Aug 9th, 10:15 AM - 12:00 PM

A Spatial and temporal analysis of microbial communities in Great Boiling Spring, Nevada, U.S.A.

Jessica K. Guy
University of Nevada, Las Vegas

Joseph P. Peacock
University of Nevada, Las Vegas

Jeremy A. Dodsworth
University of Nevada, Las Vegas

Tanja Woyke
US DOE Joint Genome Institute

Tijana G. del Rio
US DOE Joint Genome Institute

See next page for additional authors

Repository Citation

This Event is brought to you for free and open access by the Undergraduate Research at Digital Scholarship@UNLV. It has been accepted for inclusion in Undergraduate Research Opportunities Program (UROP) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
Presenters
Jessica K. Guy, Joseph P. Peacock, Jeremy A. Dodsworth, Tanja Woyke, Tijana G. del Rio, and Brian P. Hedlund

This event is available at Digital Scholarship@UNLV: https://digitalscholarship.unlv.edu/cs_urop/2011/aug9/25
A Spatial and Temporal Analysis of Microbial Communities in Great Boiling Spring, Nevada, USA

Jessica K. Guy1, Joseph P. Peacock1, Jeremy A. Dodsworth1, Tanja Woyke1, Tijana G. del Rio1, Brian P. Hestlund1
1School of Life Sciences, University of Nevada, Las Vegas, 4505 S Maryland Parkway, Las Vegas, Nevada 89154
2DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598

Introduction

GBS is a large, geothermal, long-residence-time geothermal spring located in the US Great Basin. It is remarkably monotonous, with analyses showing major shifts of Nut and C and an active nitrogen cycle [1,2].

Results and Conclusions

Water and sediment-borne microbial communities were distinct with very little overlap, regardless of the sampling location or temperature (Fig 2). Water-borne communities were extremely uneven and were dominated by a single phylotype (water). At the different sites through GBS, with only 19.77% of variation explained, this result is similar to the unweighted UniFrac analysis. This amounts to an explanation of 88.15% by P2, site type, resulting in a total variation explained of 35.57%, indicating that relative OTU abundance has a greater influence on the sample clusters in the weighted analysis, again suggesting that relative OTU abundance has a greater influence on the sample clusters in the weighted analysis.

Methods

Eight sediment samples were collected using sterile coring devices and four water samples were collected using sterile coring devices. Sediment samples were collected from four sites at the inlet of the hot spring, sampling in average temperatures from 81.3 - 82.0°C (Fig 1). Samples were stored on ice and transported to the lab, where DNA was extracted using a slightly modified version of the Joint Genome Institute (JGI) CTAB protocol [4]. Phylogenetic analyses were performed using the RDP4 [5] pipeline. The rRNA gene was performed using the RDP4 [5] pipeline. The results were visualized using the RDP4 pipeline [5].

References

Acknowledgements

This project is funded by grants from DOE (DE-SC000162), National Renewable Energy Laboratory (CN-195), and NSF (MCB-0846411, DEB-1057323). Thank you to Chris Ross for helpful strategic conversations.

88