Measuring the Price of Discrimination with Data on Poker Games

May 29, 2013

Dr. Ingo Fiedler
1. Introduction

- Economic theory suggests that discrimination is price sensitive and money an equalizer
- This means that discrimination decreases the higher the private costs for the discriminator
- Economic reasoning: Discrimination comes at a price for the discriminator
 - Example: an employer discriminates against potential employees with a non-white skin tone and thus may miss the best employees who then work for a competitor.
 - Imperfect competition leads to rents and rents can be used to discriminate and they can be discrimination in itself. [Jomo, 2003].
 - Competition reduces discrimination

→ Is money an equalizer? And by how much?
Forms of Discrimination [Bertrand et al. 2005 and Parsons et al 2011]

- **Taste-based discrimination**: Discriminating against a person or group for personal reasons
- **Statistical discrimination**: Discriminating because the membership of a certain group provides information about a relevant characteristic
- **Implicit discrimination**: Unintentional and outside of the discriminator’s awareness
- **Positive Discrimination**: Being disproportionately likely to engage with a member of a certain group given the prevalence of members of this group
- **Negative Discrimination**: Being less likely to engage with a member of a certain group given its prevalence
Brief Outline of Research Idea

• Analyzing whether poker players from a certain country are
 ➢ significantly more likely to play against people from a certain country (positive discrimination)
 ➢ significantly less likely to play against people from a certain country (negative discrimination)

• Control if and by how much the discrimination vanishes when stakes increase
 ➢ Main hypothesis A: Positive discrimination decreases with increasing stakes.
 ➢ Main hypothesis B: Negative discrimination decreases with increasing stakes.

→ Determining the price elasticity of discrimination
Data: Online Poker Database of the University of Hamburg (OPD-UHH)

• Database includes (inter alia):
 ➢ data on 4.6 million poker player identities over 6 months
 ➢ information on origin of players
 ➢ information on limits played (stakes)
 ➢ Data collected 2009/2010 (before Black Friday)
 ➢ 10 minutes between data points

• Data used: Dataset used by other studies
 ➢ poker market size [Fiedler/Wilcke 2011a, 2011b, 2011c, 2011d, 2011e, 2012; Philander/Fiedler 2012]
 ➢ analyzing playing habits [Fiedler 2012a, 2012b, 2012c; Wilcke 2013]
Data used

- One week of No Limit Heads up tables at Full Tilt Poker for stakes NL50 to NL20,000

<table>
<thead>
<tr>
<th>Limit</th>
<th>Number of observations</th>
<th>Number of player pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>NL 50</td>
<td>121,028</td>
<td>60,514</td>
</tr>
<tr>
<td>NL 100</td>
<td>61,842</td>
<td>30,921</td>
</tr>
<tr>
<td>NL 200</td>
<td>35,944</td>
<td>17,972</td>
</tr>
<tr>
<td>NL 400</td>
<td>17,864</td>
<td>9,932</td>
</tr>
<tr>
<td>NL 600</td>
<td>6,602</td>
<td>3,301</td>
</tr>
<tr>
<td>NL 1,000</td>
<td>3,674</td>
<td>1,837</td>
</tr>
<tr>
<td>NL 2,000</td>
<td>1,306</td>
<td>653</td>
</tr>
<tr>
<td>NL 5,000</td>
<td>2,812</td>
<td>1,406</td>
</tr>
<tr>
<td>NL 10,000</td>
<td>568</td>
<td>284</td>
</tr>
<tr>
<td>NL 20,000</td>
<td>328</td>
<td>164</td>
</tr>
</tbody>
</table>
Steps of the Data Analysis

1. Data Extraction
 - *MS SQL Server 2008 Enterprise*

2. Data Import
 - *SPSS 18*

3. Data Editing
 - *STATA SE*

4. Data Querying
 - *STATA SE*

5. Descriptive Analysis
 - *Excel 2010*

6. Statistical Analysis
 - *SPSS 18*
Definition of Variables, Symmetric Differences

• *Frequencies* of player observations from different countries *relative* to all observations
• *Expected absolute* number of observations for each country pair
• *Expected frequency* of a country pair *relative* to all observations
• *Ratio* between the observed and expected observations of a country pair
• The *difference* between the observed and the expected observations of a country pair and its relative complement

→ These figures show which country pairings are observed more often or less often than expected
Definition of Variables, Non-Symmetric Differences

- **Observed frequency** of a country pair relative to a country i (and not relative to all observations)

- **Expected frequency** of a country pair relative to a country i (Please note that this figure is different for the same player pair depending on which country is country i)

- **Difference** between the observed relative frequency of a country pair and its expected relative frequency relative to a country
Controlling for Time Differences

- Time differences between countries make it more or less likely to encounter players from the other country at the tables
- Interpretation of time differences:
 - bonus on the probability of playing against players from countries which have zero or little time difference
 - discount on the probability of playing against players from countries which have a high time difference
- Capturing time differences
 - Grouping countries with identical time differences
 - Determining effects via a regression on dummies
Results #1: Positive Discrimination was found

- No significant negative discrimination was found
- Significant positive discrimination was found in the so-called hom-bias (players from country A are more likely to play against other people from country A)
- Result of Wilcoxon signed-rank test:

<table>
<thead>
<tr>
<th>Test: $x_{ij} - \hat{x}_{ij}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative ranks</td>
</tr>
<tr>
<td>Positive ranks</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

\[Z = -2.629 \]

Asymptotic significance 0.009
Results #2: Positive Discrimination decreases in stakes

<table>
<thead>
<tr>
<th>Test: $x_{ii} - \hat{\alpha}_i^a$</th>
<th>NL50</th>
<th>NL100</th>
<th>NL200</th>
<th>NL400</th>
<th>NL600</th>
<th>NL1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative ranks</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Positive ranks</td>
<td>18</td>
<td>13</td>
<td>10</td>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
<td>17</td>
<td>14</td>
<td>12</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Z</td>
<td>-3.354</td>
<td>-1.681</td>
<td>-0.973</td>
<td>-1.334</td>
<td>-0.533</td>
<td>-1.153</td>
</tr>
<tr>
<td>Asymptotic Significance</td>
<td>.001</td>
<td>.093</td>
<td>.331</td>
<td>.182</td>
<td>.594</td>
<td>.249</td>
</tr>
</tbody>
</table>
Interpretation #1

- People are willing to pay a premium to play with other players from their country
- That is remarkable because the online poker environment is purely virtual
- Is it because of the possibility of chatting in the same language?
 - Rather not, because:
 - people chat very rarely in online poker and
 - all languages except English are prohibited (words in foreign languages are made unrecognizable)
 - Also: Wilcoxon signed-rank test without English speaking countries found the same result (and not a stronger one)
Interpretation #2

• Players on the higher limits are not willing to pay the (higher) price for the good „discrimination“

→ Demand for discrimination decreases with an increasing price

→ Money is an equalizer in this setting

• Further analysis reveaeld a price elasticity of demand for discrimination of -0.25 (very inelastic)
Limitations

• Cases of country pairs with zero observations were excluded
• Stickiness/status-quo bias: players are more likely to stick to a table they are already sitting at than to switch tables during the phase of ten minutes
• Transfer of the results from empirical analysis to the estimate of a demand curve is limited
 ➢ too few data points/limits where a significant home bias is observed
 ➢ depends on the assumption that the price is increasing proportionally with stakes
Thank you for your kind attention!

Ingo.fiedler@uni-hamburg.de