Aug 11th, 12:15 PM - 1:15 PM

Education and energy innovation: NSHE’s central role in transforming Nevada’s economy

James Croce
McDonald Carano Wilson

Repository Citation
Education and Energy Innovation:
NSHE’s Central Role in Transforming Nevada’s Economy

2009 Renewable Energy Symposium
University of Nevada - Las Vegas
August 11, 2009

Jim Croce
President and CEO
jim.croce@nirec.org
Presentation Agenda

1. NIREC Overview
2. Higher education and Nevada’s economy
 – How do we stack up?
3. Renewable energy production exports
 – A strong foundation for Nevada’s economy
4. The energy innovation imperative
 – An essential element of Nevada’s prosperous future
5. NIREC’s energy technology commercialization model
6. Parting thoughts
What is NIREC?

- 501(c)(3) nonprofit public-private partnership
- Mission is to enable and accelerate the transformation of ideas into sustainable enterprises in the energy sector
- Focused on renewable energy, energy conservation and energy efficiency
- Today, we do this through:
 1. Funding pre-commercialization development activities
 2. Entrepreneur-In-Residence (EIR) Education Program
 3. Strengthening and leveraging the region’s Innovation Ecosystem
Board of Trustees

Ian Rogoff
Trustee & Chairman

Bob Goff
Trustee, Vice Chairman & Corporate Secretary

Atam Lalchandani, PhD
Trustee & Treasurer

Jason Geddes, PhD
Environmental Services Administrator, City of Reno; Trustee & Chairman of TCAB

Matt Woodhead, JD
General Counsel

Steve Wells, PhD
President, Desert Research Institute; Ex-officio Trustee

Milton Glick, PhD
President, University of Nevada, Reno; Ex-officio Trustee

Barry Klein, PhD
Vice Chancellor for Research, UC Davis; Ex-officio Trustee

James A. Croce
President and CEO

UNLV – reserved Ex-officio Trustee
Technology Commercialization Advisory Board

Jason Geddes, PhD
Environmental Services Administrator, City of Reno; Trustee & Chairman of TCAB

Ted Batchman, PhD
Professor, Renewable Energy Center, University of Nevada, Reno

Jim Davis
President, Chevron Energy Solutions

Andrew Goodrich
Director, Air Quality Management Division, Washoe County District Health Department

Andrew Hargadon, PhD
Associate Professor of Technology Management, Graduate School of Management, UC Davis

Oliver Hemmers, PhD
Executive Director
Harry Reid Center for Environmental Studies, University of Nevada, Las Vegas

Kent Hoekman, PhD
Research Professor, Division of Atmospheric Sciences, Desert Research Institute

Travis Johnson
Manager, Substation Construction & Maintenance Groups, NV Energy; President, Travis Johnson Enterprises, Inc.

Lou Peoples
Former Vice Chairman of the Board and CEO, Orange and Rockland Utilities, Inc.

Peter Williams, PhD
CTO, Big Green Innovations, IBM
Partnerships

Education - Government - Private Equity - Industry
Presentation Agenda

1. NIREC Overview
2. Higher education and Nevada’s economy
 – How do we stack up?
3. Renewable energy production exports
 – A strong foundation for Nevada’s economy
4. The energy innovation imperative
 – An essential element of Nevada’s prosperous future
5. NIREC’s energy technology commercialization model
6. Parting thoughts
Good News ... Nevada’s Recent Prosperous Growth (2001-2007)

<table>
<thead>
<tr>
<th>%Change in Tot Empl 2001-07</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>%Change in Total Wages 2001-07</td>
<td>2</td>
</tr>
<tr>
<td>%Chg in LowEd Ind Wages 01 07</td>
<td>2</td>
</tr>
<tr>
<td>%Chg in HiEd Ind Wages 01 07</td>
<td>1</td>
</tr>
<tr>
<td>2007 Per Capita Personal Inc. (PCPI)</td>
<td>18</td>
</tr>
</tbody>
</table>

Higher-educational-attainment (knowledge-based industries)
-- Proportion of employees with bachelors degrees or more is at least of 30%

Examples:
Higher-educational-attainment industries - IT, finance, professional & technical services, healthcare, education

Lower-educational-attainment industries - manufacturing, construction, retail, hospitality

Data Source: www.michiganfuture.org
Educational Attainment and Employment: Recent Employment Trends (National Data)...

During the current recession (December 2007 – January 2009):

- Lower-education-attainment industries have suffered job losses of 3,735,000
- Higher-education-attainment industries have added 163,000 jobs

- Lower-education-attainment industries employment rose 15.7 %
- Higher-education-attainment industries employment rose 32.4 %
Some Hard Truths

Nevada’s predominant industries and its historically high-wage jobs will continue to be threatened

• Competition
• Next expansion will almost certainly be void of two important sources of “artificial wealth”: housing bubble and highly leveraged financial services

Over the recent past (2001-2007), Nevada’s highly prosperous economy seemed to have “beat the odds” (i.e. data indicates significant anomalies relative to much of the country)

Nevada’s high concentration of jobs in lower-educational attainment industries is a significant risk to our economic future
Educational Attainment & Prosperity:
How do we stack up against the most prosperous states? (2007)

<table>
<thead>
<tr>
<th>Top 11 States</th>
<th>Per Capita Income</th>
<th>% of Pop with Bach+ Degree</th>
<th>% of Wages from HiEd Ind's.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ranking</td>
<td>Ranking</td>
<td>Ranking</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>$61,397</td>
<td>47.48%</td>
<td>1</td>
</tr>
<tr>
<td>Connecticut</td>
<td>$54,984</td>
<td>34.66%</td>
<td>5</td>
</tr>
<tr>
<td>New Jersey</td>
<td>$49,238</td>
<td>33.86%</td>
<td>6</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>$49,142</td>
<td>37.90%</td>
<td>2</td>
</tr>
<tr>
<td>Wyoming</td>
<td>$47,038</td>
<td>23.35%</td>
<td>41</td>
</tr>
<tr>
<td>New York</td>
<td>$46,664</td>
<td>31.71%</td>
<td>10</td>
</tr>
<tr>
<td>Maryland</td>
<td>$46,646</td>
<td>35.25%</td>
<td>3</td>
</tr>
<tr>
<td>California</td>
<td>$41,580</td>
<td>29.50%</td>
<td>14</td>
</tr>
<tr>
<td>Virginia</td>
<td>$41,561</td>
<td>33.56%</td>
<td>8</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>$41,444</td>
<td>32.51%</td>
<td>9</td>
</tr>
<tr>
<td>Washington</td>
<td>$41,062</td>
<td>30.27%</td>
<td>12</td>
</tr>
<tr>
<td>Nevada</td>
<td>$39,649</td>
<td>21.77%</td>
<td>45</td>
</tr>
<tr>
<td>US Average</td>
<td>$38,564</td>
<td>27.46%</td>
<td>58</td>
</tr>
</tbody>
</table>

With very few exceptions, a state’s prosperity (high per-capita personal income) is directly correlated with the proportion of adults with bachelors degrees or higher.

Nevada (and Wyoming) seem to have “beat the odds” … at least, for now

Data Source: www.michiganfuture.org
Educational Attainment & Prosperity:
Comparing Nevada to Another Low Educational Attainment State (in Decline) (2007)

<table>
<thead>
<tr>
<th>Top 11 States</th>
<th>Per Capita Income</th>
<th>% of Pop with Bach+ Degree</th>
<th>% of Wages from HiEd Ind’s.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top 11 States</td>
<td>Ranking</td>
<td>Ranking</td>
<td>Ranking</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>$61,397</td>
<td>47.48%</td>
<td>86.04%</td>
</tr>
<tr>
<td>Connecticut</td>
<td>$54,984</td>
<td>34.66%</td>
<td>64.01%</td>
</tr>
<tr>
<td>New Jersey</td>
<td>$49,238</td>
<td>33.86%</td>
<td>63.45%</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>$49,142</td>
<td>37.90%</td>
<td>66.42%</td>
</tr>
<tr>
<td>Wyoming</td>
<td>$47,038</td>
<td>23.35%</td>
<td>44.78%</td>
</tr>
<tr>
<td>New York</td>
<td>$46,664</td>
<td>31.71%</td>
<td>69.98%</td>
</tr>
<tr>
<td>Maryland</td>
<td>$46,646</td>
<td>35.25%</td>
<td>64.26%</td>
</tr>
<tr>
<td>California</td>
<td>$41,580</td>
<td>29.50%</td>
<td>61.00%</td>
</tr>
<tr>
<td>Virginia</td>
<td>$41,561</td>
<td>33.56%</td>
<td>62.98%</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>$41,444</td>
<td>32.51%</td>
<td>59.32%</td>
</tr>
<tr>
<td>Washington</td>
<td>$41,062</td>
<td>30.27%</td>
<td>57.98%</td>
</tr>
<tr>
<td>US Average</td>
<td>$38,564</td>
<td>27.46%</td>
<td>58.00%</td>
</tr>
<tr>
<td>Nevada</td>
<td>$39,649</td>
<td>21.77%</td>
<td>41.84%</td>
</tr>
<tr>
<td>Michigan</td>
<td>$34,342</td>
<td>24.72%</td>
<td>51.29%</td>
</tr>
</tbody>
</table>

Although Michigan’s low-educational-attainment economy generated prosperity for several decades, the loss of manufacturing to global competition led to a sharp economic decline (metro Detroit region dropped from 15th to 25th from 2005 to 2007 – just 2 years!)

How long can Nevada “beat the odds”?

Data Source: www.michiganfuture.org
Below average educational attainment levels
... significant variations in economic outcomes

<table>
<thead>
<tr>
<th></th>
<th>Nevada</th>
<th>Michigan</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007 Per Capita Personal Inc. (PCPI)</td>
<td>18</td>
<td>34</td>
</tr>
<tr>
<td>%Change in PCPI 2001-07</td>
<td>17</td>
<td>51</td>
</tr>
<tr>
<td>%Change in Tot Empl 2001-07</td>
<td>1</td>
<td>51</td>
</tr>
<tr>
<td>%Change in Total Wages 2001-07</td>
<td>2</td>
<td>51</td>
</tr>
<tr>
<td>%Chg in LowEd Ind Wages 01 07</td>
<td>2</td>
<td>51</td>
</tr>
<tr>
<td>%Chg in HiEd Ind Wages 01 07</td>
<td>1</td>
<td>51</td>
</tr>
<tr>
<td>% of Pop. with Bach+ Degrees</td>
<td>45</td>
<td>35</td>
</tr>
</tbody>
</table>

Despite significant efforts to diversify Michigan’s economy over the past 20+ yrs, its relatively low educational levels stifled prosperity … once the “golden goose” (manufacturing) left to other states (e.g. Alabama) & regions (e.g. Asia)

What is the fate of Nevada if we don’t increase the educational attainment levels of our population?

Data Source: www.michiganfuture.org
Below average educational attainment levels ... similar economic outcomes

<table>
<thead>
<tr>
<th></th>
<th>Nevada</th>
<th>Wyoming</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007 Per Capita Personal Inc. (PCPI)</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>%Change in PCPI 2001-07</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>%Change in Tot Empl 2001-07</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>%Change in Total Wages 2001-07</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>%Chg in LowEd Ind Wages 2001-07</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>%Chg in HiEd Ind Wages 2001-07</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>% of Population with Bach+ Degrees</td>
<td>45</td>
<td>41</td>
</tr>
<tr>
<td>% Wages from HiEd Attainment Ind's.</td>
<td>51</td>
<td>50</td>
</tr>
<tr>
<td>% of Population with Assoc Degrees</td>
<td>33</td>
<td>3</td>
</tr>
</tbody>
</table>

Wyoming’s lower-educational-attainment economy has benefited from a boom in the production of fossil fuel energy resources.

Harnessing and exporting Nevada’s vast renewable energy resource base has the potential to sustain our prosperity (for a while)... but, knowledge-based (innovation) jobs must be created too (Renewable Energy provides both!)

Data Source: www.michiganfuture.org
Presentation Agenda

1. NIREC Overview
2. Higher education and Nevada’s economy
 – How do we stack up?
3. Renewable energy production exports
 – A strong foundation for Nevada’s economy
4. The energy innovation imperative
 – An essential element of Nevada’s prosperous future
5. NIREC’s energy technology commercialization model
6. Parting thoughts
Nevada’s Vast Renewable Energy Endowment
Significant New Transmission Investment Potential

Legend
- Renewable Energy Zones
- Geothermal
- Biomass
- Wind
- Solar
- Federal Ownership
 - Bureau of Land Management
 - US Forest Service
 - National Park Service
 - US Fish and Wildlife Service
 - Bureau of Indian Affairs
 - Department of Defense

Routes of Major Transmission Proposals
- Frontier
- Navajo Transmission Project
- Gateway West
- Gateway South/West Express
- TransWest Express (original proposal)
- Northern Lights Island Express MT and WY
- High Plains Express
- Mountain States Intertie
- SunZa Southwest Transmission Project
- Southwest Intertie
- Wyoming Colorado Intermountain Project (TOT3) dashed line = possible extension
- Wyoming Colorado Intermountain Project (TOT3) dashed

Sources
- Data on file at Western Resource Advocates.
- 2 Phase 1, Figure 2a, Colorado: Report of the Colorado Senate Bill 07-091 Renewable Resource Generation Development Areas Task Force (2007).

Western Resource Advocates
- Date: 07/16/08
- Created By: M. Wood
Nevada’s Clean Energy Production Export Opportunity: A Significant Role for NSHE’s Community Colleges

Wind Energy

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Median Salary</th>
<th>Mean Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team assemblers*</td>
<td>$21,620</td>
<td>$26,640</td>
</tr>
<tr>
<td>Laborers & freight, stock & material movers, hand*</td>
<td>$10,45</td>
<td>$12,95</td>
</tr>
<tr>
<td>Computer-controlled machine tool operators, metal & plastic</td>
<td>$24,710</td>
<td>$32,320</td>
</tr>
<tr>
<td>Cutting, punching, & press machine setters, operators & tenders, metal & plastic</td>
<td>$11,88</td>
<td>$15,54</td>
</tr>
<tr>
<td>Drilling & boring machine tools setters, operators & tenders, metals & plastic</td>
<td>$12,76</td>
<td>$14,34</td>
</tr>
<tr>
<td>Customer service representatives*</td>
<td>$13,70</td>
<td>$16,81</td>
</tr>
<tr>
<td>Welders, cutters, solderers & brazers*</td>
<td>$29,020</td>
<td>$30,080</td>
</tr>
<tr>
<td>Production, planning, & expediting clerks*</td>
<td>$20,500</td>
<td>$40,370</td>
</tr>
<tr>
<td>Machinists*</td>
<td>$14,74</td>
<td>$17,72</td>
</tr>
</tbody>
</table>

Energy Efficiency

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Median Salary</th>
<th>Mean Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction laborers*</td>
<td>$21,210</td>
<td>$26,670</td>
</tr>
<tr>
<td>Sheet metal workers*</td>
<td>$10,24</td>
<td>$12,82</td>
</tr>
<tr>
<td>Insulation workers, floor ceiling & wall*</td>
<td>$23,660</td>
<td>$36,570</td>
</tr>
<tr>
<td>Cement masons & concrete finishers*</td>
<td>$11,37</td>
<td>$13,67</td>
</tr>
<tr>
<td>Heating & air conditioning & refrigeration mechanics & installers*</td>
<td>$12,66</td>
<td>$16,24</td>
</tr>
<tr>
<td>Hazardous materials removal workers*</td>
<td>$12,88</td>
<td>$16,62</td>
</tr>
<tr>
<td>Carpenters*</td>
<td>$13,58</td>
<td>$17,39</td>
</tr>
<tr>
<td>Plumbers, pipefitters, & steamfitters*</td>
<td>$13,64</td>
<td>$18,38</td>
</tr>
<tr>
<td>Electricians*</td>
<td>$14,76</td>
<td>$16,10</td>
</tr>
</tbody>
</table>

National wage data for selected middle-skill occupations in turbine and power transmission equipment industry, which includes producers of critical component parts for wind turbines, such as generators and gearboxes.

Presentation Agenda

1. NIREC Overview
2. Higher education and Nevada’s economy
 – How do we stack up?
3. Renewable energy production exports
 – A solid foundation for Nevada’s economy
4. The energy innovation imperative
 – An essential element of Nevada’s prosperous future
5. NIREC’s energy technology commercialization model
6. Parting thoughts
Energy, Innovation, and Education – Our National Imperative

“Energy and innovation, healthcare, and education – these are the pillars of the new foundation we have to build. “

“In no area will innovation be more important than in the development of new ways to produce, use, and save energy.”

-- President Barak Obama, August 5, 2009

“I firmly believe that the Nevada System of Higher Education will be at the forefront in leading the State out of this recession to a better economic future.”

-- Chancellor Daniel J. Klaich, July 28, 2009

⇒ NSHE is central to Nevada’s infrastructure of innovation (knowledge economy) and our future prosperity!
Unprecedented Federal Government Commitment

American Recovery and Reinvestment Act of 2009

Over $40 billion of the $787 billion recovery plan is allocated for clean energy

Investment focus:
- $16.8 billion for EERE
- $14.0 billion for electric power transmission grid infrastructure, storage and deployment
 - incl. $6 billion for loan guarantees
- $9.6 billion for other energy programs
- Expanding workforce training
- Promoting Mass Transit Systems

New and modified clean energy tax incentives are estimated at $20+ billion

Breakdown of Clean Energy Funding

- $11.0 B - Grants - State and Local Government
- $5.0 B - Energy Efficiency Improvements in Federal Buildings and Facilities
- $2.4 B - Grants - Energy Technology and Facility Development
- $14 B - Electric Power Transmission Grid Infrastructure, Storage and Deployment
- $8.0 B - Energy and Other R&D

Funds are supplemental to annual appropriations

DOE’s Technology Funding Approach the Role of NSHE

Deployment Barriers and Solutions

- Private Cost-Share:
- OCE Cost-Share:
- Project Timeline:
- Development Stages:
- Unexpected Cost:
- Risk Mitigation:

EPA Act 2005 932(d)
Commercial Demonstration Solicitation
Loan Guarantees

Private Sector Investment
(Balance Sheet, Venture, and/or Institutional)
Spurred by Risk Mitigation through Validation

First Commercial Plant
Project Completion
Attainment of performance criteria

- Basic R&D:
 - 100%/0%
- Technology Development:
 - 60%/20%
- Proof of Concept:
 - 50%/50%
- Commercially Viable Demo:
 - <50%/>50%

Permitting & Engineering
Construction
Operation
Loan Guarantee Program Risk Mitigation Pool

NSHE Universities & Research Institutes
NSHE Community Colleges

NIREC Focus
To compete, Nevada needs a robust process for commercializing energy technologies
Presentation Agenda

1. NIREC Overview
2. Higher education and Nevada’s economy
 – How do we stack up?
3. Renewable energy production exports
 – A strong foundation for Nevada’s economy
4. The energy innovation imperative
 – An essential element of Nevada’s prosperous future
5. NIREC’s energy technology commercialization model
6. Parting thoughts
Energy Technology Commercialization Stages

Commercialization Activities

ETAP Step 5
Commercial build-out:
Further capacity building

ETAP Step 4
1st commercial ("Serial #1") placement:
Formation of permanent management team
with primary focus on building scale

ETAP Step 3
Demonstration scale pilot plant development:
Team expands beyond PI & EiR to address
further scale up, cost minimization, and market
development initiatives

ETAP Step 2
Prototype development (1st level scale up):
PI teams w/ EiR to develop Business Package

ETAP Step 1
Proof of concept (lab scale) development:
PI teams w/ EiR to develop Commercialization Roadmap

Pre-Commercialization Activities

Financial Capital Providers

• Commercial Banks
• Private Equity
• Venture Capital
• Federal Grants (DOE, DOD)
• Venture Capital
• Angel Funds
• Federal grants (DOE, various SBIR)
• NIREC Funding Sources*
• Pre-seed/Angel Funds
• Federal grants (DOE, various SBIR)
• NIREC Funding Sources*
• Personal savings

[Color Key] Blue type represents primary NIREC services/capabilities
[*] NIREC Funding Sources refer to State and Federal R&D Grants, Foundation Funds and Corporate/Industry Support
NIREC’s Commercialization Acceleration Infrastructure

Pre-Commercial Activities

ETA Step 1
- NIREC Technology Selection Process
 - Stakeholders
 - TCAB
 - EIRs
 - DOE/Funders

ETA Step 2
- Develop Commercialization Roadmap
 - Stakeholders
 - EIRs
 - PI & Teams
 - Innovation Ecosystem

ETA Step 3
- Develop Business Package
 - Stakeholders
 - “Promoters”
 - PI & Teams

Commercial Activities

ETA Step 3
- Execute Commercialization Roadmap

Company-Promotion Program

Stage 1
- NIREC Technology Selection Process
- TCAB Selection Process

National Institute for Renewable Energy and Clean Energy (NIREC) Commercialization Acceleration Infrastructure

The EIR Process

- Phase 1: Project Setup
- Phase 2: Technology Validation
- Phase 3: Customer/Market Validation
- Phase 4: Iterative Process
- Phase 5: Validation of Business Package
- Phase 6: Implementation
- Phase 7: Organization and Talent Planning

The EIR (Expedited Industry Review) Process is an iterative process to validate the technology and business model.
NIREC’s Entrepreneur-in-Residence (EIR) Process

Phase 1: Project Set Up
Phase 2: Technology Validation
Phase 3: Customer/Market Validation
Phase 4: Technical Proof of Concept
Phase 5: Business Model Validation
Phase 6: Refinement of Business Package
Phase 7: Organizational and Talent Planning

Joint Responsibility: Green
EIR Responsibility: Yellow
PI Responsibility: Blue
Renewable Energy Innovation Ecosystem

- Intellectual Property
 - Major Research Institutions and Technology Companies

- Talent
 - Entrepreneurs and Business Experts

- Sustainable Enterprise

- Risk Capital
 - Public and Private Funder Network

- Key Influencers
 - Industry Incumbents, Policymakers/Regulators and Energy Consumers
NIREC Funding Program Overview

• NIREC awards up to $100,000 for commercialization of renewable energy technologies

• Awarded competitively through a stringent review process by NIREC’s Technology Commercialization Advisory Board

• Call for proposals are announced twice a year, in March and September

• Funds are currently intended for technology validation and technical proof of concept activities in ETA Steps 1 and 2

• Participation in the EIR Program to develop well grounded and compelling Commercialization Roadmaps and Business Packages
Projects Funded to Date

• Direct Conversion of Sugars, Cellulose, & Cellulosic Biomass into Fuels

• Utility Accountant – An Interactive Tool to Manage Utility Costs

• A Novel Dropwise Condenser for Geothermal Applications

Currently evaluating applications from March 09 RFP round
- 18 applicants, 7 shortlisted
- 4 awardees expected to be announced in Sep.
Presentation Agenda

1. NIREC Overview
2. Higher education and Nevada’s economy
 – How do we stack up?
3. Renewable energy production exports
 – A strong foundation for Nevada’s economy
4. The energy innovation imperative
 – An essential element of Nevada’s prosperous future
5. NIREC’s energy technology commercialization model
6. Parting thoughts
Parting Thoughts ...

• Nevada’s continued prosperity is in question unless we make a significant step towards economic diversification
 ▪ Is our state’s competitive position like that of Michigan 20+ years ago?

• Renewable energy production exports offer an excellent source of short term skilled-trades jobs
 ▪ NSHE’s community colleges has a significant role in preparing the required workforce

• The production or attraction of higher-educational-attainment (knowledge-based) industries are critical to Nevada’s future prosperity
 • Proportion of adults with a bachelors degree is a significant predictor of future prosperity*

• What distinguishes successful regions is their high concentration of talent – knowledge, creativity, and entrepreneurship – critical to Nevada’s future*

• Significant investments are needed to strengthen Nevada’s RE Innovation Ecosystem (e.g. NSHE, tech transfer, entrep., etc.)

*www.michiganfuture.org
“Best place to make a future Forbes 400 fortune? Start with this proposition: The most valuable natural resource of the 21st century is brains. Smart people tend to be mobile. Watch where they go! Because where they go, robust economic activity will follow.”

-- Rich Karlgaard, publisher, Forbes Magazine

Thank You!

www.nirec.org