A New Method to Derive Electronegativity from Resonant Inelastic X-ray Scattering

Stephane Carniato
University of Paris

Loic Journel
University of Paris

Renaud Guillemin
University of Paris, renaud.guillemin@upmc.fr

Maria Novella Piancastelli
Uppsala University, maria-novella.piancastelli@physics.uu.se

Wayne C. Stolte
University of Nevada, Las Vegas, wcstolte@lbl.gov

See next page for additional authors

Follow this and additional works at: https://digitalscholarship.unlv.edu/chem_fac_articles
Part of the [Biological and Chemical Physics Commons](https://digitalscholarship.unlv.edu/chem_fac_articles) and the [Chemistry Commons](https://digitalscholarship.unlv.edu/chem_fac_articles)

Repository Citation
https://digitalscholarship.unlv.edu/chem_fac_articles/86

This Article is brought to you for free and open access by the Chemistry and Biochemistry at Digital Scholarship@UNLV. It has been accepted for inclusion in Chemistry and Biochemistry Faculty Publications by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
A new method to derive electronegativity from resonant inelastic x-ray scattering

1 UPMC Univ Paris 06, UMR7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France
2 CNRS, LCPMR (UMR 7614), 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France
3 Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
4 Department of Chemistry, University of Nevada, Las Vegas, Nevada 89154-4009, USA
5 Harry Reid Center for Environmental Studies, University of Nevada, Las Vegas, Nevada, 89154-4003, USA

(Received 7 August 2012; accepted 18 September 2012; published online 10 October 2012)

Electronegativity is a well-known property of atoms and substituent groups. Because there is no direct way to measure it, establishing a useful scale for electronegativity often entails correlating it to another chemical parameter; a wide variety of methods have been proposed over the past 80 years to do just that. This work reports a new approach that connects electronegativity to a spectroscopic parameter derived from resonant inelastic x-ray scattering. The new method is demonstrated using a series of chlorine-containing compounds, focusing on the Cl 2p-KL emission electronic states reached after Cl 1s → LUMO core excitation and subsequent KL radiative decay. Based on an electron-density analysis of the LUMOs, the relative weights of the Cl 2p atomic orbital contributing to the Cl 2p z molecular spin-orbit components are shown to yield a linear electronegativity scale consistent with previous approaches.

I. INTRODUCTION

Electronegativity is a fundamental concept closely coupled to chemical properties, such as bond energies, electron affinities, bond dipole moments, force constants, and inductive effects. In principle, direct correlations between electron-structure parameters and electronegativity should exist. Unfortunately, there is no direct experimental method to determine numerical values for electronegativity; they must either be calculated or derived from other chemical or physical properties. Several schemes have been proposed over the years, leading to a number of different electronegativity scales.1–15

Historically, three major approaches to electronegativity of atoms and chemical groups have emerged over the last century. In introducing the concept, Linus Pauling defined electronegativity as “the power of an atom in a molecule to attract electrons to itself,” i.e., the concept of electronegativity as “the power of an atom in a molecule to attract electrons to itself,” 1, 2 i.e., the concept of electronegativity was clearly defined in terms of an atom within a molecule. In Pauling’s thermochemical approach, D(A−G), the energy of the A−G bond in the polyatomic molecule A−G, is related to the bond energies D(A−A) and D(G−G) of the molecules A−A and G−G, respectively, and to the difference between their electronegativities, Δχ = χA − χG, by the relation

D(A−G) = √[D(A−A)D(G−G)] + K(Δχ)2. (1)

Extension of this concept to groups of atoms gave rise to group electronegativity,5 in which a functional group can be treated as a pseudo-atom. Pauling’s approach has been criticized because different factors (bond order, steric effects, etc.) likely contribute to the value of Δχ. Furthermore, only the absolute value, |Δχ|, can be derived directly from Eq. (1), leaving some ambiguity about its sign.

Later, in the context of density-functional theory, electronegativity (chemical potential) was identified by Iczkowski-Murgraves16 (Parr17) as the negative (positive) of the partial derivative of the energy E of an atom or group of atoms with respect to the number of electrons N [−μ = χ = −(∂E/∂N)V(R)], determined within a constant external potential, V(R). In this formalism, χ has units of energy, and it is considered to be a ground-state property of a free atom (or group of atoms), as opposed to the property of an atom within a molecule. An open question is how this latter approach might be related to measurable parameters. One possibility, in a Mulliken/Parr/Pearson framework, expresses the energy of an atom A with Q electrons as

E(QA) = E0A + ΔEAQA + 1/2QA2∂2E/∂QA2 + ... ,

where 1/2∂2E/∂QA2 = Δχ0 is the electronegativity (IE and EA are the vertical ionization energy and the electron affinity, respectively) and 1/2∂2E/∂QA2 = Δχ0 is the hardness. Consequently, electrostatic energies in molecular systems are related not only to hardness and electronegativity but also are dependent on interatomic electrostatic energies within the molecule.18

E(Q1, ..., QN) = ∑ A (E0A + Δχ0QA + QA2ηA)

+ ∑ A C A B QAQB1AB, (3)

Permanent address: Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden.
where J_{AB} is the Coulomb interaction between unit charges on centers A and B (J_{AB} depends on the distance between A and B). Taking the derivative of E with respect to Q_A leads to an effective atomic-scale chemical potential of the form

$$\chi_A = \partial E/\partial Q_A = \chi_A^0 + 2\eta_A Q_A + \sum_{A \neq B} Q_B J_{AB}. \quad (4)$$

The Mulliken/Pearson electronegativity scale is based on IE and EA measurements in isolated atoms, radicals, or entire molecules.\(^5\) For A-G, where A is an atom and G a group of atoms, determination of χ_A^0 can thus suffer for radicals in which the geometry of the isolated species differs significantly from the geometry of the species bound in a molecule. This effect is not without consequences on the charge carried by atoms or radicals in molecular systems. Indeed, at equilibrium, where the atomic chemical potentials are equal\(^8\) and $Q_G = -Q_A$:

$$Q_A = \frac{\chi_A^0 - \chi_G^0}{2(\eta_G + \eta_A - J_{AG})}, \quad (5)$$

where J_{AG}, η_G, and χ_G^0 are all dependent on the geometry of the group.

More recently, Allen\(^6\) introduced an atomic “spectroscopic” electronegativity scale based on the average ionization energies of the valence electrons. For main-group (non-transition) elements,

$$\chi = \frac{n_s \epsilon_s + n_p \epsilon_p}{n_s + n_p}. \quad (6)$$

In Eq. (6), n_s and n_p are the numbers of s and p valence electrons, and ϵ_s and ϵ_p are the multiplet-averaged differences in total energy between the ground-state neutral atom and its monopositive ion resulting from the loss of a valence s or p electron. The quantities ϵ_s and ϵ_p can be extracted directly from spectroscopic data or approximated computationally, using appropriate orbital energies. While this approach has gained considerable acceptance for non-transition elements, it has been criticized because it ignores the effects of interpenetration of valence and shallow-core subshells, and because there is some ambiguity about the number of d valence electrons to be used in calculating the configuration energies. While a new method has recently been proposed to mitigate these concerns,\(^13\) this third approach remains purely computational.

Generally, however, experiments typically focus on atoms or groups of atoms bound in a molecule, making it desirable to be able to correlate results from such measurements to electronegativity. For example, experimental observables measured by a variety of techniques, including bond-stretching frequencies obtained from infrared spectroscopy,\(^18\) NMR chemical shifts,\(^19\) isomer shifts in Mössbauer spectroscopy,\(^20\) and substituent constants due to field-induced effects (T^2 and σ_f) in benzene derivatives, have been shown to correlate with electronegativity. Numerous reports also have correlated χ, and its related parameters (e.g., Hammett constants, which incorporate electronegativity and other factors such as polarizability and inductive effects), to core or valence binding energies measured via x-ray or UV photoelectron spectroscopy (XPS or UPS).\(^23\)–\(^28\) As an experimental method that interacts with electrons, photoelectron spectroscopy would seem to be a natural candidate to correlate to electronegativity because it probes directly the electronic structure of isolated molecules. In particular, core-shell results from XPS might be expected to correlate straightforwardly to electronegativity because of the well-known linear relationship between core binding energies and chemical shifts related to the local charge on the ionized atom.

Resonant inelastic x-ray scattering (RIXS) consists in analyzing in energy the radiative decay after resonant photoexcitation. An overview is presented of the theory of x-ray Raman scattering in Refs. 29 and 30, where a synopsis of relevant experimental techniques, and basic theoretical concepts and principles of x-ray Raman scattering are described. Because both RIXS and XPS are core-electron spectroscopies, properties (core binding energy, core-hole lifetime,\(^31\) electronegativity, etc.) derived from both techniques are sensitive to the net charge transfer in a molecule via relaxation after core excitation (or ionization\(^32,33\)). RIXS deals with a neutral core-excited state, as opposed to a core-ionized state in XPS. This is an important distinction because the degree to which the entire molecular medium is polarized will generally be different for a neutral state (RIXS) than a singly charged state (XPS).

The goal of this paper is to show that RIXS spectroscopy is an efficient way to probe charge sharing between an atom (in this case Cl) and any ligand bound to it. The RIXS technique achieves this through promotion of a Cl 1s electron to the lowest-unoccupied molecular orbital (LUMO) in an x-ray-scattering process that reflects the character of the chemical bond, regardless of its polarizability. Using chlorinated compounds benefits from the fact that chlorine forms only single bonds, simplifying the interaction with its bonding partner and consequently the interpretation of the RIXS data. It is well established that the chemical environment of an atom in a molecule affects both its valence and core ionization energies. Subtler influences, such as spin-orbit coupling and molecular-field effects, also are routinely observed in molecular spectra.\(^34\) In chlorinated compounds, for example, the Cl-2p spin-orbit coupling (≈ 1.65 eV) is much larger than the molecular-field splitting, as is typical for core states. We have shown recently that radiative KL decay in various chlorine-containing compounds, specifically the Cl 1s$^{-1} \rightarrow 2p^{-1}$ transition following resonant excitation of a Cl 1s electron into the LUMO, exhibits complex structure and linear dichroism.\(^35\)–\(^40\)

A schematic representation of the present RIXS experiments is shown in Fig. 1. In HCl, for instance, KL emission spectra exhibit a characteristic spin-orbit doublet.\(^41\) However, the spin-orbit intensity ratio of the 2p$_{3/2}$ and 2p$_{1/2}$ components differs from the (atomic) statistical value of exactly 2, and it varies as a function of the angle θ between the polarization of the incoming and scattered photons,\(^36\) with parallel polarization ($\theta = 0^\circ$) showing the largest deviation from 2 (see Fig. 1). These observations, particularly the linear dichroism, have been explained in terms of the electronic populations of the Cl 2p$_z$, and 2p$_{x,y}$ atomic orbitals contributing to the molecular spin-orbit doublet: essentially the linear combination of atomic orbitals in molecular orbitals picture applied to core states. The atomic 2p$_z$ and 2p$_{x,y}$ orbitals are inequivalent from a chemical point of view because the 2p$_z$ is
oriented along the chemical bond, while $2p_x$ and $2p_y$ are perpendicular. Because the polarization of the scattered photons depends directly on the symmetry of the initial and final states involved in the x-ray-scattering process, polarized-RIXS measurements provide a direct and sensitive determination of the relative weights of the atomic $2p$ orbitals with different orientations relative to the bond axis.

Our experimental scheme involves creating a chlorine $2p$ hole coupled to a spectator valence electron as final state. The same final state could also be reached by the direct excitation of a chlorine $2p$ electron to the LUMO, and, thus, one might be able to get the same information from x-ray absorption measurements (XAS), which would have the advantage of being a simpler experimental technique. However, RIXS measurements in the Cl K-edge region (≈ 2.8 keV) with long-pulse light sources produce high-energy-resolution decay spectra and can take advantage of ultrafast nuclear dynamics using the concept of effective duration time of the scattering process.\cite{29, 30} We have previously shown\cite{36, 37, 40, 41} that the dynamical broadening (≈ 1.20 eV in HCl\cite{37}) observed in x-ray absorption spectra is quenched on top of below-threshold resonances, and the width of the x-ray-emission lines approaches the natural core-hole width ($\Gamma_c \approx 0.65$ eV). Line narrowing is more apparent for transitions between core shells, such as Cl $2p$ and $1s$, because these core-excited states have nearly parallel potential-energy surfaces.\cite{41} Studies of such transitions have revealed that Cl $2p_z$ substructures in spin-orbit KL lines of fundamental interest in the present study,\cite{35–40} have very low cross-section and can not be relevant (see Fig. 1 and Ref. 37 for details) in x-ray absorption spectroscopy.

In this work, we report spin-orbit-state populations obtained both theoretically and experimentally for a series of chlorine-containing molecules. Experimental values were collected for HCl, CF$_3$Cl\cite{36, 37} Cl$_2$, and CH$_3$Cl\cite{39} using polarized-RIXS measurements. For these systems, theoretical \textit{ab-initio} calculations and Eq. (25) in Refs. 36 and 37 explained the physics and reproduced the experimental variation of the $2p_{3/2}$ and $2p_{1/2}$ intensity ratios as a function of polarization.

New theoretical results are presented here for a much wider variety of Cl-R molecules, with R = K, Na, Li, SiH$_3$, SiCl$_3$, I, t-C$_4$H$_9$, C$_2$H$_5$, i-C$_3$H$_7$, C(NH$_2$)$_3$, H, CH$_3$, Br, NH$_2$, SF$_4$, Cl, NF$_2$, OCH$_3$, SiF$_3$, CF$_3$, OH, C(NO$_2$)$_3$, and F. For all of these species, relative weights of the Cl $2p_z$ atomic orbital contributing to the $2p_{1/2}$ molecular spin-orbit state were compared to electronegativities of the substituent atoms or groups bonded to chlorine, and a linear relationship was found between tabulated Pauling/Datta values of electronegativity and the $2p_z$ populations. In addition, the energy splitting of the constituent $2p_z$ and $2p_{x,y}$ atomic orbitals is sensitive to the nature of the ligand as well as the Cl-R bond distance, thus influencing the strength of the mixing of triplet and singlet states by the spin-orbit interaction. These findings are explained in terms of the localization of the electron excited to the LUMO in each species.

While electronegativity scales are numerous and the literature extensive, the goal of the present paper is to discuss to which extent links between different scales can be made. In other words, is there a direct connection between the electronegativity of the substituent groups and the observed $2p_z$ population relative to the core-excited chlorine atom?

![FIG. 1. Left panel: Schematic of the polarized-x-ray emission spectrometer used for RIXS measurements. Inset: Simplified representation of the RIXS process studied. (See text for details.) Right panel (upper): Experimental and calculated x-ray absorption spectra of HCl.\cite{137} In solid lines (dashed line) are indicated the $2p_{3/2}$ and $2p_{1/2}$ spin-orbit states where the $2p$ hole is in the Cl $2p_{3/2}$ (Cl $2p_z$) atomic orbital. Right panel (lower): Theoretical KL RIXS spectra obtained at $\theta = 0^\circ$ (left) and $\theta = 90^\circ$ (right) at the top of the resonance, compared to experiment. Cl $2p_z$ components of interest are in grey colour.](Image 272x300 to 291x324)
II. RESULTS AND DISCUSSION

A. RIXS-derived electronegativities: Probing electron-density sharing

Figure 2 shows a pictorial representation of the charge transfer probed by RIXS and the general scheme of how the experimental results relate to electronegativity.

Because the RIXS final state includes two unpaired electrons (one core, one valence), molecular Cl 2p spin-orbit states are a mixture of nonrelativistic atomic 2px,py,pz singlet and triplet states, with the strength of the singlet-triplet mixing being strongly related to the spin-orbit coupling parameter for the Cl 2p subshell and the singlet-triplet exchange energy, ΔST (see Sec. III B). The splitting ΔST can be formulated as twice the integral exchange energy (due to exchange, the triplet state is lower than the corresponding singlet state):

\[
\Delta ST = 2 \int \frac{1}{r_{12}} \phi_{2pA}(1) \phi_{2p}(2) \Psi_{LUMO}(1) d\mathbf{r}_1 d\mathbf{r}_2.
\]

(7)

Considering a two-level model where the antibonding LUMO is constructed as a linear combination of chlorine and ligand atomic orbitals, \(\Psi_{LUMO} = c_A \phi_A + c_B \phi_B\), centered on atoms A(Cl) and B(R), respectively, the exchange integral can be rewritten as

\[
\int \frac{1}{r_{12}} \phi_{2pA}(1) \phi_{2p}(2) \Psi_{LUMO}(1) d\mathbf{r}_1 d\mathbf{r}_2 = c_A^2 I_{2pA} + c_B^2 I_{2pB} + 2c_Ac_B I_{2pAB},
\]

(8)

where

\[
I_{2pA(B)} = \int \frac{1}{r_{12}} \phi_{2pA(B)}^2(1) \Psi_{LUMO}(1) d\mathbf{r}_1 d\mathbf{r}_2
\]

(9)

and

\[
I_{2pAB} = \int \frac{1}{r_{12}} \phi_{2pA(1)}^2 \phi_{2pB(2)} \Psi_{LUMO}(1) d\mathbf{r}_1 d\mathbf{r}_2,
\]

(10)

where \(I_{2pA(B)}\) and \(I_{2pAB}\) are the one-site and two-site atomic exchange integrals, respectively.

In principle, \(I_{2pB}\) is a small quantity and \(\Delta ST\) exchange integral mainly depends on the localized or diffuse character of \(I_{2pA}\), \(I_{2pAB}\) as well as the relative magnitude of \(c_A\) and \(c_B\) coefficients.

As already depicted, RIXS measurable quantity is a spectroscopic spin-orbit subcomponent (\(2p_z\) weights in KL in chlorinated compounds). Because the final state in the RIXS process bears a core hole in the Cl 2p subshell as well as in XPS core-ionized process, factors beyond electronegativity and chemical hardness (or group polarizability) must be considered, \textit{a priori}, when interpreting RIXS phenomenon. These factors include charge transfer within the molecule due to electronic relaxation/correlation induced of valence electrons and re-polarization of excited electron in the LUMO in the presence of the core hole.

The amount of charge transfer that occurs through re-polarization of the valence electrons on the spectator chlorine can be significant (see Mulliken charges \(Q_{Cl}\) in the ground state and \(Q_{Cl}^{2p_x}\) in the \(2p_z^{-1}LUMO^1\) core-excited state reported in Table I). According to the core-equivalent model, RIXS and XAS scales can be viewed as related to the properties of a neutral Ar-R species. In general, the spectator electron tends to be polarized away from the core hole and the valence electrons towards the core hole. This phenomenon has been already discussed in the literature. As shown in Fig. 3 and Table I, and although one has to take care from Mulliken charges partitioning, our analysis over a large set of radicals shows that the \(2p_z\) weights are well connected with the charge distribution between the atomic chlorine...
and the radical in the neutral ground state. Furthermore, as clearly depicted by Eq. (5), i.e., by changing χ_{Cl}^0 (8.30 eV)/η_{Cl} (4.68 eV) with χ_{Ar}^0 (7.698 eV)/η_{Ar} (8.061 eV), as far as the effect of changing Cl by Ar can modify the magnitude (and even the sign) of the charge on chlorine, different Pop(Cl)$^\text{LUMO}$ \rightarrow ΔST (in red), in the ground state (GS) and Mulliken Cl elect. pop. A

Thus, RIXS spectroscopy reflects the character of the chemical bond by probing the charge sharing between excited (argon-like) atomic chlorine and its bonding partner, R, via the promotion of an electron to the LUMO, regardless of the polarizability of the molecule.

Figure 4 depicts more precisely the relationship between LUMO electron densities and the derived electronegativity scale. In the following discussion, we consider the three cases shown in Fig. 4, for which the difference in electronegativity (Δχ) between Cl and the ligand R is large and positive (R = Na), large and negative (R = F), and small (R = CF3).

When chlorine is more electronegative (χCl > χR, e.g., in alkali systems such as LiCl, NaCl, and KCl), R acts as an electron-donating group in the ground state. As shown in Fig. 4 for NaCl, the LUMO is localized mainly on Na, and the probability of finding the excited electron near the chlorine atom is small (see Table I, the LUMO Mulliken population on the chlorine atom, Pop(Cl)$^\text{LUMO}$ ≈ 0.0), resulting in nearly degenerate singlet and triplet states and a small singlet-triplet exchange energy (ΔST \sim 0.02 eV).

Alternatively, if chlorine is less electronegative than R (χCl < χR), ΔST is much larger and is correlated to the degree of localization of the LUMO on the chlorine atom. For

TABLE I. Calculated (this work) and experimental36,37,39,40 populations (in %) of the singlet Cl 2pz LUMO1 component in the Cl 2pz LUMO1 spin-orbit state. Hartree-Fock singlet-triplet energy differences (ΔST), molecular-field splittings (MF) (E2p$_z$-E2p$_z$), in the ground state (GS) and Mulliken Cl elect. pop. Pop(Cl)$^\text{LUMO}$ on the LUMO in the Cl 2pz LUMO1 final state. Mulliken Q$_{Cl}$ and Q$^2_{Cl}$ on chlorine in GS and 2pz LUMO1 core-excited states.

<table>
<thead>
<tr>
<th>Group</th>
<th>2pz pop.(%)</th>
<th>ΔST</th>
<th>MF</th>
<th>Electronegativity χ</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>64.7</td>
<td>0.01</td>
<td>-0.09</td>
<td>0.89</td>
</tr>
<tr>
<td>Na</td>
<td>64.6</td>
<td>0.02</td>
<td>-0.03</td>
<td>0.84</td>
</tr>
<tr>
<td>Li</td>
<td>64.5</td>
<td>0.01</td>
<td>-0.04</td>
<td>0.66</td>
</tr>
<tr>
<td>SiH$_3$</td>
<td>57.9</td>
<td>0.21</td>
<td>0.0</td>
<td>-0.39</td>
</tr>
<tr>
<td>SiCl$_3$</td>
<td>54.6</td>
<td>0.32</td>
<td>0.02</td>
<td>-0.25</td>
</tr>
<tr>
<td>I</td>
<td>53.3</td>
<td>0.25</td>
<td>0.06</td>
<td>-0.41</td>
</tr>
<tr>
<td>C$_2$H$_4$</td>
<td>53.2</td>
<td>0.34</td>
<td>0.23</td>
<td>-0.45</td>
</tr>
<tr>
<td>C(NH$_2$)$_3$</td>
<td>52.9</td>
<td>0.35</td>
<td>0.24</td>
<td>-0.22</td>
</tr>
<tr>
<td>i-C$_3$H$_7$</td>
<td>52.4</td>
<td>0.36</td>
<td>0.032</td>
<td>-0.35</td>
</tr>
<tr>
<td>Br</td>
<td>52.2</td>
<td>0.35</td>
<td>0.12</td>
<td>-0.12</td>
</tr>
<tr>
<td>H</td>
<td>52.0</td>
<td>0.35</td>
<td>0.38</td>
<td>-0.10</td>
</tr>
<tr>
<td>C$_2$H$_5$</td>
<td>51.9</td>
<td>0.38</td>
<td>0.29</td>
<td>-0.36</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>51.0</td>
<td>0.39</td>
<td>0.30</td>
<td>-0.33</td>
</tr>
<tr>
<td>SF$_3$</td>
<td>50.3</td>
<td>0.34</td>
<td>0.32</td>
<td>-0.07</td>
</tr>
<tr>
<td>CCl$_3$</td>
<td>48.8</td>
<td>0.45</td>
<td>0.33</td>
<td>-0.02</td>
</tr>
<tr>
<td>NF$_2$</td>
<td>48.8</td>
<td>0.43</td>
<td>0.25</td>
<td>-0.17</td>
</tr>
<tr>
<td>Cl</td>
<td>48.7</td>
<td>0.41</td>
<td>0.21</td>
<td>0.00</td>
</tr>
<tr>
<td>NH$_2$</td>
<td>48.5</td>
<td>0.43</td>
<td>0.30</td>
<td>-0.03</td>
</tr>
<tr>
<td>SF$_2$</td>
<td>47.3</td>
<td>0.37</td>
<td>0.25</td>
<td>-0.16</td>
</tr>
<tr>
<td>OCH$_3$</td>
<td>46.9</td>
<td>0.47</td>
<td>0.32</td>
<td>0.24</td>
</tr>
<tr>
<td>CF$_3$</td>
<td>46.5</td>
<td>0.48</td>
<td>0.34</td>
<td>-0.04</td>
</tr>
<tr>
<td>OH</td>
<td>44.5</td>
<td>0.50</td>
<td>0.31</td>
<td>0.09</td>
</tr>
<tr>
<td>C(NO$_2$)$_3$</td>
<td>41.4</td>
<td>0.55</td>
<td>0.38</td>
<td>0.09</td>
</tr>
<tr>
<td>F</td>
<td>38.1</td>
<td>0.64</td>
<td>0.45</td>
<td>0.61</td>
</tr>
</tbody>
</table>

aValues from Cl 2pz: BE as in Ref. 33.
bExperimental values from polarized-RIXS measurements.
cA from Ref. 5 (in eV).
dB from Ref. 11.
core excitation in Cl-F, for example, the excited electron in the LUMO is mainly on chlorine (Pop(Cl)_{LUMO} = 0.45). As seen in the theoretical RIXS spectrum of Cl-F (Fig. 4), each spin-orbit peak splits into two relativistic components. At the equilibrium bond length (d_{Cl-F} = 1.638 Å), the calculated energy splitting between the two states in 2p_{3/2} is 0.34 eV, and it is slightly larger (0.38 eV) for 2p_{1/2}. In this molecule, the singlet-triplet splitting (ΔST ~ 640 meV) far exceeds the 2p_{3/2,1/2} spin-orbit intensity ratios (circles) from 0.25 eV, as half width half maximum (HWHM) have been used for the calculations.

Between these two extremes, for intermediate values of Δχ, when a Cl 1s core electron is promoted to the LUMO, the degree of delocalization of the electron density along the R-Cl bond (ex: Pop(Cl)_{LUMO} = 0.30 for Cl in CH$_3$Cl) is directly related to ΔST. In other words, the electron promoted to the antibonding LUMO acts as a convenient measure of charge transfer between the two bound species, and thus of their difference in electronegativity.

Experimental and theoretical KL RIXS spectra, with an incident x-ray energy tuned to the Cl 1s → LUMO resonance in CF$_3$Cl (2823.5 eV), are shown in Fig. 5 for both parallel (∥) and perpendicular (⊥) polarization (see Fig. 1). Also shown is the dependence of the Cl 2p spin-orbit ratio as a function of the angle θ between the polarization vectors of the incident and scattered photons. The measured ratios are $R_{∥} = 1.30 \pm 0.05$ and $R_{⊥} = 1.07 \pm 0.05$.

Recently, we have shown36,37,39,40 that it is possible to extract directly from this measured linear dichroism the singlet populations ($W_{2p_{3/2}}^Z$ and $W_{2p_{1/2}}^{(x,y)}$, respectively) of the Cl $2p_{3/2}^{-1}$LUMO1 and Cl $2p_{1/2}^{-1}$LUMO1 nonrelativistic configurations contributing to each of the molecular spin-orbit components. Details of this procedure are presented in Secs. III B and III D.

We report in Table I relative weights, $W_{2p_{3/2}}^Z$, of the nonrelativistic Cl 2p$_z$ atomic orbital (in %) contributing to the $2p_{3/2}^{-1}$LUMO1 spin-orbit final states of the RIXS process, calculated at the equilibrium bond distances for a variety of chlorine-containing molecules. Because of alignment with respect to the Cl-R bond, the contribution of the 2p$_z$ atomic

![FIG. 4. Pictorial description of the relationship between various chemical properties: (i) electronegativity scale derived in the present work; (ii) singlet-triplet exchange (STE) interactions and LUMO electron-density surfaces (0.04eÅ3) for 2p$^{-1}$LUMO1 core-excited states of three different Cl-R molecules; (iii) calculated polarized-RIXS KL spectra (θ = 0°) for NaCl, CF$_3$Cl, and Cl-F from Eq. (27). Comparison is made with the experimental spectrum for CF$_3$Cl. Incoming photon bandwidth, $\gamma_p = 0.2$ eV, and spectrometer resolution, $\gamma_s = 0.25$ eV, as half width half maximum (HWHM) have been used for the calculations.](image1)

![FIG. 5. Experimental 2p$_{3/2}$/2p$_{1/2}$ spin-orbit intensity ratios (circles) from CF$_3$Cl KL RIXS spectra as a function of the angle θ between the polarization vectors of the incident and scattered photons, compared to calculated values (solid curve). Insets: Theoretical KL RIXS spectra obtained at θ = 0° (left) and θ = 90° (right), compared to experiment.](image2)
component to the $2p_{3/2}$ molecular state is more sensitive to the nature of the group R (varying from 66% to 38% for the systems investigated) than the $2p_{1/2}$ components (not shown, but ranging only from 57% to 65%). For HCl, CF$_3$Cl,36,37,40 and CH$_3$Cl,39 the singlet-triplet splitting, ΔST, also was shown to be correlated strongly to interatomic distance; similarly to the $2p_z$ population, ΔST depends on the nature of the chemical bond, but with the chlorine character of the LUMO being anti-correlated to ΔST. Indeed, the theoretical and experimental data collected in Table I show an inverse linear relationship between the $2p_z$ singlet populations and ΔST, as illustrated in Fig. 6.

Thus, a key result of this work is that Cl $2p_z$ populations fit reasonably well to a linear expression with respect to the singlet-triplet exchange energy ΔST for a wide variety of chemical species bound to a chlorine atom. We note that theoretical values for these populations agree quite well with those determined from experiment. As a result, for systems in which experimental results are unavailable, theory is expected to provide acceptable values. Finally, both of these complementary parameters depend on the electronegativity difference $\Delta \chi$ between the chlorine atom and the ligand R, a notion discussed in more detail below. From this result, one can develop an alternate electronegativity scale based on $2p_z$ populations.

We plot in Fig. 7 the present electronegativity values versus Pauling’s for a number of species. For the sake of illustration, we have normalized to Pauling’s electronegativity scale using the linear relationship $\chi = A \times (100 - 2p_z(\%)) + B$. By matching the upper and lower physical limits of the new scale to Pauling’s, i.e., $\chi(66.66\%) = 0.7$ for atomic Fr and $\chi(38.1\%) = 4$ for atomic F, we find $A = 0.1155$ and $B = -3.152$. We estimate our calculated values of $2p_z$ (%) to be uncertain by at most $\pm 3\%$, as can be seen by comparison of experiment and theory (e.g., for HCl and CF$_3$Cl, the experimental $2p_z$ populations are 54% and 52%, respectively, while they are 52% and 51% from theory; see also Ref. 44, where $2p_z = 52\%$ for HCl). As a result, electronegativities determined with the new scale could be uncertain by as much as ± 0.4. Nevertheless, this approach provides a new approach to electronegativity based on charge localization in a LUMO upon core-electron excitation, a parameter that is directly related to the polarity of the Cl-R chemical bond. This last point is consistent with one of the main concepts of the Pauling scale, to estimate, using bond-dissociation energies, the polarity of chemical bonds and the net charge on each atom (see Eq. (1)).

B. From the free radical to the molecule: Geometry dependencies of absolute electronegativity/hardness

With a new electronegativity scale in hand, it is relevant to compare it to existing scales based on other approaches. For atomic ligands, the derived electronegativities correlate well with the Pauling/Datta and XPS scales, i.e., $\chi(F) > \chi(Cl) > \chi(\text{Br}) > \chi(I) > \chi(Li) > \chi(\text{Na}) > \chi(K)$. For alkyl and similar ligands (C$_p$H$_{2p+1}$, $p = 1$–4) and C(H,F)$_3$, our calculated electronegativities yield the following ordering: $\chi(C(CH_3)_3) < \chi(i-C_2H_2) < \chi(C_2H_5) < \chi(CH_3) < \chi(CF_3)$, adhering to the common notion that alkyl groups, which are electron-releasing, become more so with increasing size. This order differs from the Pauling/Datta scale, where $\chi(C(CH_3)_3)$ is larger than $\chi(i-C_2H_2)$ and $\chi(C_2H_5)$ due to a spurious steric effect.11

For other ligands, the broad features generally match those of other methods (e.g., $\chi(CH_3) < \chi(CF_3)$, and $\chi(SiH_3) < \chi(SiCl_3) < \chi(SiF_3)$, as expected). However, there are a few exceptions, namely C(CH$_3$)$_3$, SiH$_3$, H, CH$_3$, and CF$_3$, for which the current approach has the electronegativities increasing in the following order: $\chi(SiH_3)$ (1.70) $< \chi(C(CH_3)_3)$ (2.25) $< \chi(CH_3)_{\text{exp}}$ (2.39) $< \chi(\text{H})_{\text{exp}}$ (2.62) $< \chi(CF_3)_{\text{exp}}$ (3.02), differing somewhat from other approaches such as XPS, Pauling/Datta, and Pearson.5,45

The Pearson scale suffers for groups in which the geometry of the isolated species differs significantly from the geometry of the same species bound in a molecule. For both the SiH$_3$ radical and the SiH$_3$Cl molecule, the silyl group has
TABLE II. Calculated IP, EA, electronegativity, and hardness (η), in eV, at the equilibrium geometries of the t-C₄H₉, SiH₃, and CH₃ free radicals, compared to their frozen geometries in t-C₄H₉Cl, SiH₃Cl, and CH₃Cl molecules. Charges on the chlorine centers (Q) are calculated using Eq. (14), χ, and η of Cl (8.31 eV, 4.70 eV). The Coulombic interaction (J_{R−Cl}) is calculated by considering the distance between chlorine and the center of mass of the group G. Experimental values are shown in parentheses.⁵

<table>
<thead>
<tr>
<th></th>
<th>t-C₄H₉</th>
<th>SiH₃</th>
<th>CH₃</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frozen Optimized</td>
<td>Frozen Optimized</td>
<td>Frozen Optimized</td>
</tr>
<tr>
<td>IP</td>
<td>7.91 (6.93)</td>
<td>8.86 (8.14)</td>
<td>10.96 (9.82)</td>
</tr>
<tr>
<td>EA</td>
<td>0.03 (−0.30)</td>
<td>0.89 (1.41)</td>
<td>0.34 (0.08)</td>
</tr>
<tr>
<td>χ</td>
<td>3.97 (3.11)</td>
<td>4.87 (4.78)</td>
<td>5.65 (4.96)</td>
</tr>
<tr>
<td>η</td>
<td>3.94 (3.61)</td>
<td>3.97 (3.37)</td>
<td>5.35 (4.87)</td>
</tr>
<tr>
<td>Q_{Cl}</td>
<td>−0.92</td>
<td>−0.83</td>
<td>−0.52</td>
</tr>
</tbody>
</table>

As expected, for the planar configuration of CH₃, the calculated value (χ_{planar} = 4.92 eV) is very close to the experimental value (4.96 eV),⁵ and nearly equal to the silyl group electronegativity, a general trend reproduced well by DFT calculations with different exchange-correlation functionals (see Refs. 5 and 47). But for an umbrella-shaped methyl group, the electronegativity is significantly larger (5.65 eV) than for the free radical.

To illustrate the significance of geometrical effects, we plot in Fig. 8 electronegativity values for CH₃ determined from a linear fit between χ (Pauling) and χ (Pearson) for several atomic species. This plot shows the magnitude of the change in χ(CH₃) in its different geometries, based on calculated values of χ (Pearson) from Table II. As expected, a significant change in χ(CH₃) is seen in going from the planar geometry (1.77) to the umbrella geometry (2.04), the latter approaching the RIXS (2.39) and Pauling (2.68) values.

A similar effect is found for t-C₄H₉, which undergoes a modest change in geometry in going from a radical to being bound in a molecule; χ increases from 3.28 eV in the equilibrium geometry to 3.97 eV for the frozen geometry, lower than χ(SiH₃) in either geometry. The fit in Fig. 8 suggests χ to be ≈1.40 for t-C₄H₉ and ≈1.70 for SiH₃ on the Pauling scale. However, the values of χ (Pauling) extrapolated from Fig. 8 for t-C₄H₉, SiH₃, and CH₃ exhibit a different ordering than seen with either the χ (Pauling) or χ (RIXS) scales (see Table I). As discussed in Sec. II A, an explanation for this difference is that any electronegativity scale derived from experimental measurements yields effective values of χ because probing the environment of a molecule necessarily includes at least some influence from parameters ((i) Coulomb interaction term, J_{R−Cl} (see Eq. (5)), which depends on the specific topological nuclear framework and the electron-charge sharing in the molecule; (ii) electronegativity/hardness changes of the chlorine upon core-excitation process; (iii) repolarisation of the surrounding medium in which the atom probed (Cl in this case) is embedded) other than the absolute electronegativities of the bonding partners.

C. Comparison to XPS-derived electronegativities

It is instructive to compare the present RIXS-based approach to XPS. A comparison of RIXS- and XPS-derived electronegativities for several species (see Table I) generally shows similar trends for both scales, but some notable exceptions are discussed below. If we look at the correlation between the electronegativities and the chlorine ionization energies for RCl (R = t-C₄H₉, i-C₃H₇, C₂H₅, CH₃, Cl, CF₃) we find an excellent correlation with R² = 0.998. There is a very close relationship between the new electronegativity scale and core-ionization energies, the ionization energies being much better correlated with this new scale than they do with the Pauling electronegativities listed in Table I of the present paper.

However, for the XPS scale defined by True et al. with I, Cl, F, SF₅, and CF₃ considered as references, χ (H) is close to 3, far from the value of 2.20 predicted by the Datta/Pauling¹¹ and Mullay¹² scales, or the bond-polarity index.⁴⁸

The Mulliken-like definition of electronegativity for hydrogen yields χ (Pearson) = (I + EA) / 2 = 7.17 eV, also inconsistent with Paulings and other empirical values for χ (H). The peculiar behavior of H follows from its unique chemistry, which arises due to its small size and lack of core electrons and because the EA for H is small due to the inability of the H orbital involved in a bond to expand as much as it does in free H⁻.¹⁷ According to Bergmann and Hinze,⁴⁶ True et al. described three types of ligands: (1) hydrogen, with low electronegativity but high chemical hardness (6.4 eV/e), as defined by Parr and Pearson;⁴,⁵ (2) the halogens, which have a range of electronegativities and chemical hardness (4.6 < η < 8.7), with the values roughly correlated to one another; and (3) a variety of other functional groups, including CF₃ and SF₅, with chemical hardness between 2 and 3, uncorrelated to electronegativity. The high chemical hardness of H reflects its
low polarizability and hence low relaxation energy. For H, our theoretical electronegativity is found to be $\chi = 2.39$, and it is 2.62 from experiment, in good agreement with XPS value.

An other interesting comparison to XPS can be made by considering the Cl 2p core binding energies in SiH$_3$Cl (206.22 eV), CH$_3$Cl (206.24 eV), and t-C$_4$H$_9$Cl (205.38 eV) (see Table III). The first two species have nearly identical Cl 2p binding energies (and thus XPS-derived electronegativities) ($\Delta BE = 0.02$ eV) that are ≈ 1 eV ($\Delta BE = +0.88$ eV) higher than that for t-C$_4$H$_9$Cl, suggesting similar electronegativity for SiH$_3$ an CH$_3$ and a lower electronegativity value for t-C$_4$H$_9$. This clearly differs from the ordering found in the RIXS and Pauling scales, where χ(t-C$_4$H$_9$Cl) lies between χ(SiH$_3$) and χ(CH$_3$). A question thus occurs, e.g., why the XPS scale predicts similar core binding energies for both these compounds, while the 2ρ_c populations are quite different in the corresponding core-excitated states? The reason of this discrepancy between RIXS and XPS is not straightforward since both techniques measure different observables. RIXS derived electronegativity scale gives information about the degree of polarization of the spectator electron depending the nature of the radical. XPS measures the core binding energy which is the energy difference between the final core-ionized state and the initial neutral ground state. In order to better understand the correlation between our electronegativity scale and Cl 2p core-binding energies in SiH$_3$Cl, CH$_3$Cl, we have used the simple theoretical approach developed by Aitken and co-workers.

In this model, the Cl 2p core-binding energy, BE(Cl$_{2p}$), is given by the expression

$$\text{BE(Cl}_{2p}) = -\varepsilon_{2p}^{K}\rho + k_{2p}q + V_R + \Delta R + \Delta_{corr},$$

where $-\varepsilon_{2p}^{K}$ is the binding energy of a Cl 2p electron in the neutral atomic chlorine, k_{2p} is a constant taking into account for any partial charge on the chlorine site if the atom experiences a partial valence electronic charge of q, V_R is the polarized molecular medium producing a potential V_R/e at the chlorine site, yielding an energy of qV_R, ΔR is the relaxation energy upon core ionization and Δ_{corr} is the differential core-relaxation energy between the core-ionized state and the neutral ground state.

In principle, both these latter quantities have to be considered to correctly describe the final state. However, as seen in Table IV, the relaxation energy ($\Delta SCF - \varepsilon_{2p}^{K}$) is nearly the same ($\approx 12$ eV) for CH$_3$Cl and SiH$_3$Cl. Furthermore, the calculated energy differences between the theoretical DFT/B3LYP-ΔKS and ΔSCF core binding energies indicate that the differential correlation energy, Δ_{corr}, is of the same order of magnitude for both these compounds. Thus, it can be assumed that relative values of Cl 2p binding energies in CH$_3$Cl, SiH$_3$Cl are mainly derived by initial-state (chemical shift) effects, and ΔBE (Cl$_{2p}$) can be reduced in the present case, to

$$\Delta BE(Cl_{2p}) \approx \Delta V,$$

(12)

where $V = k_{2p}q + V_R$ reflects not only the charge on the chlorine but also on the local electrostatic potential created by

| TABLE III. Calculated net charges on Cl using the Rappe-Goddard (RG) charge-equilibration model, compared with present HF/DFT-B3LYP/Mulliken charges for t-C(29Cl)$_3$Cl, SiH$_3$Cl, and CH$_3$Cl. |
|----------------------------------|----------|----------|
| **t-C(29Cl)$_3$Cl** | **SiH$_3$Cl** | **CH$_3$Cl** |
| Q$_{\text{RG}}$(Cl) | -0.56/0.0/0.085 | -0.63/0.65/0.0 | -0.45/0.07/0.17 |
| $-\varepsilon_{2p}^{K}\rho + k_{2p}q$ | 213.10 | 212.25 | 214.40 |
| V_R | 4.60 | 6.06 | 3.72 |
| **DFT/Mulliken** | | | |
| Q$_{\text{Mult.}}$(Cl) | -0.26/-0.16/-0.18/0.11 | -0.30/0.71/-0.14 | -0.25/-0.18/0.14 |
| $-\varepsilon_{2p}^{K}\rho + k_{2p}q$ | 216.62 | 215.96 | 216.76 |
| V_R | 1.08 | 2.35 | 1.36 |
| **HF/Mulliken** | | | |
| Q$_{\text{Mult.}}$(Cl) | -0.45/-0.28/-0.06/0.10 | -0.39/0.90/-0.17 | -0.33/-0.08/0.14 |
| $-\varepsilon_{2p}^{K}\rho + k_{2p}q$ | 214.42 | 215.11 | 215.84 |
| V_R | 3.28 | 3.20 | 2.28 |

*In eV, see text for details.

| TABLE IV. Calculated –BE(Cl$_{2p}$) (in eV) within the Frozen-core approximation (Koopmans Theorem (KT)) as derived from HF ground-state calculations. Calculated ΔSCF core-binding energy (in eV). Calculated AV and AR (see text, in eV). CH$_3$Cl is chosen as reference. Calculated Kohn-sham (KS) core binding energies with B3LYP exchange-correlation functional. $\Delta_{corr}=\Delta SCF-\Delta SCF$, in eV. Measured Cl 2$p$ core binding energies from Ref. 26. DFT/B3LYP valence-shell electron transfer (CT) from the ligand to the core-ionized(excited) chlorine. Calculated LUMO (Mulliken) electronic population of chlorine (PopLUMO) in the core-excited state. |
|----------------------------------|----------|----------|
| **t-C(H$_3$)$_3$** | **SiH$_3$Cl** | **CH$_3$Cl** |
| $-\varepsilon_{2p}^{K}$ | 217.70 | 218.31 | 218.12 |
| ΔV | -0.42 (-0.25^*) | 0.19 | 0.0 |
| ΔSCF | 205.24 | 206.29 | 206.21 |
| ΔR | 0.55 (0.63*) | 0.11 | 0.0 |
| ΔKS (Δ_{corr}) | 205.40 (0.16) | 206.33 (0.04) | 206.43 (0.22) |
| Cl 2p core (Expt, in eV) | 205.38 | 206.22 | 206.24 |
| CT$^{\text{val}}$ | 0.42 e$^-$ | 0.35 e$^-$ | 0.33 e$^-$ |
| CT$^{\text{val}}$ | 0.38 e$^-$ | 0.35 e$^-$ | 0.35 e$^-$ |
| PopLUMO | 0.33 e$^-$ | ≈ 0.0 | 0.37 e$^-$ |

*Experimental values from Ref. 48.
the surrounding medium. Both these quantities can compete. We have numerically estimated the potentials V_R for both the molecular systems of interest. The calculated values of the potentials V_R produced by radical onto chlorine center, are easily calculated from the expression

$$V_R = -\epsilon_{2p}^{KT} + \varepsilon_{2p}^{A} - k_{2p}q.$$

From Hartree-Fock calculations of atomic $-\epsilon_{Cl-\rho}$ for $q = -1, 0, 1$, we have estimated $k_{2p} \approx 11.7 \text{ eV/e}$, and $\varepsilon_{2p}^{KT} = 219.65 \text{ eV}$. In order to evaluate the charge of chlorine in SiH$_3$Cl and CH$_3$Cl, we use the popular charge-equilibration model developed by Rappe and Goddard, and compare them to HF/DFT-B3LYP Mulliken charges calculated in this study.

It is important to note that net charge arises from two counterbalancing effects. On one hand, the Cl atom competes with the rest of the molecule for electron density, an effect driven by the difference in electronegativity. On the other hand, the sum of the hardness (η) and the Coulomb potential on the Cl atom acts to resist any charge transfer. Using calculated values of χ and η for SiH$_3$ ($\chi = 4.87 \text{ eV}$, $\eta = 3.98 \text{ eV}$) and CH$_3$ ($\chi = 5.65 \text{ eV}$, $\eta = 5.3 \text{ eV}$ in the frozen umbrella geometry), and calculating J_{Cl-G} using the distance between chlorine and the center of mass of the group G, we estimate the net charge on the Cl atom in each molecule as

$$Q_{\text{Cl}} = \frac{(X_G' - X_G^\rho)}{2(\eta_G + J_{Cl-G})}.\quad (14)$$

We find $Q_{\text{SiH}_3} = -0.83$ and $Q_{\text{CH}_3} = -0.52$. Examining the net charges calculated for these two molecules using three other different approaches (see Table III), in spite we find large variations depending on the model used, the Cl in SiH$_3$Cl is consistently found to have a lower net charge than the Cl in methyl chloride. However, the polarizable radicals produce different potentials at the chlorine site, yielding systematically for SiH$_3$ a larger V_R, the positive charge on CH$_3$ being localized mainly on the H atoms and thus is less effective at producing a positive potential at the Cl atom than is the positive charge on the Si atom in SiH$_3$. Furthermore, as reported in Table IV, Mulliken population analysis shows that the amount of charge transfer that occurs through re-polarization of the valence-shell electrons in the core-ionized state is comparable for CH$_3$Cl and SiH$_3$Cl. Thus, our interpretation is that, in spite of different charge on chlorine due to different electronegativity of SiH$_3$ and CH$_3$ (see Pauling scale), the effect of polarizable radicals producing different potentials, V_R, at the chlorine site, combined with a same amount of electron transfer due to electronic relaxation effects after core-ionization process, yields similar experimental core binding energies.

As reported in Table IV, Mulliken population analysis shows that the amount of charge transfer that occurs through re-polarization of the valence-shell electrons in the core-ionized state is comparable to that in the core-excited state of CH$_3$Cl and SiH$_3$Cl. Nevertheless, the spectator electron in the LUMO actually has more density on the core-excited chlorine in CH$_3$Cl (0.37 e$^-$) than it has on the chlorine in SiH$_3$Cl (≈0.0). This indicates that the LUMO charge-sharing magnitude between Cl and the surrounding ligands, e.g., SiH$_3$ vs CH$_3$, still bears the memory of the electronegativity difference between these radicals, as predicted by the Pauling scale.

As shown in Table IV, the calculated Cl 2p relaxation free $-\epsilon_{2p}^{KT}$ and AS CF binding energies for t-C$_4$H$_9$Cl are the lowest in both cases, in agreement with experiment. This result can be explained by the addition of two different contributions, no matter the value of the net charge for t-C$_4$H$_9$Cl relative to those of SiH$_3$Cl and CH$_3$Cl and using the different (RG/DFT/HF) approaches, (i) the potential at the Cl atom due to the t-C$_4$H$_9$ group, at which the positive sign of V_R is due to the positive net charge on the hydrogen atoms of the tertiary methyl groups located far from the chlorine atom and (ii) due to its larger size and higher polarizability, the relaxation energy for t-C$_4$H$_9$Cl being slightly larger ($\approx 12.5 \text{ eV}$) compared to SiH$_3$Cl and CH$_3$Cl.

III. COMPUTATIONAL METHODS AND EXPERIMENT

A. Resonant inelastic x-ray scattering: Theoretical model

The spectral and polarization properties of RIXS are derived from the scattering cross section which is based on the Kramers-Heisenberg formula:

$$\sigma_o(\omega_1, \omega_2) = R^2 \sum_i \sum_j |F_j(\omega_1, \vec{\varepsilon}_1, \vec{\varepsilon}_2)|^2 \delta(\omega_2 + \omega_f, \omega_1),$$

where $F_j(\omega_1, \vec{\varepsilon}_1, \vec{\varepsilon}_2)$ is the stationary scattering amplitude,

$$F_j = \sum_i \langle f | \vec{D}_i(\vec{\varepsilon}_2) | c \rangle \langle c | \vec{D}_j(\vec{\varepsilon}_1) | 0 \rangle.$$

ω_{co} corresponds to the transition energy from the ground state ($|0\rangle$) to the $1s^{-1} \text{LUMO}^j$ intermediate core excited state ($|c\rangle$), ω_1, $\vec{\varepsilon}_1$ and ω_2, $\vec{\varepsilon}_2$ are the frequencies and polarization vectors of the incident and scattered photons, respectively, Γ_i is the lifetime broadening (FWHM) of the intermediate state $|c\rangle$. In a real experiment, the RXS spectral shape is distorted due to finite width of the spectral function of the incident x-ray radiation, where $\Phi(\omega_{co}, \omega_{cf})$ is the spectral function of the incident light, centered at ω_{co} frequency with γ_p of photon bandwidth and the spectrometer resolution, $\Phi'(\omega_{cf}, \omega_{cf}')$. To account for these effects, we need to convolute the spectrum with the respective spectral functions.

$$\sigma(\omega_1, \omega_1') = \int d\omega_2 d\omega_f \sigma_o(\omega_1, \omega_2) \Phi(\omega_1 - \omega_{co}, \gamma_p) \times \Phi'(\omega_2 - \omega_2', \gamma_p).$$

Due to energy conservation law, the above expression can be rewritten as

$$\sigma(\omega_1, \omega_1') = R^2 \int d\omega_2 d\omega_f \sum_i |F_j(\omega_2 + \omega_f, \vec{\varepsilon}_1, \vec{\varepsilon}_2)|^2 \times \Phi'(\omega_2 + \omega_f - \omega_1, \omega_1', \gamma_p) \Phi(\omega_2 - \omega_{co}, \gamma_p).$$

where the corresponding scattering amplitude in RIXS is given now by the expression

$$F_j = \sum_i \langle f | \vec{D}_i(\vec{\varepsilon}_2) | c \rangle \langle c | \vec{D}_j(\vec{\varepsilon}_1) | 0 \rangle.$$
where $\hbar \omega_{cf}$ is the transition energy between the intermediate state, $|c\rangle$, and the final state, $|f\rangle$.

B. Spin-orbit coupling

In all the molecules (Cl-R) considered here, the LUMO orbital has antibonding character, and its electron density is localized along the Cl-R bond and shared to varying degrees between the chlorine atom and the ligand R. The final $2p^{-1}\text{LUMO}^1$ relativistic spin-orbit states are a mixture of $^{1}\Pi$, and $^{1}\Sigma$ singlet and triplet states. To model these states, the spin-orbit interaction can be written as an effective Hamiltonian,

$$H_{so} = \sum_{i=1}^{n_{\text{LUMO}}} \tilde{\mathbf{P}}_{2p}(\gamma, \mathbf{s}_{i}, \mathbf{I}_{i}) \tilde{\mathbf{P}}_{2p}, \quad (20)$$

where $\tilde{\mathbf{P}}_{2p}$ is the projection operator on the chlorine $2p$ orbitals, \mathbf{s}_{i} and \mathbf{I}_{i} are the spin and angular-momentum operators of the ith electron, and γ is the spin-orbit coupling parameter for the Cl $2p$ subshell. As shown in Ref. 43, for the $2p^{-1}\text{LUMO}^1$ state, a few assumptions lead to simplified spin-orbit Hamiltonians in the basis of the nonrelativistic wavefunctions, $^{1}\Pi$ and $^{1}\Sigma$:

$$H(2p^{-1}\sigma, M_f = 0) = \begin{bmatrix} E(\Pi) + \gamma/2 & \gamma/\sqrt{2} \\ \gamma/\sqrt{2} & E(\Sigma) \end{bmatrix},$$

$$H(2p^{-1}\sigma, M_f = 1) = \begin{bmatrix} E(\Pi) & \gamma/2 \\ \gamma/2 & E(\Sigma) \end{bmatrix}. \quad (21)$$

Upon diagonalization, the relativistic wavefunctions are found to be a mixture of singlet and triplet states, and, apart from any molecular-field splitting, the energies of these spin-orbit states are affected by singlet-triplet splitting. In fact, due to the combination of spin-orbit and molecular-field splitting, the $2p^{-1}\text{LUMO}^1$ configuration splits into 12 sublevels, corresponding to $J_z = 2, 1, 1, 0$. However, due to selection rules, only the 8 that include singlet $2p_{x,y,z}$ components contribute to the RIXS spectra, and, furthermore, sublevels that include either the $2p_{x}$ or the $2p_{y}$ nonrelativistic states are degenerate.

For randomly oriented molecules, the mean-square scattering amplitude has to be averaged over all spatial orientations. The mean-square amplitude of diffusion is given by Refs. 52 and 53

$$\langle |F_{2p_{\text{val}}}|^2 \rangle = A\lambda^{\alpha \beta \gamma \delta}_{\text{val}} + B\lambda_{\text{val}}^{\alpha \beta \gamma \delta} + C\lambda^{\alpha \beta \gamma \delta}_{\text{val}}, \quad (22)$$

where we have introduced

$$\lambda^{\alpha \beta \gamma \delta}_{\text{val}} = \sum_{\alpha = x,y,z} \sum_{\beta = x,y,z} F_{\alpha \beta}^{\gamma \delta} F_{\beta \gamma}^{\alpha \delta}, \quad (23)$$

where $2p_{\text{val}}$ is a spin-orbit final states and α and β represent the x, y, z components of the dipole operator \mathbf{D}. The coefficients A, B, and C depend only on the polarization of the incident and emitted x-rays, \vec{e}_1, \vec{e}_2:

$$A = -|\vec{e}_1 \cdot \vec{e}_2|^2 + 4|\vec{e}_1 \times \vec{e}_2|^2 - 1,$$

$$B = -|\vec{e}_1 \cdot \vec{e}_2|^2 - |\vec{e}_1 \times \vec{e}_2|^2 + 4,$$

$$C = 4|\vec{e}_1 \cdot \vec{e}_2|^2 - |\vec{e}_1 \times \vec{e}_2|^2 - 1.$$

With θ as the angle between the two polarization vectors \vec{e}_1 and \vec{e}_2, the mean value of the (squared) amplitude is given by $\langle |F_{2p_{\text{val}}}|^2 \rangle = A(2\cos^2\theta + 2\cos^4\theta - 1)$ (24). For $^{1}\Sigma$ states and

$$\langle |F_{2p_{\text{val}}}|^2 \rangle = 4(2 - \cos^2\theta)|F_{2p_{\text{val}}}^z|^2 W_{\Sigma,S}^z, \quad (25)$$

for $^{1}\Pi$ states.

$$W_{\Sigma,S}$$ and $W_{\pi,\gamma}$ are the nonrelativistic singlet $2p^{-1}\text{LUMO}^1$ and degenerate $2p^{-1}\text{LUMO}^1$ populations in the final $2p^{-1}\text{LUMO}^1$ spin-orbit states and $F_{2p_{\text{val}}}^z$ take the following expressions:

$$F_{2p_{\text{val}}}^z = \langle 2p^{-1}\text{LUMO}^1 | (x|x) | 1s^{-1}\text{LUMO}^1 \rangle \langle 1s^{-1}\text{LUMO}^1 | 2p^{-1}\text{LUMO}^1 | x \rangle.$$

(26)

These formula include the polarization dependence of the singlet $2p^{-1}\text{LUMO}^1$ and $2p^{-1}\text{LUMO}^1$ components, with $W_{\pi,\gamma}$ and $W_{\Sigma,S}$ being parameters determinable from polarized-RIXS spectra (see Sec. III D). The RIXS cross-section takes thus the final form

$$\sigma(\omega_e, \omega) = r^2 \int d\omega_1 d\omega_2 \frac{\omega_2}{\omega_1} \times \sum_{\gamma}(\langle |F_{2p_{\text{val}}}|^2 \rangle e^{-i\omega_2 \gamma/2} \Phi(\omega_2 - \omega', \gamma)), \quad (27)$$

C. Ab initio calculations

All calculations on neutral and core-excited molecules in this work were carried out using the GAMESS(US) package. Different levels of theory were used for the geometrical optimizations and the core-excited-state calculations, respectively. For each molecule, the ground-state geometry was optimized at a DFT level, with Becke three-parameter hybrid exchange and the Lee-Yang-Parr gradient-corrected correlation functional (B3LYP). These calculations reproduced the experimental geometries nearly exactly at moderate computational time. In a few cases (SiH$_3$, CH$_3$), DFT-level ionization potentials and electron affinities were calculated for both the radicals in their free equilibrium geometry and for the same groups bonded to chlorine.

The spin-orbit interaction, including the full Breit-Pauli coupling integral package, was used for calculations of the Cl $2p^{-1}\text{LUMO}^1$ core-excited states, and spin-orbit-coupling calculations were performed on variational configuration-interaction (CI) wavefunctions, SO-CI. The CI
active space included the three occupied 2p\textsubscript{x,y,z} inner shells and the 80 lowest unoccupied virtual orbitals, all derived from the nonrelativistic 2s-1val* potential. The core-excited reference wavefunction was represented by a generalized 2s-1val* singlet state to avoid orientational effects artificially induced in the calculations using 2p\textsubscript{x,y,z}val* states. Because the 2s and 2p orbitals are close in energy (∆E ≈ 70 eV), equivalent relaxation effects are expected.

To treat electronic relaxation of the valence orbitals in response to the core hole accurately, a large aug-cc-pCVQZ basis set was used for chlorine. For the atom(s) of the ligands bonded to chlorine, a 6-311G** basis set was used, augmented by a set of (3s, 3p, 3d) diffuse functions. The choice of different basis sets for Cl and R was made for the following reason. To obtain calculated core-excited final states in molecules, a localized description of the hole is necessary to properly represent electronic relaxation (screening) around the core hole. This problem of core-hole localization can arise when two core levels are close in energy, even if they are located on different atomic centers in the molecular system. In the case of symmetric molecules (e.g., CH\textsubscript{2}), the core hole may jump from one center to the other during successive SCF iterations, preventing convergence in the calculation. Convergence of the SCF procedure can be assured by adding a charge to the ionized nucleus, which is then diminished gradually,58 either by applying effective core potentials to the equivalent centers,50 or by using a different basis set. In the present calculations, convergence problems were avoided by considering different basis sets for Cl and R. In a few cases, comparison to full calculations using a larger cc-pVQZ basis set on the ligand atoms indicated the procedure described above leads to only moderate discrepancies (∼1%) in the 2p\textsubscript{z} calculations.

For evaluation of core binding energies and electronic populations, we used the popular theoretical model proposed by Rappe and Goddard.17 This approach to predicting charge distributions in molecules is based on experimental atomic ionization potentials, electron affinities, and atomic radii, and allows construction of an atomic chemical potential using shielded electrostatic interactions among all the charges. By requiring equal chemical potentials, equilibrium electronic charges can be determined as a function of geometry. It has been shown that this charge-equilibrium approach leads to charges in excellent agreement with experimental dipole moments and with atomic charges obtained from electrostatic potentials of accurate \textit{ab initio} calculations. As suggested by Rappe and Goddard,17 a charge-dependent parameter was used for an accurate description of the charge on hydrogen.

D. Instrumentation and measurement

Polarized-RIXS measurements were performed with a Rowland-circle x-ray-emission spectrometer (see Fig. 1) on beamline 9.3.1 at the ALS and have been described previously.50 The beamline provides an intense photon beam ∼100% linearly polarized in the horizontal plane, focused into a gas cell containing up to ∼400 mбар of a sample. The x-ray-scattering plane is vertical, and the scattered beam is both energy analyzed and focused onto a position sensitive detector by a curved Si(111) crystal, yielding an energy resolution of 400 meV near the Cl K edge. As the Bragg angle for Cl KL emission is very close to the Brewster angle for x-rays (45°), the crystal reflectivity of the perpendicular component of the polarization approaches zero and only parallel-polarized x-rays are diffracted efficiently; i.e., the diffracting crystal acts as an efficient x-ray polarimeter. By rotating the spectrometer, we are able to perform polarized-RIXS measurements as a function of the angle θ between the incident (e\textsubscript{i}) and scattered (e\textsubscript{s}) polarization vectors.36,37 For the experimental results reported here, KL emission lines were measured after resonant photoexcitation at the Cl 1s→LUMO resonance for ten different angles θ. Experimental spin-orbit ratios, R = I(2p\textsubscript{3/2})/I(2p\textsubscript{1/2}), were determined for each value of θ from a least-squares fit of the two KL emission lines by two Voigt profiles each, assuming identical profiles for the spin-orbit doublet, 2p\textsubscript{3/2} and 2p\textsubscript{1/2} (see Fig. 4).

The spin-orbit ratio, R, measured experimentally as a function of θ can be related to W\textsubscript{x,y}2 and W\textsubscript{z}2 (see Sec. III B). Indeed, R can be fitted to the following equation and the populations W\textsubscript{1/2}x,y and W\textsubscript{1/2}z can be extracted directly as free parameters:

\[
R = \frac{I(2p_{3/2})}{I(2p_{1/2})} = \frac{2(1 + 2\cos^2\theta)(1 - W_{1/2}^{z}) + 4(2 - \cos^2\theta)(1 - W_{1/2}^{x,y})}{2(1 + 2\cos^2\theta)W_{1/2}^{z} + 4(2 - \cos^2\theta)W_{1/2}^{x,y}}.
\]
(28)

Statistical errors on the extracted values of W\textsubscript{1/2}x,y and W\textsubscript{1/2}z from this procedure suggest rather small uncertainties of about 0.5% for populations derived directly from experiment.

IV. CONCLUSION

Electronegativity values derived from polarization-resolved resonant inelastic x-ray scattering have been reported. Supported by \textit{ab initio} calculations, we demonstrated that Cl KL emission from gas-phase molecules is extremely sensitive to coupling effects between molecular-field, singlet-triplet-exchange, and spin-orbit interactions, through the variation of Cl 2p\textsubscript{z} populations as a function of the ligand bound to Cl. In particular, we found a linear relationship between the nature of ligands and the 2p\textsubscript{z} populations that was explained in terms of localization of the LUMO into which the core electron is excited; the net charge transfer between chlorine and its ligand, and thus the nature of the chemical bond, is probed by RIXS spectroscopy because of the delocalized nature of the LUMO. To our knowledge, this is the first time a correlation between a textbook chemical parameter and excitation-deexcitation behavior in molecules has been established.

The rearrangements of electrons that accompany the formation of a molecule are very subtle, and free-atom electronegativities may not provide a comprehensive picture of these rearrangements. The new RIXS-based approach provides an electronegativity scale highly consistent with the fundamental ideas of Pauling about the chemical bond, because...
RIXS-based values of \(\chi \) are determined via direct measurements of molecular systems.

In all such experimental approaches, including RIXS and the thermochemical picture, only effective electronegativities can be determined because various factors (electronic relaxation, repolarization of the chemical bond) beyond the absolute electronegativity of an isolated species, its hardness and the potential due to the rest of the molecule are inherently present when core-excitation. Through consideration of a few cases, this work discussed how to link the XPS, Pauling, and Mulliken/Pearson approaches with the polarized-RIXS approach. We conclude that this new method, based on electron-density analysis of the LUMOs of different substituents bound to chlorine, provides effective electronegativity values compatible in most of the cases considered, here, with the literature. Extension of this approach to the determination of electronegativities in gases, solids, and even liquids appears to be promising.

ACKNOWLEDGMENTS

The authors would like to express their gratitude to the staff of the Advanced Light Source (ALS) for their valuable help and helpful discussions with Professor A. Maquet. Support from the National Science Foundation under NSF Grant No. PHY-09-70125 is gratefully acknowledged. The ALS is supported by (U.S.) Department of Energy (DOE) (DE-AC03-76SF00098). M.N.P. acknowledges the French Agence Nationale de la Recherche (ANR) for financial support in the framework of “Chair d’Excellence” program.