Dynamical relativistic effects in photoionization: Spin-orbit-resolved angular distributions of xenon 4d photoelectrons near the Cooper minimum

H. Wang
Uppsala University

G. Snell
Western Michigan University, Kalamazoo

Oliver Hemmers
University of Nevada, Las Vegas, Oliver.Hemmers@unlv.edu

M. M. Sant'Anna
Lawrence Berkeley National Laboratory

I. A. Sellin
University of Tennessee - Knoxville

See next page for additional authors

Follow this and additional works at: https://digitalscholarship.unlv.edu/hrc_fac_articles

Part of the Atomic, Molecular and Optical Physics Commons, Inorganic Chemistry Commons, Nuclear Commons, and the Physical Chemistry Commons

Repository Citation
Authors
H. Wang, G. Snell, Oliver Hemmers, M. M. Sant'Anna, I. A. Sellin, N. Berrah, Dennis W. Lindle, P. C. Deshmukh, N. Haque, and S. T. Manson
Dynamical Relativistic Effects in Photoionization: Spin-Orbit-Resolved Angular Distributions of Xenon 4d Photoelectrons near the Cooper Minimum

H. Wang,1,2 G. Snell,3,4 O. Hemmers,1 M. M. Sant’Anna,4 I. Sellin,5 N. Berrah,3
D. W. Lindle,1 P. C. Deshmukh,6,7,8 N. Haque,9 and S. T. Manson7,9

1Department of Chemistry, University of Nevada, Las Vegas, Nevada 89154-4003
2Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala, Sweden
3Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5151
4Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720
5Department of Physics, University of Tennessee, Knoxville, Tennessee 37996
6Department of Physics, Indian Institute of Technology-Madras, Chennai 600036, India
7Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30030
8Center for Theoretical Studies of Physical Systems, Clark-Atlanta University, Atlanta, Georgia 30314
9Department of Physics, Morehouse College, Atlanta, Georgia 30314

(Received 29 March 2001; published 4 September 2001)

Two decades ago, it was predicted [Y. S. Kim et al., Phys. Rev. Lett. 46, 1326 (1981)] that relativistic effects should alter the dynamics of the photoionization process in the vicinity of Cooper minima. The present experimental and theoretical study of the angular distributions of Xe 4d5/2 and 4d3/2 photoelectrons demonstrates this effect for the first time. The results clearly imply that relativistic effects are likely to be important for intermediate-Z atoms at most energies.

DOI: 10.1103/PhysRevLett.87.123004 PACS numbers: 32.80.Fb, 31.30.Js, 32.80.Hd

Relativistic effects in atoms have long been known to be important for photoionization dynamics at high Z [1–6]. At low and intermediate Z, where the predominant effect of relativity has been thought to be spin-orbit splitting of states into j = l ± 1/2 with differing threshold energies [2,3,7], recent advances in experiment [8–10] and theory [11–15] have demonstrated observable consequences of relativistic effects on photoionization dynamics. One of the most sensitive dynamical quantities in photoionization is the energy of a Cooper minimum [16,17], where the dipole matrix element for a particular channel goes through (or nearly goes through) zero. Relativistic interactions were predicted to significantly affect Cooper minima two decades ago [1], but this prediction remains unverified.

Finding the location of a Cooper minimum experimentally poses problems because it is often difficult to locate the minimum in a particular channel over the background of other open (and stronger) channels without a minimum in the same energy region. An excellent way to pinpoint Cooper minima is via measurement of the photoelectron angular-distribution parameter β, which takes on specific values at the location of certain Cooper minima [18,19].

In this Letter, we report on a combined experimental and theoretical study of 4d photoionization in Xe where

\[\beta_{3/2} = \frac{2}{5} \frac{-2R_{3/2}^2 + 18R_{5/2}^2 + 5R_{3/2}R_{1/2} \cos \Delta_{31} + 9R_{3/2}R_{5/2} \cos \Delta_{35} + 45R_{1/2}R_{5/2} \cos \Delta_{15}}{5R_{1/2}^2 + R_{3/2}^2 + 9R_{5/2}^2}, \]

\[\beta_{5/2} = \frac{2}{35} \frac{250R_{7/2}^2 - 16R_{5/2}^2 + 49R_{3/2}^2 + 42R_{5/2}R_{3/2} \cos \Delta_{53} + 60R_{5/2}R_{7/2} \cos \Delta_{57} + 840R_{3/2}R_{7/2} \cos \Delta_{37}}{14R_{3/2}^2 + R_{5/2}^2 + 20R_{7/2}^2}, \]

where the \(R_j \) denote the moduli of the radial parts of the dipole matrix elements to the final state \(j \), and the \(\Delta \)'s are phase differences. In the absence of relativistic interactions, both expressions reduce to [20]
$\beta = \frac{2R_p^2 + 12R_f^2 - 36R_p R_f \cos \Delta_{pf}}{10R_p^2 + 15R_f^2}$, \hspace{1cm} (3)

where R_p and R_f are the two radial partial-wave amplitudes and Δ_{pf} is their phase-shift difference.

A fair bit of experimental data exists for Xe 4d photoionization. The cross section [22,23], spin-orbit branching ratio [24,25], and angular-distribution parameter [23,26–28] have been measured from threshold (67.5 eV) to 280 eV photon energy, and dipole transition matrix elements have been determined using electron-spin [29,30] and coincidence [31,32] measurements at a few energies. Two characteristic features of the 4d cross section appear in the energy range of these studies: the broad maximum (22 Mb) of the shape resonance at approximately 100 eV at the Cooper minimum near 185 eV. In most of the angular-distribution measurements [23,26,27], the 4d spin-orbit components were unresolved; only one unpublished report [28] measured spin-orbit-resolved $\beta_{3/2}$ and $\beta_{3/2}$, in the 72–128 eV range. Despite all this previous experimental work on Xe, there is no extant data resolving $\beta_{5/2}$ and $\beta_{3/2}$ in the vicinity of the Cooper minima.

The angle-dependent intensity of emitted electrons is described by the differential cross section $d\sigma/d\Omega$. Within the dipole approximation, for 100% linearly polarized light, the differential cross section is given by [17,18]

$$\frac{d\sigma}{d\Omega} = \frac{\sigma}{4\pi} \left[1 + \beta P_2(\cos \theta) \right], \hspace{1cm} (4)$$

where σ is the partial cross section and P_2 is the second-order Legendre polynomial: $P_2(x) = (3x^2 - 1)/2$. The angle θ is between the electric field vector of the radiation and the direction of the outgoing electrons, measured in the plane perpendicular to the light propagation vector. This geometry is well suited for determination of β parameters, because first-order-nondipole contributions to the photoionization process vanish in the perpendicular plane [33].

To check possible systematic errors related to a particular experimental method, the measurements were done independently with hemispherical and time-of-flight (TOF) electron spectrometers at two different undulator beam lines at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory. One experiment was carried out at beam line 10.0.1 using an end station designed for gas-phase angle-resolved studies based on the Scienta SES-200 hemispherical electron analyzer (HEA) [34,35]. The analyzer is rotatable in the perpendicular plane, allowing electron angular-distribution studies. Measurements at the θ angles of 0°, 54.7°, and 90° were performed, and angular-distribution parameters were determined using a method described by Kivimäki et al. [36]. This method uses intensity ratios of different lines within the spectrum at each angle. If the photoelectron angular distribution is sufficiently different for a pair of lines, then the β parameters for that pair can be determined accurately from measurements at three angles. In the TOF measurements, performed at ALS beam line 8.0 [37], two analyzers are mounted in the perpendicular plane at $\theta = 0°$ and $\theta = 54.7°$, allowing simultaneous measurements for accurate determination of β parameters. Details of the experiment are described elsewhere [38]. To determine β parameters, the data were calibrated with the Ne-2Σ photoline, which has a fixed β value of 2. In both experiments, for most of the data, the photon energy was increased in 2 eV steps, because the energy splitting of the spin-orbit components is 2.0 eV. This approach permitted the measurement of $\beta_{3/2}$ and $\beta_{3/2}$ at the same photoelectron kinetic energy, and the difference $\beta_{3/2} - \beta_{5/2}$ could be calculated easily. At higher energies, where larger energy steps were used (TOF measurements only), continuous curves were interpolated through the measured values of β and used to estimate the difference $\beta_{3/2} - \beta_{5/2}$.

Calculations were performed using the relativistic random-phase approximation (RRPA) [21,39,40] based upon the Dirac equation; relativistic effects are included on an ab initio basis. All relativistic single-excitation channels from the 4s, 4p, 4d, 5s, and 5p subshells were included in the calculation, a total of 20 interacting channels. As noted above, in the absence of relativistic effects, β_j must be independent of j as a function of photoelectron energy. Any observed difference between $\beta_{5/2}$ and $\beta_{3/2}$ is an unambiguous manifestation of relativistic effects.

The present results for $\beta_{5/2}$ and $\beta_{3/2}$ as a function of photoelectron energy are shown in the lower panel of Fig. 1, where a clear difference is evident. To focus on this difference more clearly, values of $\beta_{3/2} - \beta_{5/2}$ are shown in the upper panel of Fig. 1, where zero corresponds to the nonrelativistic expectation. Also shown in Fig. 1 are the results of our RRPA calculations. The agreement is remarkably good between theory and experiment. The part missing from the theoretical curve is the 4p photoionization. The agreement is remarkable between theory and experiment. The part missing from the theoretical curve is the 4p \rightarrow ns, nd resonance region where the theoretical results are affected by autoionization. There is also excellent agreement between the two sets of experimental results, providing confidence in the reliability of the measurements. Note particularly that the β-parameter curves are not simply shifted, but have different shapes, e.g., $\beta_{3/2}$ goes lower than $\beta_{5/2}$, and the difference persist to higher energy.

From Eq. (3), nonrelativistically, when there is a Cooper minimum in the $d \rightarrow f$ channel, $\beta = 0.2$. From Eqs. (1) and (2), relativistically, $\beta_{3/2} = 0.2$ at the $4d_{3/2} \rightarrow e f_{5/2}$ Cooper minimum to an excellent approximation because dynamical effects on the radial matrix elements for the $e p$ transitions are insignificant. The same is true for $\beta_{5/2}$, but with the value of 0.2 coming somewhere between the two $e f$ minima. In the 105–110 eV region in Fig. 1, it is evident $\beta_{5/2}$ reaches a value of 0.2 about 2 eV lower in kinetic energy than $\beta_{3/2}$. Thus, purely from the experimental results, it can be inferred that the Cooper minimum in the $4d_{3/2} \rightarrow e f_{5/2}$ channel lies about 2 eV above the “average” position of the Cooper minima in the $4d_{5/2} \rightarrow e f_{5/2}$ channels. The calculated positions of the Cooper
Thus, the interchannel effects are pervasive over a broad range, even up to the highest energies investigated experimentally, ~ 100 eV above the Cooper-minimum region.

At still higher energies, recent work has shown that interchannel interactions are pervasive and often dominant for most subshells of most atoms at most energies [42,43], so much so that even the asymptotic form of the high-energy nonrelativistic photoionization cross section for non-s states is altered [44]. Thus, as long as $4d$ photoionization does not dominate the total cross section, significant interchannel interactions will modify the $4d$ transition amplitudes. But there is no reason to expect these interchannel interactions will modify each relativistic amplitude in the same way, i.e., interchannel coupling will cause observable differences between $\beta_{3/2}$ and $\beta_{5/2}$ for all higher energies. Near threshold, it is also known that $\beta_{3/2}$ and $\beta_{5/2}$ differ [23,26–28,45] due to differing exchange interactions among the relativistic channels. Only in the shape-resonance region, 30–80 eV kinetic energy, are there no differences between $\beta_{3/2}$ and $\beta_{5/2}$, because the $4d$ cross section dominates here, and the energy is high enough so exchange interactions are no longer important; interchannel interactions are negligible only in this narrow region. Thus, except for a small energy region near the $4d$ shape resonance, equality of $\beta_{3/2}$ and $\beta_{5/2}$ is the exception, not the rule.

Finally, there is no reason to suspect Xe $4d$ is a special case; the results found in this work should be quite general. We thus expect effects of relativistic interactions on interchannel coupling will be widespread over all intermediate-Z atoms. These effects also should be manifest in molecules, clusters, surfaces, and solids.

This work was supported by the DOE, Office of Science, BES, DOE EPSCoR, NSF, NASA, and CNPq, Brazil. The authors thank the staff of ALS for their support; the ALS is funded by the DOE, Materials Sciences Division, Basic Energy Sciences, under Contract No. DE-AC03-76SF00098.

*Electronic address: smanson@gsu.edu
