2008

Immobilization of Fission Iodine by Reaction with a Fullerene Containing Carbon Compound and Insoluble Natural Matrix

Spencer M. Steinberg
University of Nevada, Las Vegas, spencer.steinberg@unlv.edu

Gary Cerefice
University of Nevada, Las Vegas, cerefice@unlv.nevada.edu

David W. Emerson
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/hrc_trp_separations
Part of the [Analytical Chemistry Commons](https://digitalscholarship.unlv.edu/hrc_trp_separations), [Oil, Gas, and Energy Commons](https://digitalscholarship.unlv.edu/hrc_trp_separations), and the [Physical Chemistry Commons](https://digitalscholarship.unlv.edu/hrc_trp_separations)

Repository Citation
Available at: https://digitalscholarship.unlv.edu/hrc_trp_separations/44

This Annual Report is brought to you for free and open access by the Transmutation Research Program Projects at Digital Scholarship@UNLV. It has been accepted for inclusion in Separations Campaign (TRP) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
BACKGROUND

The recovery of iodine released during the processing of used nuclear fuel poses a significant challenge to the transmutation of nuclear waste. Iodine-129, a long-lived fission product formed by both commercial nuclear power generation and nuclear weapons production, is released when reprocessing nuclear fuel. Since iodine can be concentrated in the human thyroid, any uncontrolled release of iodine may result in an increased rate of thyroid cancer in the exposed population. For this reason, recovery of iodine is important for implementing any nuclear transmutation strategy.

The first step in any transmutation strategy is the processing of the used nuclear fuel. This step involves separating the used fuel into its constituent elemental components, allowing the recovery of the uranium, transuranic actinides, long-lived fission products, and other components, depending on the strategy and processes involved.

When used fuel rods are dissolved in concentrated nitric acid in preparation for actinide recovery, iodine is released from the fuel. A significant fraction of the iodine is lost to the vapor phase during this process, where it may potentially become a fugitive emission and be released from the plant. To avoid this, specialized filtration systems are used to try to trap and sequester the released iodine (and other fission product gases).

The primary goal of this research is to capture and immobilize the iodine released from these processes in a form that can easily be converted to a suitable target for neutron-induced transmutation. The investigators believe that iodine released during fuel reprocessing can be immobilized in a Fullerene Containing Carbon (FCC) compound or a Natural Organic Matter (NOM) matrix.

NOM (such as spaghnum moss, peat or brown coal) is an inexpensive and a renewable resource. Further processing of the trapped iodine using simple desorption or combustion processes should be able to produce iodine in a form suitable for transmutation. Furthermore, collaborators at the Khlopin Radium Institute (KRI) in St. Petersburg, Russia, have proposed that the iodine-loaded FCC material, when combined with ceramics, is stable enough for use as a long-term storage form, and may be usable as a transmuter target matrix.

RESEARCH OBJECTIVES AND METHODS

The stability of the association of iodine with FCC and NOM products were studied. Product distributions for the various matrices under various reaction conditions were examined in order to maximize the binding of iodine. The recovery of the iodine from the sequestration matrices was also examined, along with the conversion of the iodine to matrices more suitable for geological storage and/or use as transmutation targets.

RESEARCH ACCOMPLISHMENTS

Observations related to the oxidation of iodide to iodine (I₂) or hypoiodic acid (HIO) by MnO₂ were continued. The formation of triiodide presumable involves the adsorption of iodide onto the MnO₂ surface (perhaps displacing a surface hydroxyl group). The
iodide should be subsequently oxidized and released back into solution as IOH or I_2, which rapidly forms I_3-. The kinetic data has been modeled as a first order process. First order rate constants have been obtained for the formation of iodine in the presence of MnO_2. The increase in iodide oxidation rates with MnO_2 concentration is evident in the data. The reaction rate increases with iodide concentration although the dependence is not first order (an order of 1.4 appear to fit the data). The oxidation rate also increases with temperature and has a apparent activation energy of 16.2 kJ/mol.

The total yield of iodine form these materials was compared with the resulting Mn (II) concentration to estimate the oxygen to manganese ratio (MnO_2) for the starting material. This ratio (x) is a function of the average oxidation state of the material and is given by:

\[x = 1 + \frac{I_3^-}{Mn^{2+}} \]

The rate of iodide oxidation can be seen to vary significantly for the various preparations.

It is clear that some manganese oxide can oxidize iodide to iodine under mild pH and temperature conditions. By comparison, laboratory grade MnO_2 reacted sluggishly under these conditions. Because of the wide distribution of this mineral in nature, it is believed that the oxidation of iodide by manganese oxide may result in the formation of organic iodine bonds in sedimentary and soil organic matter.

TASK 15 PROFILE

Start Date: August 2002
Completion Date: October 2007

Theses Generated:

<table>
<thead>
<tr>
<th>Mineral</th>
<th>O/Mn Ratio</th>
<th>K(sec^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptomelane Type II</td>
<td>1.39</td>
<td>0.0328</td>
</tr>
<tr>
<td>Sodium Manganese Oxide Hydrate</td>
<td>1.87</td>
<td>0.0149</td>
</tr>
<tr>
<td>Black Birnessite + Cryptomelane</td>
<td>1.74</td>
<td>0.0137</td>
</tr>
<tr>
<td>Cryptomelane Type II</td>
<td>2.2</td>
<td>7.97 E-03</td>
</tr>
<tr>
<td>Cryptomelane Type II</td>
<td>2.47</td>
<td>1.49 E-03</td>
</tr>
<tr>
<td>Cryptomelane Type II</td>
<td>1.92</td>
<td>3.27 E-03</td>
</tr>
<tr>
<td>Manganese Oxide Hydrate</td>
<td>1.83</td>
<td>1.27 E-02</td>
</tr>
</tbody>
</table>

Rate constants for iodide oxidation (at pH 4 and solid concentration of 1 mg/mL) are tabulated along with the measured oxygen to manganese ratio of the manganese oxide. The mineral was identified by powder x-ray analysis.

Research Staff

Spencer M. Steinberg, Principal Investigator, Professor, Chemistry Department

Gary S. Cerefice, Assistant Research Professor, Harry Reid Center for Environmental Studies

David W. Emerson, Emeritus Professor, Chemistry Department

Students

Ginger Kimble, Nancy Birkner and James Dorman, Graduate Students, Chemistry Department

Collaborators

James J. Laidler, Senior Scientist, Chemical Technology Division, Argonne National Laboratory

George F. Vandergrift, III, Senior Scientist, Chemical Technology Division, Argonne National Laboratory

Michael Savopulo, V. G. Khlopin Radium Institute—Research-Industrial Enterprise, St. Petersburg, Russia

Boris E. Burakov, Head of Mineralogical Group, V.G. Khlopin Radium Institute—Research-Industrial Enterprise, St. Petersburg, Russia