Aug 6th, 9:00 AM - 12:00 PM

Denitrification in Great Basin hot springs

Austin McDonald
University of Nevada, Las Vegas

Brian P. Hedlund
University of Nevada, Las Vegas

Repository Citation

This Event is brought to you for free and open access by the Undergraduate Research at Digital Scholarship@UNLV. It has been accepted for inclusion in Undergraduate Research Opportunities Program (UROP) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
Austin McDonald
Mentor - Brian Hedlund

Hydrogen has been proposed to fuel primary production in the Aquificae-dominated hot springs of Yellowstone National Park (Spear, et al. 2005), a finding the authors generalized to all hot springs. However, clone libraries derived from Great Basin springs contain few 16S ribosomal RNA (rRNA) gene sequences from Aquificae and many from unknown microorganisms. In the same springs, alternative electron donors rival the reducing power of hydrogen. This project will try to cultivate the uncharacterized microbes of two Great Basin springs and determine which electron donors they can use.

Nitrogen is key to life. In its reduced form, ammonia, it is a primary constituent of nucleic acids and proteins. In its oxidized form, nitrate, it frequently substitutes for oxygen in anoxic conditions as microbes’ preferred electron acceptor for respiration. In this capacity, it drives energy capture—typically, though not always, in the process of denitrification [8]. Understanding the supply, demand, and interconversion of nitrogen through an ecosystem is essential to understanding the life within it. Although denitrification has been predicted to occur within hot springs on thermodynamic grounds, and some thermophilic isolates reduce nitrate, denitrification has never been examined in a hot spring. The hot springs of the Great Basin are under studied reservoirs of novel metabolisms and microbes, and are well worth in-depth exploration. Our project adapts techniques regularly used in marine and soil microbiology [6,7,9] to higher temperatures to test our hypothesis: that some thermophiles within the hot springs respire nitrate, in the process of denitrification, for a significant amount of energy capture.
Introduction

School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada

Denitrification in Great Basin hot springs

Austin McDonald, Brian P. Hedlund

Results and discussion

Isolated bacteria

Nitrite + oxygen → nitric oxide → nitrous oxide → nitrogen gas

Finding's

Springs' denitrification activities

Nitrite + oxygen → nitric oxide → nitrous oxide → nitrogen gas

Aims and methods

1. To determine the presence of denitrification in the springs
2. To isolate and identify the bacteria responsible for denitrification
3. To study the effects of temperature and pH on denitrification activities
4. To analyze the chemical composition of the springs
5. To understand the ecological implications of denitrification in hot springs

Significant biomarkers for denitrification activities

Future directions

For more information

2019 DeGruyter