Aug 16th, 10:30 AM - 10:55 AM

Assessment of wind energy for Nevada using towers and mesoscale modeling

Darko Koracin
Desert Research Institute, Darko.Koracin@dri.edu

Repository Citation

This Event is brought to you for free and open access by the Research and Graduate Studies at Digital Scholarship@UNLV. It has been accepted for inclusion in UNLV Renewable Energy Symposium by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
Assessment of wind energy for Nevada using towers and mesoscale modeling

Darko Koracin, Richard L. Reinhardt, Marshall B. Liddle, Travis McCord, Domagoj Podnar, and Timothy B. Minor

Desert Research Institute,
2215 Raggio Parkway, Reno, NV 89512
Background (I)

- Nevada imports virtually all energy
- Nevada legislature mandates utilities (Nevada Power and Sierra Pacific companies) to produce 15% of energy by 2015 from renewable sources
- Nevada is 21st state by the wind energy potential
- Wind resource in Nevada is highly variable in time and space
Nevada’s Congressional Delegation initiated assessment of Nevada’s renewable energies.

Desert Research Institute of the Nevada System of Higher Education was funded through the Department of Energy – National Renewable Laboratory to estimate wind power density in Nevada using meteorological tower measurements and computer modeling.

Sierra Pacific Resources – industry partner.
Reference – existing Wind Resource Map
(TrueWind/DOE NREL)
DRI Wind Energy Projects – DOE/NREL Funding

1. **Nevada Wind Assessment**

 Analysis of 80 Remote Automated Weather Stations

 Period: Sep 2001 – Aug 2002
(2) Nevada Wind Assessment (II)

(a) Four 50m wind towers installed in western Nevada near Tonopah

(b) Mesoscale modeling – annual cycle (2001/2002) with 2 km resolution over Nevada.
- improving wind power density maps

(c) UNLV – Microscale modeling (D. Pepper)

Topographical map of the area around the four 50 m towers near Tonopah, Nevada.

Wind speed measurements are at five levels (10, 20, 30, 40, and 50m)

Use: Direct wind speed measurements at hub and blade heights;
model evaluation
DRI Wind Energy Projects – DOE/NREL Funding

- **(3) Tall wind tower deployment**

 (a) A 80m communication tower equipped with standard and sonic anemometers at three levels near Tonopah.

 (b) Mesoscale modeling – b1) Turbulence measurements and modeling; b2) Downscaling of wind forecasts from 30 km to several hundred meters resolution.
DRI Wind Energy Projects – DOE/NREL Funding

(4a) Wind towers in southern Nevada
Proposal approved, but funding is not available yet.

- One 120 m wind tower (Searchlight)
- Four 50m towers (Bullfrog Mountain, Amargosa Valley, Indian Springs, and Goodsprings)
- Mesoscale modeling – Model evaluation: winds, turbulence, downscaling
(4b) Adaptive-grid OMEGA modeling

Proposal approved, but funding is not available yet.

- DRI, UNLV, and Meso Inc.
- High-resolution modeling with variable resolution; highest resolution in the areas of interest.
Comparison: SODAR vs. tower data at 50 m tower - Tonopah
Comparison between MM5-simulated and RAWS-measured wind speed for the Brawley Peaks station.
Histograms of wind speed (left) and wind direction (right) at the Brawley Peaks station for the annual period (1 August 2003 – 31 July 2004).
Comparison between MM5-simulated and tower wind speed and direction at 50 m (left panels) and corresponding wind power density (W/m²) (right panel) for the Luning-7W tower for December 2003.
Model evaluation – 50 m tower

Comparison between the measured and MM5-simulated wind speed histograms for the Luning 7W tower at 50 m for the period from August 2003 to July 2004.
Three-way comparison of the wind power density at the four tower locations computed from the tower data, atmospheric model results for the period from August 2003 to July 2004, and the TrueWind estimates.
Percentage differences of the wind power density from MM5 (green) and TrueWind (brown) versus the towers with (left-hand side) and without (right-hand side) the Tonopah tower location.
MM5 - Wind Power Density (W/m2) – Annual mesoscale simulations
Annual mean wind power density map (classes) for Nevada for 2003/2004 cycle at 90m computed from the numerical mesoscale model results

2 - Marginal
3 - Fair
4 - Good
5 - Excellent
6 - Outstanding
7 - Superb
Current and planned modeling – wind variability, winds aloft, short-term and long-term forecasting

Animation – wind power density class for every day in April 2004 at 4am and 4pm local time

Reference – existing Wind Resource Map
Annual wind power density (W/m²) estimated from the numerical mesoscale model results for eastern Nevada and single point True Wind map estimates.
Wind power density (W/m²) over Nevada at 50 m as estimated from the MM5 simulations from 1 September 2001 through 31 August 2002 (WE1_01_02) (left panel) and from 1 August 2003 through 31 July 2004 (WE2_03_04) (right panel).
Differences in the wind power density (W/m²) between the annual cycle of MM5 simulations for 2001/2002 (left panel) and 2003/2004 (right panel) with the TrueWind results over Nevada at 50 m.
CONCLUSIONS

- The MM5 results compared well with the tower data
- The model results for both annual cycles show similar results
- Greatest wind power density simulated over the Sierra Nevadas and mountainous regions
- Central Nevada characterized by lower wind power density
- TrueWind generally shows higher values for wind power density than MM5
 - TrueWind is lower than MM5 over the mountains

The results of this study suggest that the synthesis of the data from the network of tower observations and high-resolution mesoscale modeling is a crucial tool for assessing the wind power density in Nevada and more generally other topographically developed areas. Future efforts should also be directed at obtaining data from additional tower networks and at higher elevations as well as evaluating models to predict winds and turbulence at blade heights for mid-size and large wind turbines.
The wind doesn't blow all the time. How much can it really contribute to a utility's generating capacity?

How much energy can wind realistically supply to the U.S.?

What is needed for wind to reach its full potential in the U.S.?

How much energy can wind supply worldwide?

I've heard that Denmark is pulling back on wind development. Does that mean wind is a failure?

What is the “energy payback time” for a wind turbine?

What are your primary references?

Questions?