Magnetohydrodynamic Simulation of Electromagnetic Pump in TC-1

Lillian J. Ratliff
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/hrc_trp_reactor

Part of the Electro-Mechanical Systems Commons, Energy Systems Commons, Heat Transfer, Combustion Commons, Nuclear Engineering Commons, and the Oil, Gas, and Energy Commons

Repository Citation
Available at: https://digitalscholarship.unlv.edu/hrc_trp_reactor/15

This Project is brought to you for free and open access by the Transmutation Research Program Projects at Digital Scholarship@UNLV. It has been accepted for inclusion in Reactor Campaign (TRP) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
Introduction
The pilot molten lead-bismuth target circuit (TC-1) in university of Nevada Las Vegas (UNLV) was
designed for beam power of 1 MW accelerator driven system (ADS). The TC-1 is a liquid lead-bismuth
eutectic (LBE) circulation loop. Circulation of the liquid alloy is driven by an annular linear induction
pump (ALIP). Experimental measurements of system parameters have yielded a surprisingly low pump
efficiency of less than 1%. A numerical study of the pump efficiency is being conducted to determine
which operational parameters are responsible for this low efficiency and to give insight into future EM
pump design. The numerical study will first entail calculating the EM phenomena such as the induced
current distribution, magnetic field and electromagnetic body forces using both analytic and numerical
methods. These calculated EM forces will be incorporated into fluid flow calculations using a commercial
code such as FEMLab and/or Fluent. Parametric studies of the EM and fluid flow phenomena in the pump
will be carried out.

Tasks and Timeline
The tasks for this project can be split into 1) EM calculations and 2) fluid flow calculations. Specific
subtasks involved with the EM calculations will be:
 1) Analytic modeling of MHD equations using a symbolic mathematics package (e.g. Mathematica,
Maple, or Matlab) and C to identify the significant, operational parameters.
 2) Numerical modeling of MHD equations using the in-house code 3DEM and FEMlab.
 3) Perform a parametric study of EM phenomena using analytic and numerical models.

Specific subtasks involved with the fluid flow calculations will be:
 1) Incorporating EM body forces into commercial CFD code (i.e. FEMLab, Fluent).
 2) Perform 2-d, axi-symmetric calculations of fluid flow in side channels of EM pump.
 3) Parametric study of EM effects on fluid flow in side channels of EM pump.
 4) Incorporate end effects into EM pump model.
 5) Parametric study on entire EM pump including end regions.

One year: April 1, 2006- March 31, 2007

Milestones and Deliverable
The major milestones for this project will be the three parametric studies listed above. These studies will
indicate the pertinent operational parameters for the current EM pump and design parameters for future EM
pumps. The results from this project will be published in two conference papers and one journal paper.