Aug 6th, 9:00 AM - 12:00 PM

Computational studies of H2, O2, and CO adsorption on Pt and Pt-Ru catalyst clusters for hydrogen fuel cell applications

Huy Mai
University of Nevada, Las Vegas

T.J. Dhilip Kumar
University of Nevada, Las Vegas

P. Tarakeshwar
University of Nevada, Las Vegas

Naduvalath Balakrishnan
University of Nevada, Las Vegas

Repository Citation
Mai, Huy; Kumar, T.J. Dhilip; Tarakeshwar, P.; and Balakrishnan, Naduvalath, "Computational studies of H2, O2, and CO adsorption on Pt and Pt-Ru catalyst clusters for hydrogen fuel cell applications" (2008). *Undergraduate Research Opportunities Program (UROP)*. 13.
https://digitalscholarship.unlv.edu/cs_urop/2008/aug6/13

This Event is brought to you for free and open access by the Undergraduate Research at Digital Scholarship@UNLV. It has been accepted for inclusion in Undergraduate Research Opportunities Program (UROP) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
Huy Mai
Mentor - Balakrishnan Naduvalath

Computational Studies of Platinum and Platinum-Ruthenium Alloy Catalysts for Hydrogen Fuel Cells

Previous computational studies of hydrogen fuel cell catalysis primarily focus on single adsorbate and therefore do not reflect the realistic situation. Here we investigated the effect of multiple hydrogen, oxygen, and carbon monoxide adsorption on bimetallic nanoclusters as allowed by computational resources. The criteria of which we studied were adsorption energies, electron densities, electrostatic charges, and HOMO-LUMO energy gaps with respect to each structure. We found that Pt-Ru clusters have better performance than pure Pt clusters early in the adsorption course, and pure Pt clusters are more consistent than Pt-Ru clusters in a sequence of adsorbate introduction.
Computational Studies of H₂, O₂, and CO Adsorption on Pt and Pt-Ru Catalyst Clusters for Hydrogen Fuel Cell Applications

Huy Mai, T. J. Dhillip Kumar, P. Tarakeshwar, and N. Balakrishnan

Introduction

We present density functional theory (DFT) calculations of chemisorption of H₂, O₂, and CO molecules on pure platinum (Pt) and platinum-ruthenium clusters (Pt₃Ru) of tetrahedral and rhombus configurations. Unlike most previous computational studies of hydrogen fuel cell catalysis in which the interaction of a single adsorbate molecule with the catalyst cluster was investigated, we explore the effect of co-adsorbed molecules on the catalytic activity. Adsorption energy, HOMO-LUMO energy gap, and electrostatic potential map of each metal-adsorbate system were calculated to investigate the effect of adsorbate saturation on the catalyst particle.

Method

DFT calculations were performed using the DMol³ software with the Perdew-Wang exchange-correlation functional. Double numerical basis set with polarization functions were adopted to evaluate the total energy and relevant properties of each geometrically optimized structure.

Results

![Graphs showing results of DFT calculations.]

Conclusion

Results show that the doping of Ru into tetrahedral Pt structure raises the adsorption energy initially for hydrogen and oxygen interactions. However, Ru doping causes a decrease in the adsorption energy after four adsorbates while that of pure Pt remains nearly constant during the adsorption process. For CO adsorption, the doping of Ru lowers the adsorption energy for all four CO molecules interacting with the cluster. This shows that Ru-doped clusters may be less susceptible to CO poisoning because the adsorbed CO molecules can be easily desorbed at lower temperatures.

Acknowledgment

This project is funded by the National Science Foundation under grant number 0447416 and also by DOE grant # DE-FG36-05GO85028.