Long-term Client Outcomes

The State-wide Gambling Therapy Service

South Australia

Peter Harvey, David Smith & Rachel Humeniuk: May 2013
Context
Overview

1. Statewide Gambling Therapy Service, SA
 - context
 - service model
 - routine activity, KPIs and outcomes
 - ongoing research programmes

2. examples of some specific study outcomes

3. larger service evaluation outcomes
• the problem with gambling
 • forms of gambling (85% of clients present with EGM problems)
 • rate of help seeking (2-5)% of at risk group
 • emerging forms of gambling

• prevalence: 2% of the population with gambling problems

• co-occurring conditions

• varied progress through treatment (sessions, timeframe, stop/start approach)
National problem gambling context

- 395,000 Australians are either at risk of developing problems or have serious gambling problems
- 200,000 machines in Australia in 6,000 venues
- ease of access increases problems (EGMs)

Productivity Commission Inquiry Report, 2010
Business structure

- funded through the Department for Communities and Social Inclusion in South Australia
- Office for Problem Gambling (gamblers rehabilitation fund - GRF)
- SGTS funded to treat 400 clients per year
- CBT based therapy...
 - manual-based graded exposure treatment & CBT
 - therapists with backgrounds in mental health nursing, social worker and psychology with post-grad training in CBT
• service sites
• treatment timeframe - (8-12) sessions
• inpatient and outpatient options
• recurrent clients (repeated treatment episodes or cycles)
• client profiles
• different approaches to remediation by help service providers (treatment continuum)
 • family counselling
 • financial counselling and support
 • therapy (outpatient and in-patient)
 • treatment for comorbid mental health conditions
Research Activities

- 3 year ethics protocol: tracking & follow-up
- relapse study
 - relapse models
 - predictors of relapse in PG
 - cohort study (mainly SGTS clients)
- naltrexone pilot study
- inpatient review project
- pre-release prison pilot project
Research Activities

• testing the service provision model to develop an evidence-based best practice service

• RCT (3 year study of CT/BT)

• emergency department admissions

• family violence and problematic gambling (Hong Kong)

• Flinders Centre for Gambling Research

• RCT (NH&MRC 2013: CT/BT/CBT/TAU)
Service Summary
for data from 2011-12
Of the 752 clients that were seen by SGTS in 2011-12

- 406 (54%) were new contacts
- 81 (11%) were non-gambling support clients
- 114 (15%) were continuing in treatment from the previous year
- 151 (20%) were continuing in follow-up from the previous years
Outcomes for a cohort study – predictors of relapse ($n = 127$)
Mean self-harm Victorian Gambling Screen (VGS) Scale scores with 95% confidence intervals as a function of treatment completion status

Time
Baseline 1 month 3 months 6 months 12 months
Treatment completers
Treatment dropouts

(n=86) (n=41) (n=48) (n=10) (n=57) (n=13) (n=59) (n=32) (n=7)
Mean Gambling Related Cognition Scale (GRCS) scores with 95% confidence intervals as a function of treatment completion status.
Mean Gambling Urge Scale (GUS) scores with 95% confidence intervals as a function of treatment completion status.
Longitudinal Study Rationale
Longitudinal Study Rationale

- controlled studies are designed to test key elements of an intervention or to compare one approach to treatment with another ie CBT and general counselling

- in the day to day operation of a treatment service, client progress through treatment is haphazard, so naturalistic study designs may provide a more realistic assessment of overall service effectiveness over time

- it is important to know what actually happens to clients on their journey through treatment not just what is intended to happen or what happens to ‘ideal’ clients
An approach to managing gambling outcome data

- individuals are tracked over time and changes in outcome indicators modelled using observed and fitted estimates
- data from the included population is analysed using time as a continuous variable
- note...ANOVA and other forms of analysis with fixed data points require imputed or replaced data otherwise cases missing time points are dropped from the analysis
Sampling service outcomes over an extended period
Context

• clients consent to 3 year follow-up when engaging in treatment

• key clinical and gambling activity data are routinely collected at baseline and every 4 sessions as well as on discharge and at 1, 3, 6 & 12 months with 2 & 3 year follow-up

• we focused on **VGS, K10 and WSAS** scores over time for a population of 664 unique clients registered for treatment
inclusion

focus period

removed

removed
664 clients remained in the analysis group with baseline data in the study period and at least one other time point... ie those who began treatment within the focus period and those who had at least one repeat measure before the cut-off.

Outcomes were modelled by client ID and key clinical measures, taking time as a continuous variable and using random effects modelling techniques in order to manage irregular time points and missing data (cf ANOVA and RMANOVA assumptions).
This approach accepts that:

- people may stop and re-start treatment
- other treatments may coincide with the focus treatment
- life events interfere with the treatment process
- motivation to engage may change
- therapists change
- clients accept some treatments and not others
- service provision is not laboratory controlled
- time intervals for treatment and data collection vary
- data is not always available / provided
- longer term follow-up is difficult
evaluating service treatment outcomes: a risk-adjusted model

Baseline socio-demographics and clinical characteristics of \(n = 664 \) problem gamblers

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socio-demographic data</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>43.02 (13.38)</td>
</tr>
<tr>
<td>Male</td>
<td>367 (55.11)</td>
</tr>
<tr>
<td>Relationship</td>
<td></td>
</tr>
<tr>
<td>married/de facto</td>
<td>250 (38.17)</td>
</tr>
<tr>
<td>separated/divorced</td>
<td>173 (26.41)</td>
</tr>
<tr>
<td>never married</td>
<td>194 (29.62)</td>
</tr>
<tr>
<td>widowed</td>
<td>22 (3.36)</td>
</tr>
<tr>
<td>other</td>
<td>16 (2.44)</td>
</tr>
<tr>
<td>Employed</td>
<td>377 (57.91)</td>
</tr>
<tr>
<td>Duration of gambling problem</td>
<td></td>
</tr>
<tr>
<td>< 1 year</td>
<td>79 (12.44)</td>
</tr>
<tr>
<td>1 - 5 years</td>
<td>202 (31.81)</td>
</tr>
<tr>
<td>6 - 10 years</td>
<td>145 (22.83)</td>
</tr>
<tr>
<td>> 10 years</td>
<td>209 (32.91)</td>
</tr>
<tr>
<td>Primary form of gambling</td>
<td></td>
</tr>
<tr>
<td>gaming machines</td>
<td>528 (80.73)</td>
</tr>
<tr>
<td>horse/dog racing</td>
<td>86 (13.15)</td>
</tr>
<tr>
<td>other</td>
<td>40 (6.12)</td>
</tr>
<tr>
<td>Outcome measures</td>
<td></td>
</tr>
<tr>
<td>VGS</td>
<td>38.89 (11.81)</td>
</tr>
<tr>
<td>K10</td>
<td>28.58 (9.93)</td>
</tr>
<tr>
<td>WSAS</td>
<td>14.68 (10.12)</td>
</tr>
</tbody>
</table>

Abbreviations: VGS, Victorian Gambling Screen harm to self sub-scale; K10, Kessler 10 Scale; WSAS, Work and Social Adjustment Scale; Data are mean (SD), or n (%) unless otherwise indicated.
modelling process

• inclusion of all important covariates
• interaction terms significant at $P \leq 0.05$ included in models
• 3 models considered
 • M1: unadjusted model (i.e. no covariates)
 • M2: adjusted for all covariates and important interaction terms (e.g. age*gender)
 • M3: M2, but where only significant interactions were included
• random-coefficient models used to account for inter-individual and intra-individual differences over time for all available data
model statistics for selecting a risk-adjustment model

<table>
<thead>
<tr>
<th>Model†</th>
<th>AIC</th>
<th>BIC</th>
<th>P-value‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>17836.89</td>
<td>17876.55</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>16681.14</td>
<td>16837.90</td>
<td>< 0.001</td>
</tr>
<tr>
<td>3</td>
<td>16677.20</td>
<td>16789.17</td>
<td>0.149</td>
</tr>
<tr>
<td>K10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>15224.78</td>
<td>15264.45</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14200.39</td>
<td>14357.19</td>
<td>< 0.001</td>
</tr>
<tr>
<td>3</td>
<td>14194.21</td>
<td>14317.41</td>
<td>0.444</td>
</tr>
<tr>
<td>WSAS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>15267.55</td>
<td>15307.21</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14221.06</td>
<td>14377.83</td>
<td>< 0.001</td>
</tr>
<tr>
<td>3</td>
<td>14214.78</td>
<td>14337.95</td>
<td>0.456</td>
</tr>
</tbody>
</table>

Abbreviations: AIC, Akaike’s information criterion; BIC, Bayesian information criterion.
Model 1, unadjusted model
Model 2, all interaction terms
Model 3: interaction terms significant at $P \leq 0.05$†Based on likelihood ratio tests between adjacent models
final model

- **model 3**: overall-goodness-of-fit similar to Model 2, however, less parameters make for easier interpretation

- all covariate main effects included

- significant **interaction terms** included: VGS (age*gender); K10 & WSAS (duration*time)

- **all outcomes showed a statistically significant reduction** (improvement) over time ($P < 0.001$) e.g. on average, VGS decreased by 4.81 units for each increase in time (months) when holding all other variables constant

- quadratic term for time (months\(^2\)) showed a statistically significant leveling-off effect ($P <0.001$)
longitudinal outcomes VGS

Predictive margins of **gambling duration status** with 95% confidence intervals
longitudinal outcomes K10

Predictive margins of **gambling duration status** with 95% confidence intervals
longitudinal outcomes WSAS
Predictive margins of gambling duration status with 95% confidence intervals
interactive effects VGS

Predictive margins of **gender status** with 95% confidence intervals.
summary

• time in treatment is a key element in outcome achievement

• this work provides evidence for modifying the treatment regimen to improve compliance and completion rates

• relapse is common and clients stop and start therapy due to changing circumstances and motivation
modelling time as a continuous variable provides a more realistic assessment of the client journey to recovery

our proposed new study (4 component RCT) will build on this service level evaluation information and current RCT and lead to more flexible treatment options for clients

at the service evaluation level, we aim to improve engagement and retention in treatment to improve overall service effectiveness
Is gambling a problem for you or someone close to you?

Gambling becomes a problem when it disrupts personal, family or job-related activities. People can find it difficult to resist the urge to gamble even when they want to stop. People may hide their gambling from others and severe financial problems can arise.

Statewide Gambling Therapy Service provides assessment, evidence-based treatment and follow-up counselling for problem gambling and other problems that can be related, like depression and anxiety. Treatment is available for the different forms of gambling e.g. pokies, TAB, card games, and Keno.

It is a free, effective and confidential service that will help you get control of your life.
SGTS

Flinders UNIVERSITY

inspiring achievement
Annual EGM Revenue and Tax

m

rev $ tax $
Annual new client registrations

treatment clients - new registrations, 2005-2012

<table>
<thead>
<tr>
<th>Year</th>
<th>Registrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>92</td>
</tr>
<tr>
<td>2006</td>
<td>183</td>
</tr>
<tr>
<td>2007</td>
<td>236</td>
</tr>
<tr>
<td>2008</td>
<td>462</td>
</tr>
<tr>
<td>2009</td>
<td>483</td>
</tr>
<tr>
<td>2010</td>
<td>457</td>
</tr>
<tr>
<td>2011</td>
<td>378</td>
</tr>
<tr>
<td>2012</td>
<td>365</td>
</tr>
</tbody>
</table>
PGSI profile for standard cohort 2011

Mean = 15.79
Std. Dev. = 6.539
N = 491
Age distribution

![Age distribution graph](image)
Indigenous client numbers increasing