The Effects of daily diabetina tea consumption on glycosylated hemoglobin, fasting glucose and lipid levels, and body mass index in normoglycemic individuals

Lauren A. Emes
University of Nevada Las Vegas

Daniel C. Benyshek
University of Nevada Las Vegas, Department of Anthropology & Ethnic Studies, Mentor

Repository Citation
Emes, Lauren A. and Benyshek, Daniel C., "The Effects of daily diabetina tea consumption on glycosylated hemoglobin, fasting glucose and lipid levels, and body mass index in normoglycemic individuals" (2008). Undergraduate Research Opportunities Program (UROP). 9.
https://digitalscholarship.unlv.edu/cs_urop/2008/aug6/9

This Event is brought to you for free and open access by the Undergraduate Research at Digital Scholarship@UNLV. It has been accepted for inclusion in Undergraduate Research Opportunities Program (UROP) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
Lauren Emes
Mentor - Duane Moser

The Effects of Daily Diabetina Tea Consumption on Glycosylated Hemoglobin, Fasting Glucose, Lipid Levels and Body Mass Index in Normoglycemic Individuals.

Type 2 diabetes mellitus is a chronic disease responsible for high levels of morbidity and mortality in the United States, especially among some ethnic minority populations. Diabetina tea, a commercially-available herbal blend tea, is a well known herbal remedy for high blood sugar among Hispanic American diabetics. This study will examine the effect of twice-daily unsweetened Diabetina tea consumption over an 8 week period on glucose (sugar) and lipid (fat) metabolism. Potential effects of Diabetina tea consumption on glucose metabolism will be measured by glycosylated hemoglobin (HbA1c) and fasting glucose tests, while the potential effects of Diabetina tea consumption on lipid metabolism will be measured by fasting blood lipid levels, in addition to body mass index (BMI) and waist circumference (WC) measurements.
The Effects of Daily Diabetina Tea Consumption on Glycosylated Hemoglobin, Fasting Glucose and Lipid Levels, and Body Mass Index in Normoglycemic Individuals

Abstract
Type 2 diabetes mellitus is a chronic disease responsible for high levels of morbidity and mortality in the United States, especially among some ethnic minority populations. Diabetina tea, a commercially available herbal blend tea, is well known as a herbal remedy for high blood sugar among Hispanic American diabetics. The use of Diabetina has been cited in peer-reviewed journal articles, such as the use of traditional herbal remedies for non-insulin dependent diabetes mellitus in south Texas (Noel, et al., 1997).

This study examines the effect of twice-daily unsweetened Diabetina tea consumption over a 6 week period on glucone (sugar) and lipids (fat) metabolism. Potential effects of Diabetina tea consumption on glucose metabolism will be measured by glycosylated hemoglobin (HbA1c) and fasting glucose tests, while the potential effects on lipids metabolism will be measured by fasting blood lipid (fat) levels, in addition to body mass index (BMI) and waist circumference (WC) measurements.

Introduction
Medical anthropology is a dynamic and rapidly growing field that draws upon biological and cultural approaches to understand the causes of health and illness within societies (Brown, 1996). While the diverse practices within medical anthropology vary, clinically applied medical anthropological focuses on healthcare within biomedical settings such as hospitals and public health programs (Brown 1996). An important aspect of medical anthropology on biomedical anthropology has been significant, creating new relationships between the fields of anthropology and epidemiology, nursing and nutrition.

Diabetes mellitus is a chronic disease caused by a deficiency in the production of insulin in the pancreas, or a lack of effectiveness of the insulin produced (CDC, 2005; WHO, 2007). This type of deficiency results in an excess of glucose in the blood, leading to diseases of the kidneys, eyes, severe damage to blood vessels and nerves, as well as an increased risk of heart attack and stroke (WHO, 2007; NIDDK, 2007). Diabetes has become one of the most common causes of death and disability in the United States, affecting 20.8 million Americans (NIDDK, 2007). Globally, diabetes is responsible for 5.4% of deaths every year. Mortality rates are expected to increase by 50% within the next ten years (WHO, 2007). Worldwide, 80% of diabetes live in low and middle-income nations (World Health Organization, 2007).

The need for efficient, non-invasive and inexpensive treatment and prevention of diabetes and its pre-diabetic metabolic precursors is imperative. One alternative-medical means of treating and preventing diabetes among Hispanic Americans is a popular herbal tea blend sold under the name Diabetina. Mexican Americans, the largest Hispanic subgroup, are 1.7 times as likely to be diagnosed with diabetes as non-Hispanic whites (CDC, 2005). While several of the herbal ingredients in Diabetina tea are known to have glucose-lowering biotechnical properties (Perez et al., 1997), there is no research on Diabetina tea and its potential to lower blood sugar levels when consumed in moderate, daily amounts, has been conducted.

Methods
Twenty healthy subjects between the ages of 18 and 34 are recruited from the university campus population. Prospective study participants are invited to attend a group (n = 10) orientation in the UNLV Nutrition, Metabolism and Anthropometry Lab. Only participants who drink any type of steamed or brewed tea only occasionally (once per week or less) are asked to complete one final study qualification step: a finger-stick blood sample for a glycosylated hemoglobin (HbA1c) test. HbA1c tests measure a person's average blood glucose over the preceding 8 to 12 weeks. Glycosylated hemoglobin is assessed using a bench top Bayer DCA 2000 Analyzer (GLA, Inc.). Each participant's HbA1c test results become available in less than 5 minutes. Only study participants who have HbA1c blood sugar levels in the non-glucose impaired, healthy range (<6%), are allowed to continue in the study.

Once a participant's HbA1c level is confirmed, they are scheduled to return to the lab within one week to provide a fasting (no food in the previous 10 hours) finger-stick blood sample. This second finger-stick sample consists of 100 microliters (0.1 cc or approximately 5 or 6 drops) of whole blood, which is assessed for fasting blood glucose and blood lipids. Fasting glucose and lipids are assessed using an Abaxis Point-of-Care Blood Chemistry (CLIA-waived). Participants are also measured for standing height (rigid tape measure), weight (stadiometer-quality electronic scale) used to calculate body mass index (BMI), and waist circumference (WC) (flexible tape measure).

At this point, participants are randomly assigned to one of two groups: one group of 10 participants are provided with Enough Diabetina tea to consume two (and only two) cups (approximately 8 oz each) of unsweetened tea per day for the next 8 weeks, while the other group of 10 participants receive enough unsweetened green tea to consume two (and only two) cups of unsweetened tea per day for 8 weeks. In this double-blind study, participants are unaware of which brand of tea they will receive. Participants are asked to refrain from all other tea consumption during the study and to note their daily (study) tea consumption -- including any missed days -- on a calendar.

After 8 weeks (study midpoint), participants are scheduled to return to the lab in a fasted state to repeat the HbA1c, fasting glucose/lipid tests and anthropometric (BMI/WC) tests/measurement. At this time, participants are once again provided with enough tea (either Diabetina or green tea) -- whichever they did not receive during the previous 8 week period) to consume two cups of unsweetened tea per day for an additional 8 weeks.

Eight weeks later (16 weeks into the study) participants are once again scheduled to return to the lab in a fasted state to be tested/monitored as before. Upon completion of the study, HbA1c data, fasting glucose and lipid levels will be analyzed to determine if HbA1c glucose levels, fasting glucose and lipid levels were significantly different after participants began consuming tea on a daily basis. If no significant differences were observed, the study would be deemed successful. Participants' anthropometric data (BMI/HC) will be analyzed to determine if any significant weight loss/gain took place during the 16 weeks of participation. Statistical analyses will be performed using SPSS 11.5.

Discussion
Due to the 16-week time table of this research project, as well as the complexities which accompany conducting human research, no data has been analyzed to date. However, we are working proactively toward results.

The deliverable outcomes of this research include the publication of important medical and nutritional anthropological information in the form of peer-reviewed manuscripts appropriate in anthropological and scientific journals. Additionally, this research may potentially be presented at national conferences, such as those held by American Anthropological Association and the Society for Medical Anthropology.

Literature Cited

Acknowledgements
This research project was funded by the National Science Foundation Experimental Program to Stimulate Competitive Research.

I would like to thank Dr. Daniel C. Benyshek, this research would not have been possible without his unwavering support and assistance throughout this experience.