered anaerobically digested sludge

- Municipal waste is 25-30% solids (sludge) which is currently sent to landfills (contains 7-35% lipids)
Centrate-to-Biofuels Project

• **Centrate is nutrient rich:**
 - Nitrogen (~1,000 mg/L NH$_4^+$-N)
 - Phosphorus (~225 mg/L PO$_4^{3-}$-P)
 - Inorganic carbon (~650 mg/L -C)

• 946,000 L/day of centrate

• 18,143 Kg/day algal dry biomass

• 6,000 L/day of biodiesel
 (30% lipid content)
Survey of Algal Isolates

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TMWRF 1 - #1</td>
<td>TMWRF 1 - #2</td>
<td>TMWRF 1 - #3</td>
<td>TMWRF 3 - #1</td>
<td>TMWR 3 - #2</td>
<td></td>
</tr>
<tr>
<td>TMWRF 5 - Green</td>
<td>TMWRF 10 - #1</td>
<td>TMWRF 11 - #1</td>
<td>TMWRF 11 - #2</td>
<td>TMWRF 11 - #3</td>
<td></td>
</tr>
<tr>
<td>TMWRF 11 - #4</td>
<td>Fallon 2 - #1</td>
<td>Fallon 2 - Green</td>
<td>Fallon 2 - Gold</td>
<td>Fallon 4 - #1</td>
<td></td>
</tr>
<tr>
<td>Fallon 4 - #2</td>
<td>Fallon 5 - #1</td>
<td>UNR GH - #A1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

60X – scale bar = 25 µm
Survey of Algal Isolates - Identification

<table>
<thead>
<tr>
<th>Sampling Location</th>
<th>Description</th>
<th>Potential Isolates</th>
<th>Putative Isolate ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMWRF 1</td>
<td>Primary sedimentation tank</td>
<td>3</td>
<td>Class: Chlorophyceae</td>
</tr>
<tr>
<td>TMWRF 2</td>
<td>Water activated sludge secondary sedimentation tank</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>TMWRF 3</td>
<td>Aeration tank 2C</td>
<td>2</td>
<td>Class: Chlorophyceae</td>
</tr>
<tr>
<td>TMWRF 4</td>
<td>Phosphorus stripping tank</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>TMWRF 5</td>
<td>Phosphorus stripping tank</td>
<td>1</td>
<td>Division: Cyanobacteria; Order: Oscillatoriales; Genus: Gelatinemaa, Leptolyngbya, Microchaete, Stichococcus, or Pseudanabaena</td>
</tr>
<tr>
<td>TMWRF 6</td>
<td>Phosphorus stripping tank</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>TMWRF 7</td>
<td>Secondary sedimentation tank</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>TMWRF 8</td>
<td>Secondary sedimentation tank</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>TMWRF 9</td>
<td>Post-aeration tank</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>TMWRF 10</td>
<td>Backwash settling tank</td>
<td>1</td>
<td>Class: Chlorophyceae</td>
</tr>
<tr>
<td>TMWRF 11</td>
<td>Steamboat Creek - outfall</td>
<td>4</td>
<td>Class: Chlorophyceae</td>
</tr>
<tr>
<td>TMWRF 12</td>
<td>Steamboat Creek - upstream</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Fallon 1</td>
<td>Agricultural pond</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Fallon 2</td>
<td>Moody Lane Waste Water Treatment Plant - fallow aeration tank</td>
<td>3</td>
<td>Division: Cyanobacteria; Order: Oscillatoriales; Genus: Gelatinemaa, Leptolyngbya, Microchaete, Stichococcus, or Pseudanabaena</td>
</tr>
<tr>
<td>Fallon 3</td>
<td>Moody Lane Waste Water Treatment Plant - evaporative holding pond</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Fallon 4</td>
<td>Dairy milking parlor washout pond</td>
<td>2</td>
<td>Class: Chlorophyceae</td>
</tr>
<tr>
<td>Fallon 5</td>
<td>Irrigation drainage ditch</td>
<td>1</td>
<td>Division: Cyanobacteria; Order: Oscillatoriales; Genus: Gelatinemaa, Leptolyngbya, Microchaete, Stichococcus, or Pseudanabaena</td>
</tr>
<tr>
<td>UNR GH</td>
<td>Recurring open pond contaminant</td>
<td>1</td>
<td>Scenedesmus dimorphus (Turpin) Kützing</td>
</tr>
</tbody>
</table>
Lipid-rich Filamentous Diatom from the Las Vegas Wash

Diatom cell, part of a chain

chloroplast

oil droplets

Diatom cell

diatom cell

oil-filled storage vacuole

Henry Sun - DRI
Diatom cell, part of a chain

chloroplast

oil droplets
Centrate Tolerance: 96-Well Plate Screening

Dunaliella species after 8 days of growth. Percentages in rows indicate the centrate concentrations (% v/v). Columns were inoculated with: a,l - sterile water; b – 2X ASW; c - UTEX 199; d - UTEX 200; e - UTEX 999; f - UTEX 1000; g - UTEX 1644; h - UTEX 2192; i - UTEX 2358; j - UTCC 197; k - UTCC 420.
Centrate Tolerance across fresh, brackish, and salt water species

- **Neochloris** – fresh water
- **Nannochloropsis** – brackish water
- **Dunaliella** – salt water
Dose-Dependent Growth Inhibition of Centrate

- Characterization of inhibitory compounds necessary
Investigate parameters affecting algal growth rates and compositions

- **Maximum productivity of algal biomass:** The ideal maximum productivity of algal biomass is 0.104 kg/m²/day (or 379.6 ton/ha/yr).

- **Minimum ideal requirement of water for growing algal biomass is:** 0.41 kilogram water is needed if one kilogram CO₂ is captured during cultivation process.

- **Minimum reflection loss using photobioreactor** is about 4% of total incident light if incident angle is kept smaller than 46°.

- **Other estimates:**
 - Pond system: 109.5 ton/ha/yr (Hawaii ARP, 1986-1987)
 - Closed photo-bioreactor: 365 ton/ha/yr (AlgaeLink)
Solar Conversion Efficiency of Microalgae

- The total maximum solar conversion efficiency of microalgae (from solar energy into stored chemical energy) can be obtained by production of photosynthesis efficiency and 42% visible light intensity of solar radiation at sea level, which is $42\% \times 26\% = 10.9\%$.

CAP for maximum biomass productivity, biodiesel productivity, space requirement

Jian Ma - UNLV
Photobioreactors at UNLV

• Closed Photobioreactor System with less water evaporation and more controllable parameters, makes cultivation of microalgae in Southern Nevada practical.

1. Photobioreactor for macro-algae, collected in Flamingo Wash, Las Vegas

2. Photobioreactor with new design for various control parameters, such as temperature, pH value, flow rate, light intensity for laboratory scale studies.

3. Prototype of hanging bag Photobioreactor for large scale production of microalgae etc.

Jian Ma - UNLV
On-going Algal Research:

- The effect of CO$_2$ concentration to the growth rate of microalgae
- Temperature management for outdoor photobioreactor (PBR)
- The outdoor reliability test of PBR material—polyethylene
- Microalgae screening in outdoor PBR by natural selection using municipal wastewater and flue gas
Publication

Development of New Solid (recyclable) Acid Catalyst and Its Application for Biodiesel Production

Table 1. Properties of Syndiotactic polystyrene sPS-S

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>BET Surface area (m² g⁻¹)</th>
<th>Average pore volume (cm³ g⁻¹)</th>
<th>Average pore diameter (nm)</th>
<th>SO₃Hᵃ (mmol g⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-sPS-S</td>
<td>0.1033</td>
<td>2.08 × 10⁻³</td>
<td>8.0647</td>
<td>1.67</td>
</tr>
<tr>
<td>A15ᵃ</td>
<td>45</td>
<td>4.8</td>
<td>24</td>
<td>4.8</td>
</tr>
<tr>
<td>NR50ᵇ</td>
<td>0.02</td>
<td>--</td>
<td>--</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Esterification Conditions

Fig 1. Effect of Dodecanoic Acid to Methanol

- \[\text{C}_{11}\text{H}_{22}\text{CO}_2\text{H} + \text{CH}_3\text{OH} \xrightarrow{\text{cat.}} \text{C}_{11}\text{H}_{23}\text{CO}_2\text{CH}_3 \]

Biodiesel

- C11H23CO2H : MeOH = 1 : 16
- catalyst loading 0.5 w%.

Fig 2. Effect of Temperature

- temperature 65 °C
- catalyst loading 0.5 w%
- stirring speed 700 rpm.

Chulsung Bae - UNLV
Esterification Conditions

C_{11}H_{23}CO_2H + CH_3OH $\xrightarrow{\text{cat.}}$ C_{11}H_{23}CO_2CH_3

Fig 3. Comparison of Catalyst

- H_2SO_4 0.5 w% (blue diamond)
- H_2SO_4 0.19 mol% (red square)
- 40-cPS-S 0.5 w% (green triangle)
- Amberlyst 15 0.5 w% (purple cross)
- NR50 0.5 w% (light blue asterisk)
- Blank (orange circle)

Yield vs Time (h)

C_{11}H_{23}CO_2H : MeOH = 1 : 16, 65 °C, catalyst loading 0.5 w%.

Fig 4. Reaction Scope

- C12_MeOH (blue line)
- C14_MeOH (red line)
- C16_MeOH (green line)
- C18_MeOH (purple line)
- C12_EtOH (light blue line)
- C14_EtOH (red line)
- C16_EtOH (green line)
- C18_EtOH (purple line)

Yield vs Time (h)

65 °C for MeOH and 80 °C for EtOH, catalyst loading 0.5 w%.

Chulsung Bae - UNLV
Catalyst Recycling

\[\text{C}_{11}\text{H}_{23}\text{CO}_2\text{H} + \text{CH}_3\text{OH} \xrightarrow{0.5 \text{ w}\% \ 40-\text{sPS-S}} \ 65^\circ\text{C}, 8 \text{ h} \rightarrow \text{C}_{11}\text{H}_{23}\text{CO}_2\text{CH}_3 \]

\(^a\) \text{C}_{11}\text{H}_{23}\text{CO}_2\text{H} (20.0 \text{ g}), \text{methanol} (16 \text{ equiv}), 40-\text{sPS-S} (0.5\text{w\%}), 65^\circ\text{C}.

\(^b\) From the second run, reaction scale was based on the recovered catalyst (0.5 \text{ w\%}) without additional fresh catalyst.

\(^c\) GC-MS conversion.

\(^d\) Recovered yield (weight\%) of 40-\text{sPS-S} after filtered, washed with hot methanol and dried.
Task 1.3- Production and characterization of algal biomass and biodiesel

- Carbonization of algae residue.

- Participants
 - Faculty: Chuck Coronella, John Cushman
 - Postdoc: Sage Hiibel
 - Undergraduate student: Samantha Kertsen

- After extracting oils from algae, evaluate properties of algae residue as feedstock for carbonization.

- Residue is treated in hot compressed water.

- Results are pending.
Task 1.4- Chemically promoted mechanical dewatering of wastewater sludge

❖ Participants-
 ❖ Faculty: Chuck Coronella, Victor Vasquez
 ❖ Graduate students: Kevin Schmidt, Mike Matheus
 ❖ Undergraduate students: Chris Moore, Nathan Roysden, Diane Mar

❖ Extending the effort of a project funded by CEC and UNR TTO for sludge drying
Task 1.4- Chemically promoted mechanical dewatering of wastewater sludge

- Objectives:
 - Design, build, test, and operate a continuous low-temperature fluidized bed sludge dryer
 - Currently being tested on site at TMWRF
 - Identify additives that enable increased dewatering by centrifugation
 - Testing
 - NaCl, NaOH, protease enzyme, organic solvent
 - Inconclusive results (so far)
Biofuels-Biomass Group
NV-REC

❖ Questions?