Feb 2nd, 9:30 AM - 3:30 PM

Research poster: Architecture and usability aspects of environmental data portals

Victor Ivanov
University of Nevada Reno

Repository Citation
https://digitalscholarship.unlv.edu/epscor/2010/feb02/20

This Event is brought to you for free and open access by the Conferences/Meetings (NNE) at Digital Scholarship@UNLV. It has been accepted for inclusion in 2010 Annual Nevada NSF EPSCoR Climate Change Conference by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
Features and Usability

- Search
- Explorative navigation
- Meta information
- Visual information
- Interactive content
- Extra audience targeting

Features

Expected

Evaluation model
- Generic usability evaluation
  - Effectiveness – How well does the system perform its task?
  - Efficiency – What is the quality of the features?
  - Safety – Does the system protect users from unwanted situations?
  - Utility – What is the value of the system?
  - Learnability – How easy is it to learn how to use the system?
  - Memorability – How easy is it to remember how to use the system?

- Accessibility
  - 14 W3C guidelines: Be client independent, be standards compliant, be diverse in presentation, ensure user is in control, clarify natural language, and other.

General Architecture

- Architecture Components
  - Clients – Any consumers of data or services provided by the system.
  - Web / Data Portal – Provides general content (static and dynamic), data access and search capabilities, transformation services, and tools related to the project.
  - Data Sources – Includes entities that generate, aggregate, or otherwise store and ultimately expose data. Data sources may be imported permanently or dynamically accessed.
  - Data Flow
    - Illustrates simple data acquisition from sensors at towers installed for the project to the local database. Data may, however, be acquired from any source.
    - Connectivity limitations make the exact data transfer medium / mechanism variable at each location.

Data Flow

Graduate Research Assistant: Victor Ivanov

Victor Ivanov is a student in the University of Nevada, Reno Master of Science in Computer Science program. He possesses a Bachelor of Science of Computer Science degree (2009) from the same university. For his current assignment as a Research Assistant at UNR, Victor participates in the NSF-funded project “Nevada Infrastructure for Climate Change, Education, and Science” as a member of the Cyber-infrastructure team. Victor’s research is centered on determining best software engineering practices that could be applicable to the development of the Nevada climate change data portal.