1993

Analytical Expressions for Tunneling Time through Single and Double Barrier Structures

P. Thanikasalam
University of Nevada, Las Vegas

Rama Venkat
University of Nevada, Las Vegas, venkat@egr.unlv.edu

M. Cahay

Follow this and additional works at: https://digitalscholarship.unlv.edu/ece_fac_articles

Repository Citation
https://digitalscholarship.unlv.edu/ece_fac_articles/29

This Article is brought to you for free and open access by the Electrical & Computer Engineering at Digital Scholarship@UNLV. It has been accepted for inclusion in Electrical and Computer Engineering Faculty Publications by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
Analytical Expressions for Tunneling Time Through Single and Double Barrier Structures

Prabharan Thanikasalam, R. Venkatasubramanian, Member, IEEE, and Marc Cahay, Member, IEEE

Abstract—In the past, the quantum mechanical tunneling time through simple rectangular barrier has been obtained by various theoretical approaches including the dwell time, the phase delay time, the Larmor clock time and also using the numerical analysis of wave packets. The agreement among these approaches over a range of incident electron energy is far from satisfactory. In this manuscript, analytical expressions for the tunneling time are derived based on the group velocity approach (referred hereafter as the Average Particle Time, \(\tau_{APT} \)) for single and double rectangular potential barriers under zero bias. The results of the single barrier case, including the limiting value of the tunneling time for various energy limits, are compared with these previous tunneling time calculations. The \(\tau_{APT} \) results provide physically meaningful tunneling times for zero and infinite incident energy limits of the electron. The \(\tau_{APT} \) for the double barrier structure is computed from the analytical solution as a function of the incident energy of the electron for two experimentally studied resonant tunneling structures. For both the single and double barrier cases, the effect of the structure parameters such as barrier width, height, and well width on the \(\tau_{APT} \) are obtained and reported.

I. INTRODUCTION

RESONANT tunneling through double barrier structures has been the subject of experimental and theoretical study for the past few years due to its potential application in high speed electronic devices within the terahertz regime. One important aspect of the resonant tunneling structures is the traversal time of the electron from one end of the device to the other by the tunneling process. The traversal time for electrons through a rectangular barrier has been studied by various theoretical approaches: the phase-delay method first introduced by Bohm [1] and Wigner [2], the dwell time approach of Smith [3], the Larmor Clock time [4]–[6] and its later generalizations [7], [8] and the numerical studies of wave packets [9]–[12]. Agreement among these various approaches even for the simple case of a single rectangular barrier is poor. We use the group velocity approach developed in [13]–[17] to calculate analytically the Average Particle Time (\(\tau_{APT} \)) for the cases of single and double rectangular barrier structures under zero bias.

In Section II, the derivation of the analytical expressions for the two cases is presented. In Section III, the results of \(\tau_{APT} \) are compared with that of the other approaches for the single barrier structures. A detailed comparison of the tunneling time at various energy limits are also made. The results of \(\tau_{APT} \) as a function of incident energy of electron are presented for two experimentally studied double barrier structures [18]–[20]. In the same section, the effect of structure parameters on the tunneling time for both single and double barrier is also presented. Conclusions are presented in Section IV.

II. DERIVATION OF ANALYTICAL EXPRESSIONS

An integral expression for the \(\tau_{APT} \) for a barrier of width, \(L \), is given by [14]–[17]:

\[
\tau_{APT} = \int_{0}^{L} dx = 2 \int_{0}^{L} \frac{dx}{R(x)}
\]

(1)

where \(R(x) \) is the real part of the quantum mechanical wave impedance, \(Z(x) \). The quantum mechanical wave impedance, (QMWI), at any plane \(x \), \(Z(x) \), is defined as

\[
Z(x) = \frac{\Psi(x)}{\Psi'(x)}
\]

(2)

where \(\Psi(x) \) and \(\Psi'(x) \) are the electron wave function and its spatial derivative, respectively, for the potential problem of interest. Eqs. (1) and (2) show that knowing the wave function solution to the Schroedinger equation for a typical potential energy profile, the \(Z(x) \) and \(\tau_{APT} \) can be obtained either analytically or numerically. In this manuscript, it is shown that analytical solutions are possible for single and double barrier structures under zero bias.

A. Single Barrier

The solution to the Schroedinger's equation for a single rectangular barrier structure shown in Fig. 1 is given by [7]:

\[
\Psi_1(x) = e^{ikx} + Ae^{-ikx} \quad , \quad x < -\frac{d}{2},
\]

(3)

\[
\Psi_2(x) = Be^{ikx} + Ce^{-ikx} \quad , \quad -\frac{d}{2} < x < \frac{d}{2},
\]

(4)

Manuscript received October 30, 1992. The work at the University of Cincinnati was supported by the National Science Foundation (Division of Electrical and Communications System) under Award No. ECS-9108932.

P. Thanikasalam and R. Venkatasubramanian are with the Department of Electrical and Computer Engineering, University of Nevada, Las Vegas, NV 89154.

M. Cahay is with the Department of Electrical and Computer Engineering, University of Cincinnati, Cincinnati, OH 45221.

IEEE Log Number 9211357.
When the energy of the incident electron, \(E \), is less than the barrier height, \(V_0 \), the attenuation constant, \(\alpha \), is a real quantity, and the electron wave function is decaying in nature. The expression given by (10) integrated to obtain \(\tau_{\text{APT}} \) given by:

\[
\tau_{\text{APT}}^{\text{below}} = \left(\frac{m^*}{4\hbar k_b} \right) (k^2 + \alpha^2) \sinh (2\alpha d) + 2\alpha d (\alpha^2 - k^2).
\]

When the energy of the incident electron, \(E \), is more than the barrier height, \(V_0 \), \(\alpha \) is an imaginary quantity, and the electron wave function is propagating in nature. In that case, the expression given by (10) can be analytically integrated to obtain the following expression for \(\tau_{\text{APT}} \):

\[
\tau_{\text{APT}}^{\text{above}} = \left(\frac{m^*}{4\hbar k_b} \right) \left[2k_b d (k^2 + k_b^2) + (k^2 - k_b^2) \right] \sin (2k_b d).
\]

The real part of \(\tau_{\text{APT}} \), \(\tau_{\text{APT}} \), can be derived from (8) as:

\[
\Re \{ \tau_{\text{APT}} \} = \frac{m^*}{4\hbar k_b} \left[k_b^2 \left(\alpha^2 + \frac{\alpha^2}{\alpha^2 + k_b^2} \right) \right] - \frac{\alpha^2}{\alpha^2 + k_b^2}.
\]

The above expression for \(\tau_{\text{APT}} \) is analytically integrable for all values of incident energy of the electron.
obtained for three cases of limiting energies, $E \to 0$, $E \to \infty$, and $E \to V_0$ and are listed in Table I for comparison. A discussion of this comparison is presented in Section III.

2) Double Barrier Structure: An analytical expression for the τ_{APT} through a symmetrical double rectangular potential barrier structure shown in Fig. 2 is obtained by an approach similar to that used for the single barrier case. The following is the details of the derivation. Using the plane wave solutions, the analytical solution to the Schrödinger equation in the five regions shown in Fig. 2, is given by:

\begin{align}
\Psi_1(x) &= e^{ikx} + A e^{-ikx} \quad x < 0, \\
\Psi_2(x) &= Be^{ikx} + Ce^{-ikx} \quad 0 < x < d, \\
\Psi_3(x) &= De^{ikx} + Ge^{-ikx} \quad d < x < (d + d_1), \\
\Psi_4(x) &= Fe^{ikx} + Ge^{-ikx} \quad (d + d_1) < x < (d_1 + 2d), \\
\Psi_5(x) &= He^{ikx} \quad x > (d_1 + 2d)
\end{align}

where d and d_1 are the barrier and well widths, respectively, and V_0 is the height of the barrier. Assuming that

\begin{align}
Re[Z(x)] = \frac{2\hbar}{m*} \left[\frac{2B(C_1 + C_2)}{(B_1^2 + B_2^2) e^{2\alpha x} + 2(C_1^2 + C_2^2) e^{-2\alpha x} + 2(B_1 C_1 + B_2 C_2)} \right].
\end{align}

Then, the τ_{APT} can be obtained from (1) and (22) as:

\begin{align}
\tau_{APT} &= 2 \int_0^d \left(\frac{m* dx}{2\hbar} \right) \left[\frac{2B(C_1 + C_2)}{(B_1^2 + B_2^2) e^{2\alpha x} + 2(C_1^2 + C_2^2) e^{-2\alpha x} + 2(B_1 C_1 + B_2 C_2)} \right].
\end{align}

Performing the integration, the following expression results:

\begin{align}
\tau_{APT} &= \frac{m*}{4\hbar \alpha (B_2 C_1 - B_1 C_2)} \\
&\cdot \left[\frac{B_1^2 + B_2^2}{2\alpha} \right] e^{2\alpha x} - 1 \left[\frac{C_1^2 + C_2^2}{2\alpha} \right] e^{-2\alpha x} - 1 + 2d(B_1 C_1 + B_2 C_2).
\end{align}
The τ_{APT} for the Potential Well Region:

By an approach similar to that employed for the left barrier, an analytical expression for the $\tau_{\text{APT}}^\text{well}$ can be obtained from the wave function solution in the well given by (19) as:

$$
\tau_{\text{APT}}^\text{well} = \int_{d - d_1}^{d + d_1} \left[p + \frac{q}{2k} \cos(2kx) + \frac{r}{2k} \sin(2kx) \right] dx
$$

(27)

where p, q, and r are given by

$$
p = \frac{D_1^2 + D_2^2 + E_1^2 + E_2^2}{D_1^2 + D_2^2 - E_1^2 - E_2^2}
$$

(28)

$$
q = \frac{D_1 E_1 + D_2 E_2}{D_1^2 + D_2^2 - E_1^2 - E_2^2}
$$

(29)

and

$$
r = \frac{D_1 E_2 - D_2 E_1}{D_1^2 + D_2^2 - E_1^2 - E_2^2}
$$

(30)

where D_1, D_2, E_1, and E_2 are given by (46)–(49) given in Appendix B. The expression given by (26) can be integrated to obtain the following analytical expression for the τ_{APT} in the well region, $\tau_{\text{APT}}^\text{well}$:

$$
\tau_{\text{APT}}^\text{well} = \left(\frac{m^*}{2\hbar k} \right) \left[pd_1 + \frac{q}{2k} \sin 2k(d + d_1) - \sin(2kd) \right] - \left(\frac{r}{2k} \right) \cos 2k(d + d_1) - \cos(2kd)
$$

(31)

The τ_{APT} for the Right Barrier Region:

By an approach similar to that employed for the left barrier and the well, the $\tau_{\text{APT}}^\text{right}$ can be obtained as follows:

$$
\tau_{\text{APT}}^\text{right} = 2 \int_{d - d_1}^{d + d_1} \left(\frac{m^*}{2\hbar k} \right) \left[(F_1^2 + F_2^2)e^{2\alpha x} + (G_1^2 + G_2^2)e^{-2\alpha x} + 2(F_1 G_1 + F_2 G_2) \right] dx
$$

(32)

where F_1, F_2, G_1, and G_2 are given by (50)–(53) given in Appendix B. Upon integration, the following analytical expression for $\tau_{\text{APT}}^\text{right}$ results:

$$
\tau_{\text{APT}}^\text{right} = \left(\frac{m^*}{4\hbar \alpha (F_1 G_1 - F_1 G_2)} \right)
\left[\frac{F_1^2 + F_2^2}{2\alpha} \right] \left[e^{2\alpha d_1} + 2d - e^{-2\alpha d_1 + d} \right] - \left(\frac{G_1^2 + G_2^2}{2\alpha} \right)
\left[e^{-2\alpha d_1} - e^{-2\alpha d_1 + d} \right] + 2d(F_1 G_1 + F_2 G_2)
$$

(33)

III. RESULTS AND DISCUSSIONS

A. Single Barrier

A plot of τ_{APT} and the transmission coefficient versus the normalized incident energy ($E < V_o$) for a rectangular potential barrier with a barrier of height 0.3 eV and width of 200 Å is shown in Fig. 3. The transmission coefficient increases with incident energy, E, as expected. The τ_{APT} decreases with increasing energy. It is noted that the τ_{APT} approaches infinity in the limit of zero energy like in the case of a classical electron. This can be readily seen from (13). A plot of τ_{APT} and the transmission coefficient versus the normalized incident energy ($E > V_o$) for the same structure is shown in Fig. 4. It is noted that the τ_{APT} oscillates with a small amplitude. When the incident energy of the electron close to the barrier height, i.e., $E \approx V_o$, the τ_{APT} is large, but finite as reported in Table I. In the limit of $E \rightarrow \infty$, τ_{APT} reaches the classical limit as reported in Table I.

A plot of the dwell time, the phase-delay time, the Larmor clock time, the τ_{APT}, and the classical traversal time versus normalized incident energy ($E < V_o$) is shown in Fig. 5, for a single potential barrier structure with a barrier height of 0.3 eV and a width of 200 Å. It is observed that the τ_{APT} is greater than the classical time for all incident energies. The τ_{APT} tends to infinity in the limit of no incident energy, implying that the electron takes infinite time to traverse the distance when it possesses no energy. For $E < V_o$, the dwell time and the phase-delay time are less than the classical traversal time. The Larmor Clock time is below the classical time for a range of incident energy, and above the classical time for the rest of the incident energy interval below the barrier.

A plot of the transmission coefficient, the dwell time, the phase-delay time, the Larmor Clock time, the τ_{APT}, and the classical traversal time vs. normalized incident energy ($E > V_o$) is shown in Fig. 6 for the same structure. In this case, all the traversal times are above the classical traversal time. This is also supported by the limit values reported in Table I. It is observed that the dwell time, the phase-delay time, and the Larmor Clock time attain a maximum value when the transmission coefficient is maximum, and reaches a minimum when the transmission is
Fig. 4. Plot of the transmission coefficient, and the APT time, for a single rectangular potential barrier for $E > V_o$, with barrier width 200 Å and barrier height 0.3 eV.

Fig. 5. Plot of the traversal times: dwell time, phase-delay time, Larmor Clock time, APT time, and classical Time for $E < V_o$, with barrier width 200 Å and barrier height 0.3 eV.

Fig. 6. Plot of the traversal times: dwell time, phase-delay time, Larmor Clock time, APT time, classical Time, and the transmission coefficient for $E > V_o$, with barrier width 200 Å and barrier height 0.3 eV.

Fig. 7. Three-dimensional surface plot of the APT time, for the case of $E < V_o$ with the barrier height 1.0 eV and barrier width in the range 25 to 250 Å.

V_o is shown in Fig. 7, for a barrier height of 1.0 eV and for a barrier width in the range of 25 Å to 250 Å. It is observed that the τ_{APT} increases with the barrier width for the same incident energy of the electron. The dependence of τ_{APT} on barrier width, with incident energy of the electron more than the barrier height is shown in Fig. 8 for the same structure. The oscillations in the τ_{APT} with energy are more pronounced for thicker barriers.

B. Double Barrier

The transmission coefficient and τ_{APT} are obtained as a function of incident energy of the electron for two experimentally studied symmetric double barrier structures [18]–[20].

Case 1: $d = 50$ Å, $d_1 = 50$ Å, and $V_o = 0.23$ eV. [18]: The plot of τ_{APT} and the transmission coefficient vs. the incident electron energy is shown in Fig. 9. There is one resonant energy state at 0.0791 eV which is less than the barrier height. This value of 0.0791 eV agrees with that obtained from experiments [18]. At this resonant energy value, the τ_{APT} exhibits a kink (local minimum).

Case 2: $d = 25$ Å, $d_1 = 45$ Å, and $V_o = 1.0$ eV. [20]: The plot of τ_{APT} and the transmission coefficient vs. the incident energy of the electron is shown in Fig. 10. It is observed that there are two resonant energy states, one at 0.154 eV and the other at 0.581 eV below the barrier height. These values agree well with the values obtained from numerical solution obtained using SEQUAL [22]. At these resonant energy levels, τ_{APT} exhibits a kink (local minimum).

1) Effect of Barrier Width on the APT Time: A three-dimensional surface plot of τ_{APT} is shown in Fig. 11, for a range of the barrier widths from 30 Å to 100 Å with the well width fixed at 30 Å and the barrier height fixed at 0.3 eV. The τ_{APT} approaches infinity when $E \rightarrow 0$. The formation of troughs in the τ_{APT} at resonances indicate that at these resonant energy levels, the τ_{APT} is minimum. As the barrier thickness is increased, the formation of the resonant energy levels is more pronounced and τ_{APT} for a minimum. Whereas, the τ_{APT} exhibits a kink when the transmission coefficient is maximum, and reaches a maximum when transmission is minimum. In other words, according to τ_{APT}, the electron travels fastest at resonant energies, whereas according to the other approaches, the electron travels fastest at nonresonant energies. All the traversal times approach the classical time limit at very high incident energies.

The dependence of τ_{APT} on the barrier width with $E <$
Fig. 8. Three-dimensional surface plot of the APT time, for the case of \(E > V_0 \) with the barrier height 1.0 eV and barrier width in the range 25 to 250 Å.

Fig. 11. Three-dimensional surface plot of the APT time for \(E < V_0 \). The barrier height is 0.3 eV and the barrier width in the range from 30 to 100 Å and the well width is 30 Å.

Fig. 9. Plot of the transmission coefficient and the APT time for a symmetrical double rectangular potential barrier structure with a barrier height 0.23 eV, barrier width 50 Å and a well width 50 Å, for \(E < V_0 \).

Fig. 12. Three-dimensional surface plot of the APT time for \(E < V_0 \). The barrier height is 1.0 eV and barrier width 30 Å and the well width in the range from 30 to 110 Å.

Fig. 10. Plot of the transmission coefficient and the APT time for \(E < V_0 \) for a symmetrical double rectangular potential barrier structure with a barrier height 1.0 eV, barrier width 25 Å and a well width 45 Å.

very thick barrier, at resonance, is larger than that for a thin barrier.

2) Effect of Well Width on the APT Time: A three-dimensional surface plot of the \(\tau_{\text{APT}} \) is shown in Fig. 12, for a range of well widths from 30 Å to 110 Å with the barrier width fixed at 30 Å, and the barrier height fixed at 1.0 eV. The formation of troughs in the \(\tau_{\text{APT}} \) at resonances indicate that at these resonant energy levels, the \(\tau_{\text{APT}} \) is minimum. More troughs appear in the tunneling time as the well width increases indicating more resonant levels appear within the barrier height.

IV. CONCLUSION

Analytical expressions for the quantum mechanical tunneling time, \(\tau_{\text{APT}} \), for rectangular single and double potential barriers have been derived based on the group velocity concept \([13] \text{--} [17]\). The results of \(\tau_{\text{APT}} \) for the single barrier case is compared with that of various other approaches (the dwell time, the phase-delay time and the Larmor clock time). It is shown that \(\tau_{\text{APT}} \) gives physically meaningful results in the limits of zero and infinite incident energy of the electron. The \(\tau_{\text{APT}} \) results for the double barrier case are obtained for two experimentally studied structures and are reported as a function of incident energy of the electron. In a typical resonant tunneling device, \(\tau_{\text{APT}} \) is found to be minimum at resonance (energies with unit transmission coefficient). Depending on the structure parameters, \(\tau_{\text{APT}} \) can vary from a few nanoseconds to a few picoseconds.
APPENDIX A

The analytical expressions for A, B, and C in terms of D are:

$$A = \frac{D(\alpha^2 + k^2) \sinh(\alpha d)}{i2k\alpha},$$

$$B = \frac{De^{i\beta/2}(\alpha + ik)}{2\alpha e^{i\beta/2}},$$

and

$$C = \frac{De^{i\beta/2}(\alpha - ik)}{2\alpha e^{-i\beta/2}}.$$

APPENDIX B

The analytical expressions for the complex coefficients A, B, C, D, E, F, and G, used in (17)–(21) can be obtained in terms of the complex amplitude H. More explicitly, they can be written as:

$$A = \frac{e^{i\beta d}}{i2k\alpha e^{i\beta d}} \left(\frac{\alpha + ik}{\alpha - ik}\right) \left[(k^2 - \alpha^2) + (\alpha - ik)^2 e^{i\beta d}\right] \sinh(\alpha d) + i2k\alpha \cosh(\alpha d)\right)
- \left(\frac{\alpha + ik}{\alpha - ik}\right),$$

$$B = \frac{He^{i\beta d}(\alpha + ik)}{i4k\alpha^2 e^{i\beta d}} \left[(k^2 - \alpha^2) + e^{i\beta d}(\alpha - ik)^2\right.
\left.\sinh(\alpha d) + i2k\alpha \cosh(\alpha d)\right],$$

$$C = \frac{He^{i\beta d}(\alpha + ik)}{i4k\alpha^2 e^{-i\beta d}} \left[(k^2 - \alpha^2) + e^{i\beta d}(\alpha + ik)^2\right.
\left.\sinh(\alpha d) + i2k\alpha \cosh(\alpha d)\right],$$

$$D_1 = \frac{2k\alpha \cos(\alpha d) \cosh(\alpha d) + (k^2 - \alpha^2) \sin(\alpha d) \sinh(\alpha d)}{2k\alpha},$$

$$D_2 = \frac{2k\alpha \cosh(\alpha d) \sin(\alpha d) - (k^2 - \alpha^2) \cos(\alpha d) \sinh(\alpha d)}{2k\alpha},$$

$$D = \frac{He^{i\beta d}}{i2k\alpha} \left[(k^2 - \alpha^2) \sinh(\alpha d) + i2k\alpha \cosh(\alpha d)\right],$$

$$E = \frac{He^{i(3\beta d + 2\alpha d)}}{i2k\alpha} (\alpha^2 + k^2) \sinh(\alpha d),$$

$$F = \frac{He^{i(3\beta d + d_1)}(\alpha + ik)}{2ae^{i(3\beta d + d_1)}} ,$$

and

$$G = \frac{He^{i(3\beta d + d_1)}(\alpha - ik)}{2ae^{-i(3\beta d + d_1)}} .$$

Resolving the complex constants into real and imaginary parts, the following expressions result:

$$B_1 = \alpha(k^2 - \alpha^2)(1 - e^{-2\beta d}) \sin(\alpha d)$$
$$+ 2\alpha^2 k(1 - e^{-2\beta d}) \sin(\alpha d) \cos(\alpha d),$$
$$+ k(k^2 - \alpha^2)(1 - e^{-2\beta d}) \sin(\alpha d) \cos(\alpha d),$$
$$+ \alpha k^2(1 - e^{-2\beta d})(1 - 2 \sin^2(\alpha d)),$$
$$- \alpha k^2(1 + e^{-2\beta d}),$$

$$B_2 = k(k^2 - \alpha^2)(1 - e^{-2\beta d}) \sin(\alpha d)$$
$$+ 2\alpha k^2(1 - e^{-2\beta d}) \sin(\alpha d) \cos(\alpha d),$$
$$- \alpha(k^2 - \alpha^2)(1 - e^{-2\beta d}) \sin(\alpha d) \cos(\alpha d),$$
$$- \alpha^2 k(1 - e^{-2\beta d})(1 - 2 \sin^2(\alpha d)),$$
$$+ \alpha^2 k(1 + e^{-2\beta d}),$$

$$C_1 = \alpha(k^2 - \alpha^2)(e^{2\beta d} - 1) \cos(\alpha d)$$
$$- 2\alpha^2 k(e^{2\beta d} - 1) \sin(\alpha d) \cos(\alpha d),$$
$$+ k(k^2 - \alpha^2)(e^{2\beta d} - 1) \sin(\alpha d) \cos(\alpha d),$$
$$+ \alpha k^2(e^{2\beta d} - 1)(-1 + 2 \cos^2(\alpha d)),$$
$$+ \alpha^2 k(e^{2\beta d} + 1),$$

$$C_2 = \alpha(k^2 - \alpha^2)(e^{2\beta d} - 1) \cos(\alpha d)$$
$$+ 2\alpha^2 k(e^{2\beta d} - 1) \sin(\alpha d) \cos(\alpha d),$$
$$- k(k^2 - \alpha^2)(e^{2\beta d} - 1) \cos^2(\alpha d),$$
$$+ \alpha^2 k(e^{2\beta d} - 1)(-1 + 2 \cos^2(\alpha d)),$$
$$+ \alpha^2 k(e^{2\beta d} + 1),$$

$$E_1 = \alpha(k^2 - \alpha^2) \sin(k(3d + 2d_1)) \sinh(\alpha d)$$
$$+ \frac{\alpha^2 + k^2}{2k\alpha} \sinh(k(3d + 2d_1)) \sinh(\alpha d),$$

$$E_2 = -\alpha(k^2 - \alpha^2) \cos(k(3d + 2d_1)) \sinh(\alpha d)$$
$$\frac{\alpha^2 + k^2}{2k\alpha} \cos(k(3d + 2d_1)) \sinh(\alpha d),$$

$$F_1 = \frac{\alpha \cos(k(2d + d_1)) - k \sin(k(2d + d_1))}{2 \alpha e^{i(3\beta d + d_1)}},$$

$$F_2 = \frac{\alpha \cos(k(2d + d_1)) + k \sin(k(2d + d_1))}{2 \alpha e^{i(3\beta d + d_1)}},$$

$$E_1 = \frac{\alpha^2 + k^2}{2k\alpha} \sinh(k(3d + 2d_1)) \sinh(\alpha d),$$

$$E_2 = -\alpha(k^2 - \alpha^2) \cos(k(3d + 2d_1)) \sinh(\alpha d)$$
$$\frac{\alpha^2 + k^2}{2k\alpha} \cos(k(3d + 2d_1)) \sinh(\alpha d),$$

$$F_1 = \frac{\alpha \cos(k(2d + d_1)) - k \sin(k(2d + d_1))}{2 \alpha e^{i(3\beta d + d_1)}},$$

$$F_2 = \frac{\alpha \cos(k(2d + d_1)) + k \sin(k(2d + d_1))}{2 \alpha e^{i(3\beta d + d_1)}},$$
\[G_1 = \frac{\alpha \cos [k(2d + d_i)] + k \sin [k(2d + d_i)]}{2ae^{-\delta(2d + d_i)}} \]
\[G_2 = \frac{\alpha \sin [k(2d + d_i)] - k \cos [k(2d + d_i)]}{2ae^{-\delta(2d + d_i)}} \]

REFERENCES

[22] M. McLennan and S. Datta, Users Manual TR-EE 89-17, Purdue University, West Lafayette, IN, 1989.

R. Venkatasubramanian (M'89) was born in Madras, India, in 1961. He received his B.Tech. in Metallurgical Engineering from the Indian Institute of Technology (Madras, India) in 1983, his M.S. degree (Metallurgical Engineering), and Ph.D. degree (Electrical Engineering) in 1985 and 1988, respectively, from Purdue University. Since 1989, he has been with the department of Electrical and Computer Engineering at the University of Nevada-Las Vegas as an assistant professor. His current research interests include modeling and material physics in heterostructures grown by MBE.

Marc Cahay (M'90) was born in Liege, Belgium, in 1959. He received his B.S. in physics from the University of Liege (Belgium) in 1981, his M.S. degree (physics) and Ph.D. degree (electrical engineering) in 1986 and 1989, respectively, both from Purdue University.

From 1981 to 1983, he worked as a research scientist in nuclear physics at the University of Liege. His research included Monte-Carlo simulations of relativistic heavy ion collisions and antiproton annihilation inside nuclei. After graduating from Purdue, he worked at Scientific Research Associates in Connecticut on the modeling of quantum devices. In September 1989, he joined the University of Cincinnati as an assistant professor. His research interests include modeling of the electrical and optical properties of superlattices and quantum wells. He is also involved in the modeling and experimental investigation of superconducting devices.

He is a member of Sigma Xi, SPIE, the American Physical Society, the Electro Chemical Society, and the IEEE.