Aug 9th, 10:15 AM - 12:00 PM

Defining the role of NRAS in melanoma maintenance

Sravya T. Challa
University of Nevada, Las Vegas

Sheri L. Holmen
Navada Cancer Institute

Repository Citation
Challa, Sravya T. and Holmen, Sheri L., "Defining the role of NRAS in melanoma maintenance" (2011). Undergraduate Research Opportunities Program (UROP). 33.
https://digitalscholarship.unlv.edu/cs_urop/2011/aug9/33

This Event is brought to you for free and open access by the Undergraduate Research at Digital Scholarship@UNLV. It has been accepted for inclusion in Undergraduate Research Opportunities Program (UROP) by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact digitalscholarship@unlv.edu.
Defining the Role of NRAS in Melanoma Maintenance

Sravya T. Challa PI: Sheri L. Holmen, PhD.
Nevada Cancer Institute, Las Vegas, NV

Molecular Analysis of Human Melanoma

<table>
<thead>
<tr>
<th>Gene/Tissue</th>
<th>Familial/Sporadic</th>
<th>Alterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS</td>
<td>S</td>
<td>Point mutation, deletion, promoter</td>
</tr>
<tr>
<td>BRF</td>
<td>S</td>
<td>Point mutation, deletion</td>
</tr>
<tr>
<td>CTNNB1</td>
<td>S</td>
<td>De novo or gain of function</td>
</tr>
<tr>
<td>HGF</td>
<td>S</td>
<td>Gain of function</td>
</tr>
<tr>
<td>MYC</td>
<td>S</td>
<td>Gain of function</td>
</tr>
<tr>
<td>FGFR1</td>
<td>S</td>
<td>Gain of function</td>
</tr>
<tr>
<td>PIK3CA</td>
<td>S</td>
<td>De novo or gain of function</td>
</tr>
<tr>
<td>PTEN</td>
<td>S</td>
<td>Loss of function</td>
</tr>
<tr>
<td>TP53</td>
<td>S</td>
<td>De novo or gain of function</td>
</tr>
</tbody>
</table>

RAS/TVa Melanoma Mouse Model System

TVA reporter for early stage development. A) Schematic of the canonical RAS effector pathways RAF-MEK-ERK and PI3K-Akt and the mutations that most often activate NRAS.

Initial Validation of Melanoma Associated Genes

Expression of RAS in SK-MEL cells and growth in soft agar. Cell lines from untreated D-EEL tumor xenografts (+) or cells induced with doxycycline treatment containing either (A) NRAS or (B) TVA (were killed at the E85 level, amplified) treated (+) and untreated (+) are exposed to treated (B) or untreated (A) control cells and phase-contrast images (10X and 40X).

Results and Conclusions

- Knockdown of ARF in SK-MEL cells was achieved to below 50% by transfection with D-EEL vector alone or mock vector. The effect of ARF knockdown was evaluated by Western blot and immunostaining for ARF expression.
- Knockdown of RAS in SK-MEL cells was achieved to below 50% by transfection with D-EEL vector alone or mock vector. The effect of RAS knockdown was evaluated by Western blot and immunostaining for RAS expression.

Future Directions

- Evaluation of the role of NRAS in melanoma progression.
- Development of targeted therapies for melanoma.
- Investigation of the mechanisms of NRAS-mediated cell proliferation and survival.

ACKNOWLEDGEMENTS

- The project was supported by the National Institutes of Health (NIH) and the Nevada System of Higher Education (NSHE). The authors thank the Nevada Cancer Institute for their support.
- The graphical abstract was prepared by the Nevada Research Resources Center.

Figure 1: Schematic of the canonical RAS effector pathways RAF-MEK-ERK and PI3K-Akt, and the mutations that most often activate NRAS.